Commit 19fe4165 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'edac_for_4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp

Pull EDAC updates from Borislav Petkov:
 "A lot of movement in the EDAC tree this time around, coarse summary
  below:

   - Altera Arria10 enablement of NAND, DMA, USB, QSPI and SD-MMC FIFO
     buffers (Thor Thayer)

   - split the memory controller part out of mpc85xx and share it with a
     new Freescale ARM Layerscape driver (York Sun)

   - amd64_edac fixes (Yazen Ghannam)

   - misc cleanups, refactoring and fixes all over the place"

* tag 'edac_for_4.9' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp: (37 commits)
  EDAC, altera: Add IRQ Flags to disable IRQ while handling
  EDAC, altera: Correct EDAC IRQ error message
  EDAC, amd64: Autoload module using x86_cpu_id
  EDAC, sb_edac: Remove NULL pointer check on array pci_tad
  EDAC: Remove NO_IRQ from powerpc-only drivers
  EDAC, fsl_ddr: Fix error return code in fsl_mc_err_probe()
  EDAC, fsl_ddr: Add entry to MAINTAINERS
  EDAC: Move Doug Thompson to CREDITS
  EDAC, I3000: Orphan driver
  EDAC, fsl_ddr: Replace simple_strtoul() with kstrtoul()
  EDAC, layerscape: Add Layerscape EDAC support
  EDAC, fsl_ddr: Fix IRQ dispose warning when module is removed
  EDAC, fsl_ddr: Add support for little endian
  EDAC, fsl_ddr: Add missing DDR DRAM types
  EDAC, fsl_ddr: Rename macros and names
  EDAC, fsl-ddr: Separate FSL DDR driver from MPC85xx
  EDAC, mpc85xx: Replace printk() with pr_* format
  EDAC, mpc85xx: Drop setting/clearing RFXE bit in HID1
  EDAC, altera: Rename MC trigger to common name
  EDAC, altera: Rename device trigger to common name
  ...
parents 58e4411b a29d64a4
......@@ -3523,6 +3523,10 @@ S: 145 Howard St.
S: Northborough, MA 01532
S: USA
N: Doug Thompson
E: dougthompson@xmission.com
D: EDAC
N: Tommy Thorn
E: Tommy.Thorn@irisa.fr
W: http://www.irisa.fr/prive/thorn/index.html
......@@ -3659,6 +3663,10 @@ S: Obere Heerbergstrasse 17
S: 97078 Wuerzburg
S: Germany
N: Jason Uhlenkott
E: juhlenko@akamai.com
D: I3000 EDAC driver
N: Greg Ungerer
E: gerg@snapgear.com
D: uClinux kernel hacker
......
......@@ -90,6 +90,47 @@ Required Properties:
- interrupts : Should be single bit error interrupt, then double bit error
interrupt, in this order.
NAND FIFO ECC
Required Properties:
- compatible : Should be "altr,socfpga-nand-ecc"
- reg : Address and size for ECC block registers.
- altr,ecc-parent : phandle to parent NAND node.
- interrupts : Should be single bit error interrupt, then double bit error
interrupt, in this order.
DMA FIFO ECC
Required Properties:
- compatible : Should be "altr,socfpga-dma-ecc"
- reg : Address and size for ECC block registers.
- altr,ecc-parent : phandle to parent DMA node.
- interrupts : Should be single bit error interrupt, then double bit error
interrupt, in this order.
USB FIFO ECC
Required Properties:
- compatible : Should be "altr,socfpga-usb-ecc"
- reg : Address and size for ECC block registers.
- altr,ecc-parent : phandle to parent USB node.
- interrupts : Should be single bit error interrupt, then double bit error
interrupt, in this order.
QSPI FIFO ECC
Required Properties:
- compatible : Should be "altr,socfpga-qspi-ecc"
- reg : Address and size for ECC block registers.
- altr,ecc-parent : phandle to parent QSPI node.
- interrupts : Should be single bit error interrupt, then double bit error
interrupt, in this order.
SDMMC FIFO ECC
Required Properties:
- compatible : Should be "altr,socfpga-sdmmc-ecc"
- reg : Address and size for ECC block registers.
- altr,ecc-parent : phandle to parent SD/MMC node.
- interrupts : Should be single bit error interrupt, then double bit error
interrupt, in this order for port A, and then single bit error interrupt,
then double bit error interrupt in this order for port B.
Example:
eccmgr: eccmgr@ffd06000 {
......@@ -132,4 +173,61 @@ Example:
interrupts = <5 IRQ_TYPE_LEVEL_HIGH>,
<37 IRQ_TYPE_LEVEL_HIGH>;
};
nand-buf-ecc@ff8c2000 {
compatible = "altr,socfpga-nand-ecc";
reg = <0xff8c2000 0x400>;
altr,ecc-parent = <&nand>;
interrupts = <11 IRQ_TYPE_LEVEL_HIGH>,
<43 IRQ_TYPE_LEVEL_HIGH>;
};
nand-rd-ecc@ff8c2400 {
compatible = "altr,socfpga-nand-ecc";
reg = <0xff8c2400 0x400>;
altr,ecc-parent = <&nand>;
interrupts = <13 IRQ_TYPE_LEVEL_HIGH>,
<45 IRQ_TYPE_LEVEL_HIGH>;
};
nand-wr-ecc@ff8c2800 {
compatible = "altr,socfpga-nand-ecc";
reg = <0xff8c2800 0x400>;
altr,ecc-parent = <&nand>;
interrupts = <12 IRQ_TYPE_LEVEL_HIGH>,
<44 IRQ_TYPE_LEVEL_HIGH>;
};
dma-ecc@ff8c8000 {
compatible = "altr,socfpga-dma-ecc";
reg = <0xff8c8000 0x400>;
altr,ecc-parent = <&pdma>;
interrupts = <10 IRQ_TYPE_LEVEL_HIGH>,
<42 IRQ_TYPE_LEVEL_HIGH>;
usb0-ecc@ff8c8800 {
compatible = "altr,socfpga-usb-ecc";
reg = <0xff8c8800 0x400>;
altr,ecc-parent = <&usb0>;
interrupts = <2 IRQ_TYPE_LEVEL_HIGH>,
<34 IRQ_TYPE_LEVEL_HIGH>;
};
qspi-ecc@ff8c8400 {
compatible = "altr,socfpga-qspi-ecc";
reg = <0xff8c8400 0x400>;
altr,ecc-parent = <&qspi>;
interrupts = <14 IRQ_TYPE_LEVEL_HIGH>,
<46 IRQ_TYPE_LEVEL_HIGH>;
};
sdmmc-ecc@ff8c2c00 {
compatible = "altr,socfpga-sdmmc-ecc";
reg = <0xff8c2c00 0x400>;
altr,ecc-parent = <&mmc>;
interrupts = <15 IRQ_TYPE_LEVEL_HIGH>,
<47 IRQ_TYPE_LEVEL_HIGH>,
<16 IRQ_TYPE_LEVEL_HIGH>,
<48 IRQ_TYPE_LEVEL_HIGH>;
};
};
......@@ -7,6 +7,8 @@ Properties:
"fsl,qoriq-memory-controller".
- reg : Address and size of DDR controller registers
- interrupts : Error interrupt of DDR controller
- little-endian : Specifies little-endian access to registers
If omitted, big-endian will be used.
Example 1:
......
......@@ -4410,7 +4410,6 @@ F: Documentation/filesystems/ecryptfs.txt
F: fs/ecryptfs/
EDAC-CORE
M: Doug Thompson <dougthompson@xmission.com>
M: Borislav Petkov <bp@alien8.de>
M: Mauro Carvalho Chehab <mchehab@s-opensource.com>
M: Mauro Carvalho Chehab <mchehab@kernel.org>
......@@ -4423,14 +4422,12 @@ F: drivers/edac/
F: include/linux/edac.h
EDAC-AMD64
M: Doug Thompson <dougthompson@xmission.com>
M: Borislav Petkov <bp@alien8.de>
L: linux-edac@vger.kernel.org
S: Maintained
F: drivers/edac/amd64_edac*
EDAC-CALXEDA
M: Doug Thompson <dougthompson@xmission.com>
M: Robert Richter <rric@kernel.org>
L: linux-edac@vger.kernel.org
S: Maintained
......@@ -4446,17 +4443,21 @@ F: drivers/edac/octeon_edac*
EDAC-E752X
M: Mark Gross <mark.gross@intel.com>
M: Doug Thompson <dougthompson@xmission.com>
L: linux-edac@vger.kernel.org
S: Maintained
F: drivers/edac/e752x_edac.c
EDAC-E7XXX
M: Doug Thompson <dougthompson@xmission.com>
L: linux-edac@vger.kernel.org
S: Maintained
F: drivers/edac/e7xxx_edac.c
EDAC-FSL_DDR
M: York Sun <york.sun@nxp.com>
L: linux-edac@vger.kernel.org
S: Maintained
F: drivers/edac/fsl_ddr_edac.*
EDAC-GHES
M: Mauro Carvalho Chehab <mchehab@s-opensource.com>
M: Mauro Carvalho Chehab <mchehab@kernel.org>
......@@ -4471,13 +4472,11 @@ S: Maintained
F: drivers/edac/i82443bxgx_edac.c
EDAC-I3000
M: Jason Uhlenkott <juhlenko@akamai.com>
L: linux-edac@vger.kernel.org
S: Maintained
S: Orphan
F: drivers/edac/i3000_edac.c
EDAC-I5000
M: Doug Thompson <dougthompson@xmission.com>
L: linux-edac@vger.kernel.org
S: Maintained
F: drivers/edac/i5000_edac.c
......
......@@ -639,6 +639,22 @@ emac0-tx-ecc@ff8c0c00 {
interrupts = <5 IRQ_TYPE_LEVEL_HIGH>,
<37 IRQ_TYPE_LEVEL_HIGH>;
};
dma-ecc@ff8c8000 {
compatible = "altr,socfpga-dma-ecc";
reg = <0xff8c8000 0x400>;
altr,ecc-parent = <&pdma>;
interrupts = <10 IRQ_TYPE_LEVEL_HIGH>,
<42 IRQ_TYPE_LEVEL_HIGH>;
};
usb0-ecc@ff8c8800 {
compatible = "altr,socfpga-usb-ecc";
reg = <0xff8c8800 0x400>;
altr,ecc-parent = <&usb0>;
interrupts = <2 IRQ_TYPE_LEVEL_HIGH>,
<34 IRQ_TYPE_LEVEL_HIGH>;
};
};
rst: rstmgr@ffd05000 {
......
......@@ -25,3 +25,15 @@ &mmc {
broken-cd;
bus-width = <4>;
};
&eccmgr {
sdmmca-ecc@ff8c2c00 {
compatible = "altr,socfpga-sdmmc-ecc";
reg = <0xff8c2c00 0x400>;
altr,ecc-parent = <&mmc>;
interrupts = <15 IRQ_TYPE_LEVEL_HIGH>,
<47 IRQ_TYPE_LEVEL_HIGH>,
<16 IRQ_TYPE_LEVEL_HIGH>,
<48 IRQ_TYPE_LEVEL_HIGH>;
};
};
......@@ -55,6 +55,7 @@ config ARCH_EXYNOS
config ARCH_LAYERSCAPE
bool "ARMv8 based Freescale Layerscape SoC family"
select EDAC_SUPPORT
help
This enables support for the Freescale Layerscape SoC family.
......
......@@ -266,6 +266,13 @@ config EDAC_MPC85XX
Support for error detection and correction on the Freescale
MPC8349, MPC8560, MPC8540, MPC8548, T4240
config EDAC_LAYERSCAPE
tristate "Freescale Layerscape DDR"
depends on EDAC_MM_EDAC && ARCH_LAYERSCAPE
help
Support for error detection and correction on Freescale memory
controllers on Layerscape SoCs.
config EDAC_MV64X60
tristate "Marvell MV64x60"
depends on EDAC_MM_EDAC && MV64X60
......@@ -406,6 +413,41 @@ config EDAC_ALTERA_ETHERNET
Support for error detection and correction on the
Altera Ethernet FIFO Memory for Altera SoCs.
config EDAC_ALTERA_NAND
bool "Altera NAND FIFO ECC"
depends on EDAC_ALTERA=y && MTD_NAND_DENALI
help
Support for error detection and correction on the
Altera NAND FIFO Memory for Altera SoCs.
config EDAC_ALTERA_DMA
bool "Altera DMA FIFO ECC"
depends on EDAC_ALTERA=y && PL330_DMA=y
help
Support for error detection and correction on the
Altera DMA FIFO Memory for Altera SoCs.
config EDAC_ALTERA_USB
bool "Altera USB FIFO ECC"
depends on EDAC_ALTERA=y && USB_DWC2
help
Support for error detection and correction on the
Altera USB FIFO Memory for Altera SoCs.
config EDAC_ALTERA_QSPI
bool "Altera QSPI FIFO ECC"
depends on EDAC_ALTERA=y && SPI_CADENCE_QUADSPI
help
Support for error detection and correction on the
Altera QSPI FIFO Memory for Altera SoCs.
config EDAC_ALTERA_SDMMC
bool "Altera SDMMC FIFO ECC"
depends on EDAC_ALTERA=y && MMC_DW
help
Support for error detection and correction on the
Altera SDMMC FIFO Memory for Altera SoCs.
config EDAC_SYNOPSYS
tristate "Synopsys DDR Memory Controller"
depends on EDAC_MM_EDAC && ARCH_ZYNQ
......
......@@ -51,7 +51,13 @@ amd64_edac_mod-$(CONFIG_EDAC_AMD64_ERROR_INJECTION) += amd64_edac_inj.o
obj-$(CONFIG_EDAC_AMD64) += amd64_edac_mod.o
obj-$(CONFIG_EDAC_PASEMI) += pasemi_edac.o
obj-$(CONFIG_EDAC_MPC85XX) += mpc85xx_edac.o
mpc85xx_edac_mod-y := fsl_ddr_edac.o mpc85xx_edac.o
obj-$(CONFIG_EDAC_MPC85XX) += mpc85xx_edac_mod.o
layerscape_edac_mod-y := fsl_ddr_edac.o layerscape_edac.o
obj-$(CONFIG_EDAC_LAYERSCAPE) += layerscape_edac_mod.o
obj-$(CONFIG_EDAC_MV64X60) += mv64x60_edac.o
obj-$(CONFIG_EDAC_CELL) += cell_edac.o
obj-$(CONFIG_EDAC_PPC4XX) += ppc4xx_edac.o
......
......@@ -203,7 +203,7 @@ static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
if (!mci->debugfs)
return;
edac_debugfs_create_file("inject_ctrl", S_IWUSR, mci->debugfs, mci,
edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
&altr_sdr_mc_debug_inject_fops);
}
......@@ -680,7 +680,7 @@ static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
if (!drvdata->debugfs_dir)
return;
if (!edac_debugfs_create_file(priv->dbgfs_name, S_IWUSR,
if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
drvdata->debugfs_dir, edac_dci,
priv->inject_fops))
debugfs_remove_recursive(drvdata->debugfs_dir);
......@@ -1108,7 +1108,6 @@ static const struct edac_device_prv_data ocramecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
.ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
.dbgfs_name = "altr_ocram_trigger",
.alloc_mem = ocram_alloc_mem,
.free_mem = ocram_free_mem,
.ecc_enable_mask = ALTR_OCR_ECC_EN,
......@@ -1125,7 +1124,6 @@ static const struct edac_device_prv_data a10_ocramecc_data = {
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
.dbgfs_name = "altr_ocram_trigger",
.ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
......@@ -1228,7 +1226,6 @@ static const struct edac_device_prv_data l2ecc_data = {
.setup = altr_l2_check_deps,
.ce_clear_mask = 0,
.ue_clear_mask = 0,
.dbgfs_name = "altr_l2_trigger",
.alloc_mem = l2_alloc_mem,
.free_mem = l2_free_mem,
.ecc_enable_mask = ALTR_L2_ECC_EN,
......@@ -1244,7 +1241,6 @@ static const struct edac_device_prv_data a10_l2ecc_data = {
.ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
.ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
.irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
.dbgfs_name = "altr_l2_trigger",
.alloc_mem = l2_alloc_mem,
.free_mem = l2_free_mem,
.ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
......@@ -1266,7 +1262,6 @@ static const struct edac_device_prv_data a10_enetecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.dbgfs_name = "altr_trigger",
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
......@@ -1285,6 +1280,292 @@ early_initcall(socfpga_init_ethernet_ecc);
#endif /* CONFIG_EDAC_ALTERA_ETHERNET */
/********************** NAND Device Functions **********************/
#ifdef CONFIG_EDAC_ALTERA_NAND
static const struct edac_device_prv_data a10_nandecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_nand_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
}
early_initcall(socfpga_init_nand_ecc);
#endif /* CONFIG_EDAC_ALTERA_NAND */
/********************** DMA Device Functions **********************/
#ifdef CONFIG_EDAC_ALTERA_DMA
static const struct edac_device_prv_data a10_dmaecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_dma_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
}
early_initcall(socfpga_init_dma_ecc);
#endif /* CONFIG_EDAC_ALTERA_DMA */
/********************** USB Device Functions **********************/
#ifdef CONFIG_EDAC_ALTERA_USB
static const struct edac_device_prv_data a10_usbecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_usb_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
}
early_initcall(socfpga_init_usb_ecc);
#endif /* CONFIG_EDAC_ALTERA_USB */
/********************** QSPI Device Functions **********************/
#ifdef CONFIG_EDAC_ALTERA_QSPI
static const struct edac_device_prv_data a10_qspiecc_data = {
.setup = altr_check_ecc_deps,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRA,
.ue_set_mask = ALTR_A10_ECC_TDERRA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_qspi_ecc(void)
{
return altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
}
early_initcall(socfpga_init_qspi_ecc);
#endif /* CONFIG_EDAC_ALTERA_QSPI */
/********************* SDMMC Device Functions **********************/
#ifdef CONFIG_EDAC_ALTERA_SDMMC
static const struct edac_device_prv_data a10_sdmmceccb_data;
static int altr_portb_setup(struct altr_edac_device_dev *device)
{
struct edac_device_ctl_info *dci;
struct altr_edac_device_dev *altdev;
char *ecc_name = "sdmmcb-ecc";
int edac_idx, rc;
struct device_node *np;
const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
rc = altr_check_ecc_deps(device);
if (rc)
return rc;
np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
if (!np) {
edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
return -ENODEV;
}
/* Create the PortB EDAC device */
edac_idx = edac_device_alloc_index();
dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
ecc_name, 1, 0, NULL, 0, edac_idx);
if (!dci) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s: Unable to allocate PortB EDAC device\n",
ecc_name);
return -ENOMEM;
}
/* Initialize the PortB EDAC device structure from PortA structure */
altdev = dci->pvt_info;
*altdev = *device;
if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
return -ENOMEM;
/* Update PortB specific values */
altdev->edac_dev_name = ecc_name;
altdev->edac_idx = edac_idx;
altdev->edac_dev = dci;
altdev->data = prv;
dci->dev = &altdev->ddev;
dci->ctl_name = "Altera ECC Manager";
dci->mod_name = ecc_name;
dci->dev_name = ecc_name;
/* Update the IRQs for PortB */
altdev->sb_irq = irq_of_parse_and_map(np, 2);
if (!altdev->sb_irq) {
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
rc = -ENODEV;
goto err_release_group_1;
}
rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
goto err_release_group_1;
}
altdev->db_irq = irq_of_parse_and_map(np, 3);
if (!altdev->db_irq) {
edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
rc = -ENODEV;
goto err_release_group_1;
}
rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
goto err_release_group_1;
}
rc = edac_device_add_device(dci);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE,
"edac_device_add_device portB failed\n");
rc = -ENOMEM;
goto err_release_group_1;
}
altr_create_edacdev_dbgfs(dci, prv);
list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
devres_remove_group(&altdev->ddev, altr_portb_setup);
return 0;
err_release_group_1:
edac_device_free_ctl_info(dci);
devres_release_group(&altdev->ddev, altr_portb_setup);
edac_printk(KERN_ERR, EDAC_DEVICE,
"%s:Error setting up EDAC device: %d\n", ecc_name, rc);
return rc;
}
static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
{
struct altr_edac_device_dev *ad = dev_id;
void __iomem *base = ad->base;
const struct edac_device_prv_data *priv = ad->data;
if (irq == ad->sb_irq) {
writel(priv->ce_clear_mask,
base + ALTR_A10_ECC_INTSTAT_OFST);
edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
return IRQ_HANDLED;
} else if (irq == ad->db_irq) {
writel(priv->ue_clear_mask,
base + ALTR_A10_ECC_INTSTAT_OFST);
edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
return IRQ_HANDLED;
}
WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
return IRQ_NONE;
}
static const struct edac_device_prv_data a10_sdmmcecca_data = {
.setup = altr_portb_setup,
.ce_clear_mask = ALTR_A10_ECC_SERRPENA,
.ue_clear_mask = ALTR_A10_ECC_DERRPENA,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_SERRPENA,
.ue_set_mask = ALTR_A10_ECC_DERRPENA,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static const struct edac_device_prv_data a10_sdmmceccb_data = {
.setup = altr_portb_setup,
.ce_clear_mask = ALTR_A10_ECC_SERRPENB,
.ue_clear_mask = ALTR_A10_ECC_DERRPENB,
.ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
.ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
.ce_set_mask = ALTR_A10_ECC_TSERRB,
.ue_set_mask = ALTR_A10_ECC_TDERRB,
.set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
.ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
.inject_fops = &altr_edac_a10_device_inject_fops,
};
static int __init socfpga_init_sdmmc_ecc(void)
{
int rc = -ENODEV;
struct device_node *child = of_find_compatible_node(NULL, NULL,
"altr,socfpga-sdmmc-ecc");
if (!child) {
edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
return -ENODEV;
}
if (!of_device_is_available(child))
goto exit;
if (validate_parent_available(child))
goto exit;
rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
a10_sdmmcecca_data.ecc_enable_mask, 1);
exit:
of_node_put(child);
return rc;
}
early_initcall(socfpga_init_sdmmc_ecc);
#endif /* CONFIG_EDAC_ALTERA_SDMMC */
/********************* Arria10 EDAC Device Functions *************************/
static const struct of_device_id altr_edac_a10_device_of_match[] = {
#ifdef CONFIG_EDAC_ALTERA_L2C
......@@ -1297,6 +1578,21 @@ static const struct of_device_id altr_edac_a10_device_of_match[] = {
#ifdef CONFIG_EDAC_ALTERA_ETHERNET
{ .compatible = "altr,socfpga-eth-mac-ecc",
.data = &a10_enetecc_data },
#endif
#ifdef CONFIG_EDAC_ALTERA_NAND
{ .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
#endif
#ifdef CONFIG_EDAC_ALTERA_DMA
{ .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
#endif
#ifdef CONFIG_EDAC_ALTERA_USB
{ .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
#endif
#ifdef CONFIG_EDAC_ALTERA_QSPI
{ .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
#endif
#ifdef CONFIG_EDAC_ALTERA_SDMMC
{ .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
#endif
{},
};
......@@ -1451,11 +1747,11 @@ static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
rc = -ENODEV;
goto err_release_group1;
}
rc = devm_request_irq(edac->dev, altdev->sb_irq,
prv->ecc_irq_handler,
IRQF_SHARED, ecc_name, altdev);
rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
goto err_release_group1;
}
......@@ -1465,9 +1761,9 @@ static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
rc = -ENODEV;
goto err_release_group1;
}
rc = devm_request_irq(edac->dev, altdev->db_irq,
prv->ecc_irq_handler,
IRQF_SHARED, ecc_name, altdev);
rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
ecc_name, altdev);
if (rc) {
edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
goto err_release_group1;
......@@ -1526,7 +1822,7 @@ static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
return 0;
}
struct irq_domain_ops a10_eccmgr_ic_ops = {
static struct irq_domain_ops a10_eccmgr_ic_ops = {
.map = a10_eccmgr_irqdomain_map,
.xlate = irq_domain_xlate_twocell,
};
......@@ -1584,15 +1880,19 @@ static int altr_edac_a10_probe(struct platform_device *pdev)
for_each_child_of_node(pdev->dev.of_node, child) {
if (!of_device_is_available(child))
continue;
if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc"))
altr_edac_a10_device_add(edac, child);
else if ((of_device_is_compatible(child,
"altr,socfpga-a10-ocram-ecc")) ||
(of_device_is_compatible(child,
"altr,socfpga-eth-mac-ecc")))
if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") ||
of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
altr_edac_a10_device_add(edac, child);
else if (of_device_is_compatible(child,
"altr,sdram-edac-a10"))
else if (of_device_is_compatible(child, "altr,sdram-edac-a10"))
of_platform_populate(pdev->dev.of_node,
altr_sdram_ctrl_of_match,
NULL, &pdev->dev);
......
......@@ -250,6 +250,8 @@ struct altr_sdram_mc_data {
#define ALTR_A10_ECC_INTTEST_OFST 0x24
#define ALTR_A10_ECC_TSERRA BIT(0)
#define ALTR_A10_ECC_TDERRA BIT(8)
#define ALTR_A10_ECC_TSERRB BIT(16)
#define ALTR_A10_ECC_TDERRB BIT(24)
/* ECC Manager Defines */
#define A10_SYSMGR_ECC_INTMASK_SET_OFST 0x94
......@@ -288,6 +290,9 @@ struct altr_sdram_mc_data {
/* Arria 10 Ethernet ECC Management Group Defines */
#define ALTR_A10_COMMON_ECC_EN_CTL BIT(0)
/* Arria 10 SDMMC ECC Management Group Defines */
#define ALTR_A10_SDMMC_IRQ_MASK (BIT(16) | BIT(15))
/* A10 ECC Controller memory initialization timeout */
#define ALTR_A10_ECC_INIT_WATCHDOG_10US 10000
......@@ -298,7 +303,6 @@ struct edac_device_prv_data {
int ce_clear_mask;
int ue_clear_mask;
int irq_status_mask;
char dbgfs_name[20];
void * (*alloc_mem)(size_t size, void **other);
void (*free_mem)(void *p, size_t size, void *other);
int ecc_enable_mask;
......
......@@ -1425,11 +1425,17 @@ static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
if (intlv_addr & 0x2) {
u8 shift = intlv_addr & 0x1 ? 9 : 6;
u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) & 1;
return ((sys_addr >> shift) & 1) ^ temp;
}
if (intlv_addr & 0x4) {
u8 shift = intlv_addr & 0x1 ? 9 : 8;
return (sys_addr >> shift) & 1;
}
return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
}
......@@ -1726,6 +1732,9 @@ static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
return -EINVAL;
if (pvt->model >= 0x60)
channel = f1x_determine_channel(pvt, sys_addr, false, intlv_en);
else
channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
num_dcts_intlv, dct_sel);
......@@ -2961,6 +2970,15 @@ static void setup_pci_device(void)
}
}
static const struct x86_cpu_id amd64_cpuids[] = {
{ X86_VENDOR_AMD, 0xF, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_AMD, 0x10, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_AMD, 0x15, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ X86_VENDOR_AMD, 0x16, X86_MODEL_ANY, X86_FEATURE_ANY, 0 },
{ }
};
MODULE_DEVICE_TABLE(x86cpu, amd64_cpuids);
static int __init amd64_edac_init(void)
{
int err = -ENODEV;
......
/*
* Freescale Memory Controller kernel module
*
* Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
* ARM-based Layerscape SoCs including LS2xxx. Originally split
* out from mpc85xx_edac EDAC driver.
*
* Parts Copyrighted (c) 2013 by Freescale Semiconductor, Inc.
*
* Author: Dave Jiang <djiang@mvista.com>
*
* 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/ctype.h>
#include <linux/io.h>
#include <linux/mod_devicetable.h>
#include <linux/edac.h>
#include <linux/smp.h>
#include <linux/gfp.h>
#include <linux/of_platform.h>
#include <linux/of_device.h>
#include <linux/of_address.h>
#include "edac_module.h"
#include "edac_core.h"
#include "fsl_ddr_edac.h"
#define EDAC_MOD_STR "fsl_ddr_edac"
static int edac_mc_idx;
static u32 orig_ddr_err_disable;
static u32 orig_ddr_err_sbe;
static bool little_endian;
static inline u32 ddr_in32(void __iomem *addr)
{
return little_endian ? ioread32(addr) : ioread32be(addr);
}
static inline void ddr_out32(void __iomem *addr, u32 value)
{
if (little_endian)
iowrite32(value, addr);
else
iowrite32be(value, addr);
}
/************************ MC SYSFS parts ***********************************/
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
static ssize_t fsl_mc_inject_data_hi_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI));
}
static ssize_t fsl_mc_inject_data_lo_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO));
}
static ssize_t fsl_mc_inject_ctrl_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
ddr_in32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT));
}
static ssize_t fsl_mc_inject_data_hi_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
unsigned long val;
int rc;
if (isdigit(*data)) {
rc = kstrtoul(data, 0, &val);
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_HI, val);
return count;
}
return 0;
}
static ssize_t fsl_mc_inject_data_lo_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
unsigned long val;
int rc;
if (isdigit(*data)) {
rc = kstrtoul(data, 0, &val);
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_DATA_ERR_INJECT_LO, val);
return count;
}
return 0;
}
static ssize_t fsl_mc_inject_ctrl_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
unsigned long val;
int rc;
if (isdigit(*data)) {
rc = kstrtoul(data, 0, &val);
if (rc)
return rc;
ddr_out32(pdata->mc_vbase + FSL_MC_ECC_ERR_INJECT, val);
return count;
}
return 0;
}
DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
fsl_mc_inject_data_hi_show, fsl_mc_inject_data_hi_store);
DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
fsl_mc_inject_data_lo_show, fsl_mc_inject_data_lo_store);
DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
fsl_mc_inject_ctrl_show, fsl_mc_inject_ctrl_store);
static struct attribute *fsl_ddr_dev_attrs[] = {
&dev_attr_inject_data_hi.attr,
&dev_attr_inject_data_lo.attr,
&dev_attr_inject_ctrl.attr,
NULL
};
ATTRIBUTE_GROUPS(fsl_ddr_dev);
/**************************** MC Err device ***************************/
/*
* Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
* MPC8572 User's Manual. Each line represents a syndrome bit column as a
* 64-bit value, but split into an upper and lower 32-bit chunk. The labels
* below correspond to Freescale's manuals.
*/
static unsigned int ecc_table[16] = {
/* MSB LSB */
/* [0:31] [32:63] */
0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
0x00ff00ff, 0x00fff0ff,
0x0f0f0f0f, 0x0f0fff00,
0x11113333, 0x7777000f,
0x22224444, 0x8888222f,
0x44448888, 0xffff4441,
0x8888ffff, 0x11118882,
0xffff1111, 0x22221114, /* Syndrome bit 0 */
};
/*
* Calculate the correct ECC value for a 64-bit value specified by high:low
*/
static u8 calculate_ecc(u32 high, u32 low)
{
u32 mask_low;
u32 mask_high;
int bit_cnt;
u8 ecc = 0;
int i;
int j;
for (i = 0; i < 8; i++) {
mask_high = ecc_table[i * 2];
mask_low = ecc_table[i * 2 + 1];
bit_cnt = 0;
for (j = 0; j < 32; j++) {
if ((mask_high >> j) & 1)
bit_cnt ^= (high >> j) & 1;
if ((mask_low >> j) & 1)
bit_cnt ^= (low >> j) & 1;
}
ecc |= bit_cnt << i;
}
return ecc;
}
/*
* Create the syndrome code which is generated if the data line specified by
* 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
* User's Manual and 9-61 in the MPC8572 User's Manual.
*/
static u8 syndrome_from_bit(unsigned int bit) {
int i;
u8 syndrome = 0;
/*
* Cycle through the upper or lower 32-bit portion of each value in
* ecc_table depending on if 'bit' is in the upper or lower half of
* 64-bit data.
*/
for (i = bit < 32; i < 16; i += 2)
syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
return syndrome;
}
/*
* Decode data and ecc syndrome to determine what went wrong
* Note: This can only decode single-bit errors
*/
static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
int *bad_data_bit, int *bad_ecc_bit)
{
int i;
u8 syndrome;
*bad_data_bit = -1;
*bad_ecc_bit = -1;
/*
* Calculate the ECC of the captured data and XOR it with the captured
* ECC to find an ECC syndrome value we can search for
*/
syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
/* Check if a data line is stuck... */
for (i = 0; i < 64; i++) {
if (syndrome == syndrome_from_bit(i)) {
*bad_data_bit = i;
return;
}
}
/* If data is correct, check ECC bits for errors... */
for (i = 0; i < 8; i++) {
if ((syndrome >> i) & 0x1) {
*bad_ecc_bit = i;
return;
}
}
}
#define make64(high, low) (((u64)(high) << 32) | (low))
static void fsl_mc_check(struct mem_ctl_info *mci)
{
struct fsl_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
u32 bus_width;
u32 err_detect;
u32 syndrome;
u64 err_addr;
u32 pfn;
int row_index;
u32 cap_high;
u32 cap_low;
int bad_data_bit;
int bad_ecc_bit;
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
if (!err_detect)
return;
fsl_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
err_detect);
/* no more processing if not ECC bit errors */
if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
return;
}
syndrome = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ECC);
/* Mask off appropriate bits of syndrome based on bus width */
bus_width = (ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG) &
DSC_DBW_MASK) ? 32 : 64;
if (bus_width == 64)
syndrome &= 0xff;
else
syndrome &= 0xffff;
err_addr = make64(
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_EXT_ADDRESS),
ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_ADDRESS));
pfn = err_addr >> PAGE_SHIFT;
for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
csrow = mci->csrows[row_index];
if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
break;
}
cap_high = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_HI);
cap_low = ddr_in32(pdata->mc_vbase + FSL_MC_CAPTURE_DATA_LO);
/*
* Analyze single-bit errors on 64-bit wide buses
* TODO: Add support for 32-bit wide buses
*/
if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
sbe_ecc_decode(cap_high, cap_low, syndrome,
&bad_data_bit, &bad_ecc_bit);
if (bad_data_bit != -1)
fsl_mc_printk(mci, KERN_ERR,
"Faulty Data bit: %d\n", bad_data_bit);
if (bad_ecc_bit != -1)
fsl_mc_printk(mci, KERN_ERR,
"Faulty ECC bit: %d\n", bad_ecc_bit);
fsl_mc_printk(mci, KERN_ERR,
"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high ^ (1 << (bad_data_bit - 32)),
cap_low ^ (1 << bad_data_bit),
syndrome ^ (1 << bad_ecc_bit));
}
fsl_mc_printk(mci, KERN_ERR,
"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high, cap_low, syndrome);
fsl_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
fsl_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
/* we are out of range */
if (row_index == mci->nr_csrows)
fsl_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
if (err_detect & DDR_EDE_SBE)
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
pfn, err_addr & ~PAGE_MASK, syndrome,
row_index, 0, -1,
mci->ctl_name, "");
if (err_detect & DDR_EDE_MBE)
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
pfn, err_addr & ~PAGE_MASK, syndrome,
row_index, 0, -1,
mci->ctl_name, "");
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, err_detect);
}
static irqreturn_t fsl_mc_isr(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct fsl_mc_pdata *pdata = mci->pvt_info;
u32 err_detect;
err_detect = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DETECT);
if (!err_detect)
return IRQ_NONE;
fsl_mc_check(mci);
return IRQ_HANDLED;
}
static void fsl_ddr_init_csrows(struct mem_ctl_info *mci)
{
struct fsl_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
struct dimm_info *dimm;
u32 sdram_ctl;
u32 sdtype;
enum mem_type mtype;
u32 cs_bnds;
int index;
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
sdtype = sdram_ctl & DSC_SDTYPE_MASK;
if (sdram_ctl & DSC_RD_EN) {
switch (sdtype) {
case 0x02000000:
mtype = MEM_RDDR;
break;
case 0x03000000:
mtype = MEM_RDDR2;
break;
case 0x07000000:
mtype = MEM_RDDR3;
break;
case 0x05000000:
mtype = MEM_RDDR4;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
} else {
switch (sdtype) {
case 0x02000000:
mtype = MEM_DDR;
break;
case 0x03000000:
mtype = MEM_DDR2;
break;
case 0x07000000:
mtype = MEM_DDR3;
break;
case 0x05000000:
mtype = MEM_DDR4;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
}
for (index = 0; index < mci->nr_csrows; index++) {
u32 start;
u32 end;
csrow = mci->csrows[index];
dimm = csrow->channels[0]->dimm;
cs_bnds = ddr_in32(pdata->mc_vbase + FSL_MC_CS_BNDS_0 +
(index * FSL_MC_CS_BNDS_OFS));
start = (cs_bnds & 0xffff0000) >> 16;
end = (cs_bnds & 0x0000ffff);
if (start == end)
continue; /* not populated */
start <<= (24 - PAGE_SHIFT);
end <<= (24 - PAGE_SHIFT);
end |= (1 << (24 - PAGE_SHIFT)) - 1;
csrow->first_page = start;
csrow->last_page = end;
dimm->nr_pages = end + 1 - start;
dimm->grain = 8;
dimm->mtype = mtype;
dimm->dtype = DEV_UNKNOWN;
if (sdram_ctl & DSC_X32_EN)
dimm->dtype = DEV_X32;
dimm->edac_mode = EDAC_SECDED;
}
}
int fsl_mc_err_probe(struct platform_device *op)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct fsl_mc_pdata *pdata;
struct resource r;
u32 sdram_ctl;
int res;
if (!devres_open_group(&op->dev, fsl_mc_err_probe, GFP_KERNEL))
return -ENOMEM;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = 4;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = 1;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
sizeof(*pdata));
if (!mci) {
devres_release_group(&op->dev, fsl_mc_err_probe);
return -ENOMEM;
}
pdata = mci->pvt_info;
pdata->name = "fsl_mc_err";
mci->pdev = &op->dev;
pdata->edac_idx = edac_mc_idx++;
dev_set_drvdata(mci->pdev, mci);
mci->ctl_name = pdata->name;
mci->dev_name = pdata->name;
/*
* Get the endianness of DDR controller registers.
* Default is big endian.
*/
little_endian = of_property_read_bool(op->dev.of_node, "little-endian");
res = of_address_to_resource(op->dev.of_node, 0, &r);
if (res) {
pr_err("%s: Unable to get resource for MC err regs\n",
__func__);
goto err;
}
if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
pdata->name)) {
pr_err("%s: Error while requesting mem region\n",
__func__);
res = -EBUSY;
goto err;
}
pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
if (!pdata->mc_vbase) {
pr_err("%s: Unable to setup MC err regs\n", __func__);
res = -ENOMEM;
goto err;
}
sdram_ctl = ddr_in32(pdata->mc_vbase + FSL_MC_DDR_SDRAM_CFG);
if (!(sdram_ctl & DSC_ECC_EN)) {
/* no ECC */
pr_warn("%s: No ECC DIMMs discovered\n", __func__);
res = -ENODEV;
goto err;
}
edac_dbg(3, "init mci\n");
mci->mtype_cap = MEM_FLAG_DDR | MEM_FLAG_RDDR |
MEM_FLAG_DDR2 | MEM_FLAG_RDDR2 |
MEM_FLAG_DDR3 | MEM_FLAG_RDDR3 |
MEM_FLAG_DDR4 | MEM_FLAG_RDDR4;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check = fsl_mc_check;
mci->ctl_page_to_phys = NULL;
mci->scrub_mode = SCRUB_SW_SRC;
fsl_ddr_init_csrows(mci);
/* store the original error disable bits */
orig_ddr_err_disable = ddr_in32(pdata->mc_vbase + FSL_MC_ERR_DISABLE);
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE, 0);
/* clear all error bits */
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DETECT, ~0);
res = edac_mc_add_mc_with_groups(mci, fsl_ddr_dev_groups);
if (res) {
edac_dbg(3, "failed edac_mc_add_mc()\n");
goto err;
}
if (edac_op_state == EDAC_OPSTATE_INT) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN,
DDR_EIE_MBEE | DDR_EIE_SBEE);
/* store the original error management threshold */
orig_ddr_err_sbe = ddr_in32(pdata->mc_vbase +
FSL_MC_ERR_SBE) & 0xff0000;
/* set threshold to 1 error per interrupt */
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, 0x10000);
/* register interrupts */
pdata->irq = platform_get_irq(op, 0);
res = devm_request_irq(&op->dev, pdata->irq,
fsl_mc_isr,
IRQF_SHARED,
"[EDAC] MC err", mci);
if (res < 0) {
pr_err("%s: Unable to request irq %d for FSL DDR DRAM ERR\n",
__func__, pdata->irq);
res = -ENODEV;
goto err2;
}
pr_info(EDAC_MOD_STR " acquired irq %d for MC\n",
pdata->irq);
}
devres_remove_group(&op->dev, fsl_mc_err_probe);
edac_dbg(3, "success\n");
pr_info(EDAC_MOD_STR " MC err registered\n");
return 0;
err2:
edac_mc_del_mc(&op->dev);
err:
devres_release_group(&op->dev, fsl_mc_err_probe);
edac_mc_free(mci);
return res;
}
int fsl_mc_err_remove(struct platform_device *op)
{
struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
struct fsl_mc_pdata *pdata = mci->pvt_info;
edac_dbg(0, "\n");
if (edac_op_state == EDAC_OPSTATE_INT) {
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_INT_EN, 0);
}
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_DISABLE,
orig_ddr_err_disable);
ddr_out32(pdata->mc_vbase + FSL_MC_ERR_SBE, orig_ddr_err_sbe);
edac_mc_del_mc(&op->dev);
edac_mc_free(mci);
return 0;
}
/*
* Freescale Memory Controller kernel module
*
* Support Power-based SoCs including MPC85xx, MPC86xx, MPC83xx and
* ARM-based Layerscape SoCs including LS2xxx. Originally split
* out from mpc85xx_edac EDAC driver.
*
* Author: Dave Jiang <djiang@mvista.com>
*
* 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*
*/
#ifndef _FSL_DDR_EDAC_H_
#define _FSL_DDR_EDAC_H_
#define fsl_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "FSL_DDR", fmt, ##arg)
/*
* DRAM error defines
*/
/* DDR_SDRAM_CFG */
#define FSL_MC_DDR_SDRAM_CFG 0x0110
#define FSL_MC_CS_BNDS_0 0x0000
#define FSL_MC_CS_BNDS_OFS 0x0008
#define FSL_MC_DATA_ERR_INJECT_HI 0x0e00
#define FSL_MC_DATA_ERR_INJECT_LO 0x0e04
#define FSL_MC_ECC_ERR_INJECT 0x0e08
#define FSL_MC_CAPTURE_DATA_HI 0x0e20
#define FSL_MC_CAPTURE_DATA_LO 0x0e24
#define FSL_MC_CAPTURE_ECC 0x0e28
#define FSL_MC_ERR_DETECT 0x0e40
#define FSL_MC_ERR_DISABLE 0x0e44
#define FSL_MC_ERR_INT_EN 0x0e48
#define FSL_MC_CAPTURE_ATRIBUTES 0x0e4c
#define FSL_MC_CAPTURE_ADDRESS 0x0e50
#define FSL_MC_CAPTURE_EXT_ADDRESS 0x0e54
#define FSL_MC_ERR_SBE 0x0e58
#define DSC_MEM_EN 0x80000000
#define DSC_ECC_EN 0x20000000
#define DSC_RD_EN 0x10000000
#define DSC_DBW_MASK 0x00180000
#define DSC_DBW_32 0x00080000
#define DSC_DBW_64 0x00000000
#define DSC_SDTYPE_MASK 0x07000000
#define DSC_X32_EN 0x00000020
/* Err_Int_En */
#define DDR_EIE_MSEE 0x1 /* memory select */
#define DDR_EIE_SBEE 0x4 /* single-bit ECC error */
#define DDR_EIE_MBEE 0x8 /* multi-bit ECC error */
/* Err_Detect */
#define DDR_EDE_MSE 0x1 /* memory select */
#define DDR_EDE_SBE 0x4 /* single-bit ECC error */
#define DDR_EDE_MBE 0x8 /* multi-bit ECC error */
#define DDR_EDE_MME 0x80000000 /* multiple memory errors */
/* Err_Disable */
#define DDR_EDI_MSED 0x1 /* memory select disable */
#define DDR_EDI_SBED 0x4 /* single-bit ECC error disable */
#define DDR_EDI_MBED 0x8 /* multi-bit ECC error disable */
struct fsl_mc_pdata {
char *name;
int edac_idx;
void __iomem *mc_vbase;
int irq;
};
int fsl_mc_err_probe(struct platform_device *op);
int fsl_mc_err_remove(struct platform_device *op);
#endif
/*
* Freescale Memory Controller kernel module
*
* Author: York Sun <york.sun@nxp.com>
*
* Copyright 2016 NXP Semiconductor
*
* Derived from mpc85xx_edac.c
* Author: Dave Jiang <djiang@mvista.com>
*
* 2006-2007 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "edac_core.h"
#include "fsl_ddr_edac.h"
static const struct of_device_id fsl_ddr_mc_err_of_match[] = {
{ .compatible = "fsl,qoriq-memory-controller", },
{},
};
MODULE_DEVICE_TABLE(of, fsl_ddr_mc_err_of_match);
static struct platform_driver fsl_ddr_mc_err_driver = {
.probe = fsl_mc_err_probe,
.remove = fsl_mc_err_remove,
.driver = {
.name = "fsl_ddr_mc_err",
.of_match_table = fsl_ddr_mc_err_of_match,
},
};
static int __init fsl_ddr_mc_init(void)
{
int res;
/* make sure error reporting method is sane */
switch (edac_op_state) {
case EDAC_OPSTATE_POLL:
case EDAC_OPSTATE_INT:
break;
default:
edac_op_state = EDAC_OPSTATE_INT;
break;
}
res = platform_driver_register(&fsl_ddr_mc_err_driver);
if (res) {
pr_err("MC fails to register\n");
return res;
}
return 0;
}
module_init(fsl_ddr_mc_init);
static void __exit fsl_ddr_mc_exit(void)
{
platform_driver_unregister(&fsl_ddr_mc_err_driver);
}
module_exit(fsl_ddr_mc_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("NXP Semiconductor");
module_param(edac_op_state, int, 0444);
MODULE_PARM_DESC(edac_op_state,
"EDAC Error Reporting state: 0=Poll, 2=Interrupt");
......@@ -27,15 +27,12 @@
#include "edac_module.h"
#include "edac_core.h"
#include "mpc85xx_edac.h"
#include "fsl_ddr_edac.h"
static int edac_dev_idx;
#ifdef CONFIG_PCI
static int edac_pci_idx;
#endif
static int edac_mc_idx;
static u32 orig_ddr_err_disable;
static u32 orig_ddr_err_sbe;
/*
* PCI Err defines
......@@ -46,103 +43,6 @@ static u32 orig_pci_err_en;
#endif
static u32 orig_l2_err_disable;
#ifdef CONFIG_FSL_SOC_BOOKE
static u32 orig_hid1[2];
#endif
/************************ MC SYSFS parts ***********************************/
#define to_mci(k) container_of(k, struct mem_ctl_info, dev)
static ssize_t mpc85xx_mc_inject_data_hi_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->mc_vbase +
MPC85XX_MC_DATA_ERR_INJECT_HI));
}
static ssize_t mpc85xx_mc_inject_data_lo_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->mc_vbase +
MPC85XX_MC_DATA_ERR_INJECT_LO));
}
static ssize_t mpc85xx_mc_inject_ctrl_show(struct device *dev,
struct device_attribute *mattr,
char *data)
{
struct mem_ctl_info *mci = to_mci(dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
return sprintf(data, "0x%08x",
in_be32(pdata->mc_vbase + MPC85XX_MC_ECC_ERR_INJECT));
}
static ssize_t mpc85xx_mc_inject_data_hi_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->mc_vbase + MPC85XX_MC_DATA_ERR_INJECT_HI,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static ssize_t mpc85xx_mc_inject_data_lo_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->mc_vbase + MPC85XX_MC_DATA_ERR_INJECT_LO,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
static ssize_t mpc85xx_mc_inject_ctrl_store(struct device *dev,
struct device_attribute *mattr,
const char *data, size_t count)
{
struct mem_ctl_info *mci = to_mci(dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
if (isdigit(*data)) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ECC_ERR_INJECT,
simple_strtoul(data, NULL, 0));
return count;
}
return 0;
}
DEVICE_ATTR(inject_data_hi, S_IRUGO | S_IWUSR,
mpc85xx_mc_inject_data_hi_show, mpc85xx_mc_inject_data_hi_store);
DEVICE_ATTR(inject_data_lo, S_IRUGO | S_IWUSR,
mpc85xx_mc_inject_data_lo_show, mpc85xx_mc_inject_data_lo_store);
DEVICE_ATTR(inject_ctrl, S_IRUGO | S_IWUSR,
mpc85xx_mc_inject_ctrl_show, mpc85xx_mc_inject_ctrl_store);
static struct attribute *mpc85xx_dev_attrs[] = {
&dev_attr_inject_data_hi.attr,
&dev_attr_inject_data_lo.attr,
&dev_attr_inject_ctrl.attr,
NULL
};
ATTRIBUTE_GROUPS(mpc85xx_dev);
/**************************** PCI Err device ***************************/
#ifdef CONFIG_PCI
......@@ -160,18 +60,18 @@ static void mpc85xx_pci_check(struct edac_pci_ctl_info *pci)
return;
}
printk(KERN_ERR "PCI error(s) detected\n");
printk(KERN_ERR "PCI/X ERR_DR register: %#08x\n", err_detect);
pr_err("PCI error(s) detected\n");
pr_err("PCI/X ERR_DR register: %#08x\n", err_detect);
printk(KERN_ERR "PCI/X ERR_ATTRIB register: %#08x\n",
pr_err("PCI/X ERR_ATTRIB register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_ATTRIB));
printk(KERN_ERR "PCI/X ERR_ADDR register: %#08x\n",
pr_err("PCI/X ERR_ADDR register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_ADDR));
printk(KERN_ERR "PCI/X ERR_EXT_ADDR register: %#08x\n",
pr_err("PCI/X ERR_EXT_ADDR register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_EXT_ADDR));
printk(KERN_ERR "PCI/X ERR_DL register: %#08x\n",
pr_err("PCI/X ERR_DL register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DL));
printk(KERN_ERR "PCI/X ERR_DH register: %#08x\n",
pr_err("PCI/X ERR_DH register: %#08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DH));
/* clear error bits */
......@@ -187,14 +87,14 @@ static void mpc85xx_pci_check(struct edac_pci_ctl_info *pci)
static void mpc85xx_pcie_check(struct edac_pci_ctl_info *pci)
{
struct mpc85xx_pci_pdata *pdata = pci->pvt_info;
u32 err_detect;
u32 err_detect, err_cap_stat;
err_detect = in_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR);
err_cap_stat = in_be32(pdata->pci_vbase + MPC85XX_PCI_GAS_TIMR);
pr_err("PCIe error(s) detected\n");
pr_err("PCIe ERR_DR register: 0x%08x\n", err_detect);
pr_err("PCIe ERR_CAP_STAT register: 0x%08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCI_GAS_TIMR));
pr_err("PCIe ERR_CAP_STAT register: 0x%08x\n", err_cap_stat);
pr_err("PCIe ERR_CAP_R0 register: 0x%08x\n",
in_be32(pdata->pci_vbase + MPC85XX_PCIE_ERR_CAP_R0));
pr_err("PCIe ERR_CAP_R1 register: 0x%08x\n",
......@@ -206,6 +106,9 @@ static void mpc85xx_pcie_check(struct edac_pci_ctl_info *pci)
/* clear error bits */
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR, err_detect);
/* reset error capture */
out_be32(pdata->pci_vbase + MPC85XX_PCI_GAS_TIMR, err_cap_stat | 0x1);
}
static int mpc85xx_pcie_find_capability(struct device_node *np)
......@@ -267,7 +170,6 @@ static int mpc85xx_pci_err_probe(struct platform_device *op)
pdata = pci->pvt_info;
pdata->name = "mpc85xx_pci_err";
pdata->irq = NO_IRQ;
plat_data = op->dev.platform_data;
if (!plat_data) {
......@@ -297,8 +199,7 @@ static int mpc85xx_pci_err_probe(struct platform_device *op)
res = of_address_to_resource(of_node, 0, &r);
if (res) {
printk(KERN_ERR "%s: Unable to get resource for "
"PCI err regs\n", __func__);
pr_err("%s: Unable to get resource for PCI err regs\n", __func__);
goto err;
}
......@@ -307,15 +208,14 @@ static int mpc85xx_pci_err_probe(struct platform_device *op)
if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
pdata->name)) {
printk(KERN_ERR "%s: Error while requesting mem region\n",
__func__);
pr_err("%s: Error while requesting mem region\n", __func__);
res = -EBUSY;
goto err;
}
pdata->pci_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
if (!pdata->pci_vbase) {
printk(KERN_ERR "%s: Unable to setup PCI err regs\n", __func__);
pr_err("%s: Unable to setup PCI err regs\n", __func__);
res = -ENOMEM;
goto err;
}
......@@ -344,6 +244,9 @@ static int mpc85xx_pci_err_probe(struct platform_device *op)
/* clear error bits */
out_be32(pdata->pci_vbase + MPC85XX_PCI_ERR_DR, ~0);
/* reset error capture */
out_be32(pdata->pci_vbase + MPC85XX_PCI_GAS_TIMR, 0x1);
if (edac_pci_add_device(pci, pdata->edac_idx) > 0) {
edac_dbg(3, "failed edac_pci_add_device()\n");
goto err;
......@@ -356,15 +259,14 @@ static int mpc85xx_pci_err_probe(struct platform_device *op)
IRQF_SHARED,
"[EDAC] PCI err", pci);
if (res < 0) {
printk(KERN_ERR
"%s: Unable to request irq %d for "
"MPC85xx PCI err\n", __func__, pdata->irq);
pr_err("%s: Unable to request irq %d for MPC85xx PCI err\n",
__func__, pdata->irq);
irq_dispose_mapping(pdata->irq);
res = -ENODEV;
goto err2;
}
printk(KERN_INFO EDAC_MOD_STR " acquired irq %d for PCI Err\n",
pr_info(EDAC_MOD_STR " acquired irq %d for PCI Err\n",
pdata->irq);
}
......@@ -386,7 +288,7 @@ static int mpc85xx_pci_err_probe(struct platform_device *op)
devres_remove_group(&op->dev, mpc85xx_pci_err_probe);
edac_dbg(3, "success\n");
printk(KERN_INFO EDAC_MOD_STR " PCI err registered\n");
pr_info(EDAC_MOD_STR " PCI err registered\n");
return 0;
......@@ -529,17 +431,17 @@ static void mpc85xx_l2_check(struct edac_device_ctl_info *edac_dev)
if (!(err_detect & L2_EDE_MASK))
return;
printk(KERN_ERR "ECC Error in CPU L2 cache\n");
printk(KERN_ERR "L2 Error Detect Register: 0x%08x\n", err_detect);
printk(KERN_ERR "L2 Error Capture Data High Register: 0x%08x\n",
pr_err("ECC Error in CPU L2 cache\n");
pr_err("L2 Error Detect Register: 0x%08x\n", err_detect);
pr_err("L2 Error Capture Data High Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_CAPTDATAHI));
printk(KERN_ERR "L2 Error Capture Data Lo Register: 0x%08x\n",
pr_err("L2 Error Capture Data Lo Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_CAPTDATALO));
printk(KERN_ERR "L2 Error Syndrome Register: 0x%08x\n",
pr_err("L2 Error Syndrome Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_CAPTECC));
printk(KERN_ERR "L2 Error Attributes Capture Register: 0x%08x\n",
pr_err("L2 Error Attributes Capture Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_ERRATTR));
printk(KERN_ERR "L2 Error Address Capture Register: 0x%08x\n",
pr_err("L2 Error Address Capture Register: 0x%08x\n",
in_be32(pdata->l2_vbase + MPC85XX_L2_ERRADDR));
/* clear error detect register */
......@@ -588,7 +490,6 @@ static int mpc85xx_l2_err_probe(struct platform_device *op)
pdata = edac_dev->pvt_info;
pdata->name = "mpc85xx_l2_err";
pdata->irq = NO_IRQ;
edac_dev->dev = &op->dev;
dev_set_drvdata(edac_dev->dev, edac_dev);
edac_dev->ctl_name = pdata->name;
......@@ -596,8 +497,7 @@ static int mpc85xx_l2_err_probe(struct platform_device *op)
res = of_address_to_resource(op->dev.of_node, 0, &r);
if (res) {
printk(KERN_ERR "%s: Unable to get resource for "
"L2 err regs\n", __func__);
pr_err("%s: Unable to get resource for L2 err regs\n", __func__);
goto err;
}
......@@ -606,15 +506,14 @@ static int mpc85xx_l2_err_probe(struct platform_device *op)
if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
pdata->name)) {
printk(KERN_ERR "%s: Error while requesting mem region\n",
__func__);
pr_err("%s: Error while requesting mem region\n", __func__);
res = -EBUSY;
goto err;
}
pdata->l2_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
if (!pdata->l2_vbase) {
printk(KERN_ERR "%s: Unable to setup L2 err regs\n", __func__);
pr_err("%s: Unable to setup L2 err regs\n", __func__);
res = -ENOMEM;
goto err;
}
......@@ -646,16 +545,14 @@ static int mpc85xx_l2_err_probe(struct platform_device *op)
mpc85xx_l2_isr, IRQF_SHARED,
"[EDAC] L2 err", edac_dev);
if (res < 0) {
printk(KERN_ERR
"%s: Unable to request irq %d for "
"MPC85xx L2 err\n", __func__, pdata->irq);
pr_err("%s: Unable to request irq %d for MPC85xx L2 err\n",
__func__, pdata->irq);
irq_dispose_mapping(pdata->irq);
res = -ENODEV;
goto err2;
}
printk(KERN_INFO EDAC_MOD_STR " acquired irq %d for L2 Err\n",
pdata->irq);
pr_info(EDAC_MOD_STR " acquired irq %d for L2 Err\n", pdata->irq);
edac_dev->op_state = OP_RUNNING_INTERRUPT;
......@@ -665,7 +562,7 @@ static int mpc85xx_l2_err_probe(struct platform_device *op)
devres_remove_group(&op->dev, mpc85xx_l2_err_probe);
edac_dbg(3, "success\n");
printk(KERN_INFO EDAC_MOD_STR " L2 err registered\n");
pr_info(EDAC_MOD_STR " L2 err registered\n");
return 0;
......@@ -729,466 +626,6 @@ static struct platform_driver mpc85xx_l2_err_driver = {
},
};
/**************************** MC Err device ***************************/
/*
* Taken from table 8-55 in the MPC8641 User's Manual and/or 9-61 in the
* MPC8572 User's Manual. Each line represents a syndrome bit column as a
* 64-bit value, but split into an upper and lower 32-bit chunk. The labels
* below correspond to Freescale's manuals.
*/
static unsigned int ecc_table[16] = {
/* MSB LSB */
/* [0:31] [32:63] */
0xf00fe11e, 0xc33c0ff7, /* Syndrome bit 7 */
0x00ff00ff, 0x00fff0ff,
0x0f0f0f0f, 0x0f0fff00,
0x11113333, 0x7777000f,
0x22224444, 0x8888222f,
0x44448888, 0xffff4441,
0x8888ffff, 0x11118882,
0xffff1111, 0x22221114, /* Syndrome bit 0 */
};
/*
* Calculate the correct ECC value for a 64-bit value specified by high:low
*/
static u8 calculate_ecc(u32 high, u32 low)
{
u32 mask_low;
u32 mask_high;
int bit_cnt;
u8 ecc = 0;
int i;
int j;
for (i = 0; i < 8; i++) {
mask_high = ecc_table[i * 2];
mask_low = ecc_table[i * 2 + 1];
bit_cnt = 0;
for (j = 0; j < 32; j++) {
if ((mask_high >> j) & 1)
bit_cnt ^= (high >> j) & 1;
if ((mask_low >> j) & 1)
bit_cnt ^= (low >> j) & 1;
}
ecc |= bit_cnt << i;
}
return ecc;
}
/*
* Create the syndrome code which is generated if the data line specified by
* 'bit' failed. Eg generate an 8-bit codes seen in Table 8-55 in the MPC8641
* User's Manual and 9-61 in the MPC8572 User's Manual.
*/
static u8 syndrome_from_bit(unsigned int bit) {
int i;
u8 syndrome = 0;
/*
* Cycle through the upper or lower 32-bit portion of each value in
* ecc_table depending on if 'bit' is in the upper or lower half of
* 64-bit data.
*/
for (i = bit < 32; i < 16; i += 2)
syndrome |= ((ecc_table[i] >> (bit % 32)) & 1) << (i / 2);
return syndrome;
}
/*
* Decode data and ecc syndrome to determine what went wrong
* Note: This can only decode single-bit errors
*/
static void sbe_ecc_decode(u32 cap_high, u32 cap_low, u32 cap_ecc,
int *bad_data_bit, int *bad_ecc_bit)
{
int i;
u8 syndrome;
*bad_data_bit = -1;
*bad_ecc_bit = -1;
/*
* Calculate the ECC of the captured data and XOR it with the captured
* ECC to find an ECC syndrome value we can search for
*/
syndrome = calculate_ecc(cap_high, cap_low) ^ cap_ecc;
/* Check if a data line is stuck... */
for (i = 0; i < 64; i++) {
if (syndrome == syndrome_from_bit(i)) {
*bad_data_bit = i;
return;
}
}
/* If data is correct, check ECC bits for errors... */
for (i = 0; i < 8; i++) {
if ((syndrome >> i) & 0x1) {
*bad_ecc_bit = i;
return;
}
}
}
#define make64(high, low) (((u64)(high) << 32) | (low))
static void mpc85xx_mc_check(struct mem_ctl_info *mci)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
u32 bus_width;
u32 err_detect;
u32 syndrome;
u64 err_addr;
u32 pfn;
int row_index;
u32 cap_high;
u32 cap_low;
int bad_data_bit;
int bad_ecc_bit;
err_detect = in_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT);
if (!err_detect)
return;
mpc85xx_mc_printk(mci, KERN_ERR, "Err Detect Register: %#8.8x\n",
err_detect);
/* no more processing if not ECC bit errors */
if (!(err_detect & (DDR_EDE_SBE | DDR_EDE_MBE))) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT, err_detect);
return;
}
syndrome = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_ECC);
/* Mask off appropriate bits of syndrome based on bus width */
bus_width = (in_be32(pdata->mc_vbase + MPC85XX_MC_DDR_SDRAM_CFG) &
DSC_DBW_MASK) ? 32 : 64;
if (bus_width == 64)
syndrome &= 0xff;
else
syndrome &= 0xffff;
err_addr = make64(
in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_EXT_ADDRESS),
in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_ADDRESS));
pfn = err_addr >> PAGE_SHIFT;
for (row_index = 0; row_index < mci->nr_csrows; row_index++) {
csrow = mci->csrows[row_index];
if ((pfn >= csrow->first_page) && (pfn <= csrow->last_page))
break;
}
cap_high = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_DATA_HI);
cap_low = in_be32(pdata->mc_vbase + MPC85XX_MC_CAPTURE_DATA_LO);
/*
* Analyze single-bit errors on 64-bit wide buses
* TODO: Add support for 32-bit wide buses
*/
if ((err_detect & DDR_EDE_SBE) && (bus_width == 64)) {
sbe_ecc_decode(cap_high, cap_low, syndrome,
&bad_data_bit, &bad_ecc_bit);
if (bad_data_bit != -1)
mpc85xx_mc_printk(mci, KERN_ERR,
"Faulty Data bit: %d\n", bad_data_bit);
if (bad_ecc_bit != -1)
mpc85xx_mc_printk(mci, KERN_ERR,
"Faulty ECC bit: %d\n", bad_ecc_bit);
mpc85xx_mc_printk(mci, KERN_ERR,
"Expected Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high ^ (1 << (bad_data_bit - 32)),
cap_low ^ (1 << bad_data_bit),
syndrome ^ (1 << bad_ecc_bit));
}
mpc85xx_mc_printk(mci, KERN_ERR,
"Captured Data / ECC:\t%#8.8x_%08x / %#2.2x\n",
cap_high, cap_low, syndrome);
mpc85xx_mc_printk(mci, KERN_ERR, "Err addr: %#8.8llx\n", err_addr);
mpc85xx_mc_printk(mci, KERN_ERR, "PFN: %#8.8x\n", pfn);
/* we are out of range */
if (row_index == mci->nr_csrows)
mpc85xx_mc_printk(mci, KERN_ERR, "PFN out of range!\n");
if (err_detect & DDR_EDE_SBE)
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
pfn, err_addr & ~PAGE_MASK, syndrome,
row_index, 0, -1,
mci->ctl_name, "");
if (err_detect & DDR_EDE_MBE)
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
pfn, err_addr & ~PAGE_MASK, syndrome,
row_index, 0, -1,
mci->ctl_name, "");
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT, err_detect);
}
static irqreturn_t mpc85xx_mc_isr(int irq, void *dev_id)
{
struct mem_ctl_info *mci = dev_id;
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
u32 err_detect;
err_detect = in_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT);
if (!err_detect)
return IRQ_NONE;
mpc85xx_mc_check(mci);
return IRQ_HANDLED;
}
static void mpc85xx_init_csrows(struct mem_ctl_info *mci)
{
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
struct csrow_info *csrow;
struct dimm_info *dimm;
u32 sdram_ctl;
u32 sdtype;
enum mem_type mtype;
u32 cs_bnds;
int index;
sdram_ctl = in_be32(pdata->mc_vbase + MPC85XX_MC_DDR_SDRAM_CFG);
sdtype = sdram_ctl & DSC_SDTYPE_MASK;
if (sdram_ctl & DSC_RD_EN) {
switch (sdtype) {
case DSC_SDTYPE_DDR:
mtype = MEM_RDDR;
break;
case DSC_SDTYPE_DDR2:
mtype = MEM_RDDR2;
break;
case DSC_SDTYPE_DDR3:
mtype = MEM_RDDR3;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
} else {
switch (sdtype) {
case DSC_SDTYPE_DDR:
mtype = MEM_DDR;
break;
case DSC_SDTYPE_DDR2:
mtype = MEM_DDR2;
break;
case DSC_SDTYPE_DDR3:
mtype = MEM_DDR3;
break;
default:
mtype = MEM_UNKNOWN;
break;
}
}
for (index = 0; index < mci->nr_csrows; index++) {
u32 start;
u32 end;
csrow = mci->csrows[index];
dimm = csrow->channels[0]->dimm;
cs_bnds = in_be32(pdata->mc_vbase + MPC85XX_MC_CS_BNDS_0 +
(index * MPC85XX_MC_CS_BNDS_OFS));
start = (cs_bnds & 0xffff0000) >> 16;
end = (cs_bnds & 0x0000ffff);
if (start == end)
continue; /* not populated */
start <<= (24 - PAGE_SHIFT);
end <<= (24 - PAGE_SHIFT);
end |= (1 << (24 - PAGE_SHIFT)) - 1;
csrow->first_page = start;
csrow->last_page = end;
dimm->nr_pages = end + 1 - start;
dimm->grain = 8;
dimm->mtype = mtype;
dimm->dtype = DEV_UNKNOWN;
if (sdram_ctl & DSC_X32_EN)
dimm->dtype = DEV_X32;
dimm->edac_mode = EDAC_SECDED;
}
}
static int mpc85xx_mc_err_probe(struct platform_device *op)
{
struct mem_ctl_info *mci;
struct edac_mc_layer layers[2];
struct mpc85xx_mc_pdata *pdata;
struct resource r;
u32 sdram_ctl;
int res;
if (!devres_open_group(&op->dev, mpc85xx_mc_err_probe, GFP_KERNEL))
return -ENOMEM;
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = 4;
layers[0].is_virt_csrow = true;
layers[1].type = EDAC_MC_LAYER_CHANNEL;
layers[1].size = 1;
layers[1].is_virt_csrow = false;
mci = edac_mc_alloc(edac_mc_idx, ARRAY_SIZE(layers), layers,
sizeof(*pdata));
if (!mci) {
devres_release_group(&op->dev, mpc85xx_mc_err_probe);
return -ENOMEM;
}
pdata = mci->pvt_info;
pdata->name = "mpc85xx_mc_err";
pdata->irq = NO_IRQ;
mci->pdev = &op->dev;
pdata->edac_idx = edac_mc_idx++;
dev_set_drvdata(mci->pdev, mci);
mci->ctl_name = pdata->name;
mci->dev_name = pdata->name;
res = of_address_to_resource(op->dev.of_node, 0, &r);
if (res) {
printk(KERN_ERR "%s: Unable to get resource for MC err regs\n",
__func__);
goto err;
}
if (!devm_request_mem_region(&op->dev, r.start, resource_size(&r),
pdata->name)) {
printk(KERN_ERR "%s: Error while requesting mem region\n",
__func__);
res = -EBUSY;
goto err;
}
pdata->mc_vbase = devm_ioremap(&op->dev, r.start, resource_size(&r));
if (!pdata->mc_vbase) {
printk(KERN_ERR "%s: Unable to setup MC err regs\n", __func__);
res = -ENOMEM;
goto err;
}
sdram_ctl = in_be32(pdata->mc_vbase + MPC85XX_MC_DDR_SDRAM_CFG);
if (!(sdram_ctl & DSC_ECC_EN)) {
/* no ECC */
printk(KERN_WARNING "%s: No ECC DIMMs discovered\n", __func__);
res = -ENODEV;
goto err;
}
edac_dbg(3, "init mci\n");
mci->mtype_cap = MEM_FLAG_RDDR | MEM_FLAG_RDDR2 |
MEM_FLAG_DDR | MEM_FLAG_DDR2;
mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = EDAC_MOD_STR;
mci->mod_ver = MPC85XX_REVISION;
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check = mpc85xx_mc_check;
mci->ctl_page_to_phys = NULL;
mci->scrub_mode = SCRUB_SW_SRC;
mpc85xx_init_csrows(mci);
/* store the original error disable bits */
orig_ddr_err_disable =
in_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DISABLE);
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DISABLE, 0);
/* clear all error bits */
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DETECT, ~0);
if (edac_mc_add_mc_with_groups(mci, mpc85xx_dev_groups)) {
edac_dbg(3, "failed edac_mc_add_mc()\n");
goto err;
}
if (edac_op_state == EDAC_OPSTATE_INT) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_INT_EN,
DDR_EIE_MBEE | DDR_EIE_SBEE);
/* store the original error management threshold */
orig_ddr_err_sbe = in_be32(pdata->mc_vbase +
MPC85XX_MC_ERR_SBE) & 0xff0000;
/* set threshold to 1 error per interrupt */
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_SBE, 0x10000);
/* register interrupts */
pdata->irq = irq_of_parse_and_map(op->dev.of_node, 0);
res = devm_request_irq(&op->dev, pdata->irq,
mpc85xx_mc_isr,
IRQF_SHARED,
"[EDAC] MC err", mci);
if (res < 0) {
printk(KERN_ERR "%s: Unable to request irq %d for "
"MPC85xx DRAM ERR\n", __func__, pdata->irq);
irq_dispose_mapping(pdata->irq);
res = -ENODEV;
goto err2;
}
printk(KERN_INFO EDAC_MOD_STR " acquired irq %d for MC\n",
pdata->irq);
}
devres_remove_group(&op->dev, mpc85xx_mc_err_probe);
edac_dbg(3, "success\n");
printk(KERN_INFO EDAC_MOD_STR " MC err registered\n");
return 0;
err2:
edac_mc_del_mc(&op->dev);
err:
devres_release_group(&op->dev, mpc85xx_mc_err_probe);
edac_mc_free(mci);
return res;
}
static int mpc85xx_mc_err_remove(struct platform_device *op)
{
struct mem_ctl_info *mci = dev_get_drvdata(&op->dev);
struct mpc85xx_mc_pdata *pdata = mci->pvt_info;
edac_dbg(0, "\n");
if (edac_op_state == EDAC_OPSTATE_INT) {
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_INT_EN, 0);
irq_dispose_mapping(pdata->irq);
}
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_DISABLE,
orig_ddr_err_disable);
out_be32(pdata->mc_vbase + MPC85XX_MC_ERR_SBE, orig_ddr_err_sbe);
edac_mc_del_mc(&op->dev);
edac_mc_free(mci);
return 0;
}
static const struct of_device_id mpc85xx_mc_err_of_match[] = {
/* deprecate the fsl,85.. forms in the future, 2.6.30? */
{ .compatible = "fsl,8540-memory-controller", },
......@@ -1217,22 +654,14 @@ static const struct of_device_id mpc85xx_mc_err_of_match[] = {
MODULE_DEVICE_TABLE(of, mpc85xx_mc_err_of_match);
static struct platform_driver mpc85xx_mc_err_driver = {
.probe = mpc85xx_mc_err_probe,
.remove = mpc85xx_mc_err_remove,
.probe = fsl_mc_err_probe,
.remove = fsl_mc_err_remove,
.driver = {
.name = "mpc85xx_mc_err",
.of_match_table = mpc85xx_mc_err_of_match,
},
};
#ifdef CONFIG_FSL_SOC_BOOKE
static void __init mpc85xx_mc_clear_rfxe(void *data)
{
orig_hid1[smp_processor_id()] = mfspr(SPRN_HID1);
mtspr(SPRN_HID1, (orig_hid1[smp_processor_id()] & ~HID1_RFXE));
}
#endif
static struct platform_driver * const drivers[] = {
&mpc85xx_mc_err_driver,
&mpc85xx_l2_err_driver,
......@@ -1246,8 +675,7 @@ static int __init mpc85xx_mc_init(void)
int res = 0;
u32 __maybe_unused pvr = 0;
printk(KERN_INFO "Freescale(R) MPC85xx EDAC driver, "
"(C) 2006 Montavista Software\n");
pr_info("Freescale(R) MPC85xx EDAC driver, (C) 2006 Montavista Software\n");
/* make sure error reporting method is sane */
switch (edac_op_state) {
......@@ -1261,44 +689,15 @@ static int __init mpc85xx_mc_init(void)
res = platform_register_drivers(drivers, ARRAY_SIZE(drivers));
if (res)
printk(KERN_WARNING EDAC_MOD_STR "drivers fail to register\n");
#ifdef CONFIG_FSL_SOC_BOOKE
pvr = mfspr(SPRN_PVR);
if ((PVR_VER(pvr) == PVR_VER_E500V1) ||
(PVR_VER(pvr) == PVR_VER_E500V2)) {
/*
* need to clear HID1[RFXE] to disable machine check int
* so we can catch it
*/
if (edac_op_state == EDAC_OPSTATE_INT)
on_each_cpu(mpc85xx_mc_clear_rfxe, NULL, 0);
}
#endif
pr_warn(EDAC_MOD_STR "drivers fail to register\n");
return 0;
}
module_init(mpc85xx_mc_init);
#ifdef CONFIG_FSL_SOC_BOOKE
static void __exit mpc85xx_mc_restore_hid1(void *data)
{
mtspr(SPRN_HID1, orig_hid1[smp_processor_id()]);
}
#endif
static void __exit mpc85xx_mc_exit(void)
{
#ifdef CONFIG_FSL_SOC_BOOKE
u32 pvr = mfspr(SPRN_PVR);
if ((PVR_VER(pvr) == PVR_VER_E500V1) ||
(PVR_VER(pvr) == PVR_VER_E500V2)) {
on_each_cpu(mpc85xx_mc_restore_hid1, NULL, 0);
}
#endif
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
}
......
......@@ -17,65 +17,6 @@
#define mpc85xx_printk(level, fmt, arg...) \
edac_printk(level, "MPC85xx", fmt, ##arg)
#define mpc85xx_mc_printk(mci, level, fmt, arg...) \
edac_mc_chipset_printk(mci, level, "MPC85xx", fmt, ##arg)
/*
* DRAM error defines
*/
/* DDR_SDRAM_CFG */
#define MPC85XX_MC_DDR_SDRAM_CFG 0x0110
#define MPC85XX_MC_CS_BNDS_0 0x0000
#define MPC85XX_MC_CS_BNDS_1 0x0008
#define MPC85XX_MC_CS_BNDS_2 0x0010
#define MPC85XX_MC_CS_BNDS_3 0x0018
#define MPC85XX_MC_CS_BNDS_OFS 0x0008
#define MPC85XX_MC_DATA_ERR_INJECT_HI 0x0e00
#define MPC85XX_MC_DATA_ERR_INJECT_LO 0x0e04
#define MPC85XX_MC_ECC_ERR_INJECT 0x0e08
#define MPC85XX_MC_CAPTURE_DATA_HI 0x0e20
#define MPC85XX_MC_CAPTURE_DATA_LO 0x0e24
#define MPC85XX_MC_CAPTURE_ECC 0x0e28
#define MPC85XX_MC_ERR_DETECT 0x0e40
#define MPC85XX_MC_ERR_DISABLE 0x0e44
#define MPC85XX_MC_ERR_INT_EN 0x0e48
#define MPC85XX_MC_CAPTURE_ATRIBUTES 0x0e4c
#define MPC85XX_MC_CAPTURE_ADDRESS 0x0e50
#define MPC85XX_MC_CAPTURE_EXT_ADDRESS 0x0e54
#define MPC85XX_MC_ERR_SBE 0x0e58
#define DSC_MEM_EN 0x80000000
#define DSC_ECC_EN 0x20000000
#define DSC_RD_EN 0x10000000
#define DSC_DBW_MASK 0x00180000
#define DSC_DBW_32 0x00080000
#define DSC_DBW_64 0x00000000
#define DSC_SDTYPE_MASK 0x07000000
#define DSC_SDTYPE_DDR 0x02000000
#define DSC_SDTYPE_DDR2 0x03000000
#define DSC_SDTYPE_DDR3 0x07000000
#define DSC_X32_EN 0x00000020
/* Err_Int_En */
#define DDR_EIE_MSEE 0x1 /* memory select */
#define DDR_EIE_SBEE 0x4 /* single-bit ECC error */
#define DDR_EIE_MBEE 0x8 /* multi-bit ECC error */
/* Err_Detect */
#define DDR_EDE_MSE 0x1 /* memory select */
#define DDR_EDE_SBE 0x4 /* single-bit ECC error */
#define DDR_EDE_MBE 0x8 /* multi-bit ECC error */
#define DDR_EDE_MME 0x80000000 /* multiple memory errors */
/* Err_Disable */
#define DDR_EDI_MSED 0x1 /* memory select disable */
#define DDR_EDI_SBED 0x4 /* single-bit ECC error disable */
#define DDR_EDI_MBED 0x8 /* multi-bit ECC error disable */
/*
* L2 Err defines
*/
......@@ -149,13 +90,6 @@
#define MPC85XX_PCIE_ERR_CAP_R2 0x0030
#define MPC85XX_PCIE_ERR_CAP_R3 0x0034
struct mpc85xx_mc_pdata {
char *name;
int edac_idx;
void __iomem *mc_vbase;
int irq;
};
struct mpc85xx_l2_pdata {
char *name;
int edac_idx;
......
......@@ -118,7 +118,6 @@ static int mv64x60_pci_err_probe(struct platform_device *pdev)
pdata->pci_hose = pdev->id;
pdata->name = "mpc85xx_pci_err";
pdata->irq = NO_IRQ;
platform_set_drvdata(pdev, pci);
pci->dev = &pdev->dev;
pci->dev_name = dev_name(&pdev->dev);
......@@ -291,7 +290,6 @@ static int mv64x60_sram_err_probe(struct platform_device *pdev)
pdata = edac_dev->pvt_info;
pdata->name = "mv64x60_sram_err";
pdata->irq = NO_IRQ;
edac_dev->dev = &pdev->dev;
platform_set_drvdata(pdev, edac_dev);
edac_dev->dev_name = dev_name(&pdev->dev);
......@@ -459,7 +457,6 @@ static int mv64x60_cpu_err_probe(struct platform_device *pdev)
pdata = edac_dev->pvt_info;
pdata->name = "mv64x60_cpu_err";
pdata->irq = NO_IRQ;
edac_dev->dev = &pdev->dev;
platform_set_drvdata(pdev, edac_dev);
edac_dev->dev_name = dev_name(&pdev->dev);
......@@ -727,7 +724,6 @@ static int mv64x60_mc_err_probe(struct platform_device *pdev)
mci->pdev = &pdev->dev;
platform_set_drvdata(pdev, mci);
pdata->name = "mv64x60_mc_err";
pdata->irq = NO_IRQ;
mci->dev_name = dev_name(&pdev->dev);
pdata->edac_idx = edac_mc_idx++;
......
......@@ -1029,8 +1029,6 @@ static int ppc4xx_edac_mc_init(struct mem_ctl_info *mci,
pdata = mci->pvt_info;
pdata->dcr_host = *dcr_host;
pdata->irqs.sec = NO_IRQ;
pdata->irqs.ded = NO_IRQ;
/* Initialize controller capabilities and configuration */
......@@ -1111,7 +1109,7 @@ static int ppc4xx_edac_register_irq(struct platform_device *op,
ded_irq = irq_of_parse_and_map(np, INTMAP_ECCDED_INDEX);
sec_irq = irq_of_parse_and_map(np, INTMAP_ECCSEC_INDEX);
if (ded_irq == NO_IRQ || sec_irq == NO_IRQ) {
if (!ded_irq || !sec_irq) {
ppc4xx_edac_mc_printk(KERN_ERR, mci,
"Unable to map interrupts.\n");
status = -ENODEV;
......
......@@ -2474,7 +2474,7 @@ static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha0 ||
!pvt-> pci_tad || !pvt->pci_ras || !pvt->pci_ta)
!pvt->pci_ras || !pvt->pci_ta)
goto enodev;
if (saw_chan_mask != 0x0f)
......@@ -2563,8 +2563,7 @@ static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
/* Check if everything were registered */
if (!pvt->pci_sad0 || !pvt->pci_ha0 || !pvt->pci_br0 ||
!pvt->pci_br1 || !pvt->pci_tad || !pvt->pci_ras ||
!pvt->pci_ta)
!pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
goto enodev;
if (saw_chan_mask != 0x0f && /* -EN */
......
......@@ -27,7 +27,7 @@ EXPORT_SYMBOL_GPL(edac_stop_work);
int edac_workqueue_setup(void)
{
wq = create_singlethread_workqueue("edac-poller");
wq = alloc_ordered_workqueue("edac-poller", WQ_MEM_RECLAIM);
if (!wq)
return -ENODEV;
else
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment