Commit 1ecd3902 authored by Matthew Wilcox's avatar Matthew Wilcox Committed by James Bottomley

[SCSI] fc4: remove this and all associated drivers

This code has been slowly rotting for about eight years.  It's currently
impeding a few SCSI cleanups, and nobody seems to have hardware to test
it any more.  I talked to Dave Miller about it, and he agrees we can
delete it.  If anyone wants a software FC stack in future, they can
retrieve this driver from git.
Signed-off-by: default avatarMatthew Wilcox <matthew@wil.cx>
Acked-by: default avatarDavid S. Miller <davem@davemloft.net>
Signed-off-by: default avatarJames Bottomley <James.Bottomley@SteelEye.com>
parent d85714d8
......@@ -456,8 +456,6 @@ source "drivers/Kconfig"
source "drivers/sbus/char/Kconfig"
source "drivers/fc4/Kconfig"
source "fs/Kconfig"
menu "Instrumentation Support"
......
......@@ -34,7 +34,6 @@ obj-$(CONFIG_NUBUS) += nubus/
obj-$(CONFIG_ATM) += atm/
obj-y += macintosh/
obj-$(CONFIG_IDE) += ide/
obj-$(CONFIG_FC4) += fc4/
obj-$(CONFIG_SCSI) += scsi/
obj-$(CONFIG_ATA) += ata/
obj-$(CONFIG_FUSION) += message/
......
#
# FC4 device configuration
#
menu "Fibre Channel support"
config FC4
tristate "Fibre Channel and FC4 SCSI support"
---help---
Fibre Channel is a high speed serial protocol mainly used to
connect large storage devices to the computer; it is compatible with
and intended to replace SCSI.
This is an experimental support for storage arrays connected to your
computer using optical fibre cables and the "X3.269-199X Fibre
Channel Protocol for SCSI" specification. If you want to use this,
you need to say Y here and to "SCSI support" as well as to the
drivers for the storage array itself and for the interface adapter
such as SOC or SOC+. This subsystem could even serve for IP
networking, with some code extensions.
If unsure, say N.
comment "FC4 drivers"
depends on FC4
config FC4_SOC
tristate "Sun SOC/Sbus"
depends on FC4!=n && SPARC
help
Serial Optical Channel is an interface card with one or two Fibre
Optic ports, each of which can be connected to a disk array. Note
that if you have older firmware in the card, you'll need the
microcode from the Solaris driver to make it work.
To compile this support as a module, choose M here: the module will
be called soc.
config FC4_SOCAL
tristate "Sun SOC+ (aka SOCAL)"
depends on FC4!=n && SPARC
---help---
Serial Optical Channel Plus is an interface card with up to two
Fibre Optic ports. This card supports FC Arbitrated Loop (usually
A5000 or internal FC disks in E[3-6]000 machines through the
Interface Board). You'll probably need the microcode from the
Solaris driver to make it work.
To compile this support as a module, choose M here: the module will
be called socal.
comment "FC4 targets"
depends on FC4
config SCSI_PLUTO
tristate "SparcSTORAGE Array 100 and 200 series"
depends on FC4!=n && SCSI
help
If you never bought a disk array made by Sun, go with N.
To compile this support as a module, choose M here: the module will
be called pluto.
config SCSI_FCAL
tristate "Sun Enterprise Network Array (A5000 and EX500)" if SPARC
depends on FC4!=n && SCSI
help
This driver drives FC-AL disks connected through a Fibre Channel
card using the drivers/fc4 layer (currently only SOCAL). The most
common is either A5000 array or internal disks in E[3-6]000
machines.
To compile this support as a module, choose M here: the module will
be called fcal.
config SCSI_FCAL
prompt "Generic FC-AL disk driver"
depends on FC4!=n && SCSI && !SPARC
endmenu
#
# Makefile for the Linux Fibre Channel device drivers.
#
fc4-objs := fc.o fc_syms.o
obj-$(CONFIG_FC4) += fc4.o
obj-$(CONFIG_FC4_SOC) += soc.o
obj-$(CONFIG_FC4_SOCAL) += socal.o
/* fc-al.h: Definitions for Fibre Channel Arbitrated Loop topology.
*
* Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
* Sources:
* Fibre Channel Arbitrated Loop (FC-AL), ANSI, Rev. 4.5, 1995
*/
#ifndef __FC_AL_H
#define __FC_AL_H
/* Loop initialization payloads */
#define FC_AL_LISM 0x11010000 /* Select Master, 12B payload */
#define FC_AL_LIFA 0x11020000 /* Fabric Assign AL_PA bitmap, 20B payload */
#define FC_AL_LIPA 0x11030000 /* Previously Acquired AL_PA bitmap, 20B payload */
#define FC_AL_LIHA 0x11040000 /* Hard Assigned AL_PA bitmap, 20B payload */
#define FC_AL_LISA 0x11050000 /* Soft Assigned AL_PA bitmap, 20B payload */
#define FC_AL_LIRP 0x11060000 /* Report AL_PA position map, 132B payload */
#define FC_AL_LILP 0x11070000 /* Loop AL_PA position map, 132B payload */
typedef struct {
u32 magic;
u8 len;
u8 alpa[127];
} fc_al_posmap;
#endif /* !(__FC_H) */
/* fc.c: Generic Fibre Channel and FC4 SCSI driver.
*
* Copyright (C) 1997,1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
* Copyright (C) 1997,1998 Jirka Hanika (geo@ff.cuni.cz)
*
* There are two kinds of Fibre Channel adapters used in Linux. Either
* the adapter is "smart" and does all FC bookkeeping by itself and
* just presents a standard SCSI interface to the operating system
* (that's e.g. the case with Qlogic FC cards), or leaves most of the FC
* bookkeeping to the OS (e.g. soc, socal). Drivers for the former adapters
* will look like normal SCSI drivers (with the exception of max_id will be
* usually 127), the latter on the other side allows SCSI, IP over FC and other
* protocols. This driver tree is for the latter adapters.
*
* This file should support both Point-to-Point and Arbitrated Loop topologies.
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
* Fibre Channel Arbitrated Loop (FC-AL), Rev. 4.5, 1995
* Fibre Channel Private Loop SCSI Direct Attach (FC-PLDA), Rev. 2.1, 1997
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/jiffies.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
#include <asm/semaphore.h>
#include "fcp_impl.h"
#include <scsi/scsi_host.h>
/* #define FCDEBUG */
#define fc_printk printk ("%s: ", fc->name); printk
#ifdef FCDEBUG
#define FCD(x) fc_printk x;
#define FCND(x) printk ("FC: "); printk x;
#else
#define FCD(x)
#define FCND(x)
#endif
#ifdef __sparc__
#define dma_alloc_consistent(d,s,p) sbus_alloc_consistent(d,s,p)
#define dma_free_consistent(d,s,v,h) sbus_free_consistent(d,s,v,h)
#define dma_map_single(d,v,s,dir) sbus_map_single(d,v,s,dir)
#define dma_unmap_single(d,h,s,dir) sbus_unmap_single(d,h,s,dir)
#define dma_map_sg(d,s,n,dir) sbus_map_sg(d,s,n,dir)
#define dma_unmap_sg(d,s,n,dir) sbus_unmap_sg(d,s,n,dir)
#else
#define dma_alloc_consistent(d,s,p) pci_alloc_consistent(d,s,p)
#define dma_free_consistent(d,s,v,h) pci_free_consistent(d,s,v,h)
#define dma_map_single(d,v,s,dir) pci_map_single(d,v,s,dir)
#define dma_unmap_single(d,h,s,dir) pci_unmap_single(d,h,s,dir)
#define dma_map_sg(d,s,n,dir) pci_map_sg(d,s,n,dir)
#define dma_unmap_sg(d,s,n,dir) pci_unmap_sg(d,s,n,dir)
#endif
#define FCP_CMND(SCpnt) ((fcp_cmnd *)&(SCpnt->SCp))
#define FC_SCMND(SCpnt) ((fc_channel *)(SCpnt->device->host->hostdata[0]))
#define SC_FCMND(fcmnd) ((struct scsi_cmnd *)((long)fcmnd - (long)&(((struct scsi_cmnd *)0)->SCp)))
static int fcp_scsi_queue_it(fc_channel *, struct scsi_cmnd *, fcp_cmnd *, int);
void fcp_queue_empty(fc_channel *);
static void fcp_scsi_insert_queue (fc_channel *fc, fcp_cmnd *fcmd)
{
if (!fc->scsi_que) {
fc->scsi_que = fcmd;
fcmd->next = fcmd;
fcmd->prev = fcmd;
} else {
fc->scsi_que->prev->next = fcmd;
fcmd->prev = fc->scsi_que->prev;
fc->scsi_que->prev = fcmd;
fcmd->next = fc->scsi_que;
}
}
static void fcp_scsi_remove_queue (fc_channel *fc, fcp_cmnd *fcmd)
{
if (fcmd == fcmd->next) {
fc->scsi_que = NULL;
return;
}
if (fcmd == fc->scsi_que)
fc->scsi_que = fcmd->next;
fcmd->prev->next = fcmd->next;
fcmd->next->prev = fcmd->prev;
}
fc_channel *fc_channels = NULL;
#define LSMAGIC 620829043
typedef struct {
/* Must be first */
struct semaphore sem;
int magic;
int count;
logi *logi;
fcp_cmnd *fcmds;
atomic_t todo;
struct timer_list timer;
unsigned char grace[0];
} ls;
#define LSOMAGIC 654907799
typedef struct {
/* Must be first */
struct semaphore sem;
int magic;
int count;
fcp_cmnd *fcmds;
atomic_t todo;
struct timer_list timer;
} lso;
#define LSEMAGIC 84482456
typedef struct {
/* Must be first */
struct semaphore sem;
int magic;
int status;
struct timer_list timer;
} lse;
static void fcp_login_timeout(unsigned long data)
{
ls *l = (ls *)data;
FCND(("Login timeout\n"))
up(&l->sem);
}
static void fcp_login_done(fc_channel *fc, int i, int status)
{
fcp_cmnd *fcmd;
logi *plogi;
fc_hdr *fch;
ls *l = (ls *)fc->ls;
FCD(("Login done %d %d\n", i, status))
if (i < l->count) {
if (fc->state == FC_STATE_FPORT_OK) {
FCD(("Additional FPORT_OK received with status %d\n", status))
return;
}
switch (status) {
case FC_STATUS_OK: /* Oh, we found a fabric */
case FC_STATUS_P_RJT: /* Oh, we haven't found any */
fc->state = FC_STATE_FPORT_OK;
fcmd = l->fcmds + i;
plogi = l->logi + 3 * i;
dma_unmap_single (fc->dev, fcmd->cmd, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
plogi->code = LS_PLOGI;
memcpy (&plogi->nport_wwn, &fc->wwn_nport, sizeof(fc_wwn));
memcpy (&plogi->node_wwn, &fc->wwn_node, sizeof(fc_wwn));
memcpy (&plogi->common, fc->common_svc, sizeof(common_svc_parm));
memcpy (&plogi->class1, fc->class_svcs, 3*sizeof(svc_parm));
fch = &fcmd->fch;
fcmd->token += l->count;
FILL_FCHDR_RCTL_DID(fch, R_CTL_ELS_REQ, fc->did);
FILL_FCHDR_SID(fch, fc->sid);
#ifdef FCDEBUG
{
int i;
unsigned *x = (unsigned *)plogi;
printk ("logi: ");
for (i = 0; i < 21; i++)
printk ("%08x ", x[i]);
printk ("\n");
}
#endif
fcmd->cmd = dma_map_single (fc->dev, plogi, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
fcmd->rsp = fcmd->cmd + 2 * sizeof(logi);
if (fc->hw_enque (fc, fcmd))
printk ("FC: Cannot enque PLOGI packet on %s\n", fc->name);
break;
case FC_STATUS_ERR_OFFLINE:
fc->state = FC_STATE_MAYBEOFFLINE;
FCD (("FC is offline %d\n", l->grace[i]))
break;
default:
printk ("FLOGI failed for %s with status %d\n", fc->name, status);
/* Do some sort of error recovery here */
break;
}
} else {
i -= l->count;
if (fc->state != FC_STATE_FPORT_OK) {
FCD(("Unexpected N-PORT rsp received"))
return;
}
switch (status) {
case FC_STATUS_OK:
plogi = l->logi + 3 * i;
dma_unmap_single (fc->dev, l->fcmds[i].cmd, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
if (!fc->wwn_dest.lo && !fc->wwn_dest.hi) {
memcpy (&fc->wwn_dest, &plogi[1].node_wwn, sizeof(fc_wwn));
FCD(("Dest WWN %08x%08x\n", *(u32 *)&fc->wwn_dest, fc->wwn_dest.lo))
} else if (fc->wwn_dest.lo != plogi[1].node_wwn.lo ||
fc->wwn_dest.hi != plogi[1].node_wwn.hi) {
printk ("%s: mismatch in wwns. Got %08x%08x, expected %08x%08x\n",
fc->name,
*(u32 *)&plogi[1].node_wwn, plogi[1].node_wwn.lo,
*(u32 *)&fc->wwn_dest, fc->wwn_dest.lo);
}
fc->state = FC_STATE_ONLINE;
printk ("%s: ONLINE\n", fc->name);
if (atomic_dec_and_test (&l->todo))
up(&l->sem);
break;
case FC_STATUS_ERR_OFFLINE:
fc->state = FC_STATE_OFFLINE;
dma_unmap_single (fc->dev, l->fcmds[i].cmd, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
printk ("%s: FC is offline\n", fc->name);
if (atomic_dec_and_test (&l->todo))
up(&l->sem);
break;
default:
printk ("PLOGI failed for %s with status %d\n", fc->name, status);
/* Do some sort of error recovery here */
break;
}
}
}
static void fcp_report_map_done(fc_channel *fc, int i, int status)
{
fcp_cmnd *fcmd;
fc_hdr *fch;
unsigned char j;
ls *l = (ls *)fc->ls;
fc_al_posmap *p;
FCD(("Report map done %d %d\n", i, status))
switch (status) {
case FC_STATUS_OK: /* Ok, let's have a fun on a loop */
dma_unmap_single (fc->dev, l->fcmds[i].cmd, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
p = (fc_al_posmap *)(l->logi + 3 * i);
#ifdef FCDEBUG
{
u32 *u = (u32 *)p;
FCD(("%08x\n", u[0]))
u ++;
FCD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n", u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
}
#endif
if ((p->magic & 0xffff0000) != FC_AL_LILP || !p->len) {
printk ("FC: Bad magic from REPORT_AL_MAP on %s - %08x\n", fc->name, p->magic);
fc->state = FC_STATE_OFFLINE;
} else {
fc->posmap = kzalloc(sizeof(fcp_posmap)+p->len, GFP_KERNEL);
if (!fc->posmap) {
printk("FC: Not enough memory, offlining channel\n");
fc->state = FC_STATE_OFFLINE;
} else {
int k;
/* FIXME: This is where SOCAL transfers our AL-PA.
Keep it here till we found out what other cards do... */
fc->sid = (p->magic & 0xff);
for (i = 0; i < p->len; i++)
if (p->alpa[i] == fc->sid)
break;
k = p->len;
if (i == p->len)
i = 0;
else {
p->len--;
i++;
}
fc->posmap->len = p->len;
for (j = 0; j < p->len; j++) {
if (i == k) i = 0;
fc->posmap->list[j] = p->alpa[i++];
}
fc->state = FC_STATE_ONLINE;
}
}
printk ("%s: ONLINE\n", fc->name);
if (atomic_dec_and_test (&l->todo))
up(&l->sem);
break;
case FC_STATUS_POINTTOPOINT: /* We're Point-to-Point, no AL... */
FCD(("SID %d DID %d\n", fc->sid, fc->did))
fcmd = l->fcmds + i;
dma_unmap_single(fc->dev, fcmd->cmd, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
fch = &fcmd->fch;
memset(l->logi + 3 * i, 0, 3 * sizeof(logi));
FILL_FCHDR_RCTL_DID(fch, R_CTL_ELS_REQ, FS_FABRIC_F_PORT);
FILL_FCHDR_SID(fch, 0);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_EXTENDED_LS, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
fch->param = 0;
l->logi [3 * i].code = LS_FLOGI;
fcmd->cmd = dma_map_single (fc->dev, l->logi + 3 * i, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
fcmd->rsp = fcmd->cmd + sizeof(logi);
fcmd->cmdlen = sizeof(logi);
fcmd->rsplen = sizeof(logi);
fcmd->data = (dma_addr_t)NULL;
fcmd->class = FC_CLASS_SIMPLE;
fcmd->proto = TYPE_EXTENDED_LS;
if (fc->hw_enque (fc, fcmd))
printk ("FC: Cannot enque FLOGI packet on %s\n", fc->name);
break;
case FC_STATUS_ERR_OFFLINE:
fc->state = FC_STATE_MAYBEOFFLINE;
FCD (("FC is offline %d\n", l->grace[i]))
break;
default:
printk ("FLOGI failed for %s with status %d\n", fc->name, status);
/* Do some sort of error recovery here */
break;
}
}
void fcp_register(fc_channel *fc, u8 type, int unregister)
{
int size, i;
int slots = (fc->can_queue * 3) >> 1;
FCND(("Going to %sregister\n", unregister ? "un" : ""))
if (type == TYPE_SCSI_FCP) {
if (!unregister) {
fc->scsi_cmd_pool = (fcp_cmd *)
dma_alloc_consistent (fc->dev,
slots * (sizeof (fcp_cmd) + fc->rsp_size),
&fc->dma_scsi_cmd);
fc->scsi_rsp_pool = (char *)(fc->scsi_cmd_pool + slots);
fc->dma_scsi_rsp = fc->dma_scsi_cmd + slots * sizeof (fcp_cmd);
fc->scsi_bitmap_end = (slots + 63) & ~63;
size = fc->scsi_bitmap_end / 8;
fc->scsi_bitmap = kzalloc (size, GFP_KERNEL);
set_bit (0, fc->scsi_bitmap);
for (i = fc->can_queue; i < fc->scsi_bitmap_end; i++)
set_bit (i, fc->scsi_bitmap);
fc->scsi_free = fc->can_queue;
fc->cmd_slots = kzalloc(slots * sizeof(fcp_cmnd*), GFP_KERNEL);
fc->abort_count = 0;
} else {
fc->scsi_name[0] = 0;
kfree (fc->scsi_bitmap);
kfree (fc->cmd_slots);
FCND(("Unregistering\n"));
#if 0
if (fc->rst_pkt) {
if (fc->rst_pkt->eh_state == SCSI_STATE_UNUSED)
kfree(fc->rst_pkt);
else {
/* Can't happen. Some memory would be lost. */
printk("FC: Reset in progress. Now?!");
}
}
#endif
FCND(("Unregistered\n"));
}
} else
printk ("FC: %segistering unknown type %02x\n", unregister ? "Unr" : "R", type);
}
static void fcp_scsi_done(struct scsi_cmnd *SCpnt);
static inline void fcp_scsi_receive(fc_channel *fc, int token, int status, fc_hdr *fch)
{
fcp_cmnd *fcmd;
fcp_rsp *rsp;
int host_status;
struct scsi_cmnd *SCpnt;
int sense_len;
int rsp_status;
fcmd = fc->cmd_slots[token];
if (!fcmd) return;
rsp = (fcp_rsp *) (fc->scsi_rsp_pool + fc->rsp_size * token);
SCpnt = SC_FCMND(fcmd);
if (SCpnt->done != fcp_scsi_done)
return;
rsp_status = rsp->fcp_status;
FCD(("rsp_status %08x status %08x\n", rsp_status, status))
switch (status) {
case FC_STATUS_OK:
host_status=DID_OK;
if (rsp_status & FCP_STATUS_RESID) {
#ifdef FCDEBUG
FCD(("Resid %d\n", rsp->fcp_resid))
{
fcp_cmd *cmd = fc->scsi_cmd_pool + token;
int i;
printk ("Command ");
for (i = 0; i < sizeof(fcp_cmd); i+=4)
printk ("%08x ", *(u32 *)(((char *)cmd)+i));
printk ("\nResponse ");
for (i = 0; i < fc->rsp_size; i+=4)
printk ("%08x ", *(u32 *)(((char *)rsp)+i));
printk ("\n");
}
#endif
}
if (rsp_status & FCP_STATUS_SENSE_LEN) {
sense_len = rsp->fcp_sense_len;
if (sense_len > sizeof(SCpnt->sense_buffer)) sense_len = sizeof(SCpnt->sense_buffer);
memcpy(SCpnt->sense_buffer, ((char *)(rsp+1)), sense_len);
}
if (fcmd->data)
dma_unmap_sg(fc->dev, scsi_sglist(SCpnt),
scsi_sg_count(SCpnt),
SCpnt->sc_data_direction);
break;
default:
host_status=DID_ERROR; /* FIXME */
FCD(("Wrong FC status %d for token %d\n", status, token))
break;
}
if (status_byte(rsp_status) == QUEUE_FULL) {
printk ("%s: (%d,%d) Received rsp_status 0x%x\n", fc->name, SCpnt->device->channel, SCpnt->device->id, rsp_status);
}
SCpnt->result = (host_status << 16) | (rsp_status & 0xff);
#ifdef FCDEBUG
if (host_status || SCpnt->result || rsp_status) printk("FC: host_status %d, packet status %d\n",
host_status, SCpnt->result);
#endif
SCpnt->done = fcmd->done;
fcmd->done=NULL;
clear_bit(token, fc->scsi_bitmap);
fc->scsi_free++;
FCD(("Calling scsi_done with %08x\n", SCpnt->result))
SCpnt->scsi_done(SCpnt);
}
void fcp_receive_solicited(fc_channel *fc, int proto, int token, int status, fc_hdr *fch)
{
int magic;
FCD(("receive_solicited %d %d %d\n", proto, token, status))
switch (proto) {
case TYPE_SCSI_FCP:
fcp_scsi_receive(fc, token, status, fch); break;
case TYPE_EXTENDED_LS:
case PROTO_REPORT_AL_MAP:
magic = 0;
if (fc->ls)
magic = ((ls *)(fc->ls))->magic;
if (magic == LSMAGIC) {
ls *l = (ls *)fc->ls;
int i = (token >= l->count) ? token - l->count : token;
/* Let's be sure */
if ((unsigned)i < l->count && l->fcmds[i].fc == fc) {
if (proto == TYPE_EXTENDED_LS)
fcp_login_done(fc, token, status);
else
fcp_report_map_done(fc, token, status);
break;
}
}
FCD(("fc %p fc->ls %p fc->cmd_slots %p\n", fc, fc->ls, fc->cmd_slots))
if (proto == TYPE_EXTENDED_LS && !fc->ls && fc->cmd_slots) {
fcp_cmnd *fcmd;
fcmd = fc->cmd_slots[token];
if (fcmd && fcmd->ls && ((ls *)(fcmd->ls))->magic == LSEMAGIC) {
lse *l = (lse *)fcmd->ls;
l->status = status;
up (&l->sem);
}
}
break;
case PROTO_OFFLINE:
if (fc->ls && ((lso *)(fc->ls))->magic == LSOMAGIC) {
lso *l = (lso *)fc->ls;
if ((unsigned)token < l->count && l->fcmds[token].fc == fc) {
/* Wow, OFFLINE response arrived :) */
FCD(("OFFLINE Response arrived\n"))
fc->state = FC_STATE_OFFLINE;
if (atomic_dec_and_test (&l->todo))
up(&l->sem);
}
}
break;
default:
break;
}
}
void fcp_state_change(fc_channel *fc, int state)
{
FCD(("state_change %d %d\n", state, fc->state))
if (state == FC_STATE_ONLINE && fc->state == FC_STATE_MAYBEOFFLINE)
fc->state = FC_STATE_UNINITED;
else if (state == FC_STATE_ONLINE)
printk (KERN_WARNING "%s: state change to ONLINE\n", fc->name);
else
printk (KERN_ERR "%s: state change to OFFLINE\n", fc->name);
}
int fcp_initialize(fc_channel *fcchain, int count)
{
fc_channel *fc;
fcp_cmnd *fcmd;
int i, retry, ret;
ls *l;
FCND(("fcp_inititialize %08lx\n", (long)fcp_init))
FCND(("fc_channels %08lx\n", (long)fc_channels))
FCND((" SID %d DID %d\n", fcchain->sid, fcchain->did))
l = kzalloc(sizeof (ls) + count, GFP_KERNEL);
if (!l) {
printk ("FC: Cannot allocate memory for initialization\n");
return -ENOMEM;
}
l->magic = LSMAGIC;
l->count = count;
FCND(("FCP Init for %d channels\n", count))
init_MUTEX_LOCKED(&l->sem);
init_timer(&l->timer);
l->timer.function = fcp_login_timeout;
l->timer.data = (unsigned long)l;
atomic_set (&l->todo, count);
l->logi = kzalloc (count * 3 * sizeof(logi), GFP_KERNEL);
l->fcmds = kzalloc (count * sizeof(fcp_cmnd), GFP_KERNEL);
if (!l->logi || !l->fcmds) {
kfree (l->logi);
kfree (l->fcmds);
kfree (l);
printk ("FC: Cannot allocate DMA memory for initialization\n");
return -ENOMEM;
}
for (fc = fcchain, i = 0; fc && i < count; fc = fc->next, i++) {
fc->state = FC_STATE_UNINITED;
fc->rst_pkt = NULL; /* kmalloc when first used */
}
/* First try if we are in a AL topology */
FCND(("Initializing REPORT_MAP packets\n"))
for (fc = fcchain, i = 0; fc && i < count; fc = fc->next, i++) {
fcmd = l->fcmds + i;
fc->login = fcmd;
fc->ls = (void *)l;
/* Assumes sizeof(fc_al_posmap) < 3 * sizeof(logi), which is true */
fcmd->cmd = dma_map_single (fc->dev, l->logi + 3 * i, 3 * sizeof(logi),
DMA_BIDIRECTIONAL);
fcmd->proto = PROTO_REPORT_AL_MAP;
fcmd->token = i;
fcmd->fc = fc;
}
for (retry = 0; retry < 8; retry++) {
int nqueued = 0;
FCND(("Sending REPORT_MAP/FLOGI/PLOGI packets\n"))
for (fc = fcchain, i = 0; fc && i < count; fc = fc->next, i++) {
if (fc->state == FC_STATE_ONLINE || fc->state == FC_STATE_OFFLINE)
continue;
disable_irq(fc->irq);
if (fc->state == FC_STATE_MAYBEOFFLINE) {
if (!l->grace[i]) {
l->grace[i]++;
FCD(("Grace\n"))
} else {
fc->state = FC_STATE_OFFLINE;
enable_irq(fc->irq);
dma_unmap_single (fc->dev, l->fcmds[i].cmd, 3 * sizeof(logi), DMA_BIDIRECTIONAL);
if (atomic_dec_and_test (&l->todo))
goto all_done;
}
}
ret = fc->hw_enque (fc, fc->login);
enable_irq(fc->irq);
if (!ret) {
nqueued++;
continue;
}
if (ret == -ENOSYS && fc->login->proto == PROTO_REPORT_AL_MAP) {
/* Oh yes, this card handles Point-to-Point only, so let's try that. */
fc_hdr *fch;
FCD(("SID %d DID %d\n", fc->sid, fc->did))
fcmd = l->fcmds + i;
dma_unmap_single(fc->dev, fcmd->cmd, 3 * sizeof(logi), DMA_BIDIRECTIONAL);
fch = &fcmd->fch;
FILL_FCHDR_RCTL_DID(fch, R_CTL_ELS_REQ, FS_FABRIC_F_PORT);
FILL_FCHDR_SID(fch, 0);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_EXTENDED_LS, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
fch->param = 0;
l->logi [3 * i].code = LS_FLOGI;
fcmd->cmd = dma_map_single (fc->dev, l->logi + 3 * i, 3 * sizeof(logi), DMA_BIDIRECTIONAL);
fcmd->rsp = fcmd->cmd + sizeof(logi);
fcmd->cmdlen = sizeof(logi);
fcmd->rsplen = sizeof(logi);
fcmd->data = (dma_addr_t)NULL;
fcmd->class = FC_CLASS_SIMPLE;
fcmd->proto = TYPE_EXTENDED_LS;
} else
printk ("FC: Cannot enque FLOGI/REPORT_MAP packet on %s\n", fc->name);
}
if (nqueued) {
l->timer.expires = jiffies + 5 * HZ;
add_timer(&l->timer);
down(&l->sem);
if (!atomic_read(&l->todo)) {
FCND(("All channels answered in time\n"))
break; /* All fc channels have answered us */
}
}
}
all_done:
for (fc = fcchain, i = 0; fc && i < count; fc = fc->next, i++) {
fc->ls = NULL;
switch (fc->state) {
case FC_STATE_ONLINE: break;
case FC_STATE_OFFLINE: break;
default: dma_unmap_single (fc->dev, l->fcmds[i].cmd, 3 * sizeof(logi), DMA_BIDIRECTIONAL);
break;
}
}
del_timer(&l->timer);
kfree (l->logi);
kfree (l->fcmds);
kfree (l);
return 0;
}
int fcp_forceoffline(fc_channel *fcchain, int count)
{
fc_channel *fc;
fcp_cmnd *fcmd;
int i, ret;
lso l;
memset (&l, 0, sizeof(lso));
l.count = count;
l.magic = LSOMAGIC;
FCND(("FCP Force Offline for %d channels\n", count))
init_MUTEX_LOCKED(&l.sem);
init_timer(&l.timer);
l.timer.function = fcp_login_timeout;
l.timer.data = (unsigned long)&l;
atomic_set (&l.todo, count);
l.fcmds = kzalloc (count * sizeof(fcp_cmnd), GFP_KERNEL);
if (!l.fcmds) {
printk ("FC: Cannot allocate memory for forcing offline\n");
return -ENOMEM;
}
FCND(("Initializing OFFLINE packets\n"))
for (fc = fcchain, i = 0; fc && i < count; fc = fc->next, i++) {
fc->state = FC_STATE_UNINITED;
fcmd = l.fcmds + i;
fc->login = fcmd;
fc->ls = (void *)&l;
fcmd->did = fc->did;
fcmd->class = FC_CLASS_OFFLINE;
fcmd->proto = PROTO_OFFLINE;
fcmd->token = i;
fcmd->fc = fc;
disable_irq(fc->irq);
ret = fc->hw_enque (fc, fc->login);
enable_irq(fc->irq);
if (ret) printk ("FC: Cannot enque OFFLINE packet on %s\n", fc->name);
}
l.timer.expires = jiffies + 5 * HZ;
add_timer(&l.timer);
down(&l.sem);
del_timer(&l.timer);
for (fc = fcchain, i = 0; fc && i < count; fc = fc->next, i++)
fc->ls = NULL;
kfree (l.fcmds);
return 0;
}
int fcp_init(fc_channel *fcchain)
{
fc_channel *fc;
int count=0;
int ret;
for (fc = fcchain; fc; fc = fc->next) {
fc->fcp_register = fcp_register;
count++;
}
ret = fcp_initialize (fcchain, count);
if (ret)
return ret;
if (!fc_channels)
fc_channels = fcchain;
else {
for (fc = fc_channels; fc->next; fc = fc->next);
fc->next = fcchain;
}
return ret;
}
void fcp_release(fc_channel *fcchain, int count) /* count must > 0 */
{
fc_channel *fc;
fc_channel *fcx;
for (fc = fcchain; --count && fc->next; fc = fc->next);
if (count) {
printk("FC: nothing to release\n");
return;
}
if (fc_channels == fcchain)
fc_channels = fc->next;
else {
for (fcx = fc_channels; fcx->next != fcchain; fcx = fcx->next);
fcx->next = fc->next;
}
fc->next = NULL;
/*
* We've just grabbed fcchain out of the fc_channel list
* and zero-terminated it, while destroying the count.
*
* Freeing the fc's is the low level driver's responsibility.
*/
}
static void fcp_scsi_done(struct scsi_cmnd *SCpnt)
{
if (FCP_CMND(SCpnt)->done)
FCP_CMND(SCpnt)->done(SCpnt);
}
static int fcp_scsi_queue_it(fc_channel *fc, struct scsi_cmnd *SCpnt,
fcp_cmnd *fcmd, int prepare)
{
long i;
fcp_cmd *cmd;
u32 fcp_cntl;
if (prepare) {
i = find_first_zero_bit (fc->scsi_bitmap, fc->scsi_bitmap_end);
set_bit (i, fc->scsi_bitmap);
fcmd->token = i;
cmd = fc->scsi_cmd_pool + i;
if (fc->encode_addr (SCpnt, cmd->fcp_addr, fc, fcmd)) {
/* Invalid channel/id/lun and couldn't map it into fcp_addr */
clear_bit (i, fc->scsi_bitmap);
SCpnt->result = (DID_BAD_TARGET << 16);
SCpnt->scsi_done(SCpnt);
return 0;
}
fc->scsi_free--;
fc->cmd_slots[fcmd->token] = fcmd;
if (SCpnt->device->tagged_supported) {
if (jiffies - fc->ages[SCpnt->device->channel * fc->targets + SCpnt->device->id] > (5 * 60 * HZ)) {
fc->ages[SCpnt->device->channel * fc->targets + SCpnt->device->id] = jiffies;
fcp_cntl = FCP_CNTL_QTYPE_ORDERED;
} else
fcp_cntl = FCP_CNTL_QTYPE_SIMPLE;
} else
fcp_cntl = FCP_CNTL_QTYPE_UNTAGGED;
if (!scsi_bufflen(SCpnt)) {
cmd->fcp_cntl = fcp_cntl;
fcmd->data = (dma_addr_t)NULL;
} else {
struct scatterlist *sg;
int nents;
switch (SCpnt->cmnd[0]) {
case WRITE_6:
case WRITE_10:
case WRITE_12:
cmd->fcp_cntl = (FCP_CNTL_WRITE | fcp_cntl); break;
default:
cmd->fcp_cntl = (FCP_CNTL_READ | fcp_cntl); break;
}
sg = scsi_sglist(SCpnt);
nents = dma_map_sg(fc->dev, sg, scsi_sg_count(SCpnt),
SCpnt->sc_data_direction);
fcmd->data = sg_dma_address(sg);
cmd->fcp_data_len = sg_dma_len(sg);
}
memcpy (cmd->fcp_cdb, SCpnt->cmnd, SCpnt->cmd_len);
memset (cmd->fcp_cdb+SCpnt->cmd_len, 0, sizeof(cmd->fcp_cdb)-SCpnt->cmd_len);
FCD(("XXX: %04x.%04x.%04x.%04x - %08x%08x%08x\n", cmd->fcp_addr[0], cmd->fcp_addr[1], cmd->fcp_addr[2], cmd->fcp_addr[3], *(u32 *)SCpnt->cmnd, *(u32 *)(SCpnt->cmnd+4), *(u32 *)(SCpnt->cmnd+8)))
}
FCD(("Trying to enque %p\n", fcmd))
if (!fc->scsi_que) {
if (!fc->hw_enque (fc, fcmd)) {
FCD(("hw_enque succeeded for %p\n", fcmd))
return 0;
}
}
FCD(("Putting into que1 %p\n", fcmd))
fcp_scsi_insert_queue (fc, fcmd);
return 0;
}
int fcp_scsi_queuecommand(struct scsi_cmnd *SCpnt,
void (* done)(struct scsi_cmnd *))
{
fcp_cmnd *fcmd = FCP_CMND(SCpnt);
fc_channel *fc = FC_SCMND(SCpnt);
FCD(("Entering SCSI queuecommand %p\n", fcmd))
if (SCpnt->done != fcp_scsi_done) {
fcmd->done = SCpnt->done;
SCpnt->done = fcp_scsi_done;
SCpnt->scsi_done = done;
fcmd->proto = TYPE_SCSI_FCP;
if (!fc->scsi_free) {
FCD(("FC: !scsi_free, putting cmd on ML queue\n"))
#if (FCP_SCSI_USE_NEW_EH_CODE == 0)
printk("fcp_scsi_queue_command: queue full, losing cmd, bad\n");
#endif
return 1;
}
return fcp_scsi_queue_it(fc, SCpnt, fcmd, 1);
}
return fcp_scsi_queue_it(fc, SCpnt, fcmd, 0);
}
void fcp_queue_empty(fc_channel *fc)
{
fcp_cmnd *fcmd;
FCD(("Queue empty\n"))
while ((fcmd = fc->scsi_que)) {
/* The hw told us we can try again queue some packet */
if (fc->hw_enque (fc, fcmd))
break;
fcp_scsi_remove_queue (fc, fcmd);
}
}
int fcp_scsi_abort(struct scsi_cmnd *SCpnt)
{
/* Internal bookkeeping only. Lose 1 cmd_slots slot. */
fcp_cmnd *fcmd = FCP_CMND(SCpnt);
fc_channel *fc = FC_SCMND(SCpnt);
/*
* We react to abort requests by simply forgetting
* about the command and pretending everything's sweet.
* This may or may not be silly. We can't, however,
* immediately reuse the command's cmd_slots slot,
* as its result may arrive later and we cannot
* check whether it is the aborted one, can't we?
*
* Therefore, after the first few aborts are done,
* we tell the scsi error handler to do something clever.
* It will eventually call host reset, refreshing
* cmd_slots for us.
*
* There is a theoretical chance that we sometimes allow
* more than can_queue packets to the jungle this way,
* but the worst outcome possible is a series of
* more aborts and eventually the dev_reset catharsis.
*/
if (++fc->abort_count < (fc->can_queue >> 1)) {
SCpnt->result = DID_ABORT;
fcmd->done(SCpnt);
printk("FC: soft abort\n");
return SUCCESS;
} else {
printk("FC: hard abort refused\n");
return FAILED;
}
}
#if 0
void fcp_scsi_reset_done(struct scsi_cmnd *SCpnt)
{
fc_channel *fc = FC_SCMND(SCpnt);
fc->rst_pkt->eh_state = SCSI_STATE_FINISHED;
up(fc->rst_pkt->device->host->eh_action);
}
#endif
#define FCP_RESET_TIMEOUT (2*HZ)
int fcp_scsi_dev_reset(struct scsi_cmnd *SCpnt)
{
#if 0 /* broken junk, but if davem wants to compile this driver, let him.. */
unsigned long flags;
fcp_cmd *cmd;
fcp_cmnd *fcmd;
fc_channel *fc = FC_SCMND(SCpnt);
DECLARE_MUTEX_LOCKED(sem);
if (!fc->rst_pkt) {
fc->rst_pkt = kmalloc(sizeof(SCpnt), GFP_KERNEL);
if (!fc->rst_pkt) return FAILED;
fcmd = FCP_CMND(fc->rst_pkt);
fcmd->token = 0;
cmd = fc->scsi_cmd_pool + 0;
FCD(("Preparing rst packet\n"))
fc->encode_addr (SCpnt, cmd->fcp_addr, fc, fcmd);
fc->rst_pkt->device = SCpnt->device;
fc->rst_pkt->cmd_len = 0;
fc->cmd_slots[0] = fcmd;
cmd->fcp_cntl = FCP_CNTL_QTYPE_ORDERED | FCP_CNTL_RESET;
fcmd->data = (dma_addr_t)NULL;
fcmd->proto = TYPE_SCSI_FCP;
memcpy (cmd->fcp_cdb, SCpnt->cmnd, SCpnt->cmd_len);
memset (cmd->fcp_cdb+SCpnt->cmd_len, 0, sizeof(cmd->fcp_cdb)-SCpnt->cmd_len);
FCD(("XXX: %04x.%04x.%04x.%04x - %08x%08x%08x\n", cmd->fcp_addr[0], cmd->fcp_addr[1], cmd->fcp_addr[2], cmd->fcp_addr[3], *(u32 *)SCpnt->cmnd, *(u32 *)(SCpnt->cmnd+4), *(u32 *)(SCpnt->cmnd+8)))
} else {
fcmd = FCP_CMND(fc->rst_pkt);
if (fc->rst_pkt->eh_state == SCSI_STATE_QUEUED)
return FAILED; /* or SUCCESS. Only these */
}
fc->rst_pkt->done = NULL;
fc->rst_pkt->eh_state = SCSI_STATE_QUEUED;
init_timer(&fc->rst_pkt->eh_timeout);
fc->rst_pkt->eh_timeout.data = (unsigned long) fc->rst_pkt;
fc->rst_pkt->eh_timeout.expires = jiffies + FCP_RESET_TIMEOUT;
fc->rst_pkt->eh_timeout.function = (void (*)(unsigned long))fcp_scsi_reset_done;
add_timer(&fc->rst_pkt->eh_timeout);
/*
* Set up the semaphore so we wait for the command to complete.
*/
fc->rst_pkt->device->host->eh_action = &sem;
fc->rst_pkt->done = fcp_scsi_reset_done;
spin_lock_irqsave(SCpnt->device->host->host_lock, flags);
fcp_scsi_queue_it(fc, fc->rst_pkt, fcmd, 0);
spin_unlock_irqrestore(SCpnt->device->host->host_lock, flags);
down(&sem);
fc->rst_pkt->device->host->eh_action = NULL;
del_timer(&fc->rst_pkt->eh_timeout);
/*
* See if timeout. If so, tell the host to forget about it.
* In other words, we don't want a callback any more.
*/
if (fc->rst_pkt->eh_state == SCSI_STATE_TIMEOUT ) {
fc->rst_pkt->eh_state = SCSI_STATE_UNUSED;
return FAILED;
}
fc->rst_pkt->eh_state = SCSI_STATE_UNUSED;
#endif
return SUCCESS;
}
static int __fcp_scsi_host_reset(struct scsi_cmnd *SCpnt)
{
fc_channel *fc = FC_SCMND(SCpnt);
fcp_cmnd *fcmd = FCP_CMND(SCpnt);
int i;
printk ("FC: host reset\n");
for (i=0; i < fc->can_queue; i++) {
if (fc->cmd_slots[i] && SCpnt->result != DID_ABORT) {
SCpnt->result = DID_RESET;
fcmd->done(SCpnt);
fc->cmd_slots[i] = NULL;
}
}
fc->reset(fc);
fc->abort_count = 0;
if (fcp_initialize(fc, 1)) return SUCCESS;
else return FAILED;
}
int fcp_scsi_host_reset(struct scsi_cmnd *SCpnt)
{
unsigned long flags;
int rc;
spin_lock_irqsave(SCpnt->device->host->host_lock, flags);
rc = __fcp_scsi_host_reset(SCpnt);
spin_unlock_irqrestore(SCpnt->device->host->host_lock, flags);
return rc;
}
static int fcp_els_queue_it(fc_channel *fc, fcp_cmnd *fcmd)
{
long i;
i = find_first_zero_bit (fc->scsi_bitmap, fc->scsi_bitmap_end);
set_bit (i, fc->scsi_bitmap);
fcmd->token = i;
fc->scsi_free--;
fc->cmd_slots[fcmd->token] = fcmd;
return fcp_scsi_queue_it(fc, NULL, fcmd, 0);
}
static int fc_do_els(fc_channel *fc, unsigned int alpa, void *data, int len)
{
fcp_cmnd _fcmd, *fcmd;
fc_hdr *fch;
lse l;
int i;
fcmd = &_fcmd;
memset(fcmd, 0, sizeof(fcp_cmnd));
FCD(("PLOGI SID %d DID %d\n", fc->sid, alpa))
fch = &fcmd->fch;
FILL_FCHDR_RCTL_DID(fch, R_CTL_ELS_REQ, alpa);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_EXTENDED_LS, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
fch->param = 0;
fcmd->cmd = dma_map_single (fc->dev, data, 2 * len, DMA_BIDIRECTIONAL);
fcmd->rsp = fcmd->cmd + len;
fcmd->cmdlen = len;
fcmd->rsplen = len;
fcmd->data = (dma_addr_t)NULL;
fcmd->fc = fc;
fcmd->class = FC_CLASS_SIMPLE;
fcmd->proto = TYPE_EXTENDED_LS;
memset (&l, 0, sizeof(lse));
l.magic = LSEMAGIC;
init_MUTEX_LOCKED(&l.sem);
l.timer.function = fcp_login_timeout;
l.timer.data = (unsigned long)&l;
l.status = FC_STATUS_TIMED_OUT;
fcmd->ls = (void *)&l;
disable_irq(fc->irq);
fcp_els_queue_it(fc, fcmd);
enable_irq(fc->irq);
for (i = 0;;) {
l.timer.expires = jiffies + 5 * HZ;
add_timer(&l.timer);
down(&l.sem);
del_timer(&l.timer);
if (l.status != FC_STATUS_TIMED_OUT) break;
if (++i == 3) break;
disable_irq(fc->irq);
fcp_scsi_queue_it(fc, NULL, fcmd, 0);
enable_irq(fc->irq);
}
clear_bit(fcmd->token, fc->scsi_bitmap);
fc->scsi_free++;
dma_unmap_single (fc->dev, fcmd->cmd, 2 * len, DMA_BIDIRECTIONAL);
return l.status;
}
int fc_do_plogi(fc_channel *fc, unsigned char alpa, fc_wwn *node, fc_wwn *nport)
{
logi *l;
int status;
l = kzalloc(2 * sizeof(logi), GFP_KERNEL);
if (!l) return -ENOMEM;
l->code = LS_PLOGI;
memcpy (&l->nport_wwn, &fc->wwn_nport, sizeof(fc_wwn));
memcpy (&l->node_wwn, &fc->wwn_node, sizeof(fc_wwn));
memcpy (&l->common, fc->common_svc, sizeof(common_svc_parm));
memcpy (&l->class1, fc->class_svcs, 3*sizeof(svc_parm));
status = fc_do_els(fc, alpa, l, sizeof(logi));
if (status == FC_STATUS_OK) {
if (l[1].code == LS_ACC) {
#ifdef FCDEBUG
u32 *u = (u32 *)&l[1].nport_wwn;
FCD(("AL-PA %02x: Port WWN %08x%08x Node WWN %08x%08x\n", alpa,
u[0], u[1], u[2], u[3]))
#endif
memcpy(nport, &l[1].nport_wwn, sizeof(fc_wwn));
memcpy(node, &l[1].node_wwn, sizeof(fc_wwn));
} else
status = FC_STATUS_BAD_RSP;
}
kfree(l);
return status;
}
typedef struct {
unsigned int code;
unsigned params[4];
} prli;
int fc_do_prli(fc_channel *fc, unsigned char alpa)
{
prli *p;
int status;
p = kzalloc(2 * sizeof(prli), GFP_KERNEL);
if (!p) return -ENOMEM;
p->code = LS_PRLI;
p->params[0] = 0x08002000;
p->params[3] = 0x00000022;
status = fc_do_els(fc, alpa, p, sizeof(prli));
if (status == FC_STATUS_OK && p[1].code != LS_PRLI_ACC && p[1].code != LS_ACC)
status = FC_STATUS_BAD_RSP;
kfree(p);
return status;
}
MODULE_LICENSE("GPL");
/* fc.h: Definitions for Fibre Channel Physical and Signaling Interface.
*
* Copyright (C) 1996-1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
*/
#ifndef __FC_H
#define __FC_H
/* World Wide Name */
#define NAAID_IEEE 1
#define NAAID_IEEE_EXT 2
#define NAAID_LOCAL 3
#define NAAID_IP 4
#define NAAID_IEEE_REG 5
#define NAAID_IEEE_REG_EXT 6
#define NAAID_CCITT 12
#define NAAID_CCITT_GRP 14
/* This is NAAID_IEEE_EXT scheme */
typedef struct {
u32 naaid:4;
u32 nportid:12;
u32 hi:16;
u32 lo;
} fc_wwn;
/* Frame header for FC-PH frames */
/* r_ctl field */
#define R_CTL_DEVICE_DATA 0x00 /* FC4 Device_Data frame */
#define R_CTL_EXTENDED_SVC 0x20 /* Extended Link_Data frame */
#define R_CTL_FC4_SVC 0x30 /* FC4 Link_Data frame */
#define R_CTL_VIDEO 0x40 /* Video_Data frame */
#define R_CTL_BASIC_SVC 0x80 /* Basic Link_Data frame */
#define R_CTL_LINK_CTL 0xc0 /* Link_Control frame */
/* FC4 Device_Data frames */
#define R_CTL_UNCATEGORIZED 0x00
#define R_CTL_SOLICITED_DATA 0x01
#define R_CTL_UNSOL_CONTROL 0x02
#define R_CTL_SOLICITED_CONTROL 0x03
#define R_CTL_UNSOL_DATA 0x04
#define R_CTL_XFER_RDY 0x05
#define R_CTL_COMMAND 0x06
#define R_CTL_STATUS 0x07
/* Basic Link_Data frames */
#define R_CTL_LS_NOP 0x80
#define R_CTL_LS_ABTS 0x81
#define R_CTL_LS_RMC 0x82
#define R_CTL_LS_BA_ACC 0x84
#define R_CTL_LS_BA_RJT 0x85
/* Extended Link_Data frames */
#define R_CTL_ELS_REQ 0x22
#define R_CTL_ELS_RSP 0x23
/* Link_Control frames */
#define R_CTL_ACK_1 0xc0
#define R_CTL_ACK_N 0xc1
#define R_CTL_P_RJT 0xc2
#define R_CTL_F_RJT 0xc3
#define R_CTL_P_BSY 0xc4
#define R_CTL_F_BSY_DF 0xc5
#define R_CTL_F_BSY_LC 0xc6
#define R_CTL_LCR 0xc7
/* type field */
#define TYPE_BASIC_LS 0x00
#define TYPE_EXTENDED_LS 0x01
#define TYPE_IS8802 0x04
#define TYPE_IS8802_SNAP 0x05
#define TYPE_SCSI_FCP 0x08
#define TYPE_SCSI_GPP 0x09
#define TYPE_HIPP_FP 0x0a
#define TYPE_IPI3_MASTER 0x11
#define TYPE_IPI3_SLAVE 0x12
#define TYPE_IPI3_PEER 0x13
/* f_ctl field */
#define F_CTL_FILL_BYTES 0x000003
#define F_CTL_XCHG_REASSEMBLE 0x000004
#define F_CTL_RO_PRESENT 0x000008
#define F_CTL_ABORT_SEQ 0x000030
#define F_CTL_CONTINUE_SEQ 0x0000c0
#define F_CTL_INVALIDATE_XID 0x004000
#define F_CTL_XID_REASSIGNED 0x008000
#define F_CTL_SEQ_INITIATIVE 0x010000
#define F_CTL_CHAINED_SEQ 0x020000
#define F_CTL_END_CONNECT 0x040000
#define F_CTL_END_SEQ 0x080000
#define F_CTL_LAST_SEQ 0x100000
#define F_CTL_FIRST_SEQ 0x200000
#define F_CTL_SEQ_CONTEXT 0x400000
#define F_CTL_XCHG_CONTEXT 0x800000
typedef struct {
u32 r_ctl:8, did:24;
u32 xxx1:8, sid:24;
u32 type:8, f_ctl:24;
u32 seq_id:8, df_ctl:8, seq_cnt:16;
u16 ox_id, rx_id;
u32 param;
} fc_hdr;
/* The following are ugly macros to make setup of this structure faster */
#define FILL_FCHDR_RCTL_DID(fch, r_ctl, did) *(u32 *)(fch) = ((r_ctl) << 24) | (did);
#define FILL_FCHDR_SID(fch, sid) *((u32 *)(fch)+1) = (sid);
#define FILL_FCHDR_TYPE_FCTL(fch, type, f_ctl) *((u32 *)(fch)+2) = ((type) << 24) | (f_ctl);
#define FILL_FCHDR_SEQ_DF_SEQ(fch, seq_id, df_ctl, seq_cnt) *((u32 *)(fch)+3) = ((seq_id) << 24) | ((df_ctl) << 16) | (seq_cnt);
#define FILL_FCHDR_OXRX(fch, ox_id, rx_id) *((u32 *)(fch)+4) = ((ox_id) << 16) | (rx_id);
/* Well known addresses */
#define FS_GENERAL_MULTICAST 0xfffff7
#define FS_WELL_KNOWN_MULTICAST 0xfffff8
#define FS_HUNT_GROUP 0xfffff9
#define FS_MANAGEMENT_SERVER 0xfffffa
#define FS_TIME_SERVER 0xfffffb
#define FS_NAME_SERVER 0xfffffc
#define FS_FABRIC_CONTROLLER 0xfffffd
#define FS_FABRIC_F_PORT 0xfffffe
#define FS_BROADCAST 0xffffff
/* Reject frames */
/* The param field should be cast to this structure */
typedef struct {
u8 action;
u8 reason;
u8 xxx;
u8 vendor_unique;
} rjt_param;
/* Reject action codes */
#define RJT_RETRY 0x01
#define RJT_NONRETRY 0x02
/* Reject reason codes */
#define RJT_INVALID_DID 0x01
#define RJT_INVALID_SID 0x02
#define RJT_NPORT_NOT_AVAIL_TEMP 0x03
#define RJT_NPORT_NOT_AVAIL_PERM 0x04
#define RJT_CLASS_NOT_SUPPORTED 0x05
#define RJT_DELIMITER_ERROR 0x06
#define RJT_TYPE_NOT_SUPPORTED 0x07
#define RJT_INVALID_LINK_CONTROL 0x08
#define RJT_INVALID_R_CTL 0x09
#define RJT_INVALID_F_CTL 0x0a
#define RJT_INVALID_OX_ID 0x0b
#define RJT_INVALID_RX_ID 0x0c
#define RJT_INVALID_SEQ_ID 0x0d
#define RJT_INVALID_DF_CTL 0x0e
#define RJT_INVALID_SEQ_CNT 0x0f
#define RJT_INVALID_PARAMETER 0x10
#define RJT_EXCHANGE_ERROR 0x11
#define RJT_PROTOCOL_ERROR 0x12
#define RJT_INCORRECT_LENGTH 0x13
#define RJT_UNEXPECTED_ACK 0x14
#define RJT_UNEXPECTED_LINK_RESP 0x15
#define RJT_LOGIN_REQUIRED 0x16
#define RJT_EXCESSIVE_SEQUENCES 0x17
#define RJT_CANT_ESTABLISH_EXCHANGE 0x18
#define RJT_SECURITY_NOT_SUPPORTED 0x19
#define RJT_FABRIC_NA 0x1a
#define RJT_VENDOR_UNIQUE 0xff
#define SP_F_PORT_LOGIN 0x10
/* Extended SVC commands */
#define LS_RJT 0x01000000
#define LS_ACC 0x02000000
#define LS_PRLI_ACC 0x02100014
#define LS_PLOGI 0x03000000
#define LS_FLOGI 0x04000000
#define LS_LOGO 0x05000000
#define LS_ABTX 0x06000000
#define LS_RCS 0x07000000
#define LS_RES 0x08000000
#define LS_RSS 0x09000000
#define LS_RSI 0x0a000000
#define LS_ESTS 0x0b000000
#define LS_ESTC 0x0c000000
#define LS_ADVC 0x0d000000
#define LS_RTV 0x0e000000
#define LS_RLS 0x0f000000
#define LS_ECHO 0x10000000
#define LS_TEST 0x11000000
#define LS_RRQ 0x12000000
#define LS_IDENT 0x20000000
#define LS_PRLI 0x20100014
#define LS_DISPLAY 0x21000000
#define LS_PRLO 0x21100014
#define LS_PDISC 0x50000000
#define LS_ADISC 0x52000000
typedef struct {
u8 fcph_hi, fcph_lo;
u16 buf2buf_credit;
u8 common_features;
u8 xxx1;
u16 buf2buf_size;
u8 xxx2;
u8 total_concurrent;
u16 off_by_info;
u32 e_d_tov;
} common_svc_parm;
typedef struct {
u16 serv_opts;
u16 initiator_ctl;
u16 rcpt_ctl;
u16 recv_size;
u8 xxx1;
u8 concurrent_seqs;
u16 end2end_credit;
u16 open_seqs_per_xchg;
u16 xxx2;
} svc_parm;
/* Login */
typedef struct {
u32 code;
common_svc_parm common;
fc_wwn nport_wwn;
fc_wwn node_wwn;
svc_parm class1;
svc_parm class2;
svc_parm class3;
} logi;
#endif /* !(__FC_H) */
/*
* We should not even be trying to compile this if we are not doing
* a module.
*/
#include <linux/module.h>
#ifdef CONFIG_MODULES
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include "fcp_impl.h"
EXPORT_SYMBOL(fcp_init);
EXPORT_SYMBOL(fcp_release);
EXPORT_SYMBOL(fcp_queue_empty);
EXPORT_SYMBOL(fcp_receive_solicited);
EXPORT_SYMBOL(fc_channels);
EXPORT_SYMBOL(fcp_state_change);
EXPORT_SYMBOL(fc_do_plogi);
EXPORT_SYMBOL(fc_do_prli);
/* SCSI stuff */
EXPORT_SYMBOL(fcp_scsi_queuecommand);
EXPORT_SYMBOL(fcp_scsi_abort);
EXPORT_SYMBOL(fcp_scsi_dev_reset);
EXPORT_SYMBOL(fcp_scsi_host_reset);
#endif /* CONFIG_MODULES */
/* fcp.h: Definitions for Fibre Channel Protocol.
*
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
*/
#ifndef __FCP_H
#define __FCP_H
/* FCP addressing is hierarchical with up to 4 layers, MS first.
Exact meaning of the addresses is up to the vendor */
/* fcp_cntl field */
#define FCP_CNTL_WRITE 0x00000001 /* Initiator write */
#define FCP_CNTL_READ 0x00000002 /* Initiator read */
#define FCP_CNTL_ABORT_TSK 0x00000200 /* Abort task set */
#define FCP_CNTL_CLR_TASK 0x00000400 /* Clear task set */
#define FCP_CNTL_RESET 0x00002000 /* Reset */
#define FCP_CNTL_CLR_ACA 0x00004000 /* Clear ACA */
#define FCP_CNTL_KILL_TASK 0x00008000 /* Terminate task */
#define FCP_CNTL_QTYPE_MASK 0x00070000 /* Tagged queueing type */
#define FCP_CNTL_QTYPE_SIMPLE 0x00000000
#define FCP_CNTL_QTYPE_HEAD_OF_Q 0x00010000
#define FCP_CNTL_QTYPE_ORDERED 0x00020000
#define FCP_CNTL_QTYPE_ACA_Q_TAG 0x00040000
#define FCP_CNTL_QTYPE_UNTAGGED 0x00050000
typedef struct {
u16 fcp_addr[4];
u32 fcp_cntl;
u8 fcp_cdb[16];
u32 fcp_data_len;
} fcp_cmd;
/* fcp_status field */
#define FCP_STATUS_MASK 0x000000ff /* scsi status of command */
#define FCP_STATUS_RSP_LEN 0x00000100 /* response_len != 0 */
#define FCP_STATUS_SENSE_LEN 0x00000200 /* sense_len != 0 */
#define FCP_STATUS_RESID 0x00000400 /* resid != 0 */
typedef struct {
u32 xxx[2];
u32 fcp_status;
u32 fcp_resid;
u32 fcp_sense_len;
u32 fcp_response_len;
/* u8 fcp_sense[fcp_sense_len]; */
/* u8 fcp_response[fcp_response_len]; */
} fcp_rsp;
/* fcp errors */
/* rsp_info_type field */
#define FCP_RSP_SCSI_BUS_ERR 0x01
#define FCP_RSP_SCSI_PORT_ERR 0x02
#define FCP_RSP_CARD_ERR 0x03
/* isp_status field */
#define FCP_RSP_CMD_COMPLETE 0x0000
#define FCP_RSP_CMD_INCOMPLETE 0x0001
#define FCP_RSP_CMD_DMA_ERR 0x0002
#define FCP_RSP_CMD_TRAN_ERR 0x0003
#define FCP_RSP_CMD_RESET 0x0004
#define FCP_RSP_CMD_ABORTED 0x0005
#define FCP_RSP_CMD_TIMEOUT 0x0006
#define FCP_RSP_CMD_OVERRUN 0x0007
/* isp_state_flags field */
#define FCP_RSP_ST_GOT_BUS 0x0100
#define FCP_RSP_ST_GOT_TARGET 0x0200
#define FCP_RSP_ST_SENT_CMD 0x0400
#define FCP_RSP_ST_XFRD_DATA 0x0800
#define FCP_RSP_ST_GOT_STATUS 0x1000
#define FCP_RSP_ST_GOT_SENSE 0x2000
/* isp_stat_flags field */
#define FCP_RSP_STAT_DISC 0x0001
#define FCP_RSP_STAT_SYNC 0x0002
#define FCP_RSP_STAT_PERR 0x0004
#define FCP_RSP_STAT_BUS_RESET 0x0008
#define FCP_RSP_STAT_DEV_RESET 0x0010
#define FCP_RSP_STAT_ABORTED 0x0020
#define FCP_RSP_STAT_TIMEOUT 0x0040
#define FCP_RSP_STAT_NEGOTIATE 0x0080
typedef struct {
u8 rsp_info_type;
u8 xxx;
u16 isp_status;
u16 isp_state_flags;
u16 isp_stat_flags;
} fcp_scsi_err;
#endif /* !(__FCP_H) */
/* fcp_impl.h: Generic SCSI on top of FC4 - our interface defines.
*
* Copyright (C) 1997-1999 Jakub Jelinek (jj@ultra.linux.cz)
* Copyright (C) 1998 Jirka Hanika (geo@ff.cuni.cz)
*/
#ifndef _FCP_SCSI_H
#define _FCP_SCSI_H
#include <linux/types.h>
#include "../scsi/scsi.h"
#include "fc.h"
#include "fcp.h"
#include "fc-al.h"
#include <asm/io.h>
#ifdef __sparc__
#include <asm/sbus.h>
#endif
/* 0 or 1 */
#define FCP_SCSI_USE_NEW_EH_CODE 0
#define FC_CLASS_OUTBOUND 0x01
#define FC_CLASS_INBOUND 0x02
#define FC_CLASS_SIMPLE 0x03
#define FC_CLASS_IO_WRITE 0x04
#define FC_CLASS_IO_READ 0x05
#define FC_CLASS_UNSOLICITED 0x06
#define FC_CLASS_OFFLINE 0x08
#define PROTO_OFFLINE 0x02
#define PROTO_REPORT_AL_MAP 0x03
#define PROTO_FORCE_LIP 0x06
struct _fc_channel;
typedef struct fcp_cmnd {
struct fcp_cmnd *next;
struct fcp_cmnd *prev;
void (*done)(struct scsi_cmnd *);
unsigned short proto;
unsigned short token;
unsigned int did;
/* FCP SCSI stuff */
dma_addr_t data;
/* From now on this cannot be touched for proto == TYPE_SCSI_FCP */
fc_hdr fch;
dma_addr_t cmd;
dma_addr_t rsp;
int cmdlen;
int rsplen;
int class;
int datalen;
/* This is just used as a verification during login */
struct _fc_channel *fc;
void *ls;
} fcp_cmnd;
typedef struct {
unsigned int len;
unsigned char list[0];
} fcp_posmap;
typedef struct _fc_channel {
struct _fc_channel *next;
int irq;
int state;
int sid;
int did;
char name[16];
void (*fcp_register)(struct _fc_channel *, u8, int);
void (*reset)(struct _fc_channel *);
int (*hw_enque)(struct _fc_channel *, fcp_cmnd *);
fc_wwn wwn_node;
fc_wwn wwn_nport;
fc_wwn wwn_dest;
common_svc_parm *common_svc;
svc_parm *class_svcs;
#ifdef __sparc__
struct sbus_dev *dev;
#else
struct pci_dev *dev;
#endif
struct module *module;
/* FCP SCSI stuff */
short can_queue;
short abort_count;
int rsp_size;
fcp_cmd *scsi_cmd_pool;
char *scsi_rsp_pool;
dma_addr_t dma_scsi_cmd, dma_scsi_rsp;
unsigned long *scsi_bitmap;
long scsi_bitmap_end;
int scsi_free;
int (*encode_addr)(struct scsi_cmnd *, u16 *, struct _fc_channel *, fcp_cmnd *);
fcp_cmnd *scsi_que;
char scsi_name[4];
fcp_cmnd **cmd_slots;
int channels;
int targets;
long *ages;
struct scsi_cmnd *rst_pkt;
fcp_posmap *posmap;
/* LOGIN stuff */
fcp_cmnd *login;
void *ls;
} fc_channel;
extern fc_channel *fc_channels;
#define FC_STATE_UNINITED 0
#define FC_STATE_ONLINE 1
#define FC_STATE_OFFLINE 2
#define FC_STATE_RESETING 3
#define FC_STATE_FPORT_OK 4
#define FC_STATE_MAYBEOFFLINE 5
#define FC_STATUS_OK 0
#define FC_STATUS_P_RJT 2
#define FC_STATUS_F_RJT 3
#define FC_STATUS_P_BSY 4
#define FC_STATUS_F_BSY 5
#define FC_STATUS_ERR_OFFLINE 0x11
#define FC_STATUS_TIMEOUT 0x12
#define FC_STATUS_ERR_OVERRUN 0x13
#define FC_STATUS_POINTTOPOINT 0x15
#define FC_STATUS_AL 0x16
#define FC_STATUS_UNKNOWN_CQ_TYPE 0x20
#define FC_STATUS_BAD_SEG_CNT 0x21
#define FC_STATUS_MAX_XCHG_EXCEEDED 0x22
#define FC_STATUS_BAD_XID 0x23
#define FC_STATUS_XCHG_BUSY 0x24
#define FC_STATUS_BAD_POOL_ID 0x25
#define FC_STATUS_INSUFFICIENT_CQES 0x26
#define FC_STATUS_ALLOC_FAIL 0x27
#define FC_STATUS_BAD_SID 0x28
#define FC_STATUS_NO_SEQ_INIT 0x29
#define FC_STATUS_TIMED_OUT -1
#define FC_STATUS_BAD_RSP -2
void fcp_queue_empty(fc_channel *);
int fcp_init(fc_channel *);
void fcp_release(fc_channel *fc_chain, int count);
void fcp_receive_solicited(fc_channel *, int, int, int, fc_hdr *);
void fcp_state_change(fc_channel *, int);
int fc_do_plogi(fc_channel *, unsigned char, fc_wwn *, fc_wwn *);
int fc_do_prli(fc_channel *, unsigned char);
#define for_each_fc_channel(fc) \
for (fc = fc_channels; fc; fc = fc->next)
#define for_each_online_fc_channel(fc) \
for_each_fc_channel(fc) \
if (fc->state == FC_STATE_ONLINE)
int fcp_scsi_queuecommand(struct scsi_cmnd *,
void (* done) (struct scsi_cmnd *));
int fcp_scsi_abort(struct scsi_cmnd *);
int fcp_scsi_dev_reset(struct scsi_cmnd *);
int fcp_scsi_host_reset(struct scsi_cmnd *);
#endif /* !(_FCP_SCSI_H) */
/* soc.c: Sparc SUNW,soc (Serial Optical Channel) Fibre Channel Sbus adapter support.
*
* Copyright (C) 1996,1997,1999 Jakub Jelinek (jj@ultra.linux.cz)
* Copyright (C) 1997,1998 Jirka Hanika (geo@ff.cuni.cz)
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
*
* Supported hardware:
* Tested on SOC sbus card bought with SS1000 in Linux running on SS5 and Ultra1.
* For SOC sbus cards, you have to make sure your FCode is 1.52 or later.
* If you have older FCode, you should try to upgrade or get SOC microcode from Sun
* (the microcode is present in Solaris soc driver as well). In that case you need
* to #define HAVE_SOC_UCODE and format the microcode into soc_asm.c. For the exact
* format mail me and I will tell you. I cannot offer you the actual microcode though,
* unless Sun confirms they don't mind.
*/
static char *version =
"soc.c:v1.3 9/Feb/99 Jakub Jelinek (jj@ultra.linux.cz), Jirka Hanika (geo@ff.cuni.cz)\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
/* #define SOCDEBUG */
/* #define HAVE_SOC_UCODE */
#include "fcp_impl.h"
#include "soc.h"
#ifdef HAVE_SOC_UCODE
#include "soc_asm.h"
#endif
#define soc_printk printk ("soc%d: ", s->soc_no); printk
#ifdef SOCDEBUG
#define SOD(x) soc_printk x;
#else
#define SOD(x)
#endif
#define for_each_soc(s) for (s = socs; s; s = s->next)
struct soc *socs = NULL;
static inline void soc_disable(struct soc *s)
{
sbus_writel(0, s->regs + IMASK);
sbus_writel(SOC_CMD_SOFT_RESET, s->regs + CMD);
}
static inline void soc_enable(struct soc *s)
{
SOD(("enable %08x\n", s->cfg))
sbus_writel(0, s->regs + SAE);
sbus_writel(s->cfg, s->regs + CFG);
sbus_writel(SOC_CMD_RSP_QALL, s->regs + CMD);
SOC_SETIMASK(s, SOC_IMASK_RSP_QALL | SOC_IMASK_SAE);
SOD(("imask %08lx %08lx\n", s->imask, sbus_readl(s->regs + IMAK)));
}
static void soc_reset(fc_channel *fc)
{
soc_port *port = (soc_port *)fc;
struct soc *s = port->s;
/* FIXME */
soc_disable(s);
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
s->req[0].in = 0;
s->req[1].in = 0;
s->rsp[0].in = 0;
s->rsp[1].in = 0;
s->req[0].out = 0;
s->req[1].out = 0;
s->rsp[0].out = 0;
s->rsp[1].out = 0;
/* FIXME */
soc_enable(s);
}
static inline void soc_solicited (struct soc *s)
{
fc_hdr fchdr;
soc_rsp __iomem *hwrsp;
soc_cq_rsp *sw_cq;
int token;
int status;
fc_channel *fc;
sw_cq = &s->rsp[SOC_SOLICITED_RSP_Q];
if (sw_cq->pool == NULL)
sw_cq->pool = (soc_req __iomem *)
(s->xram + xram_get_32low ((xram_p)&sw_cq->hw_cq->address));
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
SOD (("soc_solicited, %d pkts arrived\n", (sw_cq->in-sw_cq->out) & sw_cq->last))
for (;;) {
hwrsp = (soc_rsp __iomem *)sw_cq->pool + sw_cq->out;
token = xram_get_32low ((xram_p)&hwrsp->shdr.token);
status = xram_get_32low ((xram_p)&hwrsp->status);
fc = (fc_channel *)(&s->port[(token >> 11) & 1]);
if (status == SOC_OK) {
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1),
FC_STATUS_OK, NULL);
} else {
xram_copy_from(&fchdr, (xram_p)&hwrsp->fchdr, sizeof(fchdr));
/* We have intentionally defined FC_STATUS_* constants
* to match SOC_* constants, otherwise we'd have to
* translate status.
*/
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1),
status, &fchdr);
}
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOC_CMD_RSP_QALL &
~(SOC_CMD_RSP_Q0 << SOC_SOLICITED_RSP_Q)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
if (sw_cq->out == sw_cq->in)
break;
}
}
}
}
static inline void soc_request (struct soc *s, u32 cmd)
{
SOC_SETIMASK(s, s->imask & ~(cmd & SOC_CMD_REQ_QALL));
SOD(("imask %08lx %08lx\n", s->imask, sbus_readl(s->regs + IMASK)));
SOD(("Queues available %08x OUT %X %X\n", cmd,
xram_get_8((xram_p)&s->req[0].hw_cq->out),
xram_get_8((xram_p)&s->req[0].hw_cq->out)))
if (s->port[s->curr_port].fc.state != FC_STATE_OFFLINE) {
fcp_queue_empty ((fc_channel *)&(s->port[s->curr_port]));
if (((s->req[1].in + 1) & s->req[1].last) != (s->req[1].out))
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
} else {
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
}
if (s->port[1 - s->curr_port].fc.state != FC_STATE_OFFLINE)
s->curr_port ^= 1;
}
static inline void soc_unsolicited (struct soc *s)
{
soc_rsp __iomem *hwrsp, *hwrspc;
soc_cq_rsp *sw_cq;
int count;
int status;
int flags;
fc_channel *fc;
sw_cq = &s->rsp[SOC_UNSOLICITED_RSP_Q];
if (sw_cq->pool == NULL)
sw_cq->pool = (soc_req __iomem *)
(s->xram + (xram_get_32low ((xram_p)&sw_cq->hw_cq->address)));
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
SOD (("soc_unsolicited, %d packets arrived\n", (sw_cq->in - sw_cq->out) & sw_cq->last))
while (sw_cq->in != sw_cq->out) {
/* ...real work per entry here... */
hwrsp = (soc_rsp __iomem *)sw_cq->pool + sw_cq->out;
hwrspc = NULL;
flags = xram_get_16 ((xram_p)&hwrsp->shdr.flags);
count = xram_get_8 ((xram_p)&hwrsp->count);
fc = (fc_channel *)&s->port[flags & SOC_PORT_B];
SOD(("FC %08lx fcp_state_change %08lx\n",
(long)fc, (long)fc->fcp_state_change))
if (count != 1) {
/* Ugh, continuation entries */
u8 in;
if (count != 2) {
printk("%s: Too many continuations entries %d\n",
fc->name, count);
goto update_out;
}
in = sw_cq->in;
if (in < sw_cq->out) in += sw_cq->last + 1;
if (in < sw_cq->out + 2) {
/* Ask the hardware if they haven't arrived yet. */
sbus_writel((sw_cq->out << 24) |
(SOC_CMD_RSP_QALL &
~(SOC_CMD_RSP_Q0 << SOC_UNSOLICITED_RSP_Q)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
in = sw_cq->in;
if (in < sw_cq->out)
in += sw_cq->last + 1;
if (in < sw_cq->out + 2) /* Nothing came, let us wait */
return;
}
if (sw_cq->out == sw_cq->last)
hwrspc = (soc_rsp __iomem *)sw_cq->pool;
else
hwrspc = hwrsp + 1;
}
switch (flags & ~SOC_PORT_B) {
case SOC_STATUS:
status = xram_get_32low ((xram_p)&hwrsp->status);
switch (status) {
case SOC_ONLINE:
SOD(("State change to ONLINE\n"));
fcp_state_change(fc, FC_STATE_ONLINE);
break;
case SOC_OFFLINE:
SOD(("State change to OFFLINE\n"));
fcp_state_change(fc, FC_STATE_OFFLINE);
break;
default:
printk ("%s: Unknown STATUS no %d\n",
fc->name, status);
break;
}
break;
case (SOC_UNSOLICITED|SOC_FC_HDR):
{
int r_ctl = xram_get_8 ((xram_p)&hwrsp->fchdr);
unsigned len;
char buf[64];
if ((r_ctl & 0xf0) == R_CTL_EXTENDED_SVC) {
len = xram_get_32 ((xram_p)&hwrsp->shdr.bytecnt);
if (len < 4 || !hwrspc) {
printk ("%s: Invalid R_CTL %02x "
"continuation entries\n",
fc->name, r_ctl);
} else {
if (len > 60)
len = 60;
xram_copy_from (buf, (xram_p)hwrspc,
(len + 3) & ~3);
if (*(u32 *)buf == LS_DISPLAY) {
int i;
for (i = 4; i < len; i++)
if (buf[i] == '\n')
buf[i] = ' ';
buf[len] = 0;
printk ("%s message: %s\n",
fc->name, buf + 4);
} else {
printk ("%s: Unknown LS_CMD "
"%02x\n", fc->name,
buf[0]);
}
}
} else {
printk ("%s: Unsolicited R_CTL %02x "
"not handled\n", fc->name, r_ctl);
}
}
break;
default:
printk ("%s: Unexpected flags %08x\n", fc->name, flags);
break;
};
update_out:
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (hwrspc) {
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOC_CMD_RSP_QALL &
~(SOC_CMD_RSP_Q0 << SOC_UNSOLICITED_RSP_Q)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in);
}
}
}
}
static irqreturn_t soc_intr(int irq, void *dev_id)
{
u32 cmd;
unsigned long flags;
register struct soc *s = (struct soc *)dev_id;
spin_lock_irqsave(&s->lock, flags);
cmd = sbus_readl(s->regs + CMD);
for (; (cmd = SOC_INTR (s, cmd)); cmd = sbus_readl(s->regs + CMD)) {
if (cmd & SOC_CMD_RSP_Q1) soc_unsolicited (s);
if (cmd & SOC_CMD_RSP_Q0) soc_solicited (s);
if (cmd & SOC_CMD_REQ_QALL) soc_request (s, cmd);
}
spin_unlock_irqrestore(&s->lock, flags);
return IRQ_HANDLED;
}
#define TOKEN(proto, port, token) (((proto)<<12)|(token)|(port))
static int soc_hw_enque (fc_channel *fc, fcp_cmnd *fcmd)
{
soc_port *port = (soc_port *)fc;
struct soc *s = port->s;
int qno;
soc_cq_req *sw_cq;
int cq_next_in;
soc_req *request;
fc_hdr *fch;
int i;
if (fcmd->proto == TYPE_SCSI_FCP)
qno = 1;
else
qno = 0;
SOD(("Putting a FCP packet type %d into hw queue %d\n", fcmd->proto, qno))
if (s->imask & (SOC_IMASK_REQ_Q0 << qno)) {
SOD(("EIO %08x\n", s->imask))
return -EIO;
}
sw_cq = s->req + qno;
cq_next_in = (sw_cq->in + 1) & sw_cq->last;
if (cq_next_in == sw_cq->out &&
cq_next_in == (sw_cq->out = xram_get_8((xram_p)&sw_cq->hw_cq->out))) {
SOD(("%d IN %d OUT %d LAST %d\n", qno, sw_cq->in, sw_cq->out, sw_cq->last))
SOC_SETIMASK(s, s->imask | (SOC_IMASK_REQ_Q0 << qno));
SOD(("imask %08lx %08lx\n", s->imask, sbus_readl(s->regs + IMASK)));
/* If queue is full, just say NO */
return -EBUSY;
}
request = sw_cq->pool + sw_cq->in;
fch = &request->fchdr;
switch (fcmd->proto) {
case TYPE_SCSI_FCP:
request->shdr.token = TOKEN(TYPE_SCSI_FCP, port->mask, fcmd->token);
request->data[0].base = fc->dma_scsi_cmd + fcmd->token * sizeof(fcp_cmd);
request->data[0].count = sizeof(fcp_cmd);
request->data[1].base = fc->dma_scsi_rsp + fcmd->token * fc->rsp_size;
request->data[1].count = fc->rsp_size;
if (fcmd->data) {
request->shdr.segcnt = 3;
i = fc->scsi_cmd_pool[fcmd->token].fcp_data_len;
request->shdr.bytecnt = i;
request->data[2].base = fcmd->data;
request->data[2].count = i;
request->type =
(fc->scsi_cmd_pool[fcmd->token].fcp_cntl & FCP_CNTL_WRITE) ?
SOC_CQTYPE_IO_WRITE : SOC_CQTYPE_IO_READ;
} else {
request->shdr.segcnt = 2;
request->shdr.bytecnt = 0;
request->data[2].base = 0;
request->data[2].count = 0;
request->type = SOC_CQTYPE_SIMPLE;
}
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fc->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP,
F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
fch->param = 0;
request->shdr.flags = port->flags;
request->shdr.class = 2;
break;
case PROTO_OFFLINE:
memset (request, 0, sizeof(*request));
request->shdr.token = TOKEN(PROTO_OFFLINE, port->mask, fcmd->token);
request->type = SOC_CQTYPE_OFFLINE;
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fc->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP,
F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
request->shdr.flags = port->flags;
break;
case PROTO_REPORT_AL_MAP:
/* SOC only supports Point-to-Point topology, no FC-AL, sorry... */
return -ENOSYS;
default:
request->shdr.token = TOKEN(fcmd->proto, port->mask, fcmd->token);
request->shdr.class = 2;
request->shdr.flags = port->flags;
memcpy (fch, &fcmd->fch, sizeof(fc_hdr));
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = fcmd->class;
switch (fcmd->class) {
case FC_CLASS_OUTBOUND:
request->data[0].base = fcmd->cmd;
request->data[0].count = fcmd->cmdlen;
request->type = SOC_CQTYPE_OUTBOUND;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 1;
break;
case FC_CLASS_INBOUND:
request->data[0].base = fcmd->rsp;
request->data[0].count = fcmd->rsplen;
request->type = SOC_CQTYPE_INBOUND;
request->shdr.bytecnt = 0;
request->shdr.segcnt = 1;
break;
case FC_CLASS_SIMPLE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = SOC_CQTYPE_SIMPLE;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 2;
break;
case FC_CLASS_IO_READ:
case FC_CLASS_IO_WRITE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type =
(fcmd->class == FC_CLASS_IO_READ) ?
SOC_CQTYPE_IO_READ : SOC_CQTYPE_IO_WRITE;
if (fcmd->data) {
request->data[2].base = fcmd->data;
request->data[2].count = fcmd->datalen;
request->shdr.bytecnt = fcmd->datalen;
request->shdr.segcnt = 3;
} else {
request->shdr.bytecnt = 0;
request->shdr.segcnt = 2;
}
break;
};
break;
};
request->count = 1;
request->flags = 0;
request->seqno = sw_cq->seqno;
/* And now tell the SOC about it */
if (++sw_cq->in > sw_cq->last) {
sw_cq->in = 0;
sw_cq->seqno++;
}
SOD(("Putting %08x into cmd\n",
SOC_CMD_RSP_QALL | (sw_cq->in << 24) | (SOC_CMD_REQ_Q0 << qno)))
sbus_writel(SOC_CMD_RSP_QALL | (sw_cq->in << 24) | (SOC_CMD_REQ_Q0 << qno),
s->regs + CMD);
/* Read so that command is completed. */
sbus_readl(s->regs + CMD);
return 0;
}
static inline void soc_download_fw(struct soc *s)
{
#ifdef HAVE_SOC_UCODE
xram_copy_to (s->xram, soc_ucode, sizeof(soc_ucode));
xram_bzero (s->xram + sizeof(soc_ucode), 32768 - sizeof(soc_ucode));
#endif
}
/* Check for what the best SBUS burst we can use happens
* to be on this machine.
*/
static inline void soc_init_bursts(struct soc *s, struct sbus_dev *sdev)
{
int bsizes, bsizes_more;
bsizes = (prom_getintdefault(sdev->prom_node,"burst-sizes",0xff) & 0xff);
bsizes_more = (prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff) & 0xff);
bsizes &= bsizes_more;
if ((bsizes & 0x7f) == 0x7f)
s->cfg = SOC_CFG_BURST_64;
else if ((bsizes & 0x3f) == 0x3f)
s->cfg = SOC_CFG_BURST_32;
else if ((bsizes & 0x1f) == 0x1f)
s->cfg = SOC_CFG_BURST_16;
else
s->cfg = SOC_CFG_BURST_4;
}
static inline void soc_init(struct sbus_dev *sdev, int no)
{
unsigned char tmp[60];
int propl;
struct soc *s;
static int version_printed = 0;
soc_hw_cq cq[8];
int size, i;
int irq;
s = kzalloc (sizeof (struct soc), GFP_KERNEL);
if (s == NULL)
return;
spin_lock_init(&s->lock);
s->soc_no = no;
SOD(("socs %08lx soc_intr %08lx soc_hw_enque %08x\n",
(long)socs, (long)soc_intr, (long)soc_hw_enque))
if (version_printed++ == 0)
printk (version);
s->port[0].fc.module = THIS_MODULE;
s->port[1].fc.module = THIS_MODULE;
s->next = socs;
socs = s;
s->port[0].fc.dev = sdev;
s->port[1].fc.dev = sdev;
s->port[0].s = s;
s->port[1].s = s;
s->port[0].fc.next = &s->port[1].fc;
/* World Wide Name of SOC */
propl = prom_getproperty (sdev->prom_node, "soc-wwn", tmp, sizeof(tmp));
if (propl != sizeof (fc_wwn)) {
s->wwn.naaid = NAAID_IEEE;
s->wwn.lo = 0x12345678;
} else
memcpy (&s->wwn, tmp, sizeof (fc_wwn));
propl = prom_getproperty (sdev->prom_node, "port-wwns", tmp, sizeof(tmp));
if (propl != 2 * sizeof (fc_wwn)) {
s->port[0].fc.wwn_nport.naaid = NAAID_IEEE_EXT;
s->port[0].fc.wwn_nport.hi = s->wwn.hi;
s->port[0].fc.wwn_nport.lo = s->wwn.lo;
s->port[1].fc.wwn_nport.naaid = NAAID_IEEE_EXT;
s->port[1].fc.wwn_nport.nportid = 1;
s->port[1].fc.wwn_nport.hi = s->wwn.hi;
s->port[1].fc.wwn_nport.lo = s->wwn.lo;
} else {
memcpy (&s->port[0].fc.wwn_nport, tmp, sizeof (fc_wwn));
memcpy (&s->port[1].fc.wwn_nport, tmp + sizeof (fc_wwn), sizeof (fc_wwn));
}
memcpy (&s->port[0].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
memcpy (&s->port[1].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
SOD(("Got wwns %08x%08x ports %08x%08x and %08x%08x\n",
*(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo,
*(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo,
*(u32 *)&s->port[1].fc.wwn_nport, s->port[1].fc.wwn_nport.lo))
s->port[0].fc.sid = 1;
s->port[1].fc.sid = 17;
s->port[0].fc.did = 2;
s->port[1].fc.did = 18;
s->port[0].fc.reset = soc_reset;
s->port[1].fc.reset = soc_reset;
if (sdev->num_registers == 1) {
/* Probably SunFire onboard SOC */
s->xram = sbus_ioremap(&sdev->resource[0], 0,
0x10000UL, "soc xram");
s->regs = sbus_ioremap(&sdev->resource[0], 0x10000UL,
0x10UL, "soc regs");
} else {
/* Probably SOC sbus card */
s->xram = sbus_ioremap(&sdev->resource[1], 0,
sdev->reg_addrs[1].reg_size, "soc xram");
s->regs = sbus_ioremap(&sdev->resource[2], 0,
sdev->reg_addrs[2].reg_size, "soc regs");
}
soc_init_bursts(s, sdev);
SOD(("Disabling SOC\n"))
soc_disable (s);
irq = sdev->irqs[0];
if (request_irq (irq, soc_intr, IRQF_SHARED, "SOC", (void *)s)) {
soc_printk ("Cannot order irq %d to go\n", irq);
socs = s->next;
return;
}
SOD(("SOC uses IRQ %d\n", irq))
s->port[0].fc.irq = irq;
s->port[1].fc.irq = irq;
sprintf (s->port[0].fc.name, "soc%d port A", no);
sprintf (s->port[1].fc.name, "soc%d port B", no);
s->port[0].flags = SOC_FC_HDR | SOC_PORT_A;
s->port[1].flags = SOC_FC_HDR | SOC_PORT_B;
s->port[1].mask = (1 << 11);
s->port[0].fc.hw_enque = soc_hw_enque;
s->port[1].fc.hw_enque = soc_hw_enque;
soc_download_fw (s);
SOD(("Downloaded firmware\n"))
/* Now setup xram circular queues */
memset (cq, 0, sizeof(cq));
size = (SOC_CQ_REQ0_SIZE + SOC_CQ_REQ1_SIZE) * sizeof(soc_req);
s->req_cpu = sbus_alloc_consistent(sdev, size, &s->req_dvma);
s->req[0].pool = s->req_cpu;
cq[0].address = s->req_dvma;
s->req[1].pool = s->req[0].pool + SOC_CQ_REQ0_SIZE;
s->req[0].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_REQ_OFFSET);
s->req[1].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_REQ_OFFSET + sizeof(soc_hw_cq));
s->rsp[0].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_RSP_OFFSET);
s->rsp[1].hw_cq = (soc_hw_cq __iomem *)(s->xram + SOC_CQ_RSP_OFFSET + sizeof(soc_hw_cq));
cq[1].address = cq[0].address + (SOC_CQ_REQ0_SIZE * sizeof(soc_req));
cq[4].address = 1;
cq[5].address = 1;
cq[0].last = SOC_CQ_REQ0_SIZE - 1;
cq[1].last = SOC_CQ_REQ1_SIZE - 1;
cq[4].last = SOC_CQ_RSP0_SIZE - 1;
cq[5].last = SOC_CQ_RSP1_SIZE - 1;
for (i = 0; i < 8; i++)
cq[i].seqno = 1;
s->req[0].last = SOC_CQ_REQ0_SIZE - 1;
s->req[1].last = SOC_CQ_REQ1_SIZE - 1;
s->rsp[0].last = SOC_CQ_RSP0_SIZE - 1;
s->rsp[1].last = SOC_CQ_RSP1_SIZE - 1;
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
xram_copy_to (s->xram + SOC_CQ_REQ_OFFSET, cq, sizeof(cq));
/* Make our sw copy of SOC service parameters */
xram_copy_from (s->serv_params, s->xram + 0x140, sizeof (s->serv_params));
s->port[0].fc.common_svc = (common_svc_parm *)s->serv_params;
s->port[0].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
s->port[1].fc.common_svc = (common_svc_parm *)&s->serv_params;
s->port[1].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
soc_enable (s);
SOD(("Enabled SOC\n"))
}
static int __init soc_probe(void)
{
struct sbus_bus *sbus;
struct sbus_dev *sdev = NULL;
struct soc *s;
int cards = 0;
for_each_sbus(sbus) {
for_each_sbusdev(sdev, sbus) {
if(!strcmp(sdev->prom_name, "SUNW,soc")) {
soc_init(sdev, cards);
cards++;
}
}
}
if (!cards) return -EIO;
for_each_soc(s)
if (s->next)
s->port[1].fc.next = &s->next->port[0].fc;
fcp_init (&socs->port[0].fc);
return 0;
}
static void __exit soc_cleanup(void)
{
struct soc *s;
int irq;
struct sbus_dev *sdev;
for_each_soc(s) {
irq = s->port[0].fc.irq;
free_irq (irq, s);
fcp_release(&(s->port[0].fc), 2);
sdev = s->port[0].fc.dev;
if (sdev->num_registers == 1) {
sbus_iounmap(s->xram, 0x10000UL);
sbus_iounmap(s->regs, 0x10UL);
} else {
sbus_iounmap(s->xram, sdev->reg_addrs[1].reg_size);
sbus_iounmap(s->regs, sdev->reg_addrs[2].reg_size);
}
sbus_free_consistent(sdev,
(SOC_CQ_REQ0_SIZE+SOC_CQ_REQ1_SIZE)*sizeof(soc_req),
s->req_cpu, s->req_dvma);
}
}
module_init(soc_probe);
module_exit(soc_cleanup);
MODULE_LICENSE("GPL");
/* soc.h: Definitions for Sparc SUNW,soc Fibre Channel Sbus driver.
*
* Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#ifndef __SOC_H
#define __SOC_H
#include "fc.h"
#include "fcp.h"
#include "fcp_impl.h"
/* Hardware register offsets and constants first {{{ */
#define CFG 0x00UL /* Config Register */
#define SAE 0x04UL /* Slave Access Error Register */
#define CMD 0x08UL /* Command and Status Register */
#define IMASK 0x0cUL /* Interrupt Mask Register */
/* Config Register */
#define SOC_CFG_EXT_RAM_BANK_MASK 0x07000000
#define SOC_CFG_EEPROM_BANK_MASK 0x00030000
#define SOC_CFG_BURST64_MASK 0x00000700
#define SOC_CFG_SBUS_PARITY_TEST 0x00000020
#define SOC_CFG_SBUS_PARITY_CHECK 0x00000010
#define SOC_CFG_SBUS_ENHANCED 0x00000008
#define SOC_CFG_BURST_MASK 0x00000007
/* Bursts */
#define SOC_CFG_BURST_4 0x00000000
#define SOC_CFG_BURST_16 0x00000004
#define SOC_CFG_BURST_32 0x00000005
#define SOC_CFG_BURST_64 0x00000006
/* Slave Access Error Register */
#define SOC_SAE_ALIGNMENT 0x00000004
#define SOC_SAE_UNSUPPORTED 0x00000002
#define SOC_SAE_PARITY 0x00000001
/* Command & Status Register */
#define SOC_CMD_RSP_QALL 0x000f0000
#define SOC_CMD_RSP_Q0 0x00010000
#define SOC_CMD_RSP_Q1 0x00020000
#define SOC_CMD_RSP_Q2 0x00040000
#define SOC_CMD_RSP_Q3 0x00080000
#define SOC_CMD_REQ_QALL 0x00000f00
#define SOC_CMD_REQ_Q0 0x00000100
#define SOC_CMD_REQ_Q1 0x00000200
#define SOC_CMD_REQ_Q2 0x00000400
#define SOC_CMD_REQ_Q3 0x00000800
#define SOC_CMD_SAE 0x00000080
#define SOC_CMD_INTR_PENDING 0x00000008
#define SOC_CMD_NON_QUEUED 0x00000004
#define SOC_CMD_IDLE 0x00000002
#define SOC_CMD_SOFT_RESET 0x00000001
/* Interrupt Mask Register */
#define SOC_IMASK_RSP_QALL 0x000f0000
#define SOC_IMASK_RSP_Q0 0x00010000
#define SOC_IMASK_RSP_Q1 0x00020000
#define SOC_IMASK_RSP_Q2 0x00040000
#define SOC_IMASK_RSP_Q3 0x00080000
#define SOC_IMASK_REQ_QALL 0x00000f00
#define SOC_IMASK_REQ_Q0 0x00000100
#define SOC_IMASK_REQ_Q1 0x00000200
#define SOC_IMASK_REQ_Q2 0x00000400
#define SOC_IMASK_REQ_Q3 0x00000800
#define SOC_IMASK_SAE 0x00000080
#define SOC_IMASK_NON_QUEUED 0x00000004
#define SOC_INTR(s, cmd) \
(((cmd & SOC_CMD_RSP_QALL) | ((~cmd) & SOC_CMD_REQ_QALL)) \
& s->imask)
#define SOC_SETIMASK(s, i) \
do { (s)->imask = (i); \
sbus_writel((i), (s)->regs + IMASK); \
} while(0)
/* XRAM
*
* This is a 64KB register area. It accepts only halfword access.
* That's why here are the following inline functions...
*/
typedef void __iomem *xram_p;
/* Get 32bit number from XRAM */
static inline u32 xram_get_32(xram_p x)
{
return ((sbus_readw(x + 0x00UL) << 16) |
(sbus_readw(x + 0x02UL)));
}
/* Like the above, but when we don't care about the high 16 bits */
static inline u32 xram_get_32low(xram_p x)
{
return (u32) sbus_readw(x + 0x02UL);
}
static inline u16 xram_get_16(xram_p x)
{
return sbus_readw(x);
}
static inline u8 xram_get_8(xram_p x)
{
if ((unsigned long)x & 0x1UL) {
x = x - 1;
return (u8) sbus_readw(x);
} else {
return (u8) (sbus_readw(x) >> 8);
}
}
static inline void xram_copy_from(void *p, xram_p x, int len)
{
for (len >>= 2; len > 0; len--, x += sizeof(u32)) {
u32 val, *p32 = p;
val = ((sbus_readw(x + 0x00UL) << 16) |
(sbus_readw(x + 0x02UL)));
*p32++ = val;
p = p32;
}
}
static inline void xram_copy_to(xram_p x, void *p, int len)
{
for (len >>= 2; len > 0; len--, x += sizeof(u32)) {
u32 tmp, *p32 = p;
tmp = *p32++;
p = p32;
sbus_writew(tmp >> 16, x + 0x00UL);
sbus_writew(tmp, x + 0x02UL);
}
}
static inline void xram_bzero(xram_p x, int len)
{
for (len >>= 1; len > 0; len--, x += sizeof(u16))
sbus_writew(0, x);
}
/* Circular Queue */
#define SOC_CQ_REQ_OFFSET (0x100 * sizeof(u16))
#define SOC_CQ_RSP_OFFSET (0x110 * sizeof(u16))
typedef struct {
u32 address;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_hw_cq;
#define SOC_PORT_A 0x0000 /* From/To Port A */
#define SOC_PORT_B 0x0001 /* From/To Port A */
#define SOC_FC_HDR 0x0002 /* Contains FC Header */
#define SOC_NORSP 0x0004 /* Don't generate response nor interrupt */
#define SOC_NOINT 0x0008 /* Generate response but not interrupt */
#define SOC_XFERRDY 0x0010 /* Generate XFERRDY */
#define SOC_IGNOREPARAM 0x0020 /* Ignore PARAM field in the FC header */
#define SOC_COMPLETE 0x0040 /* Command completed */
#define SOC_UNSOLICITED 0x0080 /* For request this is the packet to establish unsolicited pools, */
/* for rsp this is unsolicited packet */
#define SOC_STATUS 0x0100 /* State change (on/off line) */
typedef struct {
u32 token;
u16 flags;
u8 class;
u8 segcnt;
u32 bytecnt;
} soc_hdr;
typedef struct {
u32 base;
u32 count;
} soc_data;
#define SOC_CQTYPE_OUTBOUND 0x01
#define SOC_CQTYPE_INBOUND 0x02
#define SOC_CQTYPE_SIMPLE 0x03
#define SOC_CQTYPE_IO_WRITE 0x04
#define SOC_CQTYPE_IO_READ 0x05
#define SOC_CQTYPE_UNSOLICITED 0x06
#define SOC_CQTYPE_DIAG 0x07
#define SOC_CQTYPE_OFFLINE 0x08
#define SOC_CQTYPE_RESPONSE 0x10
#define SOC_CQTYPE_INLINE 0x20
#define SOC_CQFLAGS_CONT 0x01
#define SOC_CQFLAGS_FULL 0x02
#define SOC_CQFLAGS_BADHDR 0x04
#define SOC_CQFLAGS_BADPKT 0x08
typedef struct {
soc_hdr shdr;
soc_data data[3];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} soc_req;
#define SOC_OK 0
#define SOC_P_RJT 2
#define SOC_F_RJT 3
#define SOC_P_BSY 4
#define SOC_F_BSY 5
#define SOC_ONLINE 0x10
#define SOC_OFFLINE 0x11
#define SOC_TIMEOUT 0x12
#define SOC_OVERRUN 0x13
#define SOC_UNKOWN_CQ_TYPE 0x20
#define SOC_BAD_SEG_CNT 0x21
#define SOC_MAX_XCHG_EXCEEDED 0x22
#define SOC_BAD_XID 0x23
#define SOC_XCHG_BUSY 0x24
#define SOC_BAD_POOL_ID 0x25
#define SOC_INSUFFICIENT_CQES 0x26
#define SOC_ALLOC_FAIL 0x27
#define SOC_BAD_SID 0x28
#define SOC_NO_SEG_INIT 0x29
typedef struct {
soc_hdr shdr;
u32 status;
soc_data data;
u8 xxx1[12];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} soc_rsp;
/* }}} */
/* Now our software structures and constants we use to drive the beast {{{ */
#define SOC_CQ_REQ0_SIZE 4
#define SOC_CQ_REQ1_SIZE 64
#define SOC_CQ_RSP0_SIZE 8
#define SOC_CQ_RSP1_SIZE 4
#define SOC_SOLICITED_RSP_Q 0
#define SOC_UNSOLICITED_RSP_Q 1
struct soc;
typedef struct {
/* This must come first */
fc_channel fc;
struct soc *s;
u16 flags;
u16 mask;
} soc_port;
typedef struct {
soc_hw_cq __iomem *hw_cq; /* Related XRAM cq */
soc_req __iomem *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_cq_rsp;
typedef struct {
soc_hw_cq __iomem *hw_cq; /* Related XRAM cq */
soc_req *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} soc_cq_req;
struct soc {
spinlock_t lock;
soc_port port[2]; /* Every SOC has one or two FC ports */
soc_cq_req req[2]; /* Request CQs */
soc_cq_rsp rsp[2]; /* Response CQs */
int soc_no;
void __iomem *regs;
xram_p xram;
fc_wwn wwn;
u32 imask; /* Our copy of regs->imask */
u32 cfg; /* Our copy of regs->cfg */
char serv_params[80];
struct soc *next;
int curr_port; /* Which port will have priority to fcp_queue_empty */
soc_req *req_cpu;
u32 req_dvma;
};
/* }}} */
#endif /* !(__SOC_H) */
/* socal.c: Sparc SUNW,socal (SOC+) Fibre Channel Sbus adapter support.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
* Sources:
* Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994
* dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995
* SOC+ Programming Guide 0.1
* Fibre Channel Arbitrated Loop (FC-AL), dpANS rev. 4.5, 1995
*
* Supported hardware:
* On-board SOC+ adapters of Ultra Enterprise servers and sun4d.
*/
static char *version =
"socal.c: SOC+ driver v1.1 9/Feb/99 Jakub Jelinek (jj@ultra.linux.cz)\n";
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/fcntl.h>
#include <linux/interrupt.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bitops.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/dma.h>
#include <linux/errno.h>
#include <asm/byteorder.h>
#include <asm/openprom.h>
#include <asm/oplib.h>
#include <asm/pgtable.h>
#include <asm/irq.h>
/* #define SOCALDEBUG */
/* #define HAVE_SOCAL_UCODE */
/* #define USE_64BIT_MODE */
#include "fcp_impl.h"
#include "socal.h"
#ifdef HAVE_SOCAL_UCODE
#include "socal_asm.h"
#endif
#define socal_printk printk ("socal%d: ", s->socal_no); printk
#ifdef SOCALDEBUG
#define SOD(x) socal_printk x;
#else
#define SOD(x)
#endif
#define for_each_socal(s) for (s = socals; s; s = s->next)
struct socal *socals = NULL;
static void socal_copy_from_xram(void *d, void __iomem *xram, long size)
{
u32 *dp = (u32 *) d;
while (size) {
*dp++ = sbus_readl(xram);
xram += sizeof(u32);
size -= sizeof(u32);
}
}
static void socal_copy_to_xram(void __iomem *xram, void *s, long size)
{
u32 *sp = (u32 *) s;
while (size) {
u32 val = *sp++;
sbus_writel(val, xram);
xram += sizeof(u32);
size -= sizeof(u32);
}
}
#ifdef HAVE_SOCAL_UCODE
static void socal_bzero(unsigned long xram, int size)
{
while (size) {
sbus_writel(0, xram);
xram += sizeof(u32);
size -= sizeof(u32);
}
}
#endif
static inline void socal_disable(struct socal *s)
{
sbus_writel(0, s->regs + IMASK);
sbus_writel(SOCAL_CMD_SOFT_RESET, s->regs + CMD);
}
static inline void socal_enable(struct socal *s)
{
SOD(("enable %08x\n", s->cfg))
sbus_writel(0, s->regs + SAE);
sbus_writel(s->cfg, s->regs + CFG);
sbus_writel(SOCAL_CMD_RSP_QALL, s->regs + CMD);
SOCAL_SETIMASK(s, SOCAL_IMASK_RSP_QALL | SOCAL_IMASK_SAE);
SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));
}
static void socal_reset(fc_channel *fc)
{
socal_port *port = (socal_port *)fc;
struct socal *s = port->s;
/* FIXME */
socal_disable(s);
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
s->req[0].in = 0;
s->req[1].in = 0;
s->rsp[0].in = 0;
s->rsp[1].in = 0;
s->req[0].out = 0;
s->req[1].out = 0;
s->rsp[0].out = 0;
s->rsp[1].out = 0;
/* FIXME */
socal_enable(s);
}
static inline void socal_solicited(struct socal *s, unsigned long qno)
{
socal_rsp *hwrsp;
socal_cq *sw_cq;
int token;
int status;
fc_channel *fc;
sw_cq = &s->rsp[qno];
/* Finally an improvement against old SOC :) */
sw_cq->in = sbus_readb(s->regs + RESP + qno);
SOD (("socal_solicited, %d packets arrived\n",
(sw_cq->in - sw_cq->out) & sw_cq->last))
for (;;) {
hwrsp = (socal_rsp *)sw_cq->pool + sw_cq->out;
SOD(("hwrsp %p out %d\n", hwrsp, sw_cq->out))
#if defined(SOCALDEBUG) && 0
{
u32 *u = (u32 *)hwrsp;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
u += 8;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
u = (u32 *)s->xram;
while (u < ((u32 *)s->regs)) {
if (sbus_readl(&u[0]) == 0x00003000 ||
sbus_readl(&u[0]) == 0x00003801) {
SOD(("Found at %04lx\n",
(unsigned long)u - (unsigned long)s->xram))
SOD((" %08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
sbus_readl(&u[0]), sbus_readl(&u[1]),
sbus_readl(&u[2]), sbus_readl(&u[3]),
sbus_readl(&u[4]), sbus_readl(&u[5]),
sbus_readl(&u[6]), sbus_readl(&u[7])))
u += 8;
SOD((" %08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
sbus_readl(&u[0]), sbus_readl(&u[1]),
sbus_readl(&u[2]), sbus_readl(&u[3]),
sbus_readl(&u[4]), sbus_readl(&u[5]),
sbus_readl(&u[6]), sbus_readl(&u[7])))
u -= 8;
}
u++;
}
}
#endif
token = hwrsp->shdr.token;
status = hwrsp->status;
fc = (fc_channel *)(&s->port[(token >> 11) & 1]);
SOD(("Solicited token %08x status %08x\n", token, status))
if (status == SOCAL_OK) {
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1),
FC_STATUS_OK, NULL);
} else {
/* We have intentionally defined FC_STATUS_* constants
* to match SOCAL_* constants, otherwise we'd have to
* translate status.
*/
fcp_receive_solicited(fc, token >> 12,
token & ((1 << 11) - 1), status, &hwrsp->fchdr);
}
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = sbus_readb(s->regs + RESP + qno);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOCAL_CMD_RSP_QALL &
~(SOCAL_CMD_RSP_Q0 << qno)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = sbus_readb(s->regs + RESP + qno);
if (sw_cq->out == sw_cq->in)
break;
}
}
}
}
static inline void socal_request (struct socal *s, u32 cmd)
{
SOCAL_SETIMASK(s, s->imask & ~(cmd & SOCAL_CMD_REQ_QALL));
SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));
SOD(("Queues available %08x OUT %X\n", cmd, s->regs->reqpr[0]))
if (s->port[s->curr_port].fc.state != FC_STATE_OFFLINE) {
fcp_queue_empty ((fc_channel *)&(s->port[s->curr_port]));
if (((s->req[1].in + 1) & s->req[1].last) != (s->req[1].out))
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
} else {
fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port]));
}
if (s->port[1 - s->curr_port].fc.state != FC_STATE_OFFLINE)
s->curr_port ^= 1;
}
static inline void socal_unsolicited (struct socal *s, unsigned long qno)
{
socal_rsp *hwrsp, *hwrspc;
socal_cq *sw_cq;
int count;
int status;
int flags;
fc_channel *fc;
sw_cq = &s->rsp[qno];
sw_cq->in = sbus_readb(s->regs + RESP + qno);
SOD (("socal_unsolicited, %d packets arrived, in %d\n",
(sw_cq->in - sw_cq->out) & sw_cq->last, sw_cq->in))
while (sw_cq->in != sw_cq->out) {
/* ...real work per entry here... */
hwrsp = (socal_rsp *)sw_cq->pool + sw_cq->out;
SOD(("hwrsp %p out %d\n", hwrsp, sw_cq->out))
#if defined(SOCALDEBUG) && 0
{
u32 *u = (u32 *)hwrsp;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
u += 8;
SOD(("%08x.%08x.%08x.%08x.%08x.%08x.%08x.%08x\n",
u[0],u[1],u[2],u[3],u[4],u[5],u[6],u[7]))
}
#endif
hwrspc = NULL;
flags = hwrsp->shdr.flags;
count = hwrsp->count;
fc = (fc_channel *)&s->port[flags & SOCAL_PORT_B];
SOD(("FC %08lx\n", (long)fc))
if (count != 1) {
/* Ugh, continuation entries */
u8 in;
if (count != 2) {
printk("%s: Too many continuations entries %d\n",
fc->name, count);
goto update_out;
}
in = sw_cq->in;
if (in < sw_cq->out)
in += sw_cq->last + 1;
if (in < sw_cq->out + 2) {
/* Ask the hardware if they haven't arrived yet. */
sbus_writel((sw_cq->out << 24) |
(SOCAL_CMD_RSP_QALL &
~(SOCAL_CMD_RSP_Q0 << qno)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = sbus_readb(s->regs + RESP + qno);
in = sw_cq->in;
if (in < sw_cq->out)
in += sw_cq->last + 1;
if (in < sw_cq->out + 2) /* Nothing came, let us wait */
return;
}
if (sw_cq->out == sw_cq->last)
hwrspc = (socal_rsp *)sw_cq->pool;
else
hwrspc = hwrsp + 1;
}
switch (flags & ~SOCAL_PORT_B) {
case SOCAL_STATUS:
status = hwrsp->status;
switch (status) {
case SOCAL_ONLINE:
SOD(("State change to ONLINE\n"));
fcp_state_change(fc, FC_STATE_ONLINE);
break;
case SOCAL_ONLINE_LOOP:
SOD(("State change to ONLINE_LOOP\n"));
fcp_state_change(fc, FC_STATE_ONLINE);
break;
case SOCAL_OFFLINE:
SOD(("State change to OFFLINE\n"));
fcp_state_change(fc, FC_STATE_OFFLINE);
break;
default:
printk ("%s: Unknown STATUS no %d\n",
fc->name, status);
break;
};
break;
case (SOCAL_UNSOLICITED|SOCAL_FC_HDR):
{
int r_ctl = *((u8 *)&hwrsp->fchdr);
unsigned len;
if ((r_ctl & 0xf0) == R_CTL_EXTENDED_SVC) {
len = hwrsp->shdr.bytecnt;
if (len < 4 || !hwrspc) {
printk ("%s: Invalid R_CTL %02x "
"continuation entries\n",
fc->name, r_ctl);
} else {
if (len > 60)
len = 60;
if (*(u32 *)hwrspc == LS_DISPLAY) {
int i;
for (i = 4; i < len; i++)
if (((u8 *)hwrspc)[i] == '\n')
((u8 *)hwrspc)[i] = ' ';
((u8 *)hwrspc)[len] = 0;
printk ("%s message: %s\n",
fc->name, ((u8 *)hwrspc) + 4);
} else {
printk ("%s: Unknown LS_CMD "
"%08x\n", fc->name,
*(u32 *)hwrspc);
}
}
} else {
printk ("%s: Unsolicited R_CTL %02x "
"not handled\n", fc->name, r_ctl);
}
}
break;
default:
printk ("%s: Unexpected flags %08x\n", fc->name, flags);
break;
};
update_out:
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
if (hwrspc) {
if (++sw_cq->out > sw_cq->last) {
sw_cq->seqno++;
sw_cq->out = 0;
}
}
if (sw_cq->out == sw_cq->in) {
sw_cq->in = sbus_readb(s->regs + RESP + qno);
if (sw_cq->out == sw_cq->in) {
/* Tell the hardware about it */
sbus_writel((sw_cq->out << 24) |
(SOCAL_CMD_RSP_QALL &
~(SOCAL_CMD_RSP_Q0 << qno)),
s->regs + CMD);
/* Read it, so that we're sure it has been updated */
sbus_readl(s->regs + CMD);
sw_cq->in = sbus_readb(s->regs + RESP + qno);
}
}
}
}
static irqreturn_t socal_intr(int irq, void *dev_id)
{
u32 cmd;
unsigned long flags;
register struct socal *s = (struct socal *)dev_id;
spin_lock_irqsave(&s->lock, flags);
cmd = sbus_readl(s->regs + CMD);
for (; (cmd = SOCAL_INTR (s, cmd)); cmd = sbus_readl(s->regs + CMD)) {
#ifdef SOCALDEBUG
static int cnt = 0;
if (cnt++ < 50)
printk("soc_intr %08x\n", cmd);
#endif
if (cmd & SOCAL_CMD_RSP_Q2)
socal_unsolicited (s, SOCAL_UNSOLICITED_RSP_Q);
if (cmd & SOCAL_CMD_RSP_Q1)
socal_unsolicited (s, SOCAL_SOLICITED_BAD_RSP_Q);
if (cmd & SOCAL_CMD_RSP_Q0)
socal_solicited (s, SOCAL_SOLICITED_RSP_Q);
if (cmd & SOCAL_CMD_REQ_QALL)
socal_request (s, cmd);
}
spin_unlock_irqrestore(&s->lock, flags);
return IRQ_HANDLED;
}
#define TOKEN(proto, port, token) (((proto)<<12)|(token)|(port))
static int socal_hw_enque (fc_channel *fc, fcp_cmnd *fcmd)
{
socal_port *port = (socal_port *)fc;
struct socal *s = port->s;
unsigned long qno;
socal_cq *sw_cq;
int cq_next_in;
socal_req *request;
fc_hdr *fch;
int i;
if (fcmd->proto == TYPE_SCSI_FCP)
qno = 1;
else
qno = 0;
SOD(("Putting a FCP packet type %d into hw queue %d\n", fcmd->proto, qno))
if (s->imask & (SOCAL_IMASK_REQ_Q0 << qno)) {
SOD(("EIO %08x\n", s->imask))
return -EIO;
}
sw_cq = s->req + qno;
cq_next_in = (sw_cq->in + 1) & sw_cq->last;
if (cq_next_in == sw_cq->out &&
cq_next_in == (sw_cq->out = sbus_readb(s->regs + REQP + qno))) {
SOD(("%d IN %d OUT %d LAST %d\n",
qno, sw_cq->in,
sw_cq->out, sw_cq->last))
SOCAL_SETIMASK(s, s->imask | (SOCAL_IMASK_REQ_Q0 << qno));
SOD(("imask %08x %08x\n", s->imask, sbus_readl(s->regs + IMASK)));
/* If queue is full, just say NO. */
return -EBUSY;
}
request = sw_cq->pool + sw_cq->in;
fch = &request->fchdr;
switch (fcmd->proto) {
case TYPE_SCSI_FCP:
request->shdr.token = TOKEN(TYPE_SCSI_FCP, port->mask, fcmd->token);
request->data[0].base = fc->dma_scsi_cmd + fcmd->token * sizeof(fcp_cmd);
request->data[0].count = sizeof(fcp_cmd);
request->data[1].base = fc->dma_scsi_rsp + fcmd->token * fc->rsp_size;
request->data[1].count = fc->rsp_size;
if (fcmd->data) {
request->shdr.segcnt = 3;
i = fc->scsi_cmd_pool[fcmd->token].fcp_data_len;
request->shdr.bytecnt = i;
request->data[2].base = fcmd->data;
request->data[2].count = i;
request->type = (fc->scsi_cmd_pool[fcmd->token].fcp_cntl & FCP_CNTL_WRITE) ?
SOCAL_CQTYPE_IO_WRITE : SOCAL_CQTYPE_IO_READ;
} else {
request->shdr.segcnt = 2;
request->shdr.bytecnt = 0;
request->data[2].base = 0;
request->data[2].count = 0;
request->type = SOCAL_CQTYPE_SIMPLE;
}
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fcmd->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
fch->param = 0;
request->shdr.flags = port->flags;
request->shdr.class = fc->posmap ? 3 : 2;
break;
case PROTO_OFFLINE:
memset (request, 0, sizeof(*request));
request->shdr.token = TOKEN(PROTO_OFFLINE, port->mask, fcmd->token);
request->type = SOCAL_CQTYPE_OFFLINE;
FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fcmd->did);
FILL_FCHDR_SID(fch, fc->sid);
FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE);
FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0);
FILL_FCHDR_OXRX(fch, 0xffff, 0xffff);
request->shdr.flags = port->flags;
break;
case PROTO_REPORT_AL_MAP:
memset (request, 0, sizeof(*request));
request->shdr.token = TOKEN(PROTO_REPORT_AL_MAP, port->mask, fcmd->token);
request->type = SOCAL_CQTYPE_REPORT_MAP;
request->shdr.flags = port->flags;
request->shdr.segcnt = 1;
request->shdr.bytecnt = sizeof(fc_al_posmap);
request->data[0].base = fcmd->cmd;
request->data[0].count = sizeof(fc_al_posmap);
break;
default:
request->shdr.token = TOKEN(fcmd->proto, port->mask, fcmd->token);
request->shdr.class = fc->posmap ? 3 : 2;
request->shdr.flags = port->flags;
memcpy (fch, &fcmd->fch, sizeof(fc_hdr));
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = fcmd->class;
switch (fcmd->class) {
case FC_CLASS_OUTBOUND:
request->data[0].base = fcmd->cmd;
request->data[0].count = fcmd->cmdlen;
request->type = SOCAL_CQTYPE_OUTBOUND;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 1;
break;
case FC_CLASS_INBOUND:
request->data[0].base = fcmd->rsp;
request->data[0].count = fcmd->rsplen;
request->type = SOCAL_CQTYPE_INBOUND;
request->shdr.bytecnt = 0;
request->shdr.segcnt = 1;
break;
case FC_CLASS_SIMPLE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = SOCAL_CQTYPE_SIMPLE;
request->shdr.bytecnt = fcmd->cmdlen;
request->shdr.segcnt = 2;
break;
case FC_CLASS_IO_READ:
case FC_CLASS_IO_WRITE:
request->data[0].base = fcmd->cmd;
request->data[1].base = fcmd->rsp;
request->data[0].count = fcmd->cmdlen;
request->data[1].count = fcmd->rsplen;
request->type = (fcmd->class == FC_CLASS_IO_READ) ? SOCAL_CQTYPE_IO_READ : SOCAL_CQTYPE_IO_WRITE;
if (fcmd->data) {
request->data[2].base = fcmd->data;
request->data[2].count = fcmd->datalen;
request->shdr.bytecnt = fcmd->datalen;
request->shdr.segcnt = 3;
} else {
request->shdr.bytecnt = 0;
request->shdr.segcnt = 2;
}
break;
}
break;
}
request->count = 1;
request->flags = 0;
request->seqno = sw_cq->seqno;
SOD(("queueing token %08x\n", request->shdr.token))
/* And now tell the SOCAL about it */
if (++sw_cq->in > sw_cq->last) {
sw_cq->in = 0;
sw_cq->seqno++;
}
SOD(("Putting %08x into cmd\n", SOCAL_CMD_RSP_QALL | (sw_cq->in << 24) | (SOCAL_CMD_REQ_Q0 << qno)))
sbus_writel(SOCAL_CMD_RSP_QALL | (sw_cq->in << 24) | (SOCAL_CMD_REQ_Q0 << qno),
s->regs + CMD);
/* Read so that command is completed */
sbus_readl(s->regs + CMD);
return 0;
}
static inline void socal_download_fw(struct socal *s)
{
#ifdef HAVE_SOCAL_UCODE
SOD(("Loading %ld bytes from %p to %p\n", sizeof(socal_ucode), socal_ucode, s->xram))
socal_copy_to_xram(s->xram, socal_ucode, sizeof(socal_ucode));
SOD(("Clearing the rest of memory\n"))
socal_bzero (s->xram + sizeof(socal_ucode), 65536 - sizeof(socal_ucode));
SOD(("Done\n"))
#endif
}
/* Check for what the best SBUS burst we can use happens
* to be on this machine.
*/
static inline void socal_init_bursts(struct socal *s, struct sbus_dev *sdev)
{
int bsizes, bsizes_more;
u32 cfg;
bsizes = (prom_getintdefault(sdev->prom_node,"burst-sizes",0xff) & 0xff);
bsizes_more = (prom_getintdefault(sdev->bus->prom_node, "burst-sizes", 0xff) & 0xff);
bsizes &= bsizes_more;
#ifdef USE_64BIT_MODE
#ifdef __sparc_v9__
mmu_set_sbus64(sdev, bsizes >> 16);
#endif
#endif
if ((bsizes & 0x7f) == 0x7f)
cfg = SOCAL_CFG_BURST_64;
else if ((bsizes & 0x3f) == 0x3f)
cfg = SOCAL_CFG_BURST_32;
else if ((bsizes & 0x1f) == 0x1f)
cfg = SOCAL_CFG_BURST_16;
else
cfg = SOCAL_CFG_BURST_4;
#ifdef USE_64BIT_MODE
#ifdef __sparc_v9__
/* What is BURST_128? -jj */
if ((bsizes & 0x780000) == 0x780000)
cfg |= (SOCAL_CFG_BURST_64 << 8) | SOCAL_CFG_SBUS_ENHANCED;
else if ((bsizes & 0x380000) == 0x380000)
cfg |= (SOCAL_CFG_BURST_32 << 8) | SOCAL_CFG_SBUS_ENHANCED;
else if ((bsizes & 0x180000) == 0x180000)
cfg |= (SOCAL_CFG_BURST_16 << 8) | SOCAL_CFG_SBUS_ENHANCED;
else
cfg |= (SOCAL_CFG_BURST_8 << 8) | SOCAL_CFG_SBUS_ENHANCED;
#endif
#endif
s->cfg = cfg;
}
static inline void socal_init(struct sbus_dev *sdev, int no)
{
unsigned char tmp[60];
int propl;
struct socal *s;
static unsigned version_printed = 0;
socal_hw_cq cq[8];
int size, i;
int irq, node;
s = kzalloc (sizeof (struct socal), GFP_KERNEL);
if (!s) return;
spin_lock_init(&s->lock);
s->socal_no = no;
SOD(("socals %08lx socal_intr %08lx socal_hw_enque %08lx\n",
(long)socals, (long)socal_intr, (long)socal_hw_enque))
if (version_printed++ == 0)
printk (version);
s->port[0].fc.module = THIS_MODULE;
s->port[1].fc.module = THIS_MODULE;
s->next = socals;
socals = s;
s->port[0].fc.dev = sdev;
s->port[1].fc.dev = sdev;
s->port[0].s = s;
s->port[1].s = s;
s->port[0].fc.next = &s->port[1].fc;
/* World Wide Name of SOCAL */
propl = prom_getproperty (sdev->prom_node, "wwn", tmp, sizeof(tmp));
if (propl != sizeof (fc_wwn)) {
s->wwn.naaid = NAAID_IEEE_REG;
s->wwn.nportid = 0x123;
s->wwn.hi = 0x1234;
s->wwn.lo = 0x12345678;
} else
memcpy (&s->wwn, tmp, sizeof (fc_wwn));
memcpy (&s->port[0].fc.wwn_nport, &s->wwn, sizeof (fc_wwn));
s->port[0].fc.wwn_nport.lo++;
memcpy (&s->port[1].fc.wwn_nport, &s->wwn, sizeof (fc_wwn));
s->port[1].fc.wwn_nport.lo+=2;
node = prom_getchild (sdev->prom_node);
while (node && (node = prom_searchsiblings (node, "sf"))) {
int port;
port = prom_getintdefault(node, "port#", -1);
switch (port) {
case 0:
case 1:
if (prom_getproplen(node, "port-wwn") == sizeof (fc_wwn))
prom_getproperty (node, "port-wwn",
(char *)&s->port[port].fc.wwn_nport,
sizeof (fc_wwn));
break;
default:
break;
};
node = prom_getsibling(node);
}
memcpy (&s->port[0].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
memcpy (&s->port[1].fc.wwn_node, &s->wwn, sizeof (fc_wwn));
SOD(("Got wwns %08x%08x ports %08x%08x and %08x%08x\n",
*(u32 *)&s->port[0].fc.wwn_node, s->port[0].fc.wwn_node.lo,
*(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo,
*(u32 *)&s->port[1].fc.wwn_nport, s->port[1].fc.wwn_nport.lo))
s->port[0].fc.sid = 1;
s->port[1].fc.sid = 17;
s->port[0].fc.did = 2;
s->port[1].fc.did = 18;
s->port[0].fc.reset = socal_reset;
s->port[1].fc.reset = socal_reset;
if (sdev->num_registers == 1) {
s->eeprom = sbus_ioremap(&sdev->resource[0], 0,
sdev->reg_addrs[0].reg_size, "socal xram");
if (sdev->reg_addrs[0].reg_size > 0x20000)
s->xram = s->eeprom + 0x10000UL;
else
s->xram = s->eeprom;
s->regs = (s->xram + 0x10000UL);
} else {
/* E.g. starfire presents 3 registers for SOCAL */
s->xram = sbus_ioremap(&sdev->resource[1], 0,
sdev->reg_addrs[1].reg_size, "socal xram");
s->regs = sbus_ioremap(&sdev->resource[2], 0,
sdev->reg_addrs[2].reg_size, "socal regs");
}
socal_init_bursts(s, sdev);
SOD(("Disabling SOCAL\n"))
socal_disable (s);
irq = sdev->irqs[0];
if (request_irq (irq, socal_intr, IRQF_SHARED, "SOCAL", (void *)s)) {
socal_printk ("Cannot order irq %d to go\n", irq);
socals = s->next;
return;
}
SOD(("SOCAL uses IRQ %d\n", irq))
s->port[0].fc.irq = irq;
s->port[1].fc.irq = irq;
sprintf (s->port[0].fc.name, "socal%d port A", no);
sprintf (s->port[1].fc.name, "socal%d port B", no);
s->port[0].flags = SOCAL_FC_HDR | SOCAL_PORT_A;
s->port[1].flags = SOCAL_FC_HDR | SOCAL_PORT_B;
s->port[1].mask = (1 << 11);
s->port[0].fc.hw_enque = socal_hw_enque;
s->port[1].fc.hw_enque = socal_hw_enque;
socal_download_fw (s);
SOD(("Downloaded firmware\n"))
/* Now setup xram circular queues */
memset (cq, 0, sizeof(cq));
size = (SOCAL_CQ_REQ0_SIZE + SOCAL_CQ_REQ1_SIZE +
SOCAL_CQ_RSP0_SIZE + SOCAL_CQ_RSP1_SIZE +
SOCAL_CQ_RSP2_SIZE) * sizeof(socal_req);
s->req_cpu = sbus_alloc_consistent(sdev, size, &s->req_dvma);
s->req[0].pool = s->req_cpu;
cq[0].address = s->req_dvma;
s->req[1].pool = s->req[0].pool + SOCAL_CQ_REQ0_SIZE;
s->rsp[0].pool = s->req[1].pool + SOCAL_CQ_REQ1_SIZE;
s->rsp[1].pool = s->rsp[0].pool + SOCAL_CQ_RSP0_SIZE;
s->rsp[2].pool = s->rsp[1].pool + SOCAL_CQ_RSP1_SIZE;
s->req[0].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_REQ_OFFSET);
s->req[1].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_REQ_OFFSET + sizeof(socal_hw_cq));
s->rsp[0].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET);
s->rsp[1].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET + sizeof(socal_hw_cq));
s->rsp[2].hw_cq = (socal_hw_cq __iomem *)(s->xram + SOCAL_CQ_RSP_OFFSET + 2 * sizeof(socal_hw_cq));
cq[1].address = cq[0].address + (SOCAL_CQ_REQ0_SIZE * sizeof(socal_req));
cq[4].address = cq[1].address + (SOCAL_CQ_REQ1_SIZE * sizeof(socal_req));
cq[5].address = cq[4].address + (SOCAL_CQ_RSP0_SIZE * sizeof(socal_req));
cq[6].address = cq[5].address + (SOCAL_CQ_RSP1_SIZE * sizeof(socal_req));
cq[0].last = SOCAL_CQ_REQ0_SIZE - 1;
cq[1].last = SOCAL_CQ_REQ1_SIZE - 1;
cq[4].last = SOCAL_CQ_RSP0_SIZE - 1;
cq[5].last = SOCAL_CQ_RSP1_SIZE - 1;
cq[6].last = SOCAL_CQ_RSP2_SIZE - 1;
for (i = 0; i < 8; i++)
cq[i].seqno = 1;
s->req[0].last = SOCAL_CQ_REQ0_SIZE - 1;
s->req[1].last = SOCAL_CQ_REQ1_SIZE - 1;
s->rsp[0].last = SOCAL_CQ_RSP0_SIZE - 1;
s->rsp[1].last = SOCAL_CQ_RSP1_SIZE - 1;
s->rsp[2].last = SOCAL_CQ_RSP2_SIZE - 1;
s->req[0].seqno = 1;
s->req[1].seqno = 1;
s->rsp[0].seqno = 1;
s->rsp[1].seqno = 1;
s->rsp[2].seqno = 1;
socal_copy_to_xram(s->xram + SOCAL_CQ_REQ_OFFSET, cq, sizeof(cq));
SOD(("Setting up params\n"))
/* Make our sw copy of SOCAL service parameters */
socal_copy_from_xram(s->serv_params, s->xram + 0x280, sizeof (s->serv_params));
s->port[0].fc.common_svc = (common_svc_parm *)s->serv_params;
s->port[0].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
s->port[1].fc.common_svc = (common_svc_parm *)&s->serv_params;
s->port[1].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20);
socal_enable (s);
SOD(("Enabled SOCAL\n"))
}
static int __init socal_probe(void)
{
struct sbus_bus *sbus;
struct sbus_dev *sdev = NULL;
struct socal *s;
int cards = 0;
for_each_sbus(sbus) {
for_each_sbusdev(sdev, sbus) {
if(!strcmp(sdev->prom_name, "SUNW,socal")) {
socal_init(sdev, cards);
cards++;
}
}
}
if (!cards)
return -EIO;
for_each_socal(s)
if (s->next)
s->port[1].fc.next = &s->next->port[0].fc;
fcp_init (&socals->port[0].fc);
return 0;
}
static void __exit socal_cleanup(void)
{
struct socal *s;
int irq;
struct sbus_dev *sdev;
for_each_socal(s) {
irq = s->port[0].fc.irq;
free_irq (irq, s);
fcp_release(&(s->port[0].fc), 2);
sdev = s->port[0].fc.dev;
if (sdev->num_registers == 1) {
sbus_iounmap(s->eeprom, sdev->reg_addrs[0].reg_size);
} else {
sbus_iounmap(s->xram, sdev->reg_addrs[1].reg_size);
sbus_iounmap(s->regs, sdev->reg_addrs[2].reg_size);
}
sbus_free_consistent(sdev,
(SOCAL_CQ_REQ0_SIZE + SOCAL_CQ_REQ1_SIZE +
SOCAL_CQ_RSP0_SIZE + SOCAL_CQ_RSP1_SIZE +
SOCAL_CQ_RSP2_SIZE) * sizeof(socal_req),
s->req_cpu, s->req_dvma);
}
}
module_init(socal_probe);
module_exit(socal_cleanup);
MODULE_LICENSE("GPL");
/* socal.h: Definitions for Sparc SUNW,socal (SOC+) Fibre Channel Sbus driver.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#ifndef __SOCAL_H
#define __SOCAL_H
#include "fc.h"
#include "fcp.h"
#include "fcp_impl.h"
/* Hardware register offsets and constants first {{{ */
#define CFG 0x00UL
#define SAE 0x04UL
#define CMD 0x08UL
#define IMASK 0x0cUL
#define REQP 0x10UL
#define RESP 0x14UL
/* Config Register */
#define SOCAL_CFG_EXT_RAM_BANK_MASK 0x07000000
#define SOCAL_CFG_EEPROM_BANK_MASK 0x00030000
#define SOCAL_CFG_BURST64_MASK 0x00000700
#define SOCAL_CFG_SBUS_PARITY_TEST 0x00000020
#define SOCAL_CFG_SBUS_PARITY_CHECK 0x00000010
#define SOCAL_CFG_SBUS_ENHANCED 0x00000008
#define SOCAL_CFG_BURST_MASK 0x00000007
/* Bursts */
#define SOCAL_CFG_BURST_4 0x00000000
#define SOCAL_CFG_BURST_8 0x00000003
#define SOCAL_CFG_BURST_16 0x00000004
#define SOCAL_CFG_BURST_32 0x00000005
#define SOCAL_CFG_BURST_64 0x00000006
#define SOCAL_CFG_BURST_128 0x00000007
/* Slave Access Error Register */
#define SOCAL_SAE_ALIGNMENT 0x00000004
#define SOCAL_SAE_UNSUPPORTED 0x00000002
#define SOCAL_SAE_PARITY 0x00000001
/* Command & Status Register */
#define SOCAL_CMD_RSP_QALL 0x000f0000
#define SOCAL_CMD_RSP_Q0 0x00010000
#define SOCAL_CMD_RSP_Q1 0x00020000
#define SOCAL_CMD_RSP_Q2 0x00040000
#define SOCAL_CMD_RSP_Q3 0x00080000
#define SOCAL_CMD_REQ_QALL 0x00000f00
#define SOCAL_CMD_REQ_Q0 0x00000100
#define SOCAL_CMD_REQ_Q1 0x00000200
#define SOCAL_CMD_REQ_Q2 0x00000400
#define SOCAL_CMD_REQ_Q3 0x00000800
#define SOCAL_CMD_SAE 0x00000080
#define SOCAL_CMD_INTR_PENDING 0x00000008
#define SOCAL_CMD_NON_QUEUED 0x00000004
#define SOCAL_CMD_IDLE 0x00000002
#define SOCAL_CMD_SOFT_RESET 0x00000001
/* Interrupt Mask Register */
#define SOCAL_IMASK_RSP_QALL 0x000f0000
#define SOCAL_IMASK_RSP_Q0 0x00010000
#define SOCAL_IMASK_RSP_Q1 0x00020000
#define SOCAL_IMASK_RSP_Q2 0x00040000
#define SOCAL_IMASK_RSP_Q3 0x00080000
#define SOCAL_IMASK_REQ_QALL 0x00000f00
#define SOCAL_IMASK_REQ_Q0 0x00000100
#define SOCAL_IMASK_REQ_Q1 0x00000200
#define SOCAL_IMASK_REQ_Q2 0x00000400
#define SOCAL_IMASK_REQ_Q3 0x00000800
#define SOCAL_IMASK_SAE 0x00000080
#define SOCAL_IMASK_NON_QUEUED 0x00000004
#define SOCAL_INTR(s, cmd) \
(((cmd & SOCAL_CMD_RSP_QALL) | ((~cmd) & SOCAL_CMD_REQ_QALL)) \
& s->imask)
#define SOCAL_SETIMASK(s, i) \
do { (s)->imask = (i); \
sbus_writel((i), (s)->regs + IMASK); \
} while (0)
#define SOCAL_MAX_EXCHANGES 1024
/* XRAM
*
* This is a 64KB register area.
* From the documentation, it seems like it is finally able to cope
* at least with 1,2,4 byte accesses for read and 2,4 byte accesses for write.
*/
/* Circular Queue */
#define SOCAL_CQ_REQ_OFFSET 0x200
#define SOCAL_CQ_RSP_OFFSET 0x220
typedef struct {
u32 address;
u8 in;
u8 out;
u8 last;
u8 seqno;
} socal_hw_cq;
#define SOCAL_PORT_A 0x0000 /* From/To Port A */
#define SOCAL_PORT_B 0x0001 /* From/To Port A */
#define SOCAL_FC_HDR 0x0002 /* Contains FC Header */
#define SOCAL_NORSP 0x0004 /* Don't generate response nor interrupt */
#define SOCAL_NOINT 0x0008 /* Generate response but not interrupt */
#define SOCAL_XFERRDY 0x0010 /* Generate XFERRDY */
#define SOCAL_IGNOREPARAM 0x0020 /* Ignore PARAM field in the FC header */
#define SOCAL_COMPLETE 0x0040 /* Command completed */
#define SOCAL_UNSOLICITED 0x0080 /* For request this is the packet to establish unsolicited pools, */
/* for rsp this is unsolicited packet */
#define SOCAL_STATUS 0x0100 /* State change (on/off line) */
#define SOCAL_RSP_HDR 0x0200 /* Return frame header in any case */
typedef struct {
u32 token;
u16 flags;
u8 class;
u8 segcnt;
u32 bytecnt;
} socal_hdr;
typedef struct {
u32 base;
u32 count;
} socal_data;
#define SOCAL_CQTYPE_NOP 0x00
#define SOCAL_CQTYPE_OUTBOUND 0x01
#define SOCAL_CQTYPE_INBOUND 0x02
#define SOCAL_CQTYPE_SIMPLE 0x03
#define SOCAL_CQTYPE_IO_WRITE 0x04
#define SOCAL_CQTYPE_IO_READ 0x05
#define SOCAL_CQTYPE_UNSOLICITED 0x06
#define SOCAL_CQTYPE_BYPASS_DEV 0x06
#define SOCAL_CQTYPE_DIAG 0x07
#define SOCAL_CQTYPE_OFFLINE 0x08
#define SOCAL_CQTYPE_ADD_POOL 0x09
#define SOCAL_CQTYPE_DELETE_POOL 0x0a
#define SOCAL_CQTYPE_ADD_BUFFER 0x0b
#define SOCAL_CQTYPE_ADD_POOL_BUFFER 0x0c
#define SOCAL_CQTYPE_REQUEST_ABORT 0x0d
#define SOCAL_CQTYPE_REQUEST_LIP 0x0e
#define SOCAL_CQTYPE_REPORT_MAP 0x0f
#define SOCAL_CQTYPE_RESPONSE 0x10
#define SOCAL_CQTYPE_INLINE 0x20
#define SOCAL_CQFLAGS_CONT 0x01
#define SOCAL_CQFLAGS_FULL 0x02
#define SOCAL_CQFLAGS_BADHDR 0x04
#define SOCAL_CQFLAGS_BADPKT 0x08
typedef struct {
socal_hdr shdr;
socal_data data[3];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_req;
#define SOCAL_OK 0
#define SOCAL_P_RJT 2
#define SOCAL_F_RJT 3
#define SOCAL_P_BSY 4
#define SOCAL_F_BSY 5
#define SOCAL_ONLINE 0x10
#define SOCAL_OFFLINE 0x11
#define SOCAL_TIMEOUT 0x12
#define SOCAL_OVERRUN 0x13
#define SOCAL_ONLINE_LOOP 0x14
#define SOCAL_OLD_PORT 0x15
#define SOCAL_AL_PORT 0x16
#define SOCAL_UNKOWN_CQ_TYPE 0x20
#define SOCAL_BAD_SEG_CNT 0x21
#define SOCAL_MAX_XCHG_EXCEEDED 0x22
#define SOCAL_BAD_XID 0x23
#define SOCAL_XCHG_BUSY 0x24
#define SOCAL_BAD_POOL_ID 0x25
#define SOCAL_INSUFFICIENT_CQES 0x26
#define SOCAL_ALLOC_FAIL 0x27
#define SOCAL_BAD_SID 0x28
#define SOCAL_NO_SEG_INIT 0x29
#define SOCAL_BAD_DID 0x2a
#define SOCAL_ABORTED 0x30
#define SOCAL_ABORT_FAILED 0x31
typedef struct {
socal_hdr shdr;
u32 status;
socal_data data;
u8 xxx1[10];
u16 ncmds;
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_rsp;
typedef struct {
socal_hdr shdr;
u8 xxx1[48];
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_cmdonly;
#define SOCAL_DIAG_NOP 0x00
#define SOCAL_DIAG_INT_LOOP 0x01
#define SOCAL_DIAG_EXT_LOOP 0x02
#define SOCAL_DIAG_REM_LOOP 0x03
#define SOCAL_DIAG_XRAM_TEST 0x04
#define SOCAL_DIAG_SOC_TEST 0x05
#define SOCAL_DIAG_HCB_TEST 0x06
#define SOCAL_DIAG_SOCLB_TEST 0x07
#define SOCAL_DIAG_SRDSLB_TEST 0x08
#define SOCAL_DIAG_EXTOE_TEST 0x09
typedef struct {
socal_hdr shdr;
u32 cmd;
u8 xxx1[44];
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_diag_req;
#define SOCAL_POOL_MASK_RCTL 0x800000
#define SOCAL_POOL_MASK_DID 0x700000
#define SOCAL_POOL_MASK_SID 0x070000
#define SOCAL_POOL_MASK_TYPE 0x008000
#define SOCAL_POOL_MASK_F_CTL 0x007000
#define SOCAL_POOL_MASK_SEQ_ID 0x000800
#define SOCAL_POOL_MASK_D_CTL 0x000400
#define SOCAL_POOL_MASK_SEQ_CNT 0x000300
#define SOCAL_POOL_MASK_OX_ID 0x0000f0
#define SOCAL_POOL_MASK_PARAM 0x00000f
typedef struct {
socal_hdr shdr;
u32 pool_id;
u32 header_mask;
u32 buf_size;
u32 entries;
u8 xxx1[8];
fc_hdr fchdr;
u8 count;
u8 type;
u8 flags;
u8 seqno;
} socal_pool_req;
/* }}} */
/* Now our software structures and constants we use to drive the beast {{{ */
#define SOCAL_CQ_REQ0_SIZE 4
#define SOCAL_CQ_REQ1_SIZE 256
#define SOCAL_CQ_RSP0_SIZE 8
#define SOCAL_CQ_RSP1_SIZE 4
#define SOCAL_CQ_RSP2_SIZE 4
#define SOCAL_SOLICITED_RSP_Q 0
#define SOCAL_SOLICITED_BAD_RSP_Q 1
#define SOCAL_UNSOLICITED_RSP_Q 2
struct socal;
typedef struct {
/* This must come first */
fc_channel fc;
struct socal *s;
u16 flags;
u16 mask;
} socal_port;
typedef struct {
socal_hw_cq __iomem *hw_cq; /* Related XRAM cq */
socal_req *pool;
u8 in;
u8 out;
u8 last;
u8 seqno;
} socal_cq;
struct socal {
spinlock_t lock;
socal_port port[2]; /* Every SOCAL has one or two FC ports */
socal_cq req[4]; /* Request CQs */
socal_cq rsp[4]; /* Response CQs */
int socal_no;
void __iomem *regs;
void __iomem *xram;
void __iomem *eeprom;
fc_wwn wwn;
u32 imask; /* Our copy of regs->imask */
u32 cfg; /* Our copy of regs->cfg */
char serv_params[80];
struct socal *next;
int curr_port; /* Which port will have priority to fcp_queue_empty */
socal_req * req_cpu;
u32 req_dvma;
};
/* }}} */
#endif /* !(__SOCAL_H) */
......@@ -115,7 +115,6 @@ obj-$(CONFIG_SCSI_QLOGICPTI) += qlogicpti.o
obj-$(CONFIG_BLK_DEV_IDESCSI) += ide-scsi.o
obj-$(CONFIG_SCSI_MESH) += mesh.o
obj-$(CONFIG_SCSI_MAC53C94) += mac53c94.o
obj-$(CONFIG_SCSI_PLUTO) += pluto.o
obj-$(CONFIG_SCSI_DECNCR) += NCR53C9x.o dec_esp.o
obj-$(CONFIG_BLK_DEV_3W_XXXX_RAID) += 3w-xxxx.o
obj-$(CONFIG_SCSI_3W_9XXX) += 3w-9xxx.o
......@@ -123,7 +122,6 @@ obj-$(CONFIG_SCSI_PPA) += ppa.o
obj-$(CONFIG_SCSI_IMM) += imm.o
obj-$(CONFIG_JAZZ_ESP) += esp_scsi.o jazz_esp.o
obj-$(CONFIG_SUN3X_ESP) += NCR53C9x.o sun3x_esp.o
obj-$(CONFIG_SCSI_FCAL) += fcal.o
obj-$(CONFIG_SCSI_LASI700) += 53c700.o lasi700.o
obj-$(CONFIG_SCSI_SNI_53C710) += 53c700.o sni_53c710.o
obj-$(CONFIG_SCSI_NSP32) += nsp32.o
......
/* fcal.c: Fibre Channel Arbitrated Loop SCSI host adapter driver.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*
*/
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
#include <asm/irq.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "../fc4/fcp_impl.h"
#include "fcal.h"
#include <linux/module.h>
/* #define FCAL_DEBUG */
#define fcal_printk printk ("FCAL %s: ", fc->name); printk
#ifdef FCAL_DEBUG
#define FCALD(x) fcal_printk x;
#define FCALND(x) printk ("FCAL: "); printk x;
#else
#define FCALD(x)
#define FCALND(x)
#endif
static unsigned char alpa2target[] = {
0x7e, 0x7d, 0x7c, 0xff, 0x7b, 0xff, 0xff, 0xff, 0x7a, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x79,
0x78, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x77, 0x76, 0xff, 0xff, 0x75, 0xff, 0x74, 0x73, 0x72,
0xff, 0xff, 0xff, 0x71, 0xff, 0x70, 0x6f, 0x6e, 0xff, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x68, 0xff,
0xff, 0x67, 0x66, 0x65, 0x64, 0x63, 0x62, 0xff, 0xff, 0x61, 0x60, 0xff, 0x5f, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x5e, 0xff, 0x5d, 0x5c, 0x5b, 0xff, 0x5a, 0x59, 0x58, 0x57, 0x56, 0x55, 0xff,
0xff, 0x54, 0x53, 0x52, 0x51, 0x50, 0x4f, 0xff, 0xff, 0x4e, 0x4d, 0xff, 0x4c, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x4b, 0xff, 0x4a, 0x49, 0x48, 0xff, 0x47, 0x46, 0x45, 0x44, 0x43, 0x42, 0xff,
0xff, 0x41, 0x40, 0x3f, 0x3e, 0x3d, 0x3c, 0xff, 0xff, 0x3b, 0x3a, 0xff, 0x39, 0xff, 0xff, 0xff,
0x38, 0x37, 0x36, 0xff, 0x35, 0xff, 0xff, 0xff, 0x34, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x33,
0x32, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x31, 0x30, 0xff, 0xff, 0x2f, 0xff, 0x2e, 0x2d, 0x2c,
0xff, 0xff, 0xff, 0x2b, 0xff, 0x2a, 0x29, 0x28, 0xff, 0x27, 0x26, 0x25, 0x24, 0x23, 0x22, 0xff,
0xff, 0x21, 0x20, 0x1f, 0x1e, 0x1d, 0x1c, 0xff, 0xff, 0x1b, 0x1a, 0xff, 0x19, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0x18, 0xff, 0x17, 0x16, 0x15, 0xff, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0xff,
0xff, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0xff, 0xff, 0x08, 0x07, 0xff, 0x06, 0xff, 0xff, 0xff,
0x05, 0x04, 0x03, 0xff, 0x02, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
};
static unsigned char target2alpa[] = {
0xef, 0xe8, 0xe4, 0xe2, 0xe1, 0xe0, 0xdc, 0xda, 0xd9, 0xd6, 0xd5, 0xd4, 0xd3, 0xd2, 0xd1, 0xce,
0xcd, 0xcc, 0xcb, 0xca, 0xc9, 0xc7, 0xc6, 0xc5, 0xc3, 0xbc, 0xba, 0xb9, 0xb6, 0xb5, 0xb4, 0xb3,
0xb2, 0xb1, 0xae, 0xad, 0xac, 0xab, 0xaa, 0xa9, 0xa7, 0xa6, 0xa5, 0xa3, 0x9f, 0x9e, 0x9d, 0x9b,
0x98, 0x97, 0x90, 0x8f, 0x88, 0x84, 0x82, 0x81, 0x80, 0x7c, 0x7a, 0x79, 0x76, 0x75, 0x74, 0x73,
0x72, 0x71, 0x6e, 0x6d, 0x6c, 0x6b, 0x6a, 0x69, 0x67, 0x66, 0x65, 0x63, 0x5c, 0x5a, 0x59, 0x56,
0x55, 0x54, 0x53, 0x52, 0x51, 0x4e, 0x4d, 0x4c, 0x4b, 0x4a, 0x49, 0x47, 0x46, 0x45, 0x43, 0x3c,
0x3a, 0x39, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x27, 0x26,
0x25, 0x23, 0x1f, 0x1e, 0x1d, 0x1b, 0x18, 0x17, 0x10, 0x0f, 0x08, 0x04, 0x02, 0x01, 0x00
};
static int fcal_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd);
int fcal_slave_configure(struct scsi_device *device)
{
int depth_to_use;
if (device->tagged_supported)
depth_to_use = /* 254 */ 8;
else
depth_to_use = 2;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
return 0;
}
/* Detect all FC Arbitrated Loops attached to the machine.
fc4 module has done all the work for us... */
int __init fcal_detect(struct scsi_host_template *tpnt)
{
int nfcals = 0;
fc_channel *fc;
int fcalcount;
int i;
tpnt->proc_name = "fcal";
fcalcount = 0;
for_each_online_fc_channel(fc)
if (fc->posmap)
fcalcount++;
FCALND(("%d channels online\n", fcalcount))
if (!fcalcount) {
#if defined(MODULE) && defined(CONFIG_FC4_SOCAL_MODULE) && defined(CONFIG_KMOD)
request_module("socal");
for_each_online_fc_channel(fc)
if (fc->posmap)
fcalcount++;
if (!fcalcount)
#endif
return 0;
}
for_each_online_fc_channel(fc) {
struct Scsi_Host *host;
long *ages;
struct fcal *fcal;
if (!fc->posmap) continue;
/* Strange, this is already registered to some other SCSI host, then it cannot be fcal */
if (fc->scsi_name[0]) continue;
memcpy (fc->scsi_name, "FCAL", 4);
fc->can_queue = FCAL_CAN_QUEUE;
fc->rsp_size = 64;
fc->encode_addr = fcal_encode_addr;
ages = kmalloc (128 * sizeof(long), GFP_KERNEL);
if (!ages) continue;
host = scsi_register (tpnt, sizeof (struct fcal));
if (!host)
{
kfree(ages);
continue;
}
if (!try_module_get(fc->module)) {
kfree(ages);
scsi_unregister(host);
continue;
}
nfcals++;
fcal = (struct fcal *)host->hostdata;
fc->fcp_register(fc, TYPE_SCSI_FCP, 0);
for (i = 0; i < fc->posmap->len; i++) {
int status, target, alpa;
alpa = fc->posmap->list[i];
FCALD(("Sending PLOGI to %02x\n", alpa))
target = alpa2target[alpa];
status = fc_do_plogi(fc, alpa, fcal->node_wwn + target,
fcal->nport_wwn + target);
FCALD(("PLOGI returned with status %d\n", status))
if (status != FC_STATUS_OK)
continue;
FCALD(("Sending PRLI to %02x\n", alpa))
status = fc_do_prli(fc, alpa);
FCALD(("PRLI returned with status %d\n", status))
if (status == FC_STATUS_OK)
fcal->map[target] = 1;
}
host->max_id = 127;
host->irq = fc->irq;
#ifdef __sparc_v9__
host->unchecked_isa_dma = 1;
#endif
fc->channels = 1;
fc->targets = 127;
fc->ages = ages;
memset (ages, 0, 128 * sizeof(long));
fcal->fc = fc;
FCALD(("Found FCAL\n"))
}
if (nfcals)
#ifdef __sparc__
printk ("FCAL: Total of %d Sun Enterprise Network Array (A5000 or EX500) channels found\n", nfcals);
#else
printk ("FCAL: Total of %d Fibre Channel Arbitrated Loops found\n", nfcals);
#endif
return nfcals;
}
int fcal_release(struct Scsi_Host *host)
{
struct fcal *fcal = (struct fcal *)host->hostdata;
fc_channel *fc = fcal->fc;
module_put(fc->module);
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
FCALND((" releasing fcal.\n"));
kfree (fc->ages);
FCALND(("released fcal!\n"));
return 0;
}
#undef SPRINTF
#define SPRINTF(args...) { if (pos < (buffer + length)) pos += sprintf (pos, ## args); }
int fcal_proc_info (struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, int inout)
{
struct fcal *fcal;
fc_channel *fc;
char *pos = buffer;
int i, j;
if (inout) return length;
fcal = (struct fcal *)host->hostdata;
fc = fcal->fc;
#ifdef __sparc__
SPRINTF ("Sun Enterprise Network Array (A5000 or E?500) on %s PROM node %x\n", fc->name, fc->dev->prom_node);
#else
SPRINTF ("Fibre Channel Arbitrated Loop on %s\n", fc->name);
#endif
SPRINTF ("Initiator AL-PA: %02x\n", fc->sid);
SPRINTF ("\nAttached devices:\n");
for (i = 0; i < fc->posmap->len; i++) {
unsigned char alpa = fc->posmap->list[i];
unsigned char target;
u32 *u1, *u2;
target = alpa2target[alpa];
u1 = (u32 *)&fcal->nport_wwn[target];
u2 = (u32 *)&fcal->node_wwn[target];
if (!u1[0] && !u1[1]) {
SPRINTF (" [AL-PA: %02x] Not responded to PLOGI\n", alpa);
} else if (!fcal->map[target]) {
SPRINTF (" [AL-PA: %02x, Port WWN: %08x%08x, Node WWN: %08x%08x] Not responded to PRLI\n",
alpa, u1[0], u1[1], u2[0], u2[1]);
} else {
struct scsi_device *scd;
shost_for_each_device(scd, host)
if (scd->id == target) {
SPRINTF (" [AL-PA: %02x, Id: %02d, Port WWN: %08x%08x, Node WWN: %08x%08x] ",
alpa, target, u1[0], u1[1], u2[0], u2[1]);
SPRINTF ("%s ", scsi_device_type(scd->type));
for (j = 0; (j < 8) && (scd->vendor[j] >= 0x20); j++)
SPRINTF ("%c", scd->vendor[j]);
SPRINTF (" ");
for (j = 0; (j < 16) && (scd->model[j] >= 0x20); j++)
SPRINTF ("%c", scd->model[j]);
SPRINTF ("\n");
}
}
}
SPRINTF ("\n");
*start = buffer + offset;
if ((pos - buffer) < offset)
return 0;
else if (pos - buffer - offset < length)
return pos - buffer - offset;
else
return length;
}
/*
For FC-AL, we use a simple addressing: we have just one channel 0,
and all AL-PAs are mapped to targets 0..0x7e
*/
static int fcal_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd)
{
struct fcal *f;
/* We don't support LUNs yet - I'm not sure if LUN should be in SCSI fcp_cdb, or in second byte of addr[0] */
if (SCpnt->cmnd[1] & 0xe0) return -EINVAL;
/* FC-PLDA tells us... */
memset(addr, 0, 8);
f = (struct fcal *)SCpnt->device->host->hostdata;
if (!f->map[SCpnt->device->id])
return -EINVAL;
/* Now, determine DID: It will be Native Identifier, so we zero upper
2 bytes of the 3 byte DID, lowest byte will be AL-PA */
fcmd->did = target2alpa[SCpnt->device->id];
FCALD(("trying DID %06x\n", fcmd->did))
return 0;
}
static struct scsi_host_template driver_template = {
.name = "Fibre Channel Arbitrated Loop",
.detect = fcal_detect,
.release = fcal_release,
.proc_info = fcal_proc_info,
.queuecommand = fcp_scsi_queuecommand,
.slave_configure = fcal_slave_configure,
.can_queue = FCAL_CAN_QUEUE,
.this_id = -1,
.sg_tablesize = 1,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING,
.eh_abort_handler = fcp_scsi_abort,
.eh_device_reset_handler = fcp_scsi_dev_reset,
.eh_host_reset_handler = fcp_scsi_host_reset,
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* fcal.h: Generic Fibre Channel Arbitrated Loop SCSI host adapter driver definitions.
*
* Copyright (C) 1998,1999 Jakub Jelinek (jj@ultra.linux.cz)
*/
#ifndef _FCAL_H
#define _FCAL_H
#include "../fc4/fcp_impl.h"
struct fcal {
/* fc must be first */
fc_channel *fc;
unsigned char map[128];
fc_wwn nport_wwn[128];
fc_wwn node_wwn[128];
};
/* Arbitrary constant. Cannot be too large, as fc4 layer has limitations
for a particular channel */
#define FCAL_CAN_QUEUE 512
int fcal_detect(struct scsi_host_template *);
int fcal_release(struct Scsi_Host *);
int fcal_slave_configure(struct scsi_device *);
#endif /* !(_FCAL_H) */
/* pluto.c: SparcSTORAGE Array SCSI host adapter driver.
*
* Copyright (C) 1997,1998,1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*
*/
#include <linux/completion.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/types.h>
#include <linux/string.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/proc_fs.h>
#include <linux/stat.h>
#include <linux/init.h>
#ifdef CONFIG_KMOD
#include <linux/kmod.h>
#endif
#include <asm/irq.h>
#include "scsi.h"
#include <scsi/scsi_host.h>
#include "../fc4/fcp_impl.h"
#include "pluto.h"
#include <linux/module.h>
#define RQ_SCSI_BUSY 0xffff
#define RQ_SCSI_DONE 0xfffe
/* #define PLUTO_DEBUG */
#define pluto_printk printk ("PLUTO %s: ", fc->name); printk
#ifdef PLUTO_DEBUG
#define PLD(x) pluto_printk x;
#define PLND(x) printk ("PLUTO: "); printk x;
#else
#define PLD(x)
#define PLND(x)
#endif
static struct ctrl_inquiry {
struct Scsi_Host host;
struct pluto pluto;
Scsi_Cmnd cmd;
char inquiry[256];
fc_channel *fc;
} *fcs __initdata;
static int fcscount __initdata = 0;
static atomic_t fcss __initdata = ATOMIC_INIT(0);
static DECLARE_COMPLETION(fc_detect_complete);
static int pluto_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd);
static void __init pluto_detect_done(Scsi_Cmnd *SCpnt)
{
/* Do nothing */
}
static void __init pluto_detect_scsi_done(Scsi_Cmnd *SCpnt)
{
PLND(("Detect done %08lx\n", (long)SCpnt))
if (atomic_dec_and_test (&fcss))
complete(&fc_detect_complete);
}
int pluto_slave_configure(struct scsi_device *device)
{
int depth_to_use;
if (device->tagged_supported)
depth_to_use = /* 254 */ 8;
else
depth_to_use = 2;
scsi_adjust_queue_depth(device,
(device->tagged_supported ?
MSG_SIMPLE_TAG : 0),
depth_to_use);
return 0;
}
/* Detect all SSAs attached to the machine.
To be fast, do it on all online FC channels at the same time. */
int __init pluto_detect(struct scsi_host_template *tpnt)
{
int i, retry, nplutos;
fc_channel *fc;
struct scsi_device dev;
tpnt->proc_name = "pluto";
fcscount = 0;
for_each_online_fc_channel(fc) {
if (!fc->posmap)
fcscount++;
}
PLND(("%d channels online\n", fcscount))
if (!fcscount) {
#if defined(MODULE) && defined(CONFIG_FC4_SOC_MODULE) && defined(CONFIG_KMOD)
request_module("soc");
for_each_online_fc_channel(fc) {
if (!fc->posmap)
fcscount++;
}
if (!fcscount)
#endif
return 0;
}
fcs = kcalloc(fcscount, sizeof (struct ctrl_inquiry), GFP_DMA);
if (!fcs) {
printk ("PLUTO: Not enough memory to probe\n");
return 0;
}
memset (&dev, 0, sizeof(dev));
atomic_set (&fcss, fcscount);
i = 0;
for_each_online_fc_channel(fc) {
Scsi_Cmnd *SCpnt;
struct Scsi_Host *host;
struct pluto *pluto;
if (i == fcscount) break;
if (fc->posmap) continue;
PLD(("trying to find SSA\n"))
/* If this is already registered to some other SCSI host, then it cannot be pluto */
if (fc->scsi_name[0]) continue;
memcpy (fc->scsi_name, "SSA", 4);
fcs[i].fc = fc;
fc->can_queue = PLUTO_CAN_QUEUE;
fc->rsp_size = 64;
fc->encode_addr = pluto_encode_addr;
fc->fcp_register(fc, TYPE_SCSI_FCP, 0);
SCpnt = &(fcs[i].cmd);
host = &(fcs[i].host);
pluto = (struct pluto *)host->hostdata;
pluto->fc = fc;
SCpnt->cmnd[0] = INQUIRY;
SCpnt->cmnd[4] = 255;
/* FC layer requires this, so that SCpnt->device->tagged_supported is initially 0 */
SCpnt->device = &dev;
dev.host = host;
SCpnt->cmd_len = COMMAND_SIZE(INQUIRY);
SCpnt->request->cmd_flags &= ~REQ_STARTED;
SCpnt->request_bufflen = 256;
SCpnt->request_buffer = fcs[i].inquiry;
PLD(("set up %d %08lx\n", i, (long)SCpnt))
i++;
}
for (retry = 0; retry < 5; retry++) {
for (i = 0; i < fcscount; i++) {
if (!fcs[i].fc) break;
if (!(fcs[i].cmd.request->cmd_flags & REQ_STARTED)) {
fcs[i].cmd.request->cmd_flags |= REQ_STARTED;
disable_irq(fcs[i].fc->irq);
PLND(("queuecommand %d %d\n", retry, i))
fcp_scsi_queuecommand (&(fcs[i].cmd),
pluto_detect_scsi_done);
enable_irq(fcs[i].fc->irq);
}
}
wait_for_completion_timeout(&fc_detect_complete, 10 * HZ);
PLND(("Woken up\n"))
if (!atomic_read(&fcss))
break; /* All fc channels have answered us */
}
PLND(("Finished search\n"))
for (i = 0, nplutos = 0; i < fcscount; i++) {
Scsi_Cmnd *SCpnt;
if (!(fc = fcs[i].fc)) break;
SCpnt = &(fcs[i].cmd);
/* Let FC mid-level free allocated resources */
pluto_detect_scsi_done(SCpnt);
if (!SCpnt->result) {
struct pluto_inquiry *inq;
struct pluto *pluto;
struct Scsi_Host *host;
inq = (struct pluto_inquiry *)fcs[i].inquiry;
if ((inq->dtype & 0x1f) == TYPE_PROCESSOR &&
!strncmp (inq->vendor_id, "SUN", 3) &&
!strncmp (inq->product_id, "SSA", 3)) {
char *p;
long *ages;
ages = kcalloc((inq->channels + 1) * inq->targets, sizeof(long), GFP_KERNEL);
if (!ages) continue;
host = scsi_register (tpnt, sizeof (struct pluto));
if(!host)
{
kfree(ages);
continue;
}
if (!try_module_get(fc->module)) {
kfree(ages);
scsi_unregister(host);
continue;
}
nplutos++;
pluto = (struct pluto *)host->hostdata;
host->max_id = inq->targets;
host->max_channel = inq->channels;
host->irq = fc->irq;
fc->channels = inq->channels + 1;
fc->targets = inq->targets;
fc->ages = ages;
pluto->fc = fc;
memcpy (pluto->rev_str, inq->revision, 4);
pluto->rev_str[4] = 0;
p = strchr (pluto->rev_str, ' ');
if (p) *p = 0;
memcpy (pluto->fw_rev_str, inq->fw_revision, 4);
pluto->fw_rev_str[4] = 0;
p = strchr (pluto->fw_rev_str, ' ');
if (p) *p = 0;
memcpy (pluto->serial_str, inq->serial, 12);
pluto->serial_str[12] = 0;
p = strchr (pluto->serial_str, ' ');
if (p) *p = 0;
PLD(("Found SSA rev %s fw rev %s serial %s %dx%d\n", pluto->rev_str, pluto->fw_rev_str, pluto->serial_str, host->max_channel, host->max_id))
} else
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
} else
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
}
kfree(fcs);
if (nplutos)
printk ("PLUTO: Total of %d SparcSTORAGE Arrays found\n", nplutos);
return nplutos;
}
int pluto_release(struct Scsi_Host *host)
{
struct pluto *pluto = (struct pluto *)host->hostdata;
fc_channel *fc = pluto->fc;
module_put(fc->module);
fc->fcp_register(fc, TYPE_SCSI_FCP, 1);
PLND((" releasing pluto.\n"));
kfree (fc->ages);
PLND(("released pluto!\n"));
return 0;
}
const char *pluto_info(struct Scsi_Host *host)
{
static char buf[128], *p;
struct pluto *pluto = (struct pluto *) host->hostdata;
sprintf(buf, "SUN SparcSTORAGE Array %s fw %s serial %s %dx%d on %s",
pluto->rev_str, pluto->fw_rev_str, pluto->serial_str,
host->max_channel, host->max_id, pluto->fc->name);
#ifdef __sparc__
p = strchr(buf, 0);
sprintf(p, " PROM node %x", pluto->fc->dev->prom_node);
#endif
return buf;
}
/* SSA uses this FC4S addressing:
switch (addr[0])
{
case 0: CONTROLLER - All of addr[1]..addr[3] has to be 0
case 1: SINGLE DISK - addr[1] channel, addr[2] id, addr[3] 0
case 2: DISK GROUP - ???
}
So that SCSI mid-layer can access to these, we reserve
channel 0 id 0 lun 0 for CONTROLLER
and channels 1 .. max_channel are normal single disks.
*/
static int pluto_encode_addr(Scsi_Cmnd *SCpnt, u16 *addr, fc_channel *fc, fcp_cmnd *fcmd)
{
PLND(("encode addr %d %d %d\n", SCpnt->device->channel, SCpnt->device->id, SCpnt->cmnd[1] & 0xe0))
/* We don't support LUNs - neither does SSA :) */
if (SCpnt->cmnd[1] & 0xe0)
return -EINVAL;
if (!SCpnt->device->channel) {
if (SCpnt->device->id)
return -EINVAL;
memset (addr, 0, 4 * sizeof(u16));
} else {
addr[0] = 1;
addr[1] = SCpnt->device->channel - 1;
addr[2] = SCpnt->device->id;
addr[3] = 0;
}
/* We're Point-to-Point, so target it to the default DID */
fcmd->did = fc->did;
PLND(("trying %04x%04x%04x%04x\n", addr[0], addr[1], addr[2], addr[3]))
return 0;
}
static struct scsi_host_template driver_template = {
.name = "Sparc Storage Array 100/200",
.detect = pluto_detect,
.release = pluto_release,
.info = pluto_info,
.queuecommand = fcp_scsi_queuecommand,
.slave_configure = pluto_slave_configure,
.can_queue = PLUTO_CAN_QUEUE,
.this_id = -1,
.sg_tablesize = 1,
.cmd_per_lun = 1,
.use_clustering = ENABLE_CLUSTERING,
.eh_abort_handler = fcp_scsi_abort,
.eh_device_reset_handler = fcp_scsi_dev_reset,
.eh_host_reset_handler = fcp_scsi_host_reset,
};
#include "scsi_module.c"
MODULE_LICENSE("GPL");
/* pluto.h: SparcSTORAGE Array SCSI host adapter driver definitions.
*
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#ifndef _PLUTO_H
#define _PLUTO_H
#include "../fc4/fcp_impl.h"
struct pluto {
/* This must be first */
fc_channel *fc;
char rev_str[5];
char fw_rev_str[5];
char serial_str[13];
};
struct pluto_inquiry {
u8 dtype;
u8 removable:1, qualifier:7;
u8 iso:2, ecma:3, ansi:3;
u8 aenc:1, trmiop:1, :2, rdf:4;
u8 len;
u8 xxx1;
u8 xxx2;
u8 reladdr:1, wbus32:1, wbus16:1, sync:1, linked:1, :1, cmdque:1, softreset:1;
u8 vendor_id[8];
u8 product_id[16];
u8 revision[4];
u8 fw_revision[4];
u8 serial[12];
u8 xxx3[2];
u8 channels;
u8 targets;
};
/* This is the max number of outstanding SCSI commands per pluto */
#define PLUTO_CAN_QUEUE 254
int pluto_detect(struct scsi_host_template *);
int pluto_release(struct Scsi_Host *);
const char * pluto_info(struct Scsi_Host *);
int pluto_slave_configure(struct scsi_device *);
#endif /* !(_PLUTO_H) */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment