Commit 29875a52 authored by Thomas Hellstrom's avatar Thomas Hellstrom

mm: Add an apply_to_pfn_range interface

This is basically apply_to_page_range with added functionality:
Allocating missing parts of the page table becomes optional, which
means that the function can be guaranteed not to error if allocation
is disabled. Also passing of the closure struct and callback function
becomes different and more in line with how things are done elsewhere.

Finally we keep apply_to_page_range as a wrapper around apply_to_pfn_range

The reason for not using the page-walk code is that we want to perform
the page-walk on vmas pointing to an address space without requiring the
mmap_sem to be held rather than on vmas belonging to a process with the
mmap_sem held.

Notable changes since RFC:
Don't export apply_to_pfn range.

Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Souptick Joarder <jrdr.linux@gmail.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: linux-mm@kvack.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: default avatarThomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com> #v1
parent c9e5f41f
...@@ -2675,6 +2675,16 @@ typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, ...@@ -2675,6 +2675,16 @@ typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
unsigned long size, pte_fn_t fn, void *data); unsigned long size, pte_fn_t fn, void *data);
struct pfn_range_apply;
typedef int (*pter_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
struct pfn_range_apply *closure);
struct pfn_range_apply {
struct mm_struct *mm;
pter_fn_t ptefn;
unsigned int alloc;
};
extern int apply_to_pfn_range(struct pfn_range_apply *closure,
unsigned long address, unsigned long size);
#ifdef CONFIG_PAGE_POISONING #ifdef CONFIG_PAGE_POISONING
extern bool page_poisoning_enabled(void); extern bool page_poisoning_enabled(void);
......
...@@ -2032,18 +2032,17 @@ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long ...@@ -2032,18 +2032,17 @@ int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long
} }
EXPORT_SYMBOL(vm_iomap_memory); EXPORT_SYMBOL(vm_iomap_memory);
static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, static int apply_to_pte_range(struct pfn_range_apply *closure, pmd_t *pmd,
unsigned long addr, unsigned long end, unsigned long addr, unsigned long end)
pte_fn_t fn, void *data)
{ {
pte_t *pte; pte_t *pte;
int err; int err;
pgtable_t token; pgtable_t token;
spinlock_t *uninitialized_var(ptl); spinlock_t *uninitialized_var(ptl);
pte = (mm == &init_mm) ? pte = (closure->mm == &init_mm) ?
pte_alloc_kernel(pmd, addr) : pte_alloc_kernel(pmd, addr) :
pte_alloc_map_lock(mm, pmd, addr, &ptl); pte_alloc_map_lock(closure->mm, pmd, addr, &ptl);
if (!pte) if (!pte)
return -ENOMEM; return -ENOMEM;
...@@ -2054,86 +2053,109 @@ static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, ...@@ -2054,86 +2053,109 @@ static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
token = pmd_pgtable(*pmd); token = pmd_pgtable(*pmd);
do { do {
err = fn(pte++, token, addr, data); err = closure->ptefn(pte++, token, addr, closure);
if (err) if (err)
break; break;
} while (addr += PAGE_SIZE, addr != end); } while (addr += PAGE_SIZE, addr != end);
arch_leave_lazy_mmu_mode(); arch_leave_lazy_mmu_mode();
if (mm != &init_mm) if (closure->mm != &init_mm)
pte_unmap_unlock(pte-1, ptl); pte_unmap_unlock(pte-1, ptl);
return err; return err;
} }
static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, static int apply_to_pmd_range(struct pfn_range_apply *closure, pud_t *pud,
unsigned long addr, unsigned long end, unsigned long addr, unsigned long end)
pte_fn_t fn, void *data)
{ {
pmd_t *pmd; pmd_t *pmd;
unsigned long next; unsigned long next;
int err; int err = 0;
BUG_ON(pud_huge(*pud)); BUG_ON(pud_huge(*pud));
pmd = pmd_alloc(mm, pud, addr); pmd = pmd_alloc(closure->mm, pud, addr);
if (!pmd) if (!pmd)
return -ENOMEM; return -ENOMEM;
do { do {
next = pmd_addr_end(addr, end); next = pmd_addr_end(addr, end);
err = apply_to_pte_range(mm, pmd, addr, next, fn, data); if (!closure->alloc && pmd_none_or_clear_bad(pmd))
continue;
err = apply_to_pte_range(closure, pmd, addr, next);
if (err) if (err)
break; break;
} while (pmd++, addr = next, addr != end); } while (pmd++, addr = next, addr != end);
return err; return err;
} }
static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, static int apply_to_pud_range(struct pfn_range_apply *closure, p4d_t *p4d,
unsigned long addr, unsigned long end, unsigned long addr, unsigned long end)
pte_fn_t fn, void *data)
{ {
pud_t *pud; pud_t *pud;
unsigned long next; unsigned long next;
int err; int err = 0;
pud = pud_alloc(mm, p4d, addr); pud = pud_alloc(closure->mm, p4d, addr);
if (!pud) if (!pud)
return -ENOMEM; return -ENOMEM;
do { do {
next = pud_addr_end(addr, end); next = pud_addr_end(addr, end);
err = apply_to_pmd_range(mm, pud, addr, next, fn, data); if (!closure->alloc && pud_none_or_clear_bad(pud))
continue;
err = apply_to_pmd_range(closure, pud, addr, next);
if (err) if (err)
break; break;
} while (pud++, addr = next, addr != end); } while (pud++, addr = next, addr != end);
return err; return err;
} }
static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, static int apply_to_p4d_range(struct pfn_range_apply *closure, pgd_t *pgd,
unsigned long addr, unsigned long end, unsigned long addr, unsigned long end)
pte_fn_t fn, void *data)
{ {
p4d_t *p4d; p4d_t *p4d;
unsigned long next; unsigned long next;
int err; int err = 0;
p4d = p4d_alloc(mm, pgd, addr); p4d = p4d_alloc(closure->mm, pgd, addr);
if (!p4d) if (!p4d)
return -ENOMEM; return -ENOMEM;
do { do {
next = p4d_addr_end(addr, end); next = p4d_addr_end(addr, end);
err = apply_to_pud_range(mm, p4d, addr, next, fn, data); if (!closure->alloc && p4d_none_or_clear_bad(p4d))
continue;
err = apply_to_pud_range(closure, p4d, addr, next);
if (err) if (err)
break; break;
} while (p4d++, addr = next, addr != end); } while (p4d++, addr = next, addr != end);
return err; return err;
} }
/* /**
* Scan a region of virtual memory, filling in page tables as necessary * apply_to_pfn_range - Scan a region of virtual memory, calling a provided
* and calling a provided function on each leaf page table. * function on each leaf page table entry
* @closure: Details about how to scan and what function to apply
* @addr: Start virtual address
* @size: Size of the region
*
* If @closure->alloc is set to 1, the function will fill in the page table
* as necessary. Otherwise it will skip non-present parts.
* Note: The caller must ensure that the range does not contain huge pages.
* The caller must also assure that the proper mmu_notifier functions are
* called before and after the call to apply_to_pfn_range.
*
* WARNING: Do not use this function unless you know exactly what you are
* doing. It is lacking support for huge pages and transparent huge pages.
*
* Return: Zero on success. If the provided function returns a non-zero status,
* the page table walk will terminate and that status will be returned.
* If @closure->alloc is set to 1, then this function may also return memory
* allocation errors arising from allocating page table memory.
*/ */
int apply_to_page_range(struct mm_struct *mm, unsigned long addr, int apply_to_pfn_range(struct pfn_range_apply *closure,
unsigned long size, pte_fn_t fn, void *data) unsigned long addr, unsigned long size)
{ {
pgd_t *pgd; pgd_t *pgd;
unsigned long next; unsigned long next;
...@@ -2143,16 +2165,65 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr, ...@@ -2143,16 +2165,65 @@ int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
if (WARN_ON(addr >= end)) if (WARN_ON(addr >= end))
return -EINVAL; return -EINVAL;
pgd = pgd_offset(mm, addr); pgd = pgd_offset(closure->mm, addr);
do { do {
next = pgd_addr_end(addr, end); next = pgd_addr_end(addr, end);
err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); if (!closure->alloc && pgd_none_or_clear_bad(pgd))
continue;
err = apply_to_p4d_range(closure, pgd, addr, next);
if (err) if (err)
break; break;
} while (pgd++, addr = next, addr != end); } while (pgd++, addr = next, addr != end);
return err; return err;
} }
/**
* struct page_range_apply - Closure structure for apply_to_page_range()
* @pter: The base closure structure we derive from
* @fn: The leaf pte function to call
* @data: The leaf pte function closure
*/
struct page_range_apply {
struct pfn_range_apply pter;
pte_fn_t fn;
void *data;
};
/*
* Callback wrapper to enable use of apply_to_pfn_range for
* the apply_to_page_range interface
*/
static int apply_to_page_range_wrapper(pte_t *pte, pgtable_t token,
unsigned long addr,
struct pfn_range_apply *pter)
{
struct page_range_apply *pra =
container_of(pter, typeof(*pra), pter);
return pra->fn(pte, token, addr, pra->data);
}
/*
* Scan a region of virtual memory, filling in page tables as necessary
* and calling a provided function on each leaf page table.
*
* WARNING: Do not use this function unless you know exactly what you are
* doing. It is lacking support for huge pages and transparent huge pages.
*/
int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
unsigned long size, pte_fn_t fn, void *data)
{
struct page_range_apply pra = {
.pter = {.mm = mm,
.alloc = 1,
.ptefn = apply_to_page_range_wrapper },
.fn = fn,
.data = data
};
return apply_to_pfn_range(&pra.pter, addr, size);
}
EXPORT_SYMBOL_GPL(apply_to_page_range); EXPORT_SYMBOL_GPL(apply_to_page_range);
/* /*
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment