Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
L
linux
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Analytics
Analytics
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Commits
Issue Boards
Open sidebar
nexedi
linux
Commits
272a8d2c
Commit
272a8d2c
authored
Jan 09, 2004
by
Nathan Scott
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
[XFS] Switch to using the BSD qsort implementation.
SGI Modid: 2.5.x-xfs:slinx:162158a
parent
ab5d6be1
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
138 additions
and
226 deletions
+138
-226
fs/xfs/support/qsort.c
fs/xfs/support/qsort.c
+138
-226
No files found.
fs/xfs/support/qsort.c
View file @
272a8d2c
/* Copyright (C) 1991, 1992, 1996, 1997, 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
/* If you consider tuning this algorithm, you should consult first:
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <linux/kernel.h>
#include <linux/string.h>
/* Byte-wise swap two items of size SIZE. */
#define SWAP(a, b, size) \
do \
{ \
register size_t __size = (size); \
register char *__a = (a), *__b = (b); \
do \
{ \
char __tmp = *__a; \
*__a++ = *__b; \
*__b++ = __tmp; \
} while (--__size > 0); \
} while (0)
/* Discontinue quicksort algorithm when partition gets below this size.
This particular magic number was chosen to work best on a Sun 4/260. */
#define MAX_THRESH 4
/* Stack node declarations used to store unfulfilled partition obligations. */
typedef
struct
{
char
*
lo
;
char
*
hi
;
}
stack_node
;
/* The next 4 #defines implement a very fast in-line stack abstraction. */
/* The stack needs log (total_elements) entries (we could even subtract
log(MAX_THRESH)). Since total_elements has type size_t, we get as
upper bound for log (total_elements):
bits per byte (CHAR_BIT) * sizeof(size_t). */
#define STACK_SIZE (8 * sizeof(unsigned long int))
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
#define STACK_NOT_EMPTY (stack < top)
/*
* Qsort routine from Bentley & McIlroy's "Engineering a Sort Function".
*/
#define swapcode(TYPE, parmi, parmj, n) { \
long i = (n) / sizeof (TYPE); \
register TYPE *pi = (TYPE *) (parmi); \
register TYPE *pj = (TYPE *) (parmj); \
do { \
register TYPE t = *pi; \
*pi++ = *pj; \
*pj++ = t; \
} while (--i > 0); \
}
/* Order size using quicksort. This implementation incorporates
four optimizations discussed in Sedgewick:
#define SWAPINIT(a, es) swaptype = ((char *)a - (char *)0) % sizeof(long) || \
es % sizeof(long) ? 2 : es == sizeof(long)? 0 : 1;
1. Non-recursive, using an explicit stack of pointer that store the
next array partition to sort. To save time, this maximum amount
of space required to store an array of SIZE_MAX is allocated on the
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
Pretty cheap, actually.
static
__inline
void
swapfunc
(
char
*
a
,
char
*
b
,
int
n
,
int
swaptype
)
{
if
(
swaptype
<=
1
)
swapcode
(
long
,
a
,
b
,
n
)
else
swapcode
(
char
,
a
,
b
,
n
)
}
2. Chose the pivot element using a median-of-three decision tree.
This reduces the probability of selecting a bad pivot value and
eliminates certain extraneous comparisons.
#define swap(a, b) \
if (swaptype == 0) { \
long t = *(long *)(a); \
*(long *)(a) = *(long *)(b); \
*(long *)(b) = t; \
} else \
swapfunc(a, b, es, swaptype)
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
insertion sort to order the MAX_THRESH items within each partition.
This is a big win, since insertion sort is faster for small, mostly
sorted array segments.
#define vecswap(a, b, n) if ((n) > 0) swapfunc(a, b, n, swaptype)
4. The larger of the two sub-partitions is always pushed onto the
stack first, with the algorithm then concentrating on the
smaller partition. This *guarantees* no more than log (total_elems)
stack size is needed (actually O(1) in this case)! */
static
__inline
char
*
med3
(
char
*
a
,
char
*
b
,
char
*
c
,
int
(
*
cmp
)(
const
void
*
,
const
void
*
))
{
return
cmp
(
a
,
b
)
<
0
?
(
cmp
(
b
,
c
)
<
0
?
b
:
(
cmp
(
a
,
c
)
<
0
?
c
:
a
))
:
(
cmp
(
b
,
c
)
>
0
?
b
:
(
cmp
(
a
,
c
)
<
0
?
a
:
c
));
}
void
qsort
(
void
*
const
pbase
,
size_t
total_elems
,
size_t
size
,
int
(
*
cmp
)(
const
void
*
,
const
void
*
))
qsort
(
void
*
aa
,
size_t
n
,
size_t
es
,
int
(
*
cmp
)(
const
void
*
,
const
void
*
))
{
register
char
*
base_ptr
=
(
char
*
)
pbase
;
const
size_t
max_thresh
=
MAX_THRESH
*
size
;
if
(
total_elems
==
0
)
/* Avoid lossage with unsigned arithmetic below. */
return
;
if
(
total_elems
>
MAX_THRESH
)
{
char
*
lo
=
base_ptr
;
char
*
hi
=
&
lo
[
size
*
(
total_elems
-
1
)];
stack_node
stack
[
STACK_SIZE
];
stack_node
*
top
=
stack
+
1
;
while
(
STACK_NOT_EMPTY
)
{
char
*
left_ptr
;
char
*
right_ptr
;
/* Select median value from among LO, MID, and HI. Rearrange
LO and HI so the three values are sorted. This lowers the
probability of picking a pathological pivot value and
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
the while loops. */
char
*
mid
=
lo
+
size
*
((
hi
-
lo
)
/
size
>>
1
);
if
((
*
cmp
)
((
void
*
)
mid
,
(
void
*
)
lo
)
<
0
)
SWAP
(
mid
,
lo
,
size
);
if
((
*
cmp
)
((
void
*
)
hi
,
(
void
*
)
mid
)
<
0
)
SWAP
(
mid
,
hi
,
size
);
else
goto
jump_over
;
if
((
*
cmp
)
((
void
*
)
mid
,
(
void
*
)
lo
)
<
0
)
SWAP
(
mid
,
lo
,
size
);
jump_over:
;
left_ptr
=
lo
+
size
;
right_ptr
=
hi
-
size
;
/* Here's the famous ``collapse the walls'' section of quicksort.
Gotta like those tight inner loops! They are the main reason
that this algorithm runs much faster than others. */
do
{
while
((
*
cmp
)
((
void
*
)
left_ptr
,
(
void
*
)
mid
)
<
0
)
left_ptr
+=
size
;
while
((
*
cmp
)
((
void
*
)
mid
,
(
void
*
)
right_ptr
)
<
0
)
right_ptr
-=
size
;
if
(
left_ptr
<
right_ptr
)
{
SWAP
(
left_ptr
,
right_ptr
,
size
);
if
(
mid
==
left_ptr
)
mid
=
right_ptr
;
else
if
(
mid
==
right_ptr
)
mid
=
left_ptr
;
left_ptr
+=
size
;
right_ptr
-=
size
;
char
*
pa
,
*
pb
,
*
pc
,
*
pd
,
*
pl
,
*
pm
,
*
pn
;
int
d
,
r
,
swaptype
,
swap_cnt
;
register
char
*
a
=
aa
;
loop:
SWAPINIT
(
a
,
es
);
swap_cnt
=
0
;
if
(
n
<
7
)
{
for
(
pm
=
(
char
*
)
a
+
es
;
pm
<
(
char
*
)
a
+
n
*
es
;
pm
+=
es
)
for
(
pl
=
pm
;
pl
>
(
char
*
)
a
&&
cmp
(
pl
-
es
,
pl
)
>
0
;
pl
-=
es
)
swap
(
pl
,
pl
-
es
);
return
;
}
pm
=
(
char
*
)
a
+
(
n
/
2
)
*
es
;
if
(
n
>
7
)
{
pl
=
(
char
*
)
a
;
pn
=
(
char
*
)
a
+
(
n
-
1
)
*
es
;
if
(
n
>
40
)
{
d
=
(
n
/
8
)
*
es
;
pl
=
med3
(
pl
,
pl
+
d
,
pl
+
2
*
d
,
cmp
);
pm
=
med3
(
pm
-
d
,
pm
,
pm
+
d
,
cmp
);
pn
=
med3
(
pn
-
2
*
d
,
pn
-
d
,
pn
,
cmp
);
}
else
if
(
left_ptr
==
right_ptr
)
{
left_ptr
+=
size
;
right_ptr
-=
size
;
break
;
pm
=
med3
(
pl
,
pm
,
pn
,
cmp
);
}
swap
(
a
,
pm
);
pa
=
pb
=
(
char
*
)
a
+
es
;
pc
=
pd
=
(
char
*
)
a
+
(
n
-
1
)
*
es
;
for
(;;)
{
while
(
pb
<=
pc
&&
(
r
=
cmp
(
pb
,
a
))
<=
0
)
{
if
(
r
==
0
)
{
swap_cnt
=
1
;
swap
(
pa
,
pb
);
pa
+=
es
;
}
pb
+=
es
;
}
}
while
(
left_ptr
<=
right_ptr
);
/* Set up pointers for next iteration. First determine whether
left and right partitions are below the threshold size. If so,
ignore one or both. Otherwise, push the larger partition's
bounds on the stack and continue sorting the smaller one. */
if
((
size_t
)
(
right_ptr
-
lo
)
<=
max_thresh
)
{
if
((
size_t
)
(
hi
-
left_ptr
)
<=
max_thresh
)
/* Ignore both small partitions. */
POP
(
lo
,
hi
);
else
/* Ignore small left partition. */
lo
=
left_ptr
;
}
else
if
((
size_t
)
(
hi
-
left_ptr
)
<=
max_thresh
)
/* Ignore small right partition. */
hi
=
right_ptr
;
else
if
((
right_ptr
-
lo
)
>
(
hi
-
left_ptr
))
{
/* Push larger left partition indices. */
PUSH
(
lo
,
right_ptr
);
lo
=
left_ptr
;
}
else
{
/* Push larger right partition indices. */
PUSH
(
left_ptr
,
hi
);
hi
=
right_ptr
;
}
while
(
pb
<=
pc
&&
(
r
=
cmp
(
pc
,
a
))
>=
0
)
{
if
(
r
==
0
)
{
swap_cnt
=
1
;
swap
(
pc
,
pd
);
pd
-=
es
;
}
pc
-=
es
;
}
if
(
pb
>
pc
)
break
;
swap
(
pb
,
pc
);
swap_cnt
=
1
;
pb
+=
es
;
pc
-=
es
;
}
if
(
swap_cnt
==
0
)
{
/* Switch to insertion sort */
for
(
pm
=
(
char
*
)
a
+
es
;
pm
<
(
char
*
)
a
+
n
*
es
;
pm
+=
es
)
for
(
pl
=
pm
;
pl
>
(
char
*
)
a
&&
cmp
(
pl
-
es
,
pl
)
>
0
;
pl
-=
es
)
swap
(
pl
,
pl
-
es
);
return
;
}
}
/* Once the BASE_PTR array is partially sorted by quicksort the rest
is completely sorted using insertion sort, since this is efficient
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
of the array to sort, and END_PTR points at the very last element in
the array (*not* one beyond it!). */
{
char
*
const
end_ptr
=
&
base_ptr
[
size
*
(
total_elems
-
1
)];
char
*
tmp_ptr
=
base_ptr
;
char
*
const
thresh
=
min_t
(
char
*
const
,
end_ptr
,
base_ptr
+
max_thresh
);
register
char
*
run_ptr
;
/* Find smallest element in first threshold and place it at the
array's beginning. This is the smallest array element,
and the operation speeds up insertion sort's inner loop. */
for
(
run_ptr
=
tmp_ptr
+
size
;
run_ptr
<=
thresh
;
run_ptr
+=
size
)
if
((
*
cmp
)
((
void
*
)
run_ptr
,
(
void
*
)
tmp_ptr
)
<
0
)
tmp_ptr
=
run_ptr
;
if
(
tmp_ptr
!=
base_ptr
)
SWAP
(
tmp_ptr
,
base_ptr
,
size
);
/* Insertion sort, running from left-hand-side up to right-hand-side. */
run_ptr
=
base_ptr
+
size
;
while
((
run_ptr
+=
size
)
<=
end_ptr
)
{
tmp_ptr
=
run_ptr
-
size
;
while
((
*
cmp
)
((
void
*
)
run_ptr
,
(
void
*
)
tmp_ptr
)
<
0
)
tmp_ptr
-=
size
;
tmp_ptr
+=
size
;
if
(
tmp_ptr
!=
run_ptr
)
{
char
*
trav
;
trav
=
run_ptr
+
size
;
while
(
--
trav
>=
run_ptr
)
{
char
c
=
*
trav
;
char
*
hi
,
*
lo
;
for
(
hi
=
lo
=
trav
;
(
lo
-=
size
)
>=
tmp_ptr
;
hi
=
lo
)
*
hi
=
*
lo
;
*
hi
=
c
;
}
}
}
}
pn
=
(
char
*
)
a
+
n
*
es
;
r
=
min
(
pa
-
(
char
*
)
a
,
pb
-
pa
);
vecswap
(
a
,
pb
-
r
,
r
);
r
=
min
((
long
)(
pd
-
pc
),
(
long
)(
pn
-
pd
-
es
));
vecswap
(
pb
,
pn
-
r
,
r
);
if
((
r
=
pb
-
pa
)
>
es
)
qsort
(
a
,
r
/
es
,
es
,
cmp
);
if
((
r
=
pd
-
pc
)
>
es
)
{
/* Iterate rather than recurse to save stack space */
a
=
pn
-
r
;
n
=
r
/
es
;
goto
loop
;
}
/* qsort(pn - r, r / es, es, cmp);*/
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment