Commit 2fd1abe9 authored by Bartosz Golaszewski's avatar Bartosz Golaszewski

Documentation: gpio: add documentation for gpio-mockup

There's some documentation for gpio-mockup's debugfs interface in the
driver's source but it's not much. Add proper documentation for this
testing module.
Signed-off-by: default avatarBartosz Golaszewski <bgolaszewski@baylibre.com>
Reviewed-by: default avatarAndy Shevchenko <andriy.shevchenko@linux.intel.com>
parent 0fd16012
.. SPDX-License-Identifier: GPL-2.0-only
GPIO Testing Driver
===================
The GPIO Testing Driver (gpio-mockup) provides a way to create simulated GPIO
chips for testing purposes. The lines exposed by these chips can be accessed
using the standard GPIO character device interface as well as manipulated
using the dedicated debugfs directory structure.
Creating simulated chips using module params
--------------------------------------------
When loading the gpio-mockup driver a number of parameters can be passed to the
module.
gpio_mockup_ranges
This parameter takes an argument in the form of an array of integer
pairs. Each pair defines the base GPIO number (if any) and the number
of lines exposed by the chip. If the base GPIO is -1, the gpiolib
will assign it automatically.
Example: gpio_mockup_ranges=-1,8,-1,16,405,4
The line above creates three chips. The first one will expose 8 lines,
the second 16 and the third 4. The base GPIO for the third chip is set
to 405 while for two first chips it will be assigned automatically.
gpio_named_lines
This parameter doesn't take any arguments. It lets the driver know that
GPIO lines exposed by it should be named.
The name format is: gpio-mockup-X-Y where X is mockup chip's ID
and Y is the line offset.
Manipulating simulated lines
----------------------------
Each mockup chip creates its own subdirectory in /sys/kernel/debug/gpio-mockup/.
The directory is named after the chip's label. A symlink is also created, named
after the chip's name, which points to the label directory.
Inside each subdirectory, there's a separate attribute for each GPIO line. The
name of the attribute represents the line's offset in the chip.
Reading from a line attribute returns the current value. Writing to it (0 or 1)
changes the configuration of the simulated pull-up/pull-down resistor
(1 - pull-up, 0 - pull-down).
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment