Commit 323dbaba authored by David S. Miller's avatar David S. Miller

Merge branch 'upstream-davem' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6

parents bfa274e2 3bf319a7
......@@ -3884,10 +3884,13 @@ M: trivial@kernel.org
L: linux-kernel@vger.kernel.org
S: Maintained
TULIP NETWORK DRIVER
L: tulip-users@lists.sourceforge.net
W: http://sourceforge.net/projects/tulip/
S: Orphan
TULIP NETWORK DRIVERS
P: Grant Grundler
M: grundler@parisc-linux.org
P: Kyle McMartin
M: kyle@parisc-linux.org
L: netdev@vger.kernel.org
S: Maintained
TUN/TAP driver
P: Maxim Krasnyansky
......
......@@ -172,30 +172,30 @@ static char version[] __initdata =
them to system IRQ numbers. This mapping is card specific and is set to
the configuration of the Cirrus Eval board for this chip. */
#ifdef CONFIG_ARCH_CLPS7500
static unsigned int netcard_portlist[] __initdata =
static unsigned int netcard_portlist[] __used __initdata =
{ 0x80090303, 0x300, 0x320, 0x340, 0x360, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0};
static unsigned int cs8900_irq_map[] = {12,0,0,0};
#elif defined(CONFIG_SH_HICOSH4)
static unsigned int netcard_portlist[] __initdata =
static unsigned int netcard_portlist[] __used __initdata =
{ 0x0300, 0};
static unsigned int cs8900_irq_map[] = {1,0,0,0};
#elif defined(CONFIG_MACH_IXDP2351)
static unsigned int netcard_portlist[] __initdata = {IXDP2351_VIRT_CS8900_BASE, 0};
static unsigned int netcard_portlist[] __used __initdata = {IXDP2351_VIRT_CS8900_BASE, 0};
static unsigned int cs8900_irq_map[] = {IRQ_IXDP2351_CS8900, 0, 0, 0};
#include <asm/irq.h>
#elif defined(CONFIG_ARCH_IXDP2X01)
#include <asm/irq.h>
static unsigned int netcard_portlist[] __initdata = {IXDP2X01_CS8900_VIRT_BASE, 0};
static unsigned int netcard_portlist[] __used __initdata = {IXDP2X01_CS8900_VIRT_BASE, 0};
static unsigned int cs8900_irq_map[] = {IRQ_IXDP2X01_CS8900, 0, 0, 0};
#elif defined(CONFIG_ARCH_PNX010X)
#include <asm/irq.h>
#include <asm/arch/gpio.h>
#define CIRRUS_DEFAULT_BASE IO_ADDRESS(EXT_STATIC2_s0_BASE + 0x200000) /* = Physical address 0x48200000 */
#define CIRRUS_DEFAULT_IRQ VH_INTC_INT_NUM_CASCADED_INTERRUPT_1 /* Event inputs bank 1 - ID 35/bit 3 */
static unsigned int netcard_portlist[] __initdata = {CIRRUS_DEFAULT_BASE, 0};
static unsigned int netcard_portlist[] __used __initdata = {CIRRUS_DEFAULT_BASE, 0};
static unsigned int cs8900_irq_map[] = {CIRRUS_DEFAULT_IRQ, 0, 0, 0};
#else
static unsigned int netcard_portlist[] __initdata =
static unsigned int netcard_portlist[] __used __initdata =
{ 0x300, 0x320, 0x340, 0x360, 0x200, 0x220, 0x240, 0x260, 0x280, 0x2a0, 0x2c0, 0x2e0, 0};
static unsigned int cs8900_irq_map[] = {10,11,12,5};
#endif
......
......@@ -438,7 +438,7 @@ static void e1000_release_nvm_82571(struct e1000_hw *hw)
* For non-82573 silicon, write data to EEPROM at offset using SPI interface.
*
* If e1000e_update_nvm_checksum is not called after this function, the
* EEPROM will most likley contain an invalid checksum.
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
u16 *data)
......@@ -547,7 +547,7 @@ static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
* poll for completion.
*
* If e1000e_update_nvm_checksum is not called after this function, the
* EEPROM will most likley contain an invalid checksum.
* EEPROM will most likely contain an invalid checksum.
**/
static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
u16 words, u16 *data)
......@@ -1053,7 +1053,7 @@ static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
/* If SerDes loopback mode is entered, there is no form
* of reset to take the adapter out of that mode. So we
* have to explicitly take the adapter out of loopback
* mode. This prevents drivers from twidling their thumbs
* mode. This prevents drivers from twiddling their thumbs
* if another tool failed to take it out of loopback mode.
*/
ew32(SCTL,
......@@ -1098,7 +1098,7 @@ static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
* e1000e_get_laa_state_82571 - Get locally administered address state
* @hw: pointer to the HW structure
*
* Retrieve and return the current locally administed address state.
* Retrieve and return the current locally administered address state.
**/
bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
{
......@@ -1113,7 +1113,7 @@ bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
* @hw: pointer to the HW structure
* @state: enable/disable locally administered address
*
* Enable/Disable the current locally administed address state.
* Enable/Disable the current locally administers address state.
**/
void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
{
......@@ -1280,16 +1280,6 @@ static struct e1000_phy_operations e82_phy_ops_m88 = {
};
static struct e1000_nvm_operations e82571_nvm_ops = {
.acquire_nvm = e1000_acquire_nvm_82571,
.read_nvm = e1000e_read_nvm_spi,
.release_nvm = e1000_release_nvm_82571,
.update_nvm = e1000_update_nvm_checksum_82571,
.valid_led_default = e1000_valid_led_default_82571,
.validate_nvm = e1000_validate_nvm_checksum_82571,
.write_nvm = e1000_write_nvm_82571,
};
static struct e1000_nvm_operations e82573_nvm_ops = {
.acquire_nvm = e1000_acquire_nvm_82571,
.read_nvm = e1000e_read_nvm_eerd,
.release_nvm = e1000_release_nvm_82571,
......@@ -1355,6 +1345,6 @@ struct e1000_info e1000_82573_info = {
.get_invariants = e1000_get_invariants_82571,
.mac_ops = &e82571_mac_ops,
.phy_ops = &e82_phy_ops_m88,
.nvm_ops = &e82573_nvm_ops,
.nvm_ops = &e82571_nvm_ops,
};
......@@ -66,7 +66,7 @@
#define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */
/* Extended Device Control */
#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Defineable Pin 7 */
#define E1000_CTRL_EXT_SDP7_DATA 0x00000080 /* Value of SW Definable Pin 7 */
#define E1000_CTRL_EXT_EE_RST 0x00002000 /* Reinitialize from EEPROM */
#define E1000_CTRL_EXT_RO_DIS 0x00020000 /* Relaxed Ordering disable */
#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000
......@@ -75,12 +75,12 @@
#define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */
#define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */
/* Receive Decriptor bit definitions */
/* Receive Descriptor bit definitions */
#define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */
#define E1000_RXD_STAT_EOP 0x02 /* End of Packet */
#define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */
#define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */
#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */
#define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum calculated */
#define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */
#define E1000_RXD_ERR_CE 0x01 /* CRC Error */
#define E1000_RXD_ERR_SE 0x02 /* Symbol Error */
......@@ -223,7 +223,7 @@
#define E1000_STATUS_LAN_INIT_DONE 0x00000200 /* Lan Init Completion by NVM */
#define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */
/* Constants used to intrepret the masked PCI-X bus speed. */
/* Constants used to interpret the masked PCI-X bus speed. */
#define HALF_DUPLEX 1
#define FULL_DUPLEX 2
......@@ -517,7 +517,7 @@
/* PHY 1000 MII Register/Bit Definitions */
/* PHY Registers defined by IEEE */
#define PHY_CONTROL 0x00 /* Control Register */
#define PHY_STATUS 0x01 /* Status Regiser */
#define PHY_STATUS 0x01 /* Status Register */
#define PHY_ID1 0x02 /* Phy Id Reg (word 1) */
#define PHY_ID2 0x03 /* Phy Id Reg (word 2) */
#define PHY_AUTONEG_ADV 0x04 /* Autoneg Advertisement */
......
......@@ -42,8 +42,7 @@
struct e1000_info;
#define ndev_printk(level, netdev, format, arg...) \
printk(level "%s: %s: " format, (netdev)->dev.parent->bus_id, \
(netdev)->name, ## arg)
printk(level "%s: " format, (netdev)->name, ## arg)
#ifdef DEBUG
#define ndev_dbg(netdev, format, arg...) \
......
......@@ -184,7 +184,7 @@ enum e1e_registers {
E1000_ICRXDMTC = 0x04120, /* Irq Cause Rx Desc MinThreshold Count */
E1000_ICRXOC = 0x04124, /* Irq Cause Receiver Overrun Count */
E1000_RXCSUM = 0x05000, /* RX Checksum Control - RW */
E1000_RFCTL = 0x05008, /* Receive Filter Control*/
E1000_RFCTL = 0x05008, /* Receive Filter Control */
E1000_MTA = 0x05200, /* Multicast Table Array - RW Array */
E1000_RA = 0x05400, /* Receive Address - RW Array */
E1000_VFTA = 0x05600, /* VLAN Filter Table Array - RW Array */
......@@ -202,7 +202,7 @@ enum e1e_registers {
E1000_FACTPS = 0x05B30, /* Function Active and Power State to MNG */
E1000_SWSM = 0x05B50, /* SW Semaphore */
E1000_FWSM = 0x05B54, /* FW Semaphore */
E1000_HICR = 0x08F00, /* Host Inteface Control */
E1000_HICR = 0x08F00, /* Host Interface Control */
};
/* RSS registers */
......
......@@ -671,7 +671,7 @@ static s32 e1000_get_phy_info_ich8lan(struct e1000_hw *hw)
* e1000_check_polarity_ife_ich8lan - Check cable polarity for IFE PHY
* @hw: pointer to the HW structure
*
* Polarity is determined on the polarity reveral feature being enabled.
* Polarity is determined on the polarity reversal feature being enabled.
* This function is only called by other family-specific
* routines.
**/
......@@ -947,7 +947,7 @@ static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
/* Either we should have a hardware SPI cycle in progress
* bit to check against, in order to start a new cycle or
* FDONE bit should be changed in the hardware so that it
* is 1 after harware reset, which can then be used as an
* is 1 after hardware reset, which can then be used as an
* indication whether a cycle is in progress or has been
* completed.
*/
......@@ -1155,7 +1155,7 @@ static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
* which writes the checksum to the shadow ram. The changes in the shadow
* ram are then committed to the EEPROM by processing each bank at a time
* checking for the modified bit and writing only the pending changes.
* After a succesful commit, the shadow ram is cleared and is ready for
* After a successful commit, the shadow ram is cleared and is ready for
* future writes.
**/
static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
......@@ -1680,7 +1680,7 @@ static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
* - initialize LED identification
* - setup receive address registers
* - setup flow control
* - setup transmit discriptors
* - setup transmit descriptors
* - clear statistics
**/
static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
......@@ -1961,7 +1961,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, phy_ctrl);
/* Call gig speed drop workaround on Giga disable before accessing
/* Call gig speed drop workaround on Gig disable before accessing
* any PHY registers */
e1000e_gig_downshift_workaround_ich8lan(hw);
......@@ -1972,7 +1972,7 @@ static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
/**
* e1000_set_kmrn_lock_loss_workaound_ich8lan - Set Kumeran workaround state
* @hw: pointer to the HW structure
* @state: boolean value used to set the current Kumaran workaround state
* @state: boolean value used to set the current Kumeran workaround state
*
* If ICH8, set the current Kumeran workaround state (enabled - TRUE
* /disabled - FALSE).
......@@ -2017,7 +2017,7 @@ void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
ew32(PHY_CTRL, reg);
/* Call gig speed drop workaround on Giga disable before
/* Call gig speed drop workaround on Gig disable before
* accessing any PHY registers */
if (hw->mac.type == e1000_ich8lan)
e1000e_gig_downshift_workaround_ich8lan(hw);
......@@ -2045,7 +2045,7 @@ void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
* @hw: pointer to the HW structure
*
* Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
* LPLU, Giga disable, MDIC PHY reset):
* LPLU, Gig disable, MDIC PHY reset):
* 1) Set Kumeran Near-end loopback
* 2) Clear Kumeran Near-end loopback
* Should only be called for ICH8[m] devices with IGP_3 Phy.
......@@ -2089,10 +2089,10 @@ static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
}
/**
* e1000_led_on_ich8lan - Turn LED's on
* e1000_led_on_ich8lan - Turn LEDs on
* @hw: pointer to the HW structure
*
* Turn on the LED's.
* Turn on the LEDs.
**/
static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
{
......@@ -2105,10 +2105,10 @@ static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
}
/**
* e1000_led_off_ich8lan - Turn LED's off
* e1000_led_off_ich8lan - Turn LEDs off
* @hw: pointer to the HW structure
*
* Turn off the LED's.
* Turn off the LEDs.
**/
static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
{
......
......@@ -589,9 +589,6 @@ static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
s32 ret_val;
u16 nvm_data;
if (mac->fc != e1000_fc_default)
return 0;
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
......@@ -1107,34 +1104,13 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
mac->fc = e1000_fc_rx_pause;
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
} else {
/*
* Per the IEEE spec, at this point flow control
* should be disabled.
*/
else if ((mac->original_fc == e1000_fc_none) ||
(mac->original_fc == e1000_fc_tx_pause)) {
mac->fc = e1000_fc_none;
hw_dbg(hw, "Flow Control = NONE.\r\n");
} else {
mac->fc = e1000_fc_rx_pause;
hw_dbg(hw, "Flow Control = RX PAUSE frames only.\r\n");
}
/* Now we need to do one last check... If we auto-
......@@ -1164,7 +1140,7 @@ s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
}
/**
* e1000e_get_speed_and_duplex_copper - Retreive current speed/duplex
* e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
......@@ -1200,7 +1176,7 @@ s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, u16 *dup
}
/**
* e1000e_get_speed_and_duplex_fiber_serdes - Retreive current speed/duplex
* e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
* @hw: pointer to the HW structure
* @speed: stores the current speed
* @duplex: stores the current duplex
......@@ -1410,7 +1386,7 @@ s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
* e1000e_blink_led - Blink LED
* @hw: pointer to the HW structure
*
* Blink the led's which are set to be on.
* Blink the LEDs which are set to be on.
**/
s32 e1000e_blink_led(struct e1000_hw *hw)
{
......@@ -1515,7 +1491,7 @@ void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
* @hw: pointer to the HW structure
*
* Returns 0 if successful, else returns -10
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
* (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
* the master requests to be disabled.
*
* Disables PCI-Express master access and verifies there are no pending
......@@ -1876,7 +1852,7 @@ static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
}
/**
* e1000e_read_nvm_spi - Read EEPROM's using SPI
* e1000e_read_nvm_spi - Reads EEPROM using SPI
* @hw: pointer to the HW structure
* @offset: offset of word in the EEPROM to read
* @words: number of words to read
......@@ -1980,7 +1956,7 @@ s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
* Writes data to EEPROM at offset using SPI interface.
*
* If e1000e_update_nvm_checksum is not called after this function , the
* EEPROM will most likley contain an invalid checksum.
* EEPROM will most likely contain an invalid checksum.
**/
s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
{
......@@ -2222,7 +2198,7 @@ static u8 e1000_calculate_checksum(u8 *buffer, u32 length)
*
* Returns E1000_success upon success, else E1000_ERR_HOST_INTERFACE_COMMAND
*
* This function checks whether the HOST IF is enabled for command operaton
* This function checks whether the HOST IF is enabled for command operation
* and also checks whether the previous command is completed. It busy waits
* in case of previous command is not completed.
**/
......@@ -2254,7 +2230,7 @@ static s32 e1000_mng_enable_host_if(struct e1000_hw *hw)
}
/**
* e1000e_check_mng_mode - check managament mode
* e1000e_check_mng_mode - check management mode
* @hw: pointer to the HW structure
*
* Reads the firmware semaphore register and returns true (>0) if
......
......@@ -1006,7 +1006,7 @@ static void e1000_irq_enable(struct e1000_adapter *adapter)
* e1000_get_hw_control - get control of the h/w from f/w
* @adapter: address of board private structure
*
* e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that
* the driver is loaded. For AMT version (only with 82573)
* of the f/w this means that the network i/f is open.
......@@ -1032,7 +1032,7 @@ static void e1000_get_hw_control(struct e1000_adapter *adapter)
* e1000_release_hw_control - release control of the h/w to f/w
* @adapter: address of board private structure
*
* e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
* e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
* For ASF and Pass Through versions of f/w this means that the
* driver is no longer loaded. For AMT version (only with 82573) i
* of the f/w this means that the network i/f is closed.
......@@ -1241,6 +1241,11 @@ void e1000e_free_rx_resources(struct e1000_adapter *adapter)
/**
* e1000_update_itr - update the dynamic ITR value based on statistics
* @adapter: pointer to adapter
* @itr_setting: current adapter->itr
* @packets: the number of packets during this measurement interval
* @bytes: the number of bytes during this measurement interval
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
......@@ -1250,10 +1255,6 @@ void e1000e_free_rx_resources(struct e1000_adapter *adapter)
* while increasing bulk throughput.
* this functionality is controlled by the InterruptThrottleRate module
* parameter (see e1000_param.c)
* @adapter: pointer to adapter
* @itr_setting: current adapter->itr
* @packets: the number of packets during this measurement interval
* @bytes: the number of bytes during this measurement interval
**/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
u16 itr_setting, int packets,
......@@ -1366,6 +1367,7 @@ static void e1000_set_itr(struct e1000_adapter *adapter)
/**
* e1000_clean - NAPI Rx polling callback
* @adapter: board private structure
* @budget: amount of packets driver is allowed to process this poll
**/
static int e1000_clean(struct napi_struct *napi, int budget)
{
......@@ -2000,7 +2002,7 @@ static void e1000_power_down_phy(struct e1000_adapter *adapter)
e1000_check_reset_block(hw))
return;
/* managebility (AMT) is enabled */
/* manageability (AMT) is enabled */
if (er32(MANC) & E1000_MANC_SMBUS_EN)
return;
......@@ -3488,7 +3490,6 @@ static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
static void e1000e_disable_l1aspm(struct pci_dev *pdev)
{
int pos;
u32 cap;
u16 val;
/*
......@@ -3503,7 +3504,6 @@ static void e1000e_disable_l1aspm(struct pci_dev *pdev)
* active.
*/
pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
pci_read_config_dword(pdev, pos + PCI_EXP_LNKCAP, &cap);
pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
if (val & 0x2) {
dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
......
......@@ -121,7 +121,7 @@ s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control regsiter in the PHY at offset and stores the
* Reads the MDI control register in the PHY at offset and stores the
* information read to data.
**/
static s32 e1000_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
......@@ -1172,7 +1172,7 @@ s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
}
/**
* e1000e_check_downshift - Checks whether a downshift in speed occured
* e1000e_check_downshift - Checks whether a downshift in speed occurred
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
......@@ -1388,8 +1388,8 @@ s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
*
* The automatic gain control (agc) normalizes the amplitude of the
* received signal, adjusting for the attenuation produced by the
* cable. By reading the AGC registers, which reperesent the
* cobination of course and fine gain value, the value can be put
* cable. By reading the AGC registers, which represent the
* combination of course and fine gain value, the value can be put
* into a lookup table to obtain the approximate cable length
* for each channel.
**/
......@@ -1619,7 +1619,7 @@ s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
* Verify the reset block is not blocking us from resetting. Acquire
* semaphore (if necessary) and read/set/write the device control reset
* bit in the PHY. Wait the appropriate delay time for the device to
* reset and relase the semaphore (if necessary).
* reset and release the semaphore (if necessary).
**/
s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
{
......
......@@ -40,7 +40,7 @@
#include <asm/io.h>
#define DRV_NAME "ehea"
#define DRV_VERSION "EHEA_0083"
#define DRV_VERSION "EHEA_0087"
/* eHEA capability flags */
#define DLPAR_PORT_ADD_REM 1
......@@ -386,6 +386,13 @@ struct ehea_port_res {
#define EHEA_MAX_PORTS 16
#define EHEA_NUM_PORTRES_FW_HANDLES 6 /* QP handle, SendCQ handle,
RecvCQ handle, EQ handle,
SendMR handle, RecvMR handle */
#define EHEA_NUM_PORT_FW_HANDLES 1 /* EQ handle */
#define EHEA_NUM_ADAPTER_FW_HANDLES 2 /* MR handle, NEQ handle */
struct ehea_adapter {
u64 handle;
struct of_device *ofdev;
......@@ -405,6 +412,31 @@ struct ehea_mc_list {
u64 macaddr;
};
/* kdump support */
struct ehea_fw_handle_entry {
u64 adh; /* Adapter Handle */
u64 fwh; /* Firmware Handle */
};
struct ehea_fw_handle_array {
struct ehea_fw_handle_entry *arr;
int num_entries;
struct semaphore lock;
};
struct ehea_bcmc_reg_entry {
u64 adh; /* Adapter Handle */
u32 port_id; /* Logical Port Id */
u8 reg_type; /* Registration Type */
u64 macaddr;
};
struct ehea_bcmc_reg_array {
struct ehea_bcmc_reg_entry *arr;
int num_entries;
struct semaphore lock;
};
#define EHEA_PORT_UP 1
#define EHEA_PORT_DOWN 0
#define EHEA_PHY_LINK_UP 1
......
This diff is collapsed.
......@@ -946,16 +946,11 @@ static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct fs_enet_private *fep = netdev_priv(dev);
struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
unsigned long flags;
int rc;
if (!netif_running(dev))
return -EINVAL;
spin_lock_irqsave(&fep->lock, flags);
rc = phy_mii_ioctl(fep->phydev, mii, cmd);
spin_unlock_irqrestore(&fep->lock, flags);
return rc;
return phy_mii_ioctl(fep->phydev, mii, cmd);
}
extern int fs_mii_connect(struct net_device *dev);
......
......@@ -605,7 +605,7 @@ void stop_gfar(struct net_device *dev)
free_skb_resources(priv);
dma_free_coherent(NULL,
dma_free_coherent(&dev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
......@@ -626,7 +626,7 @@ static void free_skb_resources(struct gfar_private *priv)
for (i = 0; i < priv->tx_ring_size; i++) {
if (priv->tx_skbuff[i]) {
dma_unmap_single(NULL, txbdp->bufPtr,
dma_unmap_single(&priv->dev->dev, txbdp->bufPtr,
txbdp->length,
DMA_TO_DEVICE);
dev_kfree_skb_any(priv->tx_skbuff[i]);
......@@ -643,7 +643,7 @@ static void free_skb_resources(struct gfar_private *priv)
if(priv->rx_skbuff != NULL) {
for (i = 0; i < priv->rx_ring_size; i++) {
if (priv->rx_skbuff[i]) {
dma_unmap_single(NULL, rxbdp->bufPtr,
dma_unmap_single(&priv->dev->dev, rxbdp->bufPtr,
priv->rx_buffer_size,
DMA_FROM_DEVICE);
......@@ -708,7 +708,7 @@ int startup_gfar(struct net_device *dev)
gfar_write(&regs->imask, IMASK_INIT_CLEAR);
/* Allocate memory for the buffer descriptors */
vaddr = (unsigned long) dma_alloc_coherent(NULL,
vaddr = (unsigned long) dma_alloc_coherent(&dev->dev,
sizeof (struct txbd8) * priv->tx_ring_size +
sizeof (struct rxbd8) * priv->rx_ring_size,
&addr, GFP_KERNEL);
......@@ -919,7 +919,7 @@ int startup_gfar(struct net_device *dev)
rx_skb_fail:
free_skb_resources(priv);
tx_skb_fail:
dma_free_coherent(NULL,
dma_free_coherent(&dev->dev,
sizeof(struct txbd8)*priv->tx_ring_size
+ sizeof(struct rxbd8)*priv->rx_ring_size,
priv->tx_bd_base,
......@@ -1053,7 +1053,7 @@ static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
/* Set buffer length and pointer */
txbdp->length = skb->len;
txbdp->bufPtr = dma_map_single(NULL, skb->data,
txbdp->bufPtr = dma_map_single(&dev->dev, skb->data,
skb->len, DMA_TO_DEVICE);
/* Save the skb pointer so we can free it later */
......@@ -1332,7 +1332,7 @@ struct sk_buff * gfar_new_skb(struct net_device *dev, struct rxbd8 *bdp)
*/
skb_reserve(skb, alignamount);
bdp->bufPtr = dma_map_single(NULL, skb->data,
bdp->bufPtr = dma_map_single(&dev->dev, skb->data,
priv->rx_buffer_size, DMA_FROM_DEVICE);
bdp->length = 0;
......
......@@ -439,7 +439,7 @@ static int igb_request_irq(struct igb_adapter *adapter)
err = igb_request_msix(adapter);
if (!err) {
/* enable IAM, auto-mask,
* DO NOT USE EIAME or IAME in legacy mode */
* DO NOT USE EIAM or IAM in legacy mode */
wr32(E1000_IAM, IMS_ENABLE_MASK);
goto request_done;
}
......@@ -465,14 +465,9 @@ static int igb_request_irq(struct igb_adapter *adapter)
err = request_irq(adapter->pdev->irq, &igb_intr, IRQF_SHARED,
netdev->name, netdev);
if (err) {
if (err)
dev_err(&adapter->pdev->dev, "Error %d getting interrupt\n",
err);
goto request_done;
}
/* enable IAM, auto-mask */
wr32(E1000_IAM, IMS_ENABLE_MASK);
request_done:
return err;
......@@ -821,6 +816,7 @@ void igb_reset(struct igb_adapter *adapter)
wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
igb_reset_adaptive(&adapter->hw);
if (adapter->hw.phy.ops.get_phy_info)
adapter->hw.phy.ops.get_phy_info(&adapter->hw);
}
......@@ -2057,6 +2053,7 @@ static void igb_set_multi(struct net_device *netdev)
static void igb_update_phy_info(unsigned long data)
{
struct igb_adapter *adapter = (struct igb_adapter *) data;
if (adapter->hw.phy.ops.get_phy_info)
adapter->hw.phy.ops.get_phy_info(&adapter->hw);
}
......
......@@ -67,6 +67,7 @@ static struct ixgb_stats ixgb_gstrings_stats[] = {
{"rx_over_errors", IXGB_STAT(net_stats.rx_over_errors)},
{"rx_crc_errors", IXGB_STAT(net_stats.rx_crc_errors)},
{"rx_frame_errors", IXGB_STAT(net_stats.rx_frame_errors)},
{"rx_no_buffer_count", IXGB_STAT(stats.rnbc)},
{"rx_fifo_errors", IXGB_STAT(net_stats.rx_fifo_errors)},
{"rx_missed_errors", IXGB_STAT(net_stats.rx_missed_errors)},
{"tx_aborted_errors", IXGB_STAT(net_stats.tx_aborted_errors)},
......
......@@ -148,7 +148,7 @@ static void macb_handle_link_change(struct net_device *dev)
if (phydev->duplex)
reg |= MACB_BIT(FD);
if (phydev->speed)
if (phydev->speed == SPEED_100)
reg |= MACB_BIT(SPD);
macb_writel(bp, NCFGR, reg);
......
......@@ -590,6 +590,13 @@ static int pcnet_config(struct pcmcia_device *link)
dev->if_port = 0;
}
if ((link->conf.ConfigBase == 0x03c0)
&& (link->manf_id == 0x149) && (link->card_id = 0xc1ab)) {
printk(KERN_INFO "pcnet_cs: this is an AX88190 card!\n");
printk(KERN_INFO "pcnet_cs: use axnet_cs instead.\n");
goto failed;
}
local_hw_info = get_hwinfo(link);
if (local_hw_info == NULL)
local_hw_info = get_prom(link);
......@@ -1567,12 +1574,11 @@ static struct pcmcia_device_id pcnet_ids[] = {
PCMCIA_DEVICE_MANF_CARD(0x0104, 0x0145),
PCMCIA_DEVICE_MANF_CARD(0x0149, 0x0230),
PCMCIA_DEVICE_MANF_CARD(0x0149, 0x4530),
/* PCMCIA_DEVICE_MANF_CARD(0x0149, 0xc1ab), conflict with axnet_cs */
PCMCIA_DEVICE_MANF_CARD(0x0149, 0xc1ab),
PCMCIA_DEVICE_MANF_CARD(0x0186, 0x0110),
PCMCIA_DEVICE_MANF_CARD(0x01bf, 0x2328),
PCMCIA_DEVICE_MANF_CARD(0x01bf, 0x8041),
PCMCIA_DEVICE_MANF_CARD(0x0213, 0x2452),
/* PCMCIA_DEVICE_MANF_CARD(0x021b, 0x0202), conflict with axnet_cs */
PCMCIA_DEVICE_MANF_CARD(0x026f, 0x0300),
PCMCIA_DEVICE_MANF_CARD(0x026f, 0x0307),
PCMCIA_DEVICE_MANF_CARD(0x026f, 0x030a),
......
......@@ -49,13 +49,13 @@ int mdiobus_register(struct mii_bus *bus)
int i;
int err = 0;
mutex_init(&bus->mdio_lock);
if (NULL == bus || NULL == bus->name ||
NULL == bus->read ||
NULL == bus->write)
return -EINVAL;
mutex_init(&bus->mdio_lock);
if (bus->reset)
bus->reset(bus);
......
......@@ -1633,13 +1633,18 @@ static inline void sis190_init_rxfilter(struct net_device *dev)
static int __devinit sis190_get_mac_addr(struct pci_dev *pdev,
struct net_device *dev)
{
u8 from;
int rc;
rc = sis190_get_mac_addr_from_eeprom(pdev, dev);
if (rc < 0) {
u8 reg;
pci_read_config_byte(pdev, 0x73, &from);
pci_read_config_byte(pdev, 0x73, &reg);
return (from & 0x00000001) ?
sis190_get_mac_addr_from_apc(pdev, dev) :
sis190_get_mac_addr_from_eeprom(pdev, dev);
if (reg & 0x00000001)
rc = sis190_get_mac_addr_from_apc(pdev, dev);
}
return rc;
}
static void sis190_set_speed_auto(struct net_device *dev)
......
......@@ -572,8 +572,9 @@ static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
default:
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
/* turn off the Rx LED (LED_RX) */
ledover &= ~PHY_M_LED_MO_RX;
ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
}
if (hw->chip_id == CHIP_ID_YUKON_EC_U &&
......@@ -602,7 +603,7 @@ static void sky2_phy_init(struct sky2_hw *hw, unsigned port)
if (sky2->autoneg == AUTONEG_DISABLE || sky2->speed == SPEED_100) {
/* turn on 100 Mbps LED (LED_LINK100) */
ledover |= PHY_M_LED_MO_100;
ledover |= PHY_M_LED_MO_100(MO_LED_ON);
}
if (ledover)
......@@ -3322,82 +3323,80 @@ static void sky2_set_multicast(struct net_device *dev)
/* Can have one global because blinking is controlled by
* ethtool and that is always under RTNL mutex
*/
static void sky2_led(struct sky2_hw *hw, unsigned port, int on)
static void sky2_led(struct sky2_port *sky2, enum led_mode mode)
{
u16 pg;
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
switch (hw->chip_id) {
case CHIP_ID_YUKON_XL:
spin_lock_bh(&sky2->phy_lock);
if (hw->chip_id == CHIP_ID_YUKON_EC_U ||
hw->chip_id == CHIP_ID_YUKON_EX ||
hw->chip_id == CHIP_ID_YUKON_SUPR) {
u16 pg;
pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
switch (mode) {
case MO_LED_OFF:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(8) |
PHY_M_LEDC_INIT_CTRL(8) |
PHY_M_LEDC_STA1_CTRL(8) |
PHY_M_LEDC_STA0_CTRL(8));
break;
case MO_LED_ON:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(9) |
PHY_M_LEDC_INIT_CTRL(9) |
PHY_M_LEDC_STA1_CTRL(9) |
PHY_M_LEDC_STA0_CTRL(9));
break;
case MO_LED_BLINK:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
on ? (PHY_M_LEDC_LOS_CTRL(1) |
PHY_M_LEDC_INIT_CTRL(7) |
PHY_M_LEDC_LOS_CTRL(0xa) |
PHY_M_LEDC_INIT_CTRL(0xa) |
PHY_M_LEDC_STA1_CTRL(0xa) |
PHY_M_LEDC_STA0_CTRL(0xa));
break;
case MO_LED_NORM:
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL,
PHY_M_LEDC_LOS_CTRL(1) |
PHY_M_LEDC_INIT_CTRL(8) |
PHY_M_LEDC_STA1_CTRL(7) |
PHY_M_LEDC_STA0_CTRL(7))
: 0);
PHY_M_LEDC_STA0_CTRL(7));
}
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
break;
default:
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
} else
gm_phy_write(hw, port, PHY_MARV_LED_OVER,
on ? PHY_M_LED_ALL : 0);
}
PHY_M_LED_MO_DUP(mode) |
PHY_M_LED_MO_10(mode) |
PHY_M_LED_MO_100(mode) |
PHY_M_LED_MO_1000(mode) |
PHY_M_LED_MO_RX(mode) |
PHY_M_LED_MO_TX(mode));
spin_unlock_bh(&sky2->phy_lock);
}
/* blink LED's for finding board */
static int sky2_phys_id(struct net_device *dev, u32 data)
{
struct sky2_port *sky2 = netdev_priv(dev);
struct sky2_hw *hw = sky2->hw;
unsigned port = sky2->port;
u16 ledctrl, ledover = 0;
long ms;
int interrupted;
int onoff = 1;
unsigned int i;
if (!data || data > (u32) (MAX_SCHEDULE_TIMEOUT / HZ))
ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT);
else
ms = data * 1000;
if (data == 0)
data = UINT_MAX;
/* save initial values */
spin_lock_bh(&sky2->phy_lock);
if (hw->chip_id == CHIP_ID_YUKON_XL) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
ledctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
ledctrl = gm_phy_read(hw, port, PHY_MARV_LED_CTRL);
ledover = gm_phy_read(hw, port, PHY_MARV_LED_OVER);
}
interrupted = 0;
while (!interrupted && ms > 0) {
sky2_led(hw, port, onoff);
onoff = !onoff;
spin_unlock_bh(&sky2->phy_lock);
interrupted = msleep_interruptible(250);
spin_lock_bh(&sky2->phy_lock);
ms -= 250;
}
/* resume regularly scheduled programming */
if (hw->chip_id == CHIP_ID_YUKON_XL) {
u16 pg = gm_phy_read(hw, port, PHY_MARV_EXT_ADR);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, 3);
gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ledctrl);
gm_phy_write(hw, port, PHY_MARV_EXT_ADR, pg);
} else {
gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
for (i = 0; i < data; i++) {
sky2_led(sky2, MO_LED_ON);
if (msleep_interruptible(500))
break;
sky2_led(sky2, MO_LED_OFF);
if (msleep_interruptible(500))
break;
}
spin_unlock_bh(&sky2->phy_lock);
sky2_led(sky2, MO_LED_NORM);
return 0;
}
......
......@@ -1318,18 +1318,21 @@ enum {
BLINK_670MS = 4,/* 670 ms */
};
/**** PHY_MARV_LED_OVER 16 bit r/w LED control */
enum {
PHY_M_LED_MO_DUP = 3<<10,/* Bit 11..10: Duplex */
PHY_M_LED_MO_10 = 3<<8, /* Bit 9.. 8: Link 10 */
PHY_M_LED_MO_100 = 3<<6, /* Bit 7.. 6: Link 100 */
PHY_M_LED_MO_1000 = 3<<4, /* Bit 5.. 4: Link 1000 */
PHY_M_LED_MO_RX = 3<<2, /* Bit 3.. 2: Rx */
PHY_M_LED_MO_TX = 3<<0, /* Bit 1.. 0: Tx */
PHY_M_LED_ALL = PHY_M_LED_MO_DUP | PHY_M_LED_MO_10
| PHY_M_LED_MO_100 | PHY_M_LED_MO_1000
| PHY_M_LED_MO_RX,
/***** PHY_MARV_LED_OVER 16 bit r/w Manual LED Override Reg *****/
#define PHY_M_LED_MO_SGMII(x) ((x)<<14) /* Bit 15..14: SGMII AN Timer */
#define PHY_M_LED_MO_DUP(x) ((x)<<10) /* Bit 11..10: Duplex */
#define PHY_M_LED_MO_10(x) ((x)<<8) /* Bit 9.. 8: Link 10 */
#define PHY_M_LED_MO_100(x) ((x)<<6) /* Bit 7.. 6: Link 100 */
#define PHY_M_LED_MO_1000(x) ((x)<<4) /* Bit 5.. 4: Link 1000 */
#define PHY_M_LED_MO_RX(x) ((x)<<2) /* Bit 3.. 2: Rx */
#define PHY_M_LED_MO_TX(x) ((x)<<0) /* Bit 1.. 0: Tx */
enum led_mode {
MO_LED_NORM = 0,
MO_LED_BLINK = 1,
MO_LED_OFF = 2,
MO_LED_ON = 3,
};
/***** PHY_MARV_EXT_CTRL_2 16 bit r/w Ext. PHY Specific Ctrl 2 *****/
......
......@@ -1400,7 +1400,7 @@ static void TLan_SetMulticastList( struct net_device *dev )
*
**************************************************************/
u32 TLan_HandleInvalid( struct net_device *dev, u16 host_int )
static u32 TLan_HandleInvalid( struct net_device *dev, u16 host_int )
{
/* printk( "TLAN: Invalid interrupt on %s.\n", dev->name ); */
return 0;
......@@ -1432,7 +1432,7 @@ u32 TLan_HandleInvalid( struct net_device *dev, u16 host_int )
*
**************************************************************/
u32 TLan_HandleTxEOF( struct net_device *dev, u16 host_int )
static u32 TLan_HandleTxEOF( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = netdev_priv(dev);
int eoc = 0;
......@@ -1518,7 +1518,7 @@ u32 TLan_HandleTxEOF( struct net_device *dev, u16 host_int )
*
**************************************************************/
u32 TLan_HandleStatOverflow( struct net_device *dev, u16 host_int )
static u32 TLan_HandleStatOverflow( struct net_device *dev, u16 host_int )
{
TLan_ReadAndClearStats( dev, TLAN_RECORD );
......@@ -1554,7 +1554,7 @@ u32 TLan_HandleStatOverflow( struct net_device *dev, u16 host_int )
*
**************************************************************/
u32 TLan_HandleRxEOF( struct net_device *dev, u16 host_int )
static u32 TLan_HandleRxEOF( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u32 ack = 0;
......@@ -1689,7 +1689,7 @@ u32 TLan_HandleRxEOF( struct net_device *dev, u16 host_int )
*
**************************************************************/
u32 TLan_HandleDummy( struct net_device *dev, u16 host_int )
static u32 TLan_HandleDummy( struct net_device *dev, u16 host_int )
{
printk( "TLAN: Test interrupt on %s.\n", dev->name );
return 1;
......@@ -1719,7 +1719,7 @@ u32 TLan_HandleDummy( struct net_device *dev, u16 host_int )
*
**************************************************************/
u32 TLan_HandleTxEOC( struct net_device *dev, u16 host_int )
static u32 TLan_HandleTxEOC( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = netdev_priv(dev);
TLanList *head_list;
......@@ -1767,7 +1767,7 @@ u32 TLan_HandleTxEOC( struct net_device *dev, u16 host_int )
*
**************************************************************/
u32 TLan_HandleStatusCheck( struct net_device *dev, u16 host_int )
static u32 TLan_HandleStatusCheck( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u32 ack;
......@@ -1842,7 +1842,7 @@ u32 TLan_HandleStatusCheck( struct net_device *dev, u16 host_int )
*
**************************************************************/
u32 TLan_HandleRxEOC( struct net_device *dev, u16 host_int )
static u32 TLan_HandleRxEOC( struct net_device *dev, u16 host_int )
{
TLanPrivateInfo *priv = netdev_priv(dev);
dma_addr_t head_list_phys;
......@@ -1902,7 +1902,7 @@ u32 TLan_HandleRxEOC( struct net_device *dev, u16 host_int )
*
**************************************************************/
void TLan_Timer( unsigned long data )
static void TLan_Timer( unsigned long data )
{
struct net_device *dev = (struct net_device *) data;
TLanPrivateInfo *priv = netdev_priv(dev);
......@@ -1983,7 +1983,7 @@ void TLan_Timer( unsigned long data )
*
**************************************************************/
void TLan_ResetLists( struct net_device *dev )
static void TLan_ResetLists( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
int i;
......@@ -2043,7 +2043,7 @@ void TLan_ResetLists( struct net_device *dev )
} /* TLan_ResetLists */
void TLan_FreeLists( struct net_device *dev )
static void TLan_FreeLists( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
int i;
......@@ -2092,7 +2092,7 @@ void TLan_FreeLists( struct net_device *dev )
*
**************************************************************/
void TLan_PrintDio( u16 io_base )
static void TLan_PrintDio( u16 io_base )
{
u32 data0, data1;
int i;
......@@ -2127,7 +2127,7 @@ void TLan_PrintDio( u16 io_base )
*
**************************************************************/
void TLan_PrintList( TLanList *list, char *type, int num)
static void TLan_PrintList( TLanList *list, char *type, int num)
{
int i;
......@@ -2163,7 +2163,7 @@ void TLan_PrintList( TLanList *list, char *type, int num)
*
**************************************************************/
void TLan_ReadAndClearStats( struct net_device *dev, int record )
static void TLan_ReadAndClearStats( struct net_device *dev, int record )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u32 tx_good, tx_under;
......@@ -2238,7 +2238,7 @@ void TLan_ReadAndClearStats( struct net_device *dev, int record )
*
**************************************************************/
void
static void
TLan_ResetAdapter( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
......@@ -2324,7 +2324,7 @@ TLan_ResetAdapter( struct net_device *dev )
void
static void
TLan_FinishReset( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
......@@ -2448,7 +2448,7 @@ TLan_FinishReset( struct net_device *dev )
*
**************************************************************/
void TLan_SetMac( struct net_device *dev, int areg, char *mac )
static void TLan_SetMac( struct net_device *dev, int areg, char *mac )
{
int i;
......@@ -2490,7 +2490,7 @@ void TLan_SetMac( struct net_device *dev, int areg, char *mac )
*
********************************************************************/
void TLan_PhyPrint( struct net_device *dev )
static void TLan_PhyPrint( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u16 i, data0, data1, data2, data3, phy;
......@@ -2539,7 +2539,7 @@ void TLan_PhyPrint( struct net_device *dev )
*
********************************************************************/
void TLan_PhyDetect( struct net_device *dev )
static void TLan_PhyDetect( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u16 control;
......@@ -2586,7 +2586,7 @@ void TLan_PhyDetect( struct net_device *dev )
void TLan_PhyPowerDown( struct net_device *dev )
static void TLan_PhyPowerDown( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u16 value;
......@@ -2611,7 +2611,7 @@ void TLan_PhyPowerDown( struct net_device *dev )
void TLan_PhyPowerUp( struct net_device *dev )
static void TLan_PhyPowerUp( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u16 value;
......@@ -2632,7 +2632,7 @@ void TLan_PhyPowerUp( struct net_device *dev )
void TLan_PhyReset( struct net_device *dev )
static void TLan_PhyReset( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u16 phy;
......@@ -2660,7 +2660,7 @@ void TLan_PhyReset( struct net_device *dev )
void TLan_PhyStartLink( struct net_device *dev )
static void TLan_PhyStartLink( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u16 ability;
......@@ -2747,7 +2747,7 @@ void TLan_PhyStartLink( struct net_device *dev )
void TLan_PhyFinishAutoNeg( struct net_device *dev )
static void TLan_PhyFinishAutoNeg( struct net_device *dev )
{
TLanPrivateInfo *priv = netdev_priv(dev);
u16 an_adv;
......@@ -2903,7 +2903,7 @@ void TLan_PhyMonitor( struct net_device *dev )
*
**************************************************************/
int TLan_MiiReadReg( struct net_device *dev, u16 phy, u16 reg, u16 *val )
static int TLan_MiiReadReg( struct net_device *dev, u16 phy, u16 reg, u16 *val )
{
u8 nack;
u16 sio, tmp;
......@@ -2993,7 +2993,7 @@ int TLan_MiiReadReg( struct net_device *dev, u16 phy, u16 reg, u16 *val )
*
**************************************************************/
void TLan_MiiSendData( u16 base_port, u32 data, unsigned num_bits )
static void TLan_MiiSendData( u16 base_port, u32 data, unsigned num_bits )
{
u16 sio;
u32 i;
......@@ -3035,7 +3035,7 @@ void TLan_MiiSendData( u16 base_port, u32 data, unsigned num_bits )
*
**************************************************************/
void TLan_MiiSync( u16 base_port )
static void TLan_MiiSync( u16 base_port )
{
int i;
u16 sio;
......@@ -3074,7 +3074,7 @@ void TLan_MiiSync( u16 base_port )
*
**************************************************************/
void TLan_MiiWriteReg( struct net_device *dev, u16 phy, u16 reg, u16 val )
static void TLan_MiiWriteReg( struct net_device *dev, u16 phy, u16 reg, u16 val )
{
u16 sio;
int minten;
......@@ -3144,7 +3144,7 @@ void TLan_MiiWriteReg( struct net_device *dev, u16 phy, u16 reg, u16 val )
*
**************************************************************/
void TLan_EeSendStart( u16 io_base )
static void TLan_EeSendStart( u16 io_base )
{
u16 sio;
......@@ -3184,7 +3184,7 @@ void TLan_EeSendStart( u16 io_base )
*
**************************************************************/
int TLan_EeSendByte( u16 io_base, u8 data, int stop )
static int TLan_EeSendByte( u16 io_base, u8 data, int stop )
{
int err;
u8 place;
......@@ -3245,7 +3245,7 @@ int TLan_EeSendByte( u16 io_base, u8 data, int stop )
*
**************************************************************/
void TLan_EeReceiveByte( u16 io_base, u8 *data, int stop )
static void TLan_EeReceiveByte( u16 io_base, u8 *data, int stop )
{
u8 place;
u16 sio;
......@@ -3303,7 +3303,7 @@ void TLan_EeReceiveByte( u16 io_base, u8 *data, int stop )
*
**************************************************************/
int TLan_EeReadByte( struct net_device *dev, u8 ee_addr, u8 *data )
static int TLan_EeReadByte( struct net_device *dev, u8 ee_addr, u8 *data )
{
int err;
TLanPrivateInfo *priv = netdev_priv(dev);
......
......@@ -482,9 +482,11 @@ static void uli526x_init(struct net_device *dev)
struct uli526x_board_info *db = netdev_priv(dev);
unsigned long ioaddr = db->ioaddr;
u8 phy_tmp;
u8 timeout;
u16 phy_value;
u16 phy_reg_reset;
ULI526X_DBUG(0, "uli526x_init()", 0);
/* Reset M526x MAC controller */
......@@ -509,11 +511,19 @@ static void uli526x_init(struct net_device *dev)
/* Parser SROM and media mode */
db->media_mode = uli526x_media_mode;
/* Phyxcer capability setting */
/* phyxcer capability setting */
phy_reg_reset = phy_read(db->ioaddr, db->phy_addr, 0, db->chip_id);
phy_reg_reset = (phy_reg_reset | 0x8000);
phy_write(db->ioaddr, db->phy_addr, 0, phy_reg_reset, db->chip_id);
/* See IEEE 802.3-2002.pdf (Section 2, Chapter "22.2.4 Management
* functions") or phy data sheet for details on phy reset
*/
udelay(500);
timeout = 10;
while (timeout-- &&
phy_read(db->ioaddr, db->phy_addr, 0, db->chip_id) & 0x8000)
udelay(100);
/* Process Phyxcer Media Mode */
uli526x_set_phyxcer(db);
......
......@@ -1893,7 +1893,7 @@ static void rhine_shutdown (struct pci_dev *pdev)
/* Make sure we use pattern 0, 1 and not 4, 5 */
if (rp->quirks & rq6patterns)
iowrite8(0x04, ioaddr + 0xA7);
iowrite8(0x04, ioaddr + WOLcgClr);
if (rp->wolopts & WAKE_MAGIC) {
iowrite8(WOLmagic, ioaddr + WOLcrSet);
......
......@@ -361,6 +361,7 @@ static int virtnet_probe(struct virtio_device *vdev)
netif_napi_add(dev, &vi->napi, virtnet_poll, napi_weight);
vi->dev = dev;
vi->vdev = vdev;
vdev->priv = vi;
/* We expect two virtqueues, receive then send. */
vi->rvq = vdev->config->find_vq(vdev, 0, skb_recv_done);
......@@ -395,7 +396,6 @@ static int virtnet_probe(struct virtio_device *vdev)
}
pr_debug("virtnet: registered device %s\n", dev->name);
vdev->priv = vi;
return 0;
unregister:
......
......@@ -1851,8 +1851,7 @@ claw_hw_tx(struct sk_buff *skb, struct net_device *dev, long linkid)
}
}
/* See how many write buffers are required to hold this data */
numBuffers= ( skb->len + privptr->p_env->write_size - 1) /
( privptr->p_env->write_size);
numBuffers = DIV_ROUND_UP(skb->len, privptr->p_env->write_size);
/* If that number of buffers isn't available, give up for now */
if (privptr->write_free_count < numBuffers ||
......@@ -2114,8 +2113,7 @@ init_ccw_bk(struct net_device *dev)
*/
ccw_blocks_perpage= PAGE_SIZE / CCWBK_SIZE;
ccw_pages_required=
(ccw_blocks_required+ccw_blocks_perpage -1) /
ccw_blocks_perpage;
DIV_ROUND_UP(ccw_blocks_required, ccw_blocks_perpage);
#ifdef DEBUGMSG
printk(KERN_INFO "%s: %s() > ccw_blocks_perpage=%d\n",
......@@ -2132,29 +2130,28 @@ init_ccw_bk(struct net_device *dev)
* buffers are used.
*/
if (privptr->p_env->read_size < PAGE_SIZE) {
claw_reads_perpage= PAGE_SIZE / privptr->p_env->read_size;
claw_read_pages= (privptr->p_env->read_buffers +
claw_reads_perpage -1) / claw_reads_perpage;
claw_reads_perpage = PAGE_SIZE / privptr->p_env->read_size;
claw_read_pages = DIV_ROUND_UP(privptr->p_env->read_buffers,
claw_reads_perpage);
}
else { /* > or equal */
privptr->p_buff_pages_perread=
(privptr->p_env->read_size + PAGE_SIZE - 1) / PAGE_SIZE;
claw_read_pages=
privptr->p_env->read_buffers * privptr->p_buff_pages_perread;
privptr->p_buff_pages_perread =
DIV_ROUND_UP(privptr->p_env->read_size, PAGE_SIZE);
claw_read_pages = privptr->p_env->read_buffers *
privptr->p_buff_pages_perread;
}
if (privptr->p_env->write_size < PAGE_SIZE) {
claw_writes_perpage=
claw_writes_perpage =
PAGE_SIZE / privptr->p_env->write_size;
claw_write_pages=
(privptr->p_env->write_buffers + claw_writes_perpage -1) /
claw_writes_perpage;
claw_write_pages = DIV_ROUND_UP(privptr->p_env->write_buffers,
claw_writes_perpage);
}
else { /* > or equal */
privptr->p_buff_pages_perwrite=
(privptr->p_env->read_size + PAGE_SIZE - 1) / PAGE_SIZE;
claw_write_pages=
privptr->p_env->write_buffers * privptr->p_buff_pages_perwrite;
privptr->p_buff_pages_perwrite =
DIV_ROUND_UP(privptr->p_env->read_size, PAGE_SIZE);
claw_write_pages = privptr->p_env->write_buffers *
privptr->p_buff_pages_perwrite;
}
#ifdef DEBUGMSG
if (privptr->p_env->read_size < PAGE_SIZE) {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment