Commit 0a96806b authored by Dave Jones's avatar Dave Jones Committed by Jeff Garzik

Merge au1000_eth net drvr updates from 2.4.x:

* add support for LSI 10/100 phy
* other minor cleanups
parent af04d868
......@@ -48,6 +48,7 @@
#include <linux/skbuff.h>
#include <linux/delay.h>
#include <linux/crc32.h>
#include <asm/mipsregs.h>
#include <asm/irq.h>
#include <asm/bitops.h>
#include <asm/io.h>
......@@ -65,6 +66,7 @@ static int au1000_debug = 3;
static void *dma_alloc(size_t, dma_addr_t *);
static void dma_free(void *, size_t);
static void hard_stop(struct net_device *);
static void enable_rx_tx(struct net_device *dev);
static int __init au1000_probe1(struct net_device *, long, int, int);
static int au1000_init(struct net_device *);
static int au1000_open(struct net_device *);
......@@ -79,15 +81,17 @@ static struct net_device_stats *au1000_get_stats(struct net_device *);
static inline void update_tx_stats(struct net_device *, u32, u32);
static inline void update_rx_stats(struct net_device *, u32);
static void au1000_timer(unsigned long);
static void cleanup_buffers(struct net_device *);
static int au1000_ioctl(struct net_device *, struct ifreq *, int);
static int mdio_read(struct net_device *, int, int);
static void mdio_write(struct net_device *, int, int, u16);
static inline void sync(void);
static void dump_mii(struct net_device *dev, int phy_id);
// externs
extern void ack_rise_edge_irq(unsigned int);
static int next_dev;
extern int get_ethernet_addr(char *ethernet_addr);
extern inline void str2eaddr(unsigned char *ea, unsigned char *str);
extern inline unsigned char str2hexnum(unsigned char c);
extern char * __init prom_getcmdline(void);
/*
* Theory of operation
......@@ -106,24 +110,30 @@ static int next_dev;
/*
* Base address and interupt of the Au1000 ethernet macs
* Base address and interupt of the Au1xxx ethernet macs
*/
static struct {
unsigned int port;
int irq;
} au1000_iflist[NUM_INTERFACES] = {
{AU1000_ETH0_BASE, AU1000_ETH0_IRQ},
{AU1000_ETH1_BASE, AU1000_ETH1_IRQ}
};
{AU1000_ETH0_BASE, AU1000_ETH0_IRQ},
{AU1000_ETH1_BASE, AU1000_ETH1_IRQ}
},
au1500_iflist[NUM_INTERFACES] = {
{AU1500_ETH0_BASE, AU1000_ETH0_IRQ},
{AU1500_ETH1_BASE, AU1000_ETH1_IRQ}
};
static char version[] __devinitdata =
"au1000eth.c:0.1 ppopov@mvista.com\n";
"au1000eth.c:1.0 ppopov@mvista.com\n";
// FIX! Need real Ethernet addresses
static unsigned char au1000_mac_addr[2][6] __devinitdata = {
{0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00},
{0x00, 0x50, 0xc2, 0x0c, 0x40, 0x00}
/* These addresses are only used if yamon doesn't tell us what
* the mac address is, and the mac address is not passed on the
* command line.
*/
static unsigned char au1000_mac_addr[6] __devinitdata = {
0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
};
#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
......@@ -133,11 +143,6 @@ static unsigned char au1000_mac_addr[2][6] __devinitdata = {
#define cpu_to_dma32 cpu_to_be32
#define dma32_to_cpu be32_to_cpu
/* CPU pipeline flush */
static inline void sync(void)
{
asm volatile ("sync");
}
/* FIXME
* All of the PHY code really should be detached from the MAC
......@@ -148,7 +153,8 @@ static char *phy_link[] =
{"unknown",
"10Base2", "10BaseT",
"AUI",
"100BaseT", "100BaseTX", "100BaseFX"};
"100BaseT", "100BaseTX", "100BaseFX"
};
int bcm_5201_init(struct net_device *dev, int phy_addr)
{
......@@ -169,7 +175,8 @@ int bcm_5201_init(struct net_device *dev, int phy_addr)
data = mdio_read(dev, phy_addr, MII_CONTROL);
data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
mdio_write(dev, phy_addr, MII_CONTROL, data);
//dump_mii(dev, phy_addr);
if (au1000_debug > 4) dump_mii(dev, phy_addr);
return 0;
}
......@@ -229,10 +236,91 @@ bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
else {
*link = 0;
*speed = 0;
dev->if_port = IF_PORT_UNKNOWN;
}
return 0;
}
int lsi_80227_init(struct net_device *dev, int phy_addr)
{
if (au1000_debug > 4)
printk("lsi_80227_init\n");
/* restart auto-negotiation */
mdio_write(dev, phy_addr, 0, 0x3200);
/* set up LEDs to correct display */
mdio_write(dev, phy_addr, 17, 0xffc0);
if (au1000_debug > 4)
dump_mii(dev, phy_addr);
return 0;
}
int lsi_80227_reset(struct net_device *dev, int phy_addr)
{
s16 mii_control, timeout;
if (au1000_debug > 4) {
printk("lsi_80227_reset\n");
dump_mii(dev, phy_addr);
}
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
mdelay(1);
for (timeout = 100; timeout > 0; --timeout) {
mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
if ((mii_control & MII_CNTL_RESET) == 0)
break;
mdelay(1);
}
if (mii_control & MII_CNTL_RESET) {
printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
return -1;
}
return 0;
}
int
lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
{
u16 mii_data;
struct au1000_private *aup;
if (!dev) {
printk(KERN_ERR "lsi_80227_status error: NULL dev\n");
return -1;
}
aup = (struct au1000_private *) dev->priv;
mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
if (mii_data & MII_STAT_LINK) {
*link = 1;
mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_STAT);
if (mii_data & MII_LSI_STAT_SPD) {
if (mii_data & MII_LSI_STAT_FDX) {
*speed = IF_PORT_100BASEFX;
dev->if_port = IF_PORT_100BASEFX;
}
else {
*speed = IF_PORT_100BASETX;
dev->if_port = IF_PORT_100BASETX;
}
}
else {
*speed = IF_PORT_10BASET;
dev->if_port = IF_PORT_10BASET;
}
}
else {
*link = 0;
*speed = 0;
dev->if_port = IF_PORT_UNKNOWN;
}
return 0;
}
int am79c901_init(struct net_device *dev, int phy_addr)
{
......@@ -264,6 +352,12 @@ struct phy_ops am79c901_ops = {
am79c901_status,
};
struct phy_ops lsi_80227_ops = {
lsi_80227_init,
lsi_80227_reset,
lsi_80227_status,
};
static struct mii_chip_info {
const char * name;
u16 phy_id0;
......@@ -272,6 +366,7 @@ static struct mii_chip_info {
} mii_chip_table[] = {
{"Broadcom BCM5201 10/100 BaseT PHY", 0x0040, 0x6212, &bcm_5201_ops },
{"AMD 79C901 HomePNA PHY", 0x0000, 0x35c8, &am79c901_ops },
{"LSI 80227 10/100 BaseT PHY", 0x0016, 0xf840, &lsi_80227_ops },
{0,},
};
......@@ -284,7 +379,8 @@ static int mdio_read(struct net_device *dev, int phy_id, int reg)
while (aup->mac->mii_control & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: read_MII busy timeout!!\n", dev->name);
printk(KERN_ERR "%s: read_MII busy timeout!!\n",
dev->name);
return -1;
}
}
......@@ -298,7 +394,8 @@ static int mdio_read(struct net_device *dev, int phy_id, int reg)
while (aup->mac->mii_control & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: mdio_read busy timeout!!\n", dev->name);
printk(KERN_ERR "%s: mdio_read busy timeout!!\n",
dev->name);
return -1;
}
}
......@@ -314,7 +411,8 @@ static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
while (aup->mac->mii_control & MAC_MII_BUSY) {
mdelay(1);
if (--timedout == 0) {
printk(KERN_ERR "%s: mdio_write busy timeout!!\n", dev->name);
printk(KERN_ERR "%s: mdio_write busy timeout!!\n",
dev->name);
return;
}
}
......@@ -363,25 +461,34 @@ static int __init mii_probe (struct net_device * dev)
phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1);
/* search our mii table for the current mii */
for (i = 0; mii_chip_table[i].phy_id1; i++)
for (i = 0; mii_chip_table[i].phy_id1; i++) {
if (phy_id0 == mii_chip_table[i].phy_id0 &&
phy_id1 == mii_chip_table[i].phy_id1) {
struct mii_phy * mii_phy;
printk(KERN_INFO "%s: %s found at phy address %d\n",
dev->name, mii_chip_table[i].name, phy_addr);
if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) != NULL) {
printk(KERN_INFO "%s: %s at phy address %d\n",
dev->name, mii_chip_table[i].name,
phy_addr);
mii_phy = kmalloc(sizeof(struct mii_phy),
GFP_KERNEL);
if (mii_phy) {
mii_phy->chip_info = mii_chip_table+i;
mii_phy->phy_addr = phy_addr;
//mii_phy->status = mdio_read(dev, phy_addr, MII_STATUS);
mii_phy->next = aup->mii;
aup->phy_ops = mii_chip_table[i].phy_ops;
aup->phy_ops =
mii_chip_table[i].phy_ops;
aup->mii = mii_phy;
aup->phy_ops->phy_init(dev,phy_addr);
} else {
printk(KERN_ERR "%s: out of memory\n",
dev->name);
return -1;
}
/* the current mii is on our mii_info_table,
try next address */
break;
}
}
}
if (aup->mii == NULL) {
......@@ -391,7 +498,8 @@ static int __init mii_probe (struct net_device * dev)
/* use last PHY */
aup->phy_addr = aup->mii->phy_addr;
printk(KERN_INFO "%s: Using %s as default\n", dev->name, aup->mii->chip_info->name);
printk(KERN_INFO "%s: Using %s as default\n",
dev->name, aup->mii->chip_info->name);
return 0;
}
......@@ -438,7 +546,7 @@ static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
if (ret != NULL) {
memset(ret, 0, size);
*dma_handle = virt_to_bus(ret);
ret = KSEG0ADDR(ret);
ret = (void *)KSEG0ADDR(ret);
}
return ret;
}
......@@ -446,11 +554,22 @@ static void *dma_alloc(size_t size, dma_addr_t * dma_handle)
static void dma_free(void *vaddr, size_t size)
{
vaddr = KSEG0ADDR(vaddr);
vaddr = (void *)KSEG0ADDR(vaddr);
free_pages((unsigned long) vaddr, get_order(size));
}
static void enable_rx_tx(struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
if (au1000_debug > 4)
printk(KERN_INFO "%s: enable_rx_tx\n", dev->name);
aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE);
au_sync_delay(10);
}
static void hard_stop(struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
......@@ -459,8 +578,7 @@ static void hard_stop(struct net_device *dev)
printk(KERN_INFO "%s: hard stop\n", dev->name);
aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE);
sync();
mdelay(10);
au_sync_delay(10);
}
......@@ -469,39 +587,21 @@ static void reset_mac(struct net_device *dev)
u32 flags;
struct au1000_private *aup = (struct au1000_private *) dev->priv;
if (au1000_debug > 4)
printk(KERN_INFO "%s: reset mac, aup %x\n", dev->name, (unsigned)aup);
if (au1000_debug > 4)
printk(KERN_INFO "%s: reset mac, aup %x\n",
dev->name, (unsigned)aup);
spin_lock_irqsave(&aup->lock, flags);
del_timer(&aup->timer);
hard_stop(dev);
*aup->enable |= MAC_DMA_RESET;
sync();
mdelay(10);
*aup->enable = MAC_EN_CLOCK_ENABLE;
au_sync_delay(2);
*aup->enable = 0;
au_sync_delay(2);
aup->tx_full = 0;
spin_unlock_irqrestore(&aup->lock, flags);
}
static void cleanup_buffers(struct net_device *dev)
{
int i;
struct au1000_private *aup = (struct au1000_private *) dev->priv;
for (i=0; i<NUM_RX_DMA; i++) {
if (aup->rx_db_inuse[i]) {
ReleaseDB(aup, aup->rx_db_inuse[i]);
aup->rx_db_inuse[i] = 0;
}
}
for (i=0; i<NUM_TX_DMA; i++) {
if (aup->tx_db_inuse[i]) {
ReleaseDB(aup, aup->tx_db_inuse[i]);
aup->tx_db_inuse[i] = 0;
}
}
}
/*
* Setup the receive and transmit "rings". These pointers are the addresses
......@@ -514,44 +614,40 @@ setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base)
int i;
for (i=0; i<NUM_RX_DMA; i++) {
aup->rx_dma_ring[i] = (volatile rx_dma_t *) ioremap_nocache((unsigned long)
(rx_base + sizeof(rx_dma_t)*i), sizeof(rx_dma_t));
aup->rx_dma_ring[i] =
(volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i);
}
for (i=0; i<NUM_TX_DMA; i++) {
aup->tx_dma_ring[i] = (volatile tx_dma_t *)ioremap_nocache((unsigned long)
(tx_base + sizeof(tx_dma_t)*i), sizeof(tx_dma_t));
aup->tx_dma_ring[i] =
(volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i);
}
}
/*
* Probe for a AU1000 ethernet controller.
*/
int __init au1000_probe(struct net_device *dev)
static int __init au1000_init_module(void)
{
int base_addr = au1000_iflist[next_dev].port;
int irq = au1000_iflist[next_dev].irq;
#ifndef CONFIG_MIPS_AU1000_ENET
return -ENODEV;
#endif
if (au1000_debug > 4)
printk(KERN_INFO "%s: au1000_probe base_addr %x\n",
dev->name, base_addr);
if (next_dev >= NUM_INTERFACES) {
return -ENODEV;
}
if (au1000_probe1(dev, base_addr, irq, next_dev) == 0) {
next_dev++;
return 0;
int i;
int prid;
int base_addr, irq;
prid = read_32bit_cp0_register(CP0_PRID);
for (i=0; i<NUM_INTERFACES; i++) {
if ( (prid & 0xffff0000) == 0x00030000 ) {
base_addr = au1000_iflist[i].port;
irq = au1000_iflist[i].irq;
} else if ( (prid & 0xffff0000) == 0x01030000 ) {
base_addr = au1500_iflist[i].port;
irq = au1500_iflist[i].irq;
} else {
printk(KERN_ERR "au1000 eth: unknown Processor ID\n");
return -ENODEV;
}
if (au1000_probe1(NULL, base_addr, irq, i) != 0) {
return -ENODEV;
}
}
next_dev++;
return -ENODEV;
return 0;
}
static int __init
au1000_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
{
......@@ -559,11 +655,8 @@ au1000_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
struct au1000_private *aup = NULL;
int i, retval = 0;
db_dest_t *pDB, *pDBfree;
u16 link, speed;
if ((ioaddr != AU1000_ETH0_BASE) && (ioaddr != AU1000_ETH1_BASE)) {
return -ENODEV;
}
char *pmac, *argptr;
char ethaddr[6];
if (!request_region(ioaddr, MAC_IOSIZE, "Au1000 ENET")) {
return -ENODEV;
......@@ -579,13 +672,13 @@ au1000_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
return -ENODEV;
}
printk("%s: Au1000 ethernet found at 0x%lx, irq %d\n",
dev->name, ioaddr, irq);
printk("%s: Au1xxx ethernet found at 0x%lx, irq %d\n",
dev->name, ioaddr, irq);
/* Initialize our private structure */
if (dev->priv == NULL) {
aup = (struct au1000_private *) kmalloc(sizeof(*aup), GFP_KERNEL);
aup = (struct au1000_private *)
kmalloc(sizeof(*aup), GFP_KERNEL);
if (aup == NULL) {
retval = -ENOMEM;
goto free_region;
......@@ -598,52 +691,75 @@ au1000_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
/* Allocate the data buffers */
aup->vaddr = (u32)dma_alloc(MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), &aup->dma_addr);
aup->vaddr = (u32)dma_alloc(MAX_BUF_SIZE *
(NUM_TX_BUFFS+NUM_RX_BUFFS), &aup->dma_addr);
if (!aup->vaddr) {
retval = -ENOMEM;
goto free_region;
}
/* aup->mac is the base address of the MAC's registers */
aup->mac = (volatile mac_reg_t *)ioremap_nocache((unsigned long)ioaddr, sizeof(*aup->mac));
aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr);
/* Setup some variables for quick register address access */
if (ioaddr == AU1000_ETH0_BASE) {
aup->enable = (volatile u32 *)
ioremap_nocache((unsigned long)MAC0_ENABLE, sizeof(*aup->enable));
memcpy(dev->dev_addr, au1000_mac_addr[0], sizeof(dev->dev_addr));
switch (ioaddr) {
case AU1000_ETH0_BASE:
case AU1500_ETH0_BASE:
/* check env variables first */
if (!get_ethernet_addr(ethaddr)) {
memcpy(au1000_mac_addr, ethaddr, sizeof(dev->dev_addr));
} else {
/* Check command line */
argptr = prom_getcmdline();
if ((pmac = strstr(argptr, "ethaddr=")) == NULL) {
printk(KERN_INFO "%s: No mac address found\n",
dev->name);
/* use the hard coded mac addresses */
} else {
str2eaddr(ethaddr, pmac + strlen("ethaddr="));
memcpy(au1000_mac_addr, ethaddr,
sizeof(dev->dev_addr));
}
}
if (ioaddr == AU1000_ETH0_BASE)
aup->enable = (volatile u32 *)
((unsigned long)AU1000_MAC0_ENABLE);
else
aup->enable = (volatile u32 *)
((unsigned long)AU1500_MAC0_ENABLE);
memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr));
setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR);
}
else if (ioaddr == AU1000_ETH1_BASE) {
aup->enable = (volatile u32 *)
ioremap_nocache((unsigned long)MAC1_ENABLE, sizeof(*aup->enable));
memcpy(dev->dev_addr, au1000_mac_addr[1], sizeof(dev->dev_addr));
break;
case AU1000_ETH1_BASE:
case AU1500_ETH1_BASE:
if (ioaddr == AU1000_ETH1_BASE)
aup->enable = (volatile u32 *)
((unsigned long)AU1000_MAC1_ENABLE);
else
aup->enable = (volatile u32 *)
((unsigned long)AU1500_MAC1_ENABLE);
memcpy(dev->dev_addr, au1000_mac_addr, sizeof(dev->dev_addr));
dev->dev_addr[4] += 0x10;
setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR);
}
else { /* should never happen */
printk (KERN_ERR "au1000 eth: bad ioaddr %x\n", (unsigned)ioaddr);
retval = -ENODEV;
goto free_region;
break;
default:
printk(KERN_ERR "%s: bad ioaddr\n", dev->name);
break;
}
aup->phy_addr = PHY_ADDRESS;
/* bring the device out of reset, otherwise probing the mii
* will hang */
*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 |
MAC_EN_CLOCK_ENABLE | MAC_EN_TOSS;
sync();
mdelay(2);
*aup->enable = MAC_EN_CLOCK_ENABLE;
au_sync_delay(2);
*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
au_sync_delay(2);
if (mii_probe(dev) != 0) {
goto free_region;
}
aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
if (!link) {
printk(KERN_INFO "%s: link down resetting...\n", dev->name);
aup->phy_ops->phy_reset(dev, aup->phy_addr);
aup->phy_ops->phy_init(dev, aup->phy_addr);
}
else {
printk(KERN_INFO "%s: link up (%s)\n", dev->name, phy_link[speed]);
}
pDBfree = NULL;
/* setup the data buffer descriptors and attach a buffer to each one */
......@@ -689,18 +805,18 @@ au1000_probe1(struct net_device *dev, long ioaddr, int irq, int port_num)
ether_setup(dev);
/*
* The boot code uses the ethernet controller, so reset it to start fresh.
* au1000_init() expects that the device is in reset state.
* The boot code uses the ethernet controller, so reset it to start
* fresh. au1000_init() expects that the device is in reset state.
*/
reset_mac(dev);
return 0;
free_region:
release_region(ioaddr, MAC_IOSIZE);
unregister_netdev(dev);
if (aup->vaddr)
dma_free((void *)aup->vaddr, MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS));
if (aup->vaddr)
dma_free((void *)aup->vaddr,
MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS));
if (dev->priv != NULL)
kfree(dev->priv);
kfree(dev);
......@@ -724,18 +840,19 @@ static int au1000_init(struct net_device *dev)
struct au1000_private *aup = (struct au1000_private *) dev->priv;
u32 flags;
int i;
u32 value, control;
u32 control;
u16 link, speed;
if (au1000_debug > 4) printk("%s: au1000_init", dev->name);
if (au1000_debug > 4) printk("%s: au1000_init\n", dev->name);
spin_lock_irqsave(&aup->lock, flags);
/* bring the device out of reset */
value = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 |
MAC_EN_CLOCK_ENABLE | MAC_EN_TOSS;
*aup->enable = value;
sync();
mdelay(200);
*aup->enable = MAC_EN_CLOCK_ENABLE;
au_sync_delay(2);
*aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 |
MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
au_sync_delay(20);
aup->mac->control = 0;
aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
......@@ -749,13 +866,18 @@ static int au1000_init(struct net_device *dev)
for (i=0; i<NUM_RX_DMA; i++) {
aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE;
}
au_sync();
sync();
aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
#ifndef CONFIG_CPU_LITTLE_ENDIAN
control |= MAC_BIG_ENDIAN;
#endif
if (link && (dev->if_port == IF_PORT_100BASEFX)) {
control |= MAC_FULL_DUPLEX;
}
aup->mac->control = control;
au_sync();
spin_unlock_irqrestore(&aup->lock, flags);
return 0;
......@@ -765,23 +887,22 @@ static void au1000_timer(unsigned long data)
{
struct net_device *dev = (struct net_device *)data;
struct au1000_private *aup = (struct au1000_private *) dev->priv;
u16 mii_data, link, speed;
unsigned char if_port;
u16 link, speed;
if (!dev) {
/* fatal error, don't restart the timer */
printk(KERN_ERR "au1000_timer error: NULL dev\n");
return;
}
if (!(dev->flags & IFF_UP)) {
goto set_timer;
}
if_port = dev->if_port;
if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) {
if (link) {
if (!(dev->flags & IFF_RUNNING)) {
netif_carrier_on(dev);
dev->flags |= IFF_RUNNING;
printk(KERN_DEBUG "%s: link up\n", dev->name);
printk(KERN_INFO "%s: link up\n", dev->name);
}
}
else {
......@@ -789,12 +910,27 @@ static void au1000_timer(unsigned long data)
netif_carrier_off(dev);
dev->flags &= ~IFF_RUNNING;
dev->if_port = 0;
printk(KERN_DEBUG "%s: link down\n", dev->name);
printk(KERN_INFO "%s: link down\n", dev->name);
}
}
}
set_timer:
if (link && (dev->if_port != if_port) &&
(dev->if_port != IF_PORT_UNKNOWN)) {
hard_stop(dev);
if (dev->if_port == IF_PORT_100BASEFX) {
printk(KERN_INFO "%s: going to full duplex\n",
dev->name);
aup->mac->control |= MAC_FULL_DUPLEX;
au_sync_delay(1);
}
else {
aup->mac->control &= ~MAC_FULL_DUPLEX;
au_sync_delay(1);
}
enable_rx_tx(dev);
}
aup->timer.expires = RUN_AT((1*HZ));
aup->timer.data = (unsigned long)dev;
aup->timer.function = &au1000_timer; /* timer handler */
......@@ -820,8 +956,10 @@ static int au1000_open(struct net_device *dev)
}
netif_start_queue(dev);
if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name, dev->irq);
if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
dev->name, dev))) {
printk(KERN_ERR "%s: unable to get IRQ %d\n",
dev->name, dev->irq);
MOD_DEC_USE_COUNT;
return retval;
}
......@@ -861,8 +999,13 @@ static int au1000_close(struct net_device *dev)
return 0;
}
static void __exit au1000_cleanup_module(void)
{
}
static inline void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
static inline void
update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
struct net_device_stats *ps = &aup->stats;
......@@ -871,10 +1014,20 @@ static inline void update_tx_stats(struct net_device *dev, u32 status, u32 pkt_l
ps->tx_bytes += pkt_len;
if (status & TX_FRAME_ABORTED) {
ps->tx_errors++;
ps->tx_aborted_errors++;
if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
ps->tx_carrier_errors++;
if (dev->if_port == IF_PORT_100BASEFX) {
if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
/* any other tx errors are only valid
* in half duplex mode */
ps->tx_errors++;
ps->tx_aborted_errors++;
}
}
else {
ps->tx_errors++;
ps->tx_aborted_errors++;
if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER))
ps->tx_carrier_errors++;
}
}
}
......@@ -895,7 +1048,7 @@ static void au1000_tx_ack(struct net_device *dev)
update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff);
ptxd->buff_stat &= ~TX_T_DONE;
ptxd->len = 0;
sync();
au_sync();
aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1);
ptxd = aup->tx_dma_ring[aup->tx_tail];
......@@ -914,26 +1067,22 @@ static void au1000_tx_ack(struct net_device *dev)
static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
//unsigned long flags;
volatile tx_dma_t *ptxd;
u32 buff_stat;
db_dest_t *pDB;
int i;
if (au1000_debug > 4)
printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
dev->name, (unsigned)aup, skb->len, skb->data, aup->tx_head);
printk("%s: tx: aup %x len=%d, data=%p, head %d\n",
dev->name, (unsigned)aup, skb->len,
skb->data, aup->tx_head);
/* Prevent interrupts from changing the Tx ring */
//spin_lock_irqsave(&aup->lock, flags);
ptxd = aup->tx_dma_ring[aup->tx_head];
buff_stat = ptxd->buff_stat;
if (buff_stat & TX_DMA_ENABLE) {
/* We've wrapped around and the transmitter is still busy */
netif_stop_queue(dev);
aup->tx_full = 1;
//spin_unlock_irqrestore(&aup->lock, flags);
return 1;
}
else if (buff_stat & TX_T_DONE) {
......@@ -958,11 +1107,10 @@ static int au1000_tx(struct sk_buff *skb, struct net_device *dev)
ptxd->len = skb->len;
ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE;
sync();
au_sync();
dev_kfree_skb(skb);
aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1);
dev->trans_start = jiffies;
//spin_unlock_irqrestore(&aup->lock, flags);
return 0;
}
......@@ -1027,7 +1175,7 @@ static int au1000_rx(struct net_device *dev)
skb_reserve(skb, 2); /* 16 byte IP header align */
eth_copy_and_sum(skb, (unsigned char *)pDB->vaddr,
status & RX_FRAME_LEN_MASK, 0);
skb_put(skb, status & RX_FRAME_LEN_MASK); /* Make room */
skb_put(skb, status & RX_FRAME_LEN_MASK);
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb); /* pass the packet to upper layers */
}
......@@ -1057,7 +1205,7 @@ static int au1000_rx(struct net_device *dev)
}
prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE);
aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1);
sync();
au_sync();
/* next descriptor */
prxd = aup->rx_dma_ring[aup->rx_head];
......@@ -1079,8 +1227,8 @@ void au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs)
printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name);
return;
}
au1000_rx(dev);
au1000_tx_ack(dev);
au1000_rx(dev);
}
......@@ -1099,9 +1247,8 @@ static void set_rx_mode(struct net_device *dev)
{
struct au1000_private *aup = (struct au1000_private *) dev->priv;
/* fixme */
if (au1000_debug > 4)
printk("%s: set_multicast: flags=%x\n", dev->name, dev->flags);
printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags);
if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
aup->mac->control |= MAC_PROMISCUOUS;
......@@ -1123,6 +1270,7 @@ static void set_rx_mode(struct net_device *dev)
}
aup->mac->multi_hash_high = mc_filter[1];
aup->mac->multi_hash_low = mc_filter[0];
aup->mac->control &= ~MAC_PROMISCUOUS;
aup->mac->control |= MAC_HASH_MODE;
}
}
......@@ -1130,24 +1278,23 @@ static void set_rx_mode(struct net_device *dev)
static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
//struct au1000_private *aup = (struct au1000_private *) dev->priv;
u16 *data = (u16 *)&rq->ifr_data;
/* fixme */
switch(cmd) {
case SIOCGMIIPHY: /* Get the address of the PHY in use. */
case SIOCGMIIPHY: /* Get the address of the PHY in use. */
data[0] = PHY_ADDRESS;
case SIOCGMIIREG: /* Read the specified MII register. */
case SIOCGMIIREG: /* Read the specified MII register. */
//data[3] = mdio_read(ioaddr, data[0], data[1]);
return 0;
case SIOCSMIIREG: /* Write the specified MII register */
case SIOCSMIIREG: /* Write the specified MII register */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
//mdio_write(ioaddr, data[0], data[1], data[2]);
return 0;
default:
default:
return -EOPNOTSUPP;
}
}
......@@ -1165,7 +1312,8 @@ static int au1000_set_config(struct net_device *dev, struct ifmap *map)
switch(map->port){
case IF_PORT_UNKNOWN: /* use auto here */
printk("auto\\n");
printk(KERN_INFO "%s: config phy for aneg\n",
dev->name);
dev->if_port = map->port;
/* Link Down: the timer will bring it up */
netif_carrier_off(dev);
......@@ -1175,13 +1323,15 @@ static int au1000_set_config(struct net_device *dev, struct ifmap *map)
control &= ~(MII_CNTL_FDX | MII_CNTL_F100);
/* enable auto negotiation and reset the negotiation */
mdio_write(dev, aup->phy_addr,
MII_CONTROL, control | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
mdio_write(dev, aup->phy_addr, MII_CONTROL,
control | MII_CNTL_AUTO |
MII_CNTL_RST_AUTO);
break;
case IF_PORT_10BASET: /* 10BaseT */
printk("10baseT\n");
printk(KERN_INFO "%s: config phy for 10BaseT\n",
dev->name);
dev->if_port = map->port;
/* Link Down: the timer will bring it up */
......@@ -1189,8 +1339,8 @@ static int au1000_set_config(struct net_device *dev, struct ifmap *map)
/* set Speed to 10Mbps, Half Duplex */
control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
printk("read control %x\n", control);
control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_FDX);
control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO |
MII_CNTL_FDX);
/* disable auto negotiation and force 10M/HD mode*/
mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
......@@ -1198,7 +1348,8 @@ static int au1000_set_config(struct net_device *dev, struct ifmap *map)
case IF_PORT_100BASET: /* 100BaseT */
case IF_PORT_100BASETX: /* 100BaseTx */
printk("100 base T/TX\n");
printk(KERN_INFO "%s: config phy for 100BaseTX\n",
dev->name);
dev->if_port = map->port;
/* Link Down: the timer will bring it up */
......@@ -1214,7 +1365,8 @@ static int au1000_set_config(struct net_device *dev, struct ifmap *map)
break;
case IF_PORT_100BASEFX: /* 100BaseFx */
printk("100 Base FX\n");
printk(KERN_INFO "%s: config phy for 100BaseFX\n",
dev->name);
dev->if_port = map->port;
/* Link Down: the timer will bring it up */
......@@ -1230,12 +1382,14 @@ static int au1000_set_config(struct net_device *dev, struct ifmap *map)
case IF_PORT_10BASE2: /* 10Base2 */
case IF_PORT_AUI: /* AUI */
/* These Modes are not supported (are they?)*/
printk(KERN_INFO "Not supported");
printk(KERN_ERR "%s: 10Base2/AUI not supported",
dev->name);
return -EOPNOTSUPP;
break;
default:
printk("Invalid");
printk(KERN_ERR "%s: Invalid media selected",
dev->name);
return -EINVAL;
}
return 0;
......@@ -1253,3 +1407,6 @@ static struct net_device_stats *au1000_get_stats(struct net_device *dev)
}
return 0;
}
module_init(au1000_init_module);
module_exit(au1000_cleanup_module);
......@@ -39,7 +39,7 @@
#define ETH_TX_TIMEOUT HZ/4
#define MAC_MIN_PKT_SIZE 64
#ifdef CONFIG_MIPS_PB1000
#if defined(CONFIG_MIPS_PB1000) || defined(CONFIG_MIPS_PB1500)
#define PHY_ADDRESS 0
#define PHY_CONTROL_DEFAULT 0x3000
#define PHY_CONTROL_REG_ADDR 0
......@@ -60,7 +60,9 @@
#define MII_ANLPAR 0x0005
#define MII_AEXP 0x0006
#define MII_ANEXT 0x0007
#define MII_AUX_CNTRL 0x18
#define MII_LSI_CONFIG 0x0011
#define MII_LSI_STAT 0x0012
#define MII_AUX_CNTRL 0x0018
/* mii registers specific to AMD 79C901 */
#define MII_STATUS_SUMMARY = 0x0018
......@@ -124,6 +126,11 @@
#define MII_STSSUM_AUTO 0x0002
#define MII_STSSUM_SPD 0x0001
/* lsi status register */
#define MII_LSI_STAT_FDX 0x0008
#define MII_LSI_STAT_SPD 0x0010
/* Auxilliary Control/Status Register */
#define MII_AUX_FDX 0x0001
#define MII_AUX_100 0x0002
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment