Commit 278b7cdb authored by Linus Torvalds's avatar Linus Torvalds

Merge master.kernel.org:/home/gregkh/BK/gadget-2.5

into home.transmeta.com:/home/torvalds/v2.5/linux
parents 0774aa2d 056010ff
...@@ -91,5 +91,7 @@ source "drivers/usb/serial/Kconfig" ...@@ -91,5 +91,7 @@ source "drivers/usb/serial/Kconfig"
source "drivers/usb/misc/Kconfig" source "drivers/usb/misc/Kconfig"
source "drivers/usb/gadget/Kconfig"
endmenu endmenu
...@@ -58,3 +58,7 @@ obj-$(CONFIG_USB_SPEEDTOUCH) += misc/ ...@@ -58,3 +58,7 @@ obj-$(CONFIG_USB_SPEEDTOUCH) += misc/
obj-$(CONFIG_USB_TEST) += misc/ obj-$(CONFIG_USB_TEST) += misc/
obj-$(CONFIG_USB_TIGL) += misc/ obj-$(CONFIG_USB_TIGL) += misc/
obj-$(CONFIG_USB_USS720) += misc/ obj-$(CONFIG_USB_USS720) += misc/
obj-$(CONFIG_USB_NET2280) += gadget/
obj-$(CONFIG_USB_ZERO) += gadget/
obj-$(CONFIG_USB_ETH) += gadget/
#
# USB Gadget support on a system involves
# (a) a peripheral controller, and
# (b) the gadget driver using it.
#
# for 2.5 kbuild, drivers/usb/gadget/Kconfig
# source this at the end of drivers/usb/Kconfig
#
menuconfig USB_GADGET
tristate "Support for USB Gadgets"
depends on EXPERIMENTAL
help
USB is a master/slave protocol, organized with with one master
host (such as a PC) controlling up to 127 peripheral devices.
The USB hardware is asymmetric, which makes it easier to set up:
you can't connect two "to-the-host" connectors to each other.
Linux can run in the host, or in the peripheral. In both cases
you need a low level bus controller driver, and some software
talking to it. Peripheral controllers are often discrete silicon,
or are integrated with the CPU in a microcontroller. The more
familiar host side controllers have names like like "EHCI", "OHCI",
or "UHCI", and are usually integrated into southbridges on PC
motherboards.
Enable this configuration option if you want to run Linux inside
a USB peripheral device. Configure one hardware driver for your
peripheral/device side bus controller, and a "gadget driver" for
your peripheral protocol. (If you use modular gadget drivers,
you may configure more than one.)
If in doubt, say "N" and don't enable these drivers; most people
don't have this kind of hardware (except maybe inside Linux PDAs).
#
# USB Peripheral Controller Support
#
# FIXME convert to tristate choice when "choice" behaves as specified
#
comment "USB Peripheral Controller Support"
depends on USB_GADGET
config USB_NET2280
tristate "NetChip 2280 USB Peripheral Controller"
depends on PCI && USB_GADGET
help
NetChip 2280 is a PCI based USB peripheral controller which
supports both full and high speed USB 2.0 data transfers.
It has six configurable endpoints, as well as endpoint zero
(for control transfers) and several endpoints with dedicated
functions.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "net2280" and force all
gadget drivers to also be dynamically linked.
#
# USB Gadget Drivers
#
# FIXME only one of these may be statically linked; choice/endchoice.
#
comment "USB Gadget Drivers"
depends on USB_GADGET
# FIXME want better dependency/config approach for drivers. with only
# two knobs to tweak (driver y/m/n, and a hardware symbol) there's no
# good excuse for Kconfig to cause such trouble here. there are clear
# bugs (coredumps, multiple choices enabled, and more) in its (boolean)
# "choice" logic too ...
config USB_ZERO
tristate "Gadget Zero (DEVELOPMENT)"
depends on USB_GADGET && (USB_DUMMY_HCD || USB_NET2280 || USB_PXA250 || USB_SA1100)
help
Gadget Zero is a two-configuration device. It either sinks and
sources bulk data; or it loops back a configurable number of
transfers. It also implements control requests, for "chapter 9"
conformance. The driver needs only two bulk-capable endpoints, so
it can work on top of most device-side usb controllers. It's
useful for testing, and is also a working example showing how
USB "gadget drivers" can be written.
Make this be the first driver you try using on top of any new
USB peripheral controller driver. Then you can use host-side
test software, like the "usbtest" driver, to put your hardware
and its driver through a basic set of functional tests.
Gadget Zero also works with the host-side "usb-skeleton" driver,
and with many kinds of host-side test software. You may need
to tweak product and vendor IDs before host software knows about
this device, and arrange to select an appropriate configuration.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "g_zero".
config USB_ZERO_NET2280
bool
# for now, treat the "dummy" hcd as if it were a net2280
depends on USB_ZERO && (USB_NET2280 || USB_DUMMY_HCD)
default y
config USB_ZERO_PXA250
bool
depends on USB_ZERO && USB_PXA250
default y
config USB_ZERO_SA1100
bool
depends on USB_ZERO && USB_SA1100
default y
config USB_ETH
tristate "Ethernet Gadget"
depends on USB_GADGET && (USB_DUMMY_HCD || USB_NET2280 || USB_PXA250 || USB_SA1100)
help
This driver implements the "Communication Device Class" (CDC)
Ethernet Control Model. That protocol is often avoided with pure
Ethernet adapters, in favor of simpler vendor-specific hardware,
but is widely supported by firmware for smart network devices.
Within the USB device, this gadget driver exposes a network device
"usbX", where X depends on what other networking devices you have.
Treat it like a two-node Ethernet link: host, and gadget.
The Linux-USB host-side "usbnet" driver interoperates with this
driver, so that deep I/O queues can be supported. (On 2.4 kernels,
use "CDCEther" instead.) Deep queues are especially important with
high speed devices. It should also interoperate with standard CDC
Ethernet class drivers on other host operating systems.
Say "y" to link the driver statically, or "m" to build a
dynamically linked module called "g_ether".
config USB_ETH_NET2280
bool
# for now, treat the "dummy" hcd as if it were a net2280
depends on USB_ETH && (USB_NET2280 || USB_DUMMY_HCD)
default y
config USB_ETH_PXA250
bool
depends on USB_ETH && USB_PXA250
default y
config USB_ETH_SA1100
bool
depends on USB_ETH && USB_SA1100
default y
# endmenuconfig
#
# USB peripheral controller drivers
#
obj-$(CONFIG_USB_NET2280) += net2280.o
#
# USB gadget drivers
#
g_zero-objs := zero.o usbstring.o
g_ether-objs := ether.o usbstring.o
obj-$(CONFIG_USB_ZERO) += g_zero.o
obj-$(CONFIG_USB_ETH) += g_ether.o
/*
* ether.c -- CDC 1.1 Ethernet gadget driver
*
* Copyright (C) 2003 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define DEBUG 1
// #define VERBOSE
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/uts.h>
#include <linux/version.h>
#include <linux/device.h>
#include <linux/moduleparam.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <linux/usb_ch9.h>
#include <linux/usb_gadget.h>
#include <linux/random.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
/*-------------------------------------------------------------------------*/
/*
* "Communications Device Class" (CDC) Ethernet class driver
*
* CDC Ethernet is the standard USB solution for sending Ethernet frames
* using USB. Real hardware tends to use the same framing protocol but look
* different for control features. And Microsoft pushes their own approach
* (RNDIS) instead of the standard.
*/
#define DRIVER_DESC "CDC Ethernet Gadget"
#define DRIVER_VERSION "29 April 2003"
static const char shortname [] = "ether";
static const char driver_desc [] = DRIVER_DESC;
static const char control_name [] = "Communications Control";
static const char data_name [] = "CDC Ethernet Data";
#define MIN_PACKET sizeof(struct ethhdr)
#define MAX_PACKET ETH_DATA_LEN /* biggest packet we'll rx/tx */
/* FIXME allow high speed jumbograms */
/*-------------------------------------------------------------------------*/
struct eth_dev {
spinlock_t lock;
struct usb_gadget *gadget;
struct usb_request *req; /* for control responses */
u8 config;
struct usb_ep *in_ep, *out_ep, *status_ep;
const struct usb_endpoint_descriptor
*in, *out, *status;
struct semaphore mutex;
struct net_device net;
struct net_device_stats stats;
atomic_t tx_qlen;
struct work_struct work;
unsigned long todo;
#define WORK_RX_MEMORY 0
};
/*-------------------------------------------------------------------------*/
/* This driver keeps a variable number of requests queued, more at
* high speeds. (Numbers are just educated guesses, untuned.)
* Shrink the queue if memory is tight, or make it bigger to
* handle bigger traffic bursts between IRQs.
*/
static unsigned qmult = 4;
#define HS_FACTOR 15
#define qlen(gadget) \
(qmult*((gadget->speed == USB_SPEED_HIGH) ? HS_FACTOR : 1))
/* defer IRQs on highspeed TX */
#define TX_DELAY 8
module_param (qmult, uint, S_IRUGO|S_IWUSR);
/*-------------------------------------------------------------------------*/
/* Thanks to NetChip Technologies for donating this product ID.
*
* DO NOT REUSE THESE IDs with any other driver!! Ever!!
* Instead: allocate your own, using normal USB-IF procedures.
*/
#define DRIVER_VENDOR_NUM 0x0525 /* NetChip */
#define DRIVER_PRODUCT_NUM 0xa4a1 /* Linux-USB Ethernet Gadget */
/*-------------------------------------------------------------------------*/
/*
* hardware-specific configuration, controlled by which device
* controller driver was configured.
*
* CHIP ... hardware identifier
* DRIVER_VERSION_NUM ... alerts the host side driver to differences
* EP0_MAXPACKET ... controls packetization of control requests
* EP_*_NAME ... which endpoints do we use for which purpose?
* EP_*_NUM ... numbers for them (often limited by hardware)
* HIGHSPEED ... define if ep0 and descriptors need high speed support
* MAX_USB_POWER ... define if we use other than 100 mA bus current
* SELFPOWER ... unless we can run on bus power, USB_CONFIG_ATT_SELFPOWER
* WAKEUP ... if hardware supports remote wakeup AND we will issue the
* usb_gadget_wakeup() call to initiate it, USB_CONFIG_ATT_WAKEUP
*
* hw_optimize(gadget) ... for any hardware tweaks we want to kick in
* before we enable our endpoints
*
* add other defines for other portability issues, like hardware that
* for some reason doesn't handle full speed bulk maxpacket of 64.
*/
/*
* NetChip 2280, PCI based.
*
* use DMA with fat fifos for all data traffic, PIO for the status channel
* where its 64 byte maxpacket ceiling is no issue.
*
* performance note: only PIO needs per-usb-packet IRQs (ep0, ep-e, ep-f)
* otherwise IRQs are per-Ethernet-packet unless TX_DELAY and chaining help.
*/
#ifdef CONFIG_USB_ETH_NET2280
#define CHIP "net2280"
#define DRIVER_VERSION_NUM cpu_to_le16(0x0101)
#define EP0_MAXPACKET 64
static const char EP_OUT_NAME [] = "ep-a";
#define EP_OUT_NUM 2
static const char EP_IN_NAME [] = "ep-b";
#define EP_IN_NUM 2
static const char EP_STATUS_NAME [] = "ep-f";
#define EP_STATUS_NUM 3
#define HIGHSPEED
/* specific hardware configs could be bus-powered */
#define SELFPOWER USB_CONFIG_ATT_SELFPOWER
/* supports remote wakeup, but this driver doesn't */
extern int net2280_set_fifo_mode (struct usb_gadget *gadget, int mode);
static inline void hw_optimize (struct usb_gadget *gadget)
{
/* we can have bigger ep-a/ep-b fifos (2KB each, 4 USB packets
* for highspeed bulk) because we're not using ep-c/ep-d.
*/
net2280_set_fifo_mode (gadget, 1);
}
#endif
/*
* PXA-250 UDC: widely used in second gen Linux-capable PDAs.
*
* no limitations except from set_interface: docs say "no" to a third
* interface. and the interrupt-only endpoints don't toggle, so we'll
* just use a bulk-capable one instead.
*/
#ifdef CONFIG_USB_ETH_PXA250
#define CHIP "pxa250"
#define DRIVER_VERSION_NUM cpu_to_le16(0x0103)
#define EP0_MAXPACKET 16
static const char EP_OUT_NAME [] = "ep12out-bulk";
#define EP_OUT_NUM 12
static const char EP_IN_NAME [] = "ep11in-bulk";
#define EP_IN_NUM 11
static const char EP_STATUS_NAME [] = "ep6in-bulk";
#define EP_STATUS_NUM 6
/* doesn't support bus-powered operation */
#define SELFPOWER USB_CONFIG_ATT_SELFPOWER
/* supports remote wakeup, but this driver doesn't */
/* no hw optimizations to apply */
#define hw_optimize(g) do {} while (0);
#endif
/*
* SA-1100 UDC: widely used in first gen Linux-capable PDAs.
*
* can't have a notification endpoint, since there are only the two
* bulk-capable ones. the CDC spec allows that.
*/
#ifdef CONFIG_USB_ETH_SA1100
#define CHIP "sa1100"
#define DRIVER_VERSION_NUM cpu_to_le16(0x0105)
#define EP0_MAXPACKET 8
static const char EP_OUT_NAME [] = "ep1out-bulk";
#define EP_OUT_NUM 1
static const char EP_IN_NAME [] = "ep2in-bulk";
#define EP_IN_NUM 2
// EP_STATUS_NUM is undefined
/* doesn't support bus-powered operation */
#define SELFPOWER USB_CONFIG_ATT_SELFPOWER
/* doesn't support remote wakeup? */
/* no hw optimizations to apply */
#define hw_optimize(g) do {} while (0);
#endif
/*-------------------------------------------------------------------------*/
#ifndef EP0_MAXPACKET
# error Configure some USB peripheral controller driver!
#endif
/* power usage is config specific.
* hardware that supports remote wakeup defaults to disabling it.
*/
#ifndef SELFPOWER
/* default: say we rely on bus power */
#define SELFPOWER 0
/* else:
* - SELFPOWER value must be USB_CONFIG_ATT_SELFPOWER
* - MAX_USB_POWER may be nonzero.
*/
#endif
#ifndef MAX_USB_POWER
/* any hub supports this steady state bus power consumption */
#define MAX_USB_POWER 100 /* mA */
#endif
#ifndef WAKEUP
/* default: this driver won't do remote wakeup */
#define WAKEUP 0
/* else value must be USB_CONFIG_ATT_WAKEUP */
#endif
/*-------------------------------------------------------------------------*/
#define xprintk(d,level,fmt,args...) \
dev_printk(level , &(d)->gadget->dev , fmt , ## args)
#ifdef DEBUG
#undef DEBUG
#define DEBUG(dev,fmt,args...) \
xprintk(dev , KERN_DEBUG , fmt , ## args)
#else
#define DEBUG(dev,fmt,args...) \
do { } while (0)
#endif /* DEBUG */
#ifdef VERBOSE
#define VDEBUG DEBUG
#else
#define VDEBUG(dev,fmt,args...) \
do { } while (0)
#endif /* DEBUG */
#define ERROR(dev,fmt,args...) \
xprintk(dev , KERN_ERR , fmt , ## args)
#define WARN(dev,fmt,args...) \
xprintk(dev , KERN_WARNING , fmt , ## args)
#define INFO(dev,fmt,args...) \
xprintk(dev , KERN_INFO , fmt , ## args)
/*-------------------------------------------------------------------------*/
/* USB DRIVER HOOKUP (to the hardware driver, below us), mostly
* ep0 implementation: descriptors, config management, setup().
* also optional class-specific notification interrupt transfer.
*/
/*
* DESCRIPTORS ... most are static, but strings and (full) configuration
* descriptors are built on demand. Notice how most of the cdc descriptors
* add no value to simple (typical) configurations.
*/
#define STRING_MANUFACTURER 1
#define STRING_PRODUCT 2
#define STRING_ETHADDR 3
#define STRING_DATA 4
#define STRING_CONTROL 5
#define USB_BUFSIZ 256 /* holds our biggest descriptor */
/*
* This device advertises one configuration.
*/
#define CONFIG_CDC_ETHER 3
static const struct usb_device_descriptor
device_desc = {
.bLength = sizeof device_desc,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = cpu_to_le16 (0x0200),
.bDeviceClass = USB_CLASS_COMM,
.bDeviceSubClass = 0,
.bDeviceProtocol = 0,
.bMaxPacketSize0 = EP0_MAXPACKET,
.idVendor = cpu_to_le16 (DRIVER_VENDOR_NUM),
.idProduct = cpu_to_le16 (DRIVER_PRODUCT_NUM),
.bcdDevice = cpu_to_le16 (DRIVER_VERSION_NUM),
.iManufacturer = STRING_MANUFACTURER,
.iProduct = STRING_PRODUCT,
.bNumConfigurations = 1,
};
static const struct usb_config_descriptor
eth_config = {
.bLength = sizeof eth_config,
.bDescriptorType = USB_DT_CONFIG,
/* compute wTotalLength on the fly */
.bNumInterfaces = 2,
.bConfigurationValue = CONFIG_CDC_ETHER,
.iConfiguration = STRING_PRODUCT,
.bmAttributes = USB_CONFIG_ATT_ONE | SELFPOWER | WAKEUP,
.bMaxPower = (MAX_USB_POWER + 1) / 2,
};
/* master comm interface optionally has a status notification endpoint */
static const struct usb_interface_descriptor
control_intf = {
.bLength = sizeof control_intf,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0,
#ifdef EP_STATUS_NUM
.bNumEndpoints = 1,
#else
.bNumEndpoints = 0,
#endif
.bInterfaceClass = USB_CLASS_COMM,
.bInterfaceSubClass = 6, /* ethernet control model */
.bInterfaceProtocol = 0,
.iInterface = STRING_CONTROL,
};
/* "Header Functional Descriptor" from CDC spec 5.2.3.1 */
struct header_desc {
u8 bLength;
u8 bDescriptorType;
u8 bDescriptorSubType;
u16 bcdCDC;
} __attribute__ ((packed));
static const struct header_desc header_desc = {
.bLength = sizeof header_desc,
.bDescriptorType = 0x24,
.bDescriptorSubType = 0,
.bcdCDC = cpu_to_le16 (0x0110),
};
/* "Union Functional Descriptor" from CDC spec 5.2.3.X */
struct union_desc {
u8 bLength;
u8 bDescriptorType;
u8 bDescriptorSubType;
u8 bMasterInterface0;
u8 bSlaveInterface0;
/* ... and there could be other slave interfaces */
} __attribute__ ((packed));
static const struct union_desc union_desc = {
.bLength = sizeof union_desc,
.bDescriptorType = 0x24,
.bDescriptorSubType = 6,
.bMasterInterface0 = 0, /* index of control interface */
.bSlaveInterface0 = 1, /* index of DATA interface */
};
/* "Ethernet Networking Functional Descriptor" from CDC spec 5.2.3.16 */
struct ether_desc {
u8 bLength;
u8 bDescriptorType;
u8 bDescriptorSubType;
u8 iMACAddress;
u32 bmEthernetStatistics;
u16 wMaxSegmentSize;
u16 wNumberMCFilters;
u8 bNumberPowerFilters;
} __attribute__ ((packed));
static const struct ether_desc ether_desc = {
.bLength = sizeof ether_desc,
.bDescriptorType = 0x24,
.bDescriptorSubType = 0x0f,
/* this descriptor actually adds value, surprise! */
.iMACAddress = STRING_ETHADDR,
.bmEthernetStatistics = cpu_to_le32 (0), /* no statistics */
.wMaxSegmentSize = cpu_to_le16 (MAX_PACKET + ETH_HLEN),
.wNumberMCFilters = cpu_to_le16 (0),
.bNumberPowerFilters = 0,
};
#ifdef EP_STATUS_NUM
/* include the status endpoint if we can, even though it's optional.
*
* some drivers (like current Linux cdc-ether!) "need" it to exist even
* if they ignore the connect/disconnect notifications that real aether
* can provide. more advanced cdc configurations might want to support
* encapsulated commands.
*/
#define LOG2_STATUS_INTERVAL_MSEC 6
#define STATUS_BYTECOUNT 16 /* 8 byte header + data */
static const struct usb_endpoint_descriptor
fs_status_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_STATUS_NUM | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = cpu_to_le16 (STATUS_BYTECOUNT),
.bInterval = 1 << LOG2_STATUS_INTERVAL_MSEC,
};
#endif
/* the default data interface has no endpoints ... */
static const struct usb_interface_descriptor
data_nop_intf = {
.bLength = sizeof data_nop_intf,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 1,
.bAlternateSetting = 0,
.bNumEndpoints = 0,
.bInterfaceClass = USB_CLASS_CDC_DATA,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
.iInterface = STRING_DATA,
};
/* ... but the "real" data interface has two full speed bulk endpoints */
static const struct usb_interface_descriptor
data_intf = {
.bLength = sizeof data_intf,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 1,
.bAlternateSetting = 1,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_CDC_DATA,
.bInterfaceSubClass = 0,
.bInterfaceProtocol = 0,
.iInterface = STRING_DATA,
};
static const struct usb_endpoint_descriptor
fs_source_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_IN_NUM | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (64),
};
static const struct usb_endpoint_descriptor
fs_sink_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_OUT_NUM,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (64),
};
#ifdef HIGHSPEED
/*
* usb 2.0 devices need to expose both high speed and full speed
* descriptors, unless they only run at full speed.
*/
#ifdef EP_STATUS_NUM
static const struct usb_endpoint_descriptor
hs_status_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_STATUS_NUM | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_INT,
.wMaxPacketSize = cpu_to_le16 (STATUS_BYTECOUNT),
.bInterval = LOG2_STATUS_INTERVAL_MSEC + 3,
};
#endif
static const struct usb_endpoint_descriptor
hs_source_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_IN_NUM | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (512),
.bInterval = 1,
};
static const struct usb_endpoint_descriptor
hs_sink_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_OUT_NUM,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (512),
.bInterval = 1,
};
static const struct usb_qualifier_descriptor
dev_qualifier = {
.bLength = sizeof dev_qualifier,
.bDescriptorType = USB_DT_DEVICE_QUALIFIER,
.bcdUSB = cpu_to_le16 (0x0200),
.bDeviceClass = USB_CLASS_VENDOR_SPEC,
/* assumes ep0 uses the same value for both speeds ... */
.bMaxPacketSize0 = EP0_MAXPACKET,
.bNumConfigurations = 2,
};
/* maxpacket and other transfer characteristics vary by speed. */
#define ep_desc(g,hs,fs) (((g)->speed==USB_SPEED_HIGH)?(hs):(fs))
#else
/* if there's no high speed support, maxpacket doesn't change. */
#define ep_desc(g,hs,fs) fs
#endif /* !HIGHSPEED */
/* address that the host will use ... usually assigned at random */
static char ethaddr [2 * ETH_ALEN + 1];
/* static strings, in iso 8859/1 */
static struct usb_string strings [] = {
{ STRING_MANUFACTURER, UTS_SYSNAME " " UTS_RELEASE "/" CHIP, },
{ STRING_PRODUCT, driver_desc, },
{ STRING_ETHADDR, ethaddr, },
{ STRING_CONTROL, control_name, },
{ STRING_DATA, data_name, },
{ } /* end of list */
};
static struct usb_gadget_strings stringtab = {
.language = 0x0409, /* en-us */
.strings = strings,
};
/*
* one config, two interfaces: control, data.
* complications: class descriptors, and an altsetting.
*/
static int
config_buf (enum usb_device_speed speed, u8 *buf, u8 type, unsigned index)
{
const unsigned config_len = USB_DT_CONFIG_SIZE
+ 3 * USB_DT_INTERFACE_SIZE
+ sizeof header_desc
+ sizeof union_desc
+ sizeof ether_desc
#ifdef EP_STATUS_NUM
+ USB_DT_ENDPOINT_SIZE
#endif
+ 2 * USB_DT_ENDPOINT_SIZE;
#ifdef HIGHSPEED
int hs;
#endif
/* a single configuration must always be index 0 */
if (index > 0)
return -EINVAL;
if (config_len > USB_BUFSIZ)
return -EDOM;
/* config (or other speed config) */
memcpy (buf, &eth_config, USB_DT_CONFIG_SIZE);
buf [1] = type;
((struct usb_config_descriptor *) buf)->wTotalLength
= cpu_to_le16 (config_len);
buf += USB_DT_CONFIG_SIZE;
#ifdef HIGHSPEED
hs = (speed == USB_SPEED_HIGH);
if (type == USB_DT_OTHER_SPEED_CONFIG)
hs = !hs;
#endif
/* control interface, class descriptors, optional status endpoint */
memcpy (buf, &control_intf, USB_DT_INTERFACE_SIZE);
buf += USB_DT_INTERFACE_SIZE;
memcpy (buf, &header_desc, sizeof header_desc);
buf += sizeof header_desc;
memcpy (buf, &union_desc, sizeof union_desc);
buf += sizeof union_desc;
memcpy (buf, &ether_desc, sizeof ether_desc);
buf += sizeof ether_desc;
#ifdef EP_STATUS_NUM
#ifdef HIGHSPEED
if (hs)
memcpy (buf, &hs_status_desc, USB_DT_ENDPOINT_SIZE);
else
#endif /* HIGHSPEED */
memcpy (buf, &fs_status_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
#endif /* EP_STATUS_NUM */
/* default data altsetting has no endpoints */
memcpy (buf, &data_nop_intf, USB_DT_INTERFACE_SIZE);
buf += USB_DT_INTERFACE_SIZE;
/* the "real" data interface has two endpoints */
memcpy (buf, &data_intf, USB_DT_INTERFACE_SIZE);
buf += USB_DT_INTERFACE_SIZE;
#ifdef HIGHSPEED
if (hs) {
memcpy (buf, &hs_source_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
memcpy (buf, &hs_sink_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
} else
#endif
{
memcpy (buf, &fs_source_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
memcpy (buf, &fs_sink_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
}
return config_len;
}
/*-------------------------------------------------------------------------*/
static int
set_ether_config (struct eth_dev *dev, int gfp_flags)
{
int result = 0;
struct usb_ep *ep;
struct usb_gadget *gadget = dev->gadget;
gadget_for_each_ep (ep, gadget) {
const struct usb_endpoint_descriptor *d;
/* NOTE: the host isn't allowed to use these two data
* endpoints in the default altsetting for the interface.
* so we don't activate them yet.
*/
/* one endpoint writes data back IN to the host */
if (strcmp (ep->name, EP_IN_NAME) == 0) {
d = ep_desc (gadget, &hs_source_desc, &fs_source_desc);
ep->driver_data = dev;
dev->in_ep = ep;
dev->in = d;
continue;
/* one endpoint just reads OUT packets */
} else if (strcmp (ep->name, EP_OUT_NAME) == 0) {
d = ep_desc (gadget, &hs_sink_desc, &fs_sink_desc);
ep->driver_data = dev;
dev->out_ep = ep;
dev->out = d;
continue;
#ifdef EP_STATUS_NUM
/* optional status/notification endpoint */
} else if (strcmp (ep->name, EP_STATUS_NAME) == 0) {
d = ep_desc (gadget, &hs_status_desc, &fs_status_desc);
result = usb_ep_enable (ep, d);
if (result == 0) {
ep->driver_data = dev;
dev->status_ep = ep;
dev->status = d;
continue;
}
#endif
/* ignore any other endpoints */
} else
continue;
/* stop on error */
ERROR (dev, "can't enable %s, result %d\n", ep->name, result);
break;
}
if (result == 0)
DEBUG (dev, "qlen %d\n", qlen (gadget));
/* caller is responsible for cleanup on error */
return result;
}
static void eth_reset_config (struct eth_dev *dev)
{
if (dev->config == 0)
return;
DEBUG (dev, "%s\n", __FUNCTION__);
netif_stop_queue (&dev->net);
netif_carrier_off (&dev->net);
/* just disable endpoints, forcing completion of pending i/o.
* all our completion handlers free their requests in this case.
*/
if (dev->in_ep) {
usb_ep_disable (dev->in_ep);
dev->in_ep = 0;
}
if (dev->out_ep) {
usb_ep_disable (dev->out_ep);
dev->out_ep = 0;
}
#ifdef EP_STATUS_NUM
if (dev->status_ep) {
usb_ep_disable (dev->status_ep);
dev->status_ep = 0;
}
#endif
dev->config = 0;
}
/* change our operational config. must agree with the code
* that returns config descriptors, and altsetting code.
*/
static int
eth_set_config (struct eth_dev *dev, unsigned number, int gfp_flags)
{
int result = 0;
struct usb_gadget *gadget = dev->gadget;
if (number == dev->config)
return 0;
#ifdef CONFIG_USB_ETH_SA1100
if (dev->config && atomic_read (&dev->tx_qlen) != 0) {
/* tx fifo is full, but we can't clear it...*/
INFO (dev, "can't change configurations\n");
return -ESPIPE;
}
#endif
eth_reset_config (dev);
hw_optimize (gadget);
switch (number) {
case CONFIG_CDC_ETHER:
result = set_ether_config (dev, gfp_flags);
break;
default:
result = -EINVAL;
/* FALL THROUGH */
case 0:
return result;
}
if (!result && (!dev->in_ep || !dev->out_ep))
result = -ENODEV;
if (result)
eth_reset_config (dev);
else {
char *speed;
switch (gadget->speed) {
case USB_SPEED_FULL: speed = "full"; break;
#ifdef HIGHSPEED
case USB_SPEED_HIGH: speed = "high"; break;
#endif
default: speed = "?"; break;
}
dev->config = number;
INFO (dev, "%s speed config #%d: %s\n", speed, number,
driver_desc);
}
return result;
}
/*-------------------------------------------------------------------------*/
#ifdef EP_STATUS_NUM
/* section 3.8.2 table 11 of the CDC spec lists Ethernet notifications */
#define CDC_NOTIFY_NETWORK_CONNECTION 0x00 /* required; 6.3.1 */
#define CDC_NOTIFY_SPEED_CHANGE 0x2a /* required; 6.3.8 */
struct cdc_notification {
u8 bmRequestType;
u8 bNotificationType;
u16 wValue;
u16 wIndex;
u16 wLength;
/* SPEED_CHANGE data looks like this */
u32 data [2];
};
static void eth_status_complete (struct usb_ep *ep, struct usb_request *req)
{
struct cdc_notification *event = req->buf;
int value = req->status;
struct eth_dev *dev = ep->driver_data;
/* issue the second notification if host reads the first */
if (event->bNotificationType == CDC_NOTIFY_NETWORK_CONNECTION
&& value == 0) {
event->bmRequestType = 0xA1;
event->bNotificationType = CDC_NOTIFY_SPEED_CHANGE;
event->wValue = cpu_to_le16 (0);
event->wIndex = cpu_to_le16 (1);
event->wLength = cpu_to_le16 (8);
/* SPEED_CHANGE data is up/down speeds in bits/sec */
event->data [0] = event->data [1] =
(dev->gadget->speed == USB_SPEED_HIGH)
? (13 * 512 * 8 * 1000 * 8)
: (19 * 64 * 1 * 1000 * 8);
req->length = 16;
value = usb_ep_queue (ep, req, GFP_ATOMIC);
DEBUG (dev, "send SPEED_CHANGE --> %d\n", value);
if (value == 0)
return;
} else
DEBUG (dev, "event %02x --> %d\n",
event->bNotificationType, value);
/* free when done */
usb_ep_free_buffer (ep, req->buf, req->dma, 16);
usb_ep_free_request (ep, req);
}
static void issue_start_status (struct eth_dev *dev)
{
struct usb_request *req;
struct cdc_notification *event;
int value;
DEBUG (dev, "%s, flush old status first\n", __FUNCTION__);
/* flush old status
*
* FIXME ugly idiom, maybe we'd be better with just
* a "cancel the whole queue" primitive since any
* unlink-one primitive has way too many error modes.
*/
usb_ep_disable (dev->status_ep);
usb_ep_enable (dev->status_ep, dev->status);
/* FIXME make these allocations static like dev->req */
req = usb_ep_alloc_request (dev->status_ep, GFP_ATOMIC);
if (req == 0) {
DEBUG (dev, "status ENOMEM\n");
return;
}
req->buf = usb_ep_alloc_buffer (dev->status_ep, 16,
&dev->req->dma, GFP_ATOMIC);
if (req->buf == 0) {
DEBUG (dev, "status buf ENOMEM\n");
free_req:
usb_ep_free_request (dev->status_ep, req);
return;
}
/* 3.8.1 says to issue first NETWORK_CONNECTION, then
* a SPEED_CHANGE. could be useful in some configs.
*/
event = req->buf;
event->bmRequestType = 0xA1;
event->bNotificationType = CDC_NOTIFY_NETWORK_CONNECTION;
event->wValue = cpu_to_le16 (1); /* connected */
event->wIndex = cpu_to_le16 (1);
event->wLength = 0;
req->length = 8;
req->complete = eth_status_complete;
value = usb_ep_queue (dev->status_ep, req, GFP_ATOMIC);
if (value < 0) {
DEBUG (dev, "status buf queue --> %d\n", value);
usb_ep_free_buffer (dev->status_ep,
req->buf, dev->req->dma, 16);
goto free_req;
}
}
#endif
/*-------------------------------------------------------------------------*/
static void eth_setup_complete (struct usb_ep *ep, struct usb_request *req)
{
if (req->status || req->actual != req->length)
DEBUG ((struct eth_dev *) ep->driver_data,
"setup complete --> %d, %d/%d\n",
req->status, req->actual, req->length);
}
/* see section 3.8.2 table 10 of the CDC spec for more ethernet
* requests, mostly for filters (multicast, pm) and statistics
*/
#define CDC_SET_ETHERNET_PACKET_FILTER 0x43 /* required */
static void eth_start (struct eth_dev *dev, int gfp_flags);
/*
* The setup() callback implements all the ep0 functionality that's not
* handled lower down. CDC has a number of less-common features:
*
* - two interfaces: control, and ethernet data
* - data interface has two altsettings: default, and active
* - class-specific descriptors for the control interface
* - a mandatory class-specific control request
*/
static int
eth_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
{
struct eth_dev *dev = get_gadget_data (gadget);
struct usb_request *req = dev->req;
int value = -EOPNOTSUPP;
/* descriptors just go into the pre-allocated ep0 buffer,
* while config change events may enable network traffic.
*/
switch (ctrl->bRequest) {
case USB_REQ_GET_DESCRIPTOR:
if (ctrl->bRequestType != USB_DIR_IN)
break;
switch (ctrl->wValue >> 8) {
case USB_DT_DEVICE:
value = min (ctrl->wLength, (u16) sizeof device_desc);
memcpy (req->buf, &device_desc, value);
break;
#ifdef HIGHSPEED
case USB_DT_DEVICE_QUALIFIER:
value = min (ctrl->wLength, (u16) sizeof dev_qualifier);
memcpy (req->buf, &dev_qualifier, value);
break;
case USB_DT_OTHER_SPEED_CONFIG:
// FALLTHROUGH
#endif /* HIGHSPEED */
case USB_DT_CONFIG:
value = config_buf (gadget->speed, req->buf,
ctrl->wValue >> 8,
ctrl->wValue & 0xff);
if (value >= 0)
value = min (ctrl->wLength, (u16) value);
break;
case USB_DT_STRING:
value = usb_gadget_get_string (&stringtab,
ctrl->wValue & 0xff, req->buf);
if (value >= 0)
value = min (ctrl->wLength, (u16) value);
break;
}
break;
case USB_REQ_SET_CONFIGURATION:
if (ctrl->bRequestType != 0)
break;
spin_lock (&dev->lock);
value = eth_set_config (dev, ctrl->wValue, GFP_ATOMIC);
spin_unlock (&dev->lock);
break;
case USB_REQ_GET_CONFIGURATION:
if (ctrl->bRequestType != USB_DIR_IN)
break;
*(u8 *)req->buf = dev->config;
value = min (ctrl->wLength, (u16) 1);
break;
case USB_REQ_SET_INTERFACE:
if (ctrl->bRequestType != USB_RECIP_INTERFACE
|| !dev->config
|| ctrl->wIndex > 1)
break;
spin_lock (&dev->lock);
switch (ctrl->wIndex) {
case 0: /* control/master intf */
if (ctrl->wValue != 0)
break;
#ifdef EP_STATUS_NUM
if (dev->status_ep) {
usb_ep_disable (dev->status_ep);
usb_ep_enable (dev->status_ep, dev->status);
}
#endif
value = 0;
break;
case 1: /* data intf */
if (ctrl->wValue > 1)
break;
usb_ep_disable (dev->in_ep);
usb_ep_disable (dev->out_ep);
/* CDC requires the data transfers not be done from
* the default interface setting ... also, setting
* the non-default interface clears filters etc.
*/
if (ctrl->wValue == 1) {
usb_ep_enable (dev->in_ep, dev->in);
usb_ep_enable (dev->out_ep, dev->out);
netif_carrier_on (&dev->net);
#ifdef EP_STATUS_NUM
issue_start_status (dev);
#endif
if (netif_running (&dev->net))
eth_start (dev, GFP_ATOMIC);
} else {
netif_stop_queue (&dev->net);
netif_carrier_off (&dev->net);
}
value = 0;
break;
}
spin_unlock (&dev->lock);
break;
case USB_REQ_GET_INTERFACE:
if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)
|| !dev->config
|| ctrl->wIndex > 1)
break;
/* if carrier is on, data interface is active. */
*(u8 *)req->buf =
((ctrl->wIndex == 1) && netif_carrier_ok (&dev->net))
? 1
: 0,
value = min (ctrl->wLength, (u16) 1);
break;
case CDC_SET_ETHERNET_PACKET_FILTER:
/* see 6.2.30: no data, wIndex = interface,
* wValue = packet filter bitmap
*/
if (ctrl->bRequestType != (USB_TYPE_CLASS|USB_RECIP_INTERFACE)
|| ctrl->wLength != 0
|| ctrl->wIndex > 1)
DEBUG (dev, "NOP packet filter %04x\n", ctrl->wValue);
/* NOTE: table 62 has 5 filter bits to reduce traffic,
* and we "must" support multicast and promiscuous.
* this NOP implements a bad filter...
*/
value = 0;
break;
default:
VDEBUG (dev,
"unknown control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
ctrl->wValue, ctrl->wIndex, ctrl->wLength);
}
/* respond with data transfer before status phase? */
if (value > 0) {
req->length = value;
value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
if (value < 0) {
DEBUG (dev, "ep_queue --> %d\n", value);
req->status = 0;
eth_setup_complete (gadget->ep0, req);
}
}
/* host either stalls (value < 0) or reports success */
return value;
}
static void
eth_disconnect (struct usb_gadget *gadget)
{
struct eth_dev *dev = get_gadget_data (gadget);
unsigned long flags;
spin_lock_irqsave (&dev->lock, flags);
netif_stop_queue (&dev->net);
netif_carrier_off (&dev->net);
eth_reset_config (dev);
spin_unlock_irqrestore (&dev->lock, flags);
/* next we may get setup() calls to enumerate new connections;
* or an unbind() during shutdown (including removing module).
*/
}
/*-------------------------------------------------------------------------*/
/* NETWORK DRIVER HOOKUP (to the layer above this driver) */
static int eth_change_mtu (struct net_device *net, int new_mtu)
{
struct eth_dev *dev = (struct eth_dev *) net->priv;
if (new_mtu <= MIN_PACKET || new_mtu > MAX_PACKET)
return -ERANGE;
/* no zero-length packet read wanted after mtu-sized packets */
if (((new_mtu + sizeof (struct ethhdr)) % dev->in_ep->maxpacket) == 0)
return -EDOM;
net->mtu = new_mtu;
return 0;
}
static struct net_device_stats *eth_get_stats (struct net_device *net)
{
return &((struct eth_dev *) net->priv)->stats;
}
static int eth_ethtool_ioctl (struct net_device *net, void *useraddr)
{
struct eth_dev *dev = (struct eth_dev *) net->priv;
u32 cmd;
if (get_user (cmd, (u32 *)useraddr))
return -EFAULT;
switch (cmd) {
case ETHTOOL_GDRVINFO: { /* get driver info */
struct ethtool_drvinfo info;
memset (&info, 0, sizeof info);
info.cmd = ETHTOOL_GDRVINFO;
strncpy (info.driver, shortname, sizeof info.driver);
strncpy (info.version, DRIVER_VERSION, sizeof info.version);
strncpy (info.fw_version, CHIP, sizeof info.fw_version);
strncpy (info.bus_info, dev->gadget->dev.bus_id,
sizeof info.bus_info);
if (copy_to_user (useraddr, &info, sizeof (info)))
return -EFAULT;
return 0;
}
case ETHTOOL_GLINK: { /* get link status */
struct ethtool_value edata = { ETHTOOL_GLINK };
edata.data = (dev->gadget->speed != USB_SPEED_UNKNOWN);
if (copy_to_user (useraddr, &edata, sizeof (edata)))
return -EFAULT;
return 0;
}
}
/* Note that the ethtool user space code requires EOPNOTSUPP */
return -EOPNOTSUPP;
}
static int eth_ioctl (struct net_device *net, struct ifreq *rq, int cmd)
{
switch (cmd) {
case SIOCETHTOOL:
return eth_ethtool_ioctl (net, (void *)rq->ifr_data);
default:
return -EOPNOTSUPP;
}
}
static void defer_kevent (struct eth_dev *dev, int flag)
{
set_bit (flag, &dev->todo);
if (!schedule_work (&dev->work))
ERROR (dev, "kevent %d may have been dropped\n", flag);
else
DEBUG (dev, "kevent %d scheduled\n", flag);
}
static void rx_complete (struct usb_ep *ep, struct usb_request *req);
static int
rx_submit (struct eth_dev *dev, struct usb_request *req, int gfp_flags)
{
struct sk_buff *skb;
int retval = 0;
size_t size;
size = (sizeof (struct ethhdr) + dev->net.mtu);
if ((skb = alloc_skb (size, gfp_flags)) == 0) {
DEBUG (dev, "no rx skb\n");
defer_kevent (dev, WORK_RX_MEMORY);
usb_ep_free_request (dev->out_ep, req);
return -ENOMEM;
}
req->buf = skb->data;
req->length = size;
req->complete = rx_complete;
req->context = skb;
if (netif_running (&dev->net)) {
retval = usb_ep_queue (dev->out_ep, req, gfp_flags);
if (retval == -ENOMEM)
defer_kevent (dev, WORK_RX_MEMORY);
if (retval)
DEBUG (dev, "%s %d\n", __FUNCTION__, retval);
} else {
DEBUG (dev, "%s stopped\n", __FUNCTION__);
retval = -ENOLINK;
}
if (retval) {
DEBUG (dev, "rx submit --> %d\n", retval);
dev_kfree_skb_any (skb);
usb_ep_free_request (dev->out_ep, req);
}
return retval;
}
static void rx_complete (struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb = req->context;
struct eth_dev *dev = ep->driver_data;
int status = req->status;
switch (status) {
/* normal completion */
case 0:
skb_put (skb, req->actual);
if (MIN_PACKET > skb->len
|| skb->len > (MAX_PACKET + ETH_HLEN)) {
dev->stats.rx_errors++;
dev->stats.rx_length_errors++;
DEBUG (dev, "rx length %d\n", skb->len);
break;
}
skb->dev = &dev->net;
skb->protocol = eth_type_trans (skb, &dev->net);
dev->stats.rx_packets++;
dev->stats.rx_bytes += skb->len;
/* no buffer copies needed, unless hardware can't
* use skb buffers.
*/
status = netif_rx (skb);
skb = 0;
break;
/* software-driven interface shutdown */
case -ECONNRESET: // unlink
case -ESHUTDOWN: // disconnect etc
VDEBUG (dev, "rx shutdown, code %d\n", status);
usb_ep_free_request (dev->out_ep, req);
req = 0;
break;
/* data overrun */
case -EOVERFLOW:
dev->stats.rx_over_errors++;
// FALLTHROUGH
default:
dev->stats.rx_errors++;
DEBUG (dev, "rx status %d\n", status);
break;
}
if (skb)
dev_kfree_skb_any (skb);
if (req)
rx_submit (dev, req, GFP_ATOMIC);
}
static void eth_work (void *_dev)
{
struct eth_dev *dev = _dev;
if (test_bit (WORK_RX_MEMORY, &dev->todo)) {
struct usb_request *req = 0;
if (netif_running (&dev->net))
req = usb_ep_alloc_request (dev->in_ep, GFP_KERNEL);
else
clear_bit (WORK_RX_MEMORY, &dev->todo);
if (req != 0) {
clear_bit (WORK_RX_MEMORY, &dev->todo);
rx_submit (dev, req, GFP_KERNEL);
}
}
if (dev->todo)
DEBUG (dev, "work done, flags = 0x%lx\n", dev->todo);
}
static void tx_complete (struct usb_ep *ep, struct usb_request *req)
{
struct sk_buff *skb = req->context;
struct eth_dev *dev = ep->driver_data;
if (req->status)
dev->stats.tx_errors++;
else
dev->stats.tx_bytes += skb->len;
dev->stats.tx_packets++;
usb_ep_free_request (ep, req);
dev_kfree_skb_any (skb);
atomic_inc (&dev->tx_qlen);
if (netif_carrier_ok (&dev->net))
netif_wake_queue (&dev->net);
}
static int eth_start_xmit (struct sk_buff *skb, struct net_device *net)
{
struct eth_dev *dev = (struct eth_dev *) net->priv;
int length = skb->len;
int retval;
struct usb_request *req = 0;
if (!(req = usb_ep_alloc_request (dev->in_ep, GFP_ATOMIC))) {
DEBUG (dev, "no request\n");
goto drop;
}
/* no buffer copies needed, unless the network stack did it
* or the hardware can't use skb buffers.
*/
req->buf = skb->data;
req->context = skb;
req->complete = tx_complete;
#ifdef CONFIG_USB_ETH_SA1100
/* don't demand zlp (req->zero) support from all hardware */
if ((length % dev->in_ep->maxpacket) == 0)
length++;
#else
/* use zlp framing on tx for strict CDC-Ether conformance,
* though any robust network rx path ignores extra padding.
*/
req->zero = 1;
#endif
req->length = length;
#ifdef HIGHSPEED
/* throttle highspeed IRQ rate back slightly */
req->no_interrupt = (dev->gadget->speed == USB_SPEED_HIGH)
? ((atomic_read (&dev->tx_qlen) % TX_DELAY) != 0)
: 0;
#endif
retval = usb_ep_queue (dev->in_ep, req, GFP_ATOMIC);
switch (retval) {
default:
DEBUG (dev, "tx queue err %d\n", retval);
break;
case 0:
net->trans_start = jiffies;
if (atomic_dec_and_test (&dev->tx_qlen))
netif_stop_queue (net);
}
if (retval) {
DEBUG (dev, "drop, code %d\n", retval);
drop:
dev->stats.tx_dropped++;
dev_kfree_skb_any (skb);
usb_ep_free_request (dev->in_ep, req);
}
return 0;
}
static void eth_start (struct eth_dev *dev, int gfp_flags)
{
struct usb_request *req;
int retval = 0;
unsigned i;
int size = qlen (dev->gadget);
DEBUG (dev, "%s\n", __FUNCTION__);
/* fill the rx queue */
for (i = 0; retval == 0 && i < size; i++) {
req = usb_ep_alloc_request (dev->in_ep, gfp_flags);
if (req)
retval = rx_submit (dev, req, gfp_flags);
else if (i > 0)
defer_kevent (dev, WORK_RX_MEMORY);
else
retval = -ENOMEM;
}
/* and open the tx floodgates */
atomic_set (&dev->tx_qlen, size);
netif_wake_queue (&dev->net);
}
static int eth_open (struct net_device *net)
{
struct eth_dev *dev = (struct eth_dev *) net->priv;
DEBUG (dev, "%s\n", __FUNCTION__);
down (&dev->mutex);
if (netif_carrier_ok (&dev->net))
eth_start (dev, GFP_KERNEL);
up (&dev->mutex);
return 0;
}
static int eth_stop (struct net_device *net)
{
struct eth_dev *dev = (struct eth_dev *) net->priv;
DEBUG (dev, "%s\n", __FUNCTION__);
down (&dev->mutex);
netif_stop_queue (net);
DEBUG (dev, "stop stats: rx/tx %ld/%ld, errs %ld/%ld\n",
dev->stats.rx_packets, dev->stats.tx_packets,
dev->stats.rx_errors, dev->stats.tx_errors
);
/* ensure there are no more active requests */
if (dev->gadget->speed != USB_SPEED_UNKNOWN) {
usb_ep_disable (dev->in_ep);
usb_ep_disable (dev->out_ep);
if (netif_carrier_ok (&dev->net)) {
DEBUG (dev, "host still using in/out endpoints\n");
usb_ep_enable (dev->in_ep, dev->in);
usb_ep_enable (dev->out_ep, dev->out);
}
#ifdef EP_STATUS_NUM
usb_ep_disable (dev->status_ep);
usb_ep_enable (dev->status_ep, dev->status);
#endif
}
up (&dev->mutex);
return 0;
}
/*-------------------------------------------------------------------------*/
static void
eth_unbind (struct usb_gadget *gadget)
{
struct eth_dev *dev = get_gadget_data (gadget);
DEBUG (dev, "unbind\n");
down (&dev->mutex);
/* we've already been disconnected ... no i/o is active */
if (dev->req) {
usb_ep_free_buffer (gadget->ep0,
dev->req->buf, dev->req->dma,
USB_BUFSIZ);
usb_ep_free_request (gadget->ep0, dev->req);
}
unregister_netdev (&dev->net);
up (&dev->mutex);
/* assuming we used keventd, it must quiesce too */
flush_scheduled_work ();
kfree (dev);
set_gadget_data (gadget, 0);
}
static int
eth_bind (struct usb_gadget *gadget)
{
struct eth_dev *dev;
struct net_device *net;
u8 node_id [ETH_ALEN];
/* just one upstream link at a time */
if (ethaddr [0] != 0)
return -ENODEV;
dev = kmalloc (sizeof *dev, SLAB_KERNEL);
if (!dev)
return -ENOMEM;
memset (dev, 0, sizeof *dev);
spin_lock_init (&dev->lock);
init_MUTEX_LOCKED (&dev->mutex);
INIT_WORK (&dev->work, eth_work, dev);
/* network device setup */
net = &dev->net;
SET_MODULE_OWNER (net);
net->priv = dev;
strcpy (net->name, "usb%d");
ether_setup (net);
/* one random address for the gadget device ... both of these could
* reasonably come from an id prom or a module parameter.
*/
get_random_bytes (net->dev_addr, ETH_ALEN);
net->dev_addr [0] &= 0xfe; // clear multicast bit
net->dev_addr [0] |= 0x02; // set local assignment bit (IEEE802)
/* ... another address for the host, on the other end of the
* link, gets exported through CDC (see CDC spec table 41)
*/
get_random_bytes (node_id, sizeof node_id);
node_id [0] &= 0xfe; // clear multicast bit
node_id [0] |= 0x02; // set local assignment bit (IEEE802)
snprintf (ethaddr, sizeof ethaddr, "%02X%02X%02X%02X%02X%02X",
node_id [0], node_id [1], node_id [2],
node_id [3], node_id [4], node_id [5]);
net->change_mtu = eth_change_mtu;
net->get_stats = eth_get_stats;
net->hard_start_xmit = eth_start_xmit;
net->open = eth_open;
net->stop = eth_stop;
// watchdog_timeo, tx_timeout ...
// set_multicast_list
net->do_ioctl = eth_ioctl;
/* preallocate control response and buffer */
dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
if (!dev->req)
goto enomem;
dev->req->complete = eth_setup_complete;
dev->req->buf = usb_ep_alloc_buffer (gadget->ep0, USB_BUFSIZ,
&dev->req->dma, GFP_KERNEL);
if (!dev->req->buf) {
usb_ep_free_request (gadget->ep0, dev->req);
goto enomem;
}
/* finish hookup to lower layer ... */
dev->gadget = gadget;
set_gadget_data (gadget, dev);
gadget->ep0->driver_data = dev;
/* two kinds of host-initiated state changes:
* - iff DATA transfer is active, carrier is "on"
* - tx queueing enabled if open *and* carrier is "on"
*/
INFO (dev, "%s, host enet %s, version: " DRIVER_VERSION "\n",
driver_desc, ethaddr);
register_netdev (&dev->net);
netif_stop_queue (&dev->net);
netif_carrier_off (&dev->net);
up (&dev->mutex);
return 0;
enomem:
eth_unbind (gadget);
return -ENOMEM;
}
/*-------------------------------------------------------------------------*/
static struct usb_gadget_driver eth_driver = {
#ifdef HIGHSPEED
.speed = USB_SPEED_HIGH,
#else
.speed = USB_SPEED_FULL,
#endif
.function = (char *) driver_desc,
.bind = eth_bind,
.unbind = eth_unbind,
.setup = eth_setup,
.disconnect = eth_disconnect,
.driver = {
.name = (char *) shortname,
// .shutdown = ...
// .suspend = ...
// .resume = ...
},
};
MODULE_DESCRIPTION (DRIVER_DESC);
MODULE_AUTHOR ("David Brownell");
MODULE_LICENSE ("GPL");
static int __init init (void)
{
return usb_gadget_register_driver (&eth_driver);
}
module_init (init);
static void __exit cleanup (void)
{
usb_gadget_unregister_driver (&eth_driver);
}
module_exit (cleanup);
/*
* Driver for the NetChip 2280 USB device controller.
* Specs and errata are available from <http://www.netchip.com>.
*
* NetChip Technology Inc. supported the development of this driver.
*
*
* CODE STATUS HIGHLIGHTS
*
* Used with a gadget driver like "zero.c" this enumerates fine to Windows
* or Linux hosts; handles disconnect, reconnect, and reset, for full or
* high speed operation; and passes USB-IF "chapter 9" tests.
*
* Handles standard stress loads from the Linux "usbtest" driver, with
* either DMA (default) or PIO (use_dma=n) used for ep-{a,b,c,d}. Testing
* with "ttcp" (and the "ether.c" driver) behaves nicely too.
*
* DMA is enabled by default. Drivers using transfer queues might use
* DMA chaining to remove IRQ latencies between transfers. (Except when
* short OUT transfers happen.) Drivers can use the req->no_interrupt
* hint to completely eliminate some IRQs, if a later IRQ is guaranteed
* and DMA chaining is enabled.
*/
// #define NET2280_DMA_OUT_WORKAROUND
// #define USE_DMA_CHAINING
/*
* Copyright (C) 2003 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define DEBUG 1
// #define VERBOSE /* extra debug messages (success too) */
#include <linux/config.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/moduleparam.h>
#include <linux/device.h>
#include <linux/usb_ch9.h>
#include <linux/usb_gadget.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/unaligned.h>
#define DRIVER_DESC "NetChip 2280 USB Peripheral Controller"
#define DRIVER_VERSION "May Day 2003"
#define DMA_ADDR_INVALID (~(dma_addr_t)0)
#define EP_DONTUSE 13 /* nonzero */
#define USE_RDK_LEDS /* GPIO pins control three LEDs */
#define USE_SYSFS_DEBUG_FILES
static const char driver_name [] = "net2280";
static const char driver_desc [] = DRIVER_DESC;
static const char ep0name [] = "ep0";
static const char *ep_name [] = {
ep0name,
"ep-a", "ep-b", "ep-c", "ep-d",
"ep-e", "ep-f",
};
static int use_dma = 1;
/* "modprobe net2280 use_dma=n" etc */
module_param (use_dma, bool, S_IRUGO|S_IWUSR);
#define DIR_STRING(bAddress) (((bAddress) & USB_DIR_IN) ? "in" : "out")
#if defined(USE_SYSFS_DEBUG_FILES) || defined (DEBUG)
static char *type_string (u8 bmAttributes)
{
switch ((bmAttributes) & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_BULK: return "bulk";
case USB_ENDPOINT_XFER_ISOC: return "iso";
case USB_ENDPOINT_XFER_INT: return "intr";
};
return "control";
}
#endif
#include "net2280.h"
#define valid_bit cpu_to_le32 (1 << VALID_BIT)
#define dma_done_ie cpu_to_le32 (1 << DMA_DONE_INTERRUPT_ENABLE)
/*-------------------------------------------------------------------------*/
static int
net2280_enable (struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc)
{
struct net2280 *dev;
struct net2280_ep *ep;
u32 max, tmp;
unsigned long flags;
ep = container_of (_ep, struct net2280_ep, ep);
if (!_ep || !desc || ep->desc || _ep->name == ep0name
|| desc->bDescriptorType != USB_DT_ENDPOINT)
return -EINVAL;
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
/* erratum 0119 workaround ties up an endpoint number */
if ((desc->bEndpointAddress & 0x0f) == EP_DONTUSE)
return -EDOM;
/* sanity check ep-e/ep-f since their fifos are small */
max = le16_to_cpu (desc->wMaxPacketSize) & 0x1fff;
if (ep->num > 4 && max > 64)
return -ERANGE;
spin_lock_irqsave (&dev->lock, flags);
_ep->maxpacket = max & 0x7ff;
ep->desc = desc;
/* ep_reset() has already been called */
ep->stopped = 0;
/* set speed-dependent max packet; may kick in high bandwidth */
set_idx_reg (dev->regs, REG_EP_MAXPKT (dev, ep->num), max);
/* FIFO lines can't go to different packets. PIO is ok, so
* use it instead of troublesome (non-bulk) multi-packet DMA.
*/
if (ep->is_in && ep->dma && (max % 4) != 0) {
DEBUG (ep->dev, "%s, no IN dma for maxpacket %d\n",
ep->ep.name, ep->ep.maxpacket);
ep->dma = 0;
}
/* set type, direction, address; reset fifo counters */
writel ((1 << FIFO_FLUSH), &ep->regs->ep_stat);
tmp = (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
if (tmp == USB_ENDPOINT_XFER_INT) {
/* not just because of erratum 0105; avoid ever
* kicking in the "toggle-irrelevant" mode.
*/
tmp = USB_ENDPOINT_XFER_BULK;
}
ep->is_iso = (tmp == USB_ENDPOINT_XFER_ISOC) ? 1 : 0;
tmp <<= ENDPOINT_TYPE;
tmp |= desc->bEndpointAddress;
tmp |= (4 << ENDPOINT_BYTE_COUNT); /* default full fifo lines */
tmp |= 1 << ENDPOINT_ENABLE;
wmb ();
/* for OUT transfers, block the rx fifo until a read is posted */
ep->is_in = (tmp & USB_DIR_IN) != 0;
if (!ep->is_in)
writel ((1 << SET_NAK_OUT_PACKETS), &ep->regs->ep_rsp);
writel (tmp, &ep->regs->ep_cfg);
#ifdef NET2280_DMA_OUT_WORKAROUND
if (!ep->is_in)
ep->dma = 0;
#endif
/* enable irqs */
if (!ep->dma) { /* pio, per-packet */
tmp = (1 << ep->num) | readl (&dev->regs->pciirqenb0);
writel (tmp, &dev->regs->pciirqenb0);
tmp = (1 << DATA_PACKET_RECEIVED_INTERRUPT_ENABLE)
| (1 << DATA_PACKET_TRANSMITTED_INTERRUPT_ENABLE)
| readl (&ep->regs->ep_irqenb);
writel (tmp, &ep->regs->ep_irqenb);
} else { /* dma, per-request */
tmp = (1 << (8 + ep->num)); /* completion */
tmp |= readl (&dev->regs->pciirqenb1);
writel (tmp, &dev->regs->pciirqenb1);
/* for short OUT transfers, dma completions can't
* advance the queue; do it pio-style, by hand.
* NOTE erratum 0112 workaround #2
*/
if ((desc->bEndpointAddress & USB_DIR_IN) == 0) {
tmp = (1 << SHORT_PACKET_TRANSFERRED_INTERRUPT_ENABLE);
writel (tmp, &ep->regs->ep_irqenb);
tmp = (1 << ep->num) | readl (&dev->regs->pciirqenb0);
writel (tmp, &dev->regs->pciirqenb0);
}
}
tmp = desc->bEndpointAddress;
DEBUG (dev, "enabled %s (ep%d%s-%s) %s max %04x\n",
_ep->name, tmp & 0x0f, DIR_STRING (tmp),
type_string (desc->bmAttributes),
ep->dma ? "dma" : "pio", max);
/* pci writes may still be posted */
spin_unlock_irqrestore (&dev->lock, flags);
return 0;
}
static int handshake (u32 *ptr, u32 mask, u32 done, int usec)
{
u32 result;
do {
result = readl (ptr);
if (result == ~(u32)0) /* "device unplugged" */
return -ENODEV;
result &= mask;
if (result == done)
return 0;
udelay (1);
usec--;
} while (usec > 0);
#ifdef DEBUG
if (done == 0) dump_stack (); /* ignore out_flush timeout */
#endif
return -ETIMEDOUT;
}
static struct usb_ep_ops net2280_ep_ops;
static void ep_reset (struct net2280_regs *regs, struct net2280_ep *ep)
{
u32 tmp;
ep->desc = 0;
INIT_LIST_HEAD (&ep->queue);
ep->ep.maxpacket = ~0;
ep->ep.ops = &net2280_ep_ops;
/* disable the dma, irqs, endpoint... */
if (ep->dma) {
writel (0, &ep->dma->dmactl);
writel ( (1 << DMA_SCATTER_GATHER_DONE_INTERRUPT)
| (1 << DMA_TRANSACTION_DONE_INTERRUPT)
| (1 << DMA_ABORT)
, &ep->dma->dmastat);
tmp = readl (&regs->pciirqenb0);
tmp &= ~(1 << ep->num);
writel (tmp, &regs->pciirqenb0);
} else {
tmp = readl (&regs->pciirqenb1);
tmp &= ~(1 << (8 + ep->num)); /* completion */
writel (tmp, &regs->pciirqenb1);
}
writel (0, &ep->regs->ep_irqenb);
/* init to our chosen defaults, notably so that we NAK OUT
* packets until the driver queues a read (+note erratum 0112)
*/
writel ( (1 << SET_NAK_OUT_PACKETS_MODE)
| (1 << SET_NAK_OUT_PACKETS)
| (1 << CLEAR_EP_HIDE_STATUS_PHASE)
| (1 << CLEAR_INTERRUPT_MODE)
| (1 << CLEAR_CONTROL_STATUS_PHASE_HANDSHAKE)
| (1 << CLEAR_ENDPOINT_TOGGLE)
| (1 << CLEAR_ENDPOINT_HALT)
, &ep->regs->ep_rsp);
/* scrub most status bits, and flush any fifo state */
writel ( (1 << TIMEOUT)
| (1 << USB_STALL_SENT)
| (1 << USB_IN_NAK_SENT)
| (1 << USB_IN_ACK_RCVD)
| (1 << USB_OUT_PING_NAK_SENT)
| (1 << USB_OUT_ACK_SENT)
| (1 << FIFO_OVERFLOW)
| (1 << FIFO_UNDERFLOW)
| (1 << FIFO_FLUSH)
| (1 << SHORT_PACKET_OUT_DONE_INTERRUPT)
| (1 << SHORT_PACKET_TRANSFERRED_INTERRUPT)
| (1 << DATA_PACKET_RECEIVED_INTERRUPT)
| (1 << DATA_PACKET_TRANSMITTED_INTERRUPT)
| (1 << DATA_OUT_PING_TOKEN_INTERRUPT)
| (1 << DATA_IN_TOKEN_INTERRUPT)
, &ep->regs->ep_stat);
/* fifo size is handled separately */
}
static void nuke (struct net2280_ep *);
static int net2280_disable (struct usb_ep *_ep)
{
struct net2280_ep *ep;
unsigned long flags;
ep = container_of (_ep, struct net2280_ep, ep);
if (!_ep || !ep->desc || _ep->name == ep0name)
return -EINVAL;
spin_lock_irqsave (&ep->dev->lock, flags);
nuke (ep);
ep_reset (ep->dev->regs, ep);
VDEBUG (ep->dev, "disabled %s %s\n",
ep->dma ? "dma" : "pio", _ep->name);
/* synch memory views with the device */
(void) readl (&ep->regs->ep_cfg);
if (use_dma && !ep->dma && ep->num >= 1 && ep->num <= 4)
ep->dma = &ep->dev->dma [ep->num - 1];
spin_unlock_irqrestore (&ep->dev->lock, flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static struct usb_request *
net2280_alloc_request (struct usb_ep *_ep, int gfp_flags)
{
struct net2280_ep *ep;
struct net2280_request *req;
if (!_ep)
return 0;
ep = container_of (_ep, struct net2280_ep, ep);
req = kmalloc (sizeof *req, gfp_flags);
if (!req)
return 0;
memset (req, 0, sizeof *req);
req->req.dma = DMA_ADDR_INVALID;
INIT_LIST_HEAD (&req->queue);
/* this dma descriptor may be swapped with the previous dummy */
if (ep->dma) {
struct net2280_dma *td;
td = pci_pool_alloc (ep->dev->requests, gfp_flags,
&req->td_dma);
if (!td) {
kfree (req);
return 0;
}
td->dmacount = 0; /* not VALID */
td->dmaaddr = cpu_to_le32 (DMA_ADDR_INVALID);
req->td = td;
}
return &req->req;
}
static void
net2280_free_request (struct usb_ep *_ep, struct usb_request *_req)
{
struct net2280_ep *ep;
struct net2280_request *req;
ep = container_of (_ep, struct net2280_ep, ep);
if (!ep || !_req || (!ep->desc && ep->num != 0))
return;
req = container_of (_req, struct net2280_request, req);
WARN_ON (!list_empty (&req->queue));
if (req->td)
pci_pool_free (ep->dev->requests, req->td, req->td_dma);
kfree (req);
}
/*-------------------------------------------------------------------------*/
#undef USE_KMALLOC
/* many common platforms have dma-coherent caches, which means that it's
* safe to use kmalloc() memory for all i/o buffers without using any
* cache flushing calls. (unless you're trying to share cache lines
* between dma and non-dma activities, which is a slow idea in any case.)
*
* other platforms need more care, with 2.5 having a moderately general
* solution (which falls down for allocations smaller than one page)
* that improves significantly on the 2.4 PCI allocators by removing
* the restriction that memory never be freed in_interrupt().
*/
#if defined(CONFIG_X86)
#define USE_KMALLOC
#elif define(CONFIG_PPC) && !defined(CONFIG_NOT_COHERENT_CACHE)
#define USE_KMALLOC
/* FIXME there are other cases, including an x86-64 one ... */
#endif
/* allocating buffers this way eliminates dma mapping overhead, which
* on some platforms will mean eliminating a per-io buffer copy. with
* some kinds of system caches, further tweaks may still be needed.
*/
static void *
net2280_alloc_buffer (
struct usb_ep *_ep,
unsigned bytes,
dma_addr_t *dma,
int gfp_flags
)
{
void *retval;
struct net2280_ep *ep;
ep = container_of (_ep, struct net2280_ep, ep);
if (!ep || (!ep->desc && ep->num != 0))
return 0;
*dma = DMA_ADDR_INVALID;
if (ep->dma) {
#if defined(USE_KMALLOC)
retval = kmalloc (bytes, gfp_flags);
if (retval)
*dma = virt_to_phys (retval);
#elif LINUX_VERSION_CODE > KERNEL_VERSION(2,5,58)
#warning Using dma_alloc_consistent even with sub-page allocations
/* the main problem with this call is that it wastes memory
* on typical 1/N page allocations: it allocates 1-N pages.
*/
retval = dma_alloc_coherent (&ep->dev->pdev->dev,
bytes, dma, gfp_flags);
#else
#error No dma-coherent memory allocator is available
/* pci_alloc_consistent works, but pci_free_consistent()
* isn't safe in_interrupt(). plus, in addition to the
* 1/Nth page weakness, it doesn't understand gfp_flags.
*/
#endif
} else
retval = kmalloc (bytes, gfp_flags);
return retval;
}
static void
net2280_free_buffer (
struct usb_ep *_ep,
void *buf,
dma_addr_t dma,
unsigned bytes
) {
/* free memory into the right allocator */
#ifndef USE_KMALLOC
if (dma != DMA_ADDR_INVALID)
dma_free_coherent (ep->dev->pdev, bytes, dma);
else
#endif
kfree (buf);
}
/*-------------------------------------------------------------------------*/
/* load a packet into the fifo we use for usb IN transfers.
* works for all endpoints.
*
* NOTE: pio with ep-a..ep-d could stuff multiple packets into the fifo
* at a time, but this code is simpler because it knows it only writes
* one packet. ep-a..ep-d should use dma instead.
*/
static void
write_fifo (struct net2280_ep *ep, struct usb_request *req)
{
struct net2280_ep_regs *regs = ep->regs;
u8 *buf;
unsigned count, total;
/* INVARIANT: fifo is currently empty. (testable) */
if (req) {
total = req->length - req->actual;
buf = req->buf + req->actual;
} else {
total = 0;
buf = 0;
}
/* write just one packet at a time */
count = min (ep->ep.maxpacket, total);
VDEBUG (ep->dev, "write %s fifo (IN) %d bytes%s req %p\n",
ep->ep.name, count,
(count != ep->ep.maxpacket) ? " (short)" : "",
req);
while (count >= 4) {
/* NOTE be careful if you try to align these. fifo lines
* should normally be full (4 bytes) and successive partial
* lines are ok only in certain cases.
*/
writel (get_unaligned ((u32 *)buf), &regs->ep_data);
buf += 4;
count -= 4;
}
/* last fifo entry is "short" unless we wrote a full packet */
if (total < ep->ep.maxpacket) {
u32 tmp = count ? get_unaligned ((u32 *)buf) : count;
set_fifo_bytecount (ep, count & 0x03);
writel (tmp, &regs->ep_data);
}
/* pci writes may still be posted */
}
/* work around erratum 0106: PCI and USB race over the OUT fifo.
* caller guarantees chiprev 0100, out endpoint is NAKing, and
* there's no real data in the fifo.
*/
static void out_flush (struct net2280_ep *ep)
{
u32 *statp, tmp;
ASSERT_OUT_NAKING (ep);
statp = &ep->regs->ep_stat;
writel ( (1 << DATA_OUT_PING_TOKEN_INTERRUPT)
| (1 << DATA_PACKET_RECEIVED_INTERRUPT)
, statp);
writel ((1 << FIFO_FLUSH), statp);
mb ();
tmp = readl (statp);
if (tmp & (1 << DATA_OUT_PING_TOKEN_INTERRUPT)) {
unsigned usec;
if (ep->dev->gadget.speed == USB_SPEED_HIGH) {
if (ep->ep.maxpacket <= 512)
usec = 10; /* 512 byte bulk */
else
usec = 21; /* 1024 byte interrupt */
} else
usec = 50; /* 64 byte bulk/interrupt */
handshake (statp, (1 << USB_OUT_PING_NAK_SENT),
(1 << USB_OUT_PING_NAK_SENT), usec);
/* NAK done; now CLEAR_NAK_OUT_PACKETS is safe */
}
}
/* unload packet(s) from the fifo we use for usb OUT transfers.
* returns true iff the request completed, because of short packet
* or the request buffer having filled with full packets.
*
* for ep-a..ep-d this will read multiple packets out when they
* have been accepted.
*/
static int
read_fifo (struct net2280_ep *ep, struct net2280_request *req)
{
struct net2280_ep_regs *regs = ep->regs;
u8 *buf = req->req.buf + req->req.actual;
unsigned count, tmp, is_short;
unsigned cleanup = 0, prevent = 0;
/* erratum 0106 ... packets coming in during fifo reads might
* be incompletely rejected. not all cases have workarounds.
*/
if (ep->dev->chiprev == 0x0100) {
tmp = readl (&ep->regs->ep_stat);
if ((tmp & (1 << NAK_OUT_PACKETS)))
/* cleanup = 1 */;
else if ((tmp & (1 << FIFO_FULL))
/* don't break hs PING protocol ... */
|| ep->dev->gadget.speed == USB_SPEED_FULL) {
start_out_naking (ep);
prevent = 1;
}
/* else: hope we don't see the problem */
}
/* never overflow the rx buffer. the fifo reads packets until
* it sees a short one; we might not be ready for them all.
*/
count = readl (&regs->ep_avail);
tmp = req->req.length - req->req.actual;
if (count > tmp) {
unsigned over = tmp % ep->ep.maxpacket;
/* FIXME handle this consistently between PIO and DMA */
if (over) {
ERROR (ep->dev,
"%s out fifo %d bytes, over %d extra %d\n",
ep->ep.name, count, over, count - tmp);
req->req.status = -EOVERFLOW;
tmp -= over;
}
count = tmp;
}
req->req.actual += count;
is_short = (count == 0) || ((count % ep->ep.maxpacket) != 0);
VDEBUG (ep->dev, "read %s fifo (OUT) %d bytes%s%s%s req %p %d/%d\n",
ep->ep.name, count, is_short ? " (short)" : "",
cleanup ? " flush" : "", prevent ? " nak" : "",
req, req->req.actual, req->req.length);
while (count >= 4) {
put_unaligned (readl (&regs->ep_data), (u32 *)buf);
buf += 4;
count -= 4;
}
if (count) {
tmp = readl (&regs->ep_data);
do {
*buf++ = (u8) tmp;
tmp >>= 8;
} while (--count);
}
if (cleanup)
out_flush (ep);
if (prevent) {
writel ((1 << CLEAR_NAK_OUT_PACKETS), &ep->regs->ep_rsp);
(void) readl (&ep->regs->ep_rsp);
}
return is_short || ((req->req.actual == req->req.length)
&& !req->req.zero);
}
/* fill out dma descriptor to match a given request */
static inline void
fill_dma_desc (struct net2280_ep *ep, struct net2280_request *req, int valid)
{
struct net2280_dma *td = req->td;
u32 dmacount = req->req.length;
/* don't let DMA continue after a short OUT packet,
* so overruns can't affect the next transfer.
*/
if (ep->is_in)
dmacount |= (1 << DMA_DIRECTION);
else if ((dmacount % ep->ep.maxpacket) != 0)
dmacount |= (1 << END_OF_CHAIN);
req->valid = valid;
if (valid)
dmacount |= (1 << VALID_BIT);
#ifdef USE_DMA_CHAINING
if (!req->req.no_interrupt)
#endif
dmacount |= (1 << DMA_DONE_INTERRUPT_ENABLE);
/* td->dmadesc = previously set by caller */
td->dmaaddr = cpu_to_le32p (&req->req.dma);
/* 2280 may be polling VALID_BIT through ep->dma->dmadesc */
wmb ();
td->dmacount = cpu_to_le32p (&dmacount);
}
static const u32 dmactl_default =
(1 << DMA_CLEAR_COUNT_ENABLE)
/* erratum 0116 workaround part 1 (use POLLING) */
| (POLL_100_USEC << DESCRIPTOR_POLLING_RATE)
| (1 << DMA_VALID_BIT_POLLING_ENABLE)
| (1 << DMA_VALID_BIT_ENABLE)
| (1 << DMA_SCATTER_GATHER_ENABLE)
/* erratum 0116 workaround part 2 (no AUTOSTART) */
| (1 << DMA_ENABLE);
static inline void spin_stop_dma (struct net2280_dma_regs *dma)
{
handshake (&dma->dmactl, (1 << DMA_ENABLE), 0, 50);
}
static inline void stop_dma (struct net2280_dma_regs *dma)
{
writel (dmactl_default & ~(1 << DMA_ENABLE), &dma->dmactl);
spin_stop_dma (dma);
}
static void start_dma (struct net2280_ep *ep, struct net2280_request *req)
{
u32 tmp;
int clear_nak = 0;
struct net2280_dma_regs *dma = ep->dma;
/* FIXME can't use DMA for ZLPs */
/* previous OUT packet might have been short */
if (!ep->is_in && ((tmp = readl (&ep->regs->ep_stat))
& (1 << NAK_OUT_PACKETS)) != 0) {
writel ((1 << SHORT_PACKET_TRANSFERRED_INTERRUPT),
&ep->regs->ep_stat);
tmp = readl (&ep->regs->ep_avail);
if (tmp == 0)
clear_nak = 1;
else {
/* transfer all/some fifo data */
writel (req->req.dma, &dma->dmaaddr);
tmp = min (tmp, req->req.length);
/* dma irq, faking scatterlist status */
req->td->dmacount = cpu_to_le32 (req->req.length - tmp);
writel ((1 << DMA_DONE_INTERRUPT_ENABLE)
| tmp, &dma->dmacount);
writel ((1 << DMA_ENABLE), &dma->dmactl);
writel ((1 << DMA_START), &dma->dmastat);
return;
}
}
/* on this path we know there's no dma queue (yet) */
WARN_ON (readl (&dma->dmactl) & (1 << DMA_ENABLE));
tmp = dmactl_default;
/* force packet boundaries between dma requests, but prevent the
* controller from automagically writing a last "short" packet
* (zero length) unless the driver explicitly said to do that.
*/
if (ep->is_in) {
if (likely ((req->req.length % ep->ep.maxpacket) != 0
|| req->req.zero)) {
tmp |= (1 << DMA_FIFO_VALIDATE);
ep->in_fifo_validate = 1;
} else
ep->in_fifo_validate = 0;
}
/* init req->td, pointing to the current dummy */
req->td->dmadesc = cpu_to_le32 (ep->td_dma);
fill_dma_desc (ep, req, 1);
#ifdef USE_DMA_CHAINING
writel ( (1 << VALID_BIT)
| (ep->is_in << DMA_DIRECTION)
| 0, &dma->dmacount);
#else
req->td->dmacount |= cpu_to_le32 (1 << END_OF_CHAIN);
#endif
writel (req->td_dma, &dma->dmadesc);
writel (tmp, &dma->dmactl);
/* erratum 0116 workaround part 3: pci arbiter away from net2280 */
(void) readl (&ep->dev->pci->pcimstctl);
writel ((1 << DMA_START), &dma->dmastat);
/* recover from previous short read; erratum 0112 workaround #1 */
if (clear_nak)
writel ((1 << CLEAR_NAK_OUT_PACKETS), &ep->regs->ep_rsp);
}
static inline void
queue_dma (struct net2280_ep *ep, struct net2280_request *req, int valid)
{
struct net2280_dma *end;
dma_addr_t tmp;
/* swap new dummy for old, link; fill and maybe activate */
end = ep->dummy;
ep->dummy = req->td;
req->td = end;
tmp = ep->td_dma;
ep->td_dma = req->td_dma;
req->td_dma = tmp;
end->dmadesc = cpu_to_le32 (ep->td_dma);
fill_dma_desc (ep, req, valid);
}
static void
done (struct net2280_ep *ep, struct net2280_request *req, int status)
{
struct net2280 *dev;
unsigned stopped = ep->stopped;
list_del_init (&req->queue);
if (req->req.status == -EINPROGRESS)
req->req.status = status;
else
status = req->req.status;
dev = ep->dev;
if (req->mapped) {
pci_unmap_single (dev->pdev, req->req.dma, req->req.length,
ep->is_in ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
req->req.dma = DMA_ADDR_INVALID;
req->mapped = 0;
}
if (status && status != -ESHUTDOWN)
VDEBUG (dev, "complete %s req %p stat %d len %u/%u\n",
ep->ep.name, &req->req, status,
req->req.actual, req->req.length);
/* don't modify queue heads during completion callback */
ep->stopped = 1;
spin_unlock (&dev->lock);
req->req.complete (&ep->ep, &req->req);
spin_lock (&dev->lock);
ep->stopped = stopped;
}
/*-------------------------------------------------------------------------*/
static int
net2280_queue (struct usb_ep *_ep, struct usb_request *_req, int gfp_flags)
{
struct net2280_request *req;
struct net2280_ep *ep;
struct net2280 *dev;
unsigned long flags;
/* we always require a cpu-view buffer, so that we can
* always use pio (as fallback or whatever).
*/
req = container_of (_req, struct net2280_request, req);
if (!_req || !_req->complete || !_req->buf
|| !list_empty (&req->queue))
return -EINVAL;
if (_req->length > (~0 & DMA_BYTE_COUNT_MASK))
return -EDOM;
ep = container_of (_ep, struct net2280_ep, ep);
if (!_ep || (!ep->desc && ep->num != 0))
return -EINVAL;
dev = ep->dev;
if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
/* FIXME implement PIO fallback for ZLPs with DMA */
if (ep->dma && _req->length == 0)
return -EOPNOTSUPP;
/* set up dma mapping in case the caller didn't */
if (ep->dma && _req->dma == DMA_ADDR_INVALID) {
_req->dma = pci_map_single (dev->pdev, _req->buf, _req->length,
ep->is_in ? PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
req->mapped = 1;
}
#if 0
VDEBUG (dev, "%s queue req %p, len %d buf %p\n",
_ep->name, _req, _req->length, _req->buf);
#endif
spin_lock_irqsave (&dev->lock, flags);
_req->status = -EINPROGRESS;
_req->actual = 0;
req->dma_done = 0;
/* kickstart this i/o queue? */
if (list_empty (&ep->queue) && !ep->stopped) {
/* use DMA if the endpoint supports it, else pio */
if (ep->dma)
start_dma (ep, req);
else {
/* maybe there's no control data, just status ack */
if (ep->num == 0 && _req->length == 0)
goto done;
/* PIO ... stuff the fifo, or unblock it. */
if (ep->is_in)
write_fifo (ep, _req);
else if (list_empty (&ep->queue)) {
u32 s;
/* OUT FIFO might have packet(s) buffered */
s = readl (&ep->regs->ep_stat);
if ((s & (1 << FIFO_EMPTY)) == 0) {
/* note: _req->short_not_ok is
* ignored here since PIO _always_
* stops queue advance here, and
* _req->status doesn't change for
* short reads (only _req->actual)
*/
if (read_fifo (ep, req)) {
done (ep, req, 0);
/* don't queue it */
req = 0;
} else
s = readl (&ep->regs->ep_stat);
}
/* don't NAK, let the fifo fill */
if (req && (s & (1 << NAK_OUT_PACKETS)))
writel ((1 << CLEAR_NAK_OUT_PACKETS),
&ep->regs->ep_rsp);
}
}
} else if (ep->dma) {
int valid = 1;
if (ep->is_in) {
int expect;
/* preventing magic zlps is per-engine state, not
* per-transfer; irq logic must recover hiccups.
*/
expect = likely (req->req.zero
|| (req->req.length % ep->ep.maxpacket) != 0);
if (expect != ep->in_fifo_validate)
valid = 0;
}
queue_dma (ep, req, valid);
} /* else the irq handler advances the queue. */
if (req) {
done:
list_add_tail (&req->queue, &ep->queue);
}
spin_unlock_irqrestore (&dev->lock, flags);
/* pci writes may still be posted */
return 0;
}
static inline void
dma_done (
struct net2280_ep *ep,
struct net2280_request *req,
u32 dmacount,
int status
)
{
req->req.actual = req->req.length - (DMA_BYTE_COUNT_MASK & dmacount);
rmb ();
done (ep, req, status);
}
static void scan_dma_completions (struct net2280_ep *ep)
{
/* only look at descriptors that were "naturally" retired,
* so fifo and list head state won't matter
*/
while (!list_empty (&ep->queue)) {
struct net2280_request *req;
u32 tmp;
req = list_entry (ep->queue.next,
struct net2280_request, queue);
if (!req->valid)
break;
rmb ();
tmp = le32_to_cpup (&req->td->dmacount);
if ((tmp & (1 << VALID_BIT)) != 0)
break;
/* SHORT_PACKET_TRANSFERRED_INTERRUPT handles "usb-short"
* packets, including overruns, even when the transfer was
* exactly the length requested (dmacount now zero).
*/
if (!ep->is_in && (req->req.length % ep->ep.maxpacket) != 0) {
req->dma_done = 1;
break;
}
dma_done (ep, req, tmp, 0);
}
}
static void restart_dma (struct net2280_ep *ep)
{
struct net2280_request *req;
if (ep->stopped)
return;
req = list_entry (ep->queue.next, struct net2280_request, queue);
#ifdef USE_DMA_CHAINING
/* the 2280 will be processing the queue unless queue hiccups after
* the previous transfer:
* IN: wanted automagic zlp, head doesn't (or vice versa)
* OUT: was "usb-short", we must restart.
*/
if (!req->valid) {
struct net2280_request *entry, *prev = 0;
int qmode, reqmode, done = 0;
DEBUG (ep->dev, "%s dma hiccup td %p\n", ep->ep.name, req->td);
qmode = likely (req->req.zero
|| (req->req.length % ep->ep.maxpacket) != 0);
list_for_each_entry (entry, &ep->queue, queue) {
u32 dmacount;
if (entry != req)
continue;
dmacount = entry->td->dmacount;
if (!done) {
reqmode = likely (entry->req.zero
|| (entry->req.length
% ep->ep.maxpacket) != 0);
if (reqmode == qmode) {
entry->valid = 1;
dmacount |= valid_bit;
entry->td->dmacount = dmacount;
prev = entry;
continue;
} else {
prev->td->dmacount |= dma_done_ie;
done = 1;
}
}
/* walk the rest of the queue so unlinks behave */
entry->valid = 0;
dmacount &= ~valid_bit;
entry->td->dmacount = dmacount;
prev = entry;
}
start_dma (ep, req);
} else if (!ep->is_in
&& (readl (&ep->regs->ep_stat)
& (1 << NAK_OUT_PACKETS)) != 0)
start_dma (ep, req);
#else
start_dma (ep, req);
#endif
}
static inline void abort_dma (struct net2280_ep *ep)
{
/* abort the current transfer */
writel ((1 << DMA_ABORT), &ep->dma->dmastat);
/* collect completed transfers (except the current one) */
scan_dma_completions (ep);
}
/* dequeue ALL requests */
static void nuke (struct net2280_ep *ep)
{
struct net2280_request *req;
/* called with spinlock held */
ep->stopped = 1;
if (ep->dma)
abort_dma (ep);
while (!list_empty (&ep->queue)) {
req = list_entry (ep->queue.next,
struct net2280_request,
queue);
done (ep, req, -ESHUTDOWN);
}
}
/* dequeue JUST ONE request */
static int net2280_dequeue (struct usb_ep *_ep, struct usb_request *_req)
{
struct net2280_ep *ep;
struct net2280_request *req;
unsigned long flags;
u32 dmactl;
int stopped;
ep = container_of (_ep, struct net2280_ep, ep);
req = container_of (_req, struct net2280_request, req);
if (!_ep || (!ep->desc && ep->num != 0) || !_req)
return -EINVAL;
spin_lock_irqsave (&ep->dev->lock, flags);
stopped = ep->stopped;
/* pause dma while we scan the queue */
dmactl = 0;
ep->stopped = 1;
if (ep->dma) {
dmactl = readl (&ep->dma->dmactl);
writel (dmactl & ~(1 << DMA_ENABLE), &ep->dma->dmactl);
/* force synch, clean any completed requests */
spin_stop_dma (ep->dma);
scan_dma_completions (ep);
}
/* queue head may be partially complete. */
if (ep->queue.next == &req->queue) {
if (ep->dma) {
DEBUG (ep->dev, "unlink (%s) dma\n", _ep->name);
_req->status = -ECONNRESET;
abort_dma (ep);
if (likely (ep->queue.next == &req->queue))
dma_done (ep, req,
le32_to_cpup (&req->td->dmacount),
-ECONNRESET);
} else {
DEBUG (ep->dev, "unlink (%s) pio\n", _ep->name);
done (ep, req, -ECONNRESET);
}
req = 0;
#ifdef USE_DMA_CHAINING
/* patch up hardware chaining data */
} else if (ep->dma) {
if (req->queue.prev == ep->queue.next) {
writel (le32_to_cpu (req->td->dmadesc),
&ep->dma->dmadesc);
if (req->td->dmacount & dma_done_ie)
writel (readl (&ep->dma->dmacount)
| dma_done_ie,
&ep->dma->dmacount);
} else {
struct net2280_request *prev;
prev = list_entry (req->queue.prev,
struct net2280_request, queue);
prev->td->dmadesc = req->td->dmadesc;
if (req->td->dmacount & dma_done_ie)
prev->td->dmacount |= dma_done_ie;
}
#endif
}
if (req)
done (ep, req, -ECONNRESET);
ep->stopped = stopped;
if (ep->dma) {
/* turn off dma on inactive queues */
if (list_empty (&ep->queue))
stop_dma (ep->dma);
else if (!ep->stopped) {
/* resume current request, or start new one */
if (req)
writel (dmactl, &ep->dma->dmactl);
else
start_dma (ep, list_entry (ep->queue.next,
struct net2280_request, queue));
}
}
spin_unlock_irqrestore (&ep->dev->lock, flags);
return req ? 0 : -EOPNOTSUPP;
}
/*-------------------------------------------------------------------------*/
static int
net2280_set_halt (struct usb_ep *_ep, int value)
{
struct net2280_ep *ep;
ep = container_of (_ep, struct net2280_ep, ep);
if (!_ep || (!ep->desc && ep->num != 0))
return -EINVAL;
if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
if ((ep->desc->bmAttributes & 0x03) == USB_ENDPOINT_XFER_ISOC)
return -EINVAL;
VDEBUG (ep->dev, "%s %s halt\n", _ep->name, value ? "set" : "clear");
/* set/clear, then synch memory views with the device */
if (value)
set_halt (ep);
else
clear_halt (ep);
(void) readl (&ep->regs->ep_rsp);
return 0;
}
static int
net2280_fifo_status (struct usb_ep *_ep)
{
struct net2280_ep *ep;
u32 avail;
ep = container_of (_ep, struct net2280_ep, ep);
if (!_ep || (!ep->desc && ep->num != 0))
return -EINVAL;
if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
return -ESHUTDOWN;
avail = readl (&ep->regs->ep_avail);
if (ep->is_in)
avail = ep->fifo_size - avail;
return avail;
}
static void
net2280_fifo_flush (struct usb_ep *_ep)
{
struct net2280_ep *ep;
ep = container_of (_ep, struct net2280_ep, ep);
if (!_ep || (!ep->desc && ep->num != 0))
return;
if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
return;
writel ((1 << FIFO_FLUSH), &ep->regs->ep_stat);
(void) readl (&ep->regs->ep_rsp);
}
static struct usb_ep_ops net2280_ep_ops = {
.enable = net2280_enable,
.disable = net2280_disable,
.alloc_request = net2280_alloc_request,
.free_request = net2280_free_request,
.alloc_buffer = net2280_alloc_buffer,
.free_buffer = net2280_free_buffer,
.queue = net2280_queue,
.dequeue = net2280_dequeue,
.set_halt = net2280_set_halt,
.fifo_status = net2280_fifo_status,
.fifo_flush = net2280_fifo_flush,
};
/*-------------------------------------------------------------------------*/
static int net2280_get_frame (struct usb_gadget *_gadget)
{
struct net2280 *dev;
unsigned long flags;
u16 retval;
if (!_gadget)
return -ENODEV;
dev = container_of (_gadget, struct net2280, gadget);
spin_lock_irqsave (&dev->lock, flags);
retval = get_idx_reg (dev->regs, REG_FRAME) & 0x03ff;
spin_unlock_irqrestore (&dev->lock, flags);
return retval;
}
static int net2280_wakeup (struct usb_gadget *_gadget)
{
struct net2280 *dev;
if (!_gadget)
return 0;
dev = container_of (_gadget, struct net2280, gadget);
writel (1 << GENERATE_RESUME, dev->usb->usbstat);
/* pci writes may still be posted */
return 0;
}
static const struct usb_gadget_ops net2280_ops = {
.get_frame = net2280_get_frame,
.wakeup = net2280_wakeup,
// .set_selfpowered = net2280_set_selfpowered,
};
/*-------------------------------------------------------------------------*/
#ifdef USE_SYSFS_DEBUG_FILES
/* "function" sysfs attribute */
static ssize_t
show_function (struct device *_dev, char *buf)
{
struct net2280 *dev = dev_get_drvdata (_dev);
if (!dev->driver
|| !dev->driver->function
|| strlen (dev->driver->function) > PAGE_SIZE)
return 0;
return snprintf (buf, PAGE_SIZE, "%s\n", dev->driver->function);
}
static DEVICE_ATTR (function, S_IRUGO, show_function, NULL);
static ssize_t
show_registers (struct device *_dev, char *buf)
{
struct net2280 *dev;
char *next;
unsigned size, t;
unsigned long flags;
int i;
u32 t1, t2;
char *s;
dev = dev_get_drvdata (_dev);
next = buf;
size = PAGE_SIZE;
spin_lock_irqsave (&dev->lock, flags);
if (dev->driver)
s = dev->driver->driver.name;
else
s = "(none)";
/* Main Control Registers */
t = snprintf (next, size, "%s " DRIVER_VERSION "\n"
"devinit %03x fifoctl %08x gadget '%s'\n"
"pci irqenb0 %02x irqenb1 %08x "
"irqstat0 %04x irqstat1 %08x\n",
driver_name,
readl (&dev->regs->devinit),
readl (&dev->regs->fifoctl),
s,
readl (&dev->regs->pciirqenb0),
readl (&dev->regs->pciirqenb1),
readl (&dev->regs->irqstat0),
readl (&dev->regs->irqstat1));
size -= t;
next += t;
/* USB Control Registers */
t1 = readl (&dev->usb->usbctl);
t2 = readl (&dev->usb->usbstat);
if (t1 & (1 << VBUS_PIN)) {
if (t2 & (1 << HIGH_SPEED))
s = "high speed";
else if (dev->gadget.speed == USB_SPEED_UNKNOWN)
s = "powered";
else
s = "full speed";
/* full speed bit (6) not working?? */
} else
s = "not attached";
t = snprintf (next, size,
"stdrsp %08x usbctl %08x usbstat %08x "
"addr 0x%02x (%s)\n",
readl (&dev->usb->stdrsp), t1, t2,
readl (&dev->usb->ouraddr), s);
size -= t;
next += t;
/* PCI Master Control Registers */
/* DMA Control Registers */
/* Configurable EP Control Registers */
for (i = 0; i < 7; i++) {
struct net2280_ep *ep;
ep = &dev->ep [i];
if (i && !ep->desc)
continue;
t1 = readl (&ep->regs->ep_cfg);
t = snprintf (next, size,
"%s\tcfg %05x rsp %02x enb %02x ",
ep->ep.name, t1,
readl (&ep->regs->ep_rsp) & 0xff,
readl (&ep->regs->ep_irqenb));
size -= t;
next += t;
t = snprintf (next, size,
"stat %08x avail %04x "
"(ep%d%s-%s)%s\n",
readl (&ep->regs->ep_stat),
readl (&ep->regs->ep_avail),
t1 & 0x0f, DIR_STRING (t1),
type_string (t1 >> 8),
ep->stopped ? "*" : "");
size -= t;
next += t;
if (!ep->dma)
continue;
t = snprintf (next, size,
" dma\tctl %08x stat %08x count %08x\n"
"\taddr %08x desc %08x\n",
readl (&ep->dma->dmactl),
readl (&ep->dma->dmastat),
readl (&ep->dma->dmacount),
readl (&ep->dma->dmaaddr),
readl (&ep->dma->dmadesc));
size -= t;
next += t;
}
/* Indexed Registers */
// none yet
/* Statistics */
t = snprintf (next, size, "irqs: ");
size -= t;
next += t;
for (i = 0; i < 7; i++) {
struct net2280_ep *ep;
ep = &dev->ep [i];
if (i && !ep->irqs)
continue;
t = snprintf (next, size, " %s/%ld", ep->ep.name, ep->irqs);
size -= t;
next += t;
}
t = snprintf (next, size, "\n");
size -= t;
next += t;
spin_unlock_irqrestore (&dev->lock, flags);
return PAGE_SIZE - size;
}
static DEVICE_ATTR (registers, S_IRUGO, show_registers, NULL);
static ssize_t
show_queues (struct device *_dev, char *buf)
{
struct net2280 *dev;
char *next;
unsigned size;
unsigned long flags;
int i;
dev = dev_get_drvdata (_dev);
next = buf;
size = PAGE_SIZE;
spin_lock_irqsave (&dev->lock, flags);
for (i = 0; i < 7; i++) {
struct net2280_ep *ep = &dev->ep [i];
struct net2280_request *req;
int t;
if (i != 0) {
const struct usb_endpoint_descriptor *d;
d = ep->desc;
if (!d)
continue;
t = d->bEndpointAddress;
t = snprintf (next, size,
"%s (ep%d%s-%s) max %04x %s\n",
ep->ep.name, t & USB_ENDPOINT_NUMBER_MASK,
(t & USB_DIR_IN) ? "in" : "out",
({ char *val;
switch (d->bmAttributes & 0x03) {
case USB_ENDPOINT_XFER_BULK:
val = "bulk"; break;
case USB_ENDPOINT_XFER_INT:
val = "intr"; break;
default:
val = "iso"; break;
}; val; }),
le16_to_cpu (d->wMaxPacketSize) & 0x1fff,
ep->dma ? "dma" : "pio"
);
} else /* ep0 should only have one transfer queued */
t = snprintf (next, size, "ep0 max 64 pio %s\n",
ep->is_in ? "in" : "out");
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
if (list_empty (&ep->queue)) {
t = snprintf (next, size, "\t(nothing queued)\n");
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
continue;
}
list_for_each_entry (req, &ep->queue, queue) {
if (ep->dma && req->td_dma == readl (&ep->dma->dmadesc))
t = snprintf (next, size,
"\treq %p len %d/%d "
"buf %p (dmacount %08x)\n",
&req->req, req->req.actual,
req->req.length, req->req.buf,
readl (&ep->dma->dmacount));
else
t = snprintf (next, size,
"\treq %p len %d/%d buf %p\n",
&req->req, req->req.actual,
req->req.length, req->req.buf);
if (t <= 0 || t > size)
goto done;
size -= t;
next += t;
}
}
done:
spin_unlock_irqrestore (&dev->lock, flags);
return PAGE_SIZE - size;
}
static DEVICE_ATTR (queues, S_IRUGO, show_queues, NULL);
#else
#define device_create_file(a,b) do {} while (0)
#define device_remove_file device_create_file
#endif
/*-------------------------------------------------------------------------*/
/* another driver-specific mode might be a request type doing dma
* to/from another device fifo instead of to/from memory.
*/
static void set_fifo_mode (struct net2280 *dev, int mode)
{
/* keeping high bits preserves BAR2 */
writel ((0xffff << PCI_BASE2_RANGE) | mode, &dev->regs->fifoctl);
/* always ep-{a,b,e,f} ... maybe not ep-c or ep-d */
INIT_LIST_HEAD (&dev->gadget.ep_list);
list_add_tail (&dev->ep [1].ep.ep_list, &dev->gadget.ep_list);
list_add_tail (&dev->ep [2].ep.ep_list, &dev->gadget.ep_list);
switch (mode) {
case 0:
list_add_tail (&dev->ep [3].ep.ep_list, &dev->gadget.ep_list);
list_add_tail (&dev->ep [4].ep.ep_list, &dev->gadget.ep_list);
dev->ep [1].fifo_size = dev->ep [2].fifo_size = 1024;
break;
case 1:
dev->ep [1].fifo_size = dev->ep [2].fifo_size = 2048;
break;
case 2:
list_add_tail (&dev->ep [3].ep.ep_list, &dev->gadget.ep_list);
dev->ep [1].fifo_size = 2048;
dev->ep [2].fifo_size = 1024;
break;
}
/* fifo sizes for ep0, ep-c, ep-d, ep-e, and ep-f never change */
list_add_tail (&dev->ep [5].ep.ep_list, &dev->gadget.ep_list);
list_add_tail (&dev->ep [6].ep.ep_list, &dev->gadget.ep_list);
}
/**
* net2280_set_fifo_mode - change allocation of fifo buffers
* @gadget: access to the net2280 device that will be updated
* @mode: 0 for default, four 1kB buffers (ep-a through ep-d);
* 1 for two 2kB buffers (ep-a and ep-b only);
* 2 for one 2kB buffer (ep-a) and two 1kB ones (ep-b, ep-c).
*
* returns zero on success, else negative errno. when this succeeds,
* the contents of gadget->ep_list may have changed.
*
* you may only call this function when endpoints a-d are all disabled.
* use it whenever extra hardware buffering can help performance, such
* as before enabling "high bandwidth" interrupt endpoints that use
* maxpacket bigger than 512 (when double buffering would otherwise
* be unavailable).
*/
int net2280_set_fifo_mode (struct usb_gadget *gadget, int mode)
{
int i;
struct net2280 *dev;
int status = 0;
unsigned long flags;
if (!gadget)
return -ENODEV;
dev = container_of (gadget, struct net2280, gadget);
spin_lock_irqsave (&dev->lock, flags);
for (i = 1; i <= 4; i++)
if (dev->ep [i].desc) {
status = -EINVAL;
break;
}
if (mode < 0 || mode > 2)
status = -EINVAL;
if (status == 0)
set_fifo_mode (dev, mode);
spin_unlock_irqrestore (&dev->lock, flags);
if (status == 0) {
if (mode == 1)
DEBUG (dev, "fifo: ep-a 2K, ep-b 2K\n");
else if (mode == 2)
DEBUG (dev, "fifo: ep-a 2K, ep-b 1K, ep-c 1K\n");
/* else all are 1K */
}
return status;
}
EXPORT_SYMBOL (net2280_set_fifo_mode);
/*-------------------------------------------------------------------------*/
/* keeping it simple:
* - one bus driver, initted first;
* - one function driver, initted second
*
* most of the work to support multiple net2280 controllers would
* be to associate this gadget driver (yes?) with all of them, or
* perhaps to bind specific drivers to specific devices.
*/
static struct net2280 *the_controller;
static void usb_reset (struct net2280 *dev)
{
u32 tmp;
/* force immediate bus disconnect, and synch through pci */
writel (0, &dev->usb->usbctl);
dev->gadget.speed = USB_SPEED_UNKNOWN;
(void) readl (&dev->usb->usbctl);
net2280_led_init (dev);
/* disable automatic responses, and irqs */
writel (0, &dev->usb->stdrsp);
writel (0, &dev->regs->pciirqenb0);
writel (0, &dev->regs->pciirqenb1);
/* clear old dma and irq state */
for (tmp = 0; tmp < 4; tmp++) {
writel ((1 << DMA_ABORT), &dev->dma [tmp].dmastat);
stop_dma (&dev->dma [tmp]);
}
writel (~0, &dev->regs->irqstat0),
writel (~(1 << SUSPEND_REQUEST_INTERRUPT), &dev->regs->irqstat1),
/* reset, and enable pci */
tmp = readl (&dev->regs->devinit)
| (1 << PCI_ENABLE)
| (1 << FIFO_SOFT_RESET)
| (1 << USB_SOFT_RESET)
| (1 << M8051_RESET);
writel (tmp, &dev->regs->devinit);
/* standard fifo and endpoint allocations */
set_fifo_mode (dev, 0);
}
static void usb_reinit (struct net2280 *dev)
{
u32 tmp;
int init_dma;
/* use_dma changes are ignored till next device re-init */
init_dma = use_dma;
/* basic endpoint init */
for (tmp = 0; tmp < 7; tmp++) {
struct net2280_ep *ep = &dev->ep [tmp];
ep->ep.name = ep_name [tmp];
ep->dev = dev;
ep->num = tmp;
if (tmp > 0 && tmp <= 4) {
ep->fifo_size = 1024;
if (init_dma)
ep->dma = &dev->dma [tmp - 1];
} else
ep->fifo_size = 64;
ep->regs = &dev->epregs [tmp];
ep_reset (dev->regs, ep);
}
dev->ep [0].ep.maxpacket = 64;
dev->ep [5].ep.maxpacket = 64;
dev->ep [6].ep.maxpacket = 64;
dev->gadget.ep0 = &dev->ep [0].ep;
dev->ep [0].stopped = 0;
INIT_LIST_HEAD (&dev->gadget.ep0->ep_list);
/* we want to prevent lowlevel/insecure access from the USB host,
* but erratum 0119 means this enable bit is ignored
*/
for (tmp = 0; tmp < 5; tmp++)
writel (EP_DONTUSE, &dev->dep [tmp].dep_cfg);
}
static void ep0_start (struct net2280 *dev)
{
writel ( (1 << SET_EP_HIDE_STATUS_PHASE)
| (1 << CLEAR_NAK_OUT_PACKETS)
| (1 << CLEAR_CONTROL_STATUS_PHASE_HANDSHAKE)
, &dev->epregs [0].ep_rsp);
/*
* hardware optionally handles a bunch of standard requests
* that the API hides from drivers anyway. have it do so.
* endpoint status/features are handled in software, to
* help pass tests for some dubious behavior.
*/
writel ( (1 << SET_TEST_MODE)
| (1 << SET_ADDRESS)
| (1 << DEVICE_SET_CLEAR_DEVICE_REMOTE_WAKEUP)
| (1 << GET_DEVICE_STATUS)
| (1 << GET_INTERFACE_STATUS)
, &dev->usb->stdrsp);
writel ( (1 << USB_ROOT_PORT_WAKEUP_ENABLE)
| (1 << SELF_POWERED_USB_DEVICE)
| (1 << REMOTE_WAKEUP_SUPPORT)
| (1 << USB_DETECT_ENABLE)
| (1 << DEVICE_REMOTE_WAKEUP_ENABLE)
, &dev->usb->usbctl);
/* enable irqs so we can see ep0 and general operation */
writel ( (1 << SETUP_PACKET_INTERRUPT_ENABLE)
| (1 << ENDPOINT_0_INTERRUPT_ENABLE)
, &dev->regs->pciirqenb0);
writel ( (1 << PCI_INTERRUPT_ENABLE)
| (1 << PCI_MASTER_ABORT_RECEIVED_INTERRUPT_ENABLE)
| (1 << PCI_TARGET_ABORT_RECEIVED_INTERRUPT_ENABLE)
| (1 << PCI_RETRY_ABORT_INTERRUPT_ENABLE)
| (1 << VBUS_INTERRUPT_ENABLE)
| (1 << ROOT_PORT_RESET_INTERRUPT_ENABLE)
, &dev->regs->pciirqenb1);
/* don't leave any writes posted */
(void) readl (&dev->usb->usbctl);
}
/* when a driver is successfully registered, it will receive
* control requests including set_configuration(), which enables
* non-control requests. then usb traffic follows until a
* disconnect is reported. then a host may connect again, or
* the driver might get unbound.
*/
int usb_gadget_register_driver (struct usb_gadget_driver *driver)
{
struct net2280 *dev = the_controller;
int retval;
unsigned i;
/* insist on high speed support from the driver, since
* (dev->usb->xcvrdiag & FORCE_FULL_SPEED_MODE)
* "must not be used in normal operation"
*/
if (!driver
|| driver->speed != USB_SPEED_HIGH
|| !driver->bind
|| !driver->unbind
|| !driver->setup)
return -EINVAL;
if (!dev)
return -ENODEV;
if (dev->driver)
return -EBUSY;
for (i = 0; i < 7; i++)
dev->ep [i].irqs = 0;
/* hook up the driver ... */
dev->driver = driver;
dev->gadget.dev.driver = &driver->driver;
retval = driver->bind (&dev->gadget);
if (retval) {
DEBUG (dev, "bind to driver %s --> %d\n",
driver->driver.name, retval);
dev->driver = 0;
dev->gadget.dev.driver = 0;
return retval;
}
// FIXME
// driver_register (&driver->driver);
// device_register (&dev->gadget.dev);
device_create_file (&dev->pdev->dev, &dev_attr_function);
device_create_file (&dev->pdev->dev, &dev_attr_queues);
/* ... then enable host detection and ep0; and we're ready
* for set_configuration as well as eventual disconnect.
*/
net2280_led_active (dev, 1);
ep0_start (dev);
DEBUG (dev, "%s ready, usbctl %08x stdrsp %08x\n",
driver->driver.name,
readl (&dev->usb->usbctl),
readl (&dev->usb->stdrsp));
/* pci writes may still be posted */
return 0;
}
EXPORT_SYMBOL (usb_gadget_register_driver);
static void
stop_activity (struct net2280 *dev, struct usb_gadget_driver *driver)
{
int i;
/* don't disconnect if it's not connected */
if (dev->gadget.speed == USB_SPEED_UNKNOWN)
driver = 0;
/* stop hardware; prevent new request submissions;
* and kill any outstanding requests.
*/
usb_reset (dev);
for (i = 0; i < 7; i++)
nuke (&dev->ep [i]);
/* report disconnect; the driver is already quiesced */
if (driver) {
spin_unlock (&dev->lock);
driver->disconnect (&dev->gadget);
spin_lock (&dev->lock);
}
usb_reinit (dev);
}
int usb_gadget_unregister_driver (struct usb_gadget_driver *driver)
{
struct net2280 *dev = the_controller;
unsigned long flags;
if (!dev)
return -ENODEV;
if (!driver || driver != dev->driver)
return -EINVAL;
spin_lock_irqsave (&dev->lock, flags);
stop_activity (dev, driver);
spin_unlock_irqrestore (&dev->lock, flags);
driver->unbind (&dev->gadget);
dev->driver = 0;
net2280_led_active (dev, 0);
device_remove_file (&dev->pdev->dev, &dev_attr_function);
device_remove_file (&dev->pdev->dev, &dev_attr_queues);
// FIXME
// device_unregister()
// driver_unregister (&driver->driver);
DEBUG (dev, "unregistered driver '%s'\n", driver->driver.name);
return 0;
}
EXPORT_SYMBOL (usb_gadget_unregister_driver);
/*-------------------------------------------------------------------------*/
/* handle ep0, ep-e, ep-f with 64 byte packets: packet per irq.
* also works for dma-capable endpoints, in pio mode or just
* to manually advance the queue after short OUT transfers.
*/
static void handle_ep_small (struct net2280_ep *ep)
{
struct net2280_request *req;
u32 t;
/* 0 error, 1 mid-data, 2 done */
int mode = 1;
if (!list_empty (&ep->queue))
req = list_entry (ep->queue.next,
struct net2280_request, queue);
else
req = 0;
/* ack all, and handle what we care about */
t = readl (&ep->regs->ep_stat);
ep->irqs++;
#if 0
VDEBUG (ep->dev, "%s ack ep_stat %08x, req %p\n",
ep->ep.name, t, req ? &req->req : 0);
#endif
writel (t & ~(1 << NAK_OUT_PACKETS), &ep->regs->ep_stat);
/* for ep0, monitor token irqs to catch data stage length errors
* and to synchronize on status.
*
* also, to defer reporting of protocol stalls ... here's where
* data or status first appears, handling stalls here should never
* cause trouble on the host side..
*
* control requests could be slightly faster without token synch for
* status, but status can jam up that way.
*/
if (unlikely (ep->num == 0)) {
if (ep->is_in) {
/* status; stop NAKing */
if (t & (1 << DATA_OUT_PING_TOKEN_INTERRUPT)) {
if (ep->dev->protocol_stall)
set_halt (ep);
mode = 2;
/* reply to extra IN tokens with a zlp */
} else if (t & (1 << DATA_IN_TOKEN_INTERRUPT)) {
if (ep->dev->protocol_stall) {
set_halt (ep);
mode = 2;
} else if (!req)
write_fifo (ep, 0);
}
} else {
/* status; stop NAKing */
if (t & (1 << DATA_IN_TOKEN_INTERRUPT)) {
if (ep->dev->protocol_stall)
set_halt (ep);
mode = 2;
/* an extra OUT token is an error */
} else if (((t & (1 << DATA_OUT_PING_TOKEN_INTERRUPT))
&& req
&& req->req.actual == req->req.length)
|| !req) {
ep->dev->protocol_stall = 1;
set_halt (ep);
ep->stopped = 1;
if (req)
done (ep, req, -EOVERFLOW);
req = 0;
}
}
}
if (unlikely (!req))
return;
/* manual DMA queue advance after short OUT */
if (likely (ep->dma != 0)) {
if (t & (1 << SHORT_PACKET_TRANSFERRED_INTERRUPT)) {
u32 count;
/* TRANSFERRED works around OUT_DONE erratum 0112.
* we expect (N <= maxpacket) bytes; host wrote M.
* iff (M < N) we won't ever see a DMA interrupt.
*/
count = readl (&ep->dma->dmacount);
count &= DMA_BYTE_COUNT_MASK;
if (!req->dma_done) {
/* dma can finish with the FIFO non-empty,
* on (M > N) errors.
*/
while (count && (t & (1 << FIFO_EMPTY)) == 0) {
cpu_relax ();
t = readl (&ep->regs->ep_stat);
count = readl (&ep->dma->dmacount);
count &= DMA_BYTE_COUNT_MASK;
}
}
/* stop DMA, leave ep NAKing */
writel ((1 << DMA_ABORT), &ep->dma->dmastat);
spin_stop_dma (ep->dma);
/* buffer might have been too small */
t = readl (&ep->regs->ep_avail);
if (t != 0)
DEBUG (ep->dev, "%s dma, discard %d len %d\n",
ep->ep.name, t, count);
dma_done (ep, req, count, t ? -EOVERFLOW : 0);
/* also flush to prevent erratum 0106 trouble */
if (t || ep->dev->chiprev == 0x0100)
out_flush (ep);
/* restart dma (still NAKing OUT!) if needed */
if (!list_empty (&ep->queue))
restart_dma (ep);
} else
DEBUG (ep->dev, "%s dma ep_stat %08x ??\n",
ep->ep.name, t);
return;
/* data packet(s) received (in the fifo, OUT) */
} else if (t & (1 << DATA_PACKET_RECEIVED_INTERRUPT)) {
if (read_fifo (ep, req) && ep->num != 0)
mode = 2;
/* data packet(s) transmitted (IN) */
} else if (t & (1 << DATA_PACKET_TRANSMITTED_INTERRUPT)) {
unsigned len;
len = req->req.length - req->req.actual;
len = min (ep->ep.maxpacket, len);
req->req.actual += len;
/* if we wrote it all, we're usually done */
if (req->req.actual == req->req.length) {
if (ep->num == 0) {
/* wait for control status */
if (mode != 2)
req = 0;
} else if (!req->req.zero || len != ep->ep.maxpacket)
mode = 2;
}
/* there was nothing to do ... */
} else if (mode == 1)
return;
/* done */
if (mode == 2) {
/* stream endpoints often resubmit/unlink in completion */
done (ep, req, 0);
/* maybe advance queue to next request */
if (ep->num == 0) {
allow_status (ep);
req = 0;
} else {
if (!list_empty (&ep->queue) && !ep->stopped)
req = list_entry (ep->queue.next,
struct net2280_request, queue);
else
req = 0;
if (req && !ep->is_in)
stop_out_naking (ep);
}
}
/* is there a buffer for the next packet?
* for best streaming performance, make sure there is one.
*/
if (req && !ep->stopped) {
/* load IN fifo with next packet (may be zlp) */
if (t & (1 << DATA_PACKET_TRANSMITTED_INTERRUPT))
write_fifo (ep, &req->req);
}
}
static struct net2280_ep *
get_ep_by_addr (struct net2280 *dev, u16 wIndex)
{
struct net2280_ep *ep;
if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
return &dev->ep [0];
list_for_each_entry (ep, &dev->gadget.ep_list, ep.ep_list) {
u8 bEndpointAddress;
if (!ep->desc)
continue;
bEndpointAddress = ep->desc->bEndpointAddress;
if ((wIndex ^ bEndpointAddress) & USB_DIR_IN)
continue;
if ((wIndex & 0x0f) == (bEndpointAddress & 0x0f))
return ep;
}
return 0;
}
static void handle_stat0_irqs (struct net2280 *dev, u32 stat)
{
struct net2280_ep *ep;
u32 num, scratch;
/* most of these don't need individual acks */
stat &= ~(1 << INTA_ASSERTED);
if (!stat)
return;
// DEBUG (dev, "irqstat0 %04x\n", stat);
/* starting a control request? */
if (unlikely (stat & (1 << SETUP_PACKET_INTERRUPT))) {
union {
u32 raw [2];
struct usb_ctrlrequest r;
} u;
int tmp = 0;
struct net2280_request *req;
if (dev->gadget.speed == USB_SPEED_UNKNOWN) {
if (readl (&dev->usb->usbstat) & (1 << HIGH_SPEED))
dev->gadget.speed = USB_SPEED_HIGH;
else
dev->gadget.speed = USB_SPEED_FULL;
net2280_led_speed (dev, dev->gadget.speed);
DEBUG (dev, "%s speed\n",
(dev->gadget.speed == USB_SPEED_HIGH)
? "high" : "full");
}
ep = &dev->ep [0];
ep->irqs++;
/* make sure any leftover request state is cleared */
stat &= ~(1 << ENDPOINT_0_INTERRUPT);
while (!list_empty (&ep->queue)) {
req = list_entry (ep->queue.next,
struct net2280_request, queue);
done (ep, req, (req->req.actual == req->req.length)
? 0 : -EPROTO);
}
ep->stopped = 0;
dev->protocol_stall = 0;
writel ( (1 << TIMEOUT)
| (1 << USB_STALL_SENT)
| (1 << USB_IN_NAK_SENT)
| (1 << USB_IN_ACK_RCVD)
| (1 << USB_OUT_PING_NAK_SENT)
| (1 << USB_OUT_ACK_SENT)
| (1 << FIFO_OVERFLOW)
| (1 << FIFO_UNDERFLOW)
| (1 << SHORT_PACKET_OUT_DONE_INTERRUPT)
| (1 << SHORT_PACKET_TRANSFERRED_INTERRUPT)
| (1 << DATA_PACKET_RECEIVED_INTERRUPT)
| (1 << DATA_PACKET_TRANSMITTED_INTERRUPT)
| (1 << DATA_OUT_PING_TOKEN_INTERRUPT)
| (1 << DATA_IN_TOKEN_INTERRUPT)
, &ep->regs->ep_stat);
u.raw [0] = readl (&dev->usb->setup0123);
u.raw [1] = readl (&dev->usb->setup4567);
le16_to_cpus (&u.r.wValue);
le16_to_cpus (&u.r.wIndex);
le16_to_cpus (&u.r.wLength);
/* ack the irq */
writel (1 << SETUP_PACKET_INTERRUPT, &dev->regs->irqstat0);
stat ^= (1 << SETUP_PACKET_INTERRUPT);
/* watch control traffic at the token level, and force
* synchronization before letting the status stage happen.
*/
ep->is_in = (u.r.bRequestType & USB_DIR_IN) != 0;
if (ep->is_in)
scratch = (1 << DATA_PACKET_TRANSMITTED_INTERRUPT)
| (1 << DATA_OUT_PING_TOKEN_INTERRUPT)
| (1 << DATA_IN_TOKEN_INTERRUPT);
else
scratch = (1 << DATA_PACKET_RECEIVED_INTERRUPT)
| (1 << DATA_OUT_PING_TOKEN_INTERRUPT)
| (1 << DATA_IN_TOKEN_INTERRUPT);
writel (scratch, &dev->epregs [0].ep_irqenb);
/* we made the hardware handle most lowlevel requests;
* everything else goes uplevel to the gadget code.
*/
switch (u.r.bRequest) {
case USB_REQ_GET_STATUS: {
struct net2280_ep *e;
u16 status;
if (u.r.bRequestType != (USB_DIR_IN|USB_RECIP_ENDPOINT))
goto delegate;
if ((e = get_ep_by_addr (dev, u.r.wIndex)) == 0
|| u.r.wLength > 2)
goto do_stall;
if (readl (&e->regs->ep_rsp)
& (1 << SET_ENDPOINT_HALT))
status = cpu_to_le16 (1);
else
status = cpu_to_le16 (0);
/* don't bother with a request object! */
writel (0, &dev->epregs [0].ep_irqenb);
set_fifo_bytecount (ep, u.r.wLength);
writel (status, &dev->epregs [0].ep_data);
allow_status (ep);
goto next_endpoints;
}
break;
case USB_REQ_CLEAR_FEATURE: {
struct net2280_ep *e;
if (u.r.bRequestType != USB_RECIP_ENDPOINT)
goto delegate;
if (u.r.wIndex != 0 /* HALT feature */
|| u.r.wLength != 0)
goto do_stall;
if ((e = get_ep_by_addr (dev, u.r.wIndex)) == 0)
goto do_stall;
clear_halt (e);
}
break;
case USB_REQ_SET_FEATURE: {
struct net2280_ep *e;
if (u.r.bRequestType != USB_RECIP_ENDPOINT)
goto delegate;
if (u.r.wIndex != 0 /* HALT feature */
|| u.r.wLength != 0)
goto do_stall;
if ((e = get_ep_by_addr (dev, u.r.wIndex)) == 0)
goto do_stall;
set_halt (e);
}
break;
default:
delegate:
VDEBUG (dev, "setup %02x.%02x v%04x i%04x "
"ep_cfg %08x\n",
u.r.bRequestType, u.r.bRequest,
u.r.wValue, u.r.wIndex,
readl (&ep->regs->ep_cfg));
spin_unlock (&dev->lock);
tmp = dev->driver->setup (&dev->gadget, &u.r);
spin_lock (&dev->lock);
}
/* stall ep0 on error */
if (tmp < 0) {
do_stall:
VDEBUG (dev, "req %02x.%02x protocol STALL; stat %d\n",
u.r.bRequestType, u.r.bRequest, tmp);
dev->protocol_stall = 1;
/* when there's no data, queueing a response is optional */
} else if (list_empty (&ep->queue)) {
if (u.r.wLength == 0) {
/* done() not possible/requested */
allow_status (ep);
} else {
DEBUG (dev, "req %02x.%02x v%04x "
"gadget error, len %d, stat %d\n",
u.r.bRequestType, u.r.bRequest,
le16_to_cpu (u.r.wValue),
u.r.wLength, tmp);
dev->protocol_stall = 1;
}
}
/* some in/out token irq should follow; maybe stall then. */
}
next_endpoints:
/* endpoint data irq ? */
scratch = stat & 0x7f;
stat &= ~0x7f;
for (num = 0; scratch; num++) {
u32 t;
/* do this endpoint's FIFO and queue need tending? */
t = 1 << num;
if ((scratch & t) == 0)
continue;
scratch ^= t;
ep = &dev->ep [num];
handle_ep_small (ep);
}
if (stat)
DEBUG (dev, "unhandled irqstat0 %08x\n", stat);
}
#define DMA_INTERRUPTS ( \
(1 << DMA_D_INTERRUPT) \
| (1 << DMA_C_INTERRUPT) \
| (1 << DMA_B_INTERRUPT) \
| (1 << DMA_A_INTERRUPT))
#define PCI_ERROR_INTERRUPTS ( \
(1 << PCI_MASTER_ABORT_RECEIVED_INTERRUPT) \
| (1 << PCI_TARGET_ABORT_RECEIVED_INTERRUPT) \
| (1 << PCI_RETRY_ABORT_INTERRUPT))
static void handle_stat1_irqs (struct net2280 *dev, u32 stat)
{
struct net2280_ep *ep;
u32 tmp, num, scratch;
/* after disconnect there's nothing else to do! */
tmp = (1 << VBUS_INTERRUPT) | (1 << ROOT_PORT_RESET_INTERRUPT);
if (stat & tmp) {
writel (tmp, &dev->regs->irqstat1);
if (((stat & (1 << ROOT_PORT_RESET_INTERRUPT)) != 0
|| (readl (&dev->usb->usbctl) & (1 << VBUS_PIN)) == 0
) && dev->gadget.speed != USB_SPEED_UNKNOWN) {
DEBUG (dev, "disconnect %s\n",
dev->driver->driver.name);
stop_activity (dev, dev->driver);
ep0_start (dev);
return;
}
stat &= ~tmp;
/* vBUS can bounce ... one of many reasons to ignore the
* notion of hotplug events on bus connect/disconnect!
*/
if (!stat)
return;
}
/* NOTE: we don't actually suspend the hardware; that starts to
* interact with PCI power management, and needs something like a
* controller->suspend() call to clear SUSPEND_REQUEST_INTERRUPT.
* we shouldn't see resume interrupts.
* for rev 0100, this also avoids erratum 0102.
*/
tmp = (1 << SUSPEND_REQUEST_CHANGE_INTERRUPT);
if (stat & tmp) {
if (dev->driver->suspend)
dev->driver->suspend (&dev->gadget);
stat &= ~tmp;
}
stat &= ~(1 << SUSPEND_REQUEST_INTERRUPT);
/* clear any other status/irqs */
if (stat)
writel (stat, &dev->regs->irqstat1);
/* some status we can just ignore */
stat &= ~((1 << CONTROL_STATUS_INTERRUPT)
| (1 << RESUME_INTERRUPT)
| (1 << SOF_INTERRUPT));
if (!stat)
return;
// DEBUG (dev, "irqstat1 %08x\n", stat);
/* DMA status, for ep-{a,b,c,d} */
scratch = stat & DMA_INTERRUPTS;
stat &= ~DMA_INTERRUPTS;
scratch >>= 9;
for (num = 0; scratch; num++) {
struct net2280_dma_regs *dma;
tmp = 1 << num;
if ((tmp & scratch) == 0)
continue;
scratch ^= tmp;
ep = &dev->ep [num + 1];
dma = ep->dma;
if (!dma)
continue;
/* clear ep's dma status */
tmp = readl (&dma->dmastat);
writel (tmp, &dma->dmastat);
#ifdef USE_DMA_CHAINING
/* chaining should stop only on error (which?)
* or (stat0 codepath) short OUT transfer.
*/
#else
if ((tmp & (1 << DMA_TRANSACTION_DONE_INTERRUPT)) == 0) {
DEBUG (ep->dev, "%s no xact done? %08x\n",
ep->ep.name, tmp);
continue;
}
stop_dma (ep->dma);
#endif
/* OUT transfers terminate when the data from the
* host is in our memory. Process whatever's done.
* On this path, we know transfer's last packet wasn't
* less than req->length. NAK_OUT_PACKETS may be set,
* or the FIFO may already be holding new packets.
*
* IN transfers can linger in the FIFO for a very
* long time ... we ignore that for now, accounting
* precisely (like PIO does) needs per-packet irqs
*/
scan_dma_completions (ep);
/* disable dma on inactive queues; else maybe restart */
if (list_empty (&ep->queue)) {
#ifdef USE_DMA_CHAINING
stop_dma (ep->dma);
#endif
} else {
tmp = readl (&dma->dmactl);
if ((tmp & (1 << DMA_SCATTER_GATHER_ENABLE)) == 0
|| (tmp & (1 << DMA_ENABLE)) == 0)
restart_dma (ep);
}
ep->irqs++;
}
/* NOTE: there are other PCI errors we might usefully notice.
* if they appear very often, here's where to try recovering.
*/
if (stat & PCI_ERROR_INTERRUPTS) {
ERROR (dev, "pci dma error; stat %08x\n", stat);
stat &= ~PCI_ERROR_INTERRUPTS;
/* these are fatal errors, but "maybe" they won't
* happen again ...
*/
stop_activity (dev, dev->driver);
ep0_start (dev);
stat = 0;
}
if (stat)
DEBUG (dev, "unhandled irqstat1 %08x\n", stat);
}
static irqreturn_t net2280_irq (int irq, void *_dev, struct pt_regs * r)
{
struct net2280 *dev = _dev;
spin_lock (&dev->lock);
/* handle disconnect, dma, and more */
handle_stat1_irqs (dev, readl (&dev->regs->irqstat1));
/* control requests and PIO */
handle_stat0_irqs (dev, readl (&dev->regs->irqstat0));
spin_unlock (&dev->lock);
return IRQ_HANDLED;
}
/*-------------------------------------------------------------------------*/
/* tear down the binding between this driver and the pci device */
static void net2280_remove (struct pci_dev *pdev)
{
struct net2280 *dev = pci_get_drvdata (pdev);
/* start with the driver above us */
if (dev->driver) {
/* should have been done already by driver model core */
WARN (dev, "pci remove, driver '%s' is still registered\n",
dev->driver->driver.name);
usb_gadget_unregister_driver (dev->driver);
}
/* then clean up the resources we allocated during probe() */
net2280_led_shutdown (dev);
if (dev->requests) {
int i;
for (i = 1; i < 5; i++) {
if (!dev->ep [i].dummy)
continue;
pci_pool_free (dev->requests, dev->ep [i].dummy,
dev->ep [i].td_dma);
}
pci_pool_destroy (dev->requests);
}
if (dev->got_irq)
free_irq (pdev->irq, dev);
if (dev->regs)
iounmap (dev->regs);
if (dev->region)
release_mem_region (pci_resource_start (pdev, 0),
pci_resource_len (pdev, 0));
if (dev->enabled)
pci_disable_device (pdev);
device_remove_file (&pdev->dev, &dev_attr_registers);
pci_set_drvdata (pdev, 0);
INFO (dev, "unbind from pci %s\n", pdev->slot_name);
kfree (dev);
the_controller = 0;
}
/* wrap this driver around the specified device, but
* don't respond over USB until a gadget driver binds to us.
*/
static int net2280_probe (struct pci_dev *pdev, const struct pci_device_id *id)
{
struct net2280 *dev;
unsigned long resource, len;
void *base = 0;
int retval, i;
char buf [8], *bufp;
/* if you want to support more than one controller in a system,
* usb_gadget_driver_{register,unregister}() must change.
*/
if (the_controller) {
WARN (the_controller, "ignoring %s\n", pdev->slot_name);
return -EBUSY;
}
/* alloc, and start init */
dev = kmalloc (sizeof *dev, SLAB_KERNEL);
if (dev == NULL){
retval = -ENOMEM;
goto done;
}
memset (dev, 0, sizeof *dev);
spin_lock_init (&dev->lock);
dev->pdev = pdev;
dev->gadget.ops = &net2280_ops;
strcpy (dev->gadget.dev.bus_id, pdev->slot_name);
strcpy (dev->gadget.dev.name, pdev->dev.name);
dev->gadget.dev.parent = &pdev->dev;
dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
dev->gadget.name = driver_name;
/* now all the pci goodies ... */
if (pci_enable_device (pdev) < 0) {
retval = -ENODEV;
goto done;
}
dev->enabled = 1;
/* BAR 0 holds all the registers
* BAR 1 is 8051 memory; unused here (note erratum 0103)
* BAR 2 is fifo memory; unused here
*/
resource = pci_resource_start (pdev, 0);
len = pci_resource_len (pdev, 0);
if (!request_mem_region (resource, len, driver_name)) {
DEBUG (dev, "controller already in use\n");
retval = -EBUSY;
goto done;
}
dev->region = 1;
base = ioremap_nocache (resource, len);
if (base == NULL) {
DEBUG (dev, "can't map memory\n");
retval = -EFAULT;
goto done;
}
dev->regs = (struct net2280_regs *) base;
dev->usb = (struct net2280_usb_regs *) (base + 0x0080);
dev->pci = (struct net2280_pci_regs *) (base + 0x0100);
dev->dma = (struct net2280_dma_regs *) (base + 0x0180);
dev->dep = (struct net2280_dep_regs *) (base + 0x0200);
dev->epregs = (struct net2280_ep_regs *) (base + 0x0300);
/* put into initial config, link up all endpoints */
usb_reset (dev);
usb_reinit (dev);
/* irq setup after old hardware is cleaned up */
if (!pdev->irq) {
ERROR (dev, "No IRQ. Check PCI setup!\n");
retval = -ENODEV;
goto done;
}
#ifndef __sparc__
snprintf (buf, sizeof buf, "%d", pdev->irq);
bufp = buf;
#else
bufp = __irq_itoa(pdev->irq);
#endif
if (request_irq (pdev->irq, net2280_irq, SA_SHIRQ, driver_name, dev)
!= 0) {
ERROR (dev, "request interrupt %s failed\n", bufp);
retval = -EBUSY;
goto done;
}
dev->got_irq = 1;
/* DMA setup */
dev->requests = pci_pool_create ("requests", pdev,
sizeof (struct net2280_dma),
0 /* no alignment requirements */,
0 /* or page-crossing issues */);
if (!dev->requests) {
DEBUG (dev, "can't get request pool\n");
retval = -ENOMEM;
goto done;
}
for (i = 1; i < 5; i++) {
struct net2280_dma *td;
td = pci_pool_alloc (dev->requests, GFP_KERNEL,
&dev->ep [i].td_dma);
if (!td) {
DEBUG (dev, "can't get dummy %d\n", i);
retval = -ENOMEM;
goto done;
}
td->dmacount = 0; /* not VALID */
td->dmaaddr = cpu_to_le32 (DMA_ADDR_INVALID);
dev->ep [i].dummy = td;
}
/* enable lower-overhead pci memory bursts during DMA */
writel ((1 << PCI_RETRY_ABORT_ENABLE)
| (1 << DMA_MEMORY_WRITE_AND_INVALIDATE_ENABLE)
| (1 << DMA_READ_MULTIPLE_ENABLE)
| (1 << DMA_READ_LINE_ENABLE)
, &dev->pci->pcimstctl);
/* erratum 0115 shouldn't appear: Linux inits PCI_LATENCY_TIMER */
pci_set_master (pdev);
pci_set_mwi (pdev);
/* ... also flushes any posted pci writes */
dev->chiprev = get_idx_reg (dev->regs, REG_CHIPREV) & 0xffff;
/* done */
pci_set_drvdata (pdev, dev);
INFO (dev, "%s\n", driver_desc);
INFO (dev, "irq %s, pci mem %p, chip rev %04x\n",
bufp, base, dev->chiprev);
bufp = DRIVER_VERSION
#ifndef USE_DMA_CHAINING
" (no dma chain)"
#endif
#ifdef NET2280_DMA_OUT_WORKAROUND
" (no dma out)"
#endif
;
INFO (dev, "version: %s\n", bufp);
the_controller = dev;
device_create_file (&pdev->dev, &dev_attr_registers);
return 0;
done:
if (dev)
net2280_remove (pdev);
return retval;
}
/*-------------------------------------------------------------------------*/
static const struct pci_device_id __devinitdata pci_ids [] = { {
.class = ((PCI_CLASS_SERIAL_USB << 8) | 0xfe),
.class_mask = ~0,
.vendor = 0x17cc,
.device = 0x2280,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
}, { /* end: all zeroes */ }
};
MODULE_DEVICE_TABLE (pci, pci_ids);
/* pci driver glue; this is a "new style" PCI driver module */
static struct pci_driver net2280_pci_driver = {
.name = (char *) driver_name,
.id_table = pci_ids,
.probe = net2280_probe,
.remove = net2280_remove,
/* FIXME add power management support */
};
MODULE_DESCRIPTION (DRIVER_DESC);
MODULE_AUTHOR ("David Brownell");
MODULE_LICENSE ("GPL");
static int __init init (void)
{
return pci_module_init (&net2280_pci_driver);
}
module_init (init);
static void __exit cleanup (void)
{
pci_unregister_driver (&net2280_pci_driver);
}
module_exit (cleanup);
/*
* NetChip 2280 high/full speed USB device controller.
* Unlike many such controllers, this one talks PCI.
*/
/*
* Copyright (C) 2002 NetChip Technology, Inc. (http://www.netchip.com)
* Copyright (C) 2003 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*-------------------------------------------------------------------------*/
/* NET2280 MEMORY MAPPED REGISTERS
*
* The register layout came from the chip documentation, and the bit
* number definitions were extracted from chip specification.
*
* Use the shift operator ('<<') to build bit masks, with readl/writel
* to access the registers through PCI.
*/
/* main registers, BAR0 + 0x0000 */
struct net2280_regs {
// offset 0x0000
u32 devinit;
#define LOCAL_CLOCK_FREQUENCY 8
#define FORCE_PCI_RESET 7
#define PCI_ID 6
#define PCI_ENABLE 5
#define FIFO_SOFT_RESET 4
#define CFG_SOFT_RESET 3
#define PCI_SOFT_RESET 2
#define USB_SOFT_RESET 1
#define M8051_RESET 0
u32 eectl;
#define EEPROM_ADDRESS_WIDTH 23
#define EEPROM_CHIP_SELECT_ACTIVE 22
#define EEPROM_PRESENT 21
#define EEPROM_VALID 20
#define EEPROM_BUSY 19
#define EEPROM_CHIP_SELECT_ENABLE 18
#define EEPROM_BYTE_READ_START 17
#define EEPROM_BYTE_WRITE_START 16
#define EEPROM_READ_DATA 8
#define EEPROM_WRITE_DATA 0
u32 eeclkfreq;
u32 _unused0;
// offset 0x0010
u32 pciirqenb0; /* interrupt PCI master ... */
#define SETUP_PACKET_INTERRUPT_ENABLE 7
#define ENDPOINT_F_INTERRUPT_ENABLE 6
#define ENDPOINT_E_INTERRUPT_ENABLE 5
#define ENDPOINT_D_INTERRUPT_ENABLE 4
#define ENDPOINT_C_INTERRUPT_ENABLE 3
#define ENDPOINT_B_INTERRUPT_ENABLE 2
#define ENDPOINT_A_INTERRUPT_ENABLE 1
#define ENDPOINT_0_INTERRUPT_ENABLE 0
u32 pciirqenb1;
#define PCI_INTERRUPT_ENABLE 31
#define POWER_STATE_CHANGE_INTERRUPT_ENABLE 27
#define PCI_ARBITER_TIMEOUT_INTERRUPT_ENABLE 26
#define PCI_PARITY_ERROR_INTERRUPT_ENABLE 25
#define PCI_MASTER_ABORT_RECEIVED_INTERRUPT_ENABLE 20
#define PCI_TARGET_ABORT_RECEIVED_INTERRUPT_ENABLE 19
#define PCI_TARGET_ABORT_ASSERTED_INTERRUPT_ENABLE 18
#define PCI_RETRY_ABORT_INTERRUPT_ENABLE 17
#define PCI_MASTER_CYCLE_DONE_INTERRUPT_ENABLE 16
#define GPIO_INTERRUPT_ENABLE 13
#define DMA_D_INTERRUPT_ENABLE 12
#define DMA_C_INTERRUPT_ENABLE 11
#define DMA_B_INTERRUPT_ENABLE 10
#define DMA_A_INTERRUPT_ENABLE 9
#define EEPROM_DONE_INTERRUPT_ENABLE 8
#define VBUS_INTERRUPT_ENABLE 7
#define CONTROL_STATUS_INTERRUPT_ENABLE 6
#define ROOT_PORT_RESET_INTERRUPT_ENABLE 4
#define SUSPEND_REQUEST_INTERRUPT_ENABLE 3
#define SUSPEND_REQUEST_CHANGE_INTERRUPT_ENABLE 2
#define RESUME_INTERRUPT_ENABLE 1
#define SOF_INTERRUPT_ENABLE 0
u32 cpu_irqenb0; /* ... or onboard 8051 */
#define SETUP_PACKET_INTERRUPT_ENABLE 7
#define ENDPOINT_F_INTERRUPT_ENABLE 6
#define ENDPOINT_E_INTERRUPT_ENABLE 5
#define ENDPOINT_D_INTERRUPT_ENABLE 4
#define ENDPOINT_C_INTERRUPT_ENABLE 3
#define ENDPOINT_B_INTERRUPT_ENABLE 2
#define ENDPOINT_A_INTERRUPT_ENABLE 1
#define ENDPOINT_0_INTERRUPT_ENABLE 0
u32 cpu_irqenb1;
#define CPU_INTERRUPT_ENABLE 31
#define POWER_STATE_CHANGE_INTERRUPT_ENABLE 27
#define PCI_ARBITER_TIMEOUT_INTERRUPT_ENABLE 26
#define PCI_PARITY_ERROR_INTERRUPT_ENABLE 25
#define PCI_INTA_INTERRUPT_ENABLE 24
#define PCI_PME_INTERRUPT_ENABLE 23
#define PCI_SERR_INTERRUPT_ENABLE 22
#define PCI_PERR_INTERRUPT_ENABLE 21
#define PCI_MASTER_ABORT_RECEIVED_INTERRUPT_ENABLE 20
#define PCI_TARGET_ABORT_RECEIVED_INTERRUPT_ENABLE 19
#define PCI_RETRY_ABORT_INTERRUPT_ENABLE 17
#define PCI_MASTER_CYCLE_DONE_INTERRUPT_ENABLE 16
#define GPIO_INTERRUPT_ENABLE 13
#define DMA_D_INTERRUPT_ENABLE 12
#define DMA_C_INTERRUPT_ENABLE 11
#define DMA_B_INTERRUPT_ENABLE 10
#define DMA_A_INTERRUPT_ENABLE 9
#define EEPROM_DONE_INTERRUPT_ENABLE 8
#define VBUS_INTERRUPT_ENABLE 7
#define CONTROL_STATUS_INTERRUPT_ENABLE 6
#define ROOT_PORT_RESET_INTERRUPT_ENABLE 4
#define SUSPEND_REQUEST_INTERRUPT_ENABLE 3
#define SUSPEND_REQUEST_CHANGE_INTERRUPT_ENABLE 2
#define RESUME_INTERRUPT_ENABLE 1
#define SOF_INTERRUPT_ENABLE 0
// offset 0x0020
u32 _unused1;
u32 usbirqenb1;
#define USB_INTERRUPT_ENABLE 31
#define POWER_STATE_CHANGE_INTERRUPT_ENABLE 27
#define PCI_ARBITER_TIMEOUT_INTERRUPT_ENABLE 26
#define PCI_PARITY_ERROR_INTERRUPT_ENABLE 25
#define PCI_INTA_INTERRUPT_ENABLE 24
#define PCI_PME_INTERRUPT_ENABLE 23
#define PCI_SERR_INTERRUPT_ENABLE 22
#define PCI_PERR_INTERRUPT_ENABLE 21
#define PCI_MASTER_ABORT_RECEIVED_INTERRUPT_ENABLE 20
#define PCI_TARGET_ABORT_RECEIVED_INTERRUPT_ENABLE 19
#define PCI_RETRY_ABORT_INTERRUPT_ENABLE 17
#define PCI_MASTER_CYCLE_DONE_INTERRUPT_ENABLE 16
#define GPIO_INTERRUPT_ENABLE 13
#define DMA_D_INTERRUPT_ENABLE 12
#define DMA_C_INTERRUPT_ENABLE 11
#define DMA_B_INTERRUPT_ENABLE 10
#define DMA_A_INTERRUPT_ENABLE 9
#define EEPROM_DONE_INTERRUPT_ENABLE 8
#define VBUS_INTERRUPT_ENABLE 7
#define CONTROL_STATUS_INTERRUPT_ENABLE 6
#define ROOT_PORT_RESET_INTERRUPT_ENABLE 4
#define SUSPEND_REQUEST_INTERRUPT_ENABLE 3
#define SUSPEND_REQUEST_CHANGE_INTERRUPT_ENABLE 2
#define RESUME_INTERRUPT_ENABLE 1
#define SOF_INTERRUPT_ENABLE 0
u32 irqstat0;
#define INTA_ASSERTED 12
#define SETUP_PACKET_INTERRUPT 7
#define ENDPOINT_F_INTERRUPT 6
#define ENDPOINT_E_INTERRUPT 5
#define ENDPOINT_D_INTERRUPT 4
#define ENDPOINT_C_INTERRUPT 3
#define ENDPOINT_B_INTERRUPT 2
#define ENDPOINT_A_INTERRUPT 1
#define ENDPOINT_0_INTERRUPT 0
u32 irqstat1;
#define POWER_STATE_CHANGE_INTERRUPT 27
#define PCI_ARBITER_TIMEOUT_INTERRUPT 26
#define PCI_PARITY_ERROR_INTERRUPT 25
#define PCI_INTA_INTERRUPT 24
#define PCI_PME_INTERRUPT 23
#define PCI_SERR_INTERRUPT 22
#define PCI_PERR_INTERRUPT 21
#define PCI_MASTER_ABORT_RECEIVED_INTERRUPT 20
#define PCI_TARGET_ABORT_RECEIVED_INTERRUPT 19
#define PCI_RETRY_ABORT_INTERRUPT 17
#define PCI_MASTER_CYCLE_DONE_INTERRUPT 16
#define GPIO_INTERRUPT 13
#define DMA_D_INTERRUPT 12
#define DMA_C_INTERRUPT 11
#define DMA_B_INTERRUPT 10
#define DMA_A_INTERRUPT 9
#define EEPROM_DONE_INTERRUPT 8
#define VBUS_INTERRUPT 7
#define CONTROL_STATUS_INTERRUPT 6
#define ROOT_PORT_RESET_INTERRUPT 4
#define SUSPEND_REQUEST_INTERRUPT 3
#define SUSPEND_REQUEST_CHANGE_INTERRUPT 2
#define RESUME_INTERRUPT 1
#define SOF_INTERRUPT 0
// offset 0x0030
u32 idxaddr;
u32 idxdata;
u32 fifoctl;
#define PCI_BASE2_RANGE 16
#define IGNORE_FIFO_AVAILABILITY 3
#define PCI_BASE2_SELECT 2
#define FIFO_CONFIGURATION_SELECT 0
u32 _unused2;
// offset 0x0040
u32 memaddr;
#define START 28
#define DIRECTION 27
#define FIFO_DIAGNOSTIC_SELECT 24
#define MEMORY_ADDRESS 0
u32 memdata0;
u32 memdata1;
u32 _unused3;
// offset 0x0050
u32 gpioctl;
#define GPIO3_LED_SELECT 12
#define GPIO3_INTERRUPT_ENABLE 11
#define GPIO2_INTERRUPT_ENABLE 10
#define GPIO1_INTERRUPT_ENABLE 9
#define GPIO0_INTERRUPT_ENABLE 8
#define GPIO3_OUTPUT_ENABLE 7
#define GPIO2_OUTPUT_ENABLE 6
#define GPIO1_OUTPUT_ENABLE 5
#define GPIO0_OUTPUT_ENABLE 4
#define GPIO3_DATA 3
#define GPIO2_DATA 2
#define GPIO1_DATA 1
#define GPIO0_DATA 0
u32 gpiostat;
#define GPIO3_INTERRUPT 3
#define GPIO2_INTERRUPT 2
#define GPIO1_INTERRUPT 1
#define GPIO0_INTERRUPT 0
} __attribute__ ((packed));
/* usb control, BAR0 + 0x0080 */
struct net2280_usb_regs {
// offset 0x0080
u32 stdrsp;
#define STALL_UNSUPPORTED_REQUESTS 31
#define SET_TEST_MODE 16
#define GET_OTHER_SPEED_CONFIGURATION 15
#define GET_DEVICE_QUALIFIER 14
#define SET_ADDRESS 13
#define ENDPOINT_SET_CLEAR_HALT 12
#define DEVICE_SET_CLEAR_DEVICE_REMOTE_WAKEUP 11
#define GET_STRING_DESCRIPTOR_2 10
#define GET_STRING_DESCRIPTOR_1 9
#define GET_STRING_DESCRIPTOR_0 8
#define GET_SET_INTERFACE 6
#define GET_SET_CONFIGURATION 5
#define GET_CONFIGURATION_DESCRIPTOR 4
#define GET_DEVICE_DESCRIPTOR 3
#define GET_ENDPOINT_STATUS 2
#define GET_INTERFACE_STATUS 1
#define GET_DEVICE_STATUS 0
u32 prodvendid;
#define PRODUCT_ID 16
#define VENDOR_ID 0
u32 relnum;
u32 usbctl;
#define SERIAL_NUMBER_INDEX 16
#define PRODUCT_ID_STRING_ENABLE 13
#define VENDOR_ID_STRING_ENABLE 12
#define USB_ROOT_PORT_WAKEUP_ENABLE 11
#define VBUS_PIN 10
#define TIMED_DISCONNECT 9
#define SUSPEND_IMMEDIATELY 7
#define SELF_POWERED_USB_DEVICE 6
#define REMOTE_WAKEUP_SUPPORT 5
#define PME_POLARITY 4
#define USB_DETECT_ENABLE 3
#define PME_WAKEUP_ENABLE 2
#define DEVICE_REMOTE_WAKEUP_ENABLE 1
#define SELF_POWERED_STATUS 0
// offset 0x0090
u32 usbstat;
#define HIGH_SPEED 7
#define FULL_SPEED 6
#define GENERATE_RESUME 5
#define GENERATE_DEVICE_REMOTE_WAKEUP 4
u32 xcvrdiag;
#define FORCE_HIGH_SPEED_MODE 31
#define FORCE_FULL_SPEED_MODE 30
#define USB_TEST_MODE 24
#define LINE_STATE 16
#define TRANSCEIVER_OPERATION_MODE 2
#define TRANSCEIVER_SELECT 1
#define TERMINATION_SELECT 0
u32 setup0123;
u32 setup4567;
// offset 0x0090
u32 _unused0;
u32 ouraddr;
#define FORCE_IMMEDIATE 7
#define OUR_USB_ADDRESS 0
u32 ourconfig;
} __attribute__ ((packed));
/* pci control, BAR0 + 0x0100 */
struct net2280_pci_regs {
// offset 0x0100
u32 pcimstctl;
#define PCI_ARBITER_PARK_SELECT 13
#define PCI_MULTI LEVEL_ARBITER 12
#define PCI_RETRY_ABORT_ENABLE 11
#define DMA_MEMORY_WRITE_AND_INVALIDATE_ENABLE 10
#define DMA_READ_MULTIPLE_ENABLE 9
#define DMA_READ_LINE_ENABLE 8
#define PCI_MASTER_COMMAND_SELECT 6
#define MEM_READ_OR_WRITE 0
#define IO_READ_OR_WRITE 1
#define CFG_READ_OR_WRITE 2
#define PCI_MASTER_START 5
#define PCI_MASTER_READ_WRITE 4
#define PCI_MASTER_WRITE 0
#define PCI_MASTER_READ 1
#define PCI_MASTER_BYTE_WRITE_ENABLES 0
u32 pcimstaddr;
u32 pcimstdata;
u32 pcimststat;
#define PCI_ARBITER_CLEAR 2
#define PCI_EXTERNAL_ARBITER 1
#define PCI_HOST_MODE 0
} __attribute__ ((packed));
/* dma control, BAR0 + 0x0180 ... array of four structs like this,
* for channels 0..3. see also struct net2280_dma: descriptor
* that can be loaded into some of these registers.
*/
struct net2280_dma_regs { /* [11.7] */
// offset 0x0180, 0x01a0, 0x01c0, 0x01e0,
u32 dmactl;
#define DMA_SCATTER_GATHER_DONE_INTERRUPT_ENABLE 25
#define DMA_CLEAR_COUNT_ENABLE 21
#define DESCRIPTOR_POLLING_RATE 19
#define POLL_CONTINUOUS 0
#define POLL_1_USEC 1
#define POLL_100_USEC 2
#define POLL_1_MSEC 3
#define DMA_VALID_BIT_POLLING_ENABLE 18
#define DMA_VALID_BIT_ENABLE 17
#define DMA_SCATTER_GATHER_ENABLE 16
#define DMA_OUT_AUTO_START_ENABLE 4
#define DMA_PREEMPT_ENABLE 3
#define DMA_FIFO_VALIDATE 2
#define DMA_ENABLE 1
#define DMA_ADDRESS_HOLD 0
u32 dmastat;
#define DMA_SCATTER_GATHER_DONE_INTERRUPT 25
#define DMA_TRANSACTION_DONE_INTERRUPT 24
#define DMA_ABORT 1
#define DMA_START 0
u32 _unused0 [2];
// offset 0x0190, 0x01b0, 0x01d0, 0x01f0,
u32 dmacount;
#define VALID_BIT 31
#define DMA_DIRECTION 30
#define DMA_DONE_INTERRUPT_ENABLE 29
#define END_OF_CHAIN 28
#define DMA_BYTE_COUNT_MASK ((1<<24)-1)
#define DMA_BYTE_COUNT 0
u32 dmaaddr;
u32 dmadesc;
u32 _unused1;
} __attribute__ ((packed));
/* dedicated endpoint registers, BAR0 + 0x0200 */
struct net2280_dep_regs { /* [11.8] */
// offset 0x0200, 0x0210, 0x220, 0x230, 0x240
u32 dep_cfg;
// offset 0x0204, 0x0214, 0x224, 0x234, 0x244
u32 dep_rsp;
u32 _unused [2];
} __attribute__ ((packed));
/* configurable endpoint registers, BAR0 + 0x0300 ... array of seven structs
* like this, for ep0 then the configurable endpoints A..F
* ep0 reserved for control; E and F have only 64 bytes of fifo
*/
struct net2280_ep_regs { /* [11.9] */
// offset 0x0300, 0x0320, 0x0340, 0x0360, 0x0380, 0x03a0, 0x03c0
u32 ep_cfg;
#define ENDPOINT_BYTE_COUNT 16
#define ENDPOINT_ENABLE 10
#define ENDPOINT_TYPE 8
#define ENDPOINT_DIRECTION 7
#define ENDPOINT_NUMBER 0
u32 ep_rsp;
#define SET_NAK_OUT_PACKETS 15
#define SET_EP_HIDE_STATUS_PHASE 14
#define SET_INTERRUPT_MODE 12
#define SET_CONTROL_STATUS_PHASE_HANDSHAKE 11
#define SET_NAK_OUT_PACKETS_MODE 10
#define SET_ENDPOINT_TOGGLE 9
#define SET_ENDPOINT_HALT 8
#define CLEAR_NAK_OUT_PACKETS 7
#define CLEAR_EP_HIDE_STATUS_PHASE 6
#define CLEAR_INTERRUPT_MODE 4
#define CLEAR_CONTROL_STATUS_PHASE_HANDSHAKE 3
#define CLEAR_NAK_OUT_PACKETS_MODE 2
#define CLEAR_ENDPOINT_TOGGLE 1
#define CLEAR_ENDPOINT_HALT 0
u32 ep_irqenb;
#define SHORT_PACKET_OUT_DONE_INTERRUPT_ENABLE 6
#define SHORT_PACKET_TRANSFERRED_INTERRUPT_ENABLE 5
#define DATA_PACKET_RECEIVED_INTERRUPT_ENABLE 3
#define DATA_PACKET_TRANSMITTED_INTERRUPT_ENABLE 2
#define DATA_OUT_PING_TOKEN_INTERRUPT_ENABLE 1
#define DATA_IN_TOKEN_INTERRUPT_ENABLE 0
u32 ep_stat;
#define FIFO_VALID_COUNT 24
#define HIGH_BANDWIDTH_OUT_TRANSACTION_PID 22
#define TIMEOUT 21
#define USB_STALL_SENT 20
#define USB_IN_NAK_SENT 19
#define USB_IN_ACK_RCVD 18
#define USB_OUT_PING_NAK_SENT 17
#define USB_OUT_ACK_SENT 16
#define FIFO_OVERFLOW 13
#define FIFO_UNDERFLOW 12
#define FIFO_FULL 11
#define FIFO_EMPTY 10
#define FIFO_FLUSH 9
#define SHORT_PACKET_OUT_DONE_INTERRUPT 6
#define SHORT_PACKET_TRANSFERRED_INTERRUPT 5
#define NAK_OUT_PACKETS 4
#define DATA_PACKET_RECEIVED_INTERRUPT 3
#define DATA_PACKET_TRANSMITTED_INTERRUPT 2
#define DATA_OUT_PING_TOKEN_INTERRUPT 1
#define DATA_IN_TOKEN_INTERRUPT 0
// offset 0x0310, 0x0330, 0x0350, 0x0370, 0x0390, 0x03b0, 0x03d0
u32 ep_avail;
u32 ep_data;
u32 _unused0 [2];
} __attribute__ ((packed));
/*-------------------------------------------------------------------------*/
/* indexed registers [11.10] are accessed indirectly
* caller must own the device lock.
*/
static inline u32
get_idx_reg (struct net2280_regs *regs, u32 index)
{
writel (index, &regs->idxaddr);
/* NOTE: synchs device/cpu memory views */
return readl (&regs->idxdata);
}
static inline void
set_idx_reg (struct net2280_regs *regs, u32 index, u32 value)
{
writel (index, &regs->idxaddr);
writel (value, &regs->idxdata);
/* posted, may not be visible yet */
}
#define REG_DIAG 0x0
#define RETRY_COUNTER 16
#define FORCE_PCI_SERR 11
#define FORCE_PCI_INTERRUPT 10
#define FORCE_USB_INTERRUPT 9
#define FORCE_CPU_INTERRUPT 8
#define ILLEGAL_BYTE_ENABLES 5
#define FAST_TIMES 4
#define FORCE_RECEIVE_ERROR 2
#define FORCE_TRANSMIT_CRC_ERROR 0
#define REG_FRAME 0x02 /* from last sof */
#define REG_CHIPREV 0x03 /* in bcd */
#define REG_HS_NAK_RATE 0x0a /* NAK per N uframes */
/* ep a-f highspeed and fullspeed maxpacket, addresses
* computed from ep->num
*/
#define REG_EP_MAXPKT(dev,num) (((num) + 1) * 0x10 + \
(((dev)->gadget.speed == USB_SPEED_HIGH) ? 0 : 1))
/*-------------------------------------------------------------------------*/
/* [8.3] for scatter/gather i/o
* use struct net2280_dma_regs bitfields
*/
struct net2280_dma {
u32 dmacount;
u32 dmaaddr; /* the buffer */
u32 dmadesc; /* next dma descriptor */
u32 _reserved;
} __attribute__ ((aligned (16)));
/*-------------------------------------------------------------------------*/
/* DRIVER DATA STRUCTURES and UTILITIES */
struct net2280_ep {
struct usb_ep ep;
struct net2280_ep_regs *regs;
struct net2280_dma_regs *dma;
struct net2280_dma *dummy;
dma_addr_t td_dma; /* of dummy */
struct net2280 *dev;
unsigned long irqs;
/* analogous to a host-side qh */
struct list_head queue;
const struct usb_endpoint_descriptor *desc;
unsigned num : 8,
fifo_size : 12,
in_fifo_validate : 1,
stopped : 1,
is_in : 1,
is_iso : 1;
};
static inline void allow_status (struct net2280_ep *ep)
{
/* ep0 only */
writel ( (1 << CLEAR_CONTROL_STATUS_PHASE_HANDSHAKE)
| (1 << CLEAR_NAK_OUT_PACKETS_MODE)
, &ep->regs->ep_rsp);
}
static inline void set_halt (struct net2280_ep *ep)
{
/* ep0 and bulk/intr endpoints */
writel ( (1 << CLEAR_CONTROL_STATUS_PHASE_HANDSHAKE)
/* set NAK_OUT for erratum 0114 */
| (1 << SET_NAK_OUT_PACKETS)
| (1 << SET_ENDPOINT_HALT)
, &ep->regs->ep_rsp);
}
static inline void clear_halt (struct net2280_ep *ep)
{
/* bulk/intr endpoints */
writel ( (1 << CLEAR_ENDPOINT_HALT)
| (1 << CLEAR_ENDPOINT_TOGGLE)
, &ep->regs->ep_rsp);
}
/* count (<= 4) bytes in the next fifo write will be valid */
static inline void set_fifo_bytecount (struct net2280_ep *ep, unsigned count)
{
writeb (count, 2 + (u8 *) &ep->regs->ep_cfg);
}
struct net2280_request {
struct usb_request req;
struct net2280_dma *td;
dma_addr_t td_dma;
struct list_head queue;
unsigned mapped : 1,
dma_done : 1,
valid : 1;
};
struct net2280 {
/* each pci device provides one gadget, several endpoints */
struct usb_gadget gadget;
spinlock_t lock;
struct net2280_ep ep [7];
struct usb_gadget_driver *driver;
unsigned enabled : 1,
protocol_stall : 1,
got_irq : 1,
region : 1,
selfpowered : 1;
u16 chiprev;
/* pci state used to access those endpoints */
struct pci_dev *pdev;
struct net2280_regs *regs;
struct net2280_usb_regs *usb;
struct net2280_pci_regs *pci;
struct net2280_dma_regs *dma;
struct net2280_dep_regs *dep;
struct net2280_ep_regs *epregs;
struct pci_pool *requests;
// statistics...
};
#ifdef USE_RDK_LEDS
static inline void net2280_led_init (struct net2280 *dev)
{
/* LED3 (green) is on during USB activity. note erratum 0113. */
writel ((1 << GPIO3_LED_SELECT)
| (1 << GPIO3_OUTPUT_ENABLE)
| (1 << GPIO2_OUTPUT_ENABLE)
| (1 << GPIO1_OUTPUT_ENABLE)
| (1 << GPIO0_OUTPUT_ENABLE)
, &dev->regs->gpioctl);
}
/* indicate speed with bi-color LED 0/1 */
static inline
void net2280_led_speed (struct net2280 *dev, enum usb_device_speed speed)
{
u32 val = readl (&dev->regs->gpioctl);
switch (speed) {
case USB_SPEED_HIGH: /* green */
val &= ~(1 << GPIO0_DATA);
val |= (1 << GPIO1_DATA);
break;
case USB_SPEED_FULL: /* red */
val &= ~(1 << GPIO1_DATA);
val |= (1 << GPIO0_DATA);
break;
default: /* (off/black) */
val &= ~((1 << GPIO1_DATA) | (1 << GPIO0_DATA));
break;
}
writel (val, &dev->regs->gpioctl);
}
/* indicate power with LED 2 */
static inline void net2280_led_active (struct net2280 *dev, int is_active)
{
u32 val = readl (&dev->regs->gpioctl);
// FIXME this LED never seems to turn on.
if (is_active)
val |= GPIO2_DATA;
else
val &= ~GPIO2_DATA;
writel (val, &dev->regs->gpioctl);
}
static inline void net2280_led_shutdown (struct net2280 *dev)
{
/* turn off all four GPIO*_DATA bits */
writel (readl (&dev->regs->gpioctl) & ~0x0f,
&dev->regs->gpioctl);
}
#else
#define net2280_led_init(dev) do { } while (0)
#define net2280_led_speed(dev, speed) do { } while (0)
#define net2280_led_shutdown(dev) do { } while (0)
#endif
/*-------------------------------------------------------------------------*/
#define xprintk(dev,level,fmt,args...) \
printk(level "%s %s: " fmt , driver_name , \
dev->pdev->slot_name , ## args)
#ifdef DEBUG
#undef DEBUG
#define DEBUG(dev,fmt,args...) \
xprintk(dev , KERN_DEBUG , fmt , ## args)
#else
#define DEBUG(dev,fmt,args...) \
do { } while (0)
#endif /* DEBUG */
#ifdef VERBOSE
#define VDEBUG DEBUG
#else
#define VDEBUG(dev,fmt,args...) \
do { } while (0)
#endif /* VERBOSE */
#define ERROR(dev,fmt,args...) \
xprintk(dev , KERN_ERR , fmt , ## args)
#define WARN(dev,fmt,args...) \
xprintk(dev , KERN_WARNING , fmt , ## args)
#define INFO(dev,fmt,args...) \
xprintk(dev , KERN_INFO , fmt , ## args)
/*-------------------------------------------------------------------------*/
static inline void start_out_naking (struct net2280_ep *ep)
{
/* NOTE: hardware races lurk here, and PING protocol issues */
writel ((1 << SET_NAK_OUT_PACKETS), &ep->regs->ep_rsp);
/* synch with device */
readl (&ep->regs->ep_rsp);
}
#ifdef DEBUG
static inline void assert_out_naking (struct net2280_ep *ep, const char *where)
{
u32 tmp = readl (&ep->regs->ep_stat);
if ((tmp & (1 << NAK_OUT_PACKETS)) == 0) {
DEBUG (ep->dev, "%s %s %08x !NAK\n",
ep->ep.name, where, tmp);
writel ((1 << SET_NAK_OUT_PACKETS),
&ep->regs->ep_rsp);
}
}
#define ASSERT_OUT_NAKING(ep) assert_out_naking(ep,__FUNCTION__)
#else
#define ASSERT_OUT_NAKING(ep) do {} while (0)
#endif
static inline void stop_out_naking (struct net2280_ep *ep)
{
u32 tmp;
tmp = readl (&ep->regs->ep_stat);
if ((tmp & (1 << NAK_OUT_PACKETS)) != 0)
writel ((1 << CLEAR_NAK_OUT_PACKETS), &ep->regs->ep_rsp);
}
/*
* Copyright (C) 2003 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*/
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/device.h>
#include <linux/usb_ch9.h>
#include <linux/usb_gadget.h>
/**
* usb_gadget_get_string - fill out a string descriptor
* @table: of c strings using iso latin/1 characters
* @id: string id, from low byte of wValue in get string descriptor
* @buf: at least 256 bytes
*
* Finds the iso latin/1 string matching the ID, and converts it into a
* string descriptor in utf16-le.
* Returns length of descriptor (always even) or negative errno
*
* If your driver needs stings in multiple languages, you'll need to
* to use some alternate solution for languages where the ISO 8859/1
* (latin/1) character set can't be used. For example, they can't be
* used with Chinese (Big5, GB2312, etc), Japanese, Korean, or many other
* languages. You'd likely "switch (wIndex) { ... }" in your ep0
* string descriptor logic, using this routine in cases where "western
* european" characters suffice for the strings being returned.
*/
int
usb_gadget_get_string (struct usb_gadget_strings *table, int id, u8 *buf)
{
struct usb_string *s;
int len;
/* descriptor 0 has the language id */
if (id == 0) {
buf [0] = 4;
buf [1] = USB_DT_STRING;
buf [2] = (u8) table->language;
buf [3] = (u8) (table->language >> 8);
return 4;
}
for (s = table->strings; s && s->s; s++)
if (s->id == id)
break;
/* unrecognized: stall. */
if (!s || !s->s)
return -EINVAL;
/* string descriptors have length, tag, then UTF16-LE text */
len = min ((size_t) 126, strlen (s->s));
buf [0] = (len + 1) * 2;
buf [1] = USB_DT_STRING;
memset (buf + 2, 0, 2 * len); /* zero all the high bytes */
while (len) {
buf [2 * len] = s->s [len - 1];
len--;
}
return buf [0];
}
/*
* zero.c -- Gadget Zero, for USB development
*
* Copyright (C) 2003 David Brownell
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Gadget Zero only needs two bulk endpoints, and is an example of how you
* can write a hardware-agnostic gadget driver running inside a USB device.
*
* Hardware details are visible (see CONFIG_USB_ZERO_* below) but don't
* affect most of the driver.
*
* Use it with the Linux host/master side "usbtest" driver to get a basic
* functional test of your device-side usb stack, or with "usb-skeleton".
*
* It supports two similar configurations. One sinks whatever the usb host
* writes, and in return sources zeroes. The other loops whatever the host
* writes back, so the host can read it. Module options include:
*
* buflen=N default N=4096, buffer size used
* qlen=N default N=32, how many buffers in the loopback queue
* loopdefault default false, list loopback config first
*
* Many drivers will only have one configuration, letting them be much
* simpler if they also don't support high speed operation (like this
* driver does).
*/
#define DEBUG 1
// #define VERBOSE
#include <linux/config.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/smp_lock.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/interrupt.h>
#include <linux/uts.h>
#include <linux/version.h>
#include <linux/device.h>
#include <linux/moduleparam.h>
#include <asm/byteorder.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/system.h>
#include <asm/unaligned.h>
#include <linux/usb_ch9.h>
#include <linux/usb_gadget.h>
/*-------------------------------------------------------------------------*/
#define DRIVER_VERSION "19 Feb 2003"
static const char shortname [] = "zero";
static const char longname [] = "Gadget Zero";
static const char source_sink [] = "source and sink data";
static const char loopback [] = "loop input to output";
/*-------------------------------------------------------------------------*/
/*
* hardware-specific configuration, controlled by which device
* controller driver was configured.
*
* CHIP ... hardware identifier
* DRIVER_VERSION_NUM ... alerts the host side driver to differences
* EP0_MAXPACKET ... controls packetization of control requests
* EP_*_NAME ... which endpoints do we use for which purpose?
* EP_*_NUM ... numbers for them (often limited by hardware)
* HIGHSPEED ... define if ep0 and descriptors need high speed support
* MAX_USB_POWER ... define if we use other than 100 mA bus current
* SELFPOWER ... unless we can run on bus power, USB_CONFIG_ATT_SELFPOWER
* WAKEUP ... if hardware supports remote wakeup AND we will issue the
* usb_gadget_wakeup() call to initiate it, USB_CONFIG_ATT_WAKEUP
*
* hw_optimize(gadget) ... for any hardware tweaks we want to kick in
* before we enable our endpoints
*
* add other defines for other portability issues, like hardware that
* for some reason doesn't handle full speed bulk maxpacket of 64.
*/
/*
* DRIVER_VERSION_NUM 0x0000 (?): Martin Diehl's ezusb an21/fx code
*/
/*
* NetChip 2280, PCI based.
*
* This has half a dozen configurable endpoints, four with dedicated
* DMA channels to manage their FIFOs. It supports high speed.
* Those endpoints can be arranged in any desired configuration.
*/
#ifdef CONFIG_USB_ZERO_NET2280
#define CHIP "net2280"
#define DRIVER_VERSION_NUM cpu_to_le16(0x0101)
#define EP0_MAXPACKET 64
static const char EP_OUT_NAME [] = "ep-a";
#define EP_OUT_NUM 2
static const char EP_IN_NAME [] = "ep-b";
#define EP_IN_NUM 2
#define HIGHSPEED
/* specific hardware configs could be bus-powered */
#define SELFPOWER USB_CONFIG_ATT_SELFPOWER
/* supports remote wakeup, but this driver doesn't */
extern int net2280_set_fifo_mode (struct usb_gadget *gadget, int mode);
static inline void hw_optimize (struct usb_gadget *gadget)
{
/* we can have bigger ep-a/ep-b fifos (2KB each, 4 packets
* for highspeed bulk) because we're not using ep-c/ep-d.
*/
net2280_set_fifo_mode (gadget, 1);
}
#endif
/*
* PXA-250 UDC: widely used in second gen Linux-capable PDAs.
*
* This has fifteen fixed-function full speed endpoints, and it
* can support all USB transfer types.
*
* It only supports three configurations (numbered 1, 2, or 3)
* with two interfaces each ... there's partial hardware support
* for set_configuration and set_interface, preventing some more
* interesting config/interface/endpoint arrangements.
*/
#ifdef CONFIG_USB_ZERO_PXA250
#define CHIP "pxa250"
#define DRIVER_VERSION_NUM cpu_to_le16(0x0103)
#define EP0_MAXPACKET 16
static const char EP_OUT_NAME [] = "ep12out-bulk";
#define EP_OUT_NUM 12
static const char EP_IN_NAME [] = "ep11in-bulk";
#define EP_IN_NUM 11
/* doesn't support bus-powered operation */
#define SELFPOWER USB_CONFIG_ATT_SELFPOWER
/* supports remote wakeup, but this driver doesn't */
/* no hw optimizations to apply */
#define hw_optimize(g) do {} while (0);
#endif
/*
* SA-1100 UDC: widely used in first gen Linux-capable PDAs.
*
* This has only two fixed function endpoints, which can only
* be used for bulk (or interrupt) transfers. (Plus control.)
*
* Since it can't flush its TX fifos without disabling the UDC,
* the current configuration or altsettings can't change except
* in special situations. So this is a case of "choose it right
* during enumeration" ...
*/
#ifdef CONFIG_USB_ZERO_SA1100
#define CHIP "sa1100"
#define DRIVER_VERSION_NUM cpu_to_le16(0x0105)
#define EP0_MAXPACKET 8
static const char EP_OUT_NAME [] = "ep1out-bulk";
#define EP_OUT_NUM 1
static const char EP_IN_NAME [] = "ep2in-bulk";
#define EP_IN_NUM 2
/* doesn't support bus-powered operation */
#define SELFPOWER USB_CONFIG_ATT_SELFPOWER
/* doesn't support remote wakeup? */
/* no hw optimizations to apply */
#define hw_optimize(g) do {} while (0);
#endif
/*-------------------------------------------------------------------------*/
#ifndef EP0_MAXPACKET
# error Configure some USB peripheral controller driver!
#endif
/* power usage is config specific.
* hardware that supports remote wakeup defaults to disabling it.
*/
#ifndef SELFPOWER
/* default: say we rely on bus power */
#define SELFPOWER 0
/* else:
* - SELFPOWER value must be USB_CONFIG_ATT_SELFPOWER
* - MAX_USB_POWER may be nonzero.
*/
#endif
#ifndef MAX_USB_POWER
/* any hub supports this steady state bus power consumption */
#define MAX_USB_POWER 100 /* mA */
#endif
#ifndef WAKEUP
/* default: this driver won't do remote wakeup */
#define WAKEUP 0
/* else value must be USB_CONFIG_ATT_WAKEUP */
#endif
/*-------------------------------------------------------------------------*/
/* big enough to hold our biggest descriptor */
#define USB_BUFSIZ 256
struct zero_dev {
spinlock_t lock;
struct usb_gadget *gadget;
struct usb_request *req; /* for control responses */
/* when configured, we have one of two configs:
* - source data (in to host) and sink it (out from host)
* - or loop it back (out from host back in to host)
*/
u8 config;
struct usb_ep *in_ep, *out_ep;
};
#define xprintk(d,level,fmt,args...) \
dev_printk(level , &(d)->gadget->dev , fmt , ## args)
#ifdef DEBUG
#undef DEBUG
#define DEBUG(dev,fmt,args...) \
xprintk(dev , KERN_DEBUG , fmt , ## args)
#else
#define DEBUG(dev,fmt,args...) \
do { } while (0)
#endif /* DEBUG */
#ifdef VERBOSE
#define VDEBUG DEBUG
#else
#define VDEBUG(dev,fmt,args...) \
do { } while (0)
#endif /* DEBUG */
#define ERROR(dev,fmt,args...) \
xprintk(dev , KERN_ERR , fmt , ## args)
#define WARN(dev,fmt,args...) \
xprintk(dev , KERN_WARNING , fmt , ## args)
#define INFO(dev,fmt,args...) \
xprintk(dev , KERN_INFO , fmt , ## args)
/*-------------------------------------------------------------------------*/
static unsigned buflen = 4096;
static unsigned qlen = 32;
module_param (buflen, uint, S_IRUGO|S_IWUSR);
module_param (qlen, uint, S_IRUGO|S_IWUSR);
/*
* Normally the "loopback" configuration is second (index 1) so
* it's not the default. Here's where to change that order, to
* work better with hosts (like Linux ... for now!) where config
* changes are problematic.
*/
static int loopdefault = 0;
module_param (loopdefault, bool, S_IRUGO|S_IWUSR);
/*-------------------------------------------------------------------------*/
/* Thanks to NetChip Technologies for donating this product ID.
*
* DO NOT REUSE THESE IDs with any other driver!! Ever!!
* Instead: allocate your own, using normal USB-IF procedures.
*/
#define DRIVER_VENDOR_NUM 0x0525 /* NetChip */
#define DRIVER_PRODUCT_NUM 0xa4a0 /* Linux-USB "Gadget Zero" */
/*-------------------------------------------------------------------------*/
/*
* DESCRIPTORS ... most are static, but strings and (full)
* configuration descriptors are built on demand.
*/
#define STRING_MANUFACTURER 25
#define STRING_PRODUCT 42
#define STRING_SERIAL 101
#define STRING_SOURCE_SINK 250
#define STRING_LOOPBACK 251
/*
* This device advertises two configurations; these numbers work
* on a pxa250 as well as more flexible hardware.
*/
#define CONFIG_SOURCE_SINK 3
#define CONFIG_LOOPBACK 2
static const struct usb_device_descriptor
device_desc = {
.bLength = sizeof device_desc,
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = cpu_to_le16 (0x0200),
.bDeviceClass = USB_CLASS_VENDOR_SPEC,
.bMaxPacketSize0 = EP0_MAXPACKET,
.idVendor = cpu_to_le16 (DRIVER_VENDOR_NUM),
.idProduct = cpu_to_le16 (DRIVER_PRODUCT_NUM),
.bcdDevice = cpu_to_le16 (DRIVER_VERSION_NUM),
.iManufacturer = STRING_MANUFACTURER,
.iProduct = STRING_PRODUCT,
.iSerialNumber = STRING_SERIAL,
.bNumConfigurations = 2,
};
static const struct usb_config_descriptor
source_sink_config = {
.bLength = sizeof source_sink_config,
.bDescriptorType = USB_DT_CONFIG,
/* compute wTotalLength on the fly */
.bNumInterfaces = 1,
.bConfigurationValue = CONFIG_SOURCE_SINK,
.iConfiguration = STRING_SOURCE_SINK,
.bmAttributes = USB_CONFIG_ATT_ONE | SELFPOWER | WAKEUP,
.bMaxPower = (MAX_USB_POWER + 1) / 2,
};
static const struct usb_config_descriptor
loopback_config = {
.bLength = sizeof loopback_config,
.bDescriptorType = USB_DT_CONFIG,
/* compute wTotalLength on the fly */
.bNumInterfaces = 1,
.bConfigurationValue = CONFIG_LOOPBACK,
.iConfiguration = STRING_LOOPBACK,
.bmAttributes = USB_CONFIG_ATT_ONE | SELFPOWER | WAKEUP,
.bMaxPower = (MAX_USB_POWER + 1) / 2,
};
/* one interface in each configuration */
static const struct usb_interface_descriptor
source_sink_intf = {
.bLength = sizeof source_sink_intf,
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_VENDOR_SPEC,
.iInterface = STRING_SOURCE_SINK,
};
static const struct usb_interface_descriptor
loopback_intf = {
.bLength = sizeof loopback_intf,
.bDescriptorType = USB_DT_INTERFACE,
.bNumEndpoints = 2,
.bInterfaceClass = USB_CLASS_VENDOR_SPEC,
.iInterface = STRING_LOOPBACK,
};
/* two full speed bulk endpoints; their use is config-dependent */
static const struct usb_endpoint_descriptor
fs_source_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_IN_NUM | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (64),
};
static const struct usb_endpoint_descriptor
fs_sink_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_OUT_NUM,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (64),
};
#ifdef HIGHSPEED
/*
* usb 2.0 devices need to expose both high speed and full speed
* descriptors, unless they only run at full speed.
*
* that means alternate endpoint descriptors (bigger packets)
* and a "device qualifier" ... plus more construction options
* for the config descriptor.
*/
static const struct usb_endpoint_descriptor
hs_source_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_IN_NUM | USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (512),
};
static const struct usb_endpoint_descriptor
hs_sink_desc = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = EP_OUT_NUM,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16 (512),
};
static const struct usb_qualifier_descriptor
dev_qualifier = {
.bLength = sizeof dev_qualifier,
.bDescriptorType = USB_DT_DEVICE_QUALIFIER,
.bcdUSB = cpu_to_le16 (0x0200),
.bDeviceClass = USB_CLASS_VENDOR_SPEC,
/* assumes ep0 uses the same value for both speeds ... */
.bMaxPacketSize0 = EP0_MAXPACKET,
.bNumConfigurations = 2,
};
/* maxpacket and other transfer characteristics vary by speed. */
#define ep_desc(g,hs,fs) (((g)->speed==USB_SPEED_HIGH)?(hs):(fs))
#else
/* if there's no high speed support, maxpacket doesn't change. */
#define ep_desc(g,hs,fs) fs
#endif /* !HIGHSPEED */
static char serial [40];
/* static strings, in iso 8859/1 */
static struct usb_string strings [] = {
{ STRING_MANUFACTURER, UTS_SYSNAME " " UTS_RELEASE " with " CHIP, },
{ STRING_PRODUCT, longname, },
{ STRING_SERIAL, serial, },
{ STRING_LOOPBACK, loopback, },
{ STRING_SOURCE_SINK, source_sink, },
{ } /* end of list */
};
static struct usb_gadget_strings stringtab = {
.language = 0x0409, /* en-us */
.strings = strings,
};
/*
* config descriptors are also handcrafted. these must agree with code
* that sets configurations, and with code managing interface altsettings.
* other complexity may come from:
*
* - high speed support, including "other speed config" rules
* - multiple configurations
* - interfaces with alternate settings
* - embedded class or vendor-specific descriptors
*
* this handles high speed, and has a second config that could as easily
* have been an alternate interface setting.
*
* NOTE: to demonstrate (and test) more USB capabilities, this driver
* should include an altsetting to test interrupt transfers, including
* high bandwidth modes at high speed. (Maybe work like Intel's test
* device?)
*/
static int
config_buf (enum usb_device_speed speed,
u8 *buf, u8 type, unsigned index)
{
int is_source_sink;
const unsigned config_len = USB_DT_CONFIG_SIZE
+ USB_DT_INTERFACE_SIZE
+ 2 * USB_DT_ENDPOINT_SIZE;
#ifdef HIGHSPEED
int hs;
#endif
/* two configurations will always be index 0 and index 1 */
if (index > 1)
return -EINVAL;
if (config_len > USB_BUFSIZ)
return -EDOM;
is_source_sink = loopdefault ? (index == 1) : (index == 0);
/* config (or other speed config) */
if (is_source_sink)
memcpy (buf, &source_sink_config, USB_DT_CONFIG_SIZE);
else
memcpy (buf, &loopback_config, USB_DT_CONFIG_SIZE);
buf [1] = type;
((struct usb_config_descriptor *) buf)->wTotalLength
= cpu_to_le16 (config_len);
buf += USB_DT_CONFIG_SIZE;
/* one interface */
if (is_source_sink)
memcpy (buf, &source_sink_intf, USB_DT_INTERFACE_SIZE);
else
memcpy (buf, &loopback_intf, USB_DT_INTERFACE_SIZE);
buf += USB_DT_INTERFACE_SIZE;
/* the endpoints in that interface (at that speed) */
#ifdef HIGHSPEED
hs = (speed == USB_SPEED_HIGH);
if (type == USB_DT_OTHER_SPEED_CONFIG)
hs = !hs;
if (hs) {
memcpy (buf, &hs_source_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
memcpy (buf, &hs_sink_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
} else
#endif
{
memcpy (buf, &fs_source_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
memcpy (buf, &fs_sink_desc, USB_DT_ENDPOINT_SIZE);
buf += USB_DT_ENDPOINT_SIZE;
}
return config_len;
}
/*-------------------------------------------------------------------------*/
static struct usb_request *
alloc_ep_req (struct usb_ep *ep, unsigned length)
{
struct usb_request *req;
req = usb_ep_alloc_request (ep, GFP_ATOMIC);
if (req) {
req->length = length;
req->buf = usb_ep_alloc_buffer (ep, length,
&req->dma, GFP_ATOMIC);
if (!req->buf) {
usb_ep_free_request (ep, req);
req = 0;
}
}
return req;
}
static void free_ep_req (struct usb_ep *ep, struct usb_request *req)
{
if (req->buf)
usb_ep_free_buffer (ep, req->buf, req->dma, req->length);
usb_ep_free_request (ep, req);
}
/*-------------------------------------------------------------------------*/
/* optionally require specific source/sink data patterns */
static inline int
check_read_data (
struct zero_dev *dev,
struct usb_ep *ep,
struct usb_request *req
)
{
int i;
for (i = 0; i < req->actual; i++) {
if (((u8 *)req->buf) [i] != 0) {
ERROR (dev, "nonzero OUT byte from host, "
"buf [%d] = %d\n",
i, ((u8 *)req->buf) [i]);
usb_ep_set_halt (ep);
return -EINVAL;
}
}
return 0;
}
static inline void
reinit_write_data (
struct zero_dev *dev,
struct usb_ep *ep,
struct usb_request *req
)
{
memset (req->buf, 0, req->length);
}
/* if there is only one request in the queue, there'll always be an
* irq delay between end of one request and start of the next.
* that prevents using hardware dma queues.
*/
static void source_sink_complete (struct usb_ep *ep, struct usb_request *req)
{
struct zero_dev *dev = ep->driver_data;
int status = req->status;
switch (status) {
case 0: /* normal completion? */
if (ep == dev->out_ep)
check_read_data (dev, ep, req);
else
reinit_write_data (dev, ep, req);
break;
/* this endpoint is normally active while we're configured */
case -ECONNRESET: /* request dequeued */
case -ESHUTDOWN: /* disconnect from host */
DEBUG (dev, "%s gone (%d), %d/%d\n", ep->name, status,
req->actual, req->length);
free_ep_req (ep, req);
return;
case -EOVERFLOW: /* buffer overrun on read means that
* we didn't provide a big enough
* buffer.
*/
default:
#if 1
DEBUG (dev, "%s complete --> %d, %d/%d\n", ep->name,
status, req->actual, req->length);
#endif
case -EREMOTEIO: /* short read */
break;
}
status = usb_ep_queue (ep, req, GFP_ATOMIC);
if (status) {
ERROR (dev, "kill %s: resubmit %d bytes --> %d\n",
ep->name, req->length, status);
usb_ep_set_halt (ep);
/* FIXME recover later ... somehow */
}
}
static struct usb_request *
source_sink_start_ep (struct usb_ep *ep, int gfp_flags)
{
struct usb_request *req;
int status;
req = alloc_ep_req (ep, buflen);
if (!req)
return 0;
memset (req->buf, 0, req->length);
req->complete = source_sink_complete;
status = usb_ep_queue (ep, req, gfp_flags);
if (status) {
struct zero_dev *dev = ep->driver_data;
ERROR (dev, "start %s --> %d\n", ep->name, status);
free_ep_req (ep, req);
req = 0;
}
return req;
}
static int
set_source_sink_config (struct zero_dev *dev, int gfp_flags)
{
int result = 0;
struct usb_ep *ep;
struct usb_gadget *gadget = dev->gadget;
gadget_for_each_ep (ep, gadget) {
const struct usb_endpoint_descriptor *d;
/* one endpoint writes (sources) zeroes in (to the host) */
if (strcmp (ep->name, EP_IN_NAME) == 0) {
d = ep_desc (gadget, &hs_source_desc, &fs_source_desc);
result = usb_ep_enable (ep, d);
if (result == 0) {
ep->driver_data = dev;
if (source_sink_start_ep (ep, gfp_flags) != 0) {
dev->in_ep = ep;
continue;
}
usb_ep_disable (ep);
result = -EIO;
}
/* one endpoint reads (sinks) anything out (from the host) */
} else if (strcmp (ep->name, EP_OUT_NAME) == 0) {
d = ep_desc (gadget, &hs_sink_desc, &fs_sink_desc);
result = usb_ep_enable (ep, d);
if (result == 0) {
ep->driver_data = dev;
if (source_sink_start_ep (ep, gfp_flags) != 0) {
dev->out_ep = ep;
continue;
}
usb_ep_disable (ep);
result = -EIO;
}
/* ignore any other endpoints */
} else
continue;
/* stop on error */
ERROR (dev, "can't start %s, result %d\n", ep->name, result);
break;
}
if (result == 0)
DEBUG (dev, "buflen %d\n", buflen);
/* caller is responsible for cleanup on error */
return result;
}
/*-------------------------------------------------------------------------*/
static void loopback_complete (struct usb_ep *ep, struct usb_request *req)
{
struct zero_dev *dev = ep->driver_data;
int status = req->status;
switch (status) {
case 0: /* normal completion? */
if (ep == dev->out_ep) {
/* loop this OUT packet back IN to the host */
req->zero = (req->actual < req->length);
req->length = req->actual;
status = usb_ep_queue (dev->in_ep, req, GFP_ATOMIC);
if (status == 0)
return;
/* "should never get here" */
ERROR (dev, "can't loop %s to %s: %d\n",
ep->name, dev->in_ep->name,
status);
}
/* queue the buffer for some later OUT packet */
req->length = buflen;
status = usb_ep_queue (dev->out_ep, req, GFP_ATOMIC);
if (status == 0)
return;
/* "should never get here" */
/* FALLTHROUGH */
default:
ERROR (dev, "%s loop complete --> %d, %d/%d\n", ep->name,
status, req->actual, req->length);
/* FALLTHROUGH */
/* NOTE: since this driver doesn't maintain an explicit record
* of requests it submitted (just maintains qlen count), we
* rely on the hardware driver to clean up on disconnect or
* endpoint disable.
*/
case -ESHUTDOWN: /* disconnect from host */
free_ep_req (ep, req);
return;
}
}
static int
set_loopback_config (struct zero_dev *dev, int gfp_flags)
{
int result = 0;
struct usb_ep *ep;
struct usb_gadget *gadget = dev->gadget;
gadget_for_each_ep (ep, gadget) {
const struct usb_endpoint_descriptor *d;
/* one endpoint writes data back IN to the host */
if (strcmp (ep->name, EP_IN_NAME) == 0) {
d = ep_desc (gadget, &hs_source_desc, &fs_source_desc);
result = usb_ep_enable (ep, d);
if (result == 0) {
ep->driver_data = dev;
dev->in_ep = ep;
continue;
}
/* one endpoint just reads OUT packets */
} else if (strcmp (ep->name, EP_OUT_NAME) == 0) {
d = ep_desc (gadget, &hs_sink_desc, &fs_sink_desc);
result = usb_ep_enable (ep, d);
if (result == 0) {
ep->driver_data = dev;
dev->out_ep = ep;
continue;
}
/* ignore any other endpoints */
} else
continue;
/* stop on error */
ERROR (dev, "can't enable %s, result %d\n", ep->name, result);
break;
}
/* allocate a bunch of read buffers and queue them all at once.
* we buffer at most 'qlen' transfers; fewer if any need more
* than 'buflen' bytes each.
*/
if (result == 0) {
struct usb_request *req;
unsigned i;
ep = dev->out_ep;
for (i = 0; i < qlen && result == 0; i++) {
req = alloc_ep_req (ep, buflen);
if (req) {
req->complete = loopback_complete;
result = usb_ep_queue (ep, req, GFP_ATOMIC);
if (result)
DEBUG (dev, "%s queue req --> %d\n",
ep->name, result);
} else
result = -ENOMEM;
}
}
if (result == 0)
DEBUG (dev, "qlen %d, buflen %d\n", qlen, buflen);
/* caller is responsible for cleanup on error */
return result;
}
/*-------------------------------------------------------------------------*/
static void zero_reset_config (struct zero_dev *dev)
{
if (dev->config == 0)
return;
DEBUG (dev, "reset config\n");
/* just disable endpoints, forcing completion of pending i/o.
* all our completion handlers free their requests in this case.
*/
if (dev->in_ep) {
usb_ep_disable (dev->in_ep);
dev->in_ep = 0;
}
if (dev->out_ep) {
usb_ep_disable (dev->out_ep);
dev->out_ep = 0;
}
dev->config = 0;
}
/* change our operational config. this code must agree with the code
* that returns config descriptors, and altsetting code.
*
* it's also responsible for power management interactions. some
* configurations might not work with our current power sources.
*
* note that some device controller hardware will constrain what this
* code can do, perhaps by disallowing more than one configuration or
* by limiting configuration choices (like the pxa250).
*/
static int
zero_set_config (struct zero_dev *dev, unsigned number, int gfp_flags)
{
int result = 0;
struct usb_gadget *gadget = dev->gadget;
if (number == dev->config)
return 0;
#ifdef CONFIG_USB_ZERO_SA1100
if (dev->config) {
/* tx fifo is full, but we can't clear it...*/
INFO (dev, "can't change configurations\n");
return -ESPIPE;
}
#endif
zero_reset_config (dev);
hw_optimize (gadget);
switch (number) {
case CONFIG_SOURCE_SINK:
result = set_source_sink_config (dev, gfp_flags);
break;
case CONFIG_LOOPBACK:
result = set_loopback_config (dev, gfp_flags);
break;
default:
result = -EINVAL;
/* FALL THROUGH */
case 0:
return result;
}
if (!result && (!dev->in_ep || !dev->out_ep))
result = -ENODEV;
if (result)
zero_reset_config (dev);
else {
char *speed;
switch (gadget->speed) {
case USB_SPEED_LOW: speed = "low"; break;
case USB_SPEED_FULL: speed = "full"; break;
case USB_SPEED_HIGH: speed = "high"; break;
default: speed = "?"; break;
}
dev->config = number;
INFO (dev, "%s speed config #%d: %s\n", speed, number,
(number == CONFIG_SOURCE_SINK)
? source_sink : loopback);
}
return result;
}
/*-------------------------------------------------------------------------*/
static void zero_setup_complete (struct usb_ep *ep, struct usb_request *req)
{
if (req->status || req->actual != req->length)
DEBUG ((struct zero_dev *) ep->driver_data,
"setup complete --> %d, %d/%d\n",
req->status, req->actual, req->length);
}
/*
* The setup() callback implements all the ep0 functionality that's
* not handled lower down, in hardware or the hardware driver (like
* device and endpoint feature flags, and their status). It's all
* housekeeping for the gadget function we're implementing. Most of
* the work is in config-specific setup.
*/
static int
zero_setup (struct usb_gadget *gadget, const struct usb_ctrlrequest *ctrl)
{
struct zero_dev *dev = get_gadget_data (gadget);
struct usb_request *req = dev->req;
int value = -EOPNOTSUPP;
/* usually this stores reply data in the pre-allocated ep0 buffer,
* but config change events will reconfigure hardware.
*/
switch (ctrl->bRequest) {
case USB_REQ_GET_DESCRIPTOR:
if (ctrl->bRequestType != USB_DIR_IN)
break;
switch (ctrl->wValue >> 8) {
case USB_DT_DEVICE:
value = min (ctrl->wLength, (u16) sizeof device_desc);
memcpy (req->buf, &device_desc, value);
break;
#ifdef HIGHSPEED
case USB_DT_DEVICE_QUALIFIER:
value = min (ctrl->wLength, (u16) sizeof dev_qualifier);
memcpy (req->buf, &dev_qualifier, value);
break;
case USB_DT_OTHER_SPEED_CONFIG:
// FALLTHROUGH
#endif /* HIGHSPEED */
case USB_DT_CONFIG:
value = config_buf (gadget->speed, req->buf,
ctrl->wValue >> 8,
ctrl->wValue & 0xff);
if (value >= 0)
value = min (ctrl->wLength, (u16) value);
break;
case USB_DT_STRING:
/* wIndex == language code.
* this driver only handles one language, you can
* add others even if they don't use iso8859/1
*/
value = usb_gadget_get_string (&stringtab,
ctrl->wValue & 0xff, req->buf);
if (value >= 0)
value = min (ctrl->wLength, (u16) value);
break;
}
break;
/* currently two configs, two speeds */
case USB_REQ_SET_CONFIGURATION:
if (ctrl->bRequestType != 0)
break;
spin_lock (&dev->lock);
/* change hardware configuration!
* no response queued, just zero status == success
*/
value = zero_set_config (dev, ctrl->wValue, GFP_ATOMIC);
spin_unlock (&dev->lock);
break;
case USB_REQ_GET_CONFIGURATION:
if (ctrl->bRequestType != USB_DIR_IN)
break;
*(u8 *)req->buf = dev->config;
value = min (ctrl->wLength, (u16) 1);
break;
/* until we add altsetting support, or other interfaces,
* only 0/0 are possible.
*/
case USB_REQ_SET_INTERFACE:
if (ctrl->bRequestType != USB_RECIP_INTERFACE)
break;
spin_lock (&dev->lock);
if (dev->config && ctrl->wIndex == 0 && ctrl->wValue == 0) {
u8 config = dev->config;
/* resets interface configuration, forgets about
* previous transaction state (queued bufs, etc)
* and re-inits endpoint state (toggle etc)
* no response queued, just zero status == success.
* if we had more than one interface we couldn't
* use this "reset the config" shortcut.
*/
zero_reset_config (dev);
zero_set_config (dev, config, GFP_ATOMIC);
value = 0;
}
spin_unlock (&dev->lock);
break;
case USB_REQ_GET_INTERFACE:
if (ctrl->bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE))
break;
if (!dev->config)
break;
if (ctrl->wIndex != 0) {
value = -EDOM;
break;
}
*(u8 *)req->buf = 0;
value = min (ctrl->wLength, (u16) 1);
break;
default:
VDEBUG (dev,
"unknown control req%02x.%02x v%04x i%04x l%d\n",
ctrl->bRequestType, ctrl->bRequest,
ctrl->wValue, ctrl->wIndex, ctrl->wLength);
}
/* respond with data transfer before status phase? */
if (value > 0) {
req->length = value;
value = usb_ep_queue (gadget->ep0, req, GFP_ATOMIC);
if (value < 0) {
DEBUG (dev, "ep_queue --> %d\n", value);
req->status = 0;
zero_setup_complete (gadget->ep0, req);
}
}
/* device either stalls (value < 0) or reports success */
return value;
}
static void
zero_disconnect (struct usb_gadget *gadget)
{
struct zero_dev *dev = get_gadget_data (gadget);
unsigned long flags;
spin_lock_irqsave (&dev->lock, flags);
zero_reset_config (dev);
/* a more significant application might have some non-usb
* activities to quiesce here, saving resources like power
* or pushing the notification up a network stack.
*/
spin_unlock_irqrestore (&dev->lock, flags);
/* next we may get setup() calls to enumerate new connections;
* or an unbind() during shutdown (including removing module).
*/
}
/*-------------------------------------------------------------------------*/
static void
zero_unbind (struct usb_gadget *gadget)
{
struct zero_dev *dev = get_gadget_data (gadget);
DEBUG (dev, "unbind\n");
/* we've already been disconnected ... no i/o is active */
if (dev->req)
free_ep_req (gadget->ep0, dev->req);
kfree (dev);
set_gadget_data (gadget, 0);
}
static int
zero_bind (struct usb_gadget *gadget)
{
struct zero_dev *dev;
dev = kmalloc (sizeof *dev, SLAB_KERNEL);
if (!dev)
return -ENOMEM;
memset (dev, 0, sizeof *dev);
spin_lock_init (&dev->lock);
dev->gadget = gadget;
set_gadget_data (gadget, dev);
/* preallocate control response and buffer */
dev->req = usb_ep_alloc_request (gadget->ep0, GFP_KERNEL);
if (!dev->req)
goto enomem;
dev->req->buf = usb_ep_alloc_buffer (gadget->ep0, USB_BUFSIZ,
&dev->req->dma, GFP_KERNEL);
if (!dev->req->buf)
goto enomem;
dev->req->complete = zero_setup_complete;
gadget->ep0->driver_data = dev;
INFO (dev, "%s, version: " DRIVER_VERSION "\n", longname);
return 0;
enomem:
zero_unbind (gadget);
return -ENOMEM;
}
/*-------------------------------------------------------------------------*/
static struct usb_gadget_driver zero_driver = {
#ifdef HIGHSPEED
.speed = USB_SPEED_HIGH,
#else
.speed = USB_SPEED_FULL,
#endif
.function = (char *) longname,
.bind = zero_bind,
.unbind = zero_unbind,
.setup = zero_setup,
.disconnect = zero_disconnect,
.driver = {
.name = (char *) shortname,
// .shutdown = ...
// .suspend = ...
// .resume = ...
},
};
MODULE_AUTHOR ("David Brownell");
MODULE_LICENSE ("Dual BSD/GPL");
static int __init init (void)
{
/* a real value would likely come through some id prom
* or module option. this one takes at least two packets.
*/
strncpy (serial, "0123456789.0123456789.0123456789", sizeof serial);
serial [sizeof serial - 1] = 0;
return usb_gadget_register_driver (&zero_driver);
}
module_init (init);
static void __exit cleanup (void)
{
usb_gadget_unregister_driver (&zero_driver);
}
module_exit (cleanup);
/*
* <linux/usb_gadget.h>
*
* We call the USB code inside a Linux-based peripheral device a "gadget"
* driver, except for the hardware-specific bus glue. One USB host can
* master many USB gadgets, but the gadgets are only slaved to one host.
*
*
* (c) Copyright 2002-2003 by David Brownell
* All Rights Reserved.
*
* This software is licensed under the GNU GPL version 2.
*
* ALTERNATIVELY, the kernel API documentation which is included in this
* software may also be licenced under the "GNU Free Documentation
* License" (version 1.2 or, at your choice, any later version), when
* used as part of the "USB Gadget API for Linux" documentation.
*/
#ifndef __LINUX_USB_GADGET_H
#define __LINUX_USB_GADGET_H
#ifdef __KERNEL__
struct usb_ep;
/**
* struct usb_request - describes one i/o request
* @buf: Buffer used for data. Always provide this; some controllers
* only use PIO, or don't use DMA for some endpoints.
* @dma: DMA address corresponding to 'buf'. If you don't set this
* field, and the usb controller needs one, it is responsible
* for mapping and unmapping the buffer.
* @length: Length of that data
* @no_interrupt: If true, hints that no completion irq is needed.
* Helpful sometimes with deep request queues.
* @zero: If true, when writing data, makes the last packet be "short"
* by adding a zero length packet as needed;
* @short_not_ok: When reading data, makes short packets be
* treated as errors (queue stops advancing till cleanup).
* @complete: Function called when request completes
* @context: For use by the completion callback
* @list: For use by the gadget driver.
* @status: Reports completion code, zero or a negative errno.
* Normally, faults block the transfer queue from advancing until
* the completion callback returns.
* Code "-ESHUTDOWN" indicates completion caused by device disconnect,
* or when the driver disabled the endpoint.
* @actual: Reports actual bytes transferred. For reads (OUT
* transfers) this may be less than the requested length. If the
* short_not_ok flag is set, short reads are treated as errors
* even when status otherwise indicates successful completion.
* Note that for writes (IN transfers) the data bytes may still
* reside in a device-side FIFO.
*
* These are allocated/freed through the endpoint they're used with. The
* hardware's driver can add extra per-request data to the memory it returns,
* which often avoids separate memory allocations (potential failures),
* later when the request is queued.
*
* Request flags affect request handling, such as whether a zero length
* packet is written (the "zero" flag), whether a short read should be
* treated as an error (blocking request queue advance, the "short_not_ok"
* flag), or hinting that an interrupt is not required (the "no_interrupt"
* flag, for use with deep request queues).
*
* Bulk endpoints can use any size buffers, and can also be used for interrupt
* transfers. interrupt-only endpoints can be much less functional.
*/
// NOTE this is analagous to 'struct urb' on the host side,
// except that it's thinner and promotes more pre-allocation.
//
// ISSUE should this be allocated through the device?
struct usb_request {
void *buf;
unsigned length;
dma_addr_t dma;
unsigned no_interrupt : 1,
zero : 1,
short_not_ok : 1;
void (*complete)(struct usb_ep *ep,
struct usb_request *req);
void *context;
struct list_head list;
int status;
unsigned actual;
};
/*-------------------------------------------------------------------------*/
/* endpoint-specific parts of the api to the usb controller hardware.
* unlike the urb model, (de)multiplexing layers are not required.
* (so this api could slash overhead if used on the host side...)
*
* note that device side usb controllers commonly differ in how many
* endpoints they support, as well as their capabilities.
*/
struct usb_ep_ops {
int (*enable) (struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc);
int (*disable) (struct usb_ep *ep);
struct usb_request *(*alloc_request) (struct usb_ep *ep,
int gfp_flags);
void (*free_request) (struct usb_ep *ep, struct usb_request *req);
void *(*alloc_buffer) (struct usb_ep *ep, unsigned bytes,
dma_addr_t *dma, int gfp_flags);
void (*free_buffer) (struct usb_ep *ep, void *buf, dma_addr_t dma,
unsigned bytes);
// NOTE: on 2.5, drivers may also use dma_map() and
// dma_sync_single() to manage dma overhead.
int (*queue) (struct usb_ep *ep, struct usb_request *req,
int gfp_flags);
int (*dequeue) (struct usb_ep *ep, struct usb_request *req);
int (*set_halt) (struct usb_ep *ep, int value);
int (*fifo_status) (struct usb_ep *ep);
void (*fifo_flush) (struct usb_ep *ep);
};
/**
* struct usb_ep - device side representation of USB endpoint
* @name:identifier for the endpoint, such as "ep-a" or "ep9in-bulk"
* @ep_list:the gadget's ep_list holds all of its endpoints
* @maxpacket:the maximum packet size used on this endpoint, as
* configured when the endpoint was enabled.
* @driver_data:for use by the gadget driver. all other fields are
* read-only to gadget drivers.
*
* the bus controller driver lists all the general purpose endpoints in
* gadget->ep_list. the control endpoint (gadget->ep0) is not in that list,
* and is accessed only in response to a driver setup() callback.
*/
struct usb_ep {
void *driver_data;
const char *name;
const struct usb_ep_ops *ops;
struct list_head ep_list;
unsigned maxpacket : 16;
};
/*-------------------------------------------------------------------------*/
/**
* usb_ep_enable - configure endpoint, making it usable
* @ep:the endpoint being configured. may not be the endpoint named "ep0".
* drivers discover endpoints through the ep_list of a usb_gadget.
* @desc:descriptor for desired behavior. caller guarantees this pointer
* remains valid until the endpoint is disabled; the data byte order
* is little-endian (usb-standard).
*
* when configurations are set, or when interface settings change, the driver
* will enable or disable the relevant endpoints. while it is enabled, an
* endpoint may be used for i/o until the driver receives a disconnect() from
* the host or until the endpoint is disabled.
*
* the ep0 implementation (which calls this routine) must ensure that the
* hardware capabilities of each endpoint match the descriptor provided
* for it. for example, an endpoint named "ep2in-bulk" would be usable
* for interrupt transfers as well as bulk, but it likely couldn't be used
* for iso transfers or for endpoint 14. some endpoints are fully
* configurable, with more generic names like "ep-a". (remember that for
* USB, "in" means "towards the USB master".)
*
* returns zero, or a negative error code.
*/
static inline int
usb_ep_enable (struct usb_ep *ep, const struct usb_endpoint_descriptor *desc)
{
return ep->ops->enable (ep, desc);
}
/**
* usb_ep_disable - endpoint is no longer usable
* @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
*
* no other task may be using this endpoint when this is called.
* any pending and uncompleted requests will complete with status
* indicating disconnect (-ESHUTDOWN) before this call returns.
* gadget drivers must call usb_ep_enable() again before queueing
* requests to the endpoint.
*
* returns zero, or a negative error code.
*/
static inline int
usb_ep_disable (struct usb_ep *ep)
{
return ep->ops->disable (ep);
}
/**
* usb_ep_alloc_request - allocate a request object to use with this endpoint
* @ep:the endpoint to be used with with the request
* @gfp_flags:GFP_* flags to use
*
* Request objects must be allocated with this call, since they normally
* need controller-specific setup and may even need endpoint-specific
* resources such as allocation of DMA descriptors.
* Requests may be submitted with usb_ep_queue(), and receive a single
* completion callback. Free requests with usb_ep_free_request(), when
* they are no longer needed.
*
* Returns the request, or null if one could not be allocated.
*/
static inline struct usb_request *
usb_ep_alloc_request (struct usb_ep *ep, int gfp_flags)
{
return ep->ops->alloc_request (ep, gfp_flags);
}
/**
* usb_ep_free_request - frees a request object
* @ep:the endpoint associated with the request
* @req:the request being freed
*
* Reverses the effect of usb_ep_alloc_request().
* Caller guarantees the request is not queued, and that it will
* no longer be requeued (or otherwise used).
*/
static inline void
usb_ep_free_request (struct usb_ep *ep, struct usb_request *req)
{
ep->ops->free_request (ep, req);
}
/**
* usb_ep_alloc_buffer - allocate an I/O buffer
* @ep:the endpoint associated with the buffer
* @len:length of the desired buffer
* @dma:pointer to the buffer's DMA address; must be valid
* @gfp_flags:GFP_* flags to use
*
* Returns a new buffer, or null if one could not be allocated.
* The buffer is suitably aligned for dma, if that endpoint uses DMA,
* and the caller won't have to care about dma-inconsistency
* or any hidden "bounce buffer" mechanism. No additional per-request
* DMA mapping will be required for such buffers.
* Free it later with usb_ep_free_buffer().
*
* You don't need to use this call to allocate I/O buffers unless you
* want to make sure drivers don't incur costs for such "bounce buffer"
* copies or per-request DMA mappings.
*/
static inline void *
usb_ep_alloc_buffer (struct usb_ep *ep, unsigned len, dma_addr_t *dma,
int gfp_flags)
{
return ep->ops->alloc_buffer (ep, len, dma, gfp_flags);
}
/**
* usb_ep_free_buffer - frees an i/o buffer
* @ep:the endpoint associated with the buffer
* @buf:CPU view address of the buffer
* @dma:the buffer's DMA address
* @len:length of the buffer
*
* reverses the effect of usb_ep_alloc_buffer().
* caller guarantees the buffer will no longer be accessed
*/
static inline void
usb_ep_free_buffer (struct usb_ep *ep, void *buf, dma_addr_t dma, unsigned len)
{
ep->ops->free_buffer (ep, buf, dma, len);
}
/**
* usb_ep_queue - queues (submits) an I/O request to an endpoint.
* @ep:the endpoint associated with the request
* @req:the request being submitted
* @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
* pre-allocate all necessary memory with the request.
*
* This tells the device controller to perform the specified request through
* that endpoint (reading or writing a buffer). When the request completes,
* including being canceled by usb_ep_dequeue(), the request's completion
* routine is called to return the request to the driver. Any endpoint
* (except control endpoints like ep0) may have more than one transfer
* request queued; they complete in FIFO order. Once a gadget driver
* submits a request, that request may not be examined or modified until it
* is given back to that driver through the completion callback.
*
* Each request is turned into one or more packets. The controller driver
* never merges adjacent requests into the same packet. OUT transfers
* will sometimes use data that's already buffered in the hardware.
*
* Bulk endpoints can queue any amount of data; the transfer is packetized
* automatically. The last packet will be short if the request doesn't fill it
* out completely. Zero length packets (ZLPs) should be avoided in portable
* protocols since not all usb hardware can successfully handle zero length
* packets. (ZLPs may be explicitly written, and may be implicitly written if
* the request 'zero' flag is set.) Bulk endpoints may also be used
* for interrupt transfers; but the reverse is not true, and some endpoints
* won't support every interrupt transfer. (Such as 768 byte packets.)
*
* Interrupt-only endpoints are less functional than bulk endpoints, for
* example by not supporting queueing or not handling buffers that are
* larger than the endpoint's maxpacket size. They may also treat data
* toggle differently.
*
* Control endpoints ... after getting a setup() callback, the driver queues
* one response (optional if it would be zero length). That enables the
* status ack, after transfering data as specified in the response. Setup
* functions may return negative error codes to generate protocol stalls.
*
* For periodic endpoints, like interrupt or isochronous ones, the usb host
* arranges to poll once per interval, and the gadget driver usually will
* have queued some data to transfer at that time.
*
* Returns zero, or a negative error code. Endpoints that are not enabled,
* or which are enabled but halted, report errors; errors will also be
* reported when the usb peripheral is disconnected.
*/
static inline int
usb_ep_queue (struct usb_ep *ep, struct usb_request *req, int gfp_flags)
{
return ep->ops->queue (ep, req, gfp_flags);
}
/**
* usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
* @ep:the endpoint associated with the request
* @req:the request being canceled
*
* if the request is still active on the endpoint, it is dequeued and its
* completion routine is called (with status -ECONNRESET); else a negative
* error code is returned.
*
* note that some hardware can't clear out write fifos (to unlink the request
* at the head of the queue) except as part of disconnecting from usb. such
* restrictions prevent drivers from supporting configuration changes,
* even to configuration zero (a "chapter 9" requirement).
*/
static inline int usb_ep_dequeue (struct usb_ep *ep, struct usb_request *req)
{
return ep->ops->dequeue (ep, req);
}
/**
* usb_ep_set_halt - sets the endpoint halt feature.
* @ep: the non-isochronous endpoint being stalled
*
* Use this to stall an endpoint, perhaps as an error report.
* Except for control endpoints,
* the endpoint stays halted (will not stream any data) until the host
* clears this feature; drivers may need to empty the endpoint's request
* queue first, to make sure no inappropriate transfers happen.
*
* Returns zero, or a negative error code. On success, this call sets
* underlying hardware state that blocks data transfers.
*/
static inline int
usb_ep_set_halt (struct usb_ep *ep)
{
return ep->ops->set_halt (ep, 1);
}
/**
* usb_ep_clear_halt - clears endpoint halt, and resets toggle
* @ep:the bulk or interrupt endpoint being reset
*
* use this when responding to the standard usb "set interface" request,
* for endpoints that aren't reconfigured, after clearing any other state
* in the endpoint's i/o queue.
*
* returns zero, or a negative error code. on success, this call clears
* the underlying hardware state reflecting endpoint halt and data toggle.
*/
static inline int
usb_ep_clear_halt (struct usb_ep *ep)
{
return ep->ops->set_halt (ep, 0);
}
/**
* usb_ep_fifo_status - returns number of bytes in fifo, or error
* @ep: the endpoint whose fifo status is being checked.
*
* FIFO endpoints may have "unclaimed data" in them in certain cases,
* such as after aborted transfers. Hosts may not have collected all
* the IN data written by the gadget driver, as reported by a request
* completion. The gadget driver may not have collected all the data
* written OUT to it by the host. Drivers that need precise handling for
* fault reporting or recovery may need to use this call.
*
* This returns the number of such bytes in the fifo, or a negative
* errno if the endpoint doesn't use a FIFO or doesn't support such
* precise handling.
*/
static inline int
usb_ep_fifo_status (struct usb_ep *ep)
{
if (ep->ops->fifo_status)
return ep->ops->fifo_status (ep);
else
return -EOPNOTSUPP;
}
/**
* usb_ep_fifo_flush - flushes contents of a fifo
* @ep: the endpoint whose fifo is being flushed.
*
* This call may be used to flush the "unclaimed data" that may exist in
* an endpoint fifo after abnormal transaction terminations. The call
* must never be used except when endpoint is not being used for any
* protocol translation.
*/
static inline void
usb_ep_fifo_flush (struct usb_ep *ep)
{
if (ep->ops->fifo_flush)
ep->ops->fifo_flush (ep);
}
/*-------------------------------------------------------------------------*/
struct usb_gadget;
/* the rest of the api to the controller hardware: device operations,
* which don't involve endpoints (or i/o).
*/
struct usb_gadget_ops {
int (*get_frame)(struct usb_gadget *);
int (*wakeup)(struct usb_gadget *);
int (*set_selfpowered) (struct usb_gadget *, int value);
int (*ioctl)(struct usb_gadget *,
unsigned code, unsigned long param);
};
/**
* struct usb_gadget - represents a usb slave device
* @ep0: Endpoint zero, used when reading or writing responses to
* driver setup() requests
* @ep_list: List of other endpoints supported by the device.
* @speed: Speed of current connection to USB host.
* @name: Identifies the controller hardware type. Used in diagnostics
* and sometimes configuration.
*
* Gadgets have a mostly-portable "gadget driver" implementing device
* functions, handling all usb configurations and interfaces. They
* also have a hardware-specific driver (accessed through ops vectors),
* which insulates the gadget driver from hardware details and packages
* the hardware endpoints through generic i/o queues.
*
* Except for the driver data, all fields in this structure are
* read-only to the gadget driver. That driver data is part of the
* "driver model" infrastructure in 2.5 (and later) kernels, and for
* earlier systems is grouped in a similar structure that's not known
* to the rest of the kernel.
*/
struct usb_gadget {
/* readonly to gadget driver */
const struct usb_gadget_ops *ops;
struct usb_ep *ep0;
struct list_head ep_list; /* of usb_ep */
enum usb_device_speed speed;
const char *name;
/* use this to allocate dma-coherent buffers or set up
* dma mappings. or print diagnostics, etc.
*/
struct device dev;
};
static inline void set_gadget_data (struct usb_gadget *gadget, void *data)
{ dev_set_drvdata (&gadget->dev, data); }
static inline void *get_gadget_data (struct usb_gadget *gadget)
{ return dev_get_drvdata (&gadget->dev); }
/* iterates the non-control endpoints; 'tmp' is a struct usb_ep pointer */
#define gadget_for_each_ep(tmp,gadget) \
list_for_each_entry(tmp, &(gadget)->ep_list, ep_list)
/**
* usb_gadget_frame_number - returns the current frame number
* @gadget: controller that reports the frame number
*
* Returns the usb frame number, normally eleven bits from a SOF packet,
* or negative errno if this device doesn't support this capability.
*/
static inline int usb_gadget_frame_number (struct usb_gadget *gadget)
{
return gadget->ops->get_frame (gadget);
}
/**
* usb_gadget_wakeup - tries to wake up the host connected to this gadget
* @gadget: controller used to wake up the host
*
* Returns zero on success, else negative error code if the hardware
* doesn't support such attempts, or its support has not been enabled
* by the usb host. Drivers must return device descriptors that report
* their ability to support this, or hosts won't enable it.
*/
static inline int usb_gadget_wakeup (struct usb_gadget *gadget)
{
if (!gadget->ops->wakeup)
return -EOPNOTSUPP;
return gadget->ops->wakeup (gadget);
}
/**
* usb_gadget_set_selfpowered - sets the device selfpowered feature.
* @gadget:the device being declared as self-powered
*
* this affects the device status reported by the hardware driver
* to reflect that it now has a local power supply.
*
* returns zero on success, else negative errno.
*/
static inline int
usb_gadget_set_selfpowered (struct usb_gadget *gadget)
{
if (!gadget->ops->set_selfpowered)
return -EOPNOTSUPP;
return gadget->ops->set_selfpowered (gadget, 1);
}
/**
* usb_gadget_clear_selfpowered - clear the device selfpowered feature.
* @gadget:the device being declared as bus-powered
*
* this affects the device status reported by the hardware driver.
* some hardware may not support bus-powered operation, in which
* case this feature's value can never change.
*
* returns zero on success, else negative errno.
*/
static inline int
usb_gadget_clear_selfpowered (struct usb_gadget *gadget)
{
if (!gadget->ops->set_selfpowered)
return -EOPNOTSUPP;
return gadget->ops->set_selfpowered (gadget, 0);
}
/*-------------------------------------------------------------------------*/
/**
* struct usb_gadget_driver - driver for usb 'slave' devices
* @function: String describing the gadget's function
* @speed: Highest speed the driver handles.
* @bind: Invoked when the driver is bound to a gadget, usually
* after registering the driver.
* At that point, ep0 is fully initialized, and ep_list holds
* the currently-available endpoints.
* Called in a context that permits sleeping.
* @setup: Invoked for ep0 control requests that aren't handled by
* the hardware level driver. Most calls must be handled by
* the gadget driver, including descriptor and configuration
* management. The 16 bit members of the setup data are in
* cpu order. Called in_interrupt; this may not sleep. Driver
* queues a response to ep0, or returns negative to stall.
* @disconnect: Invoked after all transfers have been stopped,
* when the host is disconnected. May be called in_interrupt; this
* may not sleep.
* @unbind: Invoked when the driver is unbound from a gadget,
* usually from rmmod (after a disconnect is reported).
* Called in a context that permits sleeping.
* @suspend: Invoked on USB suspend. May be called in_interrupt.
* @resume: Invoked on USB resume. May be called in_interrupt.
*
* Devices are disabled till a gadget driver successfully bind()s, which
* means the driver will handle setup() requests needed to enumerate (and
* meet "chapter 9" requirements) then do some useful work.
*
* Drivers use hardware-specific knowledge to configure the usb hardware.
* endpoint addressing is only one of several hardware characteristics that
* are in descriptors the ep0 implementation returns from setup() calls.
*
* Except for ep0 implementation, most driver code shouldn't need change to
* run on top of different usb controllers. It'll use endpoints set up by
* that ep0 implementation.
*
* The usb controller driver handles a few standard usb requests. Those
* include set_address, and feature flags for devices, interfaces, and
* endpoints (the get_status, set_feature, and clear_feature requests).
*
* Accordingly, the driver's setup() callback must always implement all
* get_descriptor requests, returning at least a device descriptor and
* a configuration descriptor. Drivers must make sure the endpoint
* descriptors match any hardware constraints. Some hardware also constrains
* other descriptors. (The pxa250 allows only configurations 1, 2, or 3).
*
* The driver's setup() callback must also implement set_configuration,
* and should also implement set_interface, get_configuration, and
* get_interface. Setting a configuration (or interface) is where
* endpoints should be activated or (config 0) shut down.
*
* (Note that only the default control endpoint is supported. Neither
* hosts nor devices generally support control traffic except to ep0.)
*
* Most devices will ignore USB suspend/resume operations, and so will
* not provide those callbacks. However, some may need to change modes
* when the host is not longer directing those activities. For example,
* local controls (buttons, dials, etc) may need to be re-enabled since
* the (remote) host can't do that any longer.
*/
struct usb_gadget_driver {
char *function;
enum usb_device_speed speed;
int (*bind)(struct usb_gadget *);
void (*unbind)(struct usb_gadget *);
int (*setup)(struct usb_gadget *,
const struct usb_ctrlrequest *);
void (*disconnect)(struct usb_gadget *);
void (*suspend)(struct usb_gadget *);
void (*resume)(struct usb_gadget *);
// FIXME support safe rmmod
struct device_driver driver;
};
/*-------------------------------------------------------------------------*/
/* driver modules register and unregister, as usual.
* these calls must be made in a context that can sleep.
*
* these will usually be implemented directly by the hardware-dependent
* usb bus interface driver, which will only support a single driver.
*/
/**
* usb_gadget_register_driver - register a gadget driver
* @driver:the driver being registered
*
* Call this in your gadget driver's module initialization function,
* to tell the underlying usb controller driver about your driver.
* The driver's bind() function will be called to bind it to a
* gadget. This function must be called in a context that can sleep.
*/
int usb_gadget_register_driver (struct usb_gadget_driver *driver);
/**
* usb_gadget_unregister_driver - unregister a gadget driver
* @driver:the driver being unregistered
*
* Call this in your gadget driver's module cleanup function,
* to tell the underlying usb controller that your driver is
* going away. If the controller is connected to a USB host,
* it will first disconnect(). The driver is also requested
* to unbind() and clean up any device state, before this procedure
* finally returns.
* This function must be called in a context that can sleep.
*/
int usb_gadget_unregister_driver (struct usb_gadget_driver *driver);
/*-------------------------------------------------------------------------*/
/* utility to simplify dealing with string descriptors */
/**
* struct usb_string - wraps a C string and its USB id
* @id:the (nonzero) ID for this string
* @s:the string, in ISO-8859/1 characters
*
* If you're using usb_gadget_get_string(), use this to wrap a string
* together with its ID.
*/
struct usb_string {
u8 id;
const char *s;
};
/**
* struct usb_gadget_strings - a set of USB strings in a given language
* @language:identifies the strings' language (0x0409 for en-us)
* @strings:array of strings with their ids
*
* If you're using usb_gadget_get_string(), use this to wrap all the
* strings for a given language.
*/
struct usb_gadget_strings {
u16 language; /* 0x0409 for en-us */
struct usb_string *strings;
};
/* put descriptor for string with that id into buf (buflen >= 256) */
int usb_gadget_get_string (struct usb_gadget_strings *table, int id, u8 *buf);
#endif /* __KERNEL__ */
#endif /* __LINUX_USB_GADGET_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment