Commit 2b5c2e84 authored by David Mosberger's avatar David Mosberger Committed by Dave Jones

AGPGART fixes for HP ZX1 and Intel I460

parent 39ea150b
......@@ -18,8 +18,7 @@
#define HP_ZX1_SBA_IOMMU_COOKIE 0x0000badbadc0ffeeUL
#define HP_ZX1_PDIR_VALID_BIT 0x8000000000000000UL
#define HP_ZX1_IOVA_TO_PDIR(va) ((va - hp_private.iova_base) >> \
hp_private.io_tlb_shift)
#define HP_ZX1_IOVA_TO_PDIR(va) ((va - hp_private.iova_base) >> hp_private.io_tlb_shift)
static struct aper_size_info_fixed hp_zx1_sizes[] =
{
......@@ -330,12 +329,7 @@ static unsigned long hp_zx1_mask_memory(unsigned long addr, int type)
return HP_ZX1_PDIR_VALID_BIT | addr;
}
static unsigned long hp_zx1_unmask_memory(unsigned long addr)
{
return addr & ~(HP_ZX1_PDIR_VALID_BIT);
}
int __init hp_zx1_setup (struct pci_dev *pdev)
int __init hp_zx1_setup (struct pci_dev *pdev __attribute__((unused)))
{
agp_bridge.masks = hp_zx1_masks;
agp_bridge.num_of_masks = 1;
......@@ -347,7 +341,6 @@ int __init hp_zx1_setup (struct pci_dev *pdev)
agp_bridge.cleanup = hp_zx1_cleanup;
agp_bridge.tlb_flush = hp_zx1_tlbflush;
agp_bridge.mask_memory = hp_zx1_mask_memory;
agp_bridge.unmask_memory = hp_zx1_unmask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = hp_zx1_create_gatt_table;
......@@ -375,8 +368,6 @@ static int __init agp_find_supported_device(struct pci_dev *dev)
return hp_zx1_setup(dev);
}
return -ENODEV;
}
static int agp_hp_probe (struct pci_dev *dev, const struct pci_device_id *ent)
{
......
/*
* FIXME: Nothing ever calls this stuff!
* For documentation on the i460 AGP interface, see Chapter 7 (AGP Subsystem) of
* the "Intel 460GTX Chipset Software Developer's Manual":
* http://developer.intel.com/design/itanium/downloads/24870401s.htm
*/
/*
* 460GX support by Chris Ahna <christopher.j.ahna@intel.com>
* Clean up & simplification by David Mosberger-Tang <davidm@hpl.hp.com>
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/agp_backend.h>
#include "agp.h"
/* BIOS configures the chipset so that one of two apbase registers are used */
static u8 intel_i460_dynamic_apbase = 0x10;
/* 460 supports multiple GART page sizes, so GART pageshift is dynamic */
static u8 intel_i460_pageshift = 12;
static u32 intel_i460_pagesize;
/* Keep track of which is larger, chipset or kernel page size. */
static u32 intel_i460_cpk = 1;
#include "agp.h"
/* Structure for tracking partial use of 4MB GART pages */
static u32 **i460_pg_detail = NULL;
static u32 *i460_pg_count = NULL;
/*
* The i460 can operate with large (4MB) pages, but there is no sane way to support this
* within the current kernel/DRM environment, so we disable the relevant code for now.
* See also comments in ia64_alloc_page()...
*/
#define I460_LARGE_IO_PAGES 0
#define I460_CPAGES_PER_KPAGE (PAGE_SIZE >> intel_i460_pageshift)
#define I460_KPAGES_PER_CPAGE ((1 << intel_i460_pageshift) >> PAGE_SHIFT)
#if I460_LARGE_IO_PAGES
# define I460_IO_PAGE_SHIFT i460.io_page_shift
#else
# define I460_IO_PAGE_SHIFT 12
#endif
#define I460_IOPAGES_PER_KPAGE (PAGE_SIZE >> I460_IO_PAGE_SHIFT)
#define I460_KPAGES_PER_IOPAGE (1 << (I460_IO_PAGE_SHIFT - PAGE_SHIFT))
#define I460_SRAM_IO_DISABLE (1 << 4)
#define I460_BAPBASE_ENABLE (1 << 3)
#define I460_AGPSIZ_MASK 0x7
#define I460_4M_PS (1 << 1)
#define log2(x) ffz(~(x))
/* Control bits for Out-Of-GART coherency and Burst Write Combining */
#define I460_GXBCTL_OOG (1UL << 0)
#define I460_GXBCTL_BWC (1UL << 2)
static inline void intel_i460_read_back (volatile u32 *entry)
/*
* gatt_table entries are 32-bits wide on the i460; the generic code ought to declare the
* gatt_table and gatt_table_real pointers a "void *"...
*/
#define RD_GATT(index) readl((u32 *) i460.gatt + (index))
#define WR_GATT(index, val) writel((val), (u32 *) i460.gatt + (index))
/*
* The 460 spec says we have to read the last location written to make sure that all
* writes have taken effect
*/
#define WR_FLUSH_GATT(index) RD_GATT(index)
#define log2(x) ffz(~(x))
static struct {
void *gatt; /* ioremap'd GATT area */
/* i460 supports multiple GART page sizes, so GART pageshift is dynamic: */
u8 io_page_shift;
/* BIOS configures chipset to one of 2 possible apbase values: */
u8 dynamic_apbase;
/* structure for tracking partial use of 4MB GART pages: */
struct lp_desc {
unsigned long *alloced_map; /* bitmap of kernel-pages in use */
int refcount; /* number of kernel pages using the large page */
u64 paddr; /* physical address of large page */
} *lp_desc;
} i460;
static const struct aper_size_info_8 i460_sizes[3] =
{
/*
* The 460 spec says we have to read the last location written to
* make sure that all writes have taken effect
* The 32GB aperture is only available with a 4M GART page size. Due to the
* dynamic GART page size, we can't figure out page_order or num_entries until
* runtime.
*/
*entry;
}
{32768, 0, 0, 4},
{1024, 0, 0, 2},
{256, 0, 0, 1}
};
static int intel_i460_fetch_size(void)
static struct gatt_mask i460_masks[] =
{
{
.mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
.type = 0
}
};
static int i460_fetch_size (void)
{
int i;
u8 temp;
......@@ -49,8 +97,15 @@ static int intel_i460_fetch_size(void)
/* Determine the GART page size */
pci_read_config_byte(agp_bridge.dev, INTEL_I460_GXBCTL, &temp);
intel_i460_pageshift = (temp & I460_4M_PS) ? 22 : 12;
intel_i460_pagesize = 1UL << intel_i460_pageshift;
i460.io_page_shift = (temp & I460_4M_PS) ? 22 : 12;
pr_debug("i460_fetch_size: io_page_shift=%d\n", i460.io_page_shift);
if (i460.io_page_shift != I460_IO_PAGE_SHIFT) {
printk(KERN_ERR PFX
"I/O (GART) page-size %ZuKB doesn't match expected size %ZuKB\n",
1UL << (i460.io_page_shift - 10), 1UL << (I460_IO_PAGE_SHIFT));
return 0;
}
values = A_SIZE_8(agp_bridge.aperture_sizes);
......@@ -64,16 +119,16 @@ static int intel_i460_fetch_size(void)
}
/* Make sure we don't try to create an 2 ^ 23 entry GATT */
if ((intel_i460_pageshift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
if ((i460.io_page_shift == 0) && ((temp & I460_AGPSIZ_MASK) == 4)) {
printk(KERN_ERR PFX "We can't have a 32GB aperture with 4KB GART pages\n");
return 0;
}
/* Determine the proper APBASE register */
if (temp & I460_BAPBASE_ENABLE)
intel_i460_dynamic_apbase = INTEL_I460_BAPBASE;
i460.dynamic_apbase = INTEL_I460_BAPBASE;
else
intel_i460_dynamic_apbase = INTEL_I460_APBASE;
i460.dynamic_apbase = INTEL_I460_APBASE;
for (i = 0; i < agp_bridge.num_aperture_sizes; i++) {
/*
......@@ -81,7 +136,7 @@ static int intel_i460_fetch_size(void)
* the define aperture sizes. Take care not to shift off the end of
* values[i].size.
*/
values[i].num_entries = (values[i].size << 8) >> (intel_i460_pageshift - 12);
values[i].num_entries = (values[i].size << 8) >> (I460_IO_PAGE_SHIFT - 12);
values[i].page_order = log2((sizeof(u32)*values[i].num_entries) >> PAGE_SHIFT);
}
......@@ -98,7 +153,7 @@ static int intel_i460_fetch_size(void)
}
/* There isn't anything to do here since 460 has no GART TLB. */
static void intel_i460_tlb_flush(agp_memory * mem)
static void i460_tlb_flush (agp_memory * mem)
{
return;
}
......@@ -107,7 +162,7 @@ static void intel_i460_tlb_flush(agp_memory * mem)
* This utility function is needed to prevent corruption of the control bits
* which are stored along with the aperture size in 460's AGPSIZ register
*/
static void intel_i460_write_agpsiz(u8 size_value)
static void i460_write_agpsiz (u8 size_value)
{
u8 temp;
......@@ -116,47 +171,39 @@ static void intel_i460_write_agpsiz(u8 size_value)
((temp & ~I460_AGPSIZ_MASK) | size_value));
}
static void intel_i460_cleanup(void)
static void i460_cleanup (void)
{
struct aper_size_info_8 *previous_size;
previous_size = A_SIZE_8(agp_bridge.previous_size);
intel_i460_write_agpsiz(previous_size->size_value);
i460_write_agpsiz(previous_size->size_value);
if (intel_i460_cpk == 0) {
vfree(i460_pg_detail);
vfree(i460_pg_count);
}
if (I460_IO_PAGE_SHIFT > PAGE_SHIFT)
kfree(i460.lp_desc);
}
/* Control bits for Out-Of-GART coherency and Burst Write Combining */
#define I460_GXBCTL_OOG (1UL << 0)
#define I460_GXBCTL_BWC (1UL << 2)
static int intel_i460_configure(void)
static int i460_configure (void)
{
union {
u32 small[2];
u64 large;
} temp;
size_t size;
u8 scratch;
int i;
struct aper_size_info_8 *current_size;
temp.large = 0;
current_size = A_SIZE_8(agp_bridge.current_size);
intel_i460_write_agpsiz(current_size->size_value);
i460_write_agpsiz(current_size->size_value);
/*
* Do the necessary rigmarole to read all eight bytes of APBASE.
* This has to be done since the AGP aperture can be above 4GB on
* 460 based systems.
*/
pci_read_config_dword(agp_bridge.dev, intel_i460_dynamic_apbase, &(temp.small[0]));
pci_read_config_dword(agp_bridge.dev, intel_i460_dynamic_apbase + 4, &(temp.small[1]));
pci_read_config_dword(agp_bridge.dev, i460.dynamic_apbase, &(temp.small[0]));
pci_read_config_dword(agp_bridge.dev, i460.dynamic_apbase + 4, &(temp.small[1]));
/* Clear BAR control bits */
agp_bridge.gart_bus_addr = temp.large & ~((1UL << 3) - 1);
......@@ -166,403 +213,347 @@ static int intel_i460_configure(void)
(scratch & 0x02) | I460_GXBCTL_OOG | I460_GXBCTL_BWC);
/*
* Initialize partial allocation trackers if a GART page is bigger than
* a kernel page.
* Initialize partial allocation trackers if a GART page is bigger than a kernel
* page.
*/
if (I460_CPAGES_PER_KPAGE >= 1) {
intel_i460_cpk = 1;
} else {
intel_i460_cpk = 0;
i460_pg_detail = vmalloc(sizeof(*i460_pg_detail) * current_size->num_entries);
i460_pg_count = vmalloc(sizeof(*i460_pg_count) * current_size->num_entries);
for (i = 0; i < current_size->num_entries; i++) {
i460_pg_count[i] = 0;
i460_pg_detail[i] = NULL;
}
if (I460_IO_PAGE_SHIFT > PAGE_SHIFT) {
size = current_size->num_entries * sizeof(i460.lp_desc[0]);
i460.lp_desc = kmalloc(size, GFP_KERNEL);
if (!i460.lp_desc)
return -ENOMEM;
memset(i460.lp_desc, 0, size);
}
return 0;
}
static int intel_i460_create_gatt_table(void)
static int i460_create_gatt_table (void)
{
char *table;
int i;
int page_order;
int num_entries;
int page_order, num_entries, i;
void *temp;
/*
* Load up the fixed address of the GART SRAMS which hold our
* GATT table.
* Load up the fixed address of the GART SRAMS which hold our GATT table.
*/
table = (char *) __va(INTEL_I460_ATTBASE);
temp = agp_bridge.current_size;
page_order = A_SIZE_8(temp)->page_order;
num_entries = A_SIZE_8(temp)->num_entries;
agp_bridge.gatt_table_real = (u32 *) table;
agp_bridge.gatt_table = ioremap_nocache(virt_to_phys(table),
(PAGE_SIZE * (1 << page_order)));
agp_bridge.gatt_bus_addr = virt_to_phys(agp_bridge.gatt_table_real);
i460.gatt = ioremap(INTEL_I460_ATTBASE, PAGE_SIZE << page_order);
for (i = 0; i < num_entries; i++) {
agp_bridge.gatt_table[i] = 0;
}
/* These are no good, the should be removed from the agp_bridge strucure... */
agp_bridge.gatt_table_real = NULL;
agp_bridge.gatt_table = NULL;
agp_bridge.gatt_bus_addr = 0;
intel_i460_read_back(agp_bridge.gatt_table + i - 1);
for (i = 0; i < num_entries; ++i)
WR_GATT(i, 0);
WR_FLUSH_GATT(i - 1);
return 0;
}
static int intel_i460_free_gatt_table(void)
static int i460_free_gatt_table (void)
{
int num_entries;
int i;
int num_entries, i;
void *temp;
temp = agp_bridge.current_size;
num_entries = A_SIZE_8(temp)->num_entries;
for (i = 0; i < num_entries; i++) {
agp_bridge.gatt_table[i] = 0;
}
intel_i460_read_back(agp_bridge.gatt_table + i - 1);
for (i = 0; i < num_entries; ++i)
WR_GATT(i, 0);
WR_FLUSH_GATT(num_entries - 1);
iounmap(agp_bridge.gatt_table);
iounmap(i460.gatt);
return 0;
}
/* These functions are called when PAGE_SIZE exceeds the GART page size */
/*
* The following functions are called when the I/O (GART) page size is smaller than
* PAGE_SIZE.
*/
static int intel_i460_insert_memory_cpk(agp_memory * mem, off_t pg_start, int type)
static int i460_insert_memory_small_io_page (agp_memory *mem, off_t pg_start, int type)
{
unsigned long paddr, io_pg_start, io_page_size;
int i, j, k, num_entries;
void *temp;
unsigned long paddr;
/*
* The rest of the kernel will compute page offsets in terms of
* PAGE_SIZE.
*/
pg_start = I460_CPAGES_PER_KPAGE * pg_start;
pr_debug("i460_insert_memory_small_io_page(mem=%p, pg_start=%ld, type=%d, paddr0=0x%lx)\n",
mem, pg_start, type, mem->memory[0]);
io_pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
temp = agp_bridge.current_size;
num_entries = A_SIZE_8(temp)->num_entries;
if ((pg_start + I460_CPAGES_PER_KPAGE * mem->page_count) > num_entries) {
if ((io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count) > num_entries) {
printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
return -EINVAL;
}
j = pg_start;
while (j < (pg_start + I460_CPAGES_PER_KPAGE * mem->page_count)) {
if (!PGE_EMPTY(agp_bridge.gatt_table[j])) {
j = io_pg_start;
while (j < (io_pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count)) {
if (!PGE_EMPTY(RD_GATT(j))) {
pr_debug("i460_insert_memory_small_io_page: GATT[%d]=0x%x is busy\n",
j, RD_GATT(j));
return -EBUSY;
}
j++;
}
#if 0
/* not necessary since 460 GART is operated in coherent mode... */
if (mem->is_flushed == FALSE) {
CACHE_FLUSH();
mem->is_flushed = TRUE;
}
#endif
for (i = 0, j = pg_start; i < mem->page_count; i++) {
io_page_size = 1UL << I460_IO_PAGE_SHIFT;
for (i = 0, j = io_pg_start; i < mem->page_count; i++) {
paddr = mem->memory[i];
for (k = 0; k < I460_CPAGES_PER_KPAGE; k++, j++, paddr += intel_i460_pagesize)
agp_bridge.gatt_table[j] = (u32) agp_bridge.mask_memory(paddr, mem->type);
for (k = 0; k < I460_IOPAGES_PER_KPAGE; k++, j++, paddr += io_page_size)
WR_GATT(j, agp_bridge.mask_memory(paddr, mem->type));
}
intel_i460_read_back(agp_bridge.gatt_table + j - 1);
WR_FLUSH_GATT(j - 1);
return 0;
}
static int intel_i460_remove_memory_cpk(agp_memory * mem, off_t pg_start, int type)
static int i460_remove_memory_small_io_page(agp_memory * mem, off_t pg_start, int type)
{
int i;
pg_start = I460_CPAGES_PER_KPAGE * pg_start;
pr_debug("i460_remove_memory_small_io_page(mem=%p, pg_start=%ld, type=%d)\n",
mem, pg_start, type);
for (i = pg_start; i < (pg_start + I460_CPAGES_PER_KPAGE * mem->page_count); i++)
agp_bridge.gatt_table[i] = 0;
pg_start = I460_IOPAGES_PER_KPAGE * pg_start;
intel_i460_read_back(agp_bridge.gatt_table + i - 1);
for (i = pg_start; i < (pg_start + I460_IOPAGES_PER_KPAGE * mem->page_count); i++)
WR_GATT(i, 0);
WR_FLUSH_GATT(i - 1);
return 0;
}
#if I460_LARGE_IO_PAGES
/*
* These functions are called when the GART page size exceeds PAGE_SIZE.
* These functions are called when the I/O (GART) page size exceeds PAGE_SIZE.
*
* This situation is interesting since AGP memory allocations that are
* smaller than a single GART page are possible. The structures i460_pg_count
* and i460_pg_detail track partial allocation of the large GART pages to
* work around this issue.
* This situation is interesting since AGP memory allocations that are smaller than a
* single GART page are possible. The i460.lp_desc array tracks partial allocation of the
* large GART pages to work around this issue.
*
* i460_pg_count[pg_num] tracks the number of kernel pages in use within
* GART page pg_num. i460_pg_detail[pg_num] is an array containing a
* psuedo-GART entry for each of the aforementioned kernel pages. The whole
* of i460_pg_detail is equivalent to a giant GATT with page size equal to
* that of the kernel.
* i460.lp_desc[pg_num].refcount tracks the number of kernel pages in use within GART page
* pg_num. i460.lp_desc[pg_num].paddr is the physical address of the large page and
* i460.lp_desc[pg_num].alloced_map is a bitmap of kernel pages that are in use (allocated).
*/
static void *intel_i460_alloc_large_page(int pg_num)
static int i460_alloc_large_page (struct lp_desc *lp)
{
int i;
void *bp, *bp_end;
struct page *page;
unsigned long order = I460_IO_PAGE_SHIFT - PAGE_SHIFT;
size_t map_size;
void *lpage;
i460_pg_detail[pg_num] = (void *) vmalloc(sizeof(u32) * I460_KPAGES_PER_CPAGE);
if (i460_pg_detail[pg_num] == NULL) {
printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
return NULL;
}
for (i = 0; i < I460_KPAGES_PER_CPAGE; i++)
i460_pg_detail[pg_num][i] = 0;
bp = (void *) __get_free_pages(GFP_KERNEL, intel_i460_pageshift - PAGE_SHIFT);
if (bp == NULL) {
lpage = (void *) __get_free_pages(GFP_KERNEL, order);
if (!lpage) {
printk(KERN_ERR PFX "Couldn't alloc 4M GART page...\n");
return NULL;
return -ENOMEM;
}
bp_end = bp + ((PAGE_SIZE * (1 << (intel_i460_pageshift - PAGE_SHIFT))) - 1);
for (page = virt_to_page(bp); page <= virt_to_page(bp_end); page++) {
atomic_inc(&agp_bridge.current_memory_agp);
map_size = ((I460_KPAGES_PER_IOPAGE + BITS_PER_LONG - 1) & -BITS_PER_LONG)/8;
lp->alloced_map = kmalloc(map_size, GFP_KERNEL);
if (!lp->alloced_map) {
free_pages((unsigned long) lpage, order);
printk(KERN_ERR PFX "Out of memory, we're in trouble...\n");
return -ENOMEM;
}
return bp;
memset(lp->alloced_map, 0, map_size);
lp->paddr = virt_to_phys(lpage);
lp->refcount = 0;
atomic_add(I460_KPAGES_PER_IOPAGE, &agp_bridge.current_memory_agp);
return 0;
}
static void intel_i460_free_large_page(int pg_num, unsigned long addr)
static void i460_free_large_page (struct lp_desc *lp)
{
struct page *page;
void *bp, *bp_end;
kfree(lp->alloced_map);
lp->alloced_map = NULL;
bp = (void *) __va(addr);
bp_end = bp + (PAGE_SIZE * (1 << (intel_i460_pageshift - PAGE_SHIFT)));
vfree(i460_pg_detail[pg_num]);
i460_pg_detail[pg_num] = NULL;
for (page = virt_to_page(bp); page < virt_to_page(bp_end); page++) {
atomic_dec(&agp_bridge.current_memory_agp);
}
free_pages((unsigned long) bp, intel_i460_pageshift - PAGE_SHIFT);
free_pages((unsigned long) phys_to_virt(lp->paddr), I460_IO_PAGE_SHIFT - PAGE_SHIFT);
atomic_sub(I460_KPAGES_PER_IOPAGE, &agp_bridge.current_memory_agp);
}
static int intel_i460_insert_memory_kpc(agp_memory * mem, off_t pg_start, int type)
static int i460_insert_memory_large_io_page (agp_memory * mem, off_t pg_start, int type)
{
int i, pg, start_pg, end_pg, start_offset, end_offset, idx;
int num_entries;
int i, start_offset, end_offset, idx, pg, num_entries;
struct lp_desc *start, *end, *lp;
void *temp;
unsigned long paddr;
temp = agp_bridge.current_size;
num_entries = A_SIZE_8(temp)->num_entries;
/* Figure out what pg_start means in terms of our large GART pages */
start_pg = pg_start / I460_KPAGES_PER_CPAGE;
start_offset = pg_start % I460_KPAGES_PER_CPAGE;
end_pg = (pg_start + mem->page_count - 1) / I460_KPAGES_PER_CPAGE;
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_CPAGE;
start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
if (end_pg > num_entries) {
if (end > i460.lp_desc + num_entries) {
printk(KERN_ERR PFX "Looks like we're out of AGP memory\n");
return -EINVAL;
}
/* Check if the requested region of the aperture is free */
for (pg = start_pg; pg <= end_pg; pg++) {
/* Allocate new GART pages if necessary */
if (i460_pg_detail[pg] == NULL) {
temp = intel_i460_alloc_large_page(pg);
if (temp == NULL)
return -ENOMEM;
agp_bridge.gatt_table[pg] = agp_bridge.mask_memory((unsigned long) temp,
0);
intel_i460_read_back(agp_bridge.gatt_table + pg);
}
for (lp = start; lp <= end; ++lp) {
if (!lp->alloced_map)
continue; /* OK, the entire large page is available... */
for (idx = ((pg == start_pg) ? start_offset : 0);
idx < ((pg == end_pg) ? (end_offset + 1) : I460_KPAGES_PER_CPAGE);
for (idx = ((lp == start) ? start_offset : 0);
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
idx++)
{
if (i460_pg_detail[pg][idx] != 0)
if (test_bit(idx, lp->alloced_map))
return -EBUSY;
}
}
#if 0
/* not necessary since 460 GART is operated in coherent mode... */
if (mem->is_flushed == FALSE) {
CACHE_FLUSH();
mem->is_flushed = TRUE;
}
#endif
for (lp = start, i = 0; lp <= end; ++lp) {
if (!lp->alloced_map) {
/* Allocate new GART pages... */
if (i460_alloc_large_page(lp) < 0)
return -ENOMEM;
pg = lp - i460.lp_desc;
WR_GATT(pg, agp_bridge.mask_memory(lp->paddr, 0));
WR_FLUSH_GATT(pg);
}
for (pg = start_pg, i = 0; pg <= end_pg; pg++) {
paddr = agp_bridge.unmask_memory(agp_bridge.gatt_table[pg]);
for (idx = ((pg == start_pg) ? start_offset : 0);
idx < ((pg == end_pg) ? (end_offset + 1) : I460_KPAGES_PER_CPAGE);
for (idx = ((lp == start) ? start_offset : 0);
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
idx++, i++)
{
mem->memory[i] = paddr + (idx * PAGE_SIZE);
i460_pg_detail[pg][idx] = agp_bridge.mask_memory(mem->memory[i],
mem->type);
i460_pg_count[pg]++;
mem->memory[i] = lp->paddr + idx*PAGE_SIZE;
__set_bit(idx, lp->alloced_map);
++lp->refcount;
}
}
return 0;
}
static int intel_i460_remove_memory_kpc(agp_memory * mem, off_t pg_start, int type)
static int i460_remove_memory_large_io_page (agp_memory * mem, off_t pg_start, int type)
{
int i, pg, start_pg, end_pg, start_offset, end_offset, idx;
int num_entries;
int i, pg, start_offset, end_offset, idx, num_entries;
struct lp_desc *start, *end, *lp;
void *temp;
unsigned long paddr;
temp = agp_bridge.current_size;
num_entries = A_SIZE_8(temp)->num_entries;
/* Figure out what pg_start means in terms of our large GART pages */
start_pg = pg_start / I460_KPAGES_PER_CPAGE;
start_offset = pg_start % I460_KPAGES_PER_CPAGE;
end_pg = (pg_start + mem->page_count - 1) / I460_KPAGES_PER_CPAGE;
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_CPAGE;
for (i = 0, pg = start_pg; pg <= end_pg; pg++) {
for (idx = ((pg == start_pg) ? start_offset : 0);
idx < ((pg == end_pg) ? (end_offset + 1) : I460_KPAGES_PER_CPAGE);
idx++, i++)
start = &i460.lp_desc[pg_start / I460_KPAGES_PER_IOPAGE];
end = &i460.lp_desc[(pg_start + mem->page_count - 1) / I460_KPAGES_PER_IOPAGE];
start_offset = pg_start % I460_KPAGES_PER_IOPAGE;
end_offset = (pg_start + mem->page_count - 1) % I460_KPAGES_PER_IOPAGE;
for (i = 0, lp = start; lp <= end; ++lp) {
for (idx = ((lp == start) ? start_offset : 0);
idx < ((lp == end) ? (end_offset + 1) : I460_KPAGES_PER_IOPAGE);
idx++, i++)
{
mem->memory[i] = 0;
i460_pg_detail[pg][idx] = 0;
i460_pg_count[pg]--;
__clear_bit(idx, lp->alloced_map);
--lp->refcount;
}
/* Free GART pages if they are unused */
if (i460_pg_count[pg] == 0) {
paddr = agp_bridge.unmask_memory(agp_bridge.gatt_table[pg]);
agp_bridge.gatt_table[pg] = agp_bridge.scratch_page;
intel_i460_read_back(agp_bridge.gatt_table + pg);
intel_i460_free_large_page(pg, paddr);
if (lp->refcount == 0) {
pg = lp - i460.lp_desc;
WR_GATT(pg, 0);
WR_FLUSH_GATT(pg);
i460_free_large_page(lp);
}
}
return 0;
}
/* Dummy routines to call the approriate {cpk,kpc} function */
/* Wrapper routines to call the approriate {small_io_page,large_io_page} function */
static int intel_i460_insert_memory(agp_memory * mem, off_t pg_start, int type)
static int i460_insert_memory (agp_memory * mem, off_t pg_start, int type)
{
if (intel_i460_cpk)
return intel_i460_insert_memory_cpk(mem, pg_start, type);
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
return i460_insert_memory_small_io_page(mem, pg_start, type);
else
return intel_i460_insert_memory_kpc(mem, pg_start, type);
return i460_insert_memory_large_io_page(mem, pg_start, type);
}
static int intel_i460_remove_memory(agp_memory * mem, off_t pg_start, int type)
static int i460_remove_memory (agp_memory * mem, off_t pg_start, int type)
{
if (intel_i460_cpk)
return intel_i460_remove_memory_cpk(mem, pg_start, type);
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
return i460_remove_memory_small_io_page(mem, pg_start, type);
else
return intel_i460_remove_memory_kpc(mem, pg_start, type);
return i460_remove_memory_large_io_page(mem, pg_start, type);
}
/*
* If the kernel page size is smaller that the chipset page size, we don't
* want to allocate memory until we know where it is to be bound in the
* aperture (a multi-kernel-page alloc might fit inside of an already
* allocated GART page). Consequently, don't allocate or free anything
* if i460_cpk (meaning chipset pages per kernel page) isn't set.
* If the I/O (GART) page size is bigger than the kernel page size, we don't want to
* allocate memory until we know where it is to be bound in the aperture (a
* multi-kernel-page alloc might fit inside of an already allocated GART page).
*
* Let's just hope nobody counts on the allocated AGP memory being there
* before bind time (I don't think current drivers do)...
* Let's just hope nobody counts on the allocated AGP memory being there before bind time
* (I don't think current drivers do)...
*/
static void * intel_i460_alloc_page(void)
static void *i460_alloc_page (void)
{
if (intel_i460_cpk)
return agp_generic_alloc_page();
void *page;
/* Returning NULL would cause problems */
/* AK: really dubious code. */
return (void *)~0UL;
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
page = agp_generic_alloc_page();
else
/* Returning NULL would cause problems */
/* AK: really dubious code. */
page = (void *)~0UL;
return page;
}
static void intel_i460_destroy_page(void *page)
static void i460_destroy_page (void *page)
{
if (intel_i460_cpk)
if (I460_IO_PAGE_SHIFT <= PAGE_SHIFT)
agp_generic_destroy_page(page);
}
static struct gatt_mask intel_i460_masks[] =
{
{
.mask = INTEL_I460_GATT_VALID | INTEL_I460_GATT_COHERENT,
.type = 0
}
};
#endif /* I460_LARGE_IO_PAGES */
static unsigned long intel_i460_mask_memory(unsigned long addr, int type)
static unsigned long i460_mask_memory (unsigned long addr, int type)
{
/* Make sure the returned address is a valid GATT entry */
return (agp_bridge.masks[0].mask
| (((addr & ~((1 << intel_i460_pageshift) - 1)) & 0xffffff000) >> 12));
| (((addr & ~((1 << I460_IO_PAGE_SHIFT) - 1)) & 0xffffff000) >> 12));
}
static unsigned long intel_i460_unmask_memory(unsigned long addr)
{
/* Turn a GATT entry into a physical address */
return ((addr & 0xffffff) << 12);
}
static struct aper_size_info_8 intel_i460_sizes[3] =
{
/*
* The 32GB aperture is only available with a 4M GART page size.
* Due to the dynamic GART page size, we can't figure out page_order
* or num_entries until runtime.
*/
{32768, 0, 0, 4},
{1024, 0, 0, 2},
{256, 0, 0, 1}
};
int __init intel_i460_setup (struct pci_dev *pdev __attribute__((unused)))
{
agp_bridge.masks = intel_i460_masks;
agp_bridge.aperture_sizes = (void *) intel_i460_sizes;
agp_bridge.num_of_masks = 1;
agp_bridge.masks = i460_masks;
agp_bridge.aperture_sizes = (void *) i460_sizes;
agp_bridge.size_type = U8_APER_SIZE;
agp_bridge.num_aperture_sizes = 3;
agp_bridge.dev_private_data = NULL;
agp_bridge.needs_scratch_page = FALSE;
agp_bridge.configure = intel_i460_configure;
agp_bridge.fetch_size = intel_i460_fetch_size;
agp_bridge.cleanup = intel_i460_cleanup;
agp_bridge.tlb_flush = intel_i460_tlb_flush;
agp_bridge.mask_memory = intel_i460_mask_memory;
agp_bridge.unmask_memory = intel_i460_unmask_memory;
agp_bridge.configure = i460_configure;
agp_bridge.fetch_size = i460_fetch_size;
agp_bridge.cleanup = i460_cleanup;
agp_bridge.tlb_flush = i460_tlb_flush;
agp_bridge.mask_memory = i460_mask_memory;
agp_bridge.agp_enable = agp_generic_agp_enable;
agp_bridge.cache_flush = global_cache_flush;
agp_bridge.create_gatt_table = intel_i460_create_gatt_table;
agp_bridge.free_gatt_table = intel_i460_free_gatt_table;
agp_bridge.insert_memory = intel_i460_insert_memory;
agp_bridge.remove_memory = intel_i460_remove_memory;
agp_bridge.create_gatt_table = i460_create_gatt_table;
agp_bridge.free_gatt_table = i460_free_gatt_table;
#if I460_LARGE_IO_PAGES
agp_bridge.insert_memory = i460_insert_memory;
agp_bridge.remove_memory = i460_remove_memory;
agp_bridge.agp_alloc_page = i460_alloc_page;
agp_bridge.agp_destroy_page = i460_destroy_page;
#else
agp_bridge.insert_memory = i460_insert_memory_small_io_page;
agp_bridge.remove_memory = i460_remove_memory_small_io_page;
agp_bridge.agp_alloc_page = agp_generic_alloc_page;
agp_bridge.agp_destroy_page = agp_generic_destroy_page;
#endif
agp_bridge.alloc_by_type = agp_generic_alloc_by_type;
agp_bridge.free_by_type = agp_generic_free_by_type;
agp_bridge.agp_alloc_page = intel_i460_alloc_page;
agp_bridge.agp_destroy_page = intel_i460_destroy_page;
agp_bridge.suspend = agp_generic_suspend;
agp_bridge.resume = agp_generic_resume;
agp_bridge.cant_use_aperture = 1;
......@@ -619,6 +610,5 @@ static void __exit agp_i460_cleanup(void)
module_init(agp_i460_init);
module_exit(agp_i460_cleanup);
MODULE_AUTHOR("Bjorn Helgaas <helgaas@fc.hp.com>");
MODULE_AUTHOR("Chris Ahna <Christopher.J.Ahna@intel.com>");
MODULE_LICENSE("GPL and additional rights");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment