Commit 05249755 authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

* git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (45 commits)
  crypto: caam - add support for sha512 variants of existing AEAD algorithms
  crypto: caam - remove unused authkeylen from caam_ctx
  crypto: caam - fix decryption shared vs. non-shared key setting
  crypto: caam - platform_bus_type migration
  crypto: aesni-intel - fix aesni build on i386
  crypto: aesni-intel - Merge with fpu.ko
  crypto: mv_cesa - make count_sgs() null-pointer proof
  crypto: mv_cesa - copy remaining bytes to SRAM only when needed
  crypto: mv_cesa - move digest state initialisation to a better place
  crypto: mv_cesa - fill inner/outer IV fields only in HMAC case
  crypto: mv_cesa - refactor copy_src_to_buf()
  crypto: mv_cesa - no need to save digest state after the last chunk
  crypto: mv_cesa - print a warning when registration of AES algos fail
  crypto: mv_cesa - drop this call to mv_hash_final from mv_hash_finup
  crypto: mv_cesa - the descriptor pointer register needs to be set just once
  crypto: mv_cesa - use ablkcipher_request_cast instead of the manual container_of
  crypto: caam - fix printk recursion for long error texts
  crypto: caam - remove unused keylen from session context
  hwrng: amd - enable AMD hw rnd driver for Maple PPC boards
  hwrng: amd - manage resource allocation
  ...
parents cae13fe4 4427b1b4
=====================================================================
SEC 4 Device Tree Binding
Copyright (C) 2008-2011 Freescale Semiconductor Inc.
CONTENTS
-Overview
-SEC 4 Node
-Job Ring Node
-Run Time Integrity Check (RTIC) Node
-Run Time Integrity Check (RTIC) Memory Node
-Secure Non-Volatile Storage (SNVS) Node
-Full Example
NOTE: the SEC 4 is also known as Freescale's Cryptographic Accelerator
Accelerator and Assurance Module (CAAM).
=====================================================================
Overview
DESCRIPTION
SEC 4 h/w can process requests from 2 types of sources.
1. DPAA Queue Interface (HW interface between Queue Manager & SEC 4).
2. Job Rings (HW interface between cores & SEC 4 registers).
High Speed Data Path Configuration:
HW interface between QM & SEC 4 and also BM & SEC 4, on DPAA-enabled parts
such as the P4080. The number of simultaneous dequeues the QI can make is
equal to the number of Descriptor Controller (DECO) engines in a particular
SEC version. E.g., the SEC 4.0 in the P4080 has 5 DECOs and can thus
dequeue from 5 subportals simultaneously.
Job Ring Data Path Configuration:
Each JR is located on a separate 4k page, they may (or may not) be made visible
in the memory partition devoted to a particular core. The P4080 has 4 JRs, so
up to 4 JRs can be configured; and all 4 JRs process requests in parallel.
=====================================================================
SEC 4 Node
Description
Node defines the base address of the SEC 4 block.
This block specifies the address range of all global
configuration registers for the SEC 4 block. It
also receives interrupts from the Run Time Integrity Check
(RTIC) function within the SEC 4 block.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0"
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4 configuration registers.
registers
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4.0 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
Note: All other standard properties (see the ePAPR) are allowed
but are optional.
EXAMPLE
crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
};
=====================================================================
Job Ring (JR) Node
Child of the crypto node defines data processing interface to SEC 4
across the peripheral bus for purposes of processing
cryptographic descriptors. The specified address
range can be made visible to one (or more) cores.
The interrupt defined for this node is controlled within
the address range of this node.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-job-ring"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: Specifies a two JR parameters: an offset from
the parent physical address and the length the JR registers.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN mapping.
Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this JR. This property is
normally set by boot firmware.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
fsl,liodn = <0x081>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
=====================================================================
Run Time Integrity Check (RTIC) Node
Child node of the crypto node. Defines a register space that
contains up to 5 sets of addresses and their lengths (sizes) that
will be checked at run time. After an initial hash result is
calculated, these addresses are checked by HW to monitor any
change. If any memory is modified, a Security Violation is
triggered (see SNVS definition).
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-rtic".
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes. Must
have a value of 1.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes. Must have a value of 1.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies a two parameters:
an offset from the parent physical address and the length
the SEC4 registers.
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
EXAMPLE
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
};
=====================================================================
Run Time Integrity Check (RTIC) Memory Node
A child node that defines individual RTIC memory regions that are used to
perform run-time integrity check of memory areas that should not modified.
The node defines a register that contains the memory address &
length (combined) and a second register that contains the hash result
in big endian format.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-rtic-memory".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies two parameters:
an offset from the parent physical address and the length:
1. The location of the RTIC memory address & length registers.
2. The location RTIC hash result.
- fsl,rtic-region
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the HW address (36 bit address) for this region
followed by the length of the HW partition to be checked;
the address is represented as a 64 bit quantity followed
by a 32 bit length.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN
mapping. Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this RTIC memory region. This
property is normally set by boot firmware.
EXAMPLE
rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
fsl,liodn = <0x03c>;
fsl,rtic-region = <0x12345678 0x12345678 0x12345678>;
};
=====================================================================
Secure Non-Volatile Storage (SNVS) Node
Node defines address range and the associated
interrupt for the SNVS function. This function
monitors security state information & reports
security violations.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,sec-v4.0-mon".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4 configuration
registers.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================
FULL EXAMPLE
crypto: crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================
/* /*
* P4080DS Device Tree Source * P4080DS Device Tree Source
* *
* Copyright 2009 Freescale Semiconductor Inc. * Copyright 2009-2011 Freescale Semiconductor Inc.
* *
* This program is free software; you can redistribute it and/or modify it * This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the * under the terms of the GNU General Public License as published by the
...@@ -33,6 +33,17 @@ aliases { ...@@ -33,6 +33,17 @@ aliases {
dma1 = &dma1; dma1 = &dma1;
sdhc = &sdhc; sdhc = &sdhc;
crypto = &crypto;
sec_jr0 = &sec_jr0;
sec_jr1 = &sec_jr1;
sec_jr2 = &sec_jr2;
sec_jr3 = &sec_jr3;
rtic_a = &rtic_a;
rtic_b = &rtic_b;
rtic_c = &rtic_c;
rtic_d = &rtic_d;
sec_mon = &sec_mon;
rio0 = &rapidio0; rio0 = &rapidio0;
}; };
...@@ -410,6 +421,79 @@ usb1: usb@211000 { ...@@ -410,6 +421,79 @@ usb1: usb@211000 {
dr_mode = "host"; dr_mode = "host";
phy_type = "ulpi"; phy_type = "ulpi";
}; };
crypto: crypto@300000 {
compatible = "fsl,sec-v4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,sec-v4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,sec-v4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,sec-v4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,sec-v4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
}; };
rapidio0: rapidio@ffe0c0000 { rapidio0: rapidio@ffe0c0000 {
......
...@@ -8,3 +8,4 @@ obj-$(CONFIG_CRYPTO_SHA512_S390) += sha512_s390.o sha_common.o ...@@ -8,3 +8,4 @@ obj-$(CONFIG_CRYPTO_SHA512_S390) += sha512_s390.o sha_common.o
obj-$(CONFIG_CRYPTO_DES_S390) += des_s390.o obj-$(CONFIG_CRYPTO_DES_S390) += des_s390.o
obj-$(CONFIG_CRYPTO_AES_S390) += aes_s390.o obj-$(CONFIG_CRYPTO_AES_S390) += aes_s390.o
obj-$(CONFIG_S390_PRNG) += prng.o obj-$(CONFIG_S390_PRNG) += prng.o
obj-$(CONFIG_CRYPTO_GHASH_S390) += ghash_s390.o
...@@ -31,7 +31,8 @@ ...@@ -31,7 +31,8 @@
#define AES_KEYLEN_192 2 #define AES_KEYLEN_192 2
#define AES_KEYLEN_256 4 #define AES_KEYLEN_256 4
static char keylen_flag = 0; static u8 *ctrblk;
static char keylen_flag;
struct s390_aes_ctx { struct s390_aes_ctx {
u8 iv[AES_BLOCK_SIZE]; u8 iv[AES_BLOCK_SIZE];
...@@ -45,6 +46,24 @@ struct s390_aes_ctx { ...@@ -45,6 +46,24 @@ struct s390_aes_ctx {
} fallback; } fallback;
}; };
struct pcc_param {
u8 key[32];
u8 tweak[16];
u8 block[16];
u8 bit[16];
u8 xts[16];
};
struct s390_xts_ctx {
u8 key[32];
u8 xts_param[16];
struct pcc_param pcc;
long enc;
long dec;
int key_len;
struct crypto_blkcipher *fallback;
};
/* /*
* Check if the key_len is supported by the HW. * Check if the key_len is supported by the HW.
* Returns 0 if it is, a positive number if it is not and software fallback is * Returns 0 if it is, a positive number if it is not and software fallback is
...@@ -504,15 +523,337 @@ static struct crypto_alg cbc_aes_alg = { ...@@ -504,15 +523,337 @@ static struct crypto_alg cbc_aes_alg = {
} }
}; };
static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int len)
{
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
unsigned int ret;
xts_ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
xts_ctx->fallback->base.crt_flags |= (tfm->crt_flags &
CRYPTO_TFM_REQ_MASK);
ret = crypto_blkcipher_setkey(xts_ctx->fallback, key, len);
if (ret) {
tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm->crt_flags |= (xts_ctx->fallback->base.crt_flags &
CRYPTO_TFM_RES_MASK);
}
return ret;
}
static int xts_fallback_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct crypto_blkcipher *tfm;
unsigned int ret;
tfm = desc->tfm;
desc->tfm = xts_ctx->fallback;
ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
desc->tfm = tfm;
return ret;
}
static int xts_fallback_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct crypto_blkcipher *tfm;
unsigned int ret;
tfm = desc->tfm;
desc->tfm = xts_ctx->fallback;
ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
desc->tfm = tfm;
return ret;
}
static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags;
switch (key_len) {
case 32:
xts_ctx->enc = KM_XTS_128_ENCRYPT;
xts_ctx->dec = KM_XTS_128_DECRYPT;
memcpy(xts_ctx->key + 16, in_key, 16);
memcpy(xts_ctx->pcc.key + 16, in_key + 16, 16);
break;
case 48:
xts_ctx->enc = 0;
xts_ctx->dec = 0;
xts_fallback_setkey(tfm, in_key, key_len);
break;
case 64:
xts_ctx->enc = KM_XTS_256_ENCRYPT;
xts_ctx->dec = KM_XTS_256_DECRYPT;
memcpy(xts_ctx->key, in_key, 32);
memcpy(xts_ctx->pcc.key, in_key + 32, 32);
break;
default:
*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
xts_ctx->key_len = key_len;
return 0;
}
static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
struct s390_xts_ctx *xts_ctx,
struct blkcipher_walk *walk)
{
unsigned int offset = (xts_ctx->key_len >> 1) & 0x10;
int ret = blkcipher_walk_virt(desc, walk);
unsigned int nbytes = walk->nbytes;
unsigned int n;
u8 *in, *out;
void *param;
if (!nbytes)
goto out;
memset(xts_ctx->pcc.block, 0, sizeof(xts_ctx->pcc.block));
memset(xts_ctx->pcc.bit, 0, sizeof(xts_ctx->pcc.bit));
memset(xts_ctx->pcc.xts, 0, sizeof(xts_ctx->pcc.xts));
memcpy(xts_ctx->pcc.tweak, walk->iv, sizeof(xts_ctx->pcc.tweak));
param = xts_ctx->pcc.key + offset;
ret = crypt_s390_pcc(func, param);
BUG_ON(ret < 0);
memcpy(xts_ctx->xts_param, xts_ctx->pcc.xts, 16);
param = xts_ctx->key + offset;
do {
/* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1);
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
ret = crypt_s390_km(func, param, out, in, n);
BUG_ON(ret < 0 || ret != n);
nbytes &= AES_BLOCK_SIZE - 1;
ret = blkcipher_walk_done(desc, walk, nbytes);
} while ((nbytes = walk->nbytes));
out:
return ret;
}
static int xts_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
if (unlikely(xts_ctx->key_len == 48))
return xts_fallback_encrypt(desc, dst, src, nbytes);
blkcipher_walk_init(&walk, dst, src, nbytes);
return xts_aes_crypt(desc, xts_ctx->enc, xts_ctx, &walk);
}
static int xts_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
if (unlikely(xts_ctx->key_len == 48))
return xts_fallback_decrypt(desc, dst, src, nbytes);
blkcipher_walk_init(&walk, dst, src, nbytes);
return xts_aes_crypt(desc, xts_ctx->dec, xts_ctx, &walk);
}
static int xts_fallback_init(struct crypto_tfm *tfm)
{
const char *name = tfm->__crt_alg->cra_name;
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
xts_ctx->fallback = crypto_alloc_blkcipher(name, 0,
CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(xts_ctx->fallback)) {
pr_err("Allocating XTS fallback algorithm %s failed\n",
name);
return PTR_ERR(xts_ctx->fallback);
}
return 0;
}
static void xts_fallback_exit(struct crypto_tfm *tfm)
{
struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
crypto_free_blkcipher(xts_ctx->fallback);
xts_ctx->fallback = NULL;
}
static struct crypto_alg xts_aes_alg = {
.cra_name = "xts(aes)",
.cra_driver_name = "xts-aes-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s390_xts_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(xts_aes_alg.cra_list),
.cra_init = xts_fallback_init,
.cra_exit = xts_fallback_exit,
.cra_u = {
.blkcipher = {
.min_keysize = 2 * AES_MIN_KEY_SIZE,
.max_keysize = 2 * AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = xts_aes_set_key,
.encrypt = xts_aes_encrypt,
.decrypt = xts_aes_decrypt,
}
}
};
static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
unsigned int key_len)
{
struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
switch (key_len) {
case 16:
sctx->enc = KMCTR_AES_128_ENCRYPT;
sctx->dec = KMCTR_AES_128_DECRYPT;
break;
case 24:
sctx->enc = KMCTR_AES_192_ENCRYPT;
sctx->dec = KMCTR_AES_192_DECRYPT;
break;
case 32:
sctx->enc = KMCTR_AES_256_ENCRYPT;
sctx->dec = KMCTR_AES_256_DECRYPT;
break;
}
return aes_set_key(tfm, in_key, key_len);
}
static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
struct s390_aes_ctx *sctx, struct blkcipher_walk *walk)
{
int ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
unsigned int i, n, nbytes;
u8 buf[AES_BLOCK_SIZE];
u8 *out, *in;
if (!walk->nbytes)
return ret;
memcpy(ctrblk, walk->iv, AES_BLOCK_SIZE);
while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
while (nbytes >= AES_BLOCK_SIZE) {
/* only use complete blocks, max. PAGE_SIZE */
n = (nbytes > PAGE_SIZE) ? PAGE_SIZE :
nbytes & ~(AES_BLOCK_SIZE - 1);
for (i = AES_BLOCK_SIZE; i < n; i += AES_BLOCK_SIZE) {
memcpy(ctrblk + i, ctrblk + i - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
crypto_inc(ctrblk + i, AES_BLOCK_SIZE);
}
ret = crypt_s390_kmctr(func, sctx->key, out, in, n, ctrblk);
BUG_ON(ret < 0 || ret != n);
if (n > AES_BLOCK_SIZE)
memcpy(ctrblk, ctrblk + n - AES_BLOCK_SIZE,
AES_BLOCK_SIZE);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
out += n;
in += n;
nbytes -= n;
}
ret = blkcipher_walk_done(desc, walk, nbytes);
}
/*
* final block may be < AES_BLOCK_SIZE, copy only nbytes
*/
if (nbytes) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
ret = crypt_s390_kmctr(func, sctx->key, buf, in,
AES_BLOCK_SIZE, ctrblk);
BUG_ON(ret < 0 || ret != AES_BLOCK_SIZE);
memcpy(out, buf, nbytes);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
ret = blkcipher_walk_done(desc, walk, 0);
}
memcpy(walk->iv, ctrblk, AES_BLOCK_SIZE);
return ret;
}
static int ctr_aes_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_aes_crypt(desc, sctx->enc, sctx, &walk);
}
static int ctr_aes_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_aes_crypt(desc, sctx->dec, sctx, &walk);
}
static struct crypto_alg ctr_aes_alg = {
.cra_name = "ctr(aes)",
.cra_driver_name = "ctr-aes-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_aes_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ctr_aes_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = ctr_aes_set_key,
.encrypt = ctr_aes_encrypt,
.decrypt = ctr_aes_decrypt,
}
}
};
static int __init aes_s390_init(void) static int __init aes_s390_init(void)
{ {
int ret; int ret;
if (crypt_s390_func_available(KM_AES_128_ENCRYPT)) if (crypt_s390_func_available(KM_AES_128_ENCRYPT, CRYPT_S390_MSA))
keylen_flag |= AES_KEYLEN_128; keylen_flag |= AES_KEYLEN_128;
if (crypt_s390_func_available(KM_AES_192_ENCRYPT)) if (crypt_s390_func_available(KM_AES_192_ENCRYPT, CRYPT_S390_MSA))
keylen_flag |= AES_KEYLEN_192; keylen_flag |= AES_KEYLEN_192;
if (crypt_s390_func_available(KM_AES_256_ENCRYPT)) if (crypt_s390_func_available(KM_AES_256_ENCRYPT, CRYPT_S390_MSA))
keylen_flag |= AES_KEYLEN_256; keylen_flag |= AES_KEYLEN_256;
if (!keylen_flag) if (!keylen_flag)
...@@ -535,9 +876,40 @@ static int __init aes_s390_init(void) ...@@ -535,9 +876,40 @@ static int __init aes_s390_init(void)
if (ret) if (ret)
goto cbc_aes_err; goto cbc_aes_err;
if (crypt_s390_func_available(KM_XTS_128_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KM_XTS_256_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
ret = crypto_register_alg(&xts_aes_alg);
if (ret)
goto xts_aes_err;
}
if (crypt_s390_func_available(KMCTR_AES_128_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KMCTR_AES_192_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KMCTR_AES_256_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
ret = -ENOMEM;
goto ctr_aes_err;
}
ret = crypto_register_alg(&ctr_aes_alg);
if (ret) {
free_page((unsigned long) ctrblk);
goto ctr_aes_err;
}
}
out: out:
return ret; return ret;
ctr_aes_err:
crypto_unregister_alg(&xts_aes_alg);
xts_aes_err:
crypto_unregister_alg(&cbc_aes_alg);
cbc_aes_err: cbc_aes_err:
crypto_unregister_alg(&ecb_aes_alg); crypto_unregister_alg(&ecb_aes_alg);
ecb_aes_err: ecb_aes_err:
...@@ -548,6 +920,9 @@ static int __init aes_s390_init(void) ...@@ -548,6 +920,9 @@ static int __init aes_s390_init(void)
static void __exit aes_s390_fini(void) static void __exit aes_s390_fini(void)
{ {
crypto_unregister_alg(&ctr_aes_alg);
free_page((unsigned long) ctrblk);
crypto_unregister_alg(&xts_aes_alg);
crypto_unregister_alg(&cbc_aes_alg); crypto_unregister_alg(&cbc_aes_alg);
crypto_unregister_alg(&ecb_aes_alg); crypto_unregister_alg(&ecb_aes_alg);
crypto_unregister_alg(&aes_alg); crypto_unregister_alg(&aes_alg);
......
...@@ -24,13 +24,18 @@ ...@@ -24,13 +24,18 @@
#define CRYPT_S390_PRIORITY 300 #define CRYPT_S390_PRIORITY 300
#define CRYPT_S390_COMPOSITE_PRIORITY 400 #define CRYPT_S390_COMPOSITE_PRIORITY 400
#define CRYPT_S390_MSA 0x1
#define CRYPT_S390_MSA3 0x2
#define CRYPT_S390_MSA4 0x4
/* s390 cryptographic operations */ /* s390 cryptographic operations */
enum crypt_s390_operations { enum crypt_s390_operations {
CRYPT_S390_KM = 0x0100, CRYPT_S390_KM = 0x0100,
CRYPT_S390_KMC = 0x0200, CRYPT_S390_KMC = 0x0200,
CRYPT_S390_KIMD = 0x0300, CRYPT_S390_KIMD = 0x0300,
CRYPT_S390_KLMD = 0x0400, CRYPT_S390_KLMD = 0x0400,
CRYPT_S390_KMAC = 0x0500 CRYPT_S390_KMAC = 0x0500,
CRYPT_S390_KMCTR = 0x0600
}; };
/* /*
...@@ -51,6 +56,10 @@ enum crypt_s390_km_func { ...@@ -51,6 +56,10 @@ enum crypt_s390_km_func {
KM_AES_192_DECRYPT = CRYPT_S390_KM | 0x13 | 0x80, KM_AES_192_DECRYPT = CRYPT_S390_KM | 0x13 | 0x80,
KM_AES_256_ENCRYPT = CRYPT_S390_KM | 0x14, KM_AES_256_ENCRYPT = CRYPT_S390_KM | 0x14,
KM_AES_256_DECRYPT = CRYPT_S390_KM | 0x14 | 0x80, KM_AES_256_DECRYPT = CRYPT_S390_KM | 0x14 | 0x80,
KM_XTS_128_ENCRYPT = CRYPT_S390_KM | 0x32,
KM_XTS_128_DECRYPT = CRYPT_S390_KM | 0x32 | 0x80,
KM_XTS_256_ENCRYPT = CRYPT_S390_KM | 0x34,
KM_XTS_256_DECRYPT = CRYPT_S390_KM | 0x34 | 0x80,
}; };
/* /*
...@@ -74,6 +83,26 @@ enum crypt_s390_kmc_func { ...@@ -74,6 +83,26 @@ enum crypt_s390_kmc_func {
KMC_PRNG = CRYPT_S390_KMC | 0x43, KMC_PRNG = CRYPT_S390_KMC | 0x43,
}; };
/*
* function codes for KMCTR (CIPHER MESSAGE WITH COUNTER)
* instruction
*/
enum crypt_s390_kmctr_func {
KMCTR_QUERY = CRYPT_S390_KMCTR | 0x0,
KMCTR_DEA_ENCRYPT = CRYPT_S390_KMCTR | 0x1,
KMCTR_DEA_DECRYPT = CRYPT_S390_KMCTR | 0x1 | 0x80,
KMCTR_TDEA_128_ENCRYPT = CRYPT_S390_KMCTR | 0x2,
KMCTR_TDEA_128_DECRYPT = CRYPT_S390_KMCTR | 0x2 | 0x80,
KMCTR_TDEA_192_ENCRYPT = CRYPT_S390_KMCTR | 0x3,
KMCTR_TDEA_192_DECRYPT = CRYPT_S390_KMCTR | 0x3 | 0x80,
KMCTR_AES_128_ENCRYPT = CRYPT_S390_KMCTR | 0x12,
KMCTR_AES_128_DECRYPT = CRYPT_S390_KMCTR | 0x12 | 0x80,
KMCTR_AES_192_ENCRYPT = CRYPT_S390_KMCTR | 0x13,
KMCTR_AES_192_DECRYPT = CRYPT_S390_KMCTR | 0x13 | 0x80,
KMCTR_AES_256_ENCRYPT = CRYPT_S390_KMCTR | 0x14,
KMCTR_AES_256_DECRYPT = CRYPT_S390_KMCTR | 0x14 | 0x80,
};
/* /*
* function codes for KIMD (COMPUTE INTERMEDIATE MESSAGE DIGEST) * function codes for KIMD (COMPUTE INTERMEDIATE MESSAGE DIGEST)
* instruction * instruction
...@@ -83,6 +112,7 @@ enum crypt_s390_kimd_func { ...@@ -83,6 +112,7 @@ enum crypt_s390_kimd_func {
KIMD_SHA_1 = CRYPT_S390_KIMD | 1, KIMD_SHA_1 = CRYPT_S390_KIMD | 1,
KIMD_SHA_256 = CRYPT_S390_KIMD | 2, KIMD_SHA_256 = CRYPT_S390_KIMD | 2,
KIMD_SHA_512 = CRYPT_S390_KIMD | 3, KIMD_SHA_512 = CRYPT_S390_KIMD | 3,
KIMD_GHASH = CRYPT_S390_KIMD | 65,
}; };
/* /*
...@@ -283,6 +313,45 @@ static inline int crypt_s390_kmac(long func, void *param, ...@@ -283,6 +313,45 @@ static inline int crypt_s390_kmac(long func, void *param,
return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len; return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
} }
/**
* crypt_s390_kmctr:
* @func: the function code passed to KMCTR; see crypt_s390_kmctr_func
* @param: address of parameter block; see POP for details on each func
* @dest: address of destination memory area
* @src: address of source memory area
* @src_len: length of src operand in bytes
* @counter: address of counter value
*
* Executes the KMCTR (CIPHER MESSAGE WITH COUNTER) operation of the CPU.
*
* Returns -1 for failure, 0 for the query func, number of processed
* bytes for encryption/decryption funcs
*/
static inline int crypt_s390_kmctr(long func, void *param, u8 *dest,
const u8 *src, long src_len, u8 *counter)
{
register long __func asm("0") = func & CRYPT_S390_FUNC_MASK;
register void *__param asm("1") = param;
register const u8 *__src asm("2") = src;
register long __src_len asm("3") = src_len;
register u8 *__dest asm("4") = dest;
register u8 *__ctr asm("6") = counter;
int ret = -1;
asm volatile(
"0: .insn rrf,0xb92d0000,%3,%1,%4,0 \n" /* KMCTR opcode */
"1: brc 1,0b \n" /* handle partial completion */
" la %0,0\n"
"2:\n"
EX_TABLE(0b,2b) EX_TABLE(1b,2b)
: "+d" (ret), "+a" (__src), "+d" (__src_len), "+a" (__dest),
"+a" (__ctr)
: "d" (__func), "a" (__param) : "cc", "memory");
if (ret < 0)
return ret;
return (func & CRYPT_S390_FUNC_MASK) ? src_len - __src_len : __src_len;
}
/** /**
* crypt_s390_func_available: * crypt_s390_func_available:
* @func: the function code of the specific function; 0 if op in general * @func: the function code of the specific function; 0 if op in general
...@@ -291,13 +360,17 @@ static inline int crypt_s390_kmac(long func, void *param, ...@@ -291,13 +360,17 @@ static inline int crypt_s390_kmac(long func, void *param,
* *
* Returns 1 if func available; 0 if func or op in general not available * Returns 1 if func available; 0 if func or op in general not available
*/ */
static inline int crypt_s390_func_available(int func) static inline int crypt_s390_func_available(int func,
unsigned int facility_mask)
{ {
unsigned char status[16]; unsigned char status[16];
int ret; int ret;
/* check if CPACF facility (bit 17) is available */ if (facility_mask & CRYPT_S390_MSA && !test_facility(17))
if (!test_facility(17)) return 0;
if (facility_mask & CRYPT_S390_MSA3 && !test_facility(76))
return 0;
if (facility_mask & CRYPT_S390_MSA4 && !test_facility(77))
return 0; return 0;
switch (func & CRYPT_S390_OP_MASK) { switch (func & CRYPT_S390_OP_MASK) {
...@@ -316,6 +389,10 @@ static inline int crypt_s390_func_available(int func) ...@@ -316,6 +389,10 @@ static inline int crypt_s390_func_available(int func)
case CRYPT_S390_KMAC: case CRYPT_S390_KMAC:
ret = crypt_s390_kmac(KMAC_QUERY, &status, NULL, 0); ret = crypt_s390_kmac(KMAC_QUERY, &status, NULL, 0);
break; break;
case CRYPT_S390_KMCTR:
ret = crypt_s390_kmctr(KMCTR_QUERY, &status, NULL, NULL, 0,
NULL);
break;
default: default:
return 0; return 0;
} }
...@@ -326,4 +403,31 @@ static inline int crypt_s390_func_available(int func) ...@@ -326,4 +403,31 @@ static inline int crypt_s390_func_available(int func)
return (status[func >> 3] & (0x80 >> (func & 7))) != 0; return (status[func >> 3] & (0x80 >> (func & 7))) != 0;
} }
/**
* crypt_s390_pcc:
* @func: the function code passed to KM; see crypt_s390_km_func
* @param: address of parameter block; see POP for details on each func
*
* Executes the PCC (PERFORM CRYPTOGRAPHIC COMPUTATION) operation of the CPU.
*
* Returns -1 for failure, 0 for success.
*/
static inline int crypt_s390_pcc(long func, void *param)
{
register long __func asm("0") = func & 0x7f; /* encrypt or decrypt */
register void *__param asm("1") = param;
int ret = -1;
asm volatile(
"0: .insn rre,0xb92c0000,0,0 \n" /* PCC opcode */
"1: brc 1,0b \n" /* handle partial completion */
" la %0,0\n"
"2:\n"
EX_TABLE(0b,2b) EX_TABLE(1b,2b)
: "+d" (ret)
: "d" (__func), "a" (__param) : "cc", "memory");
return ret;
}
#endif /* _CRYPTO_ARCH_S390_CRYPT_S390_H */ #endif /* _CRYPTO_ARCH_S390_CRYPT_S390_H */
/*
* Cryptographic API.
*
* Function for checking keys for the DES and Tripple DES Encryption
* algorithms.
*
* Originally released as descore by Dana L. How <how@isl.stanford.edu>.
* Modified by Raimar Falke <rf13@inf.tu-dresden.de> for the Linux-Kernel.
* Derived from Cryptoapi and Nettle implementations, adapted for in-place
* scatterlist interface. Changed LGPL to GPL per section 3 of the LGPL.
*
* s390 Version:
* Copyright IBM Corp. 2003
* Author(s): Thomas Spatzier
* Jan Glauber (jan.glauber@de.ibm.com)
*
* Derived from "crypto/des.c"
* Copyright (c) 1992 Dana L. How.
* Copyright (c) Raimar Falke <rf13@inf.tu-dresden.de>
* Copyright (c) Gisle Sflensminde <gisle@ii.uib.no>
* Copyright (C) 2001 Niels Mvller.
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/crypto.h>
#include "crypto_des.h"
#define ROR(d,c,o) ((d) = (d) >> (c) | (d) << (o))
static const u8 parity[] = {
8,1,0,8,0,8,8,0,0,8,8,0,8,0,2,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,3,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
8,0,0,8,0,8,8,0,0,8,8,0,8,0,0,8,0,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,
4,8,8,0,8,0,0,8,8,0,0,8,0,8,8,0,8,5,0,8,0,8,8,0,0,8,8,0,8,0,6,8,
};
/*
* RFC2451: Weak key checks SHOULD be performed.
*/
int
crypto_des_check_key(const u8 *key, unsigned int keylen, u32 *flags)
{
u32 n, w;
n = parity[key[0]]; n <<= 4;
n |= parity[key[1]]; n <<= 4;
n |= parity[key[2]]; n <<= 4;
n |= parity[key[3]]; n <<= 4;
n |= parity[key[4]]; n <<= 4;
n |= parity[key[5]]; n <<= 4;
n |= parity[key[6]]; n <<= 4;
n |= parity[key[7]];
w = 0x88888888L;
if ((*flags & CRYPTO_TFM_REQ_WEAK_KEY)
&& !((n - (w >> 3)) & w)) { /* 1 in 10^10 keys passes this test */
if (n < 0x41415151) {
if (n < 0x31312121) {
if (n < 0x14141515) {
/* 01 01 01 01 01 01 01 01 */
if (n == 0x11111111) goto weak;
/* 01 1F 01 1F 01 0E 01 0E */
if (n == 0x13131212) goto weak;
} else {
/* 01 E0 01 E0 01 F1 01 F1 */
if (n == 0x14141515) goto weak;
/* 01 FE 01 FE 01 FE 01 FE */
if (n == 0x16161616) goto weak;
}
} else {
if (n < 0x34342525) {
/* 1F 01 1F 01 0E 01 0E 01 */
if (n == 0x31312121) goto weak;
/* 1F 1F 1F 1F 0E 0E 0E 0E (?) */
if (n == 0x33332222) goto weak;
} else {
/* 1F E0 1F E0 0E F1 0E F1 */
if (n == 0x34342525) goto weak;
/* 1F FE 1F FE 0E FE 0E FE */
if (n == 0x36362626) goto weak;
}
}
} else {
if (n < 0x61616161) {
if (n < 0x44445555) {
/* E0 01 E0 01 F1 01 F1 01 */
if (n == 0x41415151) goto weak;
/* E0 1F E0 1F F1 0E F1 0E */
if (n == 0x43435252) goto weak;
} else {
/* E0 E0 E0 E0 F1 F1 F1 F1 (?) */
if (n == 0x44445555) goto weak;
/* E0 FE E0 FE F1 FE F1 FE */
if (n == 0x46465656) goto weak;
}
} else {
if (n < 0x64646565) {
/* FE 01 FE 01 FE 01 FE 01 */
if (n == 0x61616161) goto weak;
/* FE 1F FE 1F FE 0E FE 0E */
if (n == 0x63636262) goto weak;
} else {
/* FE E0 FE E0 FE F1 FE F1 */
if (n == 0x64646565) goto weak;
/* FE FE FE FE FE FE FE FE */
if (n == 0x66666666) goto weak;
}
}
}
}
return 0;
weak:
*flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL;
}
EXPORT_SYMBOL(crypto_des_check_key);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Key Check function for DES & DES3 Cipher Algorithms");
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
* *
* s390 implementation of the DES Cipher Algorithm. * s390 implementation of the DES Cipher Algorithm.
* *
* Copyright IBM Corp. 2003,2007 * Copyright IBM Corp. 2003,2011
* Author(s): Thomas Spatzier * Author(s): Thomas Spatzier
* Jan Glauber (jan.glauber@de.ibm.com) * Jan Glauber (jan.glauber@de.ibm.com)
* *
...@@ -22,22 +22,19 @@ ...@@ -22,22 +22,19 @@
#include "crypt_s390.h" #include "crypt_s390.h"
#define DES3_192_KEY_SIZE (3 * DES_KEY_SIZE) #define DES3_KEY_SIZE (3 * DES_KEY_SIZE)
struct crypt_s390_des_ctx { static u8 *ctrblk;
u8 iv[DES_BLOCK_SIZE];
u8 key[DES_KEY_SIZE];
};
struct crypt_s390_des3_192_ctx { struct s390_des_ctx {
u8 iv[DES_BLOCK_SIZE]; u8 iv[DES_BLOCK_SIZE];
u8 key[DES3_192_KEY_SIZE]; u8 key[DES3_KEY_SIZE];
}; };
static int des_setkey(struct crypto_tfm *tfm, const u8 *key, static int des_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen) unsigned int key_len)
{ {
struct crypt_s390_des_ctx *dctx = crypto_tfm_ctx(tfm); struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags; u32 *flags = &tfm->crt_flags;
u32 tmp[DES_EXPKEY_WORDS]; u32 tmp[DES_EXPKEY_WORDS];
...@@ -47,22 +44,22 @@ static int des_setkey(struct crypto_tfm *tfm, const u8 *key, ...@@ -47,22 +44,22 @@ static int des_setkey(struct crypto_tfm *tfm, const u8 *key,
return -EINVAL; return -EINVAL;
} }
memcpy(dctx->key, key, keylen); memcpy(ctx->key, key, key_len);
return 0; return 0;
} }
static void des_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) static void des_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{ {
struct crypt_s390_des_ctx *dctx = crypto_tfm_ctx(tfm); struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_DEA_ENCRYPT, dctx->key, out, in, DES_BLOCK_SIZE); crypt_s390_km(KM_DEA_ENCRYPT, ctx->key, out, in, DES_BLOCK_SIZE);
} }
static void des_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in) static void des_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
{ {
struct crypt_s390_des_ctx *dctx = crypto_tfm_ctx(tfm); struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_DEA_DECRYPT, dctx->key, out, in, DES_BLOCK_SIZE); crypt_s390_km(KM_DEA_DECRYPT, ctx->key, out, in, DES_BLOCK_SIZE);
} }
static struct crypto_alg des_alg = { static struct crypto_alg des_alg = {
...@@ -71,7 +68,7 @@ static struct crypto_alg des_alg = { ...@@ -71,7 +68,7 @@ static struct crypto_alg des_alg = {
.cra_priority = CRYPT_S390_PRIORITY, .cra_priority = CRYPT_S390_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES_BLOCK_SIZE, .cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des_ctx), .cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(des_alg.cra_list), .cra_list = LIST_HEAD_INIT(des_alg.cra_list),
.cra_u = { .cra_u = {
...@@ -86,7 +83,7 @@ static struct crypto_alg des_alg = { ...@@ -86,7 +83,7 @@ static struct crypto_alg des_alg = {
}; };
static int ecb_desall_crypt(struct blkcipher_desc *desc, long func, static int ecb_desall_crypt(struct blkcipher_desc *desc, long func,
void *param, struct blkcipher_walk *walk) u8 *key, struct blkcipher_walk *walk)
{ {
int ret = blkcipher_walk_virt(desc, walk); int ret = blkcipher_walk_virt(desc, walk);
unsigned int nbytes; unsigned int nbytes;
...@@ -97,7 +94,7 @@ static int ecb_desall_crypt(struct blkcipher_desc *desc, long func, ...@@ -97,7 +94,7 @@ static int ecb_desall_crypt(struct blkcipher_desc *desc, long func,
u8 *out = walk->dst.virt.addr; u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr; u8 *in = walk->src.virt.addr;
ret = crypt_s390_km(func, param, out, in, n); ret = crypt_s390_km(func, key, out, in, n);
BUG_ON((ret < 0) || (ret != n)); BUG_ON((ret < 0) || (ret != n));
nbytes &= DES_BLOCK_SIZE - 1; nbytes &= DES_BLOCK_SIZE - 1;
...@@ -108,7 +105,7 @@ static int ecb_desall_crypt(struct blkcipher_desc *desc, long func, ...@@ -108,7 +105,7 @@ static int ecb_desall_crypt(struct blkcipher_desc *desc, long func,
} }
static int cbc_desall_crypt(struct blkcipher_desc *desc, long func, static int cbc_desall_crypt(struct blkcipher_desc *desc, long func,
void *param, struct blkcipher_walk *walk) u8 *iv, struct blkcipher_walk *walk)
{ {
int ret = blkcipher_walk_virt(desc, walk); int ret = blkcipher_walk_virt(desc, walk);
unsigned int nbytes = walk->nbytes; unsigned int nbytes = walk->nbytes;
...@@ -116,20 +113,20 @@ static int cbc_desall_crypt(struct blkcipher_desc *desc, long func, ...@@ -116,20 +113,20 @@ static int cbc_desall_crypt(struct blkcipher_desc *desc, long func,
if (!nbytes) if (!nbytes)
goto out; goto out;
memcpy(param, walk->iv, DES_BLOCK_SIZE); memcpy(iv, walk->iv, DES_BLOCK_SIZE);
do { do {
/* only use complete blocks */ /* only use complete blocks */
unsigned int n = nbytes & ~(DES_BLOCK_SIZE - 1); unsigned int n = nbytes & ~(DES_BLOCK_SIZE - 1);
u8 *out = walk->dst.virt.addr; u8 *out = walk->dst.virt.addr;
u8 *in = walk->src.virt.addr; u8 *in = walk->src.virt.addr;
ret = crypt_s390_kmc(func, param, out, in, n); ret = crypt_s390_kmc(func, iv, out, in, n);
BUG_ON((ret < 0) || (ret != n)); BUG_ON((ret < 0) || (ret != n));
nbytes &= DES_BLOCK_SIZE - 1; nbytes &= DES_BLOCK_SIZE - 1;
ret = blkcipher_walk_done(desc, walk, nbytes); ret = blkcipher_walk_done(desc, walk, nbytes);
} while ((nbytes = walk->nbytes)); } while ((nbytes = walk->nbytes));
memcpy(walk->iv, param, DES_BLOCK_SIZE); memcpy(walk->iv, iv, DES_BLOCK_SIZE);
out: out:
return ret; return ret;
...@@ -139,22 +136,22 @@ static int ecb_des_encrypt(struct blkcipher_desc *desc, ...@@ -139,22 +136,22 @@ static int ecb_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src, struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_DEA_ENCRYPT, sctx->key, &walk); return ecb_desall_crypt(desc, KM_DEA_ENCRYPT, ctx->key, &walk);
} }
static int ecb_des_decrypt(struct blkcipher_desc *desc, static int ecb_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src, struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_DEA_DECRYPT, sctx->key, &walk); return ecb_desall_crypt(desc, KM_DEA_DECRYPT, ctx->key, &walk);
} }
static struct crypto_alg ecb_des_alg = { static struct crypto_alg ecb_des_alg = {
...@@ -163,7 +160,7 @@ static struct crypto_alg ecb_des_alg = { ...@@ -163,7 +160,7 @@ static struct crypto_alg ecb_des_alg = {
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY, .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE, .cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des_ctx), .cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type, .cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ecb_des_alg.cra_list), .cra_list = LIST_HEAD_INIT(ecb_des_alg.cra_list),
...@@ -182,22 +179,22 @@ static int cbc_des_encrypt(struct blkcipher_desc *desc, ...@@ -182,22 +179,22 @@ static int cbc_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src, struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_DEA_ENCRYPT, sctx->iv, &walk); return cbc_desall_crypt(desc, KMC_DEA_ENCRYPT, ctx->iv, &walk);
} }
static int cbc_des_decrypt(struct blkcipher_desc *desc, static int cbc_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src, struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_DEA_DECRYPT, sctx->iv, &walk); return cbc_desall_crypt(desc, KMC_DEA_DECRYPT, ctx->iv, &walk);
} }
static struct crypto_alg cbc_des_alg = { static struct crypto_alg cbc_des_alg = {
...@@ -206,7 +203,7 @@ static struct crypto_alg cbc_des_alg = { ...@@ -206,7 +203,7 @@ static struct crypto_alg cbc_des_alg = {
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY, .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE, .cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des_ctx), .cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type, .cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(cbc_des_alg.cra_list), .cra_list = LIST_HEAD_INIT(cbc_des_alg.cra_list),
...@@ -235,10 +232,10 @@ static struct crypto_alg cbc_des_alg = { ...@@ -235,10 +232,10 @@ static struct crypto_alg cbc_des_alg = {
* property. * property.
* *
*/ */
static int des3_192_setkey(struct crypto_tfm *tfm, const u8 *key, static int des3_setkey(struct crypto_tfm *tfm, const u8 *key,
unsigned int keylen) unsigned int key_len)
{ {
struct crypt_s390_des3_192_ctx *dctx = crypto_tfm_ctx(tfm); struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
u32 *flags = &tfm->crt_flags; u32 *flags = &tfm->crt_flags;
if (!(memcmp(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) && if (!(memcmp(key, &key[DES_KEY_SIZE], DES_KEY_SIZE) &&
...@@ -248,141 +245,276 @@ static int des3_192_setkey(struct crypto_tfm *tfm, const u8 *key, ...@@ -248,141 +245,276 @@ static int des3_192_setkey(struct crypto_tfm *tfm, const u8 *key,
*flags |= CRYPTO_TFM_RES_WEAK_KEY; *flags |= CRYPTO_TFM_RES_WEAK_KEY;
return -EINVAL; return -EINVAL;
} }
memcpy(dctx->key, key, keylen); memcpy(ctx->key, key, key_len);
return 0; return 0;
} }
static void des3_192_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) static void des3_encrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{ {
struct crypt_s390_des3_192_ctx *dctx = crypto_tfm_ctx(tfm); struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_TDEA_192_ENCRYPT, dctx->key, dst, (void*)src, crypt_s390_km(KM_TDEA_192_ENCRYPT, ctx->key, dst, src, DES_BLOCK_SIZE);
DES_BLOCK_SIZE);
} }
static void des3_192_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src) static void des3_decrypt(struct crypto_tfm *tfm, u8 *dst, const u8 *src)
{ {
struct crypt_s390_des3_192_ctx *dctx = crypto_tfm_ctx(tfm); struct s390_des_ctx *ctx = crypto_tfm_ctx(tfm);
crypt_s390_km(KM_TDEA_192_DECRYPT, dctx->key, dst, (void*)src, crypt_s390_km(KM_TDEA_192_DECRYPT, ctx->key, dst, src, DES_BLOCK_SIZE);
DES_BLOCK_SIZE);
} }
static struct crypto_alg des3_192_alg = { static struct crypto_alg des3_alg = {
.cra_name = "des3_ede", .cra_name = "des3_ede",
.cra_driver_name = "des3_ede-s390", .cra_driver_name = "des3_ede-s390",
.cra_priority = CRYPT_S390_PRIORITY, .cra_priority = CRYPT_S390_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_CIPHER, .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
.cra_blocksize = DES_BLOCK_SIZE, .cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des3_192_ctx), .cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(des3_192_alg.cra_list), .cra_list = LIST_HEAD_INIT(des3_alg.cra_list),
.cra_u = { .cra_u = {
.cipher = { .cipher = {
.cia_min_keysize = DES3_192_KEY_SIZE, .cia_min_keysize = DES3_KEY_SIZE,
.cia_max_keysize = DES3_192_KEY_SIZE, .cia_max_keysize = DES3_KEY_SIZE,
.cia_setkey = des3_192_setkey, .cia_setkey = des3_setkey,
.cia_encrypt = des3_192_encrypt, .cia_encrypt = des3_encrypt,
.cia_decrypt = des3_192_decrypt, .cia_decrypt = des3_decrypt,
} }
} }
}; };
static int ecb_des3_192_encrypt(struct blkcipher_desc *desc, static int ecb_des3_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *dst, struct scatterlist *src,
struct scatterlist *src, unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_TDEA_192_ENCRYPT, sctx->key, &walk); return ecb_desall_crypt(desc, KM_TDEA_192_ENCRYPT, ctx->key, &walk);
} }
static int ecb_des3_192_decrypt(struct blkcipher_desc *desc, static int ecb_des3_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *dst, struct scatterlist *src,
struct scatterlist *src, unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return ecb_desall_crypt(desc, KM_TDEA_192_DECRYPT, sctx->key, &walk); return ecb_desall_crypt(desc, KM_TDEA_192_DECRYPT, ctx->key, &walk);
} }
static struct crypto_alg ecb_des3_192_alg = { static struct crypto_alg ecb_des3_alg = {
.cra_name = "ecb(des3_ede)", .cra_name = "ecb(des3_ede)",
.cra_driver_name = "ecb-des3_ede-s390", .cra_driver_name = "ecb-des3_ede-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY, .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE, .cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des3_192_ctx), .cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type, .cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT( .cra_list = LIST_HEAD_INIT(
ecb_des3_192_alg.cra_list), ecb_des3_alg.cra_list),
.cra_u = { .cra_u = {
.blkcipher = { .blkcipher = {
.min_keysize = DES3_192_KEY_SIZE, .min_keysize = DES3_KEY_SIZE,
.max_keysize = DES3_192_KEY_SIZE, .max_keysize = DES3_KEY_SIZE,
.setkey = des3_192_setkey, .setkey = des3_setkey,
.encrypt = ecb_des3_192_encrypt, .encrypt = ecb_des3_encrypt,
.decrypt = ecb_des3_192_decrypt, .decrypt = ecb_des3_decrypt,
} }
} }
}; };
static int cbc_des3_192_encrypt(struct blkcipher_desc *desc, static int cbc_des3_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *dst, struct scatterlist *src,
struct scatterlist *src, unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_TDEA_192_ENCRYPT, sctx->iv, &walk); return cbc_desall_crypt(desc, KMC_TDEA_192_ENCRYPT, ctx->iv, &walk);
} }
static int cbc_des3_192_decrypt(struct blkcipher_desc *desc, static int cbc_des3_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *dst, struct scatterlist *src,
struct scatterlist *src, unsigned int nbytes) unsigned int nbytes)
{ {
struct crypt_s390_des3_192_ctx *sctx = crypto_blkcipher_ctx(desc->tfm); struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk; struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes); blkcipher_walk_init(&walk, dst, src, nbytes);
return cbc_desall_crypt(desc, KMC_TDEA_192_DECRYPT, sctx->iv, &walk); return cbc_desall_crypt(desc, KMC_TDEA_192_DECRYPT, ctx->iv, &walk);
} }
static struct crypto_alg cbc_des3_192_alg = { static struct crypto_alg cbc_des3_alg = {
.cra_name = "cbc(des3_ede)", .cra_name = "cbc(des3_ede)",
.cra_driver_name = "cbc-des3_ede-s390", .cra_driver_name = "cbc-des3_ede-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY, .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER, .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = DES_BLOCK_SIZE, .cra_blocksize = DES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct crypt_s390_des3_192_ctx), .cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type, .cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE, .cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT( .cra_list = LIST_HEAD_INIT(
cbc_des3_192_alg.cra_list), cbc_des3_alg.cra_list),
.cra_u = { .cra_u = {
.blkcipher = { .blkcipher = {
.min_keysize = DES3_192_KEY_SIZE, .min_keysize = DES3_KEY_SIZE,
.max_keysize = DES3_192_KEY_SIZE, .max_keysize = DES3_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE, .ivsize = DES_BLOCK_SIZE,
.setkey = des3_192_setkey, .setkey = des3_setkey,
.encrypt = cbc_des3_192_encrypt, .encrypt = cbc_des3_encrypt,
.decrypt = cbc_des3_192_decrypt, .decrypt = cbc_des3_decrypt,
} }
} }
}; };
static int des_s390_init(void) static int ctr_desall_crypt(struct blkcipher_desc *desc, long func,
struct s390_des_ctx *ctx, struct blkcipher_walk *walk)
{
int ret = blkcipher_walk_virt_block(desc, walk, DES_BLOCK_SIZE);
unsigned int i, n, nbytes;
u8 buf[DES_BLOCK_SIZE];
u8 *out, *in;
memcpy(ctrblk, walk->iv, DES_BLOCK_SIZE);
while ((nbytes = walk->nbytes) >= DES_BLOCK_SIZE) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
while (nbytes >= DES_BLOCK_SIZE) {
/* align to block size, max. PAGE_SIZE */
n = (nbytes > PAGE_SIZE) ? PAGE_SIZE :
nbytes & ~(DES_BLOCK_SIZE - 1);
for (i = DES_BLOCK_SIZE; i < n; i += DES_BLOCK_SIZE) {
memcpy(ctrblk + i, ctrblk + i - DES_BLOCK_SIZE,
DES_BLOCK_SIZE);
crypto_inc(ctrblk + i, DES_BLOCK_SIZE);
}
ret = crypt_s390_kmctr(func, ctx->key, out, in, n, ctrblk);
BUG_ON((ret < 0) || (ret != n));
if (n > DES_BLOCK_SIZE)
memcpy(ctrblk, ctrblk + n - DES_BLOCK_SIZE,
DES_BLOCK_SIZE);
crypto_inc(ctrblk, DES_BLOCK_SIZE);
out += n;
in += n;
nbytes -= n;
}
ret = blkcipher_walk_done(desc, walk, nbytes);
}
/* final block may be < DES_BLOCK_SIZE, copy only nbytes */
if (nbytes) {
out = walk->dst.virt.addr;
in = walk->src.virt.addr;
ret = crypt_s390_kmctr(func, ctx->key, buf, in,
DES_BLOCK_SIZE, ctrblk);
BUG_ON(ret < 0 || ret != DES_BLOCK_SIZE);
memcpy(out, buf, nbytes);
crypto_inc(ctrblk, DES_BLOCK_SIZE);
ret = blkcipher_walk_done(desc, walk, 0);
}
memcpy(walk->iv, ctrblk, DES_BLOCK_SIZE);
return ret;
}
static int ctr_des_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_DEA_ENCRYPT, ctx, &walk);
}
static int ctr_des_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_DEA_DECRYPT, ctx, &walk);
}
static struct crypto_alg ctr_des_alg = {
.cra_name = "ctr(des)",
.cra_driver_name = "ctr-des-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ctr_des_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES_KEY_SIZE,
.max_keysize = DES_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = des_setkey,
.encrypt = ctr_des_encrypt,
.decrypt = ctr_des_decrypt,
}
}
};
static int ctr_des3_encrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_TDEA_192_ENCRYPT, ctx, &walk);
}
static int ctr_des3_decrypt(struct blkcipher_desc *desc,
struct scatterlist *dst, struct scatterlist *src,
unsigned int nbytes)
{
struct s390_des_ctx *ctx = crypto_blkcipher_ctx(desc->tfm);
struct blkcipher_walk walk;
blkcipher_walk_init(&walk, dst, src, nbytes);
return ctr_desall_crypt(desc, KMCTR_TDEA_192_DECRYPT, ctx, &walk);
}
static struct crypto_alg ctr_des3_alg = {
.cra_name = "ctr(des3_ede)",
.cra_driver_name = "ctr-des3_ede-s390",
.cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_ctxsize = sizeof(struct s390_des_ctx),
.cra_type = &crypto_blkcipher_type,
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ctr_des3_alg.cra_list),
.cra_u = {
.blkcipher = {
.min_keysize = DES3_KEY_SIZE,
.max_keysize = DES3_KEY_SIZE,
.ivsize = DES_BLOCK_SIZE,
.setkey = des3_setkey,
.encrypt = ctr_des3_encrypt,
.decrypt = ctr_des3_decrypt,
}
}
};
static int __init des_s390_init(void)
{ {
int ret; int ret;
if (!crypt_s390_func_available(KM_DEA_ENCRYPT) || if (!crypt_s390_func_available(KM_DEA_ENCRYPT, CRYPT_S390_MSA) ||
!crypt_s390_func_available(KM_TDEA_192_ENCRYPT)) !crypt_s390_func_available(KM_TDEA_192_ENCRYPT, CRYPT_S390_MSA))
return -EOPNOTSUPP; return -EOPNOTSUPP;
ret = crypto_register_alg(&des_alg); ret = crypto_register_alg(&des_alg);
...@@ -394,23 +526,46 @@ static int des_s390_init(void) ...@@ -394,23 +526,46 @@ static int des_s390_init(void)
ret = crypto_register_alg(&cbc_des_alg); ret = crypto_register_alg(&cbc_des_alg);
if (ret) if (ret)
goto cbc_des_err; goto cbc_des_err;
ret = crypto_register_alg(&des3_192_alg); ret = crypto_register_alg(&des3_alg);
if (ret) if (ret)
goto des3_192_err; goto des3_err;
ret = crypto_register_alg(&ecb_des3_192_alg); ret = crypto_register_alg(&ecb_des3_alg);
if (ret) if (ret)
goto ecb_des3_192_err; goto ecb_des3_err;
ret = crypto_register_alg(&cbc_des3_192_alg); ret = crypto_register_alg(&cbc_des3_alg);
if (ret) if (ret)
goto cbc_des3_192_err; goto cbc_des3_err;
if (crypt_s390_func_available(KMCTR_DEA_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
crypt_s390_func_available(KMCTR_TDEA_192_ENCRYPT,
CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
ret = crypto_register_alg(&ctr_des_alg);
if (ret)
goto ctr_des_err;
ret = crypto_register_alg(&ctr_des3_alg);
if (ret)
goto ctr_des3_err;
ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) {
ret = -ENOMEM;
goto ctr_mem_err;
}
}
out: out:
return ret; return ret;
cbc_des3_192_err: ctr_mem_err:
crypto_unregister_alg(&ecb_des3_192_alg); crypto_unregister_alg(&ctr_des3_alg);
ecb_des3_192_err: ctr_des3_err:
crypto_unregister_alg(&des3_192_alg); crypto_unregister_alg(&ctr_des_alg);
des3_192_err: ctr_des_err:
crypto_unregister_alg(&cbc_des3_alg);
cbc_des3_err:
crypto_unregister_alg(&ecb_des3_alg);
ecb_des3_err:
crypto_unregister_alg(&des3_alg);
des3_err:
crypto_unregister_alg(&cbc_des_alg); crypto_unregister_alg(&cbc_des_alg);
cbc_des_err: cbc_des_err:
crypto_unregister_alg(&ecb_des_alg); crypto_unregister_alg(&ecb_des_alg);
...@@ -422,9 +577,14 @@ static int des_s390_init(void) ...@@ -422,9 +577,14 @@ static int des_s390_init(void)
static void __exit des_s390_exit(void) static void __exit des_s390_exit(void)
{ {
crypto_unregister_alg(&cbc_des3_192_alg); if (ctrblk) {
crypto_unregister_alg(&ecb_des3_192_alg); crypto_unregister_alg(&ctr_des_alg);
crypto_unregister_alg(&des3_192_alg); crypto_unregister_alg(&ctr_des3_alg);
free_page((unsigned long) ctrblk);
}
crypto_unregister_alg(&cbc_des3_alg);
crypto_unregister_alg(&ecb_des3_alg);
crypto_unregister_alg(&des3_alg);
crypto_unregister_alg(&cbc_des_alg); crypto_unregister_alg(&cbc_des_alg);
crypto_unregister_alg(&ecb_des_alg); crypto_unregister_alg(&ecb_des_alg);
crypto_unregister_alg(&des_alg); crypto_unregister_alg(&des_alg);
......
/*
* Cryptographic API.
*
* s390 implementation of the GHASH algorithm for GCM (Galois/Counter Mode).
*
* Copyright IBM Corp. 2011
* Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <linux/module.h>
#include "crypt_s390.h"
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
struct ghash_ctx {
u8 icv[16];
u8 key[16];
};
struct ghash_desc_ctx {
u8 buffer[GHASH_BLOCK_SIZE];
u32 bytes;
};
static int ghash_init(struct shash_desc *desc)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
memset(dctx, 0, sizeof(*dctx));
return 0;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *key, unsigned int keylen)
{
struct ghash_ctx *ctx = crypto_shash_ctx(tfm);
if (keylen != GHASH_BLOCK_SIZE) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
memcpy(ctx->key, key, GHASH_BLOCK_SIZE);
memset(ctx->icv, 0, GHASH_BLOCK_SIZE);
return 0;
}
static int ghash_update(struct shash_desc *desc,
const u8 *src, unsigned int srclen)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
unsigned int n;
u8 *buf = dctx->buffer;
int ret;
if (dctx->bytes) {
u8 *pos = buf + (GHASH_BLOCK_SIZE - dctx->bytes);
n = min(srclen, dctx->bytes);
dctx->bytes -= n;
srclen -= n;
memcpy(pos, src, n);
src += n;
if (!dctx->bytes) {
ret = crypt_s390_kimd(KIMD_GHASH, ctx, buf,
GHASH_BLOCK_SIZE);
BUG_ON(ret != GHASH_BLOCK_SIZE);
}
}
n = srclen & ~(GHASH_BLOCK_SIZE - 1);
if (n) {
ret = crypt_s390_kimd(KIMD_GHASH, ctx, src, n);
BUG_ON(ret != n);
src += n;
srclen -= n;
}
if (srclen) {
dctx->bytes = GHASH_BLOCK_SIZE - srclen;
memcpy(buf, src, srclen);
}
return 0;
}
static void ghash_flush(struct ghash_ctx *ctx, struct ghash_desc_ctx *dctx)
{
u8 *buf = dctx->buffer;
int ret;
if (dctx->bytes) {
u8 *pos = buf + (GHASH_BLOCK_SIZE - dctx->bytes);
memset(pos, 0, dctx->bytes);
ret = crypt_s390_kimd(KIMD_GHASH, ctx, buf, GHASH_BLOCK_SIZE);
BUG_ON(ret != GHASH_BLOCK_SIZE);
}
dctx->bytes = 0;
}
static int ghash_final(struct shash_desc *desc, u8 *dst)
{
struct ghash_desc_ctx *dctx = shash_desc_ctx(desc);
struct ghash_ctx *ctx = crypto_shash_ctx(desc->tfm);
ghash_flush(ctx, dctx);
memcpy(dst, ctx->icv, GHASH_BLOCK_SIZE);
return 0;
}
static struct shash_alg ghash_alg = {
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update,
.final = ghash_final,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
.base = {
.cra_name = "ghash",
.cra_driver_name = "ghash-s390",
.cra_priority = CRYPT_S390_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = GHASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ghash_ctx),
.cra_module = THIS_MODULE,
.cra_list = LIST_HEAD_INIT(ghash_alg.base.cra_list),
},
};
static int __init ghash_mod_init(void)
{
if (!crypt_s390_func_available(KIMD_GHASH,
CRYPT_S390_MSA | CRYPT_S390_MSA4))
return -EOPNOTSUPP;
return crypto_register_shash(&ghash_alg);
}
static void __exit ghash_mod_exit(void)
{
crypto_unregister_shash(&ghash_alg);
}
module_init(ghash_mod_init);
module_exit(ghash_mod_exit);
MODULE_ALIAS("ghash");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("GHASH Message Digest Algorithm, s390 implementation");
...@@ -166,7 +166,7 @@ static int __init prng_init(void) ...@@ -166,7 +166,7 @@ static int __init prng_init(void)
int ret; int ret;
/* check if the CPU has a PRNG */ /* check if the CPU has a PRNG */
if (!crypt_s390_func_available(KMC_PRNG)) if (!crypt_s390_func_available(KMC_PRNG, CRYPT_S390_MSA))
return -EOPNOTSUPP; return -EOPNOTSUPP;
if (prng_chunk_size < 8) if (prng_chunk_size < 8)
......
...@@ -90,7 +90,7 @@ static struct shash_alg alg = { ...@@ -90,7 +90,7 @@ static struct shash_alg alg = {
static int __init sha1_s390_init(void) static int __init sha1_s390_init(void)
{ {
if (!crypt_s390_func_available(KIMD_SHA_1)) if (!crypt_s390_func_available(KIMD_SHA_1, CRYPT_S390_MSA))
return -EOPNOTSUPP; return -EOPNOTSUPP;
return crypto_register_shash(&alg); return crypto_register_shash(&alg);
} }
......
...@@ -86,7 +86,7 @@ static struct shash_alg alg = { ...@@ -86,7 +86,7 @@ static struct shash_alg alg = {
static int sha256_s390_init(void) static int sha256_s390_init(void)
{ {
if (!crypt_s390_func_available(KIMD_SHA_256)) if (!crypt_s390_func_available(KIMD_SHA_256, CRYPT_S390_MSA))
return -EOPNOTSUPP; return -EOPNOTSUPP;
return crypto_register_shash(&alg); return crypto_register_shash(&alg);
......
...@@ -132,7 +132,7 @@ static int __init init(void) ...@@ -132,7 +132,7 @@ static int __init init(void)
{ {
int ret; int ret;
if (!crypt_s390_func_available(KIMD_SHA_512)) if (!crypt_s390_func_available(KIMD_SHA_512, CRYPT_S390_MSA))
return -EOPNOTSUPP; return -EOPNOTSUPP;
if ((ret = crypto_register_shash(&sha512_alg)) < 0) if ((ret = crypto_register_shash(&sha512_alg)) < 0)
goto out; goto out;
......
...@@ -2,8 +2,6 @@ ...@@ -2,8 +2,6 @@
# Arch-specific CryptoAPI modules. # Arch-specific CryptoAPI modules.
# #
obj-$(CONFIG_CRYPTO_FPU) += fpu.o
obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o obj-$(CONFIG_CRYPTO_AES_586) += aes-i586.o
obj-$(CONFIG_CRYPTO_TWOFISH_586) += twofish-i586.o obj-$(CONFIG_CRYPTO_TWOFISH_586) += twofish-i586.o
obj-$(CONFIG_CRYPTO_SALSA20_586) += salsa20-i586.o obj-$(CONFIG_CRYPTO_SALSA20_586) += salsa20-i586.o
...@@ -24,6 +22,6 @@ aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o ...@@ -24,6 +22,6 @@ aes-x86_64-y := aes-x86_64-asm_64.o aes_glue.o
twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o twofish-x86_64-y := twofish-x86_64-asm_64.o twofish_glue.o
salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o salsa20-x86_64-y := salsa20-x86_64-asm_64.o salsa20_glue.o
aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o aesni-intel-y := aesni-intel_asm.o aesni-intel_glue.o fpu.o
ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o ghash-clmulni-intel-y := ghash-clmulni-intel_asm.o ghash-clmulni-intel_glue.o
...@@ -94,6 +94,10 @@ asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out, ...@@ -94,6 +94,10 @@ asmlinkage void aesni_cbc_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv); const u8 *in, unsigned int len, u8 *iv);
asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out, asmlinkage void aesni_cbc_dec(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv); const u8 *in, unsigned int len, u8 *iv);
int crypto_fpu_init(void);
void crypto_fpu_exit(void);
#ifdef CONFIG_X86_64 #ifdef CONFIG_X86_64
asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out, asmlinkage void aesni_ctr_enc(struct crypto_aes_ctx *ctx, u8 *out,
const u8 *in, unsigned int len, u8 *iv); const u8 *in, unsigned int len, u8 *iv);
...@@ -1257,6 +1261,8 @@ static int __init aesni_init(void) ...@@ -1257,6 +1261,8 @@ static int __init aesni_init(void)
return -ENODEV; return -ENODEV;
} }
if ((err = crypto_fpu_init()))
goto fpu_err;
if ((err = crypto_register_alg(&aesni_alg))) if ((err = crypto_register_alg(&aesni_alg)))
goto aes_err; goto aes_err;
if ((err = crypto_register_alg(&__aesni_alg))) if ((err = crypto_register_alg(&__aesni_alg)))
...@@ -1334,6 +1340,7 @@ static int __init aesni_init(void) ...@@ -1334,6 +1340,7 @@ static int __init aesni_init(void)
__aes_err: __aes_err:
crypto_unregister_alg(&aesni_alg); crypto_unregister_alg(&aesni_alg);
aes_err: aes_err:
fpu_err:
return err; return err;
} }
...@@ -1363,6 +1370,8 @@ static void __exit aesni_exit(void) ...@@ -1363,6 +1370,8 @@ static void __exit aesni_exit(void)
crypto_unregister_alg(&blk_ecb_alg); crypto_unregister_alg(&blk_ecb_alg);
crypto_unregister_alg(&__aesni_alg); crypto_unregister_alg(&__aesni_alg);
crypto_unregister_alg(&aesni_alg); crypto_unregister_alg(&aesni_alg);
crypto_fpu_exit();
} }
module_init(aesni_init); module_init(aesni_init);
......
...@@ -150,18 +150,12 @@ static struct crypto_template crypto_fpu_tmpl = { ...@@ -150,18 +150,12 @@ static struct crypto_template crypto_fpu_tmpl = {
.module = THIS_MODULE, .module = THIS_MODULE,
}; };
static int __init crypto_fpu_module_init(void) int __init crypto_fpu_init(void)
{ {
return crypto_register_template(&crypto_fpu_tmpl); return crypto_register_template(&crypto_fpu_tmpl);
} }
static void __exit crypto_fpu_module_exit(void) void __exit crypto_fpu_exit(void)
{ {
crypto_unregister_template(&crypto_fpu_tmpl); crypto_unregister_template(&crypto_fpu_tmpl);
} }
module_init(crypto_fpu_module_init);
module_exit(crypto_fpu_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FPU block cipher wrapper");
...@@ -264,11 +264,6 @@ config CRYPTO_XTS ...@@ -264,11 +264,6 @@ config CRYPTO_XTS
key size 256, 384 or 512 bits. This implementation currently key size 256, 384 or 512 bits. This implementation currently
can't handle a sectorsize which is not a multiple of 16 bytes. can't handle a sectorsize which is not a multiple of 16 bytes.
config CRYPTO_FPU
tristate
select CRYPTO_BLKCIPHER
select CRYPTO_MANAGER
comment "Hash modes" comment "Hash modes"
config CRYPTO_HMAC config CRYPTO_HMAC
...@@ -543,7 +538,6 @@ config CRYPTO_AES_NI_INTEL ...@@ -543,7 +538,6 @@ config CRYPTO_AES_NI_INTEL
select CRYPTO_AES_586 if !64BIT select CRYPTO_AES_586 if !64BIT
select CRYPTO_CRYPTD select CRYPTO_CRYPTD
select CRYPTO_ALGAPI select CRYPTO_ALGAPI
select CRYPTO_FPU
help help
Use Intel AES-NI instructions for AES algorithm. Use Intel AES-NI instructions for AES algorithm.
......
...@@ -1009,6 +1009,10 @@ static int do_test(int m) ...@@ -1009,6 +1009,10 @@ static int do_test(int m)
speed_template_32_48_64); speed_template_32_48_64);
test_cipher_speed("xts(aes)", DECRYPT, sec, NULL, 0, test_cipher_speed("xts(aes)", DECRYPT, sec, NULL, 0,
speed_template_32_48_64); speed_template_32_48_64);
test_cipher_speed("ctr(aes)", ENCRYPT, sec, NULL, 0,
speed_template_16_24_32);
test_cipher_speed("ctr(aes)", DECRYPT, sec, NULL, 0,
speed_template_16_24_32);
break; break;
case 201: case 201:
......
...@@ -2218,6 +2218,22 @@ static const struct alg_test_desc alg_test_descs[] = { ...@@ -2218,6 +2218,22 @@ static const struct alg_test_desc alg_test_descs[] = {
.count = MICHAEL_MIC_TEST_VECTORS .count = MICHAEL_MIC_TEST_VECTORS
} }
} }
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = {
.enc = {
.vecs = aes_ofb_enc_tv_template,
.count = AES_OFB_ENC_TEST_VECTORS
},
.dec = {
.vecs = aes_ofb_dec_tv_template,
.count = AES_OFB_DEC_TEST_VECTORS
}
}
}
}, { }, {
.alg = "pcbc(fcrypt)", .alg = "pcbc(fcrypt)",
.test = alg_test_skcipher, .test = alg_test_skcipher,
......
...@@ -2980,6 +2980,8 @@ static struct cipher_testvec cast6_dec_tv_template[] = { ...@@ -2980,6 +2980,8 @@ static struct cipher_testvec cast6_dec_tv_template[] = {
#define AES_XTS_DEC_TEST_VECTORS 4 #define AES_XTS_DEC_TEST_VECTORS 4
#define AES_CTR_ENC_TEST_VECTORS 3 #define AES_CTR_ENC_TEST_VECTORS 3
#define AES_CTR_DEC_TEST_VECTORS 3 #define AES_CTR_DEC_TEST_VECTORS 3
#define AES_OFB_ENC_TEST_VECTORS 1
#define AES_OFB_DEC_TEST_VECTORS 1
#define AES_CTR_3686_ENC_TEST_VECTORS 7 #define AES_CTR_3686_ENC_TEST_VECTORS 7
#define AES_CTR_3686_DEC_TEST_VECTORS 6 #define AES_CTR_3686_DEC_TEST_VECTORS 6
#define AES_GCM_ENC_TEST_VECTORS 9 #define AES_GCM_ENC_TEST_VECTORS 9
...@@ -5506,6 +5508,64 @@ static struct cipher_testvec aes_ctr_rfc3686_dec_tv_template[] = { ...@@ -5506,6 +5508,64 @@ static struct cipher_testvec aes_ctr_rfc3686_dec_tv_template[] = {
}, },
}; };
static struct cipher_testvec aes_ofb_enc_tv_template[] = {
/* From NIST Special Publication 800-38A, Appendix F.5 */
{
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07\x08"
"\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.input = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.ilen = 64,
.result = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\x77\x89\x50\x8d\x16\x91\x8f\x03\xf5"
"\x3c\x52\xda\xc5\x4e\xd8\x25"
"\x97\x40\x05\x1e\x9c\x5f\xec\xf6\x43"
"\x44\xf7\xa8\x22\x60\xed\xcc"
"\x30\x4c\x65\x28\xf6\x59\xc7\x78"
"\x66\xa5\x10\xd9\xc1\xd6\xae\x5e",
.rlen = 64,
}
};
static struct cipher_testvec aes_ofb_dec_tv_template[] = {
/* From NIST Special Publication 800-38A, Appendix F.5 */
{
.key = "\x2b\x7e\x15\x16\x28\xae\xd2\xa6"
"\xab\xf7\x15\x88\x09\xcf\x4f\x3c",
.klen = 16,
.iv = "\x00\x01\x02\x03\x04\x05\x06\x07\x08"
"\x09\x0a\x0b\x0c\x0d\x0e\x0f",
.input = "\x3b\x3f\xd9\x2e\xb7\x2d\xad\x20"
"\x33\x34\x49\xf8\xe8\x3c\xfb\x4a"
"\x77\x89\x50\x8d\x16\x91\x8f\x03\xf5"
"\x3c\x52\xda\xc5\x4e\xd8\x25"
"\x97\x40\x05\x1e\x9c\x5f\xec\xf6\x43"
"\x44\xf7\xa8\x22\x60\xed\xcc"
"\x30\x4c\x65\x28\xf6\x59\xc7\x78"
"\x66\xa5\x10\xd9\xc1\xd6\xae\x5e",
.ilen = 64,
.result = "\x6b\xc1\xbe\xe2\x2e\x40\x9f\x96"
"\xe9\x3d\x7e\x11\x73\x93\x17\x2a"
"\xae\x2d\x8a\x57\x1e\x03\xac\x9c"
"\x9e\xb7\x6f\xac\x45\xaf\x8e\x51"
"\x30\xc8\x1c\x46\xa3\x5c\xe4\x11"
"\xe5\xfb\xc1\x19\x1a\x0a\x52\xef"
"\xf6\x9f\x24\x45\xdf\x4f\x9b\x17"
"\xad\x2b\x41\x7b\xe6\x6c\x37\x10",
.rlen = 64,
}
};
static struct aead_testvec aes_gcm_enc_tv_template[] = { static struct aead_testvec aes_gcm_enc_tv_template[] = {
{ /* From McGrew & Viega - http://citeseer.ist.psu.edu/656989.html */ { /* From McGrew & Viega - http://citeseer.ist.psu.edu/656989.html */
.key = zeroed_string, .key = zeroed_string,
......
...@@ -49,7 +49,7 @@ config HW_RANDOM_INTEL ...@@ -49,7 +49,7 @@ config HW_RANDOM_INTEL
config HW_RANDOM_AMD config HW_RANDOM_AMD
tristate "AMD HW Random Number Generator support" tristate "AMD HW Random Number Generator support"
depends on HW_RANDOM && X86 && PCI depends on HW_RANDOM && (X86 || PPC_MAPLE) && PCI
default HW_RANDOM default HW_RANDOM
---help--- ---help---
This driver provides kernel-side support for the Random Number This driver provides kernel-side support for the Random Number
......
...@@ -133,6 +133,12 @@ static int __init mod_init(void) ...@@ -133,6 +133,12 @@ static int __init mod_init(void)
pmbase &= 0x0000FF00; pmbase &= 0x0000FF00;
if (pmbase == 0) if (pmbase == 0)
goto out; goto out;
if (!request_region(pmbase + 0xF0, 8, "AMD HWRNG")) {
dev_err(&pdev->dev, "AMD HWRNG region 0x%x already in use!\n",
pmbase + 0xF0);
err = -EBUSY;
goto out;
}
amd_rng.priv = (unsigned long)pmbase; amd_rng.priv = (unsigned long)pmbase;
amd_pdev = pdev; amd_pdev = pdev;
...@@ -141,6 +147,7 @@ static int __init mod_init(void) ...@@ -141,6 +147,7 @@ static int __init mod_init(void)
if (err) { if (err) {
printk(KERN_ERR PFX "RNG registering failed (%d)\n", printk(KERN_ERR PFX "RNG registering failed (%d)\n",
err); err);
release_region(pmbase + 0xF0, 8);
goto out; goto out;
} }
out: out:
...@@ -149,6 +156,8 @@ static int __init mod_init(void) ...@@ -149,6 +156,8 @@ static int __init mod_init(void)
static void __exit mod_exit(void) static void __exit mod_exit(void)
{ {
u32 pmbase = (unsigned long)amd_rng.priv;
release_region(pmbase + 0xF0, 8);
hwrng_unregister(&amd_rng); hwrng_unregister(&amd_rng);
} }
......
...@@ -91,6 +91,8 @@ config CRYPTO_SHA1_S390 ...@@ -91,6 +91,8 @@ config CRYPTO_SHA1_S390
This is the s390 hardware accelerated implementation of the This is the s390 hardware accelerated implementation of the
SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2). SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
It is available as of z990.
config CRYPTO_SHA256_S390 config CRYPTO_SHA256_S390
tristate "SHA256 digest algorithm" tristate "SHA256 digest algorithm"
depends on S390 depends on S390
...@@ -99,8 +101,7 @@ config CRYPTO_SHA256_S390 ...@@ -99,8 +101,7 @@ config CRYPTO_SHA256_S390
This is the s390 hardware accelerated implementation of the This is the s390 hardware accelerated implementation of the
SHA256 secure hash standard (DFIPS 180-2). SHA256 secure hash standard (DFIPS 180-2).
This version of SHA implements a 256 bit hash with 128 bits of It is available as of z9.
security against collision attacks.
config CRYPTO_SHA512_S390 config CRYPTO_SHA512_S390
tristate "SHA384 and SHA512 digest algorithm" tristate "SHA384 and SHA512 digest algorithm"
...@@ -110,10 +111,7 @@ config CRYPTO_SHA512_S390 ...@@ -110,10 +111,7 @@ config CRYPTO_SHA512_S390
This is the s390 hardware accelerated implementation of the This is the s390 hardware accelerated implementation of the
SHA512 secure hash standard. SHA512 secure hash standard.
This version of SHA implements a 512 bit hash with 256 bits of It is available as of z10.
security against collision attacks. The code also includes SHA-384,
a 384 bit hash with 192 bits of security against collision attacks.
config CRYPTO_DES_S390 config CRYPTO_DES_S390
tristate "DES and Triple DES cipher algorithms" tristate "DES and Triple DES cipher algorithms"
...@@ -121,9 +119,12 @@ config CRYPTO_DES_S390 ...@@ -121,9 +119,12 @@ config CRYPTO_DES_S390
select CRYPTO_ALGAPI select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER select CRYPTO_BLKCIPHER
help help
This us the s390 hardware accelerated implementation of the This is the s390 hardware accelerated implementation of the
DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3). DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
As of z990 the ECB and CBC mode are hardware accelerated.
As of z196 the CTR mode is hardware accelerated.
config CRYPTO_AES_S390 config CRYPTO_AES_S390
tristate "AES cipher algorithms" tristate "AES cipher algorithms"
depends on S390 depends on S390
...@@ -131,20 +132,15 @@ config CRYPTO_AES_S390 ...@@ -131,20 +132,15 @@ config CRYPTO_AES_S390
select CRYPTO_BLKCIPHER select CRYPTO_BLKCIPHER
help help
This is the s390 hardware accelerated implementation of the This is the s390 hardware accelerated implementation of the
AES cipher algorithms (FIPS-197). AES uses the Rijndael AES cipher algorithms (FIPS-197).
algorithm.
Rijndael appears to be consistently a very good performer in
both hardware and software across a wide range of computing
environments regardless of its use in feedback or non-feedback
modes. Its key setup time is excellent, and its key agility is
good. Rijndael's very low memory requirements make it very well
suited for restricted-space environments, in which it also
demonstrates excellent performance. Rijndael's operations are
among the easiest to defend against power and timing attacks.
On s390 the System z9-109 currently only supports the key size As of z9 the ECB and CBC modes are hardware accelerated
of 128 bit. for 128 bit keys.
As of z10 the ECB and CBC modes are hardware accelerated
for all AES key sizes.
As of z196 the CTR mode is hardware accelerated for all AES
key sizes and XTS mode is hardware accelerated for 256 and
512 bit keys.
config S390_PRNG config S390_PRNG
tristate "Pseudo random number generator device driver" tristate "Pseudo random number generator device driver"
...@@ -154,8 +150,20 @@ config S390_PRNG ...@@ -154,8 +150,20 @@ config S390_PRNG
Select this option if you want to use the s390 pseudo random number Select this option if you want to use the s390 pseudo random number
generator. The PRNG is part of the cryptographic processor functions generator. The PRNG is part of the cryptographic processor functions
and uses triple-DES to generate secure random numbers like the and uses triple-DES to generate secure random numbers like the
ANSI X9.17 standard. The PRNG is usable via the char device ANSI X9.17 standard. User-space programs access the
/dev/prandom. pseudo-random-number device through the char device /dev/prandom.
It is available as of z9.
config CRYPTO_GHASH_S390
tristate "GHASH digest algorithm"
depends on S390
select CRYPTO_HASH
help
This is the s390 hardware accelerated implementation of the
GHASH message digest algorithm for GCM (Galois/Counter Mode).
It is available as of z196.
config CRYPTO_DEV_MV_CESA config CRYPTO_DEV_MV_CESA
tristate "Marvell's Cryptographic Engine" tristate "Marvell's Cryptographic Engine"
...@@ -200,6 +208,8 @@ config CRYPTO_DEV_HIFN_795X_RNG ...@@ -200,6 +208,8 @@ config CRYPTO_DEV_HIFN_795X_RNG
Select this option if you want to enable the random number generator Select this option if you want to enable the random number generator
on the HIFN 795x crypto adapters. on the HIFN 795x crypto adapters.
source drivers/crypto/caam/Kconfig
config CRYPTO_DEV_TALITOS config CRYPTO_DEV_TALITOS
tristate "Talitos Freescale Security Engine (SEC)" tristate "Talitos Freescale Security Engine (SEC)"
select CRYPTO_ALGAPI select CRYPTO_ALGAPI
...@@ -269,4 +279,15 @@ config CRYPTO_DEV_PICOXCELL ...@@ -269,4 +279,15 @@ config CRYPTO_DEV_PICOXCELL
Saying m here will build a module named pipcoxcell_crypto. Saying m here will build a module named pipcoxcell_crypto.
config CRYPTO_DEV_S5P
tristate "Support for Samsung S5PV210 crypto accelerator"
depends on ARCH_S5PV210
select CRYPTO_AES
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
help
This option allows you to have support for S5P crypto acceleration.
Select this to offload Samsung S5PV210 or S5PC110 from AES
algorithms execution.
endif # CRYPTO_HW endif # CRYPTO_HW
...@@ -6,8 +6,10 @@ n2_crypto-y := n2_core.o n2_asm.o ...@@ -6,8 +6,10 @@ n2_crypto-y := n2_core.o n2_asm.o
obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o
obj-$(CONFIG_CRYPTO_DEV_MV_CESA) += mv_cesa.o obj-$(CONFIG_CRYPTO_DEV_MV_CESA) += mv_cesa.o
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam/
obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o
obj-$(CONFIG_CRYPTO_DEV_PPC4XX) += amcc/ obj-$(CONFIG_CRYPTO_DEV_PPC4XX) += amcc/
obj-$(CONFIG_CRYPTO_DEV_OMAP_SHAM) += omap-sham.o obj-$(CONFIG_CRYPTO_DEV_OMAP_SHAM) += omap-sham.o
obj-$(CONFIG_CRYPTO_DEV_OMAP_AES) += omap-aes.o obj-$(CONFIG_CRYPTO_DEV_OMAP_AES) += omap-aes.o
obj-$(CONFIG_CRYPTO_DEV_PICOXCELL) += picoxcell_crypto.o obj-$(CONFIG_CRYPTO_DEV_PICOXCELL) += picoxcell_crypto.o
obj-$(CONFIG_CRYPTO_DEV_S5P) += s5p-sss.o
config CRYPTO_DEV_FSL_CAAM
tristate "Freescale CAAM-Multicore driver backend"
depends on FSL_SOC
help
Enables the driver module for Freescale's Cryptographic Accelerator
and Assurance Module (CAAM), also known as the SEC version 4 (SEC4).
This module adds a job ring operation interface, and configures h/w
to operate as a DPAA component automatically, depending
on h/w feature availability.
To compile this driver as a module, choose M here: the module
will be called caam.
config CRYPTO_DEV_FSL_CAAM_RINGSIZE
int "Job Ring size"
depends on CRYPTO_DEV_FSL_CAAM
range 2 9
default "9"
help
Select size of Job Rings as a power of 2, within the
range 2-9 (ring size 4-512).
Examples:
2 => 4
3 => 8
4 => 16
5 => 32
6 => 64
7 => 128
8 => 256
9 => 512
config CRYPTO_DEV_FSL_CAAM_INTC
bool "Job Ring interrupt coalescing"
depends on CRYPTO_DEV_FSL_CAAM
default y
help
Enable the Job Ring's interrupt coalescing feature.
config CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD
int "Job Ring interrupt coalescing count threshold"
depends on CRYPTO_DEV_FSL_CAAM_INTC
range 1 255
default 255
help
Select number of descriptor completions to queue before
raising an interrupt, in the range 1-255. Note that a selection
of 1 functionally defeats the coalescing feature, and a selection
equal or greater than the job ring size will force timeouts.
config CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD
int "Job Ring interrupt coalescing timer threshold"
depends on CRYPTO_DEV_FSL_CAAM_INTC
range 1 65535
default 2048
help
Select number of bus clocks/64 to timeout in the case that one or
more descriptor completions are queued without reaching the count
threshold. Range is 1-65535.
config CRYPTO_DEV_FSL_CAAM_CRYPTO_API
tristate "Register algorithm implementations with the Crypto API"
depends on CRYPTO_DEV_FSL_CAAM
default y
select CRYPTO_ALGAPI
select CRYPTO_AUTHENC
help
Selecting this will offload crypto for users of the
scatterlist crypto API (such as the linux native IPSec
stack) to the SEC4 via job ring.
To compile this as a module, choose M here: the module
will be called caamalg.
#
# Makefile for the CAAM backend and dependent components
#
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API) += caamalg.o
caam-objs := ctrl.o jr.o error.o
/*
* caam - Freescale FSL CAAM support for crypto API
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
* Based on talitos crypto API driver.
*
* relationship of job descriptors to shared descriptors (SteveC Dec 10 2008):
*
* --------------- ---------------
* | JobDesc #1 |-------------------->| ShareDesc |
* | *(packet 1) | | (PDB) |
* --------------- |------------->| (hashKey) |
* . | | (cipherKey) |
* . | |-------->| (operation) |
* --------------- | | ---------------
* | JobDesc #2 |------| |
* | *(packet 2) | |
* --------------- |
* . |
* . |
* --------------- |
* | JobDesc #3 |------------
* | *(packet 3) |
* ---------------
*
* The SharedDesc never changes for a connection unless rekeyed, but
* each packet will likely be in a different place. So all we need
* to know to process the packet is where the input is, where the
* output goes, and what context we want to process with. Context is
* in the SharedDesc, packet references in the JobDesc.
*
* So, a job desc looks like:
*
* ---------------------
* | Header |
* | ShareDesc Pointer |
* | SEQ_OUT_PTR |
* | (output buffer) |
* | SEQ_IN_PTR |
* | (input buffer) |
* | LOAD (to DECO) |
* ---------------------
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc_constr.h"
#include "jr.h"
#include "error.h"
/*
* crypto alg
*/
#define CAAM_CRA_PRIORITY 3000
/* max key is sum of AES_MAX_KEY_SIZE, max split key size */
#define CAAM_MAX_KEY_SIZE (AES_MAX_KEY_SIZE + \
SHA512_DIGEST_SIZE * 2)
/* max IV is max of AES_BLOCK_SIZE, DES3_EDE_BLOCK_SIZE */
#define CAAM_MAX_IV_LENGTH 16
/* length of descriptors text */
#define DESC_AEAD_SHARED_TEXT_LEN 4
#define DESC_AEAD_ENCRYPT_TEXT_LEN 21
#define DESC_AEAD_DECRYPT_TEXT_LEN 24
#define DESC_AEAD_GIVENCRYPT_TEXT_LEN 27
#ifdef DEBUG
/* for print_hex_dumps with line references */
#define xstr(s) str(s)
#define str(s) #s
#define debug(format, arg...) printk(format, arg)
#else
#define debug(format, arg...)
#endif
/*
* per-session context
*/
struct caam_ctx {
struct device *jrdev;
u32 *sh_desc;
dma_addr_t shared_desc_phys;
u32 class1_alg_type;
u32 class2_alg_type;
u32 alg_op;
u8 *key;
dma_addr_t key_phys;
unsigned int enckeylen;
unsigned int split_key_len;
unsigned int split_key_pad_len;
unsigned int authsize;
};
static int aead_authenc_setauthsize(struct crypto_aead *authenc,
unsigned int authsize)
{
struct caam_ctx *ctx = crypto_aead_ctx(authenc);
ctx->authsize = authsize;
return 0;
}
struct split_key_result {
struct completion completion;
int err;
};
static void split_key_done(struct device *dev, u32 *desc, u32 err,
void *context)
{
struct split_key_result *res = context;
#ifdef DEBUG
dev_err(dev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(dev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
res->err = err;
complete(&res->completion);
}
/*
get a split ipad/opad key
Split key generation-----------------------------------------------
[00] 0xb0810008 jobdesc: stidx=1 share=never len=8
[01] 0x04000014 key: class2->keyreg len=20
@0xffe01000
[03] 0x84410014 operation: cls2-op sha1 hmac init dec
[04] 0x24940000 fifold: class2 msgdata-last2 len=0 imm
[05] 0xa4000001 jump: class2 local all ->1 [06]
[06] 0x64260028 fifostr: class2 mdsplit-jdk len=40
@0xffe04000
*/
static u32 gen_split_key(struct caam_ctx *ctx, const u8 *key_in, u32 authkeylen)
{
struct device *jrdev = ctx->jrdev;
u32 *desc;
struct split_key_result result;
dma_addr_t dma_addr_in, dma_addr_out;
int ret = 0;
desc = kmalloc(CAAM_CMD_SZ * 6 + CAAM_PTR_SZ * 2, GFP_KERNEL | GFP_DMA);
init_job_desc(desc, 0);
dma_addr_in = dma_map_single(jrdev, (void *)key_in, authkeylen,
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, dma_addr_in)) {
dev_err(jrdev, "unable to map key input memory\n");
kfree(desc);
return -ENOMEM;
}
append_key(desc, dma_addr_in, authkeylen, CLASS_2 |
KEY_DEST_CLASS_REG);
/* Sets MDHA up into an HMAC-INIT */
append_operation(desc, ctx->alg_op | OP_ALG_DECRYPT |
OP_ALG_AS_INIT);
/*
* do a FIFO_LOAD of zero, this will trigger the internal key expansion
into both pads inside MDHA
*/
append_fifo_load_as_imm(desc, NULL, 0, LDST_CLASS_2_CCB |
FIFOLD_TYPE_MSG | FIFOLD_TYPE_LAST2);
/*
* FIFO_STORE with the explicit split-key content store
* (0x26 output type)
*/
dma_addr_out = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(jrdev, dma_addr_out)) {
dev_err(jrdev, "unable to map key output memory\n");
kfree(desc);
return -ENOMEM;
}
append_fifo_store(desc, dma_addr_out, ctx->split_key_len,
LDST_CLASS_2_CCB | FIFOST_TYPE_SPLIT_KEK);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key_in, authkeylen, 1);
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc), 1);
#endif
result.err = 0;
init_completion(&result.completion);
ret = caam_jr_enqueue(jrdev, desc, split_key_done, &result);
if (!ret) {
/* in progress */
wait_for_completion_interruptible(&result.completion);
ret = result.err;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->split_key_pad_len, 1);
#endif
}
dma_unmap_single(jrdev, dma_addr_out, ctx->split_key_pad_len,
DMA_FROM_DEVICE);
dma_unmap_single(jrdev, dma_addr_in, authkeylen, DMA_TO_DEVICE);
kfree(desc);
return ret;
}
static int build_sh_desc_ipsec(struct caam_ctx *ctx)
{
struct device *jrdev = ctx->jrdev;
u32 *sh_desc;
u32 *jump_cmd;
bool keys_fit_inline = 0;
/*
* largest Job Descriptor and its Shared Descriptor
* must both fit into the 64-word Descriptor h/w Buffer
*/
if ((DESC_AEAD_GIVENCRYPT_TEXT_LEN +
DESC_AEAD_SHARED_TEXT_LEN) * CAAM_CMD_SZ +
ctx->split_key_pad_len + ctx->enckeylen <= CAAM_DESC_BYTES_MAX)
keys_fit_inline = 1;
/* build shared descriptor for this session */
sh_desc = kmalloc(CAAM_CMD_SZ * DESC_AEAD_SHARED_TEXT_LEN +
keys_fit_inline ?
ctx->split_key_pad_len + ctx->enckeylen :
CAAM_PTR_SZ * 2, GFP_DMA | GFP_KERNEL);
if (!sh_desc) {
dev_err(jrdev, "could not allocate shared descriptor\n");
return -ENOMEM;
}
init_sh_desc(sh_desc, HDR_SAVECTX | HDR_SHARE_SERIAL);
jump_cmd = append_jump(sh_desc, CLASS_BOTH | JUMP_TEST_ALL |
JUMP_COND_SHRD | JUMP_COND_SELF);
/*
* process keys, starting with class 2/authentication.
*/
if (keys_fit_inline) {
append_key_as_imm(sh_desc, ctx->key, ctx->split_key_pad_len,
ctx->split_key_len,
CLASS_2 | KEY_DEST_MDHA_SPLIT | KEY_ENC);
append_key_as_imm(sh_desc, (void *)ctx->key +
ctx->split_key_pad_len, ctx->enckeylen,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
} else {
append_key(sh_desc, ctx->key_phys, ctx->split_key_len, CLASS_2 |
KEY_DEST_MDHA_SPLIT | KEY_ENC);
append_key(sh_desc, ctx->key_phys + ctx->split_key_pad_len,
ctx->enckeylen, CLASS_1 | KEY_DEST_CLASS_REG);
}
/* update jump cmd now that we are at the jump target */
set_jump_tgt_here(sh_desc, jump_cmd);
ctx->shared_desc_phys = dma_map_single(jrdev, sh_desc,
desc_bytes(sh_desc),
DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->shared_desc_phys)) {
dev_err(jrdev, "unable to map shared descriptor\n");
kfree(sh_desc);
return -ENOMEM;
}
ctx->sh_desc = sh_desc;
return 0;
}
static int aead_authenc_setkey(struct crypto_aead *aead,
const u8 *key, unsigned int keylen)
{
/* Sizes for MDHA pads (*not* keys): MD5, SHA1, 224, 256, 384, 512 */
static const u8 mdpadlen[] = { 16, 20, 32, 32, 64, 64 };
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct rtattr *rta = (void *)key;
struct crypto_authenc_key_param *param;
unsigned int authkeylen;
unsigned int enckeylen;
int ret = 0;
param = RTA_DATA(rta);
enckeylen = be32_to_cpu(param->enckeylen);
key += RTA_ALIGN(rta->rta_len);
keylen -= RTA_ALIGN(rta->rta_len);
if (keylen < enckeylen)
goto badkey;
authkeylen = keylen - enckeylen;
if (keylen > CAAM_MAX_KEY_SIZE)
goto badkey;
/* Pick class 2 key length from algorithm submask */
ctx->split_key_len = mdpadlen[(ctx->alg_op & OP_ALG_ALGSEL_SUBMASK) >>
OP_ALG_ALGSEL_SHIFT] * 2;
ctx->split_key_pad_len = ALIGN(ctx->split_key_len, 16);
#ifdef DEBUG
printk(KERN_ERR "keylen %d enckeylen %d authkeylen %d\n",
keylen, enckeylen, authkeylen);
printk(KERN_ERR "split_key_len %d split_key_pad_len %d\n",
ctx->split_key_len, ctx->split_key_pad_len);
print_hex_dump(KERN_ERR, "key in @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, key, keylen, 1);
#endif
ctx->key = kmalloc(ctx->split_key_pad_len + enckeylen,
GFP_KERNEL | GFP_DMA);
if (!ctx->key) {
dev_err(jrdev, "could not allocate key output memory\n");
return -ENOMEM;
}
ret = gen_split_key(ctx, key, authkeylen);
if (ret) {
kfree(ctx->key);
goto badkey;
}
/* postpend encryption key to auth split key */
memcpy(ctx->key + ctx->split_key_pad_len, key + authkeylen, enckeylen);
ctx->key_phys = dma_map_single(jrdev, ctx->key, ctx->split_key_pad_len +
enckeylen, DMA_TO_DEVICE);
if (dma_mapping_error(jrdev, ctx->key_phys)) {
dev_err(jrdev, "unable to map key i/o memory\n");
kfree(ctx->key);
return -ENOMEM;
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "ctx.key@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, ctx->key,
ctx->split_key_pad_len + enckeylen, 1);
#endif
ctx->enckeylen = enckeylen;
ret = build_sh_desc_ipsec(ctx);
if (ret) {
dma_unmap_single(jrdev, ctx->key_phys, ctx->split_key_pad_len +
enckeylen, DMA_TO_DEVICE);
kfree(ctx->key);
}
return ret;
badkey:
crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
struct link_tbl_entry {
u64 ptr;
u32 len;
u8 reserved;
u8 buf_pool_id;
u16 offset;
};
/*
* ipsec_esp_edesc - s/w-extended ipsec_esp descriptor
* @src_nents: number of segments in input scatterlist
* @dst_nents: number of segments in output scatterlist
* @assoc_nents: number of segments in associated data (SPI+Seq) scatterlist
* @desc: h/w descriptor (variable length; must not exceed MAX_CAAM_DESCSIZE)
* @link_tbl_bytes: length of dma mapped link_tbl space
* @link_tbl_dma: bus physical mapped address of h/w link table
* @hw_desc: the h/w job descriptor followed by any referenced link tables
*/
struct ipsec_esp_edesc {
int assoc_nents;
int src_nents;
int dst_nents;
int link_tbl_bytes;
dma_addr_t link_tbl_dma;
struct link_tbl_entry *link_tbl;
u32 hw_desc[0];
};
static void ipsec_esp_unmap(struct device *dev,
struct ipsec_esp_edesc *edesc,
struct aead_request *areq)
{
dma_unmap_sg(dev, areq->assoc, edesc->assoc_nents, DMA_TO_DEVICE);
if (unlikely(areq->dst != areq->src)) {
dma_unmap_sg(dev, areq->src, edesc->src_nents,
DMA_TO_DEVICE);
dma_unmap_sg(dev, areq->dst, edesc->dst_nents,
DMA_FROM_DEVICE);
} else {
dma_unmap_sg(dev, areq->src, edesc->src_nents,
DMA_BIDIRECTIONAL);
}
if (edesc->link_tbl_bytes)
dma_unmap_single(dev, edesc->link_tbl_dma,
edesc->link_tbl_bytes,
DMA_TO_DEVICE);
}
/*
* ipsec_esp descriptor callbacks
*/
static void ipsec_esp_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *areq = context;
struct ipsec_esp_edesc *edesc;
#ifdef DEBUG
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
int ivsize = crypto_aead_ivsize(aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = (struct ipsec_esp_edesc *)((char *)desc -
offsetof(struct ipsec_esp_edesc, hw_desc));
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
ipsec_esp_unmap(jrdev, edesc, areq);
#ifdef DEBUG
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
areq->assoclen , 1);
print_hex_dump(KERN_ERR, "dstiv @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
edesc->src_nents ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "dst @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
edesc->src_nents ? 100 : areq->cryptlen +
ctx->authsize + 4, 1);
#endif
kfree(edesc);
aead_request_complete(areq, err);
}
static void ipsec_esp_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
void *context)
{
struct aead_request *areq = context;
struct ipsec_esp_edesc *edesc;
#ifdef DEBUG
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
dev_err(jrdev, "%s %d: err 0x%x\n", __func__, __LINE__, err);
#endif
edesc = (struct ipsec_esp_edesc *)((char *)desc -
offsetof(struct ipsec_esp_edesc, hw_desc));
if (err) {
char tmp[CAAM_ERROR_STR_MAX];
dev_err(jrdev, "%08x: %s\n", err, caam_jr_strstatus(tmp, err));
}
ipsec_esp_unmap(jrdev, edesc, areq);
/*
* verify hw auth check passed else return -EBADMSG
*/
if ((err & JRSTA_CCBERR_ERRID_MASK) == JRSTA_CCBERR_ERRID_ICVCHK)
err = -EBADMSG;
#ifdef DEBUG
print_hex_dump(KERN_ERR, "iphdrout@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4,
((char *)sg_virt(areq->assoc) - sizeof(struct iphdr)),
sizeof(struct iphdr) + areq->assoclen +
((areq->cryptlen > 1500) ? 1500 : areq->cryptlen) +
ctx->authsize + 36, 1);
if (!err && edesc->link_tbl_bytes) {
struct scatterlist *sg = sg_last(areq->src, edesc->src_nents);
print_hex_dump(KERN_ERR, "sglastout@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(sg),
sg->length + ctx->authsize + 16, 1);
}
#endif
kfree(edesc);
aead_request_complete(areq, err);
}
/*
* convert scatterlist to h/w link table format
* scatterlist must have been previously dma mapped
*/
static void sg_to_link_tbl(struct scatterlist *sg, int sg_count,
struct link_tbl_entry *link_tbl_ptr, u32 offset)
{
while (sg_count) {
link_tbl_ptr->ptr = sg_dma_address(sg);
link_tbl_ptr->len = sg_dma_len(sg);
link_tbl_ptr->reserved = 0;
link_tbl_ptr->buf_pool_id = 0;
link_tbl_ptr->offset = offset;
link_tbl_ptr++;
sg = sg_next(sg);
sg_count--;
}
/* set Final bit (marks end of link table) */
link_tbl_ptr--;
link_tbl_ptr->len |= 0x40000000;
}
/*
* fill in and submit ipsec_esp job descriptor
*/
static int ipsec_esp(struct ipsec_esp_edesc *edesc, struct aead_request *areq,
u32 encrypt,
void (*callback) (struct device *dev, u32 *desc,
u32 err, void *context))
{
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
u32 *desc = edesc->hw_desc, options;
int ret, sg_count, assoc_sg_count;
int ivsize = crypto_aead_ivsize(aead);
int authsize = ctx->authsize;
dma_addr_t ptr, dst_dma, src_dma;
#ifdef DEBUG
u32 *sh_desc = ctx->sh_desc;
debug("assoclen %d cryptlen %d authsize %d\n",
areq->assoclen, areq->cryptlen, authsize);
print_hex_dump(KERN_ERR, "assoc @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->assoc),
areq->assoclen , 1);
print_hex_dump(KERN_ERR, "presciv@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src) - ivsize,
edesc->src_nents ? 100 : ivsize, 1);
print_hex_dump(KERN_ERR, "src @"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sg_virt(areq->src),
edesc->src_nents ? 100 : areq->cryptlen + authsize, 1);
print_hex_dump(KERN_ERR, "shrdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, sh_desc,
desc_bytes(sh_desc), 1);
#endif
assoc_sg_count = dma_map_sg(jrdev, areq->assoc, edesc->assoc_nents ?: 1,
DMA_TO_DEVICE);
if (areq->src == areq->dst)
sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
DMA_BIDIRECTIONAL);
else
sg_count = dma_map_sg(jrdev, areq->src, edesc->src_nents ? : 1,
DMA_TO_DEVICE);
/* start auth operation */
append_operation(desc, ctx->class2_alg_type | OP_ALG_AS_INITFINAL |
(encrypt ? : OP_ALG_ICV_ON));
/* Load FIFO with data for Class 2 CHA */
options = FIFOLD_CLASS_CLASS2 | FIFOLD_TYPE_MSG;
if (!edesc->assoc_nents) {
ptr = sg_dma_address(areq->assoc);
} else {
sg_to_link_tbl(areq->assoc, edesc->assoc_nents,
edesc->link_tbl, 0);
ptr = edesc->link_tbl_dma;
options |= LDST_SGF;
}
append_fifo_load(desc, ptr, areq->assoclen, options);
/* copy iv from cipher/class1 input context to class2 infifo */
append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_CLASS2INFIFO | ivsize);
if (!encrypt) {
u32 *jump_cmd, *uncond_jump_cmd;
/* JUMP if shared */
jump_cmd = append_jump(desc, JUMP_TEST_ALL | JUMP_COND_SHRD);
/* start class 1 (cipher) operation, non-shared version */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL);
uncond_jump_cmd = append_jump(desc, 0);
set_jump_tgt_here(desc, jump_cmd);
/* start class 1 (cipher) operation, shared version */
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | OP_ALG_AAI_DK);
set_jump_tgt_here(desc, uncond_jump_cmd);
} else
append_operation(desc, ctx->class1_alg_type |
OP_ALG_AS_INITFINAL | encrypt);
/* load payload & instruct to class2 to snoop class 1 if encrypting */
options = 0;
if (!edesc->src_nents) {
src_dma = sg_dma_address(areq->src);
} else {
sg_to_link_tbl(areq->src, edesc->src_nents, edesc->link_tbl +
edesc->assoc_nents, 0);
src_dma = edesc->link_tbl_dma + edesc->assoc_nents *
sizeof(struct link_tbl_entry);
options |= LDST_SGF;
}
append_seq_in_ptr(desc, src_dma, areq->cryptlen + authsize, options);
append_seq_fifo_load(desc, areq->cryptlen, FIFOLD_CLASS_BOTH |
FIFOLD_TYPE_LASTBOTH |
(encrypt ? FIFOLD_TYPE_MSG1OUT2
: FIFOLD_TYPE_MSG));
/* specify destination */
if (areq->src == areq->dst) {
dst_dma = src_dma;
} else {
sg_count = dma_map_sg(jrdev, areq->dst, edesc->dst_nents ? : 1,
DMA_FROM_DEVICE);
if (!edesc->dst_nents) {
dst_dma = sg_dma_address(areq->dst);
options = 0;
} else {
sg_to_link_tbl(areq->dst, edesc->dst_nents,
edesc->link_tbl + edesc->assoc_nents +
edesc->src_nents, 0);
dst_dma = edesc->link_tbl_dma + (edesc->assoc_nents +
edesc->src_nents) *
sizeof(struct link_tbl_entry);
options = LDST_SGF;
}
}
append_seq_out_ptr(desc, dst_dma, areq->cryptlen + authsize, options);
append_seq_fifo_store(desc, areq->cryptlen, FIFOST_TYPE_MESSAGE_DATA);
/* ICV */
if (encrypt)
append_seq_store(desc, authsize, LDST_CLASS_2_CCB |
LDST_SRCDST_BYTE_CONTEXT);
else
append_seq_fifo_load(desc, authsize, FIFOLD_CLASS_CLASS2 |
FIFOLD_TYPE_LAST2 | FIFOLD_TYPE_ICV);
#ifdef DEBUG
debug("job_desc_len %d\n", desc_len(desc));
print_hex_dump(KERN_ERR, "jobdesc@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, desc, desc_bytes(desc) , 1);
print_hex_dump(KERN_ERR, "jdlinkt@"xstr(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, edesc->link_tbl,
edesc->link_tbl_bytes, 1);
#endif
ret = caam_jr_enqueue(jrdev, desc, callback, areq);
if (!ret)
ret = -EINPROGRESS;
else {
ipsec_esp_unmap(jrdev, edesc, areq);
kfree(edesc);
}
return ret;
}
/*
* derive number of elements in scatterlist
*/
static int sg_count(struct scatterlist *sg_list, int nbytes, int *chained)
{
struct scatterlist *sg = sg_list;
int sg_nents = 0;
*chained = 0;
while (nbytes > 0) {
sg_nents++;
nbytes -= sg->length;
if (!sg_is_last(sg) && (sg + 1)->length == 0)
*chained = 1;
sg = scatterwalk_sg_next(sg);
}
return sg_nents;
}
/*
* allocate and map the ipsec_esp extended descriptor
*/
static struct ipsec_esp_edesc *ipsec_esp_edesc_alloc(struct aead_request *areq,
int desc_bytes)
{
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
gfp_t flags = areq->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
int assoc_nents, src_nents, dst_nents = 0, chained, link_tbl_bytes;
struct ipsec_esp_edesc *edesc;
assoc_nents = sg_count(areq->assoc, areq->assoclen, &chained);
BUG_ON(chained);
if (likely(assoc_nents == 1))
assoc_nents = 0;
src_nents = sg_count(areq->src, areq->cryptlen + ctx->authsize,
&chained);
BUG_ON(chained);
if (src_nents == 1)
src_nents = 0;
if (unlikely(areq->dst != areq->src)) {
dst_nents = sg_count(areq->dst, areq->cryptlen + ctx->authsize,
&chained);
BUG_ON(chained);
if (dst_nents == 1)
dst_nents = 0;
}
link_tbl_bytes = (assoc_nents + src_nents + dst_nents) *
sizeof(struct link_tbl_entry);
debug("link_tbl_bytes %d\n", link_tbl_bytes);
/* allocate space for base edesc and hw desc commands, link tables */
edesc = kmalloc(sizeof(struct ipsec_esp_edesc) + desc_bytes +
link_tbl_bytes, GFP_DMA | flags);
if (!edesc) {
dev_err(jrdev, "could not allocate extended descriptor\n");
return ERR_PTR(-ENOMEM);
}
edesc->assoc_nents = assoc_nents;
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->link_tbl = (void *)edesc + sizeof(struct ipsec_esp_edesc) +
desc_bytes;
edesc->link_tbl_dma = dma_map_single(jrdev, edesc->link_tbl,
link_tbl_bytes, DMA_TO_DEVICE);
edesc->link_tbl_bytes = link_tbl_bytes;
return edesc;
}
static int aead_authenc_encrypt(struct aead_request *areq)
{
struct ipsec_esp_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ivsize = crypto_aead_ivsize(aead);
u32 *desc;
dma_addr_t iv_dma;
/* allocate extended descriptor */
edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_ENCRYPT_TEXT_LEN *
CAAM_CMD_SZ);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
desc = edesc->hw_desc;
/* insert shared descriptor pointer */
init_job_desc_shared(desc, ctx->shared_desc_phys,
desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
iv_dma = dma_map_single(jrdev, areq->iv, ivsize, DMA_TO_DEVICE);
/* check dma error */
append_load(desc, iv_dma, ivsize,
LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
}
static int aead_authenc_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
int ivsize = crypto_aead_ivsize(aead);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
struct ipsec_esp_edesc *edesc;
u32 *desc;
dma_addr_t iv_dma;
req->cryptlen -= ctx->authsize;
/* allocate extended descriptor */
edesc = ipsec_esp_edesc_alloc(req, DESC_AEAD_DECRYPT_TEXT_LEN *
CAAM_CMD_SZ);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
desc = edesc->hw_desc;
/* insert shared descriptor pointer */
init_job_desc_shared(desc, ctx->shared_desc_phys,
desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
iv_dma = dma_map_single(jrdev, req->iv, ivsize, DMA_TO_DEVICE);
/* check dma error */
append_load(desc, iv_dma, ivsize,
LDST_CLASS_1_CCB | LDST_SRCDST_BYTE_CONTEXT);
return ipsec_esp(edesc, req, !OP_ALG_ENCRYPT, ipsec_esp_decrypt_done);
}
static int aead_authenc_givencrypt(struct aead_givcrypt_request *req)
{
struct aead_request *areq = &req->areq;
struct ipsec_esp_edesc *edesc;
struct crypto_aead *aead = crypto_aead_reqtfm(areq);
struct caam_ctx *ctx = crypto_aead_ctx(aead);
struct device *jrdev = ctx->jrdev;
int ivsize = crypto_aead_ivsize(aead);
dma_addr_t iv_dma;
u32 *desc;
iv_dma = dma_map_single(jrdev, req->giv, ivsize, DMA_FROM_DEVICE);
debug("%s: giv %p\n", __func__, req->giv);
/* allocate extended descriptor */
edesc = ipsec_esp_edesc_alloc(areq, DESC_AEAD_GIVENCRYPT_TEXT_LEN *
CAAM_CMD_SZ);
if (IS_ERR(edesc))
return PTR_ERR(edesc);
desc = edesc->hw_desc;
/* insert shared descriptor pointer */
init_job_desc_shared(desc, ctx->shared_desc_phys,
desc_len(ctx->sh_desc), HDR_SHARE_DEFER);
/*
* LOAD IMM Info FIFO
* to DECO, Last, Padding, Random, Message, 16 bytes
*/
append_load_imm_u32(desc, NFIFOENTRY_DEST_DECO | NFIFOENTRY_LC1 |
NFIFOENTRY_STYPE_PAD | NFIFOENTRY_DTYPE_MSG |
NFIFOENTRY_PTYPE_RND | ivsize,
LDST_SRCDST_WORD_INFO_FIFO);
/*
* disable info fifo entries since the above serves as the entry
* this way, the MOVE command won't generate an entry.
* Note that this isn't required in more recent versions of
* SEC as a MOVE that doesn't do info FIFO entries is available.
*/
append_cmd(desc, CMD_LOAD | DISABLE_AUTO_INFO_FIFO);
/* MOVE DECO Alignment -> C1 Context 16 bytes */
append_move(desc, MOVE_SRC_INFIFO | MOVE_DEST_CLASS1CTX | ivsize);
/* re-enable info fifo entries */
append_cmd(desc, CMD_LOAD | ENABLE_AUTO_INFO_FIFO);
/* MOVE C1 Context -> OFIFO 16 bytes */
append_move(desc, MOVE_SRC_CLASS1CTX | MOVE_DEST_OUTFIFO | ivsize);
append_fifo_store(desc, iv_dma, ivsize, FIFOST_TYPE_MESSAGE_DATA);
return ipsec_esp(edesc, areq, OP_ALG_ENCRYPT, ipsec_esp_encrypt_done);
}
struct caam_alg_template {
char name[CRYPTO_MAX_ALG_NAME];
char driver_name[CRYPTO_MAX_ALG_NAME];
unsigned int blocksize;
struct aead_alg aead;
u32 class1_alg_type;
u32 class2_alg_type;
u32 alg_op;
};
static struct caam_alg_template driver_algs[] = {
/* single-pass ipsec_esp descriptor */
{
.name = "authenc(hmac(sha1),cbc(aes))",
.driver_name = "authenc-hmac-sha1-cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha256),cbc(aes))",
.driver_name = "authenc-hmac-sha256-cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha512),cbc(aes))",
.driver_name = "authenc-hmac-sha512-cbc-aes-caam",
.blocksize = AES_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = AES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_AES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha1),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha1-cbc-des3_ede-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha256),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha256-cbc-des3_ede-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha512),cbc(des3_ede))",
.driver_name = "authenc-hmac-sha512-cbc-des3_ede-caam",
.blocksize = DES3_EDE_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = DES3_EDE_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_3DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha1),cbc(des))",
.driver_name = "authenc-hmac-sha1-cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA1_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA1 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha256),cbc(des))",
.driver_name = "authenc-hmac-sha256-cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA256_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA256 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA256 | OP_ALG_AAI_HMAC,
},
{
.name = "authenc(hmac(sha512),cbc(des))",
.driver_name = "authenc-hmac-sha512-cbc-des-caam",
.blocksize = DES_BLOCK_SIZE,
.aead = {
.setkey = aead_authenc_setkey,
.setauthsize = aead_authenc_setauthsize,
.encrypt = aead_authenc_encrypt,
.decrypt = aead_authenc_decrypt,
.givencrypt = aead_authenc_givencrypt,
.geniv = "<built-in>",
.ivsize = DES_BLOCK_SIZE,
.maxauthsize = SHA512_DIGEST_SIZE,
},
.class1_alg_type = OP_ALG_ALGSEL_DES | OP_ALG_AAI_CBC,
.class2_alg_type = OP_ALG_ALGSEL_SHA512 |
OP_ALG_AAI_HMAC_PRECOMP,
.alg_op = OP_ALG_ALGSEL_SHA512 | OP_ALG_AAI_HMAC,
},
};
struct caam_crypto_alg {
struct list_head entry;
struct device *ctrldev;
int class1_alg_type;
int class2_alg_type;
int alg_op;
struct crypto_alg crypto_alg;
};
static int caam_cra_init(struct crypto_tfm *tfm)
{
struct crypto_alg *alg = tfm->__crt_alg;
struct caam_crypto_alg *caam_alg =
container_of(alg, struct caam_crypto_alg, crypto_alg);
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
struct caam_drv_private *priv = dev_get_drvdata(caam_alg->ctrldev);
int tgt_jr = atomic_inc_return(&priv->tfm_count);
/*
* distribute tfms across job rings to ensure in-order
* crypto request processing per tfm
*/
ctx->jrdev = priv->algapi_jr[(tgt_jr / 2) % priv->num_jrs_for_algapi];
/* copy descriptor header template value */
ctx->class1_alg_type = OP_TYPE_CLASS1_ALG | caam_alg->class1_alg_type;
ctx->class2_alg_type = OP_TYPE_CLASS2_ALG | caam_alg->class2_alg_type;
ctx->alg_op = OP_TYPE_CLASS2_ALG | caam_alg->alg_op;
return 0;
}
static void caam_cra_exit(struct crypto_tfm *tfm)
{
struct caam_ctx *ctx = crypto_tfm_ctx(tfm);
if (!dma_mapping_error(ctx->jrdev, ctx->shared_desc_phys))
dma_unmap_single(ctx->jrdev, ctx->shared_desc_phys,
desc_bytes(ctx->sh_desc), DMA_TO_DEVICE);
kfree(ctx->sh_desc);
if (!dma_mapping_error(ctx->jrdev, ctx->key_phys))
dma_unmap_single(ctx->jrdev, ctx->key_phys,
ctx->split_key_pad_len + ctx->enckeylen,
DMA_TO_DEVICE);
kfree(ctx->key);
}
static void __exit caam_algapi_exit(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev;
struct caam_drv_private *priv;
struct caam_crypto_alg *t_alg, *n;
int i, err;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node)
return;
pdev = of_find_device_by_node(dev_node);
if (!pdev)
return;
ctrldev = &pdev->dev;
of_node_put(dev_node);
priv = dev_get_drvdata(ctrldev);
if (!priv->alg_list.next)
return;
list_for_each_entry_safe(t_alg, n, &priv->alg_list, entry) {
crypto_unregister_alg(&t_alg->crypto_alg);
list_del(&t_alg->entry);
kfree(t_alg);
}
for (i = 0; i < priv->total_jobrs; i++) {
err = caam_jr_deregister(priv->algapi_jr[i]);
if (err < 0)
break;
}
kfree(priv->algapi_jr);
}
static struct caam_crypto_alg *caam_alg_alloc(struct device *ctrldev,
struct caam_alg_template
*template)
{
struct caam_crypto_alg *t_alg;
struct crypto_alg *alg;
t_alg = kzalloc(sizeof(struct caam_crypto_alg), GFP_KERNEL);
if (!t_alg) {
dev_err(ctrldev, "failed to allocate t_alg\n");
return ERR_PTR(-ENOMEM);
}
alg = &t_alg->crypto_alg;
snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", template->name);
snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
template->driver_name);
alg->cra_module = THIS_MODULE;
alg->cra_init = caam_cra_init;
alg->cra_exit = caam_cra_exit;
alg->cra_priority = CAAM_CRA_PRIORITY;
alg->cra_flags = CRYPTO_ALG_TYPE_AEAD | CRYPTO_ALG_ASYNC;
alg->cra_blocksize = template->blocksize;
alg->cra_alignmask = 0;
alg->cra_type = &crypto_aead_type;
alg->cra_ctxsize = sizeof(struct caam_ctx);
alg->cra_u.aead = template->aead;
t_alg->class1_alg_type = template->class1_alg_type;
t_alg->class2_alg_type = template->class2_alg_type;
t_alg->alg_op = template->alg_op;
t_alg->ctrldev = ctrldev;
return t_alg;
}
static int __init caam_algapi_init(void)
{
struct device_node *dev_node;
struct platform_device *pdev;
struct device *ctrldev, **jrdev;
struct caam_drv_private *priv;
int i = 0, err = 0;
dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
if (!dev_node)
return -ENODEV;
pdev = of_find_device_by_node(dev_node);
if (!pdev)
return -ENODEV;
ctrldev = &pdev->dev;
priv = dev_get_drvdata(ctrldev);
of_node_put(dev_node);
INIT_LIST_HEAD(&priv->alg_list);
jrdev = kmalloc(sizeof(*jrdev) * priv->total_jobrs, GFP_KERNEL);
if (!jrdev)
return -ENOMEM;
for (i = 0; i < priv->total_jobrs; i++) {
err = caam_jr_register(ctrldev, &jrdev[i]);
if (err < 0)
break;
}
if (err < 0 && i == 0) {
dev_err(ctrldev, "algapi error in job ring registration: %d\n",
err);
kfree(jrdev);
return err;
}
priv->num_jrs_for_algapi = i;
priv->algapi_jr = jrdev;
atomic_set(&priv->tfm_count, -1);
/* register crypto algorithms the device supports */
for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
/* TODO: check if h/w supports alg */
struct caam_crypto_alg *t_alg;
t_alg = caam_alg_alloc(ctrldev, &driver_algs[i]);
if (IS_ERR(t_alg)) {
err = PTR_ERR(t_alg);
dev_warn(ctrldev, "%s alg allocation failed\n",
driver_algs[i].driver_name);
continue;
}
err = crypto_register_alg(&t_alg->crypto_alg);
if (err) {
dev_warn(ctrldev, "%s alg registration failed\n",
t_alg->crypto_alg.cra_driver_name);
kfree(t_alg);
} else {
list_add_tail(&t_alg->entry, &priv->alg_list);
dev_info(ctrldev, "%s\n",
t_alg->crypto_alg.cra_driver_name);
}
}
return err;
}
module_init(caam_algapi_init);
module_exit(caam_algapi_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM support for crypto API");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");
/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef CAAM_COMPAT_H
#define CAAM_COMPAT_H
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/rtnetlink.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/debugfs.h>
#include <linux/circ_buf.h>
#include <net/xfrm.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/sha.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#endif /* !defined(CAAM_COMPAT_H) */
/*
* CAAM control-plane driver backend
* Controller-level driver, kernel property detection, initialization
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "jr.h"
static int caam_remove(struct platform_device *pdev)
{
struct device *ctrldev;
struct caam_drv_private *ctrlpriv;
struct caam_drv_private_jr *jrpriv;
struct caam_full __iomem *topregs;
int ring, ret = 0;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
topregs = (struct caam_full __iomem *)ctrlpriv->ctrl;
/* shut down JobRs */
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
ret |= caam_jr_shutdown(ctrlpriv->jrdev[ring]);
jrpriv = dev_get_drvdata(ctrlpriv->jrdev[ring]);
irq_dispose_mapping(jrpriv->irq);
}
/* Shut down debug views */
#ifdef CONFIG_DEBUG_FS
debugfs_remove_recursive(ctrlpriv->dfs_root);
#endif
/* Unmap controller region */
iounmap(&topregs->ctrl);
kfree(ctrlpriv->jrdev);
kfree(ctrlpriv);
return ret;
}
/* Probe routine for CAAM top (controller) level */
static int caam_probe(struct platform_device *pdev)
{
int d, ring, rspec;
struct device *dev;
struct device_node *nprop, *np;
struct caam_ctrl __iomem *ctrl;
struct caam_full __iomem *topregs;
struct caam_drv_private *ctrlpriv;
struct caam_perfmon *perfmon;
struct caam_deco **deco;
u32 deconum;
ctrlpriv = kzalloc(sizeof(struct caam_drv_private), GFP_KERNEL);
if (!ctrlpriv)
return -ENOMEM;
dev = &pdev->dev;
dev_set_drvdata(dev, ctrlpriv);
ctrlpriv->pdev = pdev;
nprop = pdev->dev.of_node;
/* Get configuration properties from device tree */
/* First, get register page */
ctrl = of_iomap(nprop, 0);
if (ctrl == NULL) {
dev_err(dev, "caam: of_iomap() failed\n");
return -ENOMEM;
}
ctrlpriv->ctrl = (struct caam_ctrl __force *)ctrl;
/* topregs used to derive pointers to CAAM sub-blocks only */
topregs = (struct caam_full __iomem *)ctrl;
/* Get the IRQ of the controller (for security violations only) */
ctrlpriv->secvio_irq = of_irq_to_resource(nprop, 0, NULL);
/*
* Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel,
* 36-bit pointers in master configuration register
*/
setbits32(&topregs->ctrl.mcr, MCFGR_WDENABLE |
(sizeof(dma_addr_t) == sizeof(u64) ? MCFGR_LONG_PTR : 0));
if (sizeof(dma_addr_t) == sizeof(u64))
dma_set_mask(dev, DMA_BIT_MASK(36));
/* Find out how many DECOs are present */
deconum = (rd_reg64(&topregs->ctrl.perfmon.cha_num) &
CHA_NUM_DECONUM_MASK) >> CHA_NUM_DECONUM_SHIFT;
ctrlpriv->deco = kmalloc(deconum * sizeof(struct caam_deco *),
GFP_KERNEL);
deco = (struct caam_deco __force **)&topregs->deco;
for (d = 0; d < deconum; d++)
ctrlpriv->deco[d] = deco[d];
/*
* Detect and enable JobRs
* First, find out how many ring spec'ed, allocate references
* for all, then go probe each one.
*/
rspec = 0;
for_each_compatible_node(np, NULL, "fsl,sec-v4.0-job-ring")
rspec++;
ctrlpriv->jrdev = kzalloc(sizeof(struct device *) * rspec, GFP_KERNEL);
if (ctrlpriv->jrdev == NULL) {
iounmap(&topregs->ctrl);
return -ENOMEM;
}
ring = 0;
ctrlpriv->total_jobrs = 0;
for_each_compatible_node(np, NULL, "fsl,sec-v4.0-job-ring") {
caam_jr_probe(pdev, np, ring);
ctrlpriv->total_jobrs++;
ring++;
}
/* Check to see if QI present. If so, enable */
ctrlpriv->qi_present = !!(rd_reg64(&topregs->ctrl.perfmon.comp_parms) &
CTPR_QI_MASK);
if (ctrlpriv->qi_present) {
ctrlpriv->qi = (struct caam_queue_if __force *)&topregs->qi;
/* This is all that's required to physically enable QI */
wr_reg32(&topregs->qi.qi_control_lo, QICTL_DQEN);
}
/* If no QI and no rings specified, quit and go home */
if ((!ctrlpriv->qi_present) && (!ctrlpriv->total_jobrs)) {
dev_err(dev, "no queues configured, terminating\n");
caam_remove(pdev);
return -ENOMEM;
}
/* NOTE: RTIC detection ought to go here, around Si time */
/* Initialize queue allocator lock */
spin_lock_init(&ctrlpriv->jr_alloc_lock);
/* Report "alive" for developer to see */
dev_info(dev, "device ID = 0x%016llx\n",
rd_reg64(&topregs->ctrl.perfmon.caam_id));
dev_info(dev, "job rings = %d, qi = %d\n",
ctrlpriv->total_jobrs, ctrlpriv->qi_present);
#ifdef CONFIG_DEBUG_FS
/*
* FIXME: needs better naming distinction, as some amalgamation of
* "caam" and nprop->full_name. The OF name isn't distinctive,
* but does separate instances
*/
perfmon = (struct caam_perfmon __force *)&ctrl->perfmon;
ctrlpriv->dfs_root = debugfs_create_dir("caam", NULL);
ctrlpriv->ctl = debugfs_create_dir("ctl", ctrlpriv->dfs_root);
/* Controller-level - performance monitor counters */
ctrlpriv->ctl_rq_dequeued =
debugfs_create_u64("rq_dequeued",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->req_dequeued);
ctrlpriv->ctl_ob_enc_req =
debugfs_create_u64("ob_rq_encrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_req);
ctrlpriv->ctl_ib_dec_req =
debugfs_create_u64("ib_rq_decrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_req);
ctrlpriv->ctl_ob_enc_bytes =
debugfs_create_u64("ob_bytes_encrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_bytes);
ctrlpriv->ctl_ob_prot_bytes =
debugfs_create_u64("ob_bytes_protected",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_prot_bytes);
ctrlpriv->ctl_ib_dec_bytes =
debugfs_create_u64("ib_bytes_decrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_bytes);
ctrlpriv->ctl_ib_valid_bytes =
debugfs_create_u64("ib_bytes_validated",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_valid_bytes);
/* Controller level - global status values */
ctrlpriv->ctl_faultaddr =
debugfs_create_u64("fault_addr",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultaddr);
ctrlpriv->ctl_faultdetail =
debugfs_create_u32("fault_detail",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultdetail);
ctrlpriv->ctl_faultstatus =
debugfs_create_u32("fault_status",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->status);
/* Internal covering keys (useful in non-secure mode only) */
ctrlpriv->ctl_kek_wrap.data = &ctrlpriv->ctrl->kek[0];
ctrlpriv->ctl_kek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_kek = debugfs_create_blob("kek",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_kek_wrap);
ctrlpriv->ctl_tkek_wrap.data = &ctrlpriv->ctrl->tkek[0];
ctrlpriv->ctl_tkek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tkek = debugfs_create_blob("tkek",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tkek_wrap);
ctrlpriv->ctl_tdsk_wrap.data = &ctrlpriv->ctrl->tdsk[0];
ctrlpriv->ctl_tdsk_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tdsk = debugfs_create_blob("tdsk",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tdsk_wrap);
#endif
return 0;
}
static struct of_device_id caam_match[] = {
{
.compatible = "fsl,sec-v4.0",
},
{},
};
MODULE_DEVICE_TABLE(of, caam_match);
static struct platform_driver caam_driver = {
.driver = {
.name = "caam",
.owner = THIS_MODULE,
.of_match_table = caam_match,
},
.probe = caam_probe,
.remove = __devexit_p(caam_remove),
};
static int __init caam_base_init(void)
{
return platform_driver_register(&caam_driver);
}
static void __exit caam_base_exit(void)
{
return platform_driver_unregister(&caam_driver);
}
module_init(caam_base_init);
module_exit(caam_base_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM request backend");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");
/*
* CAAM descriptor composition header
* Definitions to support CAAM descriptor instruction generation
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef DESC_H
#define DESC_H
/* Max size of any CAAM descriptor in 32-bit words, inclusive of header */
#define MAX_CAAM_DESCSIZE 64
/* Block size of any entity covered/uncovered with a KEK/TKEK */
#define KEK_BLOCKSIZE 16
/*
* Supported descriptor command types as they show up
* inside a descriptor command word.
*/
#define CMD_SHIFT 27
#define CMD_MASK 0xf8000000
#define CMD_KEY (0x00 << CMD_SHIFT)
#define CMD_SEQ_KEY (0x01 << CMD_SHIFT)
#define CMD_LOAD (0x02 << CMD_SHIFT)
#define CMD_SEQ_LOAD (0x03 << CMD_SHIFT)
#define CMD_FIFO_LOAD (0x04 << CMD_SHIFT)
#define CMD_SEQ_FIFO_LOAD (0x05 << CMD_SHIFT)
#define CMD_STORE (0x0a << CMD_SHIFT)
#define CMD_SEQ_STORE (0x0b << CMD_SHIFT)
#define CMD_FIFO_STORE (0x0c << CMD_SHIFT)
#define CMD_SEQ_FIFO_STORE (0x0d << CMD_SHIFT)
#define CMD_MOVE_LEN (0x0e << CMD_SHIFT)
#define CMD_MOVE (0x0f << CMD_SHIFT)
#define CMD_OPERATION (0x10 << CMD_SHIFT)
#define CMD_SIGNATURE (0x12 << CMD_SHIFT)
#define CMD_JUMP (0x14 << CMD_SHIFT)
#define CMD_MATH (0x15 << CMD_SHIFT)
#define CMD_DESC_HDR (0x16 << CMD_SHIFT)
#define CMD_SHARED_DESC_HDR (0x17 << CMD_SHIFT)
#define CMD_SEQ_IN_PTR (0x1e << CMD_SHIFT)
#define CMD_SEQ_OUT_PTR (0x1f << CMD_SHIFT)
/* General-purpose class selector for all commands */
#define CLASS_SHIFT 25
#define CLASS_MASK (0x03 << CLASS_SHIFT)
#define CLASS_NONE (0x00 << CLASS_SHIFT)
#define CLASS_1 (0x01 << CLASS_SHIFT)
#define CLASS_2 (0x02 << CLASS_SHIFT)
#define CLASS_BOTH (0x03 << CLASS_SHIFT)
/*
* Descriptor header command constructs
* Covers shared, job, and trusted descriptor headers
*/
/*
* Do Not Run - marks a descriptor inexecutable if there was
* a preceding error somewhere
*/
#define HDR_DNR 0x01000000
/*
* ONE - should always be set. Combination of ONE (always
* set) and ZRO (always clear) forms an endianness sanity check
*/
#define HDR_ONE 0x00800000
#define HDR_ZRO 0x00008000
/* Start Index or SharedDesc Length */
#define HDR_START_IDX_MASK 0x3f
#define HDR_START_IDX_SHIFT 16
/* If shared descriptor header, 6-bit length */
#define HDR_DESCLEN_SHR_MASK 0x3f
/* If non-shared header, 7-bit length */
#define HDR_DESCLEN_MASK 0x7f
/* This is a TrustedDesc (if not SharedDesc) */
#define HDR_TRUSTED 0x00004000
/* Make into TrustedDesc (if not SharedDesc) */
#define HDR_MAKE_TRUSTED 0x00002000
/* Save context if self-shared (if SharedDesc) */
#define HDR_SAVECTX 0x00001000
/* Next item points to SharedDesc */
#define HDR_SHARED 0x00001000
/*
* Reverse Execution Order - execute JobDesc first, then
* execute SharedDesc (normally SharedDesc goes first).
*/
#define HDR_REVERSE 0x00000800
/* Propogate DNR property to SharedDesc */
#define HDR_PROP_DNR 0x00000800
/* JobDesc/SharedDesc share property */
#define HDR_SD_SHARE_MASK 0x03
#define HDR_SD_SHARE_SHIFT 8
#define HDR_JD_SHARE_MASK 0x07
#define HDR_JD_SHARE_SHIFT 8
#define HDR_SHARE_NEVER (0x00 << HDR_SD_SHARE_SHIFT)
#define HDR_SHARE_WAIT (0x01 << HDR_SD_SHARE_SHIFT)
#define HDR_SHARE_SERIAL (0x02 << HDR_SD_SHARE_SHIFT)
#define HDR_SHARE_ALWAYS (0x03 << HDR_SD_SHARE_SHIFT)
#define HDR_SHARE_DEFER (0x04 << HDR_SD_SHARE_SHIFT)
/* JobDesc/SharedDesc descriptor length */
#define HDR_JD_LENGTH_MASK 0x7f
#define HDR_SD_LENGTH_MASK 0x3f
/*
* KEY/SEQ_KEY Command Constructs
*/
/* Key Destination Class: 01 = Class 1, 02 - Class 2 */
#define KEY_DEST_CLASS_SHIFT 25 /* use CLASS_1 or CLASS_2 */
#define KEY_DEST_CLASS_MASK (0x03 << KEY_DEST_CLASS_SHIFT)
/* Scatter-Gather Table/Variable Length Field */
#define KEY_SGF 0x01000000
#define KEY_VLF 0x01000000
/* Immediate - Key follows command in the descriptor */
#define KEY_IMM 0x00800000
/*
* Encrypted - Key is encrypted either with the KEK, or
* with the TDKEK if TK is set
*/
#define KEY_ENC 0x00400000
/*
* No Write Back - Do not allow key to be FIFO STOREd
*/
#define KEY_NWB 0x00200000
/*
* Enhanced Encryption of Key
*/
#define KEY_EKT 0x00100000
/*
* Encrypted with Trusted Key
*/
#define KEY_TK 0x00008000
/*
* KDEST - Key Destination: 0 - class key register,
* 1 - PKHA 'e', 2 - AFHA Sbox, 3 - MDHA split-key
*/
#define KEY_DEST_SHIFT 16
#define KEY_DEST_MASK (0x03 << KEY_DEST_SHIFT)
#define KEY_DEST_CLASS_REG (0x00 << KEY_DEST_SHIFT)
#define KEY_DEST_PKHA_E (0x01 << KEY_DEST_SHIFT)
#define KEY_DEST_AFHA_SBOX (0x02 << KEY_DEST_SHIFT)
#define KEY_DEST_MDHA_SPLIT (0x03 << KEY_DEST_SHIFT)
/* Length in bytes */
#define KEY_LENGTH_MASK 0x000003ff
/*
* LOAD/SEQ_LOAD/STORE/SEQ_STORE Command Constructs
*/
/*
* Load/Store Destination: 0 = class independent CCB,
* 1 = class 1 CCB, 2 = class 2 CCB, 3 = DECO
*/
#define LDST_CLASS_SHIFT 25
#define LDST_CLASS_MASK (0x03 << LDST_CLASS_SHIFT)
#define LDST_CLASS_IND_CCB (0x00 << LDST_CLASS_SHIFT)
#define LDST_CLASS_1_CCB (0x01 << LDST_CLASS_SHIFT)
#define LDST_CLASS_2_CCB (0x02 << LDST_CLASS_SHIFT)
#define LDST_CLASS_DECO (0x03 << LDST_CLASS_SHIFT)
/* Scatter-Gather Table/Variable Length Field */
#define LDST_SGF 0x01000000
#define LDST_VLF LDST_SGF
/* Immediate - Key follows this command in descriptor */
#define LDST_IMM_MASK 1
#define LDST_IMM_SHIFT 23
#define LDST_IMM (LDST_IMM_MASK << LDST_IMM_SHIFT)
/* SRC/DST - Destination for LOAD, Source for STORE */
#define LDST_SRCDST_SHIFT 16
#define LDST_SRCDST_MASK (0x7f << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_BYTE_CONTEXT (0x20 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_BYTE_KEY (0x40 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_BYTE_INFIFO (0x7c << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_BYTE_OUTFIFO (0x7e << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_MODE_REG (0x00 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_KEYSZ_REG (0x01 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DATASZ_REG (0x02 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_ICVSZ_REG (0x03 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_CHACTRL (0x06 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DECOCTRL (0x06 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_IRQCTRL (0x07 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DECO_PCLOVRD (0x07 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_CLRW (0x08 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DECO_MATH0 (0x08 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_STAT (0x09 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DECO_MATH1 (0x09 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DECO_MATH2 (0x0a << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DECO_AAD_SZ (0x0b << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DECO_MATH3 (0x0b << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_CLASS1_ICV_SZ (0x0c << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_ALTDS_CLASS1 (0x0f << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_PKHA_A_SZ (0x10 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_PKHA_B_SZ (0x11 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_PKHA_N_SZ (0x12 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_PKHA_E_SZ (0x13 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_DESCBUF (0x40 << LDST_SRCDST_SHIFT)
#define LDST_SRCDST_WORD_INFO_FIFO (0x7a << LDST_SRCDST_SHIFT)
/* Offset in source/destination */
#define LDST_OFFSET_SHIFT 8
#define LDST_OFFSET_MASK (0xff << LDST_OFFSET_SHIFT)
/* LDOFF definitions used when DST = LDST_SRCDST_WORD_DECOCTRL */
/* These could also be shifted by LDST_OFFSET_SHIFT - this reads better */
#define LDOFF_CHG_SHARE_SHIFT 0
#define LDOFF_CHG_SHARE_MASK (0x3 << LDOFF_CHG_SHARE_SHIFT)
#define LDOFF_CHG_SHARE_NEVER (0x1 << LDOFF_CHG_SHARE_SHIFT)
#define LDOFF_CHG_SHARE_OK_NO_PROP (0x2 << LDOFF_CHG_SHARE_SHIFT)
#define LDOFF_CHG_SHARE_OK_PROP (0x3 << LDOFF_CHG_SHARE_SHIFT)
#define LDOFF_ENABLE_AUTO_NFIFO (1 << 2)
#define LDOFF_DISABLE_AUTO_NFIFO (1 << 3)
#define LDOFF_CHG_NONSEQLIODN_SHIFT 4
#define LDOFF_CHG_NONSEQLIODN_MASK (0x3 << LDOFF_CHG_NONSEQLIODN_SHIFT)
#define LDOFF_CHG_NONSEQLIODN_SEQ (0x1 << LDOFF_CHG_NONSEQLIODN_SHIFT)
#define LDOFF_CHG_NONSEQLIODN_NON_SEQ (0x2 << LDOFF_CHG_NONSEQLIODN_SHIFT)
#define LDOFF_CHG_NONSEQLIODN_TRUSTED (0x3 << LDOFF_CHG_NONSEQLIODN_SHIFT)
#define LDOFF_CHG_SEQLIODN_SHIFT 6
#define LDOFF_CHG_SEQLIODN_MASK (0x3 << LDOFF_CHG_SEQLIODN_SHIFT)
#define LDOFF_CHG_SEQLIODN_SEQ (0x1 << LDOFF_CHG_SEQLIODN_SHIFT)
#define LDOFF_CHG_SEQLIODN_NON_SEQ (0x2 << LDOFF_CHG_SEQLIODN_SHIFT)
#define LDOFF_CHG_SEQLIODN_TRUSTED (0x3 << LDOFF_CHG_SEQLIODN_SHIFT)
/* Data length in bytes */
#define LDST_LEN_SHIFT 0
#define LDST_LEN_MASK (0xff << LDST_LEN_SHIFT)
/* Special Length definitions when dst=deco-ctrl */
#define LDLEN_ENABLE_OSL_COUNT (1 << 7)
#define LDLEN_RST_CHA_OFIFO_PTR (1 << 6)
#define LDLEN_RST_OFIFO (1 << 5)
#define LDLEN_SET_OFIFO_OFF_VALID (1 << 4)
#define LDLEN_SET_OFIFO_OFF_RSVD (1 << 3)
#define LDLEN_SET_OFIFO_OFFSET_SHIFT 0
#define LDLEN_SET_OFIFO_OFFSET_MASK (3 << LDLEN_SET_OFIFO_OFFSET_SHIFT)
/*
* FIFO_LOAD/FIFO_STORE/SEQ_FIFO_LOAD/SEQ_FIFO_STORE
* Command Constructs
*/
/*
* Load Destination: 0 = skip (SEQ_FIFO_LOAD only),
* 1 = Load for Class1, 2 = Load for Class2, 3 = Load both
* Store Source: 0 = normal, 1 = Class1key, 2 = Class2key
*/
#define FIFOLD_CLASS_SHIFT 25
#define FIFOLD_CLASS_MASK (0x03 << FIFOLD_CLASS_SHIFT)
#define FIFOLD_CLASS_SKIP (0x00 << FIFOLD_CLASS_SHIFT)
#define FIFOLD_CLASS_CLASS1 (0x01 << FIFOLD_CLASS_SHIFT)
#define FIFOLD_CLASS_CLASS2 (0x02 << FIFOLD_CLASS_SHIFT)
#define FIFOLD_CLASS_BOTH (0x03 << FIFOLD_CLASS_SHIFT)
#define FIFOST_CLASS_SHIFT 25
#define FIFOST_CLASS_MASK (0x03 << FIFOST_CLASS_SHIFT)
#define FIFOST_CLASS_NORMAL (0x00 << FIFOST_CLASS_SHIFT)
#define FIFOST_CLASS_CLASS1KEY (0x01 << FIFOST_CLASS_SHIFT)
#define FIFOST_CLASS_CLASS2KEY (0x02 << FIFOST_CLASS_SHIFT)
/*
* Scatter-Gather Table/Variable Length Field
* If set for FIFO_LOAD, refers to a SG table. Within
* SEQ_FIFO_LOAD, is variable input sequence
*/
#define FIFOLDST_SGF_SHIFT 24
#define FIFOLDST_SGF_MASK (1 << FIFOLDST_SGF_SHIFT)
#define FIFOLDST_VLF_MASK (1 << FIFOLDST_SGF_SHIFT)
#define FIFOLDST_SGF (1 << FIFOLDST_SGF_SHIFT)
#define FIFOLDST_VLF (1 << FIFOLDST_SGF_SHIFT)
/* Immediate - Data follows command in descriptor */
#define FIFOLD_IMM_SHIFT 23
#define FIFOLD_IMM_MASK (1 << FIFOLD_IMM_SHIFT)
#define FIFOLD_IMM (1 << FIFOLD_IMM_SHIFT)
/* Continue - Not the last FIFO store to come */
#define FIFOST_CONT_SHIFT 23
#define FIFOST_CONT_MASK (1 << FIFOST_CONT_SHIFT)
#define FIFOST_CONT_MASK (1 << FIFOST_CONT_SHIFT)
/*
* Extended Length - use 32-bit extended length that
* follows the pointer field. Illegal with IMM set
*/
#define FIFOLDST_EXT_SHIFT 22
#define FIFOLDST_EXT_MASK (1 << FIFOLDST_EXT_SHIFT)
#define FIFOLDST_EXT (1 << FIFOLDST_EXT_SHIFT)
/* Input data type.*/
#define FIFOLD_TYPE_SHIFT 16
#define FIFOLD_CONT_TYPE_SHIFT 19 /* shift past last-flush bits */
#define FIFOLD_TYPE_MASK (0x3f << FIFOLD_TYPE_SHIFT)
/* PK types */
#define FIFOLD_TYPE_PK (0x00 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_MASK (0x30 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_TYPEMASK (0x0f << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_A0 (0x00 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_A1 (0x01 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_A2 (0x02 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_A3 (0x03 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_B0 (0x04 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_B1 (0x05 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_B2 (0x06 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_B3 (0x07 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_N (0x08 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_A (0x0c << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_PK_B (0x0d << FIFOLD_TYPE_SHIFT)
/* Other types. Need to OR in last/flush bits as desired */
#define FIFOLD_TYPE_MSG_MASK (0x38 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_MSG (0x10 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_MSG1OUT2 (0x18 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_IV (0x20 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_BITDATA (0x28 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_AAD (0x30 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_ICV (0x38 << FIFOLD_TYPE_SHIFT)
/* Last/Flush bits for use with "other" types above */
#define FIFOLD_TYPE_ACT_MASK (0x07 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_NOACTION (0x00 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_FLUSH1 (0x01 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_LAST1 (0x02 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_LAST2FLUSH (0x03 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_LAST2 (0x04 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_LAST2FLUSH1 (0x05 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_LASTBOTH (0x06 << FIFOLD_TYPE_SHIFT)
#define FIFOLD_TYPE_LASTBOTHFL (0x07 << FIFOLD_TYPE_SHIFT)
#define FIFOLDST_LEN_MASK 0xffff
#define FIFOLDST_EXT_LEN_MASK 0xffffffff
/* Output data types */
#define FIFOST_TYPE_SHIFT 16
#define FIFOST_TYPE_MASK (0x3f << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_A0 (0x00 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_A1 (0x01 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_A2 (0x02 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_A3 (0x03 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_B0 (0x04 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_B1 (0x05 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_B2 (0x06 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_B3 (0x07 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_N (0x08 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_A (0x0c << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_B (0x0d << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_AF_SBOX_JKEK (0x10 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_AF_SBOX_TKEK (0x21 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_E_JKEK (0x22 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_PKHA_E_TKEK (0x23 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_KEY_KEK (0x24 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_KEY_TKEK (0x25 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_SPLIT_KEK (0x26 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_SPLIT_TKEK (0x27 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_OUTFIFO_KEK (0x28 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_OUTFIFO_TKEK (0x29 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_MESSAGE_DATA (0x30 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_RNGSTORE (0x34 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_RNGFIFO (0x35 << FIFOST_TYPE_SHIFT)
#define FIFOST_TYPE_SKIP (0x3f << FIFOST_TYPE_SHIFT)
/*
* OPERATION Command Constructs
*/
/* Operation type selectors - OP TYPE */
#define OP_TYPE_SHIFT 24
#define OP_TYPE_MASK (0x07 << OP_TYPE_SHIFT)
#define OP_TYPE_UNI_PROTOCOL (0x00 << OP_TYPE_SHIFT)
#define OP_TYPE_PK (0x01 << OP_TYPE_SHIFT)
#define OP_TYPE_CLASS1_ALG (0x02 << OP_TYPE_SHIFT)
#define OP_TYPE_CLASS2_ALG (0x04 << OP_TYPE_SHIFT)
#define OP_TYPE_DECAP_PROTOCOL (0x06 << OP_TYPE_SHIFT)
#define OP_TYPE_ENCAP_PROTOCOL (0x07 << OP_TYPE_SHIFT)
/* ProtocolID selectors - PROTID */
#define OP_PCLID_SHIFT 16
#define OP_PCLID_MASK (0xff << 16)
/* Assuming OP_TYPE = OP_TYPE_UNI_PROTOCOL */
#define OP_PCLID_IKEV1_PRF (0x01 << OP_PCLID_SHIFT)
#define OP_PCLID_IKEV2_PRF (0x02 << OP_PCLID_SHIFT)
#define OP_PCLID_SSL30_PRF (0x08 << OP_PCLID_SHIFT)
#define OP_PCLID_TLS10_PRF (0x09 << OP_PCLID_SHIFT)
#define OP_PCLID_TLS11_PRF (0x0a << OP_PCLID_SHIFT)
#define OP_PCLID_DTLS10_PRF (0x0c << OP_PCLID_SHIFT)
#define OP_PCLID_PRF (0x06 << OP_PCLID_SHIFT)
#define OP_PCLID_BLOB (0x0d << OP_PCLID_SHIFT)
#define OP_PCLID_SECRETKEY (0x11 << OP_PCLID_SHIFT)
#define OP_PCLID_PUBLICKEYPAIR (0x14 << OP_PCLID_SHIFT)
#define OP_PCLID_DSASIGN (0x15 << OP_PCLID_SHIFT)
#define OP_PCLID_DSAVERIFY (0x16 << OP_PCLID_SHIFT)
/* Assuming OP_TYPE = OP_TYPE_DECAP_PROTOCOL/ENCAP_PROTOCOL */
#define OP_PCLID_IPSEC (0x01 << OP_PCLID_SHIFT)
#define OP_PCLID_SRTP (0x02 << OP_PCLID_SHIFT)
#define OP_PCLID_MACSEC (0x03 << OP_PCLID_SHIFT)
#define OP_PCLID_WIFI (0x04 << OP_PCLID_SHIFT)
#define OP_PCLID_WIMAX (0x05 << OP_PCLID_SHIFT)
#define OP_PCLID_SSL30 (0x08 << OP_PCLID_SHIFT)
#define OP_PCLID_TLS10 (0x09 << OP_PCLID_SHIFT)
#define OP_PCLID_TLS11 (0x0a << OP_PCLID_SHIFT)
#define OP_PCLID_TLS12 (0x0b << OP_PCLID_SHIFT)
#define OP_PCLID_DTLS (0x0c << OP_PCLID_SHIFT)
/*
* ProtocolInfo selectors
*/
#define OP_PCLINFO_MASK 0xffff
/* for OP_PCLID_IPSEC */
#define OP_PCL_IPSEC_CIPHER_MASK 0xff00
#define OP_PCL_IPSEC_AUTH_MASK 0x00ff
#define OP_PCL_IPSEC_DES_IV64 0x0100
#define OP_PCL_IPSEC_DES 0x0200
#define OP_PCL_IPSEC_3DES 0x0300
#define OP_PCL_IPSEC_AES_CBC 0x0c00
#define OP_PCL_IPSEC_AES_CTR 0x0d00
#define OP_PCL_IPSEC_AES_XTS 0x1600
#define OP_PCL_IPSEC_AES_CCM8 0x0e00
#define OP_PCL_IPSEC_AES_CCM12 0x0f00
#define OP_PCL_IPSEC_AES_CCM16 0x1000
#define OP_PCL_IPSEC_AES_GCM8 0x1200
#define OP_PCL_IPSEC_AES_GCM12 0x1300
#define OP_PCL_IPSEC_AES_GCM16 0x1400
#define OP_PCL_IPSEC_HMAC_NULL 0x0000
#define OP_PCL_IPSEC_HMAC_MD5_96 0x0001
#define OP_PCL_IPSEC_HMAC_SHA1_96 0x0002
#define OP_PCL_IPSEC_AES_XCBC_MAC_96 0x0005
#define OP_PCL_IPSEC_HMAC_MD5_128 0x0006
#define OP_PCL_IPSEC_HMAC_SHA1_160 0x0007
#define OP_PCL_IPSEC_HMAC_SHA2_256_128 0x000c
#define OP_PCL_IPSEC_HMAC_SHA2_384_192 0x000d
#define OP_PCL_IPSEC_HMAC_SHA2_512_256 0x000e
/* For SRTP - OP_PCLID_SRTP */
#define OP_PCL_SRTP_CIPHER_MASK 0xff00
#define OP_PCL_SRTP_AUTH_MASK 0x00ff
#define OP_PCL_SRTP_AES_CTR 0x0d00
#define OP_PCL_SRTP_HMAC_SHA1_160 0x0007
/* For SSL 3.0 - OP_PCLID_SSL30 */
#define OP_PCL_SSL30_AES_128_CBC_SHA 0x002f
#define OP_PCL_SSL30_AES_128_CBC_SHA_2 0x0030
#define OP_PCL_SSL30_AES_128_CBC_SHA_3 0x0031
#define OP_PCL_SSL30_AES_128_CBC_SHA_4 0x0032
#define OP_PCL_SSL30_AES_128_CBC_SHA_5 0x0033
#define OP_PCL_SSL30_AES_128_CBC_SHA_6 0x0034
#define OP_PCL_SSL30_AES_128_CBC_SHA_7 0x008c
#define OP_PCL_SSL30_AES_128_CBC_SHA_8 0x0090
#define OP_PCL_SSL30_AES_128_CBC_SHA_9 0x0094
#define OP_PCL_SSL30_AES_128_CBC_SHA_10 0xc004
#define OP_PCL_SSL30_AES_128_CBC_SHA_11 0xc009
#define OP_PCL_SSL30_AES_128_CBC_SHA_12 0xc00e
#define OP_PCL_SSL30_AES_128_CBC_SHA_13 0xc013
#define OP_PCL_SSL30_AES_128_CBC_SHA_14 0xc018
#define OP_PCL_SSL30_AES_128_CBC_SHA_15 0xc01d
#define OP_PCL_SSL30_AES_128_CBC_SHA_16 0xc01e
#define OP_PCL_SSL30_AES_128_CBC_SHA_17 0xc01f
#define OP_PCL_SSL30_AES_256_CBC_SHA 0x0035
#define OP_PCL_SSL30_AES_256_CBC_SHA_2 0x0036
#define OP_PCL_SSL30_AES_256_CBC_SHA_3 0x0037
#define OP_PCL_SSL30_AES_256_CBC_SHA_4 0x0038
#define OP_PCL_SSL30_AES_256_CBC_SHA_5 0x0039
#define OP_PCL_SSL30_AES_256_CBC_SHA_6 0x003a
#define OP_PCL_SSL30_AES_256_CBC_SHA_7 0x008d
#define OP_PCL_SSL30_AES_256_CBC_SHA_8 0x0091
#define OP_PCL_SSL30_AES_256_CBC_SHA_9 0x0095
#define OP_PCL_SSL30_AES_256_CBC_SHA_10 0xc005
#define OP_PCL_SSL30_AES_256_CBC_SHA_11 0xc00a
#define OP_PCL_SSL30_AES_256_CBC_SHA_12 0xc00f
#define OP_PCL_SSL30_AES_256_CBC_SHA_13 0xc014
#define OP_PCL_SSL30_AES_256_CBC_SHA_14 0xc019
#define OP_PCL_SSL30_AES_256_CBC_SHA_15 0xc020
#define OP_PCL_SSL30_AES_256_CBC_SHA_16 0xc021
#define OP_PCL_SSL30_AES_256_CBC_SHA_17 0xc022
#define OP_PCL_SSL30_3DES_EDE_CBC_MD5 0x0023
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA 0x001f
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_2 0x008b
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_3 0x008f
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_4 0x0093
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_5 0x000a
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_6 0x000d
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_7 0x0010
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_8 0x0013
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_9 0x0016
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_10 0x001b
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_11 0xc003
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_12 0xc008
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_13 0xc00d
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_14 0xc012
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_15 0xc017
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_16 0xc01a
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_17 0xc01b
#define OP_PCL_SSL30_3DES_EDE_CBC_SHA_18 0xc01c
#define OP_PCL_SSL30_DES40_CBC_MD5 0x0029
#define OP_PCL_SSL30_DES_CBC_MD5 0x0022
#define OP_PCL_SSL30_DES40_CBC_SHA 0x0008
#define OP_PCL_SSL30_DES40_CBC_SHA_2 0x000b
#define OP_PCL_SSL30_DES40_CBC_SHA_3 0x000e
#define OP_PCL_SSL30_DES40_CBC_SHA_4 0x0011
#define OP_PCL_SSL30_DES40_CBC_SHA_5 0x0014
#define OP_PCL_SSL30_DES40_CBC_SHA_6 0x0019
#define OP_PCL_SSL30_DES40_CBC_SHA_7 0x0026
#define OP_PCL_SSL30_DES_CBC_SHA 0x001e
#define OP_PCL_SSL30_DES_CBC_SHA_2 0x0009
#define OP_PCL_SSL30_DES_CBC_SHA_3 0x000c
#define OP_PCL_SSL30_DES_CBC_SHA_4 0x000f
#define OP_PCL_SSL30_DES_CBC_SHA_5 0x0012
#define OP_PCL_SSL30_DES_CBC_SHA_6 0x0015
#define OP_PCL_SSL30_DES_CBC_SHA_7 0x001a
#define OP_PCL_SSL30_RC4_128_MD5 0x0024
#define OP_PCL_SSL30_RC4_128_MD5_2 0x0004
#define OP_PCL_SSL30_RC4_128_MD5_3 0x0018
#define OP_PCL_SSL30_RC4_40_MD5 0x002b
#define OP_PCL_SSL30_RC4_40_MD5_2 0x0003
#define OP_PCL_SSL30_RC4_40_MD5_3 0x0017
#define OP_PCL_SSL30_RC4_128_SHA 0x0020
#define OP_PCL_SSL30_RC4_128_SHA_2 0x008a
#define OP_PCL_SSL30_RC4_128_SHA_3 0x008e
#define OP_PCL_SSL30_RC4_128_SHA_4 0x0092
#define OP_PCL_SSL30_RC4_128_SHA_5 0x0005
#define OP_PCL_SSL30_RC4_128_SHA_6 0xc002
#define OP_PCL_SSL30_RC4_128_SHA_7 0xc007
#define OP_PCL_SSL30_RC4_128_SHA_8 0xc00c
#define OP_PCL_SSL30_RC4_128_SHA_9 0xc011
#define OP_PCL_SSL30_RC4_128_SHA_10 0xc016
#define OP_PCL_SSL30_RC4_40_SHA 0x0028
/* For TLS 1.0 - OP_PCLID_TLS10 */
#define OP_PCL_TLS10_AES_128_CBC_SHA 0x002f
#define OP_PCL_TLS10_AES_128_CBC_SHA_2 0x0030
#define OP_PCL_TLS10_AES_128_CBC_SHA_3 0x0031
#define OP_PCL_TLS10_AES_128_CBC_SHA_4 0x0032
#define OP_PCL_TLS10_AES_128_CBC_SHA_5 0x0033
#define OP_PCL_TLS10_AES_128_CBC_SHA_6 0x0034
#define OP_PCL_TLS10_AES_128_CBC_SHA_7 0x008c
#define OP_PCL_TLS10_AES_128_CBC_SHA_8 0x0090
#define OP_PCL_TLS10_AES_128_CBC_SHA_9 0x0094
#define OP_PCL_TLS10_AES_128_CBC_SHA_10 0xc004
#define OP_PCL_TLS10_AES_128_CBC_SHA_11 0xc009
#define OP_PCL_TLS10_AES_128_CBC_SHA_12 0xc00e
#define OP_PCL_TLS10_AES_128_CBC_SHA_13 0xc013
#define OP_PCL_TLS10_AES_128_CBC_SHA_14 0xc018
#define OP_PCL_TLS10_AES_128_CBC_SHA_15 0xc01d
#define OP_PCL_TLS10_AES_128_CBC_SHA_16 0xc01e
#define OP_PCL_TLS10_AES_128_CBC_SHA_17 0xc01f
#define OP_PCL_TLS10_AES_256_CBC_SHA 0x0035
#define OP_PCL_TLS10_AES_256_CBC_SHA_2 0x0036
#define OP_PCL_TLS10_AES_256_CBC_SHA_3 0x0037
#define OP_PCL_TLS10_AES_256_CBC_SHA_4 0x0038
#define OP_PCL_TLS10_AES_256_CBC_SHA_5 0x0039
#define OP_PCL_TLS10_AES_256_CBC_SHA_6 0x003a
#define OP_PCL_TLS10_AES_256_CBC_SHA_7 0x008d
#define OP_PCL_TLS10_AES_256_CBC_SHA_8 0x0091
#define OP_PCL_TLS10_AES_256_CBC_SHA_9 0x0095
#define OP_PCL_TLS10_AES_256_CBC_SHA_10 0xc005
#define OP_PCL_TLS10_AES_256_CBC_SHA_11 0xc00a
#define OP_PCL_TLS10_AES_256_CBC_SHA_12 0xc00f
#define OP_PCL_TLS10_AES_256_CBC_SHA_13 0xc014
#define OP_PCL_TLS10_AES_256_CBC_SHA_14 0xc019
#define OP_PCL_TLS10_AES_256_CBC_SHA_15 0xc020
#define OP_PCL_TLS10_AES_256_CBC_SHA_16 0xc021
#define OP_PCL_TLS10_AES_256_CBC_SHA_17 0xc022
/* #define OP_PCL_TLS10_3DES_EDE_CBC_MD5 0x0023 */
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA 0x001f
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_2 0x008b
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_3 0x008f
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_4 0x0093
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_5 0x000a
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_6 0x000d
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_7 0x0010
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_8 0x0013
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_9 0x0016
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_10 0x001b
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_11 0xc003
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_12 0xc008
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_13 0xc00d
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_14 0xc012
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_15 0xc017
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_16 0xc01a
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_17 0xc01b
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA_18 0xc01c
#define OP_PCL_TLS10_DES40_CBC_MD5 0x0029
#define OP_PCL_TLS10_DES_CBC_MD5 0x0022
#define OP_PCL_TLS10_DES40_CBC_SHA 0x0008
#define OP_PCL_TLS10_DES40_CBC_SHA_2 0x000b
#define OP_PCL_TLS10_DES40_CBC_SHA_3 0x000e
#define OP_PCL_TLS10_DES40_CBC_SHA_4 0x0011
#define OP_PCL_TLS10_DES40_CBC_SHA_5 0x0014
#define OP_PCL_TLS10_DES40_CBC_SHA_6 0x0019
#define OP_PCL_TLS10_DES40_CBC_SHA_7 0x0026
#define OP_PCL_TLS10_DES_CBC_SHA 0x001e
#define OP_PCL_TLS10_DES_CBC_SHA_2 0x0009
#define OP_PCL_TLS10_DES_CBC_SHA_3 0x000c
#define OP_PCL_TLS10_DES_CBC_SHA_4 0x000f
#define OP_PCL_TLS10_DES_CBC_SHA_5 0x0012
#define OP_PCL_TLS10_DES_CBC_SHA_6 0x0015
#define OP_PCL_TLS10_DES_CBC_SHA_7 0x001a
#define OP_PCL_TLS10_RC4_128_MD5 0x0024
#define OP_PCL_TLS10_RC4_128_MD5_2 0x0004
#define OP_PCL_TLS10_RC4_128_MD5_3 0x0018
#define OP_PCL_TLS10_RC4_40_MD5 0x002b
#define OP_PCL_TLS10_RC4_40_MD5_2 0x0003
#define OP_PCL_TLS10_RC4_40_MD5_3 0x0017
#define OP_PCL_TLS10_RC4_128_SHA 0x0020
#define OP_PCL_TLS10_RC4_128_SHA_2 0x008a
#define OP_PCL_TLS10_RC4_128_SHA_3 0x008e
#define OP_PCL_TLS10_RC4_128_SHA_4 0x0092
#define OP_PCL_TLS10_RC4_128_SHA_5 0x0005
#define OP_PCL_TLS10_RC4_128_SHA_6 0xc002
#define OP_PCL_TLS10_RC4_128_SHA_7 0xc007
#define OP_PCL_TLS10_RC4_128_SHA_8 0xc00c
#define OP_PCL_TLS10_RC4_128_SHA_9 0xc011
#define OP_PCL_TLS10_RC4_128_SHA_10 0xc016
#define OP_PCL_TLS10_RC4_40_SHA 0x0028
#define OP_PCL_TLS10_3DES_EDE_CBC_MD5 0xff23
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA160 0xff30
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA224 0xff34
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA256 0xff36
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA384 0xff33
#define OP_PCL_TLS10_3DES_EDE_CBC_SHA512 0xff35
#define OP_PCL_TLS10_AES_128_CBC_SHA160 0xff80
#define OP_PCL_TLS10_AES_128_CBC_SHA224 0xff84
#define OP_PCL_TLS10_AES_128_CBC_SHA256 0xff86
#define OP_PCL_TLS10_AES_128_CBC_SHA384 0xff83
#define OP_PCL_TLS10_AES_128_CBC_SHA512 0xff85
#define OP_PCL_TLS10_AES_192_CBC_SHA160 0xff20
#define OP_PCL_TLS10_AES_192_CBC_SHA224 0xff24
#define OP_PCL_TLS10_AES_192_CBC_SHA256 0xff26
#define OP_PCL_TLS10_AES_192_CBC_SHA384 0xff23
#define OP_PCL_TLS10_AES_192_CBC_SHA512 0xff25
#define OP_PCL_TLS10_AES_256_CBC_SHA160 0xff60
#define OP_PCL_TLS10_AES_256_CBC_SHA224 0xff64
#define OP_PCL_TLS10_AES_256_CBC_SHA256 0xff66
#define OP_PCL_TLS10_AES_256_CBC_SHA384 0xff63
#define OP_PCL_TLS10_AES_256_CBC_SHA512 0xff65
/* For TLS 1.1 - OP_PCLID_TLS11 */
#define OP_PCL_TLS11_AES_128_CBC_SHA 0x002f
#define OP_PCL_TLS11_AES_128_CBC_SHA_2 0x0030
#define OP_PCL_TLS11_AES_128_CBC_SHA_3 0x0031
#define OP_PCL_TLS11_AES_128_CBC_SHA_4 0x0032
#define OP_PCL_TLS11_AES_128_CBC_SHA_5 0x0033
#define OP_PCL_TLS11_AES_128_CBC_SHA_6 0x0034
#define OP_PCL_TLS11_AES_128_CBC_SHA_7 0x008c
#define OP_PCL_TLS11_AES_128_CBC_SHA_8 0x0090
#define OP_PCL_TLS11_AES_128_CBC_SHA_9 0x0094
#define OP_PCL_TLS11_AES_128_CBC_SHA_10 0xc004
#define OP_PCL_TLS11_AES_128_CBC_SHA_11 0xc009
#define OP_PCL_TLS11_AES_128_CBC_SHA_12 0xc00e
#define OP_PCL_TLS11_AES_128_CBC_SHA_13 0xc013
#define OP_PCL_TLS11_AES_128_CBC_SHA_14 0xc018
#define OP_PCL_TLS11_AES_128_CBC_SHA_15 0xc01d
#define OP_PCL_TLS11_AES_128_CBC_SHA_16 0xc01e
#define OP_PCL_TLS11_AES_128_CBC_SHA_17 0xc01f
#define OP_PCL_TLS11_AES_256_CBC_SHA 0x0035
#define OP_PCL_TLS11_AES_256_CBC_SHA_2 0x0036
#define OP_PCL_TLS11_AES_256_CBC_SHA_3 0x0037
#define OP_PCL_TLS11_AES_256_CBC_SHA_4 0x0038
#define OP_PCL_TLS11_AES_256_CBC_SHA_5 0x0039
#define OP_PCL_TLS11_AES_256_CBC_SHA_6 0x003a
#define OP_PCL_TLS11_AES_256_CBC_SHA_7 0x008d
#define OP_PCL_TLS11_AES_256_CBC_SHA_8 0x0091
#define OP_PCL_TLS11_AES_256_CBC_SHA_9 0x0095
#define OP_PCL_TLS11_AES_256_CBC_SHA_10 0xc005
#define OP_PCL_TLS11_AES_256_CBC_SHA_11 0xc00a
#define OP_PCL_TLS11_AES_256_CBC_SHA_12 0xc00f
#define OP_PCL_TLS11_AES_256_CBC_SHA_13 0xc014
#define OP_PCL_TLS11_AES_256_CBC_SHA_14 0xc019
#define OP_PCL_TLS11_AES_256_CBC_SHA_15 0xc020
#define OP_PCL_TLS11_AES_256_CBC_SHA_16 0xc021
#define OP_PCL_TLS11_AES_256_CBC_SHA_17 0xc022
/* #define OP_PCL_TLS11_3DES_EDE_CBC_MD5 0x0023 */
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA 0x001f
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_2 0x008b
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_3 0x008f
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_4 0x0093
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_5 0x000a
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_6 0x000d
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_7 0x0010
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_8 0x0013
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_9 0x0016
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_10 0x001b
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_11 0xc003
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_12 0xc008
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_13 0xc00d
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_14 0xc012
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_15 0xc017
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_16 0xc01a
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_17 0xc01b
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA_18 0xc01c
#define OP_PCL_TLS11_DES40_CBC_MD5 0x0029
#define OP_PCL_TLS11_DES_CBC_MD5 0x0022
#define OP_PCL_TLS11_DES40_CBC_SHA 0x0008
#define OP_PCL_TLS11_DES40_CBC_SHA_2 0x000b
#define OP_PCL_TLS11_DES40_CBC_SHA_3 0x000e
#define OP_PCL_TLS11_DES40_CBC_SHA_4 0x0011
#define OP_PCL_TLS11_DES40_CBC_SHA_5 0x0014
#define OP_PCL_TLS11_DES40_CBC_SHA_6 0x0019
#define OP_PCL_TLS11_DES40_CBC_SHA_7 0x0026
#define OP_PCL_TLS11_DES_CBC_SHA 0x001e
#define OP_PCL_TLS11_DES_CBC_SHA_2 0x0009
#define OP_PCL_TLS11_DES_CBC_SHA_3 0x000c
#define OP_PCL_TLS11_DES_CBC_SHA_4 0x000f
#define OP_PCL_TLS11_DES_CBC_SHA_5 0x0012
#define OP_PCL_TLS11_DES_CBC_SHA_6 0x0015
#define OP_PCL_TLS11_DES_CBC_SHA_7 0x001a
#define OP_PCL_TLS11_RC4_128_MD5 0x0024
#define OP_PCL_TLS11_RC4_128_MD5_2 0x0004
#define OP_PCL_TLS11_RC4_128_MD5_3 0x0018
#define OP_PCL_TLS11_RC4_40_MD5 0x002b
#define OP_PCL_TLS11_RC4_40_MD5_2 0x0003
#define OP_PCL_TLS11_RC4_40_MD5_3 0x0017
#define OP_PCL_TLS11_RC4_128_SHA 0x0020
#define OP_PCL_TLS11_RC4_128_SHA_2 0x008a
#define OP_PCL_TLS11_RC4_128_SHA_3 0x008e
#define OP_PCL_TLS11_RC4_128_SHA_4 0x0092
#define OP_PCL_TLS11_RC4_128_SHA_5 0x0005
#define OP_PCL_TLS11_RC4_128_SHA_6 0xc002
#define OP_PCL_TLS11_RC4_128_SHA_7 0xc007
#define OP_PCL_TLS11_RC4_128_SHA_8 0xc00c
#define OP_PCL_TLS11_RC4_128_SHA_9 0xc011
#define OP_PCL_TLS11_RC4_128_SHA_10 0xc016
#define OP_PCL_TLS11_RC4_40_SHA 0x0028
#define OP_PCL_TLS11_3DES_EDE_CBC_MD5 0xff23
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA160 0xff30
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA224 0xff34
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA256 0xff36
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA384 0xff33
#define OP_PCL_TLS11_3DES_EDE_CBC_SHA512 0xff35
#define OP_PCL_TLS11_AES_128_CBC_SHA160 0xff80
#define OP_PCL_TLS11_AES_128_CBC_SHA224 0xff84
#define OP_PCL_TLS11_AES_128_CBC_SHA256 0xff86
#define OP_PCL_TLS11_AES_128_CBC_SHA384 0xff83
#define OP_PCL_TLS11_AES_128_CBC_SHA512 0xff85
#define OP_PCL_TLS11_AES_192_CBC_SHA160 0xff20
#define OP_PCL_TLS11_AES_192_CBC_SHA224 0xff24
#define OP_PCL_TLS11_AES_192_CBC_SHA256 0xff26
#define OP_PCL_TLS11_AES_192_CBC_SHA384 0xff23
#define OP_PCL_TLS11_AES_192_CBC_SHA512 0xff25
#define OP_PCL_TLS11_AES_256_CBC_SHA160 0xff60
#define OP_PCL_TLS11_AES_256_CBC_SHA224 0xff64
#define OP_PCL_TLS11_AES_256_CBC_SHA256 0xff66
#define OP_PCL_TLS11_AES_256_CBC_SHA384 0xff63
#define OP_PCL_TLS11_AES_256_CBC_SHA512 0xff65
/* For TLS 1.2 - OP_PCLID_TLS12 */
#define OP_PCL_TLS12_AES_128_CBC_SHA 0x002f
#define OP_PCL_TLS12_AES_128_CBC_SHA_2 0x0030
#define OP_PCL_TLS12_AES_128_CBC_SHA_3 0x0031
#define OP_PCL_TLS12_AES_128_CBC_SHA_4 0x0032
#define OP_PCL_TLS12_AES_128_CBC_SHA_5 0x0033
#define OP_PCL_TLS12_AES_128_CBC_SHA_6 0x0034
#define OP_PCL_TLS12_AES_128_CBC_SHA_7 0x008c
#define OP_PCL_TLS12_AES_128_CBC_SHA_8 0x0090
#define OP_PCL_TLS12_AES_128_CBC_SHA_9 0x0094
#define OP_PCL_TLS12_AES_128_CBC_SHA_10 0xc004
#define OP_PCL_TLS12_AES_128_CBC_SHA_11 0xc009
#define OP_PCL_TLS12_AES_128_CBC_SHA_12 0xc00e
#define OP_PCL_TLS12_AES_128_CBC_SHA_13 0xc013
#define OP_PCL_TLS12_AES_128_CBC_SHA_14 0xc018
#define OP_PCL_TLS12_AES_128_CBC_SHA_15 0xc01d
#define OP_PCL_TLS12_AES_128_CBC_SHA_16 0xc01e
#define OP_PCL_TLS12_AES_128_CBC_SHA_17 0xc01f
#define OP_PCL_TLS12_AES_256_CBC_SHA 0x0035
#define OP_PCL_TLS12_AES_256_CBC_SHA_2 0x0036
#define OP_PCL_TLS12_AES_256_CBC_SHA_3 0x0037
#define OP_PCL_TLS12_AES_256_CBC_SHA_4 0x0038
#define OP_PCL_TLS12_AES_256_CBC_SHA_5 0x0039
#define OP_PCL_TLS12_AES_256_CBC_SHA_6 0x003a
#define OP_PCL_TLS12_AES_256_CBC_SHA_7 0x008d
#define OP_PCL_TLS12_AES_256_CBC_SHA_8 0x0091
#define OP_PCL_TLS12_AES_256_CBC_SHA_9 0x0095
#define OP_PCL_TLS12_AES_256_CBC_SHA_10 0xc005
#define OP_PCL_TLS12_AES_256_CBC_SHA_11 0xc00a
#define OP_PCL_TLS12_AES_256_CBC_SHA_12 0xc00f
#define OP_PCL_TLS12_AES_256_CBC_SHA_13 0xc014
#define OP_PCL_TLS12_AES_256_CBC_SHA_14 0xc019
#define OP_PCL_TLS12_AES_256_CBC_SHA_15 0xc020
#define OP_PCL_TLS12_AES_256_CBC_SHA_16 0xc021
#define OP_PCL_TLS12_AES_256_CBC_SHA_17 0xc022
/* #define OP_PCL_TLS12_3DES_EDE_CBC_MD5 0x0023 */
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA 0x001f
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_2 0x008b
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_3 0x008f
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_4 0x0093
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_5 0x000a
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_6 0x000d
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_7 0x0010
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_8 0x0013
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_9 0x0016
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_10 0x001b
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_11 0xc003
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_12 0xc008
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_13 0xc00d
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_14 0xc012
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_15 0xc017
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_16 0xc01a
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_17 0xc01b
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA_18 0xc01c
#define OP_PCL_TLS12_DES40_CBC_MD5 0x0029
#define OP_PCL_TLS12_DES_CBC_MD5 0x0022
#define OP_PCL_TLS12_DES40_CBC_SHA 0x0008
#define OP_PCL_TLS12_DES40_CBC_SHA_2 0x000b
#define OP_PCL_TLS12_DES40_CBC_SHA_3 0x000e
#define OP_PCL_TLS12_DES40_CBC_SHA_4 0x0011
#define OP_PCL_TLS12_DES40_CBC_SHA_5 0x0014
#define OP_PCL_TLS12_DES40_CBC_SHA_6 0x0019
#define OP_PCL_TLS12_DES40_CBC_SHA_7 0x0026
#define OP_PCL_TLS12_DES_CBC_SHA 0x001e
#define OP_PCL_TLS12_DES_CBC_SHA_2 0x0009
#define OP_PCL_TLS12_DES_CBC_SHA_3 0x000c
#define OP_PCL_TLS12_DES_CBC_SHA_4 0x000f
#define OP_PCL_TLS12_DES_CBC_SHA_5 0x0012
#define OP_PCL_TLS12_DES_CBC_SHA_6 0x0015
#define OP_PCL_TLS12_DES_CBC_SHA_7 0x001a
#define OP_PCL_TLS12_RC4_128_MD5 0x0024
#define OP_PCL_TLS12_RC4_128_MD5_2 0x0004
#define OP_PCL_TLS12_RC4_128_MD5_3 0x0018
#define OP_PCL_TLS12_RC4_40_MD5 0x002b
#define OP_PCL_TLS12_RC4_40_MD5_2 0x0003
#define OP_PCL_TLS12_RC4_40_MD5_3 0x0017
#define OP_PCL_TLS12_RC4_128_SHA 0x0020
#define OP_PCL_TLS12_RC4_128_SHA_2 0x008a
#define OP_PCL_TLS12_RC4_128_SHA_3 0x008e
#define OP_PCL_TLS12_RC4_128_SHA_4 0x0092
#define OP_PCL_TLS12_RC4_128_SHA_5 0x0005
#define OP_PCL_TLS12_RC4_128_SHA_6 0xc002
#define OP_PCL_TLS12_RC4_128_SHA_7 0xc007
#define OP_PCL_TLS12_RC4_128_SHA_8 0xc00c
#define OP_PCL_TLS12_RC4_128_SHA_9 0xc011
#define OP_PCL_TLS12_RC4_128_SHA_10 0xc016
#define OP_PCL_TLS12_RC4_40_SHA 0x0028
/* #define OP_PCL_TLS12_AES_128_CBC_SHA256 0x003c */
#define OP_PCL_TLS12_AES_128_CBC_SHA256_2 0x003e
#define OP_PCL_TLS12_AES_128_CBC_SHA256_3 0x003f
#define OP_PCL_TLS12_AES_128_CBC_SHA256_4 0x0040
#define OP_PCL_TLS12_AES_128_CBC_SHA256_5 0x0067
#define OP_PCL_TLS12_AES_128_CBC_SHA256_6 0x006c
/* #define OP_PCL_TLS12_AES_256_CBC_SHA256 0x003d */
#define OP_PCL_TLS12_AES_256_CBC_SHA256_2 0x0068
#define OP_PCL_TLS12_AES_256_CBC_SHA256_3 0x0069
#define OP_PCL_TLS12_AES_256_CBC_SHA256_4 0x006a
#define OP_PCL_TLS12_AES_256_CBC_SHA256_5 0x006b
#define OP_PCL_TLS12_AES_256_CBC_SHA256_6 0x006d
/* AEAD_AES_xxx_CCM/GCM remain to be defined... */
#define OP_PCL_TLS12_3DES_EDE_CBC_MD5 0xff23
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA160 0xff30
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA224 0xff34
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA256 0xff36
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA384 0xff33
#define OP_PCL_TLS12_3DES_EDE_CBC_SHA512 0xff35
#define OP_PCL_TLS12_AES_128_CBC_SHA160 0xff80
#define OP_PCL_TLS12_AES_128_CBC_SHA224 0xff84
#define OP_PCL_TLS12_AES_128_CBC_SHA256 0xff86
#define OP_PCL_TLS12_AES_128_CBC_SHA384 0xff83
#define OP_PCL_TLS12_AES_128_CBC_SHA512 0xff85
#define OP_PCL_TLS12_AES_192_CBC_SHA160 0xff20
#define OP_PCL_TLS12_AES_192_CBC_SHA224 0xff24
#define OP_PCL_TLS12_AES_192_CBC_SHA256 0xff26
#define OP_PCL_TLS12_AES_192_CBC_SHA384 0xff23
#define OP_PCL_TLS12_AES_192_CBC_SHA512 0xff25
#define OP_PCL_TLS12_AES_256_CBC_SHA160 0xff60
#define OP_PCL_TLS12_AES_256_CBC_SHA224 0xff64
#define OP_PCL_TLS12_AES_256_CBC_SHA256 0xff66
#define OP_PCL_TLS12_AES_256_CBC_SHA384 0xff63
#define OP_PCL_TLS12_AES_256_CBC_SHA512 0xff65
/* For DTLS - OP_PCLID_DTLS */
#define OP_PCL_DTLS_AES_128_CBC_SHA 0x002f
#define OP_PCL_DTLS_AES_128_CBC_SHA_2 0x0030
#define OP_PCL_DTLS_AES_128_CBC_SHA_3 0x0031
#define OP_PCL_DTLS_AES_128_CBC_SHA_4 0x0032
#define OP_PCL_DTLS_AES_128_CBC_SHA_5 0x0033
#define OP_PCL_DTLS_AES_128_CBC_SHA_6 0x0034
#define OP_PCL_DTLS_AES_128_CBC_SHA_7 0x008c
#define OP_PCL_DTLS_AES_128_CBC_SHA_8 0x0090
#define OP_PCL_DTLS_AES_128_CBC_SHA_9 0x0094
#define OP_PCL_DTLS_AES_128_CBC_SHA_10 0xc004
#define OP_PCL_DTLS_AES_128_CBC_SHA_11 0xc009
#define OP_PCL_DTLS_AES_128_CBC_SHA_12 0xc00e
#define OP_PCL_DTLS_AES_128_CBC_SHA_13 0xc013
#define OP_PCL_DTLS_AES_128_CBC_SHA_14 0xc018
#define OP_PCL_DTLS_AES_128_CBC_SHA_15 0xc01d
#define OP_PCL_DTLS_AES_128_CBC_SHA_16 0xc01e
#define OP_PCL_DTLS_AES_128_CBC_SHA_17 0xc01f
#define OP_PCL_DTLS_AES_256_CBC_SHA 0x0035
#define OP_PCL_DTLS_AES_256_CBC_SHA_2 0x0036
#define OP_PCL_DTLS_AES_256_CBC_SHA_3 0x0037
#define OP_PCL_DTLS_AES_256_CBC_SHA_4 0x0038
#define OP_PCL_DTLS_AES_256_CBC_SHA_5 0x0039
#define OP_PCL_DTLS_AES_256_CBC_SHA_6 0x003a
#define OP_PCL_DTLS_AES_256_CBC_SHA_7 0x008d
#define OP_PCL_DTLS_AES_256_CBC_SHA_8 0x0091
#define OP_PCL_DTLS_AES_256_CBC_SHA_9 0x0095
#define OP_PCL_DTLS_AES_256_CBC_SHA_10 0xc005
#define OP_PCL_DTLS_AES_256_CBC_SHA_11 0xc00a
#define OP_PCL_DTLS_AES_256_CBC_SHA_12 0xc00f
#define OP_PCL_DTLS_AES_256_CBC_SHA_13 0xc014
#define OP_PCL_DTLS_AES_256_CBC_SHA_14 0xc019
#define OP_PCL_DTLS_AES_256_CBC_SHA_15 0xc020
#define OP_PCL_DTLS_AES_256_CBC_SHA_16 0xc021
#define OP_PCL_DTLS_AES_256_CBC_SHA_17 0xc022
/* #define OP_PCL_DTLS_3DES_EDE_CBC_MD5 0x0023 */
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA 0x001f
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_2 0x008b
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_3 0x008f
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_4 0x0093
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_5 0x000a
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_6 0x000d
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_7 0x0010
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_8 0x0013
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_9 0x0016
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_10 0x001b
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_11 0xc003
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_12 0xc008
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_13 0xc00d
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_14 0xc012
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_15 0xc017
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_16 0xc01a
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_17 0xc01b
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA_18 0xc01c
#define OP_PCL_DTLS_DES40_CBC_MD5 0x0029
#define OP_PCL_DTLS_DES_CBC_MD5 0x0022
#define OP_PCL_DTLS_DES40_CBC_SHA 0x0008
#define OP_PCL_DTLS_DES40_CBC_SHA_2 0x000b
#define OP_PCL_DTLS_DES40_CBC_SHA_3 0x000e
#define OP_PCL_DTLS_DES40_CBC_SHA_4 0x0011
#define OP_PCL_DTLS_DES40_CBC_SHA_5 0x0014
#define OP_PCL_DTLS_DES40_CBC_SHA_6 0x0019
#define OP_PCL_DTLS_DES40_CBC_SHA_7 0x0026
#define OP_PCL_DTLS_DES_CBC_SHA 0x001e
#define OP_PCL_DTLS_DES_CBC_SHA_2 0x0009
#define OP_PCL_DTLS_DES_CBC_SHA_3 0x000c
#define OP_PCL_DTLS_DES_CBC_SHA_4 0x000f
#define OP_PCL_DTLS_DES_CBC_SHA_5 0x0012
#define OP_PCL_DTLS_DES_CBC_SHA_6 0x0015
#define OP_PCL_DTLS_DES_CBC_SHA_7 0x001a
#define OP_PCL_DTLS_3DES_EDE_CBC_MD5 0xff23
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA160 0xff30
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA224 0xff34
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA256 0xff36
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA384 0xff33
#define OP_PCL_DTLS_3DES_EDE_CBC_SHA512 0xff35
#define OP_PCL_DTLS_AES_128_CBC_SHA160 0xff80
#define OP_PCL_DTLS_AES_128_CBC_SHA224 0xff84
#define OP_PCL_DTLS_AES_128_CBC_SHA256 0xff86
#define OP_PCL_DTLS_AES_128_CBC_SHA384 0xff83
#define OP_PCL_DTLS_AES_128_CBC_SHA512 0xff85
#define OP_PCL_DTLS_AES_192_CBC_SHA160 0xff20
#define OP_PCL_DTLS_AES_192_CBC_SHA224 0xff24
#define OP_PCL_DTLS_AES_192_CBC_SHA256 0xff26
#define OP_PCL_DTLS_AES_192_CBC_SHA384 0xff23
#define OP_PCL_DTLS_AES_192_CBC_SHA512 0xff25
#define OP_PCL_DTLS_AES_256_CBC_SHA160 0xff60
#define OP_PCL_DTLS_AES_256_CBC_SHA224 0xff64
#define OP_PCL_DTLS_AES_256_CBC_SHA256 0xff66
#define OP_PCL_DTLS_AES_256_CBC_SHA384 0xff63
#define OP_PCL_DTLS_AES_256_CBC_SHA512 0xff65
/* 802.16 WiMAX protinfos */
#define OP_PCL_WIMAX_OFDM 0x0201
#define OP_PCL_WIMAX_OFDMA 0x0231
/* 802.11 WiFi protinfos */
#define OP_PCL_WIFI 0xac04
/* MacSec protinfos */
#define OP_PCL_MACSEC 0x0001
/* PKI unidirectional protocol protinfo bits */
#define OP_PCL_PKPROT_TEST 0x0008
#define OP_PCL_PKPROT_DECRYPT 0x0004
#define OP_PCL_PKPROT_ECC 0x0002
#define OP_PCL_PKPROT_F2M 0x0001
/* For non-protocol/alg-only op commands */
#define OP_ALG_TYPE_SHIFT 24
#define OP_ALG_TYPE_MASK (0x7 << OP_ALG_TYPE_SHIFT)
#define OP_ALG_TYPE_CLASS1 2
#define OP_ALG_TYPE_CLASS2 4
#define OP_ALG_ALGSEL_SHIFT 16
#define OP_ALG_ALGSEL_MASK (0xff << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SUBMASK (0x0f << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_AES (0x10 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_DES (0x20 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_3DES (0x21 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_ARC4 (0x30 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_MD5 (0x40 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SHA1 (0x41 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SHA224 (0x42 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SHA256 (0x43 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SHA384 (0x44 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SHA512 (0x45 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_RNG (0x50 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SNOW (0x60 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SNOW_F8 (0x60 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_KASUMI (0x70 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_CRC (0x90 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_ALGSEL_SNOW_F9 (0xA0 << OP_ALG_ALGSEL_SHIFT)
#define OP_ALG_AAI_SHIFT 4
#define OP_ALG_AAI_MASK (0x1ff << OP_ALG_AAI_SHIFT)
/* blockcipher AAI set */
#define OP_ALG_AAI_CTR_MOD128 (0x00 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD8 (0x01 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD16 (0x02 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD24 (0x03 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD32 (0x04 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD40 (0x05 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD48 (0x06 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD56 (0x07 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD64 (0x08 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD72 (0x09 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD80 (0x0a << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD88 (0x0b << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD96 (0x0c << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD104 (0x0d << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD112 (0x0e << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_MOD120 (0x0f << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CBC (0x10 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_ECB (0x20 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CFB (0x30 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_OFB (0x40 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_XTS (0x50 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CMAC (0x60 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_XCBC_MAC (0x70 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CCM (0x80 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_GCM (0x90 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CBC_XCBCMAC (0xa0 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CTR_XCBCMAC (0xb0 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CHECKODD (0x80 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_DK (0x100 << OP_ALG_AAI_SHIFT)
/* randomizer AAI set */
#define OP_ALG_AAI_RNG (0x00 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_RNG_NOZERO (0x10 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_RNG_ODD (0x20 << OP_ALG_AAI_SHIFT)
/* hmac/smac AAI set */
#define OP_ALG_AAI_HASH (0x00 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_HMAC (0x01 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_SMAC (0x02 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_HMAC_PRECOMP (0x04 << OP_ALG_AAI_SHIFT)
/* CRC AAI set*/
#define OP_ALG_AAI_802 (0x01 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_3385 (0x02 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_CUST_POLY (0x04 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_DIS (0x10 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_DOS (0x20 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_DOC (0x40 << OP_ALG_AAI_SHIFT)
/* Kasumi/SNOW AAI set */
#define OP_ALG_AAI_F8 (0xc0 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_F9 (0xc8 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_GSM (0x10 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AAI_EDGE (0x20 << OP_ALG_AAI_SHIFT)
#define OP_ALG_AS_SHIFT 2
#define OP_ALG_AS_MASK (0x3 << OP_ALG_AS_SHIFT)
#define OP_ALG_AS_UPDATE (0 << OP_ALG_AS_SHIFT)
#define OP_ALG_AS_INIT (1 << OP_ALG_AS_SHIFT)
#define OP_ALG_AS_FINALIZE (2 << OP_ALG_AS_SHIFT)
#define OP_ALG_AS_INITFINAL (3 << OP_ALG_AS_SHIFT)
#define OP_ALG_ICV_SHIFT 1
#define OP_ALG_ICV_MASK (1 << OP_ALG_ICV_SHIFT)
#define OP_ALG_ICV_OFF (0 << OP_ALG_ICV_SHIFT)
#define OP_ALG_ICV_ON (1 << OP_ALG_ICV_SHIFT)
#define OP_ALG_DIR_SHIFT 0
#define OP_ALG_DIR_MASK 1
#define OP_ALG_DECRYPT 0
#define OP_ALG_ENCRYPT 1
/* PKHA algorithm type set */
#define OP_ALG_PK 0x00800000
#define OP_ALG_PK_FUN_MASK 0x3f /* clrmem, modmath, or cpymem */
/* PKHA mode clear memory functions */
#define OP_ALG_PKMODE_A_RAM 0x80000
#define OP_ALG_PKMODE_B_RAM 0x40000
#define OP_ALG_PKMODE_E_RAM 0x20000
#define OP_ALG_PKMODE_N_RAM 0x10000
#define OP_ALG_PKMODE_CLEARMEM 0x00001
/* PKHA mode modular-arithmetic functions */
#define OP_ALG_PKMODE_MOD_IN_MONTY 0x80000
#define OP_ALG_PKMODE_MOD_OUT_MONTY 0x40000
#define OP_ALG_PKMODE_MOD_F2M 0x20000
#define OP_ALG_PKMODE_MOD_R2_IN 0x10000
#define OP_ALG_PKMODE_PRJECTV 0x00800
#define OP_ALG_PKMODE_TIME_EQ 0x400
#define OP_ALG_PKMODE_OUT_B 0x000
#define OP_ALG_PKMODE_OUT_A 0x100
#define OP_ALG_PKMODE_MOD_ADD 0x002
#define OP_ALG_PKMODE_MOD_SUB_AB 0x003
#define OP_ALG_PKMODE_MOD_SUB_BA 0x004
#define OP_ALG_PKMODE_MOD_MULT 0x005
#define OP_ALG_PKMODE_MOD_EXPO 0x006
#define OP_ALG_PKMODE_MOD_REDUCT 0x007
#define OP_ALG_PKMODE_MOD_INV 0x008
#define OP_ALG_PKMODE_MOD_ECC_ADD 0x009
#define OP_ALG_PKMODE_MOD_ECC_DBL 0x00a
#define OP_ALG_PKMODE_MOD_ECC_MULT 0x00b
#define OP_ALG_PKMODE_MOD_MONT_CNST 0x00c
#define OP_ALG_PKMODE_MOD_CRT_CNST 0x00d
#define OP_ALG_PKMODE_MOD_GCD 0x00e
#define OP_ALG_PKMODE_MOD_PRIMALITY 0x00f
/* PKHA mode copy-memory functions */
#define OP_ALG_PKMODE_SRC_REG_SHIFT 13
#define OP_ALG_PKMODE_SRC_REG_MASK (7 << OP_ALG_PKMODE_SRC_REG_SHIFT)
#define OP_ALG_PKMODE_DST_REG_SHIFT 10
#define OP_ALG_PKMODE_DST_REG_MASK (7 << OP_ALG_PKMODE_DST_REG_SHIFT)
#define OP_ALG_PKMODE_SRC_SEG_SHIFT 8
#define OP_ALG_PKMODE_SRC_SEG_MASK (3 << OP_ALG_PKMODE_SRC_SEG_SHIFT)
#define OP_ALG_PKMODE_DST_SEG_SHIFT 6
#define OP_ALG_PKMODE_DST_SEG_MASK (3 << OP_ALG_PKMODE_DST_SEG_SHIFT)
#define OP_ALG_PKMODE_SRC_REG_A (0 << OP_ALG_PKMODE_SRC_REG_SHIFT)
#define OP_ALG_PKMODE_SRC_REG_B (1 << OP_ALG_PKMODE_SRC_REG_SHIFT)
#define OP_ALG_PKMODE_SRC_REG_N (3 << OP_ALG_PKMODE_SRC_REG_SHIFT)
#define OP_ALG_PKMODE_DST_REG_A (0 << OP_ALG_PKMODE_DST_REG_SHIFT)
#define OP_ALG_PKMODE_DST_REG_B (1 << OP_ALG_PKMODE_DST_REG_SHIFT)
#define OP_ALG_PKMODE_DST_REG_E (2 << OP_ALG_PKMODE_DST_REG_SHIFT)
#define OP_ALG_PKMODE_DST_REG_N (3 << OP_ALG_PKMODE_DST_REG_SHIFT)
#define OP_ALG_PKMODE_SRC_SEG_0 (0 << OP_ALG_PKMODE_SRC_SEG_SHIFT)
#define OP_ALG_PKMODE_SRC_SEG_1 (1 << OP_ALG_PKMODE_SRC_SEG_SHIFT)
#define OP_ALG_PKMODE_SRC_SEG_2 (2 << OP_ALG_PKMODE_SRC_SEG_SHIFT)
#define OP_ALG_PKMODE_SRC_SEG_3 (3 << OP_ALG_PKMODE_SRC_SEG_SHIFT)
#define OP_ALG_PKMODE_DST_SEG_0 (0 << OP_ALG_PKMODE_DST_SEG_SHIFT)
#define OP_ALG_PKMODE_DST_SEG_1 (1 << OP_ALG_PKMODE_DST_SEG_SHIFT)
#define OP_ALG_PKMODE_DST_SEG_2 (2 << OP_ALG_PKMODE_DST_SEG_SHIFT)
#define OP_ALG_PKMODE_DST_SEG_3 (3 << OP_ALG_PKMODE_DST_SEG_SHIFT)
#define OP_ALG_PKMODE_CPYMEM_N_SZ 0x80
#define OP_ALG_PKMODE_CPYMEM_SRC_SZ 0x81
/*
* SEQ_IN_PTR Command Constructs
*/
/* Release Buffers */
#define SQIN_RBS 0x04000000
/* Sequence pointer is really a descriptor */
#define SQIN_INL 0x02000000
/* Sequence pointer is a scatter-gather table */
#define SQIN_SGF 0x01000000
/* Appends to a previous pointer */
#define SQIN_PRE 0x00800000
/* Use extended length following pointer */
#define SQIN_EXT 0x00400000
/* Restore sequence with pointer/length */
#define SQIN_RTO 0x00200000
/* Replace job descriptor */
#define SQIN_RJD 0x00100000
#define SQIN_LEN_SHIFT 0
#define SQIN_LEN_MASK (0xffff << SQIN_LEN_SHIFT)
/*
* SEQ_OUT_PTR Command Constructs
*/
/* Sequence pointer is a scatter-gather table */
#define SQOUT_SGF 0x01000000
/* Appends to a previous pointer */
#define SQOUT_PRE 0x00800000
/* Restore sequence with pointer/length */
#define SQOUT_RTO 0x00200000
/* Use extended length following pointer */
#define SQOUT_EXT 0x00400000
#define SQOUT_LEN_SHIFT 0
#define SQOUT_LEN_MASK (0xffff << SQOUT_LEN_SHIFT)
/*
* SIGNATURE Command Constructs
*/
/* TYPE field is all that's relevant */
#define SIGN_TYPE_SHIFT 16
#define SIGN_TYPE_MASK (0x0f << SIGN_TYPE_SHIFT)
#define SIGN_TYPE_FINAL (0x00 << SIGN_TYPE_SHIFT)
#define SIGN_TYPE_FINAL_RESTORE (0x01 << SIGN_TYPE_SHIFT)
#define SIGN_TYPE_FINAL_NONZERO (0x02 << SIGN_TYPE_SHIFT)
#define SIGN_TYPE_IMM_2 (0x0a << SIGN_TYPE_SHIFT)
#define SIGN_TYPE_IMM_3 (0x0b << SIGN_TYPE_SHIFT)
#define SIGN_TYPE_IMM_4 (0x0c << SIGN_TYPE_SHIFT)
/*
* MOVE Command Constructs
*/
#define MOVE_AUX_SHIFT 25
#define MOVE_AUX_MASK (3 << MOVE_AUX_SHIFT)
#define MOVE_AUX_MS (2 << MOVE_AUX_SHIFT)
#define MOVE_AUX_LS (1 << MOVE_AUX_SHIFT)
#define MOVE_WAITCOMP_SHIFT 24
#define MOVE_WAITCOMP_MASK (1 << MOVE_WAITCOMP_SHIFT)
#define MOVE_WAITCOMP (1 << MOVE_WAITCOMP_SHIFT)
#define MOVE_SRC_SHIFT 20
#define MOVE_SRC_MASK (0x0f << MOVE_SRC_SHIFT)
#define MOVE_SRC_CLASS1CTX (0x00 << MOVE_SRC_SHIFT)
#define MOVE_SRC_CLASS2CTX (0x01 << MOVE_SRC_SHIFT)
#define MOVE_SRC_OUTFIFO (0x02 << MOVE_SRC_SHIFT)
#define MOVE_SRC_DESCBUF (0x03 << MOVE_SRC_SHIFT)
#define MOVE_SRC_MATH0 (0x04 << MOVE_SRC_SHIFT)
#define MOVE_SRC_MATH1 (0x05 << MOVE_SRC_SHIFT)
#define MOVE_SRC_MATH2 (0x06 << MOVE_SRC_SHIFT)
#define MOVE_SRC_MATH3 (0x07 << MOVE_SRC_SHIFT)
#define MOVE_SRC_INFIFO (0x08 << MOVE_SRC_SHIFT)
#define MOVE_SRC_INFIFO_CL (0x09 << MOVE_SRC_SHIFT)
#define MOVE_DEST_SHIFT 16
#define MOVE_DEST_MASK (0x0f << MOVE_DEST_SHIFT)
#define MOVE_DEST_CLASS1CTX (0x00 << MOVE_DEST_SHIFT)
#define MOVE_DEST_CLASS2CTX (0x01 << MOVE_DEST_SHIFT)
#define MOVE_DEST_OUTFIFO (0x02 << MOVE_DEST_SHIFT)
#define MOVE_DEST_DESCBUF (0x03 << MOVE_DEST_SHIFT)
#define MOVE_DEST_MATH0 (0x04 << MOVE_DEST_SHIFT)
#define MOVE_DEST_MATH1 (0x05 << MOVE_DEST_SHIFT)
#define MOVE_DEST_MATH2 (0x06 << MOVE_DEST_SHIFT)
#define MOVE_DEST_MATH3 (0x07 << MOVE_DEST_SHIFT)
#define MOVE_DEST_CLASS1INFIFO (0x08 << MOVE_DEST_SHIFT)
#define MOVE_DEST_CLASS2INFIFO (0x09 << MOVE_DEST_SHIFT)
#define MOVE_DEST_PK_A (0x0c << MOVE_DEST_SHIFT)
#define MOVE_DEST_CLASS1KEY (0x0d << MOVE_DEST_SHIFT)
#define MOVE_DEST_CLASS2KEY (0x0e << MOVE_DEST_SHIFT)
#define MOVE_OFFSET_SHIFT 8
#define MOVE_OFFSET_MASK (0xff << MOVE_OFFSET_SHIFT)
#define MOVE_LEN_SHIFT 0
#define MOVE_LEN_MASK (0xff << MOVE_LEN_SHIFT)
#define MOVELEN_MRSEL_SHIFT 0
#define MOVELEN_MRSEL_MASK (0x3 << MOVE_LEN_SHIFT)
/*
* MATH Command Constructs
*/
#define MATH_IFB_SHIFT 26
#define MATH_IFB_MASK (1 << MATH_IFB_SHIFT)
#define MATH_IFB (1 << MATH_IFB_SHIFT)
#define MATH_NFU_SHIFT 25
#define MATH_NFU_MASK (1 << MATH_NFU_SHIFT)
#define MATH_NFU (1 << MATH_NFU_SHIFT)
#define MATH_STL_SHIFT 24
#define MATH_STL_MASK (1 << MATH_STL_SHIFT)
#define MATH_STL (1 << MATH_STL_SHIFT)
/* Function selectors */
#define MATH_FUN_SHIFT 20
#define MATH_FUN_MASK (0x0f << MATH_FUN_SHIFT)
#define MATH_FUN_ADD (0x00 << MATH_FUN_SHIFT)
#define MATH_FUN_ADDC (0x01 << MATH_FUN_SHIFT)
#define MATH_FUN_SUB (0x02 << MATH_FUN_SHIFT)
#define MATH_FUN_SUBB (0x03 << MATH_FUN_SHIFT)
#define MATH_FUN_OR (0x04 << MATH_FUN_SHIFT)
#define MATH_FUN_AND (0x05 << MATH_FUN_SHIFT)
#define MATH_FUN_XOR (0x06 << MATH_FUN_SHIFT)
#define MATH_FUN_LSHIFT (0x07 << MATH_FUN_SHIFT)
#define MATH_FUN_RSHIFT (0x08 << MATH_FUN_SHIFT)
#define MATH_FUN_SHLD (0x09 << MATH_FUN_SHIFT)
#define MATH_FUN_ZBYT (0x0a << MATH_FUN_SHIFT)
/* Source 0 selectors */
#define MATH_SRC0_SHIFT 16
#define MATH_SRC0_MASK (0x0f << MATH_SRC0_SHIFT)
#define MATH_SRC0_REG0 (0x00 << MATH_SRC0_SHIFT)
#define MATH_SRC0_REG1 (0x01 << MATH_SRC0_SHIFT)
#define MATH_SRC0_REG2 (0x02 << MATH_SRC0_SHIFT)
#define MATH_SRC0_REG3 (0x03 << MATH_SRC0_SHIFT)
#define MATH_SRC0_IMM (0x04 << MATH_SRC0_SHIFT)
#define MATH_SRC0_SEQINLEN (0x08 << MATH_SRC0_SHIFT)
#define MATH_SRC0_SEQOUTLEN (0x09 << MATH_SRC0_SHIFT)
#define MATH_SRC0_VARSEQINLEN (0x0a << MATH_SRC0_SHIFT)
#define MATH_SRC0_VARSEQOUTLEN (0x0b << MATH_SRC0_SHIFT)
#define MATH_SRC0_ZERO (0x0c << MATH_SRC0_SHIFT)
/* Source 1 selectors */
#define MATH_SRC1_SHIFT 12
#define MATH_SRC1_MASK (0x0f << MATH_SRC1_SHIFT)
#define MATH_SRC1_REG0 (0x00 << MATH_SRC1_SHIFT)
#define MATH_SRC1_REG1 (0x01 << MATH_SRC1_SHIFT)
#define MATH_SRC1_REG2 (0x02 << MATH_SRC1_SHIFT)
#define MATH_SRC1_REG3 (0x03 << MATH_SRC1_SHIFT)
#define MATH_SRC1_IMM (0x04 << MATH_SRC1_SHIFT)
#define MATH_SRC1_INFIFO (0x0a << MATH_SRC1_SHIFT)
#define MATH_SRC1_OUTFIFO (0x0b << MATH_SRC1_SHIFT)
#define MATH_SRC1_ONE (0x0c << MATH_SRC1_SHIFT)
/* Destination selectors */
#define MATH_DEST_SHIFT 8
#define MATH_DEST_MASK (0x0f << MATH_DEST_SHIFT)
#define MATH_DEST_REG0 (0x00 << MATH_DEST_SHIFT)
#define MATH_DEST_REG1 (0x01 << MATH_DEST_SHIFT)
#define MATH_DEST_REG2 (0x02 << MATH_DEST_SHIFT)
#define MATH_DEST_REG3 (0x03 << MATH_DEST_SHIFT)
#define MATH_DEST_SEQINLEN (0x08 << MATH_DEST_SHIFT)
#define MATH_DEST_SEQOUTLEN (0x09 << MATH_DEST_SHIFT)
#define MATH_DEST_VARSEQINLEN (0x0a << MATH_DEST_SHIFT)
#define MATH_DEST_VARSEQOUTLEN (0x0b << MATH_DEST_SHIFT)
#define MATH_DEST_NONE (0x0f << MATH_DEST_SHIFT)
/* Length selectors */
#define MATH_LEN_SHIFT 0
#define MATH_LEN_MASK (0x0f << MATH_LEN_SHIFT)
#define MATH_LEN_1BYTE 0x01
#define MATH_LEN_2BYTE 0x02
#define MATH_LEN_4BYTE 0x04
#define MATH_LEN_8BYTE 0x08
/*
* JUMP Command Constructs
*/
#define JUMP_CLASS_SHIFT 25
#define JUMP_CLASS_MASK (3 << JUMP_CLASS_SHIFT)
#define JUMP_CLASS_NONE 0
#define JUMP_CLASS_CLASS1 (1 << JUMP_CLASS_SHIFT)
#define JUMP_CLASS_CLASS2 (2 << JUMP_CLASS_SHIFT)
#define JUMP_CLASS_BOTH (3 << JUMP_CLASS_SHIFT)
#define JUMP_JSL_SHIFT 24
#define JUMP_JSL_MASK (1 << JUMP_JSL_SHIFT)
#define JUMP_JSL (1 << JUMP_JSL_SHIFT)
#define JUMP_TYPE_SHIFT 22
#define JUMP_TYPE_MASK (0x03 << JUMP_TYPE_SHIFT)
#define JUMP_TYPE_LOCAL (0x00 << JUMP_TYPE_SHIFT)
#define JUMP_TYPE_NONLOCAL (0x01 << JUMP_TYPE_SHIFT)
#define JUMP_TYPE_HALT (0x02 << JUMP_TYPE_SHIFT)
#define JUMP_TYPE_HALT_USER (0x03 << JUMP_TYPE_SHIFT)
#define JUMP_TEST_SHIFT 16
#define JUMP_TEST_MASK (0x03 << JUMP_TEST_SHIFT)
#define JUMP_TEST_ALL (0x00 << JUMP_TEST_SHIFT)
#define JUMP_TEST_INVALL (0x01 << JUMP_TEST_SHIFT)
#define JUMP_TEST_ANY (0x02 << JUMP_TEST_SHIFT)
#define JUMP_TEST_INVANY (0x03 << JUMP_TEST_SHIFT)
/* Condition codes. JSL bit is factored in */
#define JUMP_COND_SHIFT 8
#define JUMP_COND_MASK (0x100ff << JUMP_COND_SHIFT)
#define JUMP_COND_PK_0 (0x80 << JUMP_COND_SHIFT)
#define JUMP_COND_PK_GCD_1 (0x40 << JUMP_COND_SHIFT)
#define JUMP_COND_PK_PRIME (0x20 << JUMP_COND_SHIFT)
#define JUMP_COND_MATH_N (0x08 << JUMP_COND_SHIFT)
#define JUMP_COND_MATH_Z (0x04 << JUMP_COND_SHIFT)
#define JUMP_COND_MATH_C (0x02 << JUMP_COND_SHIFT)
#define JUMP_COND_MATH_NV (0x01 << JUMP_COND_SHIFT)
#define JUMP_COND_JRP ((0x80 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_COND_SHRD ((0x40 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_COND_SELF ((0x20 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_COND_CALM ((0x10 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_COND_NIP ((0x08 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_COND_NIFP ((0x04 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_COND_NOP ((0x02 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_COND_NCP ((0x01 << JUMP_COND_SHIFT) | JUMP_JSL)
#define JUMP_OFFSET_SHIFT 0
#define JUMP_OFFSET_MASK (0xff << JUMP_OFFSET_SHIFT)
/*
* NFIFO ENTRY
* Data Constructs
*
*/
#define NFIFOENTRY_DEST_SHIFT 30
#define NFIFOENTRY_DEST_MASK (3 << NFIFOENTRY_DEST_SHIFT)
#define NFIFOENTRY_DEST_DECO (0 << NFIFOENTRY_DEST_SHIFT)
#define NFIFOENTRY_DEST_CLASS1 (1 << NFIFOENTRY_DEST_SHIFT)
#define NFIFOENTRY_DEST_CLASS2 (2 << NFIFOENTRY_DEST_SHIFT)
#define NFIFOENTRY_DEST_BOTH (3 << NFIFOENTRY_DEST_SHIFT)
#define NFIFOENTRY_LC2_SHIFT 29
#define NFIFOENTRY_LC2_MASK (1 << NFIFOENTRY_LC2_SHIFT)
#define NFIFOENTRY_LC2 (1 << NFIFOENTRY_LC2_SHIFT)
#define NFIFOENTRY_LC1_SHIFT 28
#define NFIFOENTRY_LC1_MASK (1 << NFIFOENTRY_LC1_SHIFT)
#define NFIFOENTRY_LC1 (1 << NFIFOENTRY_LC1_SHIFT)
#define NFIFOENTRY_FC2_SHIFT 27
#define NFIFOENTRY_FC2_MASK (1 << NFIFOENTRY_FC2_SHIFT)
#define NFIFOENTRY_FC2 (1 << NFIFOENTRY_FC2_SHIFT)
#define NFIFOENTRY_FC1_SHIFT 26
#define NFIFOENTRY_FC1_MASK (1 << NFIFOENTRY_FC1_SHIFT)
#define NFIFOENTRY_FC1 (1 << NFIFOENTRY_FC1_SHIFT)
#define NFIFOENTRY_STYPE_SHIFT 24
#define NFIFOENTRY_STYPE_MASK (3 << NFIFOENTRY_STYPE_SHIFT)
#define NFIFOENTRY_STYPE_DFIFO (0 << NFIFOENTRY_STYPE_SHIFT)
#define NFIFOENTRY_STYPE_OFIFO (1 << NFIFOENTRY_STYPE_SHIFT)
#define NFIFOENTRY_STYPE_PAD (2 << NFIFOENTRY_STYPE_SHIFT)
#define NFIFOENTRY_STYPE_SNOOP (3 << NFIFOENTRY_STYPE_SHIFT)
#define NFIFOENTRY_DTYPE_SHIFT 20
#define NFIFOENTRY_DTYPE_MASK (0xF << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_SBOX (0x0 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_AAD (0x1 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_IV (0x2 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_SAD (0x3 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_ICV (0xA << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_SKIP (0xE << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_MSG (0xF << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_A0 (0x0 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_A1 (0x1 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_A2 (0x2 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_A3 (0x3 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_B0 (0x4 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_B1 (0x5 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_B2 (0x6 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_B3 (0x7 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_N (0x8 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_E (0x9 << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_A (0xC << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_DTYPE_PK_B (0xD << NFIFOENTRY_DTYPE_SHIFT)
#define NFIFOENTRY_BND_SHIFT 19
#define NFIFOENTRY_BND_MASK (1 << NFIFOENTRY_BND_SHIFT)
#define NFIFOENTRY_BND (1 << NFIFOENTRY_BND_SHIFT)
#define NFIFOENTRY_PTYPE_SHIFT 16
#define NFIFOENTRY_PTYPE_MASK (0x7 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_ZEROS (0x0 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_RND_NOZEROS (0x1 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_INCREMENT (0x2 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_RND (0x3 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_ZEROS_NZ (0x4 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_RND_NZ_LZ (0x5 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_N (0x6 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_PTYPE_RND_NZ_N (0x7 << NFIFOENTRY_PTYPE_SHIFT)
#define NFIFOENTRY_OC_SHIFT 15
#define NFIFOENTRY_OC_MASK (1 << NFIFOENTRY_OC_SHIFT)
#define NFIFOENTRY_OC (1 << NFIFOENTRY_OC_SHIFT)
#define NFIFOENTRY_AST_SHIFT 14
#define NFIFOENTRY_AST_MASK (1 << NFIFOENTRY_OC_SHIFT)
#define NFIFOENTRY_AST (1 << NFIFOENTRY_OC_SHIFT)
#define NFIFOENTRY_BM_SHIFT 11
#define NFIFOENTRY_BM_MASK (1 << NFIFOENTRY_BM_SHIFT)
#define NFIFOENTRY_BM (1 << NFIFOENTRY_BM_SHIFT)
#define NFIFOENTRY_PS_SHIFT 10
#define NFIFOENTRY_PS_MASK (1 << NFIFOENTRY_PS_SHIFT)
#define NFIFOENTRY_PS (1 << NFIFOENTRY_PS_SHIFT)
#define NFIFOENTRY_DLEN_SHIFT 0
#define NFIFOENTRY_DLEN_MASK (0xFFF << NFIFOENTRY_DLEN_SHIFT)
#define NFIFOENTRY_PLEN_SHIFT 0
#define NFIFOENTRY_PLEN_MASK (0xFF << NFIFOENTRY_PLEN_SHIFT)
/*
* PDB internal definitions
*/
/* IPSec ESP CBC Encap/Decap Options */
#define PDBOPTS_ESPCBC_ARSNONE 0x00 /* no antireplay window */
#define PDBOPTS_ESPCBC_ARS32 0x40 /* 32-entry antireplay window */
#define PDBOPTS_ESPCBC_ARS64 0xc0 /* 64-entry antireplay window */
#define PDBOPTS_ESPCBC_IVSRC 0x20 /* IV comes from internal random gen */
#define PDBOPTS_ESPCBC_ESN 0x10 /* extended sequence included */
#define PDBOPTS_ESPCBC_OUTFMT 0x08 /* output only decapsulation (decap) */
#define PDBOPTS_ESPCBC_IPHDRSRC 0x08 /* IP header comes from PDB (encap) */
#define PDBOPTS_ESPCBC_INCIPHDR 0x04 /* Prepend IP header to output frame */
#define PDBOPTS_ESPCBC_IPVSN 0x02 /* process IPv6 header */
#define PDBOPTS_ESPCBC_TUNNEL 0x01 /* tunnel mode next-header byte */
#endif /* DESC_H */
/*
* caam descriptor construction helper functions
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "desc.h"
#define IMMEDIATE (1 << 23)
#define CAAM_CMD_SZ sizeof(u32)
#define CAAM_PTR_SZ sizeof(dma_addr_t)
#define CAAM_DESC_BYTES_MAX (CAAM_CMD_SZ * 64)
#ifdef DEBUG
#define PRINT_POS do { printk(KERN_DEBUG "%02d: %s\n", desc_len(desc),\
&__func__[sizeof("append")]); } while (0)
#else
#define PRINT_POS
#endif
#define DISABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_DISABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
#define ENABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_ENABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
static inline int desc_len(u32 *desc)
{
return *desc & HDR_DESCLEN_MASK;
}
static inline int desc_bytes(void *desc)
{
return desc_len(desc) * CAAM_CMD_SZ;
}
static inline u32 *desc_end(u32 *desc)
{
return desc + desc_len(desc);
}
static inline void *sh_desc_pdb(u32 *desc)
{
return desc + 1;
}
static inline void init_desc(u32 *desc, u32 options)
{
*desc = options | HDR_ONE | 1;
}
static inline void init_sh_desc(u32 *desc, u32 options)
{
PRINT_POS;
init_desc(desc, CMD_SHARED_DESC_HDR | options);
}
static inline void init_sh_desc_pdb(u32 *desc, u32 options, size_t pdb_bytes)
{
u32 pdb_len = pdb_bytes / CAAM_CMD_SZ + 1;
init_sh_desc(desc, ((pdb_len << HDR_START_IDX_SHIFT) + pdb_len) |
options);
}
static inline void init_job_desc(u32 *desc, u32 options)
{
init_desc(desc, CMD_DESC_HDR | options);
}
static inline void append_ptr(u32 *desc, dma_addr_t ptr)
{
dma_addr_t *offset = (dma_addr_t *)desc_end(desc);
*offset = ptr;
(*desc) += CAAM_PTR_SZ / CAAM_CMD_SZ;
}
static inline void init_job_desc_shared(u32 *desc, dma_addr_t ptr, int len,
u32 options)
{
PRINT_POS;
init_job_desc(desc, HDR_SHARED | options |
(len << HDR_START_IDX_SHIFT));
append_ptr(desc, ptr);
}
static inline void append_data(u32 *desc, void *data, int len)
{
u32 *offset = desc_end(desc);
if (len) /* avoid sparse warning: memcpy with byte count of 0 */
memcpy(offset, data, len);
(*desc) += (len + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
}
static inline void append_cmd(u32 *desc, u32 command)
{
u32 *cmd = desc_end(desc);
*cmd = command;
(*desc)++;
}
static inline void append_cmd_ptr(u32 *desc, dma_addr_t ptr, int len,
u32 command)
{
append_cmd(desc, command | len);
append_ptr(desc, ptr);
}
static inline void append_cmd_data(u32 *desc, void *data, int len,
u32 command)
{
append_cmd(desc, command | IMMEDIATE | len);
append_data(desc, data, len);
}
static inline u32 *append_jump(u32 *desc, u32 options)
{
u32 *cmd = desc_end(desc);
PRINT_POS;
append_cmd(desc, CMD_JUMP | options);
return cmd;
}
static inline void set_jump_tgt_here(u32 *desc, u32 *jump_cmd)
{
*jump_cmd = *jump_cmd | (desc_len(desc) - (jump_cmd - desc));
}
#define APPEND_CMD(cmd, op) \
static inline void append_##cmd(u32 *desc, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | options); \
}
APPEND_CMD(operation, OPERATION)
APPEND_CMD(move, MOVE)
#define APPEND_CMD_LEN(cmd, op) \
static inline void append_##cmd(u32 *desc, unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | len | options); \
}
APPEND_CMD_LEN(seq_store, SEQ_STORE)
APPEND_CMD_LEN(seq_fifo_load, SEQ_FIFO_LOAD)
APPEND_CMD_LEN(seq_fifo_store, SEQ_FIFO_STORE)
#define APPEND_CMD_PTR(cmd, op) \
static inline void append_##cmd(u32 *desc, dma_addr_t ptr, unsigned int len, \
u32 options) \
{ \
PRINT_POS; \
append_cmd_ptr(desc, ptr, len, CMD_##op | options); \
}
APPEND_CMD_PTR(key, KEY)
APPEND_CMD_PTR(seq_in_ptr, SEQ_IN_PTR)
APPEND_CMD_PTR(seq_out_ptr, SEQ_OUT_PTR)
APPEND_CMD_PTR(load, LOAD)
APPEND_CMD_PTR(store, STORE)
APPEND_CMD_PTR(fifo_load, FIFO_LOAD)
APPEND_CMD_PTR(fifo_store, FIFO_STORE)
#define APPEND_CMD_PTR_TO_IMM(cmd, op) \
static inline void append_##cmd##_as_imm(u32 *desc, void *data, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_data(desc, data, len, CMD_##op | options); \
}
APPEND_CMD_PTR_TO_IMM(load, LOAD);
APPEND_CMD_PTR_TO_IMM(fifo_load, FIFO_LOAD);
/*
* 2nd variant for commands whose specified immediate length differs
* from length of immediate data provided, e.g., split keys
*/
#define APPEND_CMD_PTR_TO_IMM2(cmd, op) \
static inline void append_##cmd##_as_imm(u32 *desc, void *data, \
unsigned int data_len, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | len | options); \
append_data(desc, data, data_len); \
}
APPEND_CMD_PTR_TO_IMM2(key, KEY);
#define APPEND_CMD_RAW_IMM(cmd, op, type) \
static inline void append_##cmd##_imm_##type(u32 *desc, type immediate, \
u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | options | sizeof(type)); \
append_cmd(desc, immediate); \
}
APPEND_CMD_RAW_IMM(load, LOAD, u32);
/*
* CAAM Error Reporting
*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc.h"
#include "jr.h"
#include "error.h"
#define SPRINTFCAT(str, format, param, max_alloc) \
{ \
char *tmp; \
\
tmp = kmalloc(sizeof(format) + max_alloc, GFP_ATOMIC); \
sprintf(tmp, format, param); \
strcat(str, tmp); \
kfree(tmp); \
}
static void report_jump_idx(u32 status, char *outstr)
{
u8 idx = (status & JRSTA_DECOERR_INDEX_MASK) >>
JRSTA_DECOERR_INDEX_SHIFT;
if (status & JRSTA_DECOERR_JUMP)
strcat(outstr, "jump tgt desc idx ");
else
strcat(outstr, "desc idx ");
SPRINTFCAT(outstr, "%d: ", idx, sizeof("255"));
}
static void report_ccb_status(u32 status, char *outstr)
{
char *cha_id_list[] = {
"",
"AES",
"DES, 3DES",
"ARC4",
"MD5, SHA-1, SH-224, SHA-256, SHA-384, SHA-512",
"RNG",
"SNOW f8",
"Kasumi f8, f9",
"All Public Key Algorithms",
"CRC",
"SNOW f9",
};
char *err_id_list[] = {
"None. No error.",
"Mode error.",
"Data size error.",
"Key size error.",
"PKHA A memory size error.",
"PKHA B memory size error.",
"Data arrived out of sequence error.",
"PKHA divide-by-zero error.",
"PKHA modulus even error.",
"DES key parity error.",
"ICV check failed.",
"Hardware error.",
"Unsupported CCM AAD size.",
"Class 1 CHA is not reset",
"Invalid CHA combination was selected",
"Invalid CHA selected.",
};
u8 cha_id = (status & JRSTA_CCBERR_CHAID_MASK) >>
JRSTA_CCBERR_CHAID_SHIFT;
u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
report_jump_idx(status, outstr);
if (cha_id < ARRAY_SIZE(cha_id_list)) {
SPRINTFCAT(outstr, "%s: ", cha_id_list[cha_id],
strlen(cha_id_list[cha_id]));
} else {
SPRINTFCAT(outstr, "unidentified cha_id value 0x%02x: ",
cha_id, sizeof("ff"));
}
if (err_id < ARRAY_SIZE(err_id_list)) {
SPRINTFCAT(outstr, "%s", err_id_list[err_id],
strlen(err_id_list[err_id]));
} else {
SPRINTFCAT(outstr, "unidentified err_id value 0x%02x",
err_id, sizeof("ff"));
}
}
static void report_jump_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
static void report_deco_status(u32 status, char *outstr)
{
const struct {
u8 value;
char *error_text;
} desc_error_list[] = {
{ 0x00, "None. No error." },
{ 0x01, "SGT Length Error. The descriptor is trying to read "
"more data than is contained in the SGT table." },
{ 0x02, "Reserved." },
{ 0x03, "Job Ring Control Error. There is a bad value in the "
"Job Ring Control register." },
{ 0x04, "Invalid Descriptor Command. The Descriptor Command "
"field is invalid." },
{ 0x05, "Reserved." },
{ 0x06, "Invalid KEY Command" },
{ 0x07, "Invalid LOAD Command" },
{ 0x08, "Invalid STORE Command" },
{ 0x09, "Invalid OPERATION Command" },
{ 0x0A, "Invalid FIFO LOAD Command" },
{ 0x0B, "Invalid FIFO STORE Command" },
{ 0x0C, "Invalid MOVE Command" },
{ 0x0D, "Invalid JUMP Command. A nonlocal JUMP Command is "
"invalid because the target is not a Job Header "
"Command, or the jump is from a Trusted Descriptor to "
"a Job Descriptor, or because the target Descriptor "
"contains a Shared Descriptor." },
{ 0x0E, "Invalid MATH Command" },
{ 0x0F, "Invalid SIGNATURE Command" },
{ 0x10, "Invalid Sequence Command. A SEQ IN PTR OR SEQ OUT PTR "
"Command is invalid or a SEQ KEY, SEQ LOAD, SEQ FIFO "
"LOAD, or SEQ FIFO STORE decremented the input or "
"output sequence length below 0. This error may result "
"if a built-in PROTOCOL Command has encountered a "
"malformed PDU." },
{ 0x11, "Skip data type invalid. The type must be 0xE or 0xF."},
{ 0x12, "Shared Descriptor Header Error" },
{ 0x13, "Header Error. Invalid length or parity, or certain "
"other problems." },
{ 0x14, "Burster Error. Burster has gotten to an illegal "
"state" },
{ 0x15, "Context Register Length Error. The descriptor is "
"trying to read or write past the end of the Context "
"Register. A SEQ LOAD or SEQ STORE with the VLF bit "
"set was executed with too large a length in the "
"variable length register (VSOL for SEQ STORE or VSIL "
"for SEQ LOAD)." },
{ 0x16, "DMA Error" },
{ 0x17, "Reserved." },
{ 0x1A, "Job failed due to JR reset" },
{ 0x1B, "Job failed due to Fail Mode" },
{ 0x1C, "DECO Watchdog timer timeout error" },
{ 0x1D, "DECO tried to copy a key from another DECO but the "
"other DECO's Key Registers were locked" },
{ 0x1E, "DECO attempted to copy data from a DECO that had an "
"unmasked Descriptor error" },
{ 0x1F, "LIODN error. DECO was trying to share from itself or "
"from another DECO but the two Non-SEQ LIODN values "
"didn't match or the 'shared from' DECO's Descriptor "
"required that the SEQ LIODNs be the same and they "
"aren't." },
{ 0x20, "DECO has completed a reset initiated via the DRR "
"register" },
{ 0x21, "Nonce error. When using EKT (CCM) key encryption "
"option in the FIFO STORE Command, the Nonce counter "
"reached its maximum value and this encryption mode "
"can no longer be used." },
{ 0x22, "Meta data is too large (> 511 bytes) for TLS decap "
"(input frame; block ciphers) and IPsec decap (output "
"frame, when doing the next header byte update) and "
"DCRC (output frame)." },
{ 0x80, "DNR (do not run) error" },
{ 0x81, "undefined protocol command" },
{ 0x82, "invalid setting in PDB" },
{ 0x83, "Anti-replay LATE error" },
{ 0x84, "Anti-replay REPLAY error" },
{ 0x85, "Sequence number overflow" },
{ 0x86, "Sigver invalid signature" },
{ 0x87, "DSA Sign Illegal test descriptor" },
{ 0x88, "Protocol Format Error - A protocol has seen an error "
"in the format of data received. When running RSA, "
"this means that formatting with random padding was "
"used, and did not follow the form: 0x00, 0x02, 8-to-N "
"bytes of non-zero pad, 0x00, F data." },
{ 0x89, "Protocol Size Error - A protocol has seen an error in "
"size. When running RSA, pdb size N < (size of F) when "
"no formatting is used; or pdb size N < (F + 11) when "
"formatting is used." },
{ 0xC1, "Blob Command error: Undefined mode" },
{ 0xC2, "Blob Command error: Secure Memory Blob mode error" },
{ 0xC4, "Blob Command error: Black Blob key or input size "
"error" },
{ 0xC5, "Blob Command error: Invalid key destination" },
{ 0xC8, "Blob Command error: Trusted/Secure mode error" },
{ 0xF0, "IPsec TTL or hop limit field either came in as 0, "
"or was decremented to 0" },
{ 0xF1, "3GPP HFN matches or exceeds the Threshold" },
};
u8 desc_error = status & JRSTA_DECOERR_ERROR_MASK;
int i;
report_jump_idx(status, outstr);
for (i = 0; i < ARRAY_SIZE(desc_error_list); i++)
if (desc_error_list[i].value == desc_error)
break;
if (i != ARRAY_SIZE(desc_error_list) && desc_error_list[i].error_text) {
SPRINTFCAT(outstr, "%s", desc_error_list[i].error_text,
strlen(desc_error_list[i].error_text));
} else {
SPRINTFCAT(outstr, "unidentified error value 0x%02x",
desc_error, sizeof("ff"));
}
}
static void report_jr_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
static void report_cond_code_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
char *caam_jr_strstatus(char *outstr, u32 status)
{
struct stat_src {
void (*report_ssed)(u32 status, char *outstr);
char *error;
} status_src[] = {
{ NULL, "No error" },
{ NULL, NULL },
{ report_ccb_status, "CCB" },
{ report_jump_status, "Jump" },
{ report_deco_status, "DECO" },
{ NULL, NULL },
{ report_jr_status, "Job Ring" },
{ report_cond_code_status, "Condition Code" },
};
u32 ssrc = status >> JRSTA_SSRC_SHIFT;
sprintf(outstr, "%s: ", status_src[ssrc].error);
if (status_src[ssrc].report_ssed)
status_src[ssrc].report_ssed(status, outstr);
return outstr;
}
EXPORT_SYMBOL(caam_jr_strstatus);
/*
* CAAM Error Reporting code header
*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*/
#ifndef CAAM_ERROR_H
#define CAAM_ERROR_H
#define CAAM_ERROR_STR_MAX 302
extern char *caam_jr_strstatus(char *outstr, u32 status);
#endif /* CAAM_ERROR_H */
/*
* CAAM/SEC 4.x driver backend
* Private/internal definitions between modules
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
*/
#ifndef INTERN_H
#define INTERN_H
#define JOBR_UNASSIGNED 0
#define JOBR_ASSIGNED 1
/* Currently comes from Kconfig param as a ^2 (driver-required) */
#define JOBR_DEPTH (1 << CONFIG_CRYPTO_DEV_FSL_CAAM_RINGSIZE)
/* Kconfig params for interrupt coalescing if selected (else zero) */
#ifdef CONFIG_CRYPTO_DEV_FSL_CAAM_INTC
#define JOBR_INTC JRCFG_ICEN
#define JOBR_INTC_TIME_THLD CONFIG_CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD
#define JOBR_INTC_COUNT_THLD CONFIG_CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD
#else
#define JOBR_INTC 0
#define JOBR_INTC_TIME_THLD 0
#define JOBR_INTC_COUNT_THLD 0
#endif
/*
* Storage for tracking each in-process entry moving across a ring
* Each entry on an output ring needs one of these
*/
struct caam_jrentry_info {
void (*callbk)(struct device *dev, u32 *desc, u32 status, void *arg);
void *cbkarg; /* Argument per ring entry */
u32 *desc_addr_virt; /* Stored virt addr for postprocessing */
dma_addr_t desc_addr_dma; /* Stored bus addr for done matching */
u32 desc_size; /* Stored size for postprocessing, header derived */
};
/* Private sub-storage for a single JobR */
struct caam_drv_private_jr {
struct device *parentdev; /* points back to controller dev */
int ridx;
struct caam_job_ring __iomem *rregs; /* JobR's register space */
struct tasklet_struct irqtask[NR_CPUS];
int irq; /* One per queue */
int assign; /* busy/free */
/* Job ring info */
int ringsize; /* Size of rings (assume input = output) */
struct caam_jrentry_info *entinfo; /* Alloc'ed 1 per ring entry */
spinlock_t inplock ____cacheline_aligned; /* Input ring index lock */
int inp_ring_write_index; /* Input index "tail" */
int head; /* entinfo (s/w ring) head index */
dma_addr_t *inpring; /* Base of input ring, alloc DMA-safe */
spinlock_t outlock ____cacheline_aligned; /* Output ring index lock */
int out_ring_read_index; /* Output index "tail" */
int tail; /* entinfo (s/w ring) tail index */
struct jr_outentry *outring; /* Base of output ring, DMA-safe */
};
/*
* Driver-private storage for a single CAAM block instance
*/
struct caam_drv_private {
struct device *dev;
struct device **jrdev; /* Alloc'ed array per sub-device */
spinlock_t jr_alloc_lock;
struct platform_device *pdev;
/* Physical-presence section */
struct caam_ctrl *ctrl; /* controller region */
struct caam_deco **deco; /* DECO/CCB views */
struct caam_assurance *ac;
struct caam_queue_if *qi; /* QI control region */
/*
* Detected geometry block. Filled in from device tree if powerpc,
* or from register-based version detection code
*/
u8 total_jobrs; /* Total Job Rings in device */
u8 qi_present; /* Nonzero if QI present in device */
int secvio_irq; /* Security violation interrupt number */
/* which jr allocated to scatterlist crypto */
atomic_t tfm_count ____cacheline_aligned;
int num_jrs_for_algapi;
struct device **algapi_jr;
/* list of registered crypto algorithms (mk generic context handle?) */
struct list_head alg_list;
/*
* debugfs entries for developer view into driver/device
* variables at runtime.
*/
#ifdef CONFIG_DEBUG_FS
struct dentry *dfs_root;
struct dentry *ctl; /* controller dir */
struct dentry *ctl_rq_dequeued, *ctl_ob_enc_req, *ctl_ib_dec_req;
struct dentry *ctl_ob_enc_bytes, *ctl_ob_prot_bytes;
struct dentry *ctl_ib_dec_bytes, *ctl_ib_valid_bytes;
struct dentry *ctl_faultaddr, *ctl_faultdetail, *ctl_faultstatus;
struct debugfs_blob_wrapper ctl_kek_wrap, ctl_tkek_wrap, ctl_tdsk_wrap;
struct dentry *ctl_kek, *ctl_tkek, *ctl_tdsk;
#endif
};
void caam_jr_algapi_init(struct device *dev);
void caam_jr_algapi_remove(struct device *dev);
#endif /* INTERN_H */
/*
* CAAM/SEC 4.x transport/backend driver
* JobR backend functionality
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "jr.h"
#include "desc.h"
#include "intern.h"
/* Main per-ring interrupt handler */
static irqreturn_t caam_jr_interrupt(int irq, void *st_dev)
{
struct device *dev = st_dev;
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
u32 irqstate;
/*
* Check the output ring for ready responses, kick
* tasklet if jobs done.
*/
irqstate = rd_reg32(&jrp->rregs->jrintstatus);
if (!irqstate)
return IRQ_NONE;
/*
* If JobR error, we got more development work to do
* Flag a bug now, but we really need to shut down and
* restart the queue (and fix code).
*/
if (irqstate & JRINT_JR_ERROR) {
dev_err(dev, "job ring error: irqstate: %08x\n", irqstate);
BUG();
}
/* mask valid interrupts */
setbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
/* Have valid interrupt at this point, just ACK and trigger */
wr_reg32(&jrp->rregs->jrintstatus, irqstate);
preempt_disable();
tasklet_schedule(&jrp->irqtask[smp_processor_id()]);
preempt_enable();
return IRQ_HANDLED;
}
/* Deferred service handler, run as interrupt-fired tasklet */
static void caam_jr_dequeue(unsigned long devarg)
{
int hw_idx, sw_idx, i, head, tail;
struct device *dev = (struct device *)devarg;
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
void (*usercall)(struct device *dev, u32 *desc, u32 status, void *arg);
u32 *userdesc, userstatus;
void *userarg;
unsigned long flags;
spin_lock_irqsave(&jrp->outlock, flags);
head = ACCESS_ONCE(jrp->head);
sw_idx = tail = jrp->tail;
while (CIRC_CNT(head, tail, JOBR_DEPTH) >= 1 &&
rd_reg32(&jrp->rregs->outring_used)) {
hw_idx = jrp->out_ring_read_index;
for (i = 0; CIRC_CNT(head, tail + i, JOBR_DEPTH) >= 1; i++) {
sw_idx = (tail + i) & (JOBR_DEPTH - 1);
smp_read_barrier_depends();
if (jrp->outring[hw_idx].desc ==
jrp->entinfo[sw_idx].desc_addr_dma)
break; /* found */
}
/* we should never fail to find a matching descriptor */
BUG_ON(CIRC_CNT(head, tail + i, JOBR_DEPTH) <= 0);
/* Unmap just-run descriptor so we can post-process */
dma_unmap_single(dev, jrp->outring[hw_idx].desc,
jrp->entinfo[sw_idx].desc_size,
DMA_TO_DEVICE);
/* mark completed, avoid matching on a recycled desc addr */
jrp->entinfo[sw_idx].desc_addr_dma = 0;
/* Stash callback params for use outside of lock */
usercall = jrp->entinfo[sw_idx].callbk;
userarg = jrp->entinfo[sw_idx].cbkarg;
userdesc = jrp->entinfo[sw_idx].desc_addr_virt;
userstatus = jrp->outring[hw_idx].jrstatus;
smp_mb();
jrp->out_ring_read_index = (jrp->out_ring_read_index + 1) &
(JOBR_DEPTH - 1);
/*
* if this job completed out-of-order, do not increment
* the tail. Otherwise, increment tail by 1 plus the
* number of subsequent jobs already completed out-of-order
*/
if (sw_idx == tail) {
do {
tail = (tail + 1) & (JOBR_DEPTH - 1);
smp_read_barrier_depends();
} while (CIRC_CNT(head, tail, JOBR_DEPTH) >= 1 &&
jrp->entinfo[tail].desc_addr_dma == 0);
jrp->tail = tail;
}
/* set done */
wr_reg32(&jrp->rregs->outring_rmvd, 1);
spin_unlock_irqrestore(&jrp->outlock, flags);
/* Finally, execute user's callback */
usercall(dev, userdesc, userstatus, userarg);
spin_lock_irqsave(&jrp->outlock, flags);
head = ACCESS_ONCE(jrp->head);
sw_idx = tail = jrp->tail;
}
spin_unlock_irqrestore(&jrp->outlock, flags);
/* reenable / unmask IRQs */
clrbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
}
/**
* caam_jr_register() - Alloc a ring for someone to use as needed. Returns
* an ordinal of the rings allocated, else returns -ENODEV if no rings
* are available.
* @ctrldev: points to the controller level dev (parent) that
* owns rings available for use.
* @dev: points to where a pointer to the newly allocated queue's
* dev can be written to if successful.
**/
int caam_jr_register(struct device *ctrldev, struct device **rdev)
{
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_drv_private_jr *jrpriv = NULL;
unsigned long flags;
int ring;
/* Lock, if free ring - assign, unlock */
spin_lock_irqsave(&ctrlpriv->jr_alloc_lock, flags);
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
jrpriv = dev_get_drvdata(ctrlpriv->jrdev[ring]);
if (jrpriv->assign == JOBR_UNASSIGNED) {
jrpriv->assign = JOBR_ASSIGNED;
*rdev = ctrlpriv->jrdev[ring];
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
return ring;
}
}
/* If assigned, write dev where caller needs it */
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
*rdev = NULL;
return -ENODEV;
}
EXPORT_SYMBOL(caam_jr_register);
/**
* caam_jr_deregister() - Deregister an API and release the queue.
* Returns 0 if OK, -EBUSY if queue still contains pending entries
* or unprocessed results at the time of the call
* @dev - points to the dev that identifies the queue to
* be released.
**/
int caam_jr_deregister(struct device *rdev)
{
struct caam_drv_private_jr *jrpriv = dev_get_drvdata(rdev);
struct caam_drv_private *ctrlpriv;
unsigned long flags;
/* Get the owning controller's private space */
ctrlpriv = dev_get_drvdata(jrpriv->parentdev);
/*
* Make sure ring empty before release
*/
if (rd_reg32(&jrpriv->rregs->outring_used) ||
(rd_reg32(&jrpriv->rregs->inpring_avail) != JOBR_DEPTH))
return -EBUSY;
/* Release ring */
spin_lock_irqsave(&ctrlpriv->jr_alloc_lock, flags);
jrpriv->assign = JOBR_UNASSIGNED;
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
return 0;
}
EXPORT_SYMBOL(caam_jr_deregister);
/**
* caam_jr_enqueue() - Enqueue a job descriptor head. Returns 0 if OK,
* -EBUSY if the queue is full, -EIO if it cannot map the caller's
* descriptor.
* @dev: device of the job ring to be used. This device should have
* been assigned prior by caam_jr_register().
* @desc: points to a job descriptor that execute our request. All
* descriptors (and all referenced data) must be in a DMAable
* region, and all data references must be physical addresses
* accessible to CAAM (i.e. within a PAMU window granted
* to it).
* @cbk: pointer to a callback function to be invoked upon completion
* of this request. This has the form:
* callback(struct device *dev, u32 *desc, u32 stat, void *arg)
* where:
* @dev: contains the job ring device that processed this
* response.
* @desc: descriptor that initiated the request, same as
* "desc" being argued to caam_jr_enqueue().
* @status: untranslated status received from CAAM. See the
* reference manual for a detailed description of
* error meaning, or see the JRSTA definitions in the
* register header file
* @areq: optional pointer to an argument passed with the
* original request
* @areq: optional pointer to a user argument for use at callback
* time.
**/
int caam_jr_enqueue(struct device *dev, u32 *desc,
void (*cbk)(struct device *dev, u32 *desc,
u32 status, void *areq),
void *areq)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
struct caam_jrentry_info *head_entry;
unsigned long flags;
int head, tail, desc_size;
dma_addr_t desc_dma;
desc_size = (*desc & HDR_JD_LENGTH_MASK) * sizeof(u32);
desc_dma = dma_map_single(dev, desc, desc_size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, desc_dma)) {
dev_err(dev, "caam_jr_enqueue(): can't map jobdesc\n");
return -EIO;
}
spin_lock_irqsave(&jrp->inplock, flags);
head = jrp->head;
tail = ACCESS_ONCE(jrp->tail);
if (!rd_reg32(&jrp->rregs->inpring_avail) ||
CIRC_SPACE(head, tail, JOBR_DEPTH) <= 0) {
spin_unlock_irqrestore(&jrp->inplock, flags);
dma_unmap_single(dev, desc_dma, desc_size, DMA_TO_DEVICE);
return -EBUSY;
}
head_entry = &jrp->entinfo[head];
head_entry->desc_addr_virt = desc;
head_entry->desc_size = desc_size;
head_entry->callbk = (void *)cbk;
head_entry->cbkarg = areq;
head_entry->desc_addr_dma = desc_dma;
jrp->inpring[jrp->inp_ring_write_index] = desc_dma;
smp_wmb();
jrp->inp_ring_write_index = (jrp->inp_ring_write_index + 1) &
(JOBR_DEPTH - 1);
jrp->head = (head + 1) & (JOBR_DEPTH - 1);
wmb();
wr_reg32(&jrp->rregs->inpring_jobadd, 1);
spin_unlock_irqrestore(&jrp->inplock, flags);
return 0;
}
EXPORT_SYMBOL(caam_jr_enqueue);
static int caam_reset_hw_jr(struct device *dev)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
unsigned int timeout = 100000;
/*
* mask interrupts since we are going to poll
* for reset completion status
*/
setbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
/* initiate flush (required prior to reset) */
wr_reg32(&jrp->rregs->jrcommand, JRCR_RESET);
while (((rd_reg32(&jrp->rregs->jrintstatus) & JRINT_ERR_HALT_MASK) ==
JRINT_ERR_HALT_INPROGRESS) && --timeout)
cpu_relax();
if ((rd_reg32(&jrp->rregs->jrintstatus) & JRINT_ERR_HALT_MASK) !=
JRINT_ERR_HALT_COMPLETE || timeout == 0) {
dev_err(dev, "failed to flush job ring %d\n", jrp->ridx);
return -EIO;
}
/* initiate reset */
timeout = 100000;
wr_reg32(&jrp->rregs->jrcommand, JRCR_RESET);
while ((rd_reg32(&jrp->rregs->jrcommand) & JRCR_RESET) && --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to reset job ring %d\n", jrp->ridx);
return -EIO;
}
/* unmask interrupts */
clrbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
return 0;
}
/*
* Init JobR independent of platform property detection
*/
static int caam_jr_init(struct device *dev)
{
struct caam_drv_private_jr *jrp;
dma_addr_t inpbusaddr, outbusaddr;
int i, error;
jrp = dev_get_drvdata(dev);
/* Connect job ring interrupt handler. */
for_each_possible_cpu(i)
tasklet_init(&jrp->irqtask[i], caam_jr_dequeue,
(unsigned long)dev);
error = request_irq(jrp->irq, caam_jr_interrupt, IRQF_SHARED,
"caam-jobr", dev);
if (error) {
dev_err(dev, "can't connect JobR %d interrupt (%d)\n",
jrp->ridx, jrp->irq);
irq_dispose_mapping(jrp->irq);
jrp->irq = 0;
return -EINVAL;
}
error = caam_reset_hw_jr(dev);
if (error)
return error;
jrp->inpring = kzalloc(sizeof(dma_addr_t) * JOBR_DEPTH,
GFP_KERNEL | GFP_DMA);
jrp->outring = kzalloc(sizeof(struct jr_outentry) *
JOBR_DEPTH, GFP_KERNEL | GFP_DMA);
jrp->entinfo = kzalloc(sizeof(struct caam_jrentry_info) * JOBR_DEPTH,
GFP_KERNEL);
if ((jrp->inpring == NULL) || (jrp->outring == NULL) ||
(jrp->entinfo == NULL)) {
dev_err(dev, "can't allocate job rings for %d\n",
jrp->ridx);
return -ENOMEM;
}
for (i = 0; i < JOBR_DEPTH; i++)
jrp->entinfo[i].desc_addr_dma = !0;
/* Setup rings */
inpbusaddr = dma_map_single(dev, jrp->inpring,
sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, inpbusaddr)) {
dev_err(dev, "caam_jr_init(): can't map input ring\n");
kfree(jrp->inpring);
kfree(jrp->outring);
kfree(jrp->entinfo);
return -EIO;
}
outbusaddr = dma_map_single(dev, jrp->outring,
sizeof(struct jr_outentry) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, outbusaddr)) {
dev_err(dev, "caam_jr_init(): can't map output ring\n");
dma_unmap_single(dev, inpbusaddr,
sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
kfree(jrp->inpring);
kfree(jrp->outring);
kfree(jrp->entinfo);
return -EIO;
}
jrp->inp_ring_write_index = 0;
jrp->out_ring_read_index = 0;
jrp->head = 0;
jrp->tail = 0;
wr_reg64(&jrp->rregs->inpring_base, inpbusaddr);
wr_reg64(&jrp->rregs->outring_base, outbusaddr);
wr_reg32(&jrp->rregs->inpring_size, JOBR_DEPTH);
wr_reg32(&jrp->rregs->outring_size, JOBR_DEPTH);
jrp->ringsize = JOBR_DEPTH;
spin_lock_init(&jrp->inplock);
spin_lock_init(&jrp->outlock);
/* Select interrupt coalescing parameters */
setbits32(&jrp->rregs->rconfig_lo, JOBR_INTC |
(JOBR_INTC_COUNT_THLD << JRCFG_ICDCT_SHIFT) |
(JOBR_INTC_TIME_THLD << JRCFG_ICTT_SHIFT));
jrp->assign = JOBR_UNASSIGNED;
return 0;
}
/*
* Shutdown JobR independent of platform property code
*/
int caam_jr_shutdown(struct device *dev)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
dma_addr_t inpbusaddr, outbusaddr;
int ret, i;
ret = caam_reset_hw_jr(dev);
for_each_possible_cpu(i)
tasklet_kill(&jrp->irqtask[i]);
/* Release interrupt */
free_irq(jrp->irq, dev);
/* Free rings */
inpbusaddr = rd_reg64(&jrp->rregs->inpring_base);
outbusaddr = rd_reg64(&jrp->rregs->outring_base);
dma_unmap_single(dev, outbusaddr,
sizeof(struct jr_outentry) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
dma_unmap_single(dev, inpbusaddr, sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
kfree(jrp->outring);
kfree(jrp->inpring);
kfree(jrp->entinfo);
return ret;
}
/*
* Probe routine for each detected JobR subsystem. It assumes that
* property detection was picked up externally.
*/
int caam_jr_probe(struct platform_device *pdev, struct device_node *np,
int ring)
{
struct device *ctrldev, *jrdev;
struct platform_device *jr_pdev;
struct caam_drv_private *ctrlpriv;
struct caam_drv_private_jr *jrpriv;
u32 *jroffset;
int error;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
jrpriv = kmalloc(sizeof(struct caam_drv_private_jr),
GFP_KERNEL);
if (jrpriv == NULL) {
dev_err(ctrldev, "can't alloc private mem for job ring %d\n",
ring);
return -ENOMEM;
}
jrpriv->parentdev = ctrldev; /* point back to parent */
jrpriv->ridx = ring; /* save ring identity relative to detection */
/*
* Derive a pointer to the detected JobRs regs
* Driver has already iomapped the entire space, we just
* need to add in the offset to this JobR. Don't know if I
* like this long-term, but it'll run
*/
jroffset = (u32 *)of_get_property(np, "reg", NULL);
jrpriv->rregs = (struct caam_job_ring __iomem *)((void *)ctrlpriv->ctrl
+ *jroffset);
/* Build a local dev for each detected queue */
jr_pdev = of_platform_device_create(np, NULL, ctrldev);
if (jr_pdev == NULL) {
kfree(jrpriv);
return -EINVAL;
}
jrdev = &jr_pdev->dev;
dev_set_drvdata(jrdev, jrpriv);
ctrlpriv->jrdev[ring] = jrdev;
/* Identify the interrupt */
jrpriv->irq = of_irq_to_resource(np, 0, NULL);
/* Now do the platform independent part */
error = caam_jr_init(jrdev); /* now turn on hardware */
if (error) {
kfree(jrpriv);
return error;
}
return error;
}
/*
* CAAM public-level include definitions for the JobR backend
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef JR_H
#define JR_H
/* Prototypes for backend-level services exposed to APIs */
int caam_jr_register(struct device *ctrldev, struct device **rdev);
int caam_jr_deregister(struct device *rdev);
int caam_jr_enqueue(struct device *dev, u32 *desc,
void (*cbk)(struct device *dev, u32 *desc, u32 status,
void *areq),
void *areq);
extern int caam_jr_probe(struct platform_device *pdev, struct device_node *np,
int ring);
extern int caam_jr_shutdown(struct device *dev);
#endif /* JR_H */
/*
* CAAM hardware register-level view
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef REGS_H
#define REGS_H
#include <linux/types.h>
#include <linux/io.h>
/*
* Architecture-specific register access methods
*
* CAAM's bus-addressable registers are 64 bits internally.
* They have been wired to be safely accessible on 32-bit
* architectures, however. Registers were organized such
* that (a) they can be contained in 32 bits, (b) if not, then they
* can be treated as two 32-bit entities, or finally (c) if they
* must be treated as a single 64-bit value, then this can safely
* be done with two 32-bit cycles.
*
* For 32-bit operations on 64-bit values, CAAM follows the same
* 64-bit register access conventions as it's predecessors, in that
* writes are "triggered" by a write to the register at the numerically
* higher address, thus, a full 64-bit write cycle requires a write
* to the lower address, followed by a write to the higher address,
* which will latch/execute the write cycle.
*
* For example, let's assume a SW reset of CAAM through the master
* configuration register.
* - SWRST is in bit 31 of MCFG.
* - MCFG begins at base+0x0000.
* - Bits 63-32 are a 32-bit word at base+0x0000 (numerically-lower)
* - Bits 31-0 are a 32-bit word at base+0x0004 (numerically-higher)
*
* (and on Power, the convention is 0-31, 32-63, I know...)
*
* Assuming a 64-bit write to this MCFG to perform a software reset
* would then require a write of 0 to base+0x0000, followed by a
* write of 0x80000000 to base+0x0004, which would "execute" the
* reset.
*
* Of course, since MCFG 63-32 is all zero, we could cheat and simply
* write 0x8000000 to base+0x0004, and the reset would work fine.
* However, since CAAM does contain some write-and-read-intended
* 64-bit registers, this code defines 64-bit access methods for
* the sake of internal consistency and simplicity, and so that a
* clean transition to 64-bit is possible when it becomes necessary.
*
* There are limitations to this that the developer must recognize.
* 32-bit architectures cannot enforce an atomic-64 operation,
* Therefore:
*
* - On writes, since the HW is assumed to latch the cycle on the
* write of the higher-numeric-address word, then ordered
* writes work OK.
*
* - For reads, where a register contains a relevant value of more
* that 32 bits, the hardware employs logic to latch the other
* "half" of the data until read, ensuring an accurate value.
* This is of particular relevance when dealing with CAAM's
* performance counters.
*
*/
#ifdef __BIG_ENDIAN
#define wr_reg32(reg, data) out_be32(reg, data)
#define rd_reg32(reg) in_be32(reg)
#ifdef CONFIG_64BIT
#define wr_reg64(reg, data) out_be64(reg, data)
#define rd_reg64(reg) in_be64(reg)
#endif
#else
#ifdef __LITTLE_ENDIAN
#define wr_reg32(reg, data) __raw_writel(reg, data)
#define rd_reg32(reg) __raw_readl(reg)
#ifdef CONFIG_64BIT
#define wr_reg64(reg, data) __raw_writeq(reg, data)
#define rd_reg64(reg) __raw_readq(reg)
#endif
#endif
#endif
#ifndef CONFIG_64BIT
static inline void wr_reg64(u64 __iomem *reg, u64 data)
{
wr_reg32((u32 __iomem *)reg, (data & 0xffffffff00000000ull) >> 32);
wr_reg32((u32 __iomem *)reg + 1, data & 0x00000000ffffffffull);
}
static inline u64 rd_reg64(u64 __iomem *reg)
{
return (((u64)rd_reg32((u32 __iomem *)reg)) << 32) |
((u64)rd_reg32((u32 __iomem *)reg + 1));
}
#endif
/*
* jr_outentry
* Represents each entry in a JobR output ring
*/
struct jr_outentry {
dma_addr_t desc;/* Pointer to completed descriptor */
u32 jrstatus; /* Status for completed descriptor */
} __packed;
/*
* caam_perfmon - Performance Monitor/Secure Memory Status/
* CAAM Global Status/Component Version IDs
*
* Spans f00-fff wherever instantiated
*/
/* Number of DECOs */
#define CHA_NUM_DECONUM_SHIFT 56
#define CHA_NUM_DECONUM_MASK (0xfull << CHA_NUM_DECONUM_SHIFT)
struct caam_perfmon {
/* Performance Monitor Registers f00-f9f */
u64 req_dequeued; /* PC_REQ_DEQ - Dequeued Requests */
u64 ob_enc_req; /* PC_OB_ENC_REQ - Outbound Encrypt Requests */
u64 ib_dec_req; /* PC_IB_DEC_REQ - Inbound Decrypt Requests */
u64 ob_enc_bytes; /* PC_OB_ENCRYPT - Outbound Bytes Encrypted */
u64 ob_prot_bytes; /* PC_OB_PROTECT - Outbound Bytes Protected */
u64 ib_dec_bytes; /* PC_IB_DECRYPT - Inbound Bytes Decrypted */
u64 ib_valid_bytes; /* PC_IB_VALIDATED Inbound Bytes Validated */
u64 rsvd[13];
/* CAAM Hardware Instantiation Parameters fa0-fbf */
u64 cha_rev; /* CRNR - CHA Revision Number */
#define CTPR_QI_SHIFT 57
#define CTPR_QI_MASK (0x1ull << CTPR_QI_SHIFT)
u64 comp_parms; /* CTPR - Compile Parameters Register */
u64 rsvd1[2];
/* CAAM Global Status fc0-fdf */
u64 faultaddr; /* FAR - Fault Address */
u32 faultliodn; /* FALR - Fault Address LIODN */
u32 faultdetail; /* FADR - Fault Addr Detail */
u32 rsvd2;
u32 status; /* CSTA - CAAM Status */
u64 rsvd3;
/* Component Instantiation Parameters fe0-fff */
u32 rtic_id; /* RVID - RTIC Version ID */
u32 ccb_id; /* CCBVID - CCB Version ID */
u64 cha_id; /* CHAVID - CHA Version ID */
u64 cha_num; /* CHANUM - CHA Number */
u64 caam_id; /* CAAMVID - CAAM Version ID */
};
/* LIODN programming for DMA configuration */
#define MSTRID_LOCK_LIODN 0x80000000
#define MSTRID_LOCK_MAKETRUSTED 0x00010000 /* only for JR masterid */
#define MSTRID_LIODN_MASK 0x0fff
struct masterid {
u32 liodn_ms; /* lock and make-trusted control bits */
u32 liodn_ls; /* LIODN for non-sequence and seq access */
};
/* Partition ID for DMA configuration */
struct partid {
u32 rsvd1;
u32 pidr; /* partition ID, DECO */
};
/* RNG test mode (replicated twice in some configurations) */
/* Padded out to 0x100 */
struct rngtst {
u32 mode; /* RTSTMODEx - Test mode */
u32 rsvd1[3];
u32 reset; /* RTSTRESETx - Test reset control */
u32 rsvd2[3];
u32 status; /* RTSTSSTATUSx - Test status */
u32 rsvd3;
u32 errstat; /* RTSTERRSTATx - Test error status */
u32 rsvd4;
u32 errctl; /* RTSTERRCTLx - Test error control */
u32 rsvd5;
u32 entropy; /* RTSTENTROPYx - Test entropy */
u32 rsvd6[15];
u32 verifctl; /* RTSTVERIFCTLx - Test verification control */
u32 rsvd7;
u32 verifstat; /* RTSTVERIFSTATx - Test verification status */
u32 rsvd8;
u32 verifdata; /* RTSTVERIFDx - Test verification data */
u32 rsvd9;
u32 xkey; /* RTSTXKEYx - Test XKEY */
u32 rsvd10;
u32 oscctctl; /* RTSTOSCCTCTLx - Test osc. counter control */
u32 rsvd11;
u32 oscct; /* RTSTOSCCTx - Test oscillator counter */
u32 rsvd12;
u32 oscctstat; /* RTSTODCCTSTATx - Test osc counter status */
u32 rsvd13[2];
u32 ofifo[4]; /* RTSTOFIFOx - Test output FIFO */
u32 rsvd14[15];
};
/*
* caam_ctrl - basic core configuration
* starts base + 0x0000 padded out to 0x1000
*/
#define KEK_KEY_SIZE 8
#define TKEK_KEY_SIZE 8
#define TDSK_KEY_SIZE 8
#define DECO_RESET 1 /* Use with DECO reset/availability regs */
#define DECO_RESET_0 (DECO_RESET << 0)
#define DECO_RESET_1 (DECO_RESET << 1)
#define DECO_RESET_2 (DECO_RESET << 2)
#define DECO_RESET_3 (DECO_RESET << 3)
#define DECO_RESET_4 (DECO_RESET << 4)
struct caam_ctrl {
/* Basic Configuration Section 000-01f */
/* Read/Writable */
u32 rsvd1;
u32 mcr; /* MCFG Master Config Register */
u32 rsvd2[2];
/* Bus Access Configuration Section 010-11f */
/* Read/Writable */
struct masterid jr_mid[4]; /* JRxLIODNR - JobR LIODN setup */
u32 rsvd3[12];
struct masterid rtic_mid[4]; /* RTICxLIODNR - RTIC LIODN setup */
u32 rsvd4[7];
u32 deco_rq; /* DECORR - DECO Request */
struct partid deco_mid[5]; /* DECOxLIODNR - 1 per DECO */
u32 rsvd5[22];
/* DECO Availability/Reset Section 120-3ff */
u32 deco_avail; /* DAR - DECO availability */
u32 deco_reset; /* DRR - DECO reset */
u32 rsvd6[182];
/* Key Encryption/Decryption Configuration 400-5ff */
/* Read/Writable only while in Non-secure mode */
u32 kek[KEK_KEY_SIZE]; /* JDKEKR - Key Encryption Key */
u32 tkek[TKEK_KEY_SIZE]; /* TDKEKR - Trusted Desc KEK */
u32 tdsk[TDSK_KEY_SIZE]; /* TDSKR - Trusted Desc Signing Key */
u32 rsvd7[32];
u64 sknonce; /* SKNR - Secure Key Nonce */
u32 rsvd8[70];
/* RNG Test/Verification/Debug Access 600-7ff */
/* (Useful in Test/Debug modes only...) */
struct rngtst rtst[2];
u32 rsvd9[448];
/* Performance Monitor f00-fff */
struct caam_perfmon perfmon;
};
/*
* Controller master config register defs
*/
#define MCFGR_SWRESET 0x80000000 /* software reset */
#define MCFGR_WDENABLE 0x40000000 /* DECO watchdog enable */
#define MCFGR_WDFAIL 0x20000000 /* DECO watchdog force-fail */
#define MCFGR_DMA_RESET 0x10000000
#define MCFGR_LONG_PTR 0x00010000 /* Use >32-bit desc addressing */
/* AXI read cache control */
#define MCFGR_ARCACHE_SHIFT 12
#define MCFGR_ARCACHE_MASK (0xf << MCFGR_ARCACHE_SHIFT)
/* AXI write cache control */
#define MCFGR_AWCACHE_SHIFT 8
#define MCFGR_AWCACHE_MASK (0xf << MCFGR_AWCACHE_SHIFT)
/* AXI pipeline depth */
#define MCFGR_AXIPIPE_SHIFT 4
#define MCFGR_AXIPIPE_MASK (0xf << MCFGR_AXIPIPE_SHIFT)
#define MCFGR_AXIPRI 0x00000008 /* Assert AXI priority sideband */
#define MCFGR_BURST_64 0x00000001 /* Max burst size */
/*
* caam_job_ring - direct job ring setup
* 1-4 possible per instantiation, base + 1000/2000/3000/4000
* Padded out to 0x1000
*/
struct caam_job_ring {
/* Input ring */
u64 inpring_base; /* IRBAx - Input desc ring baseaddr */
u32 rsvd1;
u32 inpring_size; /* IRSx - Input ring size */
u32 rsvd2;
u32 inpring_avail; /* IRSAx - Input ring room remaining */
u32 rsvd3;
u32 inpring_jobadd; /* IRJAx - Input ring jobs added */
/* Output Ring */
u64 outring_base; /* ORBAx - Output status ring base addr */
u32 rsvd4;
u32 outring_size; /* ORSx - Output ring size */
u32 rsvd5;
u32 outring_rmvd; /* ORJRx - Output ring jobs removed */
u32 rsvd6;
u32 outring_used; /* ORSFx - Output ring slots full */
/* Status/Configuration */
u32 rsvd7;
u32 jroutstatus; /* JRSTAx - JobR output status */
u32 rsvd8;
u32 jrintstatus; /* JRINTx - JobR interrupt status */
u32 rconfig_hi; /* JRxCFG - Ring configuration */
u32 rconfig_lo;
/* Indices. CAAM maintains as "heads" of each queue */
u32 rsvd9;
u32 inp_rdidx; /* IRRIx - Input ring read index */
u32 rsvd10;
u32 out_wtidx; /* ORWIx - Output ring write index */
/* Command/control */
u32 rsvd11;
u32 jrcommand; /* JRCRx - JobR command */
u32 rsvd12[932];
/* Performance Monitor f00-fff */
struct caam_perfmon perfmon;
};
#define JR_RINGSIZE_MASK 0x03ff
/*
* jrstatus - Job Ring Output Status
* All values in lo word
* Also note, same values written out as status through QI
* in the command/status field of a frame descriptor
*/
#define JRSTA_SSRC_SHIFT 28
#define JRSTA_SSRC_MASK 0xf0000000
#define JRSTA_SSRC_NONE 0x00000000
#define JRSTA_SSRC_CCB_ERROR 0x20000000
#define JRSTA_SSRC_JUMP_HALT_USER 0x30000000
#define JRSTA_SSRC_DECO 0x40000000
#define JRSTA_SSRC_JRERROR 0x60000000
#define JRSTA_SSRC_JUMP_HALT_CC 0x70000000
#define JRSTA_DECOERR_JUMP 0x08000000
#define JRSTA_DECOERR_INDEX_SHIFT 8
#define JRSTA_DECOERR_INDEX_MASK 0xff00
#define JRSTA_DECOERR_ERROR_MASK 0x00ff
#define JRSTA_DECOERR_NONE 0x00
#define JRSTA_DECOERR_LINKLEN 0x01
#define JRSTA_DECOERR_LINKPTR 0x02
#define JRSTA_DECOERR_JRCTRL 0x03
#define JRSTA_DECOERR_DESCCMD 0x04
#define JRSTA_DECOERR_ORDER 0x05
#define JRSTA_DECOERR_KEYCMD 0x06
#define JRSTA_DECOERR_LOADCMD 0x07
#define JRSTA_DECOERR_STORECMD 0x08
#define JRSTA_DECOERR_OPCMD 0x09
#define JRSTA_DECOERR_FIFOLDCMD 0x0a
#define JRSTA_DECOERR_FIFOSTCMD 0x0b
#define JRSTA_DECOERR_MOVECMD 0x0c
#define JRSTA_DECOERR_JUMPCMD 0x0d
#define JRSTA_DECOERR_MATHCMD 0x0e
#define JRSTA_DECOERR_SHASHCMD 0x0f
#define JRSTA_DECOERR_SEQCMD 0x10
#define JRSTA_DECOERR_DECOINTERNAL 0x11
#define JRSTA_DECOERR_SHDESCHDR 0x12
#define JRSTA_DECOERR_HDRLEN 0x13
#define JRSTA_DECOERR_BURSTER 0x14
#define JRSTA_DECOERR_DESCSIGNATURE 0x15
#define JRSTA_DECOERR_DMA 0x16
#define JRSTA_DECOERR_BURSTFIFO 0x17
#define JRSTA_DECOERR_JRRESET 0x1a
#define JRSTA_DECOERR_JOBFAIL 0x1b
#define JRSTA_DECOERR_DNRERR 0x80
#define JRSTA_DECOERR_UNDEFPCL 0x81
#define JRSTA_DECOERR_PDBERR 0x82
#define JRSTA_DECOERR_ANRPLY_LATE 0x83
#define JRSTA_DECOERR_ANRPLY_REPLAY 0x84
#define JRSTA_DECOERR_SEQOVF 0x85
#define JRSTA_DECOERR_INVSIGN 0x86
#define JRSTA_DECOERR_DSASIGN 0x87
#define JRSTA_CCBERR_JUMP 0x08000000
#define JRSTA_CCBERR_INDEX_MASK 0xff00
#define JRSTA_CCBERR_INDEX_SHIFT 8
#define JRSTA_CCBERR_CHAID_MASK 0x00f0
#define JRSTA_CCBERR_CHAID_SHIFT 4
#define JRSTA_CCBERR_ERRID_MASK 0x000f
#define JRSTA_CCBERR_CHAID_AES (0x01 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_DES (0x02 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_ARC4 (0x03 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_MD (0x04 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_RNG (0x05 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_SNOW (0x06 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_KASUMI (0x07 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_PK (0x08 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_CHAID_CRC (0x09 << JRSTA_CCBERR_CHAID_SHIFT)
#define JRSTA_CCBERR_ERRID_NONE 0x00
#define JRSTA_CCBERR_ERRID_MODE 0x01
#define JRSTA_CCBERR_ERRID_DATASIZ 0x02
#define JRSTA_CCBERR_ERRID_KEYSIZ 0x03
#define JRSTA_CCBERR_ERRID_PKAMEMSZ 0x04
#define JRSTA_CCBERR_ERRID_PKBMEMSZ 0x05
#define JRSTA_CCBERR_ERRID_SEQUENCE 0x06
#define JRSTA_CCBERR_ERRID_PKDIVZRO 0x07
#define JRSTA_CCBERR_ERRID_PKMODEVN 0x08
#define JRSTA_CCBERR_ERRID_KEYPARIT 0x09
#define JRSTA_CCBERR_ERRID_ICVCHK 0x0a
#define JRSTA_CCBERR_ERRID_HARDWARE 0x0b
#define JRSTA_CCBERR_ERRID_CCMAAD 0x0c
#define JRSTA_CCBERR_ERRID_INVCHA 0x0f
#define JRINT_ERR_INDEX_MASK 0x3fff0000
#define JRINT_ERR_INDEX_SHIFT 16
#define JRINT_ERR_TYPE_MASK 0xf00
#define JRINT_ERR_TYPE_SHIFT 8
#define JRINT_ERR_HALT_MASK 0xc
#define JRINT_ERR_HALT_SHIFT 2
#define JRINT_ERR_HALT_INPROGRESS 0x4
#define JRINT_ERR_HALT_COMPLETE 0x8
#define JRINT_JR_ERROR 0x02
#define JRINT_JR_INT 0x01
#define JRINT_ERR_TYPE_WRITE 1
#define JRINT_ERR_TYPE_BAD_INPADDR 3
#define JRINT_ERR_TYPE_BAD_OUTADDR 4
#define JRINT_ERR_TYPE_INV_INPWRT 5
#define JRINT_ERR_TYPE_INV_OUTWRT 6
#define JRINT_ERR_TYPE_RESET 7
#define JRINT_ERR_TYPE_REMOVE_OFL 8
#define JRINT_ERR_TYPE_ADD_OFL 9
#define JRCFG_SOE 0x04
#define JRCFG_ICEN 0x02
#define JRCFG_IMSK 0x01
#define JRCFG_ICDCT_SHIFT 8
#define JRCFG_ICTT_SHIFT 16
#define JRCR_RESET 0x01
/*
* caam_assurance - Assurance Controller View
* base + 0x6000 padded out to 0x1000
*/
struct rtic_element {
u64 address;
u32 rsvd;
u32 length;
};
struct rtic_block {
struct rtic_element element[2];
};
struct rtic_memhash {
u32 memhash_be[32];
u32 memhash_le[32];
};
struct caam_assurance {
/* Status/Command/Watchdog */
u32 rsvd1;
u32 status; /* RSTA - Status */
u32 rsvd2;
u32 cmd; /* RCMD - Command */
u32 rsvd3;
u32 ctrl; /* RCTL - Control */
u32 rsvd4;
u32 throttle; /* RTHR - Throttle */
u32 rsvd5[2];
u64 watchdog; /* RWDOG - Watchdog Timer */
u32 rsvd6;
u32 rend; /* REND - Endian corrections */
u32 rsvd7[50];
/* Block access/configuration @ 100/110/120/130 */
struct rtic_block memblk[4]; /* Memory Blocks A-D */
u32 rsvd8[32];
/* Block hashes @ 200/300/400/500 */
struct rtic_memhash hash[4]; /* Block hash values A-D */
u32 rsvd_3[640];
};
/*
* caam_queue_if - QI configuration and control
* starts base + 0x7000, padded out to 0x1000 long
*/
struct caam_queue_if {
u32 qi_control_hi; /* QICTL - QI Control */
u32 qi_control_lo;
u32 rsvd1;
u32 qi_status; /* QISTA - QI Status */
u32 qi_deq_cfg_hi; /* QIDQC - QI Dequeue Configuration */
u32 qi_deq_cfg_lo;
u32 qi_enq_cfg_hi; /* QISEQC - QI Enqueue Command */
u32 qi_enq_cfg_lo;
u32 rsvd2[1016];
};
/* QI control bits - low word */
#define QICTL_DQEN 0x01 /* Enable frame pop */
#define QICTL_STOP 0x02 /* Stop dequeue/enqueue */
#define QICTL_SOE 0x04 /* Stop on error */
/* QI control bits - high word */
#define QICTL_MBSI 0x01
#define QICTL_MHWSI 0x02
#define QICTL_MWSI 0x04
#define QICTL_MDWSI 0x08
#define QICTL_CBSI 0x10 /* CtrlDataByteSwapInput */
#define QICTL_CHWSI 0x20 /* CtrlDataHalfSwapInput */
#define QICTL_CWSI 0x40 /* CtrlDataWordSwapInput */
#define QICTL_CDWSI 0x80 /* CtrlDataDWordSwapInput */
#define QICTL_MBSO 0x0100
#define QICTL_MHWSO 0x0200
#define QICTL_MWSO 0x0400
#define QICTL_MDWSO 0x0800
#define QICTL_CBSO 0x1000 /* CtrlDataByteSwapOutput */
#define QICTL_CHWSO 0x2000 /* CtrlDataHalfSwapOutput */
#define QICTL_CWSO 0x4000 /* CtrlDataWordSwapOutput */
#define QICTL_CDWSO 0x8000 /* CtrlDataDWordSwapOutput */
#define QICTL_DMBS 0x010000
#define QICTL_EPO 0x020000
/* QI status bits */
#define QISTA_PHRDERR 0x01 /* PreHeader Read Error */
#define QISTA_CFRDERR 0x02 /* Compound Frame Read Error */
#define QISTA_OFWRERR 0x04 /* Output Frame Read Error */
#define QISTA_BPDERR 0x08 /* Buffer Pool Depleted */
#define QISTA_BTSERR 0x10 /* Buffer Undersize */
#define QISTA_CFWRERR 0x20 /* Compound Frame Write Err */
#define QISTA_STOPD 0x80000000 /* QI Stopped (see QICTL) */
/* deco_sg_table - DECO view of scatter/gather table */
struct deco_sg_table {
u64 addr; /* Segment Address */
u32 elen; /* E, F bits + 30-bit length */
u32 bpid_offset; /* Buffer Pool ID + 16-bit length */
};
/*
* caam_deco - descriptor controller - CHA cluster block
*
* Only accessible when direct DECO access is turned on
* (done in DECORR, via MID programmed in DECOxMID
*
* 5 typical, base + 0x8000/9000/a000/b000
* Padded out to 0x1000 long
*/
struct caam_deco {
u32 rsvd1;
u32 cls1_mode; /* CxC1MR - Class 1 Mode */
u32 rsvd2;
u32 cls1_keysize; /* CxC1KSR - Class 1 Key Size */
u32 cls1_datasize_hi; /* CxC1DSR - Class 1 Data Size */
u32 cls1_datasize_lo;
u32 rsvd3;
u32 cls1_icvsize; /* CxC1ICVSR - Class 1 ICV size */
u32 rsvd4[5];
u32 cha_ctrl; /* CCTLR - CHA control */
u32 rsvd5;
u32 irq_crtl; /* CxCIRQ - CCB interrupt done/error/clear */
u32 rsvd6;
u32 clr_written; /* CxCWR - Clear-Written */
u32 ccb_status_hi; /* CxCSTA - CCB Status/Error */
u32 ccb_status_lo;
u32 rsvd7[3];
u32 aad_size; /* CxAADSZR - Current AAD Size */
u32 rsvd8;
u32 cls1_iv_size; /* CxC1IVSZR - Current Class 1 IV Size */
u32 rsvd9[7];
u32 pkha_a_size; /* PKASZRx - Size of PKHA A */
u32 rsvd10;
u32 pkha_b_size; /* PKBSZRx - Size of PKHA B */
u32 rsvd11;
u32 pkha_n_size; /* PKNSZRx - Size of PKHA N */
u32 rsvd12;
u32 pkha_e_size; /* PKESZRx - Size of PKHA E */
u32 rsvd13[24];
u32 cls1_ctx[16]; /* CxC1CTXR - Class 1 Context @100 */
u32 rsvd14[48];
u32 cls1_key[8]; /* CxC1KEYR - Class 1 Key @200 */
u32 rsvd15[121];
u32 cls2_mode; /* CxC2MR - Class 2 Mode */
u32 rsvd16;
u32 cls2_keysize; /* CxX2KSR - Class 2 Key Size */
u32 cls2_datasize_hi; /* CxC2DSR - Class 2 Data Size */
u32 cls2_datasize_lo;
u32 rsvd17;
u32 cls2_icvsize; /* CxC2ICVSZR - Class 2 ICV Size */
u32 rsvd18[56];
u32 cls2_ctx[18]; /* CxC2CTXR - Class 2 Context @500 */
u32 rsvd19[46];
u32 cls2_key[32]; /* CxC2KEYR - Class2 Key @600 */
u32 rsvd20[84];
u32 inp_infofifo_hi; /* CxIFIFO - Input Info FIFO @7d0 */
u32 inp_infofifo_lo;
u32 rsvd21[2];
u64 inp_datafifo; /* CxDFIFO - Input Data FIFO */
u32 rsvd22[2];
u64 out_datafifo; /* CxOFIFO - Output Data FIFO */
u32 rsvd23[2];
u32 jr_ctl_hi; /* CxJRR - JobR Control Register @800 */
u32 jr_ctl_lo;
u64 jr_descaddr; /* CxDADR - JobR Descriptor Address */
u32 op_status_hi; /* DxOPSTA - DECO Operation Status */
u32 op_status_lo;
u32 rsvd24[2];
u32 liodn; /* DxLSR - DECO LIODN Status - non-seq */
u32 td_liodn; /* DxLSR - DECO LIODN Status - trustdesc */
u32 rsvd26[6];
u64 math[4]; /* DxMTH - Math register */
u32 rsvd27[8];
struct deco_sg_table gthr_tbl[4]; /* DxGTR - Gather Tables */
u32 rsvd28[16];
struct deco_sg_table sctr_tbl[4]; /* DxSTR - Scatter Tables */
u32 rsvd29[48];
u32 descbuf[64]; /* DxDESB - Descriptor buffer */
u32 rsvd30[320];
};
/*
* Current top-level view of memory map is:
*
* 0x0000 - 0x0fff - CAAM Top-Level Control
* 0x1000 - 0x1fff - Job Ring 0
* 0x2000 - 0x2fff - Job Ring 1
* 0x3000 - 0x3fff - Job Ring 2
* 0x4000 - 0x4fff - Job Ring 3
* 0x5000 - 0x5fff - (unused)
* 0x6000 - 0x6fff - Assurance Controller
* 0x7000 - 0x7fff - Queue Interface
* 0x8000 - 0x8fff - DECO-CCB 0
* 0x9000 - 0x9fff - DECO-CCB 1
* 0xa000 - 0xafff - DECO-CCB 2
* 0xb000 - 0xbfff - DECO-CCB 3
* 0xc000 - 0xcfff - DECO-CCB 4
*
* caam_full describes the full register view of CAAM if useful,
* although many configurations may choose to implement parts of
* the register map separately, in differing privilege regions
*/
struct caam_full {
struct caam_ctrl __iomem ctrl;
struct caam_job_ring jr[4];
u64 rsvd[512];
struct caam_assurance assure;
struct caam_queue_if qi;
struct caam_deco *deco;
};
#endif /* REGS_H */
...@@ -133,7 +133,6 @@ struct mv_req_hash_ctx { ...@@ -133,7 +133,6 @@ struct mv_req_hash_ctx {
int extra_bytes; /* unprocessed bytes in buffer */ int extra_bytes; /* unprocessed bytes in buffer */
enum hash_op op; enum hash_op op;
int count_add; int count_add;
struct scatterlist dummysg;
}; };
static void compute_aes_dec_key(struct mv_ctx *ctx) static void compute_aes_dec_key(struct mv_ctx *ctx)
...@@ -187,9 +186,9 @@ static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len) ...@@ -187,9 +186,9 @@ static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
{ {
int ret; int ret;
void *sbuf; void *sbuf;
int copied = 0; int copy_len;
while (1) { while (len) {
if (!p->sg_src_left) { if (!p->sg_src_left) {
ret = sg_miter_next(&p->src_sg_it); ret = sg_miter_next(&p->src_sg_it);
BUG_ON(!ret); BUG_ON(!ret);
...@@ -199,19 +198,14 @@ static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len) ...@@ -199,19 +198,14 @@ static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
sbuf = p->src_sg_it.addr + p->src_start; sbuf = p->src_sg_it.addr + p->src_start;
if (p->sg_src_left <= len - copied) { copy_len = min(p->sg_src_left, len);
memcpy(dbuf + copied, sbuf, p->sg_src_left); memcpy(dbuf, sbuf, copy_len);
copied += p->sg_src_left;
p->sg_src_left = 0; p->src_start += copy_len;
if (copied >= len) p->sg_src_left -= copy_len;
break;
} else { len -= copy_len;
int copy_len = len - copied; dbuf += copy_len;
memcpy(dbuf + copied, sbuf, copy_len);
p->src_start += copy_len;
p->sg_src_left -= copy_len;
break;
}
} }
} }
...@@ -275,7 +269,6 @@ static void mv_process_current_q(int first_block) ...@@ -275,7 +269,6 @@ static void mv_process_current_q(int first_block)
memcpy(cpg->sram + SRAM_CONFIG, &op, memcpy(cpg->sram + SRAM_CONFIG, &op,
sizeof(struct sec_accel_config)); sizeof(struct sec_accel_config));
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
/* GO */ /* GO */
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD); writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
...@@ -302,6 +295,7 @@ static void mv_crypto_algo_completion(void) ...@@ -302,6 +295,7 @@ static void mv_crypto_algo_completion(void)
static void mv_process_hash_current(int first_block) static void mv_process_hash_current(int first_block)
{ {
struct ahash_request *req = ahash_request_cast(cpg->cur_req); struct ahash_request *req = ahash_request_cast(cpg->cur_req);
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req); struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
struct req_progress *p = &cpg->p; struct req_progress *p = &cpg->p;
struct sec_accel_config op = { 0 }; struct sec_accel_config op = { 0 };
...@@ -314,6 +308,8 @@ static void mv_process_hash_current(int first_block) ...@@ -314,6 +308,8 @@ static void mv_process_hash_current(int first_block)
break; break;
case COP_HMAC_SHA1: case COP_HMAC_SHA1:
op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1; op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
memcpy(cpg->sram + SRAM_HMAC_IV_IN,
tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
break; break;
} }
...@@ -345,11 +341,16 @@ static void mv_process_hash_current(int first_block) ...@@ -345,11 +341,16 @@ static void mv_process_hash_current(int first_block)
op.config |= CFG_LAST_FRAG; op.config |= CFG_LAST_FRAG;
else else
op.config |= CFG_MID_FRAG; op.config |= CFG_MID_FRAG;
writel(req_ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
writel(req_ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
writel(req_ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
writel(req_ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
writel(req_ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
} }
memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config)); memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
/* GO */ /* GO */
writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD); writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
...@@ -409,12 +410,6 @@ static void mv_hash_algo_completion(void) ...@@ -409,12 +410,6 @@ static void mv_hash_algo_completion(void)
copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes); copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
sg_miter_stop(&cpg->p.src_sg_it); sg_miter_stop(&cpg->p.src_sg_it);
ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
if (likely(ctx->last_chunk)) { if (likely(ctx->last_chunk)) {
if (likely(ctx->count <= MAX_HW_HASH_SIZE)) { if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF, memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
...@@ -422,6 +417,12 @@ static void mv_hash_algo_completion(void) ...@@ -422,6 +417,12 @@ static void mv_hash_algo_completion(void)
(req))); (req)));
} else } else
mv_hash_final_fallback(req); mv_hash_final_fallback(req);
} else {
ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
} }
} }
...@@ -480,7 +481,7 @@ static int count_sgs(struct scatterlist *sl, unsigned int total_bytes) ...@@ -480,7 +481,7 @@ static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
int i = 0; int i = 0;
size_t cur_len; size_t cur_len;
while (1) { while (sl) {
cur_len = sl[i].length; cur_len = sl[i].length;
++i; ++i;
if (total_bytes > cur_len) if (total_bytes > cur_len)
...@@ -517,29 +518,12 @@ static void mv_start_new_hash_req(struct ahash_request *req) ...@@ -517,29 +518,12 @@ static void mv_start_new_hash_req(struct ahash_request *req)
{ {
struct req_progress *p = &cpg->p; struct req_progress *p = &cpg->p;
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req); struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
int num_sgs, hw_bytes, old_extra_bytes, rc; int num_sgs, hw_bytes, old_extra_bytes, rc;
cpg->cur_req = &req->base; cpg->cur_req = &req->base;
memset(p, 0, sizeof(struct req_progress)); memset(p, 0, sizeof(struct req_progress));
hw_bytes = req->nbytes + ctx->extra_bytes; hw_bytes = req->nbytes + ctx->extra_bytes;
old_extra_bytes = ctx->extra_bytes; old_extra_bytes = ctx->extra_bytes;
if (unlikely(ctx->extra_bytes)) {
memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
ctx->extra_bytes);
p->crypt_len = ctx->extra_bytes;
}
memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
if (unlikely(!ctx->first_hash)) {
writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
}
ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE; ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
if (ctx->extra_bytes != 0 if (ctx->extra_bytes != 0
&& (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE)) && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
...@@ -555,6 +539,12 @@ static void mv_start_new_hash_req(struct ahash_request *req) ...@@ -555,6 +539,12 @@ static void mv_start_new_hash_req(struct ahash_request *req)
p->complete = mv_hash_algo_completion; p->complete = mv_hash_algo_completion;
p->process = mv_process_hash_current; p->process = mv_process_hash_current;
if (unlikely(old_extra_bytes)) {
memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
old_extra_bytes);
p->crypt_len = old_extra_bytes;
}
mv_process_hash_current(1); mv_process_hash_current(1);
} else { } else {
copy_src_to_buf(p, ctx->buffer + old_extra_bytes, copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
...@@ -603,9 +593,7 @@ static int queue_manag(void *data) ...@@ -603,9 +593,7 @@ static int queue_manag(void *data)
if (async_req->tfm->__crt_alg->cra_type != if (async_req->tfm->__crt_alg->cra_type !=
&crypto_ahash_type) { &crypto_ahash_type) {
struct ablkcipher_request *req = struct ablkcipher_request *req =
container_of(async_req, ablkcipher_request_cast(async_req);
struct ablkcipher_request,
base);
mv_start_new_crypt_req(req); mv_start_new_crypt_req(req);
} else { } else {
struct ahash_request *req = struct ahash_request *req =
...@@ -722,19 +710,13 @@ static int mv_hash_update(struct ahash_request *req) ...@@ -722,19 +710,13 @@ static int mv_hash_update(struct ahash_request *req)
static int mv_hash_final(struct ahash_request *req) static int mv_hash_final(struct ahash_request *req)
{ {
struct mv_req_hash_ctx *ctx = ahash_request_ctx(req); struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
/* dummy buffer of 4 bytes */
sg_init_one(&ctx->dummysg, ctx->buffer, 4);
/* I think I'm allowed to do that... */
ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
mv_update_hash_req_ctx(ctx, 1, 0); mv_update_hash_req_ctx(ctx, 1, 0);
return mv_handle_req(&req->base); return mv_handle_req(&req->base);
} }
static int mv_hash_finup(struct ahash_request *req) static int mv_hash_finup(struct ahash_request *req)
{ {
if (!req->nbytes)
return mv_hash_final(req);
mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes); mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
return mv_handle_req(&req->base); return mv_handle_req(&req->base);
} }
...@@ -1065,14 +1047,21 @@ static int mv_probe(struct platform_device *pdev) ...@@ -1065,14 +1047,21 @@ static int mv_probe(struct platform_device *pdev)
writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK); writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG); writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
ret = crypto_register_alg(&mv_aes_alg_ecb); ret = crypto_register_alg(&mv_aes_alg_ecb);
if (ret) if (ret) {
printk(KERN_WARNING MV_CESA
"Could not register aes-ecb driver\n");
goto err_irq; goto err_irq;
}
ret = crypto_register_alg(&mv_aes_alg_cbc); ret = crypto_register_alg(&mv_aes_alg_cbc);
if (ret) if (ret) {
printk(KERN_WARNING MV_CESA
"Could not register aes-cbc driver\n");
goto err_unreg_ecb; goto err_unreg_ecb;
}
ret = crypto_register_ahash(&mv_sha1_alg); ret = crypto_register_ahash(&mv_sha1_alg);
if (ret == 0) if (ret == 0)
......
...@@ -78,7 +78,6 @@ ...@@ -78,7 +78,6 @@
#define FLAGS_SHA1 0x0010 #define FLAGS_SHA1 0x0010
#define FLAGS_DMA_ACTIVE 0x0020 #define FLAGS_DMA_ACTIVE 0x0020
#define FLAGS_OUTPUT_READY 0x0040 #define FLAGS_OUTPUT_READY 0x0040
#define FLAGS_CLEAN 0x0080
#define FLAGS_INIT 0x0100 #define FLAGS_INIT 0x0100
#define FLAGS_CPU 0x0200 #define FLAGS_CPU 0x0200
#define FLAGS_HMAC 0x0400 #define FLAGS_HMAC 0x0400
...@@ -511,26 +510,6 @@ static int omap_sham_update_dma_stop(struct omap_sham_dev *dd) ...@@ -511,26 +510,6 @@ static int omap_sham_update_dma_stop(struct omap_sham_dev *dd)
return 0; return 0;
} }
static void omap_sham_cleanup(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
unsigned long flags;
spin_lock_irqsave(&dd->lock, flags);
if (ctx->flags & FLAGS_CLEAN) {
spin_unlock_irqrestore(&dd->lock, flags);
return;
}
ctx->flags |= FLAGS_CLEAN;
spin_unlock_irqrestore(&dd->lock, flags);
if (ctx->digcnt)
omap_sham_copy_ready_hash(req);
dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
}
static int omap_sham_init(struct ahash_request *req) static int omap_sham_init(struct ahash_request *req)
{ {
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
...@@ -618,9 +597,8 @@ static int omap_sham_final_req(struct omap_sham_dev *dd) ...@@ -618,9 +597,8 @@ static int omap_sham_final_req(struct omap_sham_dev *dd)
return err; return err;
} }
static int omap_sham_finish_req_hmac(struct ahash_request *req) static int omap_sham_finish_hmac(struct ahash_request *req)
{ {
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm); struct omap_sham_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct omap_sham_hmac_ctx *bctx = tctx->base; struct omap_sham_hmac_ctx *bctx = tctx->base;
int bs = crypto_shash_blocksize(bctx->shash); int bs = crypto_shash_blocksize(bctx->shash);
...@@ -635,7 +613,24 @@ static int omap_sham_finish_req_hmac(struct ahash_request *req) ...@@ -635,7 +613,24 @@ static int omap_sham_finish_req_hmac(struct ahash_request *req)
return crypto_shash_init(&desc.shash) ?: return crypto_shash_init(&desc.shash) ?:
crypto_shash_update(&desc.shash, bctx->opad, bs) ?: crypto_shash_update(&desc.shash, bctx->opad, bs) ?:
crypto_shash_finup(&desc.shash, ctx->digest, ds, ctx->digest); crypto_shash_finup(&desc.shash, req->result, ds, req->result);
}
static int omap_sham_finish(struct ahash_request *req)
{
struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
struct omap_sham_dev *dd = ctx->dd;
int err = 0;
if (ctx->digcnt) {
omap_sham_copy_ready_hash(req);
if (ctx->flags & FLAGS_HMAC)
err = omap_sham_finish_hmac(req);
}
dev_dbg(dd->dev, "digcnt: %d, bufcnt: %d\n", ctx->digcnt, ctx->bufcnt);
return err;
} }
static void omap_sham_finish_req(struct ahash_request *req, int err) static void omap_sham_finish_req(struct ahash_request *req, int err)
...@@ -645,15 +640,12 @@ static void omap_sham_finish_req(struct ahash_request *req, int err) ...@@ -645,15 +640,12 @@ static void omap_sham_finish_req(struct ahash_request *req, int err)
if (!err) { if (!err) {
omap_sham_copy_hash(ctx->dd->req, 1); omap_sham_copy_hash(ctx->dd->req, 1);
if (ctx->flags & FLAGS_HMAC) if (ctx->flags & FLAGS_FINAL)
err = omap_sham_finish_req_hmac(req); err = omap_sham_finish(req);
} else { } else {
ctx->flags |= FLAGS_ERROR; ctx->flags |= FLAGS_ERROR;
} }
if ((ctx->flags & FLAGS_FINAL) || err)
omap_sham_cleanup(req);
clk_disable(dd->iclk); clk_disable(dd->iclk);
dd->flags &= ~FLAGS_BUSY; dd->flags &= ~FLAGS_BUSY;
...@@ -809,22 +801,21 @@ static int omap_sham_final_shash(struct ahash_request *req) ...@@ -809,22 +801,21 @@ static int omap_sham_final_shash(struct ahash_request *req)
static int omap_sham_final(struct ahash_request *req) static int omap_sham_final(struct ahash_request *req)
{ {
struct omap_sham_reqctx *ctx = ahash_request_ctx(req); struct omap_sham_reqctx *ctx = ahash_request_ctx(req);
int err = 0;
ctx->flags |= FLAGS_FINUP; ctx->flags |= FLAGS_FINUP;
if (!(ctx->flags & FLAGS_ERROR)) { if (ctx->flags & FLAGS_ERROR)
/* OMAP HW accel works only with buffers >= 9 */ return 0; /* uncompleted hash is not needed */
/* HMAC is always >= 9 because of ipad */
if ((ctx->digcnt + ctx->bufcnt) < 9)
err = omap_sham_final_shash(req);
else if (ctx->bufcnt)
return omap_sham_enqueue(req, OP_FINAL);
}
omap_sham_cleanup(req); /* OMAP HW accel works only with buffers >= 9 */
/* HMAC is always >= 9 because ipad == block size */
if ((ctx->digcnt + ctx->bufcnt) < 9)
return omap_sham_final_shash(req);
else if (ctx->bufcnt)
return omap_sham_enqueue(req, OP_FINAL);
return err; /* copy ready hash (+ finalize hmac) */
return omap_sham_finish(req);
} }
static int omap_sham_finup(struct ahash_request *req) static int omap_sham_finup(struct ahash_request *req)
...@@ -835,7 +826,7 @@ static int omap_sham_finup(struct ahash_request *req) ...@@ -835,7 +826,7 @@ static int omap_sham_finup(struct ahash_request *req)
ctx->flags |= FLAGS_FINUP; ctx->flags |= FLAGS_FINUP;
err1 = omap_sham_update(req); err1 = omap_sham_update(req);
if (err1 == -EINPROGRESS) if (err1 == -EINPROGRESS || err1 == -EBUSY)
return err1; return err1;
/* /*
* final() has to be always called to cleanup resources * final() has to be always called to cleanup resources
...@@ -890,8 +881,6 @@ static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base) ...@@ -890,8 +881,6 @@ static int omap_sham_cra_init_alg(struct crypto_tfm *tfm, const char *alg_base)
struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm); struct omap_sham_ctx *tctx = crypto_tfm_ctx(tfm);
const char *alg_name = crypto_tfm_alg_name(tfm); const char *alg_name = crypto_tfm_alg_name(tfm);
pr_info("enter\n");
/* Allocate a fallback and abort if it failed. */ /* Allocate a fallback and abort if it failed. */
tctx->fallback = crypto_alloc_shash(alg_name, 0, tctx->fallback = crypto_alloc_shash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK); CRYPTO_ALG_NEED_FALLBACK);
...@@ -1297,7 +1286,8 @@ static int __init omap_sham_mod_init(void) ...@@ -1297,7 +1286,8 @@ static int __init omap_sham_mod_init(void)
pr_info("loading %s driver\n", "omap-sham"); pr_info("loading %s driver\n", "omap-sham");
if (!cpu_class_is_omap2() || if (!cpu_class_is_omap2() ||
omap_type() != OMAP2_DEVICE_TYPE_SEC) { (omap_type() != OMAP2_DEVICE_TYPE_SEC &&
omap_type() != OMAP2_DEVICE_TYPE_EMU)) {
pr_err("Unsupported cpu\n"); pr_err("Unsupported cpu\n");
return -ENODEV; return -ENODEV;
} }
......
...@@ -288,9 +288,250 @@ static struct shash_alg sha256_alg = { ...@@ -288,9 +288,250 @@ static struct shash_alg sha256_alg = {
} }
}; };
/* Add two shash_alg instance for hardware-implemented *
* multiple-parts hash supported by VIA Nano Processor.*/
static int padlock_sha1_init_nano(struct shash_desc *desc)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha1_state){
.state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
};
return 0;
}
static int padlock_sha1_update_nano(struct shash_desc *desc,
const u8 *data, unsigned int len)
{
struct sha1_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
int ts_state;
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
if ((partial + len) >= SHA1_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buffer + partial, data,
done + SHA1_BLOCK_SIZE);
src = sctx->buffer;
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst) \
: "a"((long)-1), "c"((unsigned long)1));
irq_ts_restore(ts_state);
done += SHA1_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from the input data */
if (len - done >= SHA1_BLOCK_SIZE) {
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
irq_ts_restore(ts_state);
done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
memcpy(sctx->buffer + partial, src, len - done);
return 0;
}
static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha1_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
return 0;
}
static int padlock_sha256_init_nano(struct shash_desc *desc)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
*sctx = (struct sha256_state){
.state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
};
return 0;
}
static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_state *sctx = shash_desc_ctx(desc);
unsigned int partial, done;
const u8 *src;
/*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
((aligned(STACK_ALIGN)));
u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
int ts_state;
partial = sctx->count & 0x3f;
sctx->count += len;
done = 0;
src = data;
memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
if ((partial + len) >= SHA256_BLOCK_SIZE) {
/* Append the bytes in state's buffer to a block to handle */
if (partial) {
done = -partial;
memcpy(sctx->buf + partial, data,
done + SHA256_BLOCK_SIZE);
src = sctx->buf;
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1), "c"((unsigned long)1));
irq_ts_restore(ts_state);
done += SHA256_BLOCK_SIZE;
src = data + done;
}
/* Process the left bytes from input data*/
if (len - done >= SHA256_BLOCK_SIZE) {
ts_state = irq_ts_save();
asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
: "+S"(src), "+D"(dst)
: "a"((long)-1),
"c"((unsigned long)((len - done) / 64)));
irq_ts_restore(ts_state);
done += ((len - done) - (len - done) % 64);
src = data + done;
}
partial = 0;
}
memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
memcpy(sctx->buf + partial, src, len - done);
return 0;
}
static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
{
struct sha256_state *state =
(struct sha256_state *)shash_desc_ctx(desc);
unsigned int partial, padlen;
__be64 bits;
static const u8 padding[64] = { 0x80, };
bits = cpu_to_be64(state->count << 3);
/* Pad out to 56 mod 64 */
partial = state->count & 0x3f;
padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
padlock_sha256_update_nano(desc, padding, padlen);
/* Append length field bytes */
padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
/* Swap to output */
padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
return 0;
}
static int padlock_sha_export_nano(struct shash_desc *desc,
void *out)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, statesize);
return 0;
}
static int padlock_sha_import_nano(struct shash_desc *desc,
const void *in)
{
int statesize = crypto_shash_statesize(desc->tfm);
void *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, statesize);
return 0;
}
static struct shash_alg sha1_alg_nano = {
.digestsize = SHA1_DIGEST_SIZE,
.init = padlock_sha1_init_nano,
.update = padlock_sha1_update_nano,
.final = padlock_sha1_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha1_state),
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static struct shash_alg sha256_alg_nano = {
.digestsize = SHA256_DIGEST_SIZE,
.init = padlock_sha256_init_nano,
.update = padlock_sha256_update_nano,
.final = padlock_sha256_final_nano,
.export = padlock_sha_export_nano,
.import = padlock_sha_import_nano,
.descsize = sizeof(struct sha256_state),
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-padlock-nano",
.cra_priority = PADLOCK_CRA_PRIORITY,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_module = THIS_MODULE,
}
};
static int __init padlock_init(void) static int __init padlock_init(void)
{ {
int rc = -ENODEV; int rc = -ENODEV;
struct cpuinfo_x86 *c = &cpu_data(0);
struct shash_alg *sha1;
struct shash_alg *sha256;
if (!cpu_has_phe) { if (!cpu_has_phe) {
printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n"); printk(KERN_NOTICE PFX "VIA PadLock Hash Engine not detected.\n");
...@@ -302,11 +543,21 @@ static int __init padlock_init(void) ...@@ -302,11 +543,21 @@ static int __init padlock_init(void)
return -ENODEV; return -ENODEV;
} }
rc = crypto_register_shash(&sha1_alg); /* Register the newly added algorithm module if on *
* VIA Nano processor, or else just do as before */
if (c->x86_model < 0x0f) {
sha1 = &sha1_alg;
sha256 = &sha256_alg;
} else {
sha1 = &sha1_alg_nano;
sha256 = &sha256_alg_nano;
}
rc = crypto_register_shash(sha1);
if (rc) if (rc)
goto out; goto out;
rc = crypto_register_shash(&sha256_alg); rc = crypto_register_shash(sha256);
if (rc) if (rc)
goto out_unreg1; goto out_unreg1;
...@@ -315,7 +566,8 @@ static int __init padlock_init(void) ...@@ -315,7 +566,8 @@ static int __init padlock_init(void)
return 0; return 0;
out_unreg1: out_unreg1:
crypto_unregister_shash(&sha1_alg); crypto_unregister_shash(sha1);
out: out:
printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n"); printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
return rc; return rc;
...@@ -323,8 +575,15 @@ static int __init padlock_init(void) ...@@ -323,8 +575,15 @@ static int __init padlock_init(void)
static void __exit padlock_fini(void) static void __exit padlock_fini(void)
{ {
crypto_unregister_shash(&sha1_alg); struct cpuinfo_x86 *c = &cpu_data(0);
crypto_unregister_shash(&sha256_alg);
if (c->x86_model >= 0x0f) {
crypto_unregister_shash(&sha1_alg_nano);
crypto_unregister_shash(&sha256_alg_nano);
} else {
crypto_unregister_shash(&sha1_alg);
crypto_unregister_shash(&sha256_alg);
}
} }
module_init(padlock_init); module_init(padlock_init);
......
...@@ -176,6 +176,8 @@ struct spacc_aead_ctx { ...@@ -176,6 +176,8 @@ struct spacc_aead_ctx {
u8 salt[AES_BLOCK_SIZE]; u8 salt[AES_BLOCK_SIZE];
}; };
static int spacc_ablk_submit(struct spacc_req *req);
static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg) static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
{ {
return alg ? container_of(alg, struct spacc_alg, alg) : NULL; return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
...@@ -666,6 +668,24 @@ static int spacc_aead_submit(struct spacc_req *req) ...@@ -666,6 +668,24 @@ static int spacc_aead_submit(struct spacc_req *req)
return -EINPROGRESS; return -EINPROGRESS;
} }
static int spacc_req_submit(struct spacc_req *req);
static void spacc_push(struct spacc_engine *engine)
{
struct spacc_req *req;
while (!list_empty(&engine->pending) &&
engine->in_flight + 1 <= engine->fifo_sz) {
++engine->in_flight;
req = list_first_entry(&engine->pending, struct spacc_req,
list);
list_move_tail(&req->list, &engine->in_progress);
req->result = spacc_req_submit(req);
}
}
/* /*
* Setup an AEAD request for processing. This will configure the engine, load * Setup an AEAD request for processing. This will configure the engine, load
* the context and then start the packet processing. * the context and then start the packet processing.
...@@ -698,7 +718,8 @@ static int spacc_aead_setup(struct aead_request *req, u8 *giv, ...@@ -698,7 +718,8 @@ static int spacc_aead_setup(struct aead_request *req, u8 *giv,
err = -EINPROGRESS; err = -EINPROGRESS;
spin_lock_irqsave(&engine->hw_lock, flags); spin_lock_irqsave(&engine->hw_lock, flags);
if (unlikely(spacc_fifo_cmd_full(engine))) { if (unlikely(spacc_fifo_cmd_full(engine)) ||
engine->in_flight + 1 > engine->fifo_sz) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -EBUSY; err = -EBUSY;
spin_unlock_irqrestore(&engine->hw_lock, flags); spin_unlock_irqrestore(&engine->hw_lock, flags);
...@@ -706,9 +727,8 @@ static int spacc_aead_setup(struct aead_request *req, u8 *giv, ...@@ -706,9 +727,8 @@ static int spacc_aead_setup(struct aead_request *req, u8 *giv,
} }
list_add_tail(&dev_req->list, &engine->pending); list_add_tail(&dev_req->list, &engine->pending);
} else { } else {
++engine->in_flight; list_add_tail(&dev_req->list, &engine->pending);
list_add_tail(&dev_req->list, &engine->in_progress); spacc_push(engine);
spacc_aead_submit(dev_req);
} }
spin_unlock_irqrestore(&engine->hw_lock, flags); spin_unlock_irqrestore(&engine->hw_lock, flags);
...@@ -1041,7 +1061,8 @@ static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type, ...@@ -1041,7 +1061,8 @@ static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
* we either stick it on the end of a pending list if we can backlog, * we either stick it on the end of a pending list if we can backlog,
* or bailout with an error if not. * or bailout with an error if not.
*/ */
if (unlikely(spacc_fifo_cmd_full(engine))) { if (unlikely(spacc_fifo_cmd_full(engine)) ||
engine->in_flight + 1 > engine->fifo_sz) {
if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) { if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
err = -EBUSY; err = -EBUSY;
spin_unlock_irqrestore(&engine->hw_lock, flags); spin_unlock_irqrestore(&engine->hw_lock, flags);
...@@ -1049,9 +1070,8 @@ static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type, ...@@ -1049,9 +1070,8 @@ static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
} }
list_add_tail(&dev_req->list, &engine->pending); list_add_tail(&dev_req->list, &engine->pending);
} else { } else {
++engine->in_flight; list_add_tail(&dev_req->list, &engine->pending);
list_add_tail(&dev_req->list, &engine->in_progress); spacc_push(engine);
spacc_ablk_submit(dev_req);
} }
spin_unlock_irqrestore(&engine->hw_lock, flags); spin_unlock_irqrestore(&engine->hw_lock, flags);
...@@ -1139,6 +1159,7 @@ static void spacc_process_done(struct spacc_engine *engine) ...@@ -1139,6 +1159,7 @@ static void spacc_process_done(struct spacc_engine *engine)
req = list_first_entry(&engine->in_progress, struct spacc_req, req = list_first_entry(&engine->in_progress, struct spacc_req,
list); list);
list_move_tail(&req->list, &engine->completed); list_move_tail(&req->list, &engine->completed);
--engine->in_flight;
/* POP the status register. */ /* POP the status register. */
writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET); writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
...@@ -1208,36 +1229,21 @@ static void spacc_spacc_complete(unsigned long data) ...@@ -1208,36 +1229,21 @@ static void spacc_spacc_complete(unsigned long data)
struct spacc_engine *engine = (struct spacc_engine *)data; struct spacc_engine *engine = (struct spacc_engine *)data;
struct spacc_req *req, *tmp; struct spacc_req *req, *tmp;
unsigned long flags; unsigned long flags;
int num_removed = 0;
LIST_HEAD(completed); LIST_HEAD(completed);
spin_lock_irqsave(&engine->hw_lock, flags); spin_lock_irqsave(&engine->hw_lock, flags);
list_splice_init(&engine->completed, &completed); list_splice_init(&engine->completed, &completed);
spacc_push(engine);
if (engine->in_flight)
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
spin_unlock_irqrestore(&engine->hw_lock, flags); spin_unlock_irqrestore(&engine->hw_lock, flags);
list_for_each_entry_safe(req, tmp, &completed, list) { list_for_each_entry_safe(req, tmp, &completed, list) {
++num_removed;
req->complete(req); req->complete(req);
list_del(&req->list);
} }
/* Try and fill the engine back up again. */
spin_lock_irqsave(&engine->hw_lock, flags);
engine->in_flight -= num_removed;
list_for_each_entry_safe(req, tmp, &engine->pending, list) {
if (spacc_fifo_cmd_full(engine))
break;
list_move_tail(&req->list, &engine->in_progress);
++engine->in_flight;
req->result = spacc_req_submit(req);
}
if (engine->in_flight)
mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
spin_unlock_irqrestore(&engine->hw_lock, flags);
} }
#ifdef CONFIG_PM #ifdef CONFIG_PM
......
/*
* Cryptographic API.
*
* Support for Samsung S5PV210 HW acceleration.
*
* Copyright (C) 2011 NetUP Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/crypto.h>
#include <linux/interrupt.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/ctr.h>
#include <plat/cpu.h>
#include <plat/dma.h>
#define _SBF(s, v) ((v) << (s))
#define _BIT(b) _SBF(b, 1)
/* Feed control registers */
#define SSS_REG_FCINTSTAT 0x0000
#define SSS_FCINTSTAT_BRDMAINT _BIT(3)
#define SSS_FCINTSTAT_BTDMAINT _BIT(2)
#define SSS_FCINTSTAT_HRDMAINT _BIT(1)
#define SSS_FCINTSTAT_PKDMAINT _BIT(0)
#define SSS_REG_FCINTENSET 0x0004
#define SSS_FCINTENSET_BRDMAINTENSET _BIT(3)
#define SSS_FCINTENSET_BTDMAINTENSET _BIT(2)
#define SSS_FCINTENSET_HRDMAINTENSET _BIT(1)
#define SSS_FCINTENSET_PKDMAINTENSET _BIT(0)
#define SSS_REG_FCINTENCLR 0x0008
#define SSS_FCINTENCLR_BRDMAINTENCLR _BIT(3)
#define SSS_FCINTENCLR_BTDMAINTENCLR _BIT(2)
#define SSS_FCINTENCLR_HRDMAINTENCLR _BIT(1)
#define SSS_FCINTENCLR_PKDMAINTENCLR _BIT(0)
#define SSS_REG_FCINTPEND 0x000C
#define SSS_FCINTPEND_BRDMAINTP _BIT(3)
#define SSS_FCINTPEND_BTDMAINTP _BIT(2)
#define SSS_FCINTPEND_HRDMAINTP _BIT(1)
#define SSS_FCINTPEND_PKDMAINTP _BIT(0)
#define SSS_REG_FCFIFOSTAT 0x0010
#define SSS_FCFIFOSTAT_BRFIFOFUL _BIT(7)
#define SSS_FCFIFOSTAT_BRFIFOEMP _BIT(6)
#define SSS_FCFIFOSTAT_BTFIFOFUL _BIT(5)
#define SSS_FCFIFOSTAT_BTFIFOEMP _BIT(4)
#define SSS_FCFIFOSTAT_HRFIFOFUL _BIT(3)
#define SSS_FCFIFOSTAT_HRFIFOEMP _BIT(2)
#define SSS_FCFIFOSTAT_PKFIFOFUL _BIT(1)
#define SSS_FCFIFOSTAT_PKFIFOEMP _BIT(0)
#define SSS_REG_FCFIFOCTRL 0x0014
#define SSS_FCFIFOCTRL_DESSEL _BIT(2)
#define SSS_HASHIN_INDEPENDENT _SBF(0, 0x00)
#define SSS_HASHIN_CIPHER_INPUT _SBF(0, 0x01)
#define SSS_HASHIN_CIPHER_OUTPUT _SBF(0, 0x02)
#define SSS_REG_FCBRDMAS 0x0020
#define SSS_REG_FCBRDMAL 0x0024
#define SSS_REG_FCBRDMAC 0x0028
#define SSS_FCBRDMAC_BYTESWAP _BIT(1)
#define SSS_FCBRDMAC_FLUSH _BIT(0)
#define SSS_REG_FCBTDMAS 0x0030
#define SSS_REG_FCBTDMAL 0x0034
#define SSS_REG_FCBTDMAC 0x0038
#define SSS_FCBTDMAC_BYTESWAP _BIT(1)
#define SSS_FCBTDMAC_FLUSH _BIT(0)
#define SSS_REG_FCHRDMAS 0x0040
#define SSS_REG_FCHRDMAL 0x0044
#define SSS_REG_FCHRDMAC 0x0048
#define SSS_FCHRDMAC_BYTESWAP _BIT(1)
#define SSS_FCHRDMAC_FLUSH _BIT(0)
#define SSS_REG_FCPKDMAS 0x0050
#define SSS_REG_FCPKDMAL 0x0054
#define SSS_REG_FCPKDMAC 0x0058
#define SSS_FCPKDMAC_BYTESWAP _BIT(3)
#define SSS_FCPKDMAC_DESCEND _BIT(2)
#define SSS_FCPKDMAC_TRANSMIT _BIT(1)
#define SSS_FCPKDMAC_FLUSH _BIT(0)
#define SSS_REG_FCPKDMAO 0x005C
/* AES registers */
#define SSS_REG_AES_CONTROL 0x4000
#define SSS_AES_BYTESWAP_DI _BIT(11)
#define SSS_AES_BYTESWAP_DO _BIT(10)
#define SSS_AES_BYTESWAP_IV _BIT(9)
#define SSS_AES_BYTESWAP_CNT _BIT(8)
#define SSS_AES_BYTESWAP_KEY _BIT(7)
#define SSS_AES_KEY_CHANGE_MODE _BIT(6)
#define SSS_AES_KEY_SIZE_128 _SBF(4, 0x00)
#define SSS_AES_KEY_SIZE_192 _SBF(4, 0x01)
#define SSS_AES_KEY_SIZE_256 _SBF(4, 0x02)
#define SSS_AES_FIFO_MODE _BIT(3)
#define SSS_AES_CHAIN_MODE_ECB _SBF(1, 0x00)
#define SSS_AES_CHAIN_MODE_CBC _SBF(1, 0x01)
#define SSS_AES_CHAIN_MODE_CTR _SBF(1, 0x02)
#define SSS_AES_MODE_DECRYPT _BIT(0)
#define SSS_REG_AES_STATUS 0x4004
#define SSS_AES_BUSY _BIT(2)
#define SSS_AES_INPUT_READY _BIT(1)
#define SSS_AES_OUTPUT_READY _BIT(0)
#define SSS_REG_AES_IN_DATA(s) (0x4010 + (s << 2))
#define SSS_REG_AES_OUT_DATA(s) (0x4020 + (s << 2))
#define SSS_REG_AES_IV_DATA(s) (0x4030 + (s << 2))
#define SSS_REG_AES_CNT_DATA(s) (0x4040 + (s << 2))
#define SSS_REG_AES_KEY_DATA(s) (0x4080 + (s << 2))
#define SSS_REG(dev, reg) ((dev)->ioaddr + (SSS_REG_##reg))
#define SSS_READ(dev, reg) __raw_readl(SSS_REG(dev, reg))
#define SSS_WRITE(dev, reg, val) __raw_writel((val), SSS_REG(dev, reg))
/* HW engine modes */
#define FLAGS_AES_DECRYPT _BIT(0)
#define FLAGS_AES_MODE_MASK _SBF(1, 0x03)
#define FLAGS_AES_CBC _SBF(1, 0x01)
#define FLAGS_AES_CTR _SBF(1, 0x02)
#define AES_KEY_LEN 16
#define CRYPTO_QUEUE_LEN 1
struct s5p_aes_reqctx {
unsigned long mode;
};
struct s5p_aes_ctx {
struct s5p_aes_dev *dev;
uint8_t aes_key[AES_MAX_KEY_SIZE];
uint8_t nonce[CTR_RFC3686_NONCE_SIZE];
int keylen;
};
struct s5p_aes_dev {
struct device *dev;
struct clk *clk;
void __iomem *ioaddr;
int irq_hash;
int irq_fc;
struct ablkcipher_request *req;
struct s5p_aes_ctx *ctx;
struct scatterlist *sg_src;
struct scatterlist *sg_dst;
struct tasklet_struct tasklet;
struct crypto_queue queue;
bool busy;
spinlock_t lock;
};
static struct s5p_aes_dev *s5p_dev;
static void s5p_set_dma_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
SSS_WRITE(dev, FCBRDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBRDMAL, sg_dma_len(sg));
}
static void s5p_set_dma_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
SSS_WRITE(dev, FCBTDMAS, sg_dma_address(sg));
SSS_WRITE(dev, FCBTDMAL, sg_dma_len(sg));
}
static void s5p_aes_complete(struct s5p_aes_dev *dev, int err)
{
/* holding a lock outside */
dev->req->base.complete(&dev->req->base, err);
dev->busy = false;
}
static void s5p_unset_outdata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_dst, 1, DMA_FROM_DEVICE);
}
static void s5p_unset_indata(struct s5p_aes_dev *dev)
{
dma_unmap_sg(dev->dev, dev->sg_src, 1, DMA_TO_DEVICE);
}
static int s5p_set_outdata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
int err;
if (!IS_ALIGNED(sg_dma_len(sg), AES_BLOCK_SIZE)) {
err = -EINVAL;
goto exit;
}
if (!sg_dma_len(sg)) {
err = -EINVAL;
goto exit;
}
err = dma_map_sg(dev->dev, sg, 1, DMA_FROM_DEVICE);
if (!err) {
err = -ENOMEM;
goto exit;
}
dev->sg_dst = sg;
err = 0;
exit:
return err;
}
static int s5p_set_indata(struct s5p_aes_dev *dev, struct scatterlist *sg)
{
int err;
if (!IS_ALIGNED(sg_dma_len(sg), AES_BLOCK_SIZE)) {
err = -EINVAL;
goto exit;
}
if (!sg_dma_len(sg)) {
err = -EINVAL;
goto exit;
}
err = dma_map_sg(dev->dev, sg, 1, DMA_TO_DEVICE);
if (!err) {
err = -ENOMEM;
goto exit;
}
dev->sg_src = sg;
err = 0;
exit:
return err;
}
static void s5p_aes_tx(struct s5p_aes_dev *dev)
{
int err = 0;
s5p_unset_outdata(dev);
if (!sg_is_last(dev->sg_dst)) {
err = s5p_set_outdata(dev, sg_next(dev->sg_dst));
if (err) {
s5p_aes_complete(dev, err);
return;
}
s5p_set_dma_outdata(dev, dev->sg_dst);
} else
s5p_aes_complete(dev, err);
}
static void s5p_aes_rx(struct s5p_aes_dev *dev)
{
int err;
s5p_unset_indata(dev);
if (!sg_is_last(dev->sg_src)) {
err = s5p_set_indata(dev, sg_next(dev->sg_src));
if (err) {
s5p_aes_complete(dev, err);
return;
}
s5p_set_dma_indata(dev, dev->sg_src);
}
}
static irqreturn_t s5p_aes_interrupt(int irq, void *dev_id)
{
struct platform_device *pdev = dev_id;
struct s5p_aes_dev *dev = platform_get_drvdata(pdev);
uint32_t status;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
if (irq == dev->irq_fc) {
status = SSS_READ(dev, FCINTSTAT);
if (status & SSS_FCINTSTAT_BRDMAINT)
s5p_aes_rx(dev);
if (status & SSS_FCINTSTAT_BTDMAINT)
s5p_aes_tx(dev);
SSS_WRITE(dev, FCINTPEND, status);
}
spin_unlock_irqrestore(&dev->lock, flags);
return IRQ_HANDLED;
}
static void s5p_set_aes(struct s5p_aes_dev *dev,
uint8_t *key, uint8_t *iv, unsigned int keylen)
{
void __iomem *keystart;
memcpy(dev->ioaddr + SSS_REG_AES_IV_DATA(0), iv, 0x10);
if (keylen == AES_KEYSIZE_256)
keystart = dev->ioaddr + SSS_REG_AES_KEY_DATA(0);
else if (keylen == AES_KEYSIZE_192)
keystart = dev->ioaddr + SSS_REG_AES_KEY_DATA(2);
else
keystart = dev->ioaddr + SSS_REG_AES_KEY_DATA(4);
memcpy(keystart, key, keylen);
}
static void s5p_aes_crypt_start(struct s5p_aes_dev *dev, unsigned long mode)
{
struct ablkcipher_request *req = dev->req;
uint32_t aes_control;
int err;
unsigned long flags;
aes_control = SSS_AES_KEY_CHANGE_MODE;
if (mode & FLAGS_AES_DECRYPT)
aes_control |= SSS_AES_MODE_DECRYPT;
if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CBC)
aes_control |= SSS_AES_CHAIN_MODE_CBC;
else if ((mode & FLAGS_AES_MODE_MASK) == FLAGS_AES_CTR)
aes_control |= SSS_AES_CHAIN_MODE_CTR;
if (dev->ctx->keylen == AES_KEYSIZE_192)
aes_control |= SSS_AES_KEY_SIZE_192;
else if (dev->ctx->keylen == AES_KEYSIZE_256)
aes_control |= SSS_AES_KEY_SIZE_256;
aes_control |= SSS_AES_FIFO_MODE;
/* as a variant it is possible to use byte swapping on DMA side */
aes_control |= SSS_AES_BYTESWAP_DI
| SSS_AES_BYTESWAP_DO
| SSS_AES_BYTESWAP_IV
| SSS_AES_BYTESWAP_KEY
| SSS_AES_BYTESWAP_CNT;
spin_lock_irqsave(&dev->lock, flags);
SSS_WRITE(dev, FCINTENCLR,
SSS_FCINTENCLR_BTDMAINTENCLR | SSS_FCINTENCLR_BRDMAINTENCLR);
SSS_WRITE(dev, FCFIFOCTRL, 0x00);
err = s5p_set_indata(dev, req->src);
if (err)
goto indata_error;
err = s5p_set_outdata(dev, req->dst);
if (err)
goto outdata_error;
SSS_WRITE(dev, AES_CONTROL, aes_control);
s5p_set_aes(dev, dev->ctx->aes_key, req->info, dev->ctx->keylen);
s5p_set_dma_indata(dev, req->src);
s5p_set_dma_outdata(dev, req->dst);
SSS_WRITE(dev, FCINTENSET,
SSS_FCINTENSET_BTDMAINTENSET | SSS_FCINTENSET_BRDMAINTENSET);
spin_unlock_irqrestore(&dev->lock, flags);
return;
outdata_error:
s5p_unset_indata(dev);
indata_error:
s5p_aes_complete(dev, err);
spin_unlock_irqrestore(&dev->lock, flags);
}
static void s5p_tasklet_cb(unsigned long data)
{
struct s5p_aes_dev *dev = (struct s5p_aes_dev *)data;
struct crypto_async_request *async_req, *backlog;
struct s5p_aes_reqctx *reqctx;
unsigned long flags;
spin_lock_irqsave(&dev->lock, flags);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_irqrestore(&dev->lock, flags);
if (!async_req)
return;
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
dev->req = ablkcipher_request_cast(async_req);
dev->ctx = crypto_tfm_ctx(dev->req->base.tfm);
reqctx = ablkcipher_request_ctx(dev->req);
s5p_aes_crypt_start(dev, reqctx->mode);
}
static int s5p_aes_handle_req(struct s5p_aes_dev *dev,
struct ablkcipher_request *req)
{
unsigned long flags;
int err;
spin_lock_irqsave(&dev->lock, flags);
if (dev->busy) {
err = -EAGAIN;
spin_unlock_irqrestore(&dev->lock, flags);
goto exit;
}
dev->busy = true;
err = ablkcipher_enqueue_request(&dev->queue, req);
spin_unlock_irqrestore(&dev->lock, flags);
tasklet_schedule(&dev->tasklet);
exit:
return err;
}
static int s5p_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
{
struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
struct s5p_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm);
struct s5p_aes_reqctx *reqctx = ablkcipher_request_ctx(req);
struct s5p_aes_dev *dev = ctx->dev;
if (!IS_ALIGNED(req->nbytes, AES_BLOCK_SIZE)) {
pr_err("request size is not exact amount of AES blocks\n");
return -EINVAL;
}
reqctx->mode = mode;
return s5p_aes_handle_req(dev, req);
}
static int s5p_aes_setkey(struct crypto_ablkcipher *cipher,
const uint8_t *key, unsigned int keylen)
{
struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
if (keylen != AES_KEYSIZE_128 &&
keylen != AES_KEYSIZE_192 &&
keylen != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->aes_key, key, keylen);
ctx->keylen = keylen;
return 0;
}
static int s5p_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, 0);
}
static int s5p_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT);
}
static int s5p_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_CBC);
}
static int s5p_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return s5p_aes_crypt(req, FLAGS_AES_DECRYPT | FLAGS_AES_CBC);
}
static int s5p_aes_cra_init(struct crypto_tfm *tfm)
{
struct s5p_aes_ctx *ctx = crypto_tfm_ctx(tfm);
ctx->dev = s5p_dev;
tfm->crt_ablkcipher.reqsize = sizeof(struct s5p_aes_reqctx);
return 0;
}
static struct crypto_alg algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-s5p",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.cra_alignmask = 0x0f,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = s5p_aes_cra_init,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_ecb_encrypt,
.decrypt = s5p_aes_ecb_decrypt,
}
},
{
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-s5p",
.cra_priority = 100,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct s5p_aes_ctx),
.cra_alignmask = 0x0f,
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_init = s5p_aes_cra_init,
.cra_u.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = s5p_aes_setkey,
.encrypt = s5p_aes_cbc_encrypt,
.decrypt = s5p_aes_cbc_decrypt,
}
},
};
static int s5p_aes_probe(struct platform_device *pdev)
{
int i, j, err = -ENODEV;
struct s5p_aes_dev *pdata;
struct device *dev = &pdev->dev;
struct resource *res;
if (s5p_dev)
return -EEXIST;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
if (!pdata)
return -ENOMEM;
if (!devm_request_mem_region(dev, res->start,
resource_size(res), pdev->name))
return -EBUSY;
pdata->clk = clk_get(dev, "secss");
if (IS_ERR(pdata->clk)) {
dev_err(dev, "failed to find secss clock source\n");
return -ENOENT;
}
clk_enable(pdata->clk);
spin_lock_init(&pdata->lock);
pdata->ioaddr = devm_ioremap(dev, res->start,
resource_size(res));
pdata->irq_hash = platform_get_irq_byname(pdev, "hash");
if (pdata->irq_hash < 0) {
err = pdata->irq_hash;
dev_warn(dev, "hash interrupt is not available.\n");
goto err_irq;
}
err = devm_request_irq(dev, pdata->irq_hash, s5p_aes_interrupt,
IRQF_SHARED, pdev->name, pdev);
if (err < 0) {
dev_warn(dev, "hash interrupt is not available.\n");
goto err_irq;
}
pdata->irq_fc = platform_get_irq_byname(pdev, "feed control");
if (pdata->irq_fc < 0) {
err = pdata->irq_fc;
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
err = devm_request_irq(dev, pdata->irq_fc, s5p_aes_interrupt,
IRQF_SHARED, pdev->name, pdev);
if (err < 0) {
dev_warn(dev, "feed control interrupt is not available.\n");
goto err_irq;
}
pdata->dev = dev;
platform_set_drvdata(pdev, pdata);
s5p_dev = pdata;
tasklet_init(&pdata->tasklet, s5p_tasklet_cb, (unsigned long)pdata);
crypto_init_queue(&pdata->queue, CRYPTO_QUEUE_LEN);
for (i = 0; i < ARRAY_SIZE(algs); i++) {
INIT_LIST_HEAD(&algs[i].cra_list);
err = crypto_register_alg(&algs[i]);
if (err)
goto err_algs;
}
pr_info("s5p-sss driver registered\n");
return 0;
err_algs:
dev_err(dev, "can't register '%s': %d\n", algs[i].cra_name, err);
for (j = 0; j < i; j++)
crypto_unregister_alg(&algs[j]);
tasklet_kill(&pdata->tasklet);
err_irq:
clk_disable(pdata->clk);
clk_put(pdata->clk);
s5p_dev = NULL;
platform_set_drvdata(pdev, NULL);
return err;
}
static int s5p_aes_remove(struct platform_device *pdev)
{
struct s5p_aes_dev *pdata = platform_get_drvdata(pdev);
int i;
if (!pdata)
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(algs); i++)
crypto_unregister_alg(&algs[i]);
tasklet_kill(&pdata->tasklet);
clk_disable(pdata->clk);
clk_put(pdata->clk);
s5p_dev = NULL;
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver s5p_aes_crypto = {
.probe = s5p_aes_probe,
.remove = s5p_aes_remove,
.driver = {
.owner = THIS_MODULE,
.name = "s5p-secss",
},
};
static int __init s5p_aes_mod_init(void)
{
return platform_driver_register(&s5p_aes_crypto);
}
static void __exit s5p_aes_mod_exit(void)
{
platform_driver_unregister(&s5p_aes_crypto);
}
module_init(s5p_aes_mod_init);
module_exit(s5p_aes_mod_exit);
MODULE_DESCRIPTION("S5PV210 AES hw acceleration support.");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Vladimir Zapolskiy <vzapolskiy@gmail.com>");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment