Commit 1048643e authored by Felix Fietkau's avatar Felix Fietkau Committed by John W. Linville

ath5k: Clean up eeprom parsing and add missing calibration data

This patch brings the ath5k eeprom parsing code in sync with the work
done on ath_info by Nick Kossifidis and integrates the missing parts
based on the code of the Atheros Legacy HAL release.
Signed-off-by: default avatarFelix Fietkau <nbd@openwrt.org>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parent 7ac47010
...@@ -821,13 +821,6 @@ struct ath5k_athchan_2ghz { ...@@ -821,13 +821,6 @@ struct ath5k_athchan_2ghz {
return (false); \ return (false); \
} while (0) } while (0)
enum ath5k_ant_setting {
AR5K_ANT_VARIABLE = 0, /* variable by programming */
AR5K_ANT_FIXED_A = 1, /* fixed to 11a frequencies */
AR5K_ANT_FIXED_B = 2, /* fixed to 11b frequencies */
AR5K_ANT_MAX = 3,
};
/* /*
* Hardware interrupt abstraction * Hardware interrupt abstraction
*/ */
......
/* /*
* Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
* Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
* Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org>
* *
* Permission to use, copy, modify, and distribute this software for any * Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above * purpose with or without fee is hereby granted, provided that the above
...@@ -63,7 +64,7 @@ static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data) ...@@ -63,7 +64,7 @@ static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
/* /*
* Translate binary channel representation in EEPROM to frequency * Translate binary channel representation in EEPROM to frequency
*/ */
static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
unsigned int mode) unsigned int mode)
{ {
u16 val; u16 val;
...@@ -72,13 +73,13 @@ static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, ...@@ -72,13 +73,13 @@ static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin,
return bin; return bin;
if (mode == AR5K_EEPROM_MODE_11A) { if (mode == AR5K_EEPROM_MODE_11A) {
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2) if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = (5 * bin) + 4800; val = (5 * bin) + 4800;
else else
val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 : val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
(bin * 10) + 5100; (bin * 10) + 5100;
} else { } else {
if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2) if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
val = bin + 2300; val = bin + 2300;
else else
val = bin + 2400; val = bin + 2400;
...@@ -87,6 +88,71 @@ static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, ...@@ -87,6 +88,71 @@ static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin,
return val; return val;
} }
/*
* Initialize eeprom & capabilities structs
*/
static int
ath5k_eeprom_init_header(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
int ret;
u16 val;
/* Initial TX thermal adjustment values */
ee->ee_tx_clip = 4;
ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
ee->ee_gain_select = 1;
/*
* Read values from EEPROM and store them in the capability structure
*/
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
/* Return if we have an old EEPROM */
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
return 0;
#ifdef notyet
/*
* Validate the checksum of the EEPROM date. There are some
* devices with invalid EEPROMs.
*/
for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
cksum ^= val;
}
if (cksum != AR5K_EEPROM_INFO_CKSUM) {
ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
return -EIO;
}
#endif
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
ee_ant_gain);
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
}
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
}
return 0;
}
/* /*
* Read antenna infos from eeprom * Read antenna infos from eeprom
*/ */
...@@ -100,7 +166,7 @@ static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset, ...@@ -100,7 +166,7 @@ static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
AR5K_EEPROM_READ(o++, val); AR5K_EEPROM_READ(o++, val);
ee->ee_switch_settling[mode] = (val >> 8) & 0x7f; ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f; ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
ee->ee_ant_control[mode][i] = (val << 4) & 0x3f; ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
AR5K_EEPROM_READ(o++, val); AR5K_EEPROM_READ(o++, val);
...@@ -157,6 +223,30 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, ...@@ -157,6 +223,30 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
u16 val; u16 val;
int ret; int ret;
ee->ee_n_piers[mode] = 0;
AR5K_EEPROM_READ(o++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
switch(mode) {
case AR5K_EEPROM_MODE_11A:
ee->ee_ob[mode][3] = (val >> 5) & 0x7;
ee->ee_db[mode][3] = (val >> 2) & 0x7;
ee->ee_ob[mode][2] = (val << 1) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
ee->ee_db[mode][2] = (val >> 12) & 0x7;
ee->ee_ob[mode][1] = (val >> 9) & 0x7;
ee->ee_db[mode][1] = (val >> 6) & 0x7;
ee->ee_ob[mode][0] = (val >> 3) & 0x7;
ee->ee_db[mode][0] = val & 0x7;
break;
case AR5K_EEPROM_MODE_11G:
case AR5K_EEPROM_MODE_11B:
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
break;
}
AR5K_EEPROM_READ(o++, val); AR5K_EEPROM_READ(o++, val);
ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff; ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
ee->ee_thr_62[mode] = val & 0xff; ee->ee_thr_62[mode] = val & 0xff;
...@@ -209,8 +299,11 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, ...@@ -209,8 +299,11 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
AR5K_EEPROM_READ(o++, val); AR5K_EEPROM_READ(o++, val);
ee->ee_i_gain[mode] |= (val << 3) & 0x38; ee->ee_i_gain[mode] |= (val << 3) & 0x38;
if (mode == AR5K_EEPROM_MODE_11G) if (mode == AR5K_EEPROM_MODE_11G) {
ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff; ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
}
} }
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 && if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
...@@ -219,10 +312,77 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, ...@@ -219,10 +312,77 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
ee->ee_q_cal[mode] = (val >> 3) & 0x1f; ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
} }
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 && if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
mode == AR5K_EEPROM_MODE_11G) goto done;
ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
switch(mode) {
case AR5K_EEPROM_MODE_11A:
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
break;
AR5K_EEPROM_READ(o++, val);
ee->ee_margin_tx_rx[mode] = val & 0x3f;
break;
case AR5K_EEPROM_MODE_11B:
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_b[0].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
ee->ee_pwr_cal_b[1].freq =
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_b[2].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
break;
case AR5K_EEPROM_MODE_11G:
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_g[0].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
ee->ee_pwr_cal_g[1].freq =
ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
AR5K_EEPROM_READ(o++, val);
ee->ee_turbo_max_power[mode] = val & 0x7f;
ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_pwr_cal_g[2].freq =
ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
ee->ee_n_piers[mode]++;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
AR5K_EEPROM_READ(o++, val);
ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
AR5K_EEPROM_READ(o++, val);
ee->ee_cck_ofdm_gain_delta = val & 0xff;
}
break;
}
done:
/* return new offset */ /* return new offset */
*offset = o; *offset = o;
...@@ -230,204 +390,944 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset, ...@@ -230,204 +390,944 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
} }
/* /*
* Initialize eeprom & capabilities structs * Read turbo mode information on newer EEPROM versions
*/ */
int ath5k_eeprom_init(struct ath5k_hw *ah) static int
ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
u32 *offset, unsigned int mode)
{ {
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
unsigned int mode, i; u32 o = *offset;
int ret;
u32 offset;
u16 val; u16 val;
int ret;
/* Initial TX thermal adjustment values */ if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
ee->ee_tx_clip = 4; return 0;
ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
ee->ee_gain_select = 1;
/* switch (mode){
* Read values from EEPROM and store them in the capability structure case AR5K_EEPROM_MODE_11A:
*/ ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect); ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain); AR5K_EEPROM_READ(o++, val);
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version); ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header); ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
AR5K_EEPROM_READ(o++, val);
ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
break;
case AR5K_EEPROM_MODE_11G:
ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
AR5K_EEPROM_READ(o++, val);
ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
AR5K_EEPROM_READ(o++, val);
ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
break;
}
/* return new offset */
*offset = o;
/* Return if we have an old EEPROM */
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
return 0; return 0;
}
static int
ath5k_eeprom_init_modes(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
u32 mode_offset[3];
unsigned int mode;
u32 offset;
int ret;
#ifdef notyet
/* /*
* Validate the checksum of the EEPROM date. There are some * Get values for all modes
* devices with invalid EEPROMs.
*/ */
for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) { mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val); mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
cksum ^= val; mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
offset = mode_offset[mode];
ret = ath5k_eeprom_read_ants(ah, &offset, mode);
if (ret)
return ret;
ret = ath5k_eeprom_read_modes(ah, &offset, mode);
if (ret)
return ret;
ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
if (ret)
return ret;
} }
if (cksum != AR5K_EEPROM_INFO_CKSUM) {
ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum); /* override for older eeprom versions for better performance */
return -EIO; if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
} }
#endif
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version), return 0;
ee_ant_gain); }
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { static inline void
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0); ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1); {
const static u16 intercepts3[] =
{ 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
const static u16 intercepts3_2[] =
{ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
const u16 *ip;
int i;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
ip = intercepts3_2;
else
ip = intercepts3;
for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
*vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100;
}
static inline int
ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
struct ath5k_chan_pcal_info *pc, u8 *count)
{
int o = *offset;
int i = 0;
u8 f1, f2;
int ret;
u16 val;
while(i < max) {
AR5K_EEPROM_READ(o++, val);
f1 = (val >> 8) & 0xff;
f2 = val & 0xff;
if (f1)
pc[i++].freq = f1;
if (f2)
pc[i++].freq = f2;
if (!f1 || !f2)
break;
} }
*offset = o;
*count = i;
if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) { return 0;
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val); }
ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val); static int
ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7; ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7; {
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
int i, ret;
u16 val;
u8 mask;
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
ath5k_eeprom_read_freq_list(ah, &offset,
AR5K_EEPROM_N_5GHZ_CHAN, pcal,
&ee->ee_n_piers[AR5K_EEPROM_MODE_11A]);
} else {
mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
AR5K_EEPROM_READ(offset++, val);
pcal[0].freq = (val >> 9) & mask;
pcal[1].freq = (val >> 2) & mask;
pcal[2].freq = (val << 5) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[2].freq |= (val >> 11) & 0x1f;
pcal[3].freq = (val >> 4) & mask;
pcal[4].freq = (val << 3) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[4].freq |= (val >> 13) & 0x7;
pcal[5].freq = (val >> 6) & mask;
pcal[6].freq = (val << 1) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[6].freq |= (val >> 15) & 0x1;
pcal[7].freq = (val >> 8) & mask;
pcal[8].freq = (val >> 1) & mask;
pcal[9].freq = (val << 6) & mask;
AR5K_EEPROM_READ(offset++, val);
pcal[9].freq |= (val >> 10) & 0x3f;
ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
}
for(i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i += 1) {
pcal[i].freq = ath5k_eeprom_bin2freq(ee,
pcal[i].freq, AR5K_EEPROM_MODE_11A);
}
return 0;
}
static inline int
ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcal;
int i;
switch(mode) {
case AR5K_EEPROM_MODE_11B:
pcal = ee->ee_pwr_cal_b;
break;
case AR5K_EEPROM_MODE_11G:
pcal = ee->ee_pwr_cal_g;
break;
default:
return -EINVAL;
} }
ath5k_eeprom_read_freq_list(ah, &offset,
AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
&ee->ee_n_piers[mode]);
for(i = 0; i < AR5K_EEPROM_N_2GHZ_CHAN_2413; i += 1) {
pcal[i].freq = ath5k_eeprom_bin2freq(ee,
pcal[i].freq, mode);
}
return 0;
}
static int
ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info *pcal;
int offset, ret;
int i, j;
u16 val;
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
switch(mode) {
case AR5K_EEPROM_MODE_11A:
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
return 0;
ret = ath5k_eeprom_init_11a_pcal_freq(ah,
offset + AR5K_EEPROM_GROUP1_OFFSET);
if (ret < 0)
return ret;
offset += AR5K_EEPROM_GROUP2_OFFSET;
pcal = ee->ee_pwr_cal_a;
break;
case AR5K_EEPROM_MODE_11B:
if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
!AR5K_EEPROM_HDR_11G(ee->ee_header))
return 0;
pcal = ee->ee_pwr_cal_b;
offset += AR5K_EEPROM_GROUP3_OFFSET;
/* fixed piers */
pcal[0].freq = 2412;
pcal[1].freq = 2447;
pcal[2].freq = 2484;
ee->ee_n_piers[mode] = 3;
break;
case AR5K_EEPROM_MODE_11G:
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
return 0;
pcal = ee->ee_pwr_cal_g;
offset += AR5K_EEPROM_GROUP4_OFFSET;
/* fixed piers */
pcal[0].freq = 2312;
pcal[1].freq = 2412;
pcal[2].freq = 2484;
ee->ee_n_piers[mode] = 3;
break;
default:
return -EINVAL;
}
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
struct ath5k_chan_pcal_info_rf5111 *cdata =
&pcal[i].rf5111_info;
AR5K_EEPROM_READ(offset++, val);
cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[0] |= ((val >> 14) & 0x3);
cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[3] |= ((val >> 12) & 0xf);
cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
AR5K_EEPROM_READ(offset++, val);
cdata->pwr[8] |= ((val >> 14) & 0x3);
cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
cdata->pcdac_max, cdata->pcdac);
for (j = 0; j < AR5K_EEPROM_N_PCDAC; j++) {
cdata->pwr[j] = (u16)
(AR5K_EEPROM_POWER_STEP * cdata->pwr[j]);
}
}
return 0;
}
static int
ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
struct ath5k_chan_pcal_info *gen_chan_info;
u32 offset;
unsigned int i, c;
u16 val;
int ret;
switch (mode) {
case AR5K_EEPROM_MODE_11A:
/* /*
* Get conformance test limit values * Read 5GHz EEPROM channels
*/ */
offset = AR5K_EEPROM_CTL(ah->ah_ee_version); offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version); ath5k_eeprom_init_11a_pcal_freq(ah, offset);
offset += AR5K_EEPROM_GROUP2_OFFSET;
gen_chan_info = ee->ee_pwr_cal_a;
break;
case AR5K_EEPROM_MODE_11B:
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
offset += AR5K_EEPROM_GROUP3_OFFSET;
/* NB: frequency piers parsed during mode init */
gen_chan_info = ee->ee_pwr_cal_b;
break;
case AR5K_EEPROM_MODE_11G:
offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
offset += AR5K_EEPROM_GROUP4_OFFSET;
else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
offset += AR5K_EEPROM_GROUP2_OFFSET;
/* NB: frequency piers parsed during mode init */
gen_chan_info = ee->ee_pwr_cal_g;
break;
default:
return -EINVAL;
}
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
chan_pcal_info = &gen_chan_info[i].rf5112_info;
for (i = 0; i < ee->ee_ctls; i++) { /* Power values in dBm * 4
* for the lower xpd gain curve
* (0 dBm -> higher output power) */
for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_ctl[i] = (val >> 8) & 0xff; chan_pcal_info->pwr_x0[c] = (val & 0xff);
ee->ee_ctl[i + 1] = val & 0xff; chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff);
} }
/* PCDAC steps
* corresponding to the above power
* measurements */
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
/* Power values in dBm * 4
* for the higher xpd gain curve
* (18 dBm -> lower output power) */
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr_x3[0] = (val & 0xff);
chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff);
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr_x3[2] = (val & 0xff);
/* PCDAC steps
* corresponding to the above power
* measurements (static) */
chan_pcal_info->pcdac_x3[0] = 20;
chan_pcal_info->pcdac_x3[1] = 35;
chan_pcal_info->pcdac_x3[2] = 63;
if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff);
/* Last xpd0 power level is also channel maximum */
gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
} else {
chan_pcal_info->pcdac_x0[0] = 1;
gen_chan_info[i].max_pwr = ((val >> 8) & 0xff);
}
/* Recreate pcdac_x0 table for this channel using pcdac steps */
chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0];
chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1];
chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2];
}
return 0;
}
static inline unsigned int
ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
{
static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
unsigned int sz;
sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
sz *= ee->ee_n_piers[mode];
return sz;
}
static unsigned int
ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
{
u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
switch(mode) {
case AR5K_EEPROM_MODE_11G:
if (AR5K_EEPROM_HDR_11B(ee->ee_header))
offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) + 2;
/* fall through */
case AR5K_EEPROM_MODE_11B:
if (AR5K_EEPROM_HDR_11A(ee->ee_header))
offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) + 5;
/* fall through */
case AR5K_EEPROM_MODE_11A:
break;
default:
break;
}
return offset;
}
static int
ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info;
struct ath5k_chan_pcal_info *gen_chan_info;
unsigned int i, c;
u32 offset;
int ret;
u16 val;
u8 pd_gains = 0;
if (ee->ee_x_gain[mode] & 0x1) pd_gains++;
if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++;
if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++;
if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++;
ee->ee_pd_gains[mode] = pd_gains;
offset = ath5k_cal_data_offset_2413(ee, mode);
switch (mode) {
case AR5K_EEPROM_MODE_11A:
if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
return 0;
ath5k_eeprom_init_11a_pcal_freq(ah, offset);
offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
gen_chan_info = ee->ee_pwr_cal_a;
break;
case AR5K_EEPROM_MODE_11B:
if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
return 0;
ath5k_eeprom_init_11bg_2413(ah, mode, offset);
offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
gen_chan_info = ee->ee_pwr_cal_b;
break;
case AR5K_EEPROM_MODE_11G:
if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
return 0;
ath5k_eeprom_init_11bg_2413(ah, mode, offset);
offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
gen_chan_info = ee->ee_pwr_cal_g;
break;
default:
return -EINVAL;
}
if (pd_gains == 0)
return 0;
for (i = 0; i < ee->ee_n_piers[mode]; i++) {
chan_pcal_info = &gen_chan_info[i].rf2413_info;
/* /*
* Get values for 802.11a (5GHz) * Read pwr_i, pddac_i and the first
* 2 pd points (pwr, pddac)
*/ */
mode = AR5K_EEPROM_MODE_11A; AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr_i[0] = val & 0x1f;
chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f;
chan_pcal_info->pwr[0][0] =
(val >> 12) & 0xf;
ee->ee_turbo_max_power[mode] = AR5K_EEPROM_READ(offset++, val);
AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header); chan_pcal_info->pddac[0][0] = val & 0x3f;
chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf;
chan_pcal_info->pddac[0][1] =
(val >> 10) & 0x3f;
offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version); AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr[0][2] = val & 0xf;
chan_pcal_info->pddac[0][2] =
(val >> 4) & 0x3f;
ret = ath5k_eeprom_read_ants(ah, &offset, mode); chan_pcal_info->pwr[0][3] = 0;
if (ret) chan_pcal_info->pddac[0][3] = 0;
return ret;
if (pd_gains > 1) {
/*
* Pd gain 0 is not the last pd gain
* so it only has 2 pd points.
* Continue wih pd gain 1.
*/
chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f;
chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1;
ee->ee_ob[mode][3] = (val >> 5) & 0x7;
ee->ee_db[mode][3] = (val >> 2) & 0x7; chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf;
ee->ee_ob[mode][2] = (val << 1) & 0x7; chan_pcal_info->pddac[1][0] =
(val >> 10) & 0x3f;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_ob[mode][2] |= (val >> 15) & 0x1; chan_pcal_info->pwr[1][1] = val & 0xf;
ee->ee_db[mode][2] = (val >> 12) & 0x7; chan_pcal_info->pddac[1][1] =
ee->ee_ob[mode][1] = (val >> 9) & 0x7; (val >> 4) & 0x3f;
ee->ee_db[mode][1] = (val >> 6) & 0x7; chan_pcal_info->pwr[1][2] =
ee->ee_ob[mode][0] = (val >> 3) & 0x7; (val >> 10) & 0xf;
ee->ee_db[mode][0] = val & 0x7;
chan_pcal_info->pddac[1][2] =
(val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pddac[1][2] |=
(val & 0xF) << 2;
ret = ath5k_eeprom_read_modes(ah, &offset, mode); chan_pcal_info->pwr[1][3] = 0;
if (ret) chan_pcal_info->pddac[1][3] = 0;
return ret; } else if (pd_gains == 1) {
/*
* Pd gain 0 is the last one so
* read the extra point.
*/
chan_pcal_info->pwr[0][3] =
(val >> 10) & 0xf;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) { chan_pcal_info->pddac[0][3] =
(val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_margin_tx_rx[mode] = val & 0x3f; chan_pcal_info->pddac[0][3] |=
(val & 0xF) << 2;
} }
/* /*
* Get values for 802.11b (2.4GHz) * Proceed with the other pd_gains
* as above.
*/ */
mode = AR5K_EEPROM_MODE_11B; if (pd_gains > 2) {
offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version); chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f;
chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f;
ret = ath5k_eeprom_read_ants(ah, &offset, mode); AR5K_EEPROM_READ(offset++, val);
if (ret) chan_pcal_info->pwr[2][0] =
return ret; (val >> 0) & 0xf;
chan_pcal_info->pddac[2][0] =
(val >> 4) & 0x3f;
chan_pcal_info->pwr[2][1] =
(val >> 10) & 0xf;
chan_pcal_info->pddac[2][1] =
(val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pddac[2][1] |=
(val & 0xF) << 2;
chan_pcal_info->pwr[2][2] =
(val >> 4) & 0xf;
chan_pcal_info->pddac[2][2] =
(val >> 8) & 0x3f;
chan_pcal_info->pwr[2][3] = 0;
chan_pcal_info->pddac[2][3] = 0;
} else if (pd_gains == 2) {
chan_pcal_info->pwr[1][3] =
(val >> 4) & 0xf;
chan_pcal_info->pddac[1][3] =
(val >> 8) & 0x3f;
}
if (pd_gains > 3) {
chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode); chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f;
if (ret) chan_pcal_info->pwr[3][0] =
return ret; (val >> 10) & 0xf;
chan_pcal_info->pddac[3][0] =
(val >> 14) & 0x3;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][0] = chan_pcal_info->pddac[3][0] |=
ath5k_eeprom_bin2freq(ah, val & 0xff, mode); (val & 0xF) << 2;
ee->ee_cal_pier[mode][1] = chan_pcal_info->pwr[3][1] =
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode); (val >> 4) & 0xf;
chan_pcal_info->pddac[3][1] =
(val >> 8) & 0x3f;
chan_pcal_info->pwr[3][2] =
(val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pwr[3][2] |=
((val >> 0) & 0x3) << 2;
chan_pcal_info->pddac[3][2] =
(val >> 2) & 0x3f;
chan_pcal_info->pwr[3][3] =
(val >> 8) & 0xf;
chan_pcal_info->pddac[3][3] =
(val >> 12) & 0xF;
AR5K_EEPROM_READ(offset++, val);
chan_pcal_info->pddac[3][3] |=
((val >> 0) & 0x3) << 4;
} else if (pd_gains == 3) {
chan_pcal_info->pwr[2][3] =
(val >> 14) & 0x3;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][2] = chan_pcal_info->pwr[2][3] |=
ath5k_eeprom_bin2freq(ah, val & 0xff, mode); ((val >> 0) & 0x3) << 2;
chan_pcal_info->pddac[2][3] =
(val >> 2) & 0x3f;
} }
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) for (c = 0; c < pd_gains; c++) {
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; /* Recreate pwr table for this channel using pwr steps */
chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2;
chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0];
chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1];
chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2];
if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2])
chan_pcal_info->pwr[c][3] = 0;
/* Recreate pddac table for this channel using pddac steps */
chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c];
chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0];
chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1];
chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2];
if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2])
chan_pcal_info->pddac[c][3] = 0;
}
}
/* return 0;
* Get values for 802.11g (2.4GHz) }
/*
* Read per rate target power (this is the maximum tx power
* supported by the card). This info is used when setting
* tx power, no matter the channel.
*
* This also works for v5 EEPROMs.
*/ */
mode = AR5K_EEPROM_MODE_11G; static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version); {
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_rate_pcal_info *rate_pcal_info;
u16 *rate_target_pwr_num;
u32 offset;
u16 val;
int ret, i;
offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
switch (mode) {
case AR5K_EEPROM_MODE_11A:
offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
rate_pcal_info = ee->ee_rate_tpwr_a;
ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
break;
case AR5K_EEPROM_MODE_11B:
offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
rate_pcal_info = ee->ee_rate_tpwr_b;
ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
break;
case AR5K_EEPROM_MODE_11G:
offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
rate_pcal_info = ee->ee_rate_tpwr_g;
ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
break;
default:
return -EINVAL;
}
ret = ath5k_eeprom_read_ants(ah, &offset, mode); /* Different freq mask for older eeproms (<= v3.2) */
if (ret) if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
return ret; for (i = 0; i < (*rate_target_pwr_num); i++) {
AR5K_EEPROM_READ(offset++, val);
rate_pcal_info[i].freq =
ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
ee->ee_ob[mode][1] = (val >> 4) & 0x7;
ee->ee_db[mode][1] = val & 0x7;
ret = ath5k_eeprom_read_modes(ah, &offset, mode); if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
if (ret) val == 0) {
return ret; (*rate_target_pwr_num) = i;
break;
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) { rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
}
} else {
for (i = 0; i < (*rate_target_pwr_num); i++) {
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][0] = rate_pcal_info[i].freq =
ath5k_eeprom_bin2freq(ah, val & 0xff, mode); ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
ee->ee_cal_pier[mode][1] =
ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode); rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_turbo_max_power[mode] = val & 0x7f;
ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
val == 0) {
(*rate_target_pwr_num) = i;
break;
}
rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
rate_pcal_info[i].target_power_54 = (val & 0x3f);
}
}
return 0;
}
static int
ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
int (*read_pcal)(struct ath5k_hw *hw, int mode);
int mode;
int err;
if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
read_pcal = ath5k_eeprom_read_pcal_info_5112;
else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
read_pcal = ath5k_eeprom_read_pcal_info_2413;
else
read_pcal = ath5k_eeprom_read_pcal_info_5111;
for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
err = read_pcal(ah, mode);
if (err)
return err;
err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
if (err < 0)
return err;
}
return 0;
}
/* Read conformance test limits */
static int
ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
{
struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
struct ath5k_edge_power *rep;
unsigned int fmask, pmask;
unsigned int ctl_mode;
int ret, i, j;
u32 offset;
u16 val;
pmask = AR5K_EEPROM_POWER_M;
fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
offset = AR5K_EEPROM_CTL(ee->ee_version);
ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
for (i = 0; i < ee->ee_ctls; i += 2) {
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_cal_pier[mode][2] = ee->ee_ctl[i] = (val >> 8) & 0xff;
ath5k_eeprom_bin2freq(ah, val & 0xff, mode); ee->ee_ctl[i + 1] = val & 0xff;
}
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) offset = AR5K_EEPROM_GROUP8_OFFSET;
ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f; if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
AR5K_EEPROM_GROUP5_OFFSET;
else
offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
rep = ee->ee_ctl_pwr;
for(i = 0; i < ee->ee_ctls; i++) {
switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
case AR5K_CTL_11A:
case AR5K_CTL_TURBO:
ctl_mode = AR5K_EEPROM_MODE_11A;
break;
default:
ctl_mode = AR5K_EEPROM_MODE_11G;
break;
}
if (ee->ee_ctl[i] == 0) {
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
offset += 8;
else
offset += 7;
rep += AR5K_EEPROM_N_EDGES;
continue;
}
if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
AR5K_EEPROM_READ(offset++, val);
rep[j].freq = (val >> 8) & fmask;
rep[j + 1].freq = val & fmask;
}
for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
AR5K_EEPROM_READ(offset++, val);
rep[j].edge = (val >> 8) & pmask;
rep[j].flag = (val >> 14) & 1;
rep[j + 1].edge = val & pmask;
rep[j + 1].flag = (val >> 6) & 1;
}
} else {
AR5K_EEPROM_READ(offset++, val);
rep[0].freq = (val >> 9) & fmask;
rep[1].freq = (val >> 2) & fmask;
rep[2].freq = (val << 5) & fmask;
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_i_cal[mode] = (val >> 8) & 0x3f; rep[2].freq |= (val >> 11) & 0x1f;
ee->ee_q_cal[mode] = (val >> 3) & 0x1f; rep[3].freq = (val >> 4) & fmask;
rep[4].freq = (val << 3) & fmask;
if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
AR5K_EEPROM_READ(offset++, val); AR5K_EEPROM_READ(offset++, val);
ee->ee_cck_ofdm_gain_delta = val & 0xff; rep[4].freq |= (val >> 13) & 0x7;
rep[5].freq = (val >> 6) & fmask;
rep[6].freq = (val << 1) & fmask;
AR5K_EEPROM_READ(offset++, val);
rep[6].freq |= (val >> 15) & 0x1;
rep[7].freq = (val >> 8) & fmask;
rep[0].edge = (val >> 2) & pmask;
rep[1].edge = (val << 4) & pmask;
AR5K_EEPROM_READ(offset++, val);
rep[1].edge |= (val >> 12) & 0xf;
rep[2].edge = (val >> 6) & pmask;
rep[3].edge = val & pmask;
AR5K_EEPROM_READ(offset++, val);
rep[4].edge = (val >> 10) & pmask;
rep[5].edge = (val >> 4) & pmask;
rep[6].edge = (val << 2) & pmask;
AR5K_EEPROM_READ(offset++, val);
rep[6].edge |= (val >> 14) & 0x3;
rep[7].edge = (val >> 8) & pmask;
} }
for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
rep[j].freq = ath5k_eeprom_bin2freq(ee,
rep[j].freq, ctl_mode);
}
rep += AR5K_EEPROM_N_EDGES;
} }
/* return 0;
* Read 5GHz EEPROM channels }
/*
* Initialize eeprom power tables
*/ */
int
ath5k_eeprom_init(struct ath5k_hw *ah)
{
int err;
err = ath5k_eeprom_init_header(ah);
if (err < 0)
return err;
err = ath5k_eeprom_init_modes(ah);
if (err < 0)
return err;
err = ath5k_eeprom_read_pcal_info(ah);
if (err < 0)
return err;
err = ath5k_eeprom_read_ctl_info(ah);
if (err < 0)
return err;
return 0; return 0;
} }
/* /*
* Read the MAC address from eeprom * Read the MAC address from eeprom
*/ */
......
...@@ -25,24 +25,8 @@ ...@@ -25,24 +25,8 @@
#define AR5K_EEPROM_MAGIC_5211 0x0000145b /* 5211 */ #define AR5K_EEPROM_MAGIC_5211 0x0000145b /* 5211 */
#define AR5K_EEPROM_MAGIC_5210 0x0000145a /* 5210 */ #define AR5K_EEPROM_MAGIC_5210 0x0000145a /* 5210 */
#define AR5K_EEPROM_PROTECT 0x003f /* EEPROM protect status */
#define AR5K_EEPROM_PROTECT_RD_0_31 0x0001 /* Read protection bit for offsets 0x0 - 0x1f */
#define AR5K_EEPROM_PROTECT_WR_0_31 0x0002 /* Write protection bit for offsets 0x0 - 0x1f */
#define AR5K_EEPROM_PROTECT_RD_32_63 0x0004 /* 0x20 - 0x3f */
#define AR5K_EEPROM_PROTECT_WR_32_63 0x0008
#define AR5K_EEPROM_PROTECT_RD_64_127 0x0010 /* 0x40 - 0x7f */
#define AR5K_EEPROM_PROTECT_WR_64_127 0x0020
#define AR5K_EEPROM_PROTECT_RD_128_191 0x0040 /* 0x80 - 0xbf (regdom) */
#define AR5K_EEPROM_PROTECT_WR_128_191 0x0080
#define AR5K_EEPROM_PROTECT_RD_192_207 0x0100 /* 0xc0 - 0xcf */
#define AR5K_EEPROM_PROTECT_WR_192_207 0x0200
#define AR5K_EEPROM_PROTECT_RD_208_223 0x0400 /* 0xd0 - 0xdf */
#define AR5K_EEPROM_PROTECT_WR_208_223 0x0800
#define AR5K_EEPROM_PROTECT_RD_224_239 0x1000 /* 0xe0 - 0xef */
#define AR5K_EEPROM_PROTECT_WR_224_239 0x2000
#define AR5K_EEPROM_PROTECT_RD_240_255 0x4000 /* 0xf0 - 0xff */
#define AR5K_EEPROM_PROTECT_WR_240_255 0x8000
#define AR5K_EEPROM_REG_DOMAIN 0x00bf /* EEPROM regdom */ #define AR5K_EEPROM_REG_DOMAIN 0x00bf /* EEPROM regdom */
#define AR5K_EEPROM_CHECKSUM 0x00c0 /* EEPROM checksum */
#define AR5K_EEPROM_INFO_BASE 0x00c0 /* EEPROM header */ #define AR5K_EEPROM_INFO_BASE 0x00c0 /* EEPROM header */
#define AR5K_EEPROM_INFO_MAX (0x400 - AR5K_EEPROM_INFO_BASE) #define AR5K_EEPROM_INFO_MAX (0x400 - AR5K_EEPROM_INFO_BASE)
#define AR5K_EEPROM_INFO_CKSUM 0xffff #define AR5K_EEPROM_INFO_CKSUM 0xffff
...@@ -53,15 +37,19 @@ ...@@ -53,15 +37,19 @@
#define AR5K_EEPROM_VERSION_3_1 0x3001 /* ob/db values for 2Ghz (ar5211_rfregs) */ #define AR5K_EEPROM_VERSION_3_1 0x3001 /* ob/db values for 2Ghz (ar5211_rfregs) */
#define AR5K_EEPROM_VERSION_3_2 0x3002 /* different frequency representation (eeprom_bin2freq) */ #define AR5K_EEPROM_VERSION_3_2 0x3002 /* different frequency representation (eeprom_bin2freq) */
#define AR5K_EEPROM_VERSION_3_3 0x3003 /* offsets changed, has 32 CTLs (see below) and ee_false_detect (eeprom_read_modes) */ #define AR5K_EEPROM_VERSION_3_3 0x3003 /* offsets changed, has 32 CTLs (see below) and ee_false_detect (eeprom_read_modes) */
#define AR5K_EEPROM_VERSION_3_4 0x3004 /* has ee_i_gain ee_cck_ofdm_power_delta (eeprom_read_modes) */ #define AR5K_EEPROM_VERSION_3_4 0x3004 /* has ee_i_gain, ee_cck_ofdm_power_delta (eeprom_read_modes) */
#define AR5K_EEPROM_VERSION_4_0 0x4000 /* has ee_misc*, ee_cal_pier, ee_turbo_max_power and ee_xr_power (eeprom_init) */ #define AR5K_EEPROM_VERSION_4_0 0x4000 /* has ee_misc, ee_cal_pier, ee_turbo_max_power and ee_xr_power (eeprom_init) */
#define AR5K_EEPROM_VERSION_4_1 0x4001 /* has ee_margin_tx_rx (eeprom_init) */ #define AR5K_EEPROM_VERSION_4_1 0x4001 /* has ee_margin_tx_rx (eeprom_init) */
#define AR5K_EEPROM_VERSION_4_2 0x4002 /* has ee_cck_ofdm_gain_delta (eeprom_init) */ #define AR5K_EEPROM_VERSION_4_2 0x4002 /* has ee_cck_ofdm_gain_delta (eeprom_init) */
#define AR5K_EEPROM_VERSION_4_3 0x4003 #define AR5K_EEPROM_VERSION_4_3 0x4003 /* power calibration changes */
#define AR5K_EEPROM_VERSION_4_4 0x4004 #define AR5K_EEPROM_VERSION_4_4 0x4004
#define AR5K_EEPROM_VERSION_4_5 0x4005 #define AR5K_EEPROM_VERSION_4_5 0x4005
#define AR5K_EEPROM_VERSION_4_6 0x4006 /* has ee_scaled_cck_delta */ #define AR5K_EEPROM_VERSION_4_6 0x4006 /* has ee_scaled_cck_delta */
#define AR5K_EEPROM_VERSION_4_7 0x4007 #define AR5K_EEPROM_VERSION_4_7 0x3007 /* 4007 ? */
#define AR5K_EEPROM_VERSION_4_9 0x4009 /* EAR futureproofing */
#define AR5K_EEPROM_VERSION_5_0 0x5000 /* Has 2413 PDADC calibration etc */
#define AR5K_EEPROM_VERSION_5_1 0x5001 /* Has capability values */
#define AR5K_EEPROM_VERSION_5_3 0x5003 /* Has spur mitigation tables */
#define AR5K_EEPROM_MODE_11A 0 #define AR5K_EEPROM_MODE_11A 0
#define AR5K_EEPROM_MODE_11B 1 #define AR5K_EEPROM_MODE_11B 1
...@@ -74,8 +62,8 @@ ...@@ -74,8 +62,8 @@
#define AR5K_EEPROM_HDR_T_2GHZ_DIS(_v) (((_v) >> 3) & 0x1) /* Disable turbo for 2Ghz (?) */ #define AR5K_EEPROM_HDR_T_2GHZ_DIS(_v) (((_v) >> 3) & 0x1) /* Disable turbo for 2Ghz (?) */
#define AR5K_EEPROM_HDR_T_5GHZ_DBM(_v) (((_v) >> 4) & 0x7f) /* Max turbo power for a/XR mode (eeprom_init) */ #define AR5K_EEPROM_HDR_T_5GHZ_DBM(_v) (((_v) >> 4) & 0x7f) /* Max turbo power for a/XR mode (eeprom_init) */
#define AR5K_EEPROM_HDR_DEVICE(_v) (((_v) >> 11) & 0x7) #define AR5K_EEPROM_HDR_DEVICE(_v) (((_v) >> 11) & 0x7)
#define AR5K_EEPROM_HDR_T_5GHZ_DIS(_v) (((_v) >> 15) & 0x1) /* Disable turbo for 5Ghz (?) */
#define AR5K_EEPROM_HDR_RFKILL(_v) (((_v) >> 14) & 0x1) /* Device has RFKill support */ #define AR5K_EEPROM_HDR_RFKILL(_v) (((_v) >> 14) & 0x1) /* Device has RFKill support */
#define AR5K_EEPROM_HDR_T_5GHZ_DIS(_v) (((_v) >> 15) & 0x1) /* Disable turbo for 5Ghz */
#define AR5K_EEPROM_RFKILL_GPIO_SEL 0x0000001c #define AR5K_EEPROM_RFKILL_GPIO_SEL 0x0000001c
#define AR5K_EEPROM_RFKILL_GPIO_SEL_S 2 #define AR5K_EEPROM_RFKILL_GPIO_SEL_S 2
...@@ -87,27 +75,95 @@ ...@@ -87,27 +75,95 @@
(((_v) >= AR5K_EEPROM_VERSION_3_3) ? _v3_3 : _v3_0) (((_v) >= AR5K_EEPROM_VERSION_3_3) ? _v3_3 : _v3_0)
#define AR5K_EEPROM_ANT_GAIN(_v) AR5K_EEPROM_OFF(_v, 0x00c4, 0x00c3) #define AR5K_EEPROM_ANT_GAIN(_v) AR5K_EEPROM_OFF(_v, 0x00c4, 0x00c3)
#define AR5K_EEPROM_ANT_GAIN_5GHZ(_v) ((int8_t)(((_v) >> 8) & 0xff)) #define AR5K_EEPROM_ANT_GAIN_5GHZ(_v) ((s8)(((_v) >> 8) & 0xff))
#define AR5K_EEPROM_ANT_GAIN_2GHZ(_v) ((int8_t)((_v) & 0xff)) #define AR5K_EEPROM_ANT_GAIN_2GHZ(_v) ((s8)((_v) & 0xff))
/* Misc values available since EEPROM 4.0 */
#define AR5K_EEPROM_MISC0 AR5K_EEPROM_INFO(4)
#define AR5K_EEPROM_EARSTART(_v) ((_v) & 0xfff)
#define AR5K_EEPROM_HDR_XR2_DIS(_v) (((_v) >> 12) & 0x1)
#define AR5K_EEPROM_HDR_XR5_DIS(_v) (((_v) >> 13) & 0x1)
#define AR5K_EEPROM_EEMAP(_v) (((_v) >> 14) & 0x3)
#define AR5K_EEPROM_MISC1 AR5K_EEPROM_INFO(5)
#define AR5K_EEPROM_TARGET_PWRSTART(_v) ((_v) & 0xfff)
#define AR5K_EEPROM_HAS32KHZCRYSTAL(_v) (((_v) >> 14) & 0x1)
#define AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(_v) (((_v) >> 15) & 0x1)
#define AR5K_EEPROM_MISC2 AR5K_EEPROM_INFO(6)
#define AR5K_EEPROM_EEP_FILE_VERSION(_v) (((_v) >> 8) & 0xff)
#define AR5K_EEPROM_EAR_FILE_VERSION(_v) ((_v) & 0xff)
#define AR5K_EEPROM_MISC3 AR5K_EEPROM_INFO(7)
#define AR5K_EEPROM_ART_BUILD_NUM(_v) (((_v) >> 10) & 0x3f)
#define AR5K_EEPROM_EAR_FILE_ID(_v) ((_v) & 0xff)
#define AR5K_EEPROM_MISC4 AR5K_EEPROM_INFO(8)
#define AR5K_EEPROM_CAL_DATA_START(_v) (((_v) >> 4) & 0xfff)
#define AR5K_EEPROM_MASK_R0(_v) (((_v) >> 2) & 0x3)
#define AR5K_EEPROM_MASK_R1(_v) ((_v) & 0x3)
#define AR5K_EEPROM_MISC5 AR5K_EEPROM_INFO(9)
#define AR5K_EEPROM_COMP_DIS(_v) ((_v) & 0x1)
#define AR5K_EEPROM_AES_DIS(_v) (((_v) >> 1) & 0x1)
#define AR5K_EEPROM_FF_DIS(_v) (((_v) >> 2) & 0x1)
#define AR5K_EEPROM_BURST_DIS(_v) (((_v) >> 3) & 0x1)
#define AR5K_EEPROM_MAX_QCU(_v) (((_v) >> 4) & 0xf)
#define AR5K_EEPROM_HEAVY_CLIP_EN(_v) (((_v) >> 8) & 0x1)
#define AR5K_EEPROM_KEY_CACHE_SIZE(_v) (((_v) >> 12) & 0xf)
#define AR5K_EEPROM_MISC6 AR5K_EEPROM_INFO(10)
#define AR5K_EEPROM_TX_CHAIN_DIS ((_v) & 0x8)
#define AR5K_EEPROM_RX_CHAIN_DIS (((_v) >> 3) & 0x8)
#define AR5K_EEPROM_FCC_MID_EN (((_v) >> 6) & 0x1)
#define AR5K_EEPROM_JAP_U1EVEN_EN (((_v) >> 7) & 0x1)
#define AR5K_EEPROM_JAP_U2_EN (((_v) >> 8) & 0x1)
#define AR5K_EEPROM_JAP_U1ODD_EN (((_v) >> 9) & 0x1)
#define AR5K_EEPROM_JAP_11A_NEW_EN (((_v) >> 10) & 0x1)
/* calibration settings */ /* calibration settings */
#define AR5K_EEPROM_MODES_11A(_v) AR5K_EEPROM_OFF(_v, 0x00c5, 0x00d4) #define AR5K_EEPROM_MODES_11A(_v) AR5K_EEPROM_OFF(_v, 0x00c5, 0x00d4)
#define AR5K_EEPROM_MODES_11B(_v) AR5K_EEPROM_OFF(_v, 0x00d0, 0x00f2) #define AR5K_EEPROM_MODES_11B(_v) AR5K_EEPROM_OFF(_v, 0x00d0, 0x00f2)
#define AR5K_EEPROM_MODES_11G(_v) AR5K_EEPROM_OFF(_v, 0x00da, 0x010d) #define AR5K_EEPROM_MODES_11G(_v) AR5K_EEPROM_OFF(_v, 0x00da, 0x010d)
#define AR5K_EEPROM_CTL(_v) AR5K_EEPROM_OFF(_v, 0x00e4, 0x0128) /* Conformance test limits */ #define AR5K_EEPROM_CTL(_v) AR5K_EEPROM_OFF(_v, 0x00e4, 0x0128) /* Conformance test limits */
#define AR5K_EEPROM_GROUPS_START(_v) AR5K_EEPROM_OFF(_v, 0x0100, 0x0150) /* Start of Groups */
#define AR5K_EEPROM_GROUP1_OFFSET 0x0
#define AR5K_EEPROM_GROUP2_OFFSET 0x5
#define AR5K_EEPROM_GROUP3_OFFSET 0x37
#define AR5K_EEPROM_GROUP4_OFFSET 0x46
#define AR5K_EEPROM_GROUP5_OFFSET 0x55
#define AR5K_EEPROM_GROUP6_OFFSET 0x65
#define AR5K_EEPROM_GROUP7_OFFSET 0x69
#define AR5K_EEPROM_GROUP8_OFFSET 0x6f
#define AR5K_EEPROM_TARGET_PWR_OFF_11A(_v) AR5K_EEPROM_OFF(_v, AR5K_EEPROM_GROUPS_START(_v) + \
AR5K_EEPROM_GROUP5_OFFSET, 0x0000)
#define AR5K_EEPROM_TARGET_PWR_OFF_11B(_v) AR5K_EEPROM_OFF(_v, AR5K_EEPROM_GROUPS_START(_v) + \
AR5K_EEPROM_GROUP6_OFFSET, 0x0010)
#define AR5K_EEPROM_TARGET_PWR_OFF_11G(_v) AR5K_EEPROM_OFF(_v, AR5K_EEPROM_GROUPS_START(_v) + \
AR5K_EEPROM_GROUP7_OFFSET, 0x0014)
/* [3.1 - 3.3] */ /* [3.1 - 3.3] */
#define AR5K_EEPROM_OBDB0_2GHZ 0x00ec #define AR5K_EEPROM_OBDB0_2GHZ 0x00ec
#define AR5K_EEPROM_OBDB1_2GHZ 0x00ed #define AR5K_EEPROM_OBDB1_2GHZ 0x00ed
/* Misc values available since EEPROM 4.0 */ #define AR5K_EEPROM_PROTECT 0x003f /* EEPROM protect status */
#define AR5K_EEPROM_MISC0 0x00c4 #define AR5K_EEPROM_PROTECT_RD_0_31 0x0001 /* Read protection bit for offsets 0x0 - 0x1f */
#define AR5K_EEPROM_EARSTART(_v) ((_v) & 0xfff) #define AR5K_EEPROM_PROTECT_WR_0_31 0x0002 /* Write protection bit for offsets 0x0 - 0x1f */
#define AR5K_EEPROM_EEMAP(_v) (((_v) >> 14) & 0x3) #define AR5K_EEPROM_PROTECT_RD_32_63 0x0004 /* 0x20 - 0x3f */
#define AR5K_EEPROM_MISC1 0x00c5 #define AR5K_EEPROM_PROTECT_WR_32_63 0x0008
#define AR5K_EEPROM_TARGET_PWRSTART(_v) ((_v) & 0xfff) #define AR5K_EEPROM_PROTECT_RD_64_127 0x0010 /* 0x40 - 0x7f */
#define AR5K_EEPROM_HAS32KHZCRYSTAL(_v) (((_v) >> 14) & 0x1) #define AR5K_EEPROM_PROTECT_WR_64_127 0x0020
#define AR5K_EEPROM_PROTECT_RD_128_191 0x0040 /* 0x80 - 0xbf (regdom) */
#define AR5K_EEPROM_PROTECT_WR_128_191 0x0080
#define AR5K_EEPROM_PROTECT_RD_192_207 0x0100 /* 0xc0 - 0xcf */
#define AR5K_EEPROM_PROTECT_WR_192_207 0x0200
#define AR5K_EEPROM_PROTECT_RD_208_223 0x0400 /* 0xd0 - 0xdf */
#define AR5K_EEPROM_PROTECT_WR_208_223 0x0800
#define AR5K_EEPROM_PROTECT_RD_224_239 0x1000 /* 0xe0 - 0xef */
#define AR5K_EEPROM_PROTECT_WR_224_239 0x2000
#define AR5K_EEPROM_PROTECT_RD_240_255 0x4000 /* 0xf0 - 0xff */
#define AR5K_EEPROM_PROTECT_WR_240_255 0x8000
/* Some EEPROM defines */ /* Some EEPROM defines */
#define AR5K_EEPROM_EEP_SCALE 100 #define AR5K_EEPROM_EEP_SCALE 100
...@@ -115,8 +171,11 @@ ...@@ -115,8 +171,11 @@
#define AR5K_EEPROM_N_MODES 3 #define AR5K_EEPROM_N_MODES 3
#define AR5K_EEPROM_N_5GHZ_CHAN 10 #define AR5K_EEPROM_N_5GHZ_CHAN 10
#define AR5K_EEPROM_N_2GHZ_CHAN 3 #define AR5K_EEPROM_N_2GHZ_CHAN 3
#define AR5K_EEPROM_N_2GHZ_CHAN_2413 4
#define AR5K_EEPROM_MAX_CHAN 10 #define AR5K_EEPROM_MAX_CHAN 10
#define AR5K_EEPROM_N_PWR_POINTS_5111 11
#define AR5K_EEPROM_N_PCDAC 11 #define AR5K_EEPROM_N_PCDAC 11
#define AR5K_EEPROM_N_PHASE_CAL 5
#define AR5K_EEPROM_N_TEST_FREQ 8 #define AR5K_EEPROM_N_TEST_FREQ 8
#define AR5K_EEPROM_N_EDGES 8 #define AR5K_EEPROM_N_EDGES 8
#define AR5K_EEPROM_N_INTERCEPTS 11 #define AR5K_EEPROM_N_INTERCEPTS 11
...@@ -136,6 +195,8 @@ ...@@ -136,6 +195,8 @@
#define AR5K_EEPROM_N_XPD_PER_CHANNEL 4 #define AR5K_EEPROM_N_XPD_PER_CHANNEL 4
#define AR5K_EEPROM_N_XPD0_POINTS 4 #define AR5K_EEPROM_N_XPD0_POINTS 4
#define AR5K_EEPROM_N_XPD3_POINTS 3 #define AR5K_EEPROM_N_XPD3_POINTS 3
#define AR5K_EEPROM_N_PD_GAINS 4
#define AR5K_EEPROM_N_PD_POINTS 5
#define AR5K_EEPROM_N_INTERCEPT_10_2GHZ 35 #define AR5K_EEPROM_N_INTERCEPT_10_2GHZ 35
#define AR5K_EEPROM_N_INTERCEPT_10_5GHZ 55 #define AR5K_EEPROM_N_INTERCEPT_10_5GHZ 55
#define AR5K_EEPROM_POWER_M 0x3f #define AR5K_EEPROM_POWER_M 0x3f
...@@ -158,8 +219,99 @@ ...@@ -158,8 +219,99 @@
#define AR5K_EEPROM_READ_HDR(_o, _v) \ #define AR5K_EEPROM_READ_HDR(_o, _v) \
AR5K_EEPROM_READ(_o, ah->ah_capabilities.cap_eeprom._v); \ AR5K_EEPROM_READ(_o, ah->ah_capabilities.cap_eeprom._v); \
/* Struct to hold EEPROM calibration data */ enum ath5k_ant_setting {
AR5K_ANT_VARIABLE = 0, /* variable by programming */
AR5K_ANT_FIXED_A = 1, /* fixed to 11a frequencies */
AR5K_ANT_FIXED_B = 2, /* fixed to 11b frequencies */
AR5K_ANT_MAX = 3,
};
enum ath5k_ctl_mode {
AR5K_CTL_11A = 0,
AR5K_CTL_11B = 1,
AR5K_CTL_11G = 2,
AR5K_CTL_TURBO = 3,
AR5K_CTL_108G = 4,
AR5K_CTL_2GHT20 = 5,
AR5K_CTL_5GHT20 = 6,
AR5K_CTL_2GHT40 = 7,
AR5K_CTL_5GHT40 = 8,
AR5K_CTL_MODE_M = 15,
};
/* Per channel calibration data, used for power table setup */
struct ath5k_chan_pcal_info_rf5111 {
/* Power levels in half dbm units
* for one power curve. */
u8 pwr[AR5K_EEPROM_N_PWR_POINTS_5111];
/* PCDAC table steps
* for the above values */
u8 pcdac[AR5K_EEPROM_N_PWR_POINTS_5111];
/* Starting PCDAC step */
u8 pcdac_min;
/* Final PCDAC step */
u8 pcdac_max;
};
struct ath5k_chan_pcal_info_rf5112 {
/* Power levels in quarter dBm units
* for lower (0) and higher (3)
* level curves */
s8 pwr_x0[AR5K_EEPROM_N_XPD0_POINTS];
s8 pwr_x3[AR5K_EEPROM_N_XPD3_POINTS];
/* PCDAC table steps
* for the above values */
u8 pcdac_x0[AR5K_EEPROM_N_XPD0_POINTS];
u8 pcdac_x3[AR5K_EEPROM_N_XPD3_POINTS];
};
struct ath5k_chan_pcal_info_rf2413 {
/* Starting pwr/pddac values */
s8 pwr_i[AR5K_EEPROM_N_PD_GAINS];
u8 pddac_i[AR5K_EEPROM_N_PD_GAINS];
/* (pwr,pddac) points */
s8 pwr[AR5K_EEPROM_N_PD_GAINS]
[AR5K_EEPROM_N_PD_POINTS];
u8 pddac[AR5K_EEPROM_N_PD_GAINS]
[AR5K_EEPROM_N_PD_POINTS];
};
struct ath5k_chan_pcal_info {
/* Frequency */
u16 freq;
/* Max available power */
s8 max_pwr;
union {
struct ath5k_chan_pcal_info_rf5111 rf5111_info;
struct ath5k_chan_pcal_info_rf5112 rf5112_info;
struct ath5k_chan_pcal_info_rf2413 rf2413_info;
};
};
/* Per rate calibration data for each mode, used for power table setup */
struct ath5k_rate_pcal_info {
u16 freq; /* Frequency */
/* Power level for 6-24Mbit/s rates */
u16 target_power_6to24;
/* Power level for 36Mbit rate */
u16 target_power_36;
/* Power level for 48Mbit rate */
u16 target_power_48;
/* Power level for 54Mbit rate */
u16 target_power_54;
};
/* Power edges for conformance test limits */
struct ath5k_edge_power {
u16 freq;
u16 edge; /* in half dBm */
bool flag;
};
/* EEPROM calibration data */
struct ath5k_eeprom_info { struct ath5k_eeprom_info {
/* Header information */
u16 ee_magic; u16 ee_magic;
u16 ee_protect; u16 ee_protect;
u16 ee_regdomain; u16 ee_regdomain;
...@@ -168,6 +320,11 @@ struct ath5k_eeprom_info { ...@@ -168,6 +320,11 @@ struct ath5k_eeprom_info {
u16 ee_ant_gain; u16 ee_ant_gain;
u16 ee_misc0; u16 ee_misc0;
u16 ee_misc1; u16 ee_misc1;
u16 ee_misc2;
u16 ee_misc3;
u16 ee_misc4;
u16 ee_misc5;
u16 ee_misc6;
u16 ee_cck_ofdm_gain_delta; u16 ee_cck_ofdm_gain_delta;
u16 ee_cck_ofdm_power_delta; u16 ee_cck_ofdm_power_delta;
u16 ee_scaled_cck_delta; u16 ee_scaled_cck_delta;
...@@ -185,7 +342,7 @@ struct ath5k_eeprom_info { ...@@ -185,7 +342,7 @@ struct ath5k_eeprom_info {
u16 ee_turbo_max_power[AR5K_EEPROM_N_MODES]; u16 ee_turbo_max_power[AR5K_EEPROM_N_MODES];
u16 ee_xr_power[AR5K_EEPROM_N_MODES]; u16 ee_xr_power[AR5K_EEPROM_N_MODES];
u16 ee_switch_settling[AR5K_EEPROM_N_MODES]; u16 ee_switch_settling[AR5K_EEPROM_N_MODES];
u16 ee_ant_tx_rx[AR5K_EEPROM_N_MODES]; u16 ee_atn_tx_rx[AR5K_EEPROM_N_MODES];
u16 ee_ant_control[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PCDAC]; u16 ee_ant_control[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PCDAC];
u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB]; u16 ee_ob[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB]; u16 ee_db[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_OBDB];
...@@ -198,18 +355,40 @@ struct ath5k_eeprom_info { ...@@ -198,18 +355,40 @@ struct ath5k_eeprom_info {
u16 ee_x_gain[AR5K_EEPROM_N_MODES]; u16 ee_x_gain[AR5K_EEPROM_N_MODES];
u16 ee_i_gain[AR5K_EEPROM_N_MODES]; u16 ee_i_gain[AR5K_EEPROM_N_MODES];
u16 ee_margin_tx_rx[AR5K_EEPROM_N_MODES]; u16 ee_margin_tx_rx[AR5K_EEPROM_N_MODES];
u16 ee_switch_settling_turbo[AR5K_EEPROM_N_MODES];
u16 ee_margin_tx_rx_turbo[AR5K_EEPROM_N_MODES];
u16 ee_atn_tx_rx_turbo[AR5K_EEPROM_N_MODES];
/* Unused */ /* Power calibration data */
u16 ee_false_detect[AR5K_EEPROM_N_MODES]; u16 ee_false_detect[AR5K_EEPROM_N_MODES];
u16 ee_cal_pier[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_2GHZ_CHAN];
u16 ee_channel[AR5K_EEPROM_N_MODES][AR5K_EEPROM_MAX_CHAN]; /*empty*/ /* Number of pd gain curves per mode (RF2413) */
u8 ee_pd_gains[AR5K_EEPROM_N_MODES];
u8 ee_n_piers[AR5K_EEPROM_N_MODES];
struct ath5k_chan_pcal_info ee_pwr_cal_a[AR5K_EEPROM_N_5GHZ_CHAN];
struct ath5k_chan_pcal_info ee_pwr_cal_b[AR5K_EEPROM_N_2GHZ_CHAN];
struct ath5k_chan_pcal_info ee_pwr_cal_g[AR5K_EEPROM_N_2GHZ_CHAN];
/* Per rate target power levels */
u16 ee_rate_target_pwr_num[AR5K_EEPROM_N_MODES];
struct ath5k_rate_pcal_info ee_rate_tpwr_a[AR5K_EEPROM_N_5GHZ_CHAN];
struct ath5k_rate_pcal_info ee_rate_tpwr_b[AR5K_EEPROM_N_2GHZ_CHAN];
struct ath5k_rate_pcal_info ee_rate_tpwr_g[AR5K_EEPROM_N_2GHZ_CHAN];
/* Conformance test limits (Unused) */ /* Conformance test limits (Unused) */
u16 ee_ctls; u16 ee_ctls;
u16 ee_ctl[AR5K_EEPROM_MAX_CTLS]; u16 ee_ctl[AR5K_EEPROM_MAX_CTLS];
struct ath5k_edge_power ee_ctl_pwr[AR5K_EEPROM_N_EDGES * AR5K_EEPROM_MAX_CTLS];
/* Noise Floor Calibration settings */ /* Noise Floor Calibration settings */
s16 ee_noise_floor_thr[AR5K_EEPROM_N_MODES]; s16 ee_noise_floor_thr[AR5K_EEPROM_N_MODES];
s8 ee_adc_desired_size[AR5K_EEPROM_N_MODES]; s8 ee_adc_desired_size[AR5K_EEPROM_N_MODES];
s8 ee_pga_desired_size[AR5K_EEPROM_N_MODES]; s8 ee_pga_desired_size[AR5K_EEPROM_N_MODES];
s8 ee_adc_desired_size_turbo[AR5K_EEPROM_N_MODES];
s8 ee_pga_desired_size_turbo[AR5K_EEPROM_N_MODES];
s8 ee_pd_gain_overlap;
u32 ee_antenna[AR5K_EEPROM_N_MODES][AR5K_ANT_MAX];
}; };
...@@ -674,7 +674,7 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode, ...@@ -674,7 +674,7 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
(ee->ee_switch_settling[ee_mode] << 7) & 0x3f80, (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
0xffffc07f); 0xffffc07f);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY_GAIN, AR5K_REG_MASKED_BITS(ah, AR5K_PHY_GAIN,
(ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000, (ee->ee_atn_tx_rx[ee_mode] << 12) & 0x3f000,
0xfffc0fff); 0xfffc0fff);
AR5K_REG_MASKED_BITS(ah, AR5K_PHY_DESIRED_SIZE, AR5K_REG_MASKED_BITS(ah, AR5K_PHY_DESIRED_SIZE,
(ee->ee_adc_desired_size[ee_mode] & 0x00ff) | (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment