perf.c 18 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0
/*
 * System Control and Management Interface (SCMI) Performance Protocol
 *
 * Copyright (C) 2018 ARM Ltd.
 */

8
#include <linux/bits.h>
9
#include <linux/of.h>
10
#include <linux/io.h>
11
#include <linux/io-64-nonatomic-hi-lo.h>
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#include <linux/platform_device.h>
#include <linux/pm_opp.h>
#include <linux/sort.h>

#include "common.h"

enum scmi_performance_protocol_cmd {
	PERF_DOMAIN_ATTRIBUTES = 0x3,
	PERF_DESCRIBE_LEVELS = 0x4,
	PERF_LIMITS_SET = 0x5,
	PERF_LIMITS_GET = 0x6,
	PERF_LEVEL_SET = 0x7,
	PERF_LEVEL_GET = 0x8,
	PERF_NOTIFY_LIMITS = 0x9,
	PERF_NOTIFY_LEVEL = 0xa,
27
	PERF_DESCRIBE_FASTCHANNEL = 0xb,
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
};

struct scmi_opp {
	u32 perf;
	u32 power;
	u32 trans_latency_us;
};

struct scmi_msg_resp_perf_attributes {
	__le16 num_domains;
	__le16 flags;
#define POWER_SCALE_IN_MILLIWATT(x)	((x) & BIT(0))
	__le32 stats_addr_low;
	__le32 stats_addr_high;
	__le32 stats_size;
};

struct scmi_msg_resp_perf_domain_attributes {
	__le32 flags;
#define SUPPORTS_SET_LIMITS(x)		((x) & BIT(31))
#define SUPPORTS_SET_PERF_LVL(x)	((x) & BIT(30))
#define SUPPORTS_PERF_LIMIT_NOTIFY(x)	((x) & BIT(29))
#define SUPPORTS_PERF_LEVEL_NOTIFY(x)	((x) & BIT(28))
51
#define SUPPORTS_PERF_FASTCHANNELS(x)	((x) & BIT(27))
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
	__le32 rate_limit_us;
	__le32 sustained_freq_khz;
	__le32 sustained_perf_level;
	    u8 name[SCMI_MAX_STR_SIZE];
};

struct scmi_msg_perf_describe_levels {
	__le32 domain;
	__le32 level_index;
};

struct scmi_perf_set_limits {
	__le32 domain;
	__le32 max_level;
	__le32 min_level;
};

struct scmi_perf_get_limits {
	__le32 max_level;
	__le32 min_level;
};

struct scmi_perf_set_level {
	__le32 domain;
	__le32 level;
};

struct scmi_perf_notify_level_or_limits {
	__le32 domain;
	__le32 notify_enable;
};

struct scmi_msg_resp_perf_describe_levels {
	__le16 num_returned;
	__le16 num_remaining;
	struct {
		__le32 perf_val;
		__le32 power;
		__le16 transition_latency_us;
		__le16 reserved;
	} opp[0];
};

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
struct scmi_perf_get_fc_info {
	__le32 domain;
	__le32 message_id;
};

struct scmi_msg_resp_perf_desc_fc {
	__le32 attr;
#define SUPPORTS_DOORBELL(x)		((x) & BIT(0))
#define DOORBELL_REG_WIDTH(x)		FIELD_GET(GENMASK(2, 1), (x))
	__le32 rate_limit;
	__le32 chan_addr_low;
	__le32 chan_addr_high;
	__le32 chan_size;
	__le32 db_addr_low;
	__le32 db_addr_high;
	__le32 db_set_lmask;
	__le32 db_set_hmask;
	__le32 db_preserve_lmask;
	__le32 db_preserve_hmask;
};

struct scmi_fc_db_info {
	int width;
	u64 set;
	u64 mask;
	void __iomem *addr;
};

struct scmi_fc_info {
	void __iomem *level_set_addr;
	void __iomem *limit_set_addr;
	void __iomem *level_get_addr;
	void __iomem *limit_get_addr;
	struct scmi_fc_db_info *level_set_db;
	struct scmi_fc_db_info *limit_set_db;
};

132 133 134 135 136
struct perf_dom_info {
	bool set_limits;
	bool set_perf;
	bool perf_limit_notify;
	bool perf_level_notify;
137
	bool perf_fastchannels;
138 139 140 141 142 143
	u32 opp_count;
	u32 sustained_freq_khz;
	u32 sustained_perf_level;
	u32 mult_factor;
	char name[SCMI_MAX_STR_SIZE];
	struct scmi_opp opp[MAX_OPPS];
144
	struct scmi_fc_info *fc_info;
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
};

struct scmi_perf_info {
	int num_domains;
	bool power_scale_mw;
	u64 stats_addr;
	u32 stats_size;
	struct perf_dom_info *dom_info;
};

static int scmi_perf_attributes_get(const struct scmi_handle *handle,
				    struct scmi_perf_info *pi)
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_msg_resp_perf_attributes *attr;

162
	ret = scmi_xfer_get_init(handle, PROTOCOL_ATTRIBUTES,
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
				 SCMI_PROTOCOL_PERF, 0, sizeof(*attr), &t);
	if (ret)
		return ret;

	attr = t->rx.buf;

	ret = scmi_do_xfer(handle, t);
	if (!ret) {
		u16 flags = le16_to_cpu(attr->flags);

		pi->num_domains = le16_to_cpu(attr->num_domains);
		pi->power_scale_mw = POWER_SCALE_IN_MILLIWATT(flags);
		pi->stats_addr = le32_to_cpu(attr->stats_addr_low) |
				(u64)le32_to_cpu(attr->stats_addr_high) << 32;
		pi->stats_size = le32_to_cpu(attr->stats_size);
	}

180
	scmi_xfer_put(handle, t);
181 182 183 184 185 186 187 188 189 190 191
	return ret;
}

static int
scmi_perf_domain_attributes_get(const struct scmi_handle *handle, u32 domain,
				struct perf_dom_info *dom_info)
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_msg_resp_perf_domain_attributes *attr;

192
	ret = scmi_xfer_get_init(handle, PERF_DOMAIN_ATTRIBUTES,
193 194 195 196 197
				 SCMI_PROTOCOL_PERF, sizeof(domain),
				 sizeof(*attr), &t);
	if (ret)
		return ret;

198
	put_unaligned_le32(domain, t->tx.buf);
199 200 201 202 203 204 205 206 207 208
	attr = t->rx.buf;

	ret = scmi_do_xfer(handle, t);
	if (!ret) {
		u32 flags = le32_to_cpu(attr->flags);

		dom_info->set_limits = SUPPORTS_SET_LIMITS(flags);
		dom_info->set_perf = SUPPORTS_SET_PERF_LVL(flags);
		dom_info->perf_limit_notify = SUPPORTS_PERF_LIMIT_NOTIFY(flags);
		dom_info->perf_level_notify = SUPPORTS_PERF_LEVEL_NOTIFY(flags);
209
		dom_info->perf_fastchannels = SUPPORTS_PERF_FASTCHANNELS(flags);
210 211 212 213
		dom_info->sustained_freq_khz =
					le32_to_cpu(attr->sustained_freq_khz);
		dom_info->sustained_perf_level =
					le32_to_cpu(attr->sustained_perf_level);
214 215 216 217 218 219 220
		if (!dom_info->sustained_freq_khz ||
		    !dom_info->sustained_perf_level)
			/* CPUFreq converts to kHz, hence default 1000 */
			dom_info->mult_factor =	1000;
		else
			dom_info->mult_factor =
					(dom_info->sustained_freq_khz * 1000) /
221
					dom_info->sustained_perf_level;
222
		strlcpy(dom_info->name, attr->name, SCMI_MAX_STR_SIZE);
223 224
	}

225
	scmi_xfer_put(handle, t);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	return ret;
}

static int opp_cmp_func(const void *opp1, const void *opp2)
{
	const struct scmi_opp *t1 = opp1, *t2 = opp2;

	return t1->perf - t2->perf;
}

static int
scmi_perf_describe_levels_get(const struct scmi_handle *handle, u32 domain,
			      struct perf_dom_info *perf_dom)
{
	int ret, cnt;
	u32 tot_opp_cnt = 0;
	u16 num_returned, num_remaining;
	struct scmi_xfer *t;
	struct scmi_opp *opp;
	struct scmi_msg_perf_describe_levels *dom_info;
	struct scmi_msg_resp_perf_describe_levels *level_info;

248
	ret = scmi_xfer_get_init(handle, PERF_DESCRIBE_LEVELS,
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
				 SCMI_PROTOCOL_PERF, sizeof(*dom_info), 0, &t);
	if (ret)
		return ret;

	dom_info = t->tx.buf;
	level_info = t->rx.buf;

	do {
		dom_info->domain = cpu_to_le32(domain);
		/* Set the number of OPPs to be skipped/already read */
		dom_info->level_index = cpu_to_le32(tot_opp_cnt);

		ret = scmi_do_xfer(handle, t);
		if (ret)
			break;

		num_returned = le16_to_cpu(level_info->num_returned);
		num_remaining = le16_to_cpu(level_info->num_remaining);
		if (tot_opp_cnt + num_returned > MAX_OPPS) {
			dev_err(handle->dev, "No. of OPPs exceeded MAX_OPPS");
			break;
		}

		opp = &perf_dom->opp[tot_opp_cnt];
		for (cnt = 0; cnt < num_returned; cnt++, opp++) {
			opp->perf = le32_to_cpu(level_info->opp[cnt].perf_val);
			opp->power = le32_to_cpu(level_info->opp[cnt].power);
			opp->trans_latency_us = le16_to_cpu
				(level_info->opp[cnt].transition_latency_us);

			dev_dbg(handle->dev, "Level %d Power %d Latency %dus\n",
				opp->perf, opp->power, opp->trans_latency_us);
		}

		tot_opp_cnt += num_returned;
		/*
		 * check for both returned and remaining to avoid infinite
		 * loop due to buggy firmware
		 */
	} while (num_returned && num_remaining);

	perf_dom->opp_count = tot_opp_cnt;
291
	scmi_xfer_put(handle, t);
292 293 294 295 296

	sort(perf_dom->opp, tot_opp_cnt, sizeof(*opp), opp_cmp_func, NULL);
	return ret;
}

297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
#define SCMI_PERF_FC_RING_DB(w)				\
do {							\
	u##w val = 0;					\
							\
	if (db->mask)					\
		val = ioread##w(db->addr) & db->mask;	\
	iowrite##w((u##w)db->set | val, db->addr);	\
} while (0)

static void scmi_perf_fc_ring_db(struct scmi_fc_db_info *db)
{
	if (!db || !db->addr)
		return;

	if (db->width == 1)
		SCMI_PERF_FC_RING_DB(8);
	else if (db->width == 2)
		SCMI_PERF_FC_RING_DB(16);
	else if (db->width == 4)
		SCMI_PERF_FC_RING_DB(32);
	else /* db->width == 8 */
#ifdef CONFIG_64BIT
		SCMI_PERF_FC_RING_DB(64);
#else
	{
		u64 val = 0;

		if (db->mask)
			val = ioread64_hi_lo(db->addr) & db->mask;
		iowrite64_hi_lo(db->set, db->addr);
	}
#endif
}

static int scmi_perf_mb_limits_set(const struct scmi_handle *handle, u32 domain,
332
				   u32 max_perf, u32 min_perf)
333 334 335 336 337
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_perf_set_limits *limits;

338
	ret = scmi_xfer_get_init(handle, PERF_LIMITS_SET, SCMI_PROTOCOL_PERF,
339 340 341 342 343 344 345 346 347 348 349
				 sizeof(*limits), 0, &t);
	if (ret)
		return ret;

	limits = t->tx.buf;
	limits->domain = cpu_to_le32(domain);
	limits->max_level = cpu_to_le32(max_perf);
	limits->min_level = cpu_to_le32(min_perf);

	ret = scmi_do_xfer(handle, t);

350
	scmi_xfer_put(handle, t);
351 352 353
	return ret;
}

354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
static int scmi_perf_limits_set(const struct scmi_handle *handle, u32 domain,
				u32 max_perf, u32 min_perf)
{
	struct scmi_perf_info *pi = handle->perf_priv;
	struct perf_dom_info *dom = pi->dom_info + domain;

	if (dom->fc_info && dom->fc_info->limit_set_addr) {
		iowrite32(max_perf, dom->fc_info->limit_set_addr);
		iowrite32(min_perf, dom->fc_info->limit_set_addr + 4);
		scmi_perf_fc_ring_db(dom->fc_info->limit_set_db);
		return 0;
	}

	return scmi_perf_mb_limits_set(handle, domain, max_perf, min_perf);
}

static int scmi_perf_mb_limits_get(const struct scmi_handle *handle, u32 domain,
371
				   u32 *max_perf, u32 *min_perf)
372 373 374 375 376
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_perf_get_limits *limits;

377
	ret = scmi_xfer_get_init(handle, PERF_LIMITS_GET, SCMI_PROTOCOL_PERF,
378 379 380 381
				 sizeof(__le32), 0, &t);
	if (ret)
		return ret;

382
	put_unaligned_le32(domain, t->tx.buf);
383 384 385 386 387 388 389 390 391

	ret = scmi_do_xfer(handle, t);
	if (!ret) {
		limits = t->rx.buf;

		*max_perf = le32_to_cpu(limits->max_level);
		*min_perf = le32_to_cpu(limits->min_level);
	}

392
	scmi_xfer_put(handle, t);
393 394 395
	return ret;
}

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
static int scmi_perf_limits_get(const struct scmi_handle *handle, u32 domain,
				u32 *max_perf, u32 *min_perf)
{
	struct scmi_perf_info *pi = handle->perf_priv;
	struct perf_dom_info *dom = pi->dom_info + domain;

	if (dom->fc_info && dom->fc_info->limit_get_addr) {
		*max_perf = ioread32(dom->fc_info->limit_get_addr);
		*min_perf = ioread32(dom->fc_info->limit_get_addr + 4);
		return 0;
	}

	return scmi_perf_mb_limits_get(handle, domain, max_perf, min_perf);
}

static int scmi_perf_mb_level_set(const struct scmi_handle *handle, u32 domain,
412
				  u32 level, bool poll)
413 414 415 416 417
{
	int ret;
	struct scmi_xfer *t;
	struct scmi_perf_set_level *lvl;

418
	ret = scmi_xfer_get_init(handle, PERF_LEVEL_SET, SCMI_PROTOCOL_PERF,
419 420 421 422
				 sizeof(*lvl), 0, &t);
	if (ret)
		return ret;

423
	t->hdr.poll_completion = poll;
424 425 426 427 428 429
	lvl = t->tx.buf;
	lvl->domain = cpu_to_le32(domain);
	lvl->level = cpu_to_le32(level);

	ret = scmi_do_xfer(handle, t);

430
	scmi_xfer_put(handle, t);
431 432 433
	return ret;
}

434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
static int scmi_perf_level_set(const struct scmi_handle *handle, u32 domain,
			       u32 level, bool poll)
{
	struct scmi_perf_info *pi = handle->perf_priv;
	struct perf_dom_info *dom = pi->dom_info + domain;

	if (dom->fc_info && dom->fc_info->level_set_addr) {
		iowrite32(level, dom->fc_info->level_set_addr);
		scmi_perf_fc_ring_db(dom->fc_info->level_set_db);
		return 0;
	}

	return scmi_perf_mb_level_set(handle, domain, level, poll);
}

static int scmi_perf_mb_level_get(const struct scmi_handle *handle, u32 domain,
450
				  u32 *level, bool poll)
451 452 453 454
{
	int ret;
	struct scmi_xfer *t;

455
	ret = scmi_xfer_get_init(handle, PERF_LEVEL_GET, SCMI_PROTOCOL_PERF,
456 457 458 459
				 sizeof(u32), sizeof(u32), &t);
	if (ret)
		return ret;

460
	t->hdr.poll_completion = poll;
461
	put_unaligned_le32(domain, t->tx.buf);
462 463 464

	ret = scmi_do_xfer(handle, t);
	if (!ret)
465
		*level = get_unaligned_le32(t->rx.buf);
466

467
	scmi_xfer_put(handle, t);
468 469 470
	return ret;
}

471 472 473 474 475 476 477 478 479 480 481 482 483 484
static int scmi_perf_level_get(const struct scmi_handle *handle, u32 domain,
			       u32 *level, bool poll)
{
	struct scmi_perf_info *pi = handle->perf_priv;
	struct perf_dom_info *dom = pi->dom_info + domain;

	if (dom->fc_info && dom->fc_info->level_get_addr) {
		*level = ioread32(dom->fc_info->level_get_addr);
		return 0;
	}

	return scmi_perf_mb_level_get(handle, domain, level, poll);
}

485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
static bool scmi_perf_fc_size_is_valid(u32 msg, u32 size)
{
	if ((msg == PERF_LEVEL_GET || msg == PERF_LEVEL_SET) && size == 4)
		return true;
	if ((msg == PERF_LIMITS_GET || msg == PERF_LIMITS_SET) && size == 8)
		return true;
	return false;
}

static void
scmi_perf_domain_desc_fc(const struct scmi_handle *handle, u32 domain,
			 u32 message_id, void __iomem **p_addr,
			 struct scmi_fc_db_info **p_db)
{
	int ret;
	u32 flags;
	u64 phys_addr;
	u8 size;
	void __iomem *addr;
	struct scmi_xfer *t;
	struct scmi_fc_db_info *db;
	struct scmi_perf_get_fc_info *info;
	struct scmi_msg_resp_perf_desc_fc *resp;

	if (!p_addr)
		return;

	ret = scmi_xfer_get_init(handle, PERF_DESCRIBE_FASTCHANNEL,
				 SCMI_PROTOCOL_PERF,
				 sizeof(*info), sizeof(*resp), &t);
	if (ret)
		return;

	info = t->tx.buf;
	info->domain = cpu_to_le32(domain);
	info->message_id = cpu_to_le32(message_id);

	ret = scmi_do_xfer(handle, t);
	if (ret)
		goto err_xfer;

	resp = t->rx.buf;
	flags = le32_to_cpu(resp->attr);
	size = le32_to_cpu(resp->chan_size);
	if (!scmi_perf_fc_size_is_valid(message_id, size))
		goto err_xfer;

	phys_addr = le32_to_cpu(resp->chan_addr_low);
	phys_addr |= (u64)le32_to_cpu(resp->chan_addr_high) << 32;
	addr = devm_ioremap(handle->dev, phys_addr, size);
	if (!addr)
		goto err_xfer;
	*p_addr = addr;

	if (p_db && SUPPORTS_DOORBELL(flags)) {
		db = devm_kzalloc(handle->dev, sizeof(*db), GFP_KERNEL);
		if (!db)
			goto err_xfer;

		size = 1 << DOORBELL_REG_WIDTH(flags);
		phys_addr = le32_to_cpu(resp->db_addr_low);
		phys_addr |= (u64)le32_to_cpu(resp->db_addr_high) << 32;
		addr = devm_ioremap(handle->dev, phys_addr, size);
		if (!addr)
			goto err_xfer;

		db->addr = addr;
		db->width = size;
		db->set = le32_to_cpu(resp->db_set_lmask);
		db->set |= (u64)le32_to_cpu(resp->db_set_hmask) << 32;
		db->mask = le32_to_cpu(resp->db_preserve_lmask);
		db->mask |= (u64)le32_to_cpu(resp->db_preserve_hmask) << 32;
		*p_db = db;
	}
err_xfer:
	scmi_xfer_put(handle, t);
}

static void scmi_perf_domain_init_fc(const struct scmi_handle *handle,
				     u32 domain, struct scmi_fc_info **p_fc)
{
	struct scmi_fc_info *fc;

	fc = devm_kzalloc(handle->dev, sizeof(*fc), GFP_KERNEL);
	if (!fc)
		return;

	scmi_perf_domain_desc_fc(handle, domain, PERF_LEVEL_SET,
				 &fc->level_set_addr, &fc->level_set_db);
	scmi_perf_domain_desc_fc(handle, domain, PERF_LEVEL_GET,
				 &fc->level_get_addr, NULL);
	scmi_perf_domain_desc_fc(handle, domain, PERF_LIMITS_SET,
				 &fc->limit_set_addr, &fc->limit_set_db);
	scmi_perf_domain_desc_fc(handle, domain, PERF_LIMITS_GET,
				 &fc->limit_get_addr, NULL);
	*p_fc = fc;
}

583 584 585 586 587 588 589 590 591 592 593 594
/* Device specific ops */
static int scmi_dev_domain_id(struct device *dev)
{
	struct of_phandle_args clkspec;

	if (of_parse_phandle_with_args(dev->of_node, "clocks", "#clock-cells",
				       0, &clkspec))
		return -EINVAL;

	return clkspec.args[0];
}

595 596
static int scmi_dvfs_device_opps_add(const struct scmi_handle *handle,
				     struct device *dev)
597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
{
	int idx, ret, domain;
	unsigned long freq;
	struct scmi_opp *opp;
	struct perf_dom_info *dom;
	struct scmi_perf_info *pi = handle->perf_priv;

	domain = scmi_dev_domain_id(dev);
	if (domain < 0)
		return domain;

	dom = pi->dom_info + domain;

	for (opp = dom->opp, idx = 0; idx < dom->opp_count; idx++, opp++) {
		freq = opp->perf * dom->mult_factor;

		ret = dev_pm_opp_add(dev, freq, 0);
		if (ret) {
			dev_warn(dev, "failed to add opp %luHz\n", freq);

			while (idx-- > 0) {
				freq = (--opp)->perf * dom->mult_factor;
				dev_pm_opp_remove(dev, freq);
			}
			return ret;
		}
	}
	return 0;
}

627
static int scmi_dvfs_transition_latency_get(const struct scmi_handle *handle,
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
					    struct device *dev)
{
	struct perf_dom_info *dom;
	struct scmi_perf_info *pi = handle->perf_priv;
	int domain = scmi_dev_domain_id(dev);

	if (domain < 0)
		return domain;

	dom = pi->dom_info + domain;
	/* uS to nS */
	return dom->opp[dom->opp_count - 1].trans_latency_us * 1000;
}

static int scmi_dvfs_freq_set(const struct scmi_handle *handle, u32 domain,
643
			      unsigned long freq, bool poll)
644 645 646 647
{
	struct scmi_perf_info *pi = handle->perf_priv;
	struct perf_dom_info *dom = pi->dom_info + domain;

648 649
	return scmi_perf_level_set(handle, domain, freq / dom->mult_factor,
				   poll);
650 651 652
}

static int scmi_dvfs_freq_get(const struct scmi_handle *handle, u32 domain,
653
			      unsigned long *freq, bool poll)
654 655 656 657 658 659
{
	int ret;
	u32 level;
	struct scmi_perf_info *pi = handle->perf_priv;
	struct perf_dom_info *dom = pi->dom_info + domain;

660
	ret = scmi_perf_level_get(handle, domain, &level, poll);
661 662 663 664 665 666
	if (!ret)
		*freq = level * dom->mult_factor;

	return ret;
}

667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
static int scmi_dvfs_est_power_get(const struct scmi_handle *handle, u32 domain,
				   unsigned long *freq, unsigned long *power)
{
	struct scmi_perf_info *pi = handle->perf_priv;
	struct perf_dom_info *dom;
	unsigned long opp_freq;
	int idx, ret = -EINVAL;
	struct scmi_opp *opp;

	dom = pi->dom_info + domain;
	if (!dom)
		return -EIO;

	for (opp = dom->opp, idx = 0; idx < dom->opp_count; idx++, opp++) {
		opp_freq = opp->perf * dom->mult_factor;
		if (opp_freq < *freq)
			continue;

		*freq = opp_freq;
		*power = opp->power;
		ret = 0;
		break;
	}

	return ret;
}

694 695 696 697 698 699
static struct scmi_perf_ops perf_ops = {
	.limits_set = scmi_perf_limits_set,
	.limits_get = scmi_perf_limits_get,
	.level_set = scmi_perf_level_set,
	.level_get = scmi_perf_level_get,
	.device_domain_id = scmi_dev_domain_id,
700 701
	.transition_latency_get = scmi_dvfs_transition_latency_get,
	.device_opps_add = scmi_dvfs_device_opps_add,
702 703
	.freq_set = scmi_dvfs_freq_set,
	.freq_get = scmi_dvfs_freq_get,
704
	.est_power_get = scmi_dvfs_est_power_get,
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
};

static int scmi_perf_protocol_init(struct scmi_handle *handle)
{
	int domain;
	u32 version;
	struct scmi_perf_info *pinfo;

	scmi_version_get(handle, SCMI_PROTOCOL_PERF, &version);

	dev_dbg(handle->dev, "Performance Version %d.%d\n",
		PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));

	pinfo = devm_kzalloc(handle->dev, sizeof(*pinfo), GFP_KERNEL);
	if (!pinfo)
		return -ENOMEM;

	scmi_perf_attributes_get(handle, pinfo);

	pinfo->dom_info = devm_kcalloc(handle->dev, pinfo->num_domains,
				       sizeof(*pinfo->dom_info), GFP_KERNEL);
	if (!pinfo->dom_info)
		return -ENOMEM;

	for (domain = 0; domain < pinfo->num_domains; domain++) {
		struct perf_dom_info *dom = pinfo->dom_info + domain;

		scmi_perf_domain_attributes_get(handle, domain, dom);
		scmi_perf_describe_levels_get(handle, domain, dom);
734 735 736

		if (dom->perf_fastchannels)
			scmi_perf_domain_init_fc(handle, domain, &dom->fc_info);
737 738 739 740 741 742 743 744 745 746 747 748 749 750
	}

	handle->perf_ops = &perf_ops;
	handle->perf_priv = pinfo;

	return 0;
}

static int __init scmi_perf_init(void)
{
	return scmi_protocol_register(SCMI_PROTOCOL_PERF,
				      &scmi_perf_protocol_init);
}
subsys_initcall(scmi_perf_init);