Commit 3c65c55d authored by Ian Campbell's avatar Ian Campbell Committed by Russell King

[ARM PATCH] 1827/1: PXAFB patch updated based on comments in 1826

Patch from Ian Campbell

The patch includes the PXA FB driver discussed recently on the
arm-kernel mailing list, I have incorporated your (RMK's) comments
from patch 1826.
parent 141baf80
Driver for PXA25x LCD controller
================================
The driver supports the following options, either via
options=<OPTIONS> when modular or video=pxafb:<OPTIONS> when built in.
For example:
modprobe pxafb options=mode:640x480-8,passive
or on the kernel command line
video=pxafb:mode:640x480-8,passive
mode:XRESxYRES[-BPP]
XRES == LCCR1_PPL + 1
YRES == LLCR2_LPP + 1
The resolution of the display in pixels
BPP == The bit depth. Valid values are 1, 2, 4, 8 and 16.
pixclock:PIXCLOCK
Pixel clock in picoseconds
left:LEFT == LCCR1_BLW + 1
right:RIGHT == LCCR1_ELW + 1
hsynclen:HSYNC == LCCR1_HSW + 1
upper:UPPER == LCCR2_BFW
lower:LOWER == LCCR2_EFR
vsynclen:VSYNC == LCCR2_VSW + 1
Display margins and sync times
color | mono => LCCR0_CMS
umm...
active | passive => LCCR0_PAS
Active (TFT) or Passive (STN) display
single | dual => LCCR0_SDS
Single or dual panel passive display
4pix | 8pix => LCCR0_DPD
4 or 8 pixel monochrome single panel data
hsync:HSYNC
vsync:VSYNC
Horizontal and vertical sync. 0 => active low, 1 => active
high.
dpc:DPC
Double pixel clock. 1=>true, 0=>false
outputen:POLARITY
Output Enable Polarity. 0 => active low, 1 => active high
pixclockpol:POLARITY
pixel clock polarity
0 => falling edge, 1 => rising edge
......@@ -31,6 +31,7 @@
#include <asm/mach/map.h>
#include <asm/arch/udc.h>
#include <asm/arch/pxafb.h>
#include "generic.h"
......@@ -205,9 +206,45 @@ static struct platform_device udc_device = {
}
};
static struct pxafb_mach_info pxa_fb_info;
void __init set_pxa_fb_info(struct pxafb_mach_info *hard_pxa_fb_info)
{
memcpy(&pxa_fb_info,hard_pxa_fb_info,sizeof(struct pxafb_mach_info));
}
EXPORT_SYMBOL(set_pxa_fb_info);
static struct resource pxafb_resources[] = {
[0] = {
.start = 0x44000000,
.end = 0x4400ffff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ_LCD,
.end = IRQ_LCD,
.flags = IORESOURCE_IRQ,
},
};
static u64 fb_dma_mask = ~(u64)0;
static struct platform_device pxafb_device = {
.name = "pxafb",
.id = 0,
.dev = {
.platform_data = &pxa_fb_info,
.dma_mask = &fb_dma_mask,
.coherent_dma_mask = 0xffffffff,
},
.num_resources = ARRAY_SIZE(pxafb_resources),
.resource = pxafb_resources,
};
static struct platform_device *devices[] __initdata = {
&pxamci_device,
&udc_device,
&pxafb_device,
};
static int __init pxa_init(void)
......
......@@ -895,6 +895,37 @@ config FB_68328
Say Y here if you want to support the built-in frame buffer of
the Motorola 68328 CPU family.
config FB_PXA
tristate "PXA LCD framebuffer support"
depends on FB && ARCH_PXA
---help---
Frame buffer driver for the built-in LCD controller in the Intel
PXA2x0 processor.
This driver is also available as a module ( = code which can be
inserted and removed from the running kernel whenever you want). The
module will be called vfb. If you want to compile it as a module,
say M here and read <file:Documentation/modules.txt>.
If unsure, say N.
config FB_PXA_PARAMETERS
bool "PXA LCD command line parameters"
default n
depends on FB_PXA
---help---
Enable the use of kernel command line or module parameters
to configure the physical properties of the LCD panel when
using the PXA LCD driver.
This option allows you to override the panel parameters
supplied by the platform in order to support multiple
different models of flatpanel. If you will only be using a
single model of flatpanel then you can safely leave this
option disabled.
Documentation/fb/pxafb.txt describes the available parameters.
config FB_VIRTUAL
tristate "Virtual Frame Buffer support (ONLY FOR TESTING!)"
depends on FB
......
......@@ -88,4 +88,4 @@ obj-$(CONFIG_FB_TCX) += tcx.o sbuslib.o cfbimgblt.o cfbcopyarea.o
cfbfillrect.o
obj-$(CONFIG_FB_LEO) += leo.o sbuslib.o cfbimgblt.o cfbcopyarea.o \
cfbfillrect.o
obj-$(CONFIG_FB_PXA) += pxafb.o cfbimgblt.o cfbcopyarea.o cfbfillrect.o
......@@ -114,6 +114,8 @@ extern int valkyriefb_setup(char*);
extern int chips_init(void);
extern int g364fb_init(void);
extern int sa1100fb_init(void);
extern int pxafb_init(void);
extern int pxafb_setup(char*);
extern int fm2fb_init(void);
extern int fm2fb_setup(char*);
extern int q40fb_init(void);
......@@ -345,6 +347,9 @@ static struct {
#ifdef CONFIG_FB_SA1100
{ "sa1100fb", sa1100fb_init, NULL },
#endif
#ifdef CONFIG_FB_PXA
{ "pxafb", pxafb_init, pxafb_setup },
#endif
#ifdef CONFIG_FB_SUN3
{ "sun3fb", sun3fb_init, sun3fb_setup },
#endif
......
/*
* linux/drivers/video/pxafb.c
*
* Copyright (C) 1999 Eric A. Thomas.
* Copyright (C) 2004 Jean-Frederic Clere.
* Copyright (C) 2004 Ian Campbell.
* Copyright (C) 2004 Jeff Lackey.
* Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
* which in turn is
* Based on acornfb.c Copyright (C) Russell King.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*
* Intel PXA250/210 LCD Controller Frame Buffer Driver
*
* Please direct your questions and comments on this driver to the following
* email address:
*
* linux-arm-kernel@lists.arm.linux.org.uk
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/string.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/fb.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/cpufreq.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/mach-types.h>
#include <asm/uaccess.h>
#include <asm/arch/bitfield.h>
#include <asm/arch/pxafb.h>
/*
* Complain if VAR is out of range.
*/
#define DEBUG_VAR 1
#include "pxafb.h"
/* Bits which should not be set in machine configuration structures */
#define LCCR0_INVALID_CONFIG_MASK (LCCR0_OUM|LCCR0_BM|LCCR0_QDM|LCCR0_DIS|LCCR0_EFM|LCCR0_IUM|LCCR0_SFM|LCCR0_LDM|LCCR0_ENB)
#define LCCR3_INVALID_CONFIG_MASK (LCCR3_HSP|LCCR3_VSP|LCCR3_PCD|LCCR3_BPP)
static void (*pxafb_backlight_power)(int);
static void (*pxafb_lcd_power)(int);
static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *);
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state);
#ifdef CONFIG_FB_PXA_PARAMETERS
#define PXAFB_OPTIONS_SIZE 256
static char g_options[PXAFB_OPTIONS_SIZE] __initdata = "";
#endif
static inline void pxafb_schedule_work(struct pxafb_info *fbi, u_int state)
{
unsigned long flags;
local_irq_save(flags);
/*
* We need to handle two requests being made at the same time.
* There are two important cases:
* 1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
* We must perform the unblanking, which will do our REENABLE for us.
* 2. When we are blanking, but immediately unblank before we have
* blanked. We do the "REENABLE" thing here as well, just to be sure.
*/
if (fbi->task_state == C_ENABLE && state == C_REENABLE)
state = (u_int) -1;
if (fbi->task_state == C_DISABLE && state == C_ENABLE)
state = C_REENABLE;
if (state != (u_int)-1) {
fbi->task_state = state;
schedule_work(&fbi->task);
}
local_irq_restore(flags);
}
static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
{
chan &= 0xffff;
chan >>= 16 - bf->length;
return chan << bf->offset;
}
static int
pxafb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
u_int val, ret = 1;
if (regno < fbi->palette_size) {
val = ((red >> 0) & 0xf800);
val |= ((green >> 5) & 0x07e0);
val |= ((blue >> 11) & 0x001f);
fbi->palette_cpu[regno] = val;
ret = 0;
}
return ret;
}
static int
pxafb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
u_int trans, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
unsigned int val;
int ret = 1;
/*
* If inverse mode was selected, invert all the colours
* rather than the register number. The register number
* is what you poke into the framebuffer to produce the
* colour you requested.
*/
if (fbi->cmap_inverse) {
red = 0xffff - red;
green = 0xffff - green;
blue = 0xffff - blue;
}
/*
* If greyscale is true, then we convert the RGB value
* to greyscale no matter what visual we are using.
*/
if (fbi->fb.var.grayscale)
red = green = blue = (19595 * red + 38470 * green +
7471 * blue) >> 16;
switch (fbi->fb.fix.visual) {
case FB_VISUAL_TRUECOLOR:
/*
* 12 or 16-bit True Colour. We encode the RGB value
* according to the RGB bitfield information.
*/
if (regno <= 16) {
u32 *pal = fbi->fb.pseudo_palette;
val = chan_to_field(red, &fbi->fb.var.red);
val |= chan_to_field(green, &fbi->fb.var.green);
val |= chan_to_field(blue, &fbi->fb.var.blue);
pal[regno] = val;
ret = 0;
}
break;
case FB_VISUAL_STATIC_PSEUDOCOLOR:
case FB_VISUAL_PSEUDOCOLOR:
ret = pxafb_setpalettereg(regno, red, green, blue, trans, info);
break;
}
return ret;
}
/*
* pxafb_bpp_to_lccr3():
* Convert a bits per pixel value to the correct bit pattern for LCCR3
*/
static int pxafb_bpp_to_lccr3(struct fb_var_screeninfo *var)
{
int ret = 0;
switch (var->bits_per_pixel) {
case 1: ret = LCCR3_1BPP; break;
case 2: ret = LCCR3_2BPP; break;
case 4: ret = LCCR3_4BPP; break;
case 8: ret = LCCR3_8BPP; break;
case 16: ret = LCCR3_16BPP; break;
}
return ret;
}
#ifdef CONFIG_CPU_FREQ
/*
* pxafb_display_dma_period()
* Calculate the minimum period (in picoseconds) between two DMA
* requests for the LCD controller. If we hit this, it means we're
* doing nothing but LCD DMA.
*/
static unsigned int pxafb_display_dma_period(struct fb_var_screeninfo *var)
{
/*
* Period = pixclock * bits_per_byte * bytes_per_transfer
* / memory_bits_per_pixel;
*/
return var->pixclock * 8 * 16 / var->bits_per_pixel;
}
extern unsigned int get_clk_frequency_khz(int info);
#endif
/*
* pxafb_check_var():
* Get the video params out of 'var'. If a value doesn't fit, round it up,
* if it's too big, return -EINVAL.
*
* Round up in the following order: bits_per_pixel, xres,
* yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
* bitfields, horizontal timing, vertical timing.
*/
static int pxafb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
if (var->xres < MIN_XRES)
var->xres = MIN_XRES;
if (var->yres < MIN_YRES)
var->yres = MIN_YRES;
if (var->xres > fbi->max_xres)
var->xres = fbi->max_xres;
if (var->yres > fbi->max_yres)
var->yres = fbi->max_yres;
var->xres_virtual =
max(var->xres_virtual, var->xres);
var->yres_virtual =
max(var->yres_virtual, var->yres);
/*
* Setup the RGB parameters for this display.
*
* The pixel packing format is described on page 7-11 of the
* PXA2XX Developer's Manual.
*/
if ( var->bits_per_pixel == 16 ) {
var->red.offset = 11; var->red.length = 5;
var->green.offset = 5; var->green.length = 6;
var->blue.offset = 0; var->blue.length = 5;
var->transp.offset = var->transp.length = 0;
} else {
var->red.offset = var->green.offset = var->blue.offset = var->transp.offset = 0;
var->red.length = 8;
var->green.length = 8;
var->blue.length = 8;
var->transp.length = 0;
}
#ifdef CONFIG_CPU_FREQ
DPRINTK("dma period = %d ps, clock = %d kHz\n",
pxafb_display_dma_period(var),
get_clk_frequency_khz(0));
#endif
return 0;
}
static inline void pxafb_set_truecolor(u_int is_true_color)
{
DPRINTK("true_color = %d\n", is_true_color);
// do your machine-specific setup if needed
}
/*
* pxafb_set_par():
* Set the user defined part of the display for the specified console
*/
static int pxafb_set_par(struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
struct fb_var_screeninfo *var = &info->var;
unsigned long palette_mem_size;
DPRINTK("set_par\n");
if (var->bits_per_pixel == 16)
fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
else if (!fbi->cmap_static)
fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
else {
/*
* Some people have weird ideas about wanting static
* pseudocolor maps. I suspect their user space
* applications are broken.
*/
fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
}
fbi->fb.fix.line_length = var->xres_virtual *
var->bits_per_pixel / 8;
fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
palette_mem_size = fbi->palette_size * sizeof(u16);
DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size);
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
/*
* Set (any) board control register to handle new color depth
*/
pxafb_set_truecolor(fbi->fb.fix.visual == FB_VISUAL_TRUECOLOR);
pxafb_activate_var(var, fbi);
return 0;
}
/*
* Formal definition of the VESA spec:
* On
* This refers to the state of the display when it is in full operation
* Stand-By
* This defines an optional operating state of minimal power reduction with
* the shortest recovery time
* Suspend
* This refers to a level of power management in which substantial power
* reduction is achieved by the display. The display can have a longer
* recovery time from this state than from the Stand-by state
* Off
* This indicates that the display is consuming the lowest level of power
* and is non-operational. Recovery from this state may optionally require
* the user to manually power on the monitor
*
* Now, the fbdev driver adds an additional state, (blank), where they
* turn off the video (maybe by colormap tricks), but don't mess with the
* video itself: think of it semantically between on and Stand-By.
*
* So here's what we should do in our fbdev blank routine:
*
* VESA_NO_BLANKING (mode 0) Video on, front/back light on
* VESA_VSYNC_SUSPEND (mode 1) Video on, front/back light off
* VESA_HSYNC_SUSPEND (mode 2) Video on, front/back light off
* VESA_POWERDOWN (mode 3) Video off, front/back light off
*
* This will match the matrox implementation.
*/
/*
* pxafb_blank():
* Blank the display by setting all palette values to zero. Note, the
* 12 and 16 bpp modes don't really use the palette, so this will not
* blank the display in all modes.
*/
static int pxafb_blank(int blank, struct fb_info *info)
{
struct pxafb_info *fbi = (struct pxafb_info *)info;
int i;
DPRINTK("pxafb_blank: blank=%d\n", blank);
switch (blank) {
case VESA_POWERDOWN:
case VESA_VSYNC_SUSPEND:
case VESA_HSYNC_SUSPEND:
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
for (i = 0; i < fbi->palette_size; i++)
pxafb_setpalettereg(i, 0, 0, 0, 0, info);
pxafb_schedule_work(fbi, C_DISABLE);
//TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
break;
case VESA_NO_BLANKING:
//TODO if (pxafb_blank_helper) pxafb_blank_helper(blank);
if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
fb_set_cmap(&fbi->fb.cmap, 1, info);
pxafb_schedule_work(fbi, C_ENABLE);
}
return 0;
}
static struct fb_ops pxafb_ops = {
.owner = THIS_MODULE,
.fb_check_var = pxafb_check_var,
.fb_set_par = pxafb_set_par,
.fb_setcolreg = pxafb_setcolreg,
.fb_fillrect = cfb_fillrect,
.fb_copyarea = cfb_copyarea,
.fb_imageblit = cfb_imageblit,
.fb_blank = pxafb_blank,
.fb_cursor = soft_cursor,
};
/*
* Calculate the PCD value from the clock rate (in picoseconds).
* We take account of the PPCR clock setting.
* From PXA Developer's Manual:
*
* PixelClock = LCLK
* -------------
* 2 ( PCD + 1 )
*
* PCD = LCLK
* ------------- - 1
* 2(PixelClock)
*
* Where:
* LCLK = LCD/Memory Clock
* PCD = LCCR3[7:0]
*
* PixelClock here is in Hz while the pixclock argument given is the
* period in picoseconds. Hence PixelClock = 1 / ( pixclock * 10^-12 )
*
* The function get_lclk_frequency_10khz returns LCLK in units of
* 10khz. Calling the result of this function lclk gives us the
* following
*
* PCD = (lclk * 10^4 ) * ( pixclock * 10^-12 )
* -------------------------------------- - 1
* 2
*
* Factoring the 10^4 and 10^-12 out gives 10^-8 == 1 / 100000000 as used below.
*/
static inline unsigned int get_pcd(unsigned int pixclock)
{
unsigned long long pcd;
/* FIXME: Need to take into account Double Pixel Clock mode
* (DPC) bit? or perhaps set it based on the various clock
* speeds */
pcd = (unsigned long long)get_lclk_frequency_10khz() * (unsigned long long)pixclock;
pcd /= 100000000 * 2;
/* no need for this, since we should subtract 1 anyway. they cancel */
/* pcd += 1; */ /* make up for integer math truncations */
return (unsigned int)pcd;
}
/*
* pxafb_activate_var():
* Configures LCD Controller based on entries in var parameter. Settings are
* only written to the controller if changes were made.
*/
static int pxafb_activate_var(struct fb_var_screeninfo *var, struct pxafb_info *fbi)
{
struct pxafb_lcd_reg new_regs;
u_long flags;
u_int pcd = get_pcd(var->pixclock);
DPRINTK("Configuring PXA LCD\n");
DPRINTK("var: xres=%d hslen=%d lm=%d rm=%d\n",
var->xres, var->hsync_len,
var->left_margin, var->right_margin);
DPRINTK("var: yres=%d vslen=%d um=%d bm=%d\n",
var->yres, var->vsync_len,
var->upper_margin, var->lower_margin);
DPRINTK("var: pixclock=%d pcd=%d\n", var->pixclock, pcd);
#if DEBUG_VAR
if (var->xres < 16 || var->xres > 1024)
printk(KERN_ERR "%s: invalid xres %d\n",
fbi->fb.fix.id, var->xres);
switch(var->bits_per_pixel) {
case 1:
case 2:
case 4:
case 8:
case 16:
break;
default:
printk(KERN_ERR "%s: invalid bit depth %d\n",
fbi->fb.fix.id, var->bits_per_pixel);
break;
}
if (var->hsync_len < 1 || var->hsync_len > 64)
printk(KERN_ERR "%s: invalid hsync_len %d\n",
fbi->fb.fix.id, var->hsync_len);
if (var->left_margin < 1 || var->left_margin > 255)
printk(KERN_ERR "%s: invalid left_margin %d\n",
fbi->fb.fix.id, var->left_margin);
if (var->right_margin < 1 || var->right_margin > 255)
printk(KERN_ERR "%s: invalid right_margin %d\n",
fbi->fb.fix.id, var->right_margin);
if (var->yres < 1 || var->yres > 1024)
printk(KERN_ERR "%s: invalid yres %d\n",
fbi->fb.fix.id, var->yres);
if (var->vsync_len < 1 || var->vsync_len > 64)
printk(KERN_ERR "%s: invalid vsync_len %d\n",
fbi->fb.fix.id, var->vsync_len);
if (var->upper_margin < 0 || var->upper_margin > 255)
printk(KERN_ERR "%s: invalid upper_margin %d\n",
fbi->fb.fix.id, var->upper_margin);
if (var->lower_margin < 0 || var->lower_margin > 255)
printk(KERN_ERR "%s: invalid lower_margin %d\n",
fbi->fb.fix.id, var->lower_margin);
#endif
new_regs.lccr0 = fbi->lccr0 |
(LCCR0_LDM | LCCR0_SFM | LCCR0_IUM | LCCR0_EFM |
LCCR0_QDM | LCCR0_BM | LCCR0_OUM);
new_regs.lccr1 =
LCCR1_DisWdth(var->xres) +
LCCR1_HorSnchWdth(var->hsync_len) +
LCCR1_BegLnDel(var->left_margin) +
LCCR1_EndLnDel(var->right_margin);
new_regs.lccr2 =
LCCR2_DisHght(var->yres) +
LCCR2_VrtSnchWdth(var->vsync_len) +
LCCR2_BegFrmDel(var->upper_margin) +
LCCR2_EndFrmDel(var->lower_margin);
new_regs.lccr3 = fbi->lccr3 |
pxafb_bpp_to_lccr3(var) |
(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
if (pcd)
new_regs.lccr3 |= LCCR3_PixClkDiv(pcd);
DPRINTK("nlccr0 = 0x%08x\n", new_regs.lccr0);
DPRINTK("nlccr1 = 0x%08x\n", new_regs.lccr1);
DPRINTK("nlccr2 = 0x%08x\n", new_regs.lccr2);
DPRINTK("nlccr3 = 0x%08x\n", new_regs.lccr3);
/* Update shadow copy atomically */
local_irq_save(flags);
/* setup dma descriptors */
fbi->dmadesc_fblow_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 3*16);
fbi->dmadesc_fbhigh_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 2*16);
fbi->dmadesc_palette_cpu = (struct pxafb_dma_descriptor *)((unsigned int)fbi->palette_cpu - 1*16);
fbi->dmadesc_fblow_dma = fbi->palette_dma - 3*16;
fbi->dmadesc_fbhigh_dma = fbi->palette_dma - 2*16;
fbi->dmadesc_palette_dma = fbi->palette_dma - 1*16;
#define BYTES_PER_PANEL ((fbi->lccr0 & LCCR0_SDS) == LCCR0_Dual ? \
(var->xres * var->yres * var->bits_per_pixel / 8 / 2) : \
(var->xres * var->yres * var->bits_per_pixel / 8))
/* populate descriptors */
fbi->dmadesc_fblow_cpu->fdadr = fbi->dmadesc_fblow_dma;
fbi->dmadesc_fblow_cpu->fsadr = fbi->screen_dma + BYTES_PER_PANEL;
fbi->dmadesc_fblow_cpu->fidr = 0;
fbi->dmadesc_fblow_cpu->ldcmd = BYTES_PER_PANEL;
fbi->fdadr1 = fbi->dmadesc_fblow_dma; /* only used in dual-panel mode */
fbi->dmadesc_fbhigh_cpu->fsadr = fbi->screen_dma;
fbi->dmadesc_fbhigh_cpu->fidr = 0;
fbi->dmadesc_fbhigh_cpu->ldcmd = BYTES_PER_PANEL;
fbi->dmadesc_palette_cpu->fsadr = fbi->palette_dma;
fbi->dmadesc_palette_cpu->fidr = 0;
fbi->dmadesc_palette_cpu->ldcmd = (fbi->palette_size * 2) | LDCMD_PAL;
if( var->bits_per_pixel < 12)
{
/* assume any mode with <12 bpp is palette driven */
fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_palette_dma;
fbi->fdadr0 = fbi->dmadesc_palette_dma; /* flips back and forth between pal and fbhigh */
}
else
{
/* palette shouldn't be loaded in true-color mode */
fbi->dmadesc_fbhigh_cpu->fdadr = fbi->dmadesc_fbhigh_dma;
fbi->fdadr0 = fbi->dmadesc_fbhigh_dma; /* no pal just fbhigh */
/* init it to something, even though we won't be using it */
fbi->dmadesc_palette_cpu->fdadr = fbi->dmadesc_palette_dma;
}
#if 0
DPRINTK("fbi->dmadesc_fblow_cpu = 0x%p\n", fbi->dmadesc_fblow_cpu);
DPRINTK("fbi->dmadesc_fbhigh_cpu = 0x%p\n", fbi->dmadesc_fbhigh_cpu);
DPRINTK("fbi->dmadesc_palette_cpu = 0x%p\n", fbi->dmadesc_palette_cpu);
DPRINTK("fbi->dmadesc_fblow_dma = 0x%x\n", fbi->dmadesc_fblow_dma);
DPRINTK("fbi->dmadesc_fbhigh_dma = 0x%x\n", fbi->dmadesc_fbhigh_dma);
DPRINTK("fbi->dmadesc_palette_dma = 0x%x\n", fbi->dmadesc_palette_dma);
DPRINTK("fbi->dmadesc_fblow_cpu->fdadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fdadr);
DPRINTK("fbi->dmadesc_fbhigh_cpu->fdadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fdadr);
DPRINTK("fbi->dmadesc_palette_cpu->fdadr = 0x%x\n", fbi->dmadesc_palette_cpu->fdadr);
DPRINTK("fbi->dmadesc_fblow_cpu->fsadr = 0x%x\n", fbi->dmadesc_fblow_cpu->fsadr);
DPRINTK("fbi->dmadesc_fbhigh_cpu->fsadr = 0x%x\n", fbi->dmadesc_fbhigh_cpu->fsadr);
DPRINTK("fbi->dmadesc_palette_cpu->fsadr = 0x%x\n", fbi->dmadesc_palette_cpu->fsadr);
DPRINTK("fbi->dmadesc_fblow_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fblow_cpu->ldcmd);
DPRINTK("fbi->dmadesc_fbhigh_cpu->ldcmd = 0x%x\n", fbi->dmadesc_fbhigh_cpu->ldcmd);
DPRINTK("fbi->dmadesc_palette_cpu->ldcmd = 0x%x\n", fbi->dmadesc_palette_cpu->ldcmd);
#endif
fbi->reg_lccr0 = new_regs.lccr0;
fbi->reg_lccr1 = new_regs.lccr1;
fbi->reg_lccr2 = new_regs.lccr2;
fbi->reg_lccr3 = new_regs.lccr3;
local_irq_restore(flags);
/*
* Only update the registers if the controller is enabled
* and something has changed.
*/
if ((LCCR0 != fbi->reg_lccr0) || (LCCR1 != fbi->reg_lccr1) ||
(LCCR2 != fbi->reg_lccr2) || (LCCR3 != fbi->reg_lccr3) ||
(FDADR0 != fbi->fdadr0) || (FDADR1 != fbi->fdadr1))
pxafb_schedule_work(fbi, C_REENABLE);
return 0;
}
/*
* NOTE! The following functions are purely helpers for set_ctrlr_state.
* Do not call them directly; set_ctrlr_state does the correct serialisation
* to ensure that things happen in the right way 100% of time time.
* -- rmk
*/
static inline void __pxafb_backlight_power(struct pxafb_info *fbi, int on)
{
DPRINTK("backlight o%s\n", on ? "n" : "ff");
if (pxafb_backlight_power)
pxafb_backlight_power(on);
}
static inline void __pxafb_lcd_power(struct pxafb_info *fbi, int on)
{
DPRINTK("LCD power o%s\n", on ? "n" : "ff");
if (pxafb_lcd_power)
pxafb_lcd_power(on);
}
static void pxafb_setup_gpio(struct pxafb_info *fbi)
{
unsigned int lccr0 = fbi->lccr0;
/*
* setup is based on type of panel supported
*/
/* 4 bit interface */
if ((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
(lccr0 & LCCR0_SDS) == LCCR0_Sngl &&
(lccr0 & LCCR0_DPD) == LCCR0_4PixMono)
{
// bits 58-61
GPDR1 |= (0xf << 26);
GAFR1_U = (GAFR1_U & ~(0xff << 20)) | (0xaa << 20);
// bits 74-77
GPDR2 |= (0xf << 10);
GAFR2_L = (GAFR2_L & ~(0xff << 20)) | (0xaa << 20);
}
/* 8 bit interface */
else if (((lccr0 & LCCR0_CMS) == LCCR0_Mono &&
((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_DPD) == LCCR0_8PixMono)) ||
((lccr0 & LCCR0_CMS) == LCCR0_Color &&
(lccr0 & LCCR0_PAS) == LCCR0_Pas && (lccr0 & LCCR0_SDS) == LCCR0_Sngl))
{
// bits 58-65
GPDR1 |= (0x3f << 26);
GPDR2 |= (0x3);
GAFR1_U = (GAFR1_U & ~(0xfff << 20)) | (0xaaa << 20);
GAFR2_L = (GAFR2_L & ~0xf) | (0xa);
// bits 74-77
GPDR2 |= (0xf << 10);
GAFR2_L = (GAFR2_L & ~(0xff << 20)) | (0xaa << 20);
}
/* 16 bit interface */
else if ((lccr0 & LCCR0_CMS) == LCCR0_Color &&
((lccr0 & LCCR0_SDS) == LCCR0_Dual || (lccr0 & LCCR0_PAS) == LCCR0_Act))
{
// bits 58-77
GPDR1 |= (0x3f << 26);
GPDR2 |= 0x00003fff;
GAFR1_U = (GAFR1_U & ~(0xfff << 20)) | (0xaaa << 20);
GAFR2_L = (GAFR2_L & 0xf0000000) | 0x0aaaaaaa;
}
else {
printk( KERN_ERR "pxafb_setup_gpio: unable to determine bits per pixel\n");
}
}
static void pxafb_enable_controller(struct pxafb_info *fbi)
{
DPRINTK("Enabling LCD controller\n");
DPRINTK("fdadr0 0x%08x\n", (unsigned int) fbi->fdadr0);
DPRINTK("fdadr1 0x%08x\n", (unsigned int) fbi->fdadr1);
DPRINTK("reg_lccr0 0x%08x\n", (unsigned int) fbi->reg_lccr0);
DPRINTK("reg_lccr1 0x%08x\n", (unsigned int) fbi->reg_lccr1);
DPRINTK("reg_lccr2 0x%08x\n", (unsigned int) fbi->reg_lccr2);
DPRINTK("reg_lccr3 0x%08x\n", (unsigned int) fbi->reg_lccr3);
/* Sequence from 11.7.10 */
LCCR3 = fbi->reg_lccr3;
LCCR2 = fbi->reg_lccr2;
LCCR1 = fbi->reg_lccr1;
LCCR0 = fbi->reg_lccr0 & ~LCCR0_ENB;
FDADR0 = fbi->fdadr0;
FDADR1 = fbi->fdadr1;
LCCR0 |= LCCR0_ENB;
DPRINTK("FDADR0 0x%08x\n", (unsigned int) FDADR0);
DPRINTK("FDADR1 0x%08x\n", (unsigned int) FDADR1);
DPRINTK("LCCR0 0x%08x\n", (unsigned int) LCCR0);
DPRINTK("LCCR1 0x%08x\n", (unsigned int) LCCR1);
DPRINTK("LCCR2 0x%08x\n", (unsigned int) LCCR2);
DPRINTK("LCCR3 0x%08x\n", (unsigned int) LCCR3);
}
static void pxafb_disable_controller(struct pxafb_info *fbi)
{
DECLARE_WAITQUEUE(wait, current);
DPRINTK("Disabling LCD controller\n");
add_wait_queue(&fbi->ctrlr_wait, &wait);
set_current_state(TASK_UNINTERRUPTIBLE);
LCSR = 0xffffffff; /* Clear LCD Status Register */
LCCR0 &= ~LCCR0_LDM; /* Enable LCD Disable Done Interrupt */
//TODO?enable_irq(IRQ_LCD); /* Enable LCD IRQ */
LCCR0 &= ~LCCR0_ENB; /* Disable LCD Controller */
schedule_timeout(20 * HZ / 1000);
remove_wait_queue(&fbi->ctrlr_wait, &wait);
}
/*
* pxafb_handle_irq: Handle 'LCD DONE' interrupts.
*/
static irqreturn_t pxafb_handle_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct pxafb_info *fbi = dev_id;
unsigned int lcsr = LCSR;
if (lcsr & LCSR_LDD) {
LCCR0 |= LCCR0_LDM;
wake_up(&fbi->ctrlr_wait);
}
LCSR = lcsr;
return IRQ_HANDLED;
}
/*
* This function must be called from task context only, since it will
* sleep when disabling the LCD controller, or if we get two contending
* processes trying to alter state.
*/
static void set_ctrlr_state(struct pxafb_info *fbi, u_int state)
{
u_int old_state;
down(&fbi->ctrlr_sem);
old_state = fbi->state;
/*
* Hack around fbcon initialisation.
*/
if (old_state == C_STARTUP && state == C_REENABLE)
state = C_ENABLE;
switch (state) {
case C_DISABLE_CLKCHANGE:
/*
* Disable controller for clock change. If the
* controller is already disabled, then do nothing.
*/
if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
fbi->state = state;
//TODO __pxafb_lcd_power(fbi, 0);
pxafb_disable_controller(fbi);
}
break;
case C_DISABLE_PM:
case C_DISABLE:
/*
* Disable controller
*/
if (old_state != C_DISABLE) {
fbi->state = state;
__pxafb_backlight_power(fbi, 0);
__pxafb_lcd_power(fbi, 0);
if (old_state != C_DISABLE_CLKCHANGE)
pxafb_disable_controller(fbi);
}
break;
case C_ENABLE_CLKCHANGE:
/*
* Enable the controller after clock change. Only
* do this if we were disabled for the clock change.
*/
if (old_state == C_DISABLE_CLKCHANGE) {
fbi->state = C_ENABLE;
pxafb_enable_controller(fbi);
//TODO __pxafb_lcd_power(fbi, 1);
}
break;
case C_REENABLE:
/*
* Re-enable the controller only if it was already
* enabled. This is so we reprogram the control
* registers.
*/
if (old_state == C_ENABLE) {
pxafb_disable_controller(fbi);
pxafb_setup_gpio(fbi);
pxafb_enable_controller(fbi);
}
break;
case C_ENABLE_PM:
/*
* Re-enable the controller after PM. This is not
* perfect - think about the case where we were doing
* a clock change, and we suspended half-way through.
*/
if (old_state != C_DISABLE_PM)
break;
/* fall through */
case C_ENABLE:
/*
* Power up the LCD screen, enable controller, and
* turn on the backlight.
*/
if (old_state != C_ENABLE) {
fbi->state = C_ENABLE;
pxafb_setup_gpio(fbi);
pxafb_enable_controller(fbi);
__pxafb_lcd_power(fbi, 1);
__pxafb_backlight_power(fbi, 1);
}
break;
}
up(&fbi->ctrlr_sem);
}
/*
* Our LCD controller task (which is called when we blank or unblank)
* via keventd.
*/
static void pxafb_task(void *dummy)
{
struct pxafb_info *fbi = dummy;
u_int state = xchg(&fbi->task_state, -1);
set_ctrlr_state(fbi, state);
}
#ifdef CONFIG_CPU_FREQ
/*
* CPU clock speed change handler. We need to adjust the LCD timing
* parameters when the CPU clock is adjusted by the power management
* subsystem.
*
* TODO: Determine why f->new != 10*get_lclk_frequency_10khz()
*/
static int
pxafb_freq_transition(struct notifier_block *nb, unsigned long val, void *data)
{
struct pxafb_info *fbi = TO_INF(nb, freq_transition);
//TODO struct cpufreq_freqs *f = data;
u_int pcd;
switch (val) {
case CPUFREQ_PRECHANGE:
set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
break;
case CPUFREQ_POSTCHANGE:
pcd = get_pcd(fbi->fb.var.pixclock);
fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
break;
}
return 0;
}
static int
pxafb_freq_policy(struct notifier_block *nb, unsigned long val, void *data)
{
struct pxafb_info *fbi = TO_INF(nb, freq_policy);
struct fb_var_screeninfo *var = &fbi->fb.var;
struct cpufreq_policy *policy = data;
switch (val) {
case CPUFREQ_ADJUST:
case CPUFREQ_INCOMPATIBLE:
printk(KERN_DEBUG "min dma period: %d ps, "
"new clock %d kHz\n", pxafb_display_dma_period(var),
policy->max);
// TODO: fill in min/max values
break;
#if 0
case CPUFREQ_NOTIFY:
printk(KERN_ERR "%s: got CPUFREQ_NOTIFY\n", __FUNCTION__);
do {} while(0);
/* todo: panic if min/max values aren't fulfilled
* [can't really happen unless there's a bug in the
* CPU policy verification process *
*/
break;
#endif
}
return 0;
}
#endif
#ifdef CONFIG_PM
/*
* Power management hooks. Note that we won't be called from IRQ context,
* unlike the blank functions above, so we may sleep.
*/
static int pxafb_suspend(struct device *dev, u32 state, u32 level)
{
struct pxafb_info *fbi = dev_get_drvdata(dev);
if (level == SUSPEND_DISABLE || level == SUSPEND_POWER_DOWN)
set_ctrlr_state(fbi, C_DISABLE_PM);
return 0;
}
static int pxafb_resume(struct device *dev, u32 level)
{
struct pxafb_info *fbi = dev_get_drvdata(dev);
if (level == RESUME_ENABLE)
set_ctrlr_state(fbi, C_ENABLE_PM);
return 0;
}
#else
#define pxafb_suspend NULL
#define pxafb_resume NULL
#endif
/*
* pxafb_map_video_memory():
* Allocates the DRAM memory for the frame buffer. This buffer is
* remapped into a non-cached, non-buffered, memory region to
* allow palette and pixel writes to occur without flushing the
* cache. Once this area is remapped, all virtual memory
* access to the video memory should occur at the new region.
*/
static int __init pxafb_map_video_memory(struct pxafb_info *fbi)
{
u_long palette_mem_size;
/*
* We reserve one page for the palette, plus the size
* of the framebuffer.
*/
fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
&fbi->map_dma, GFP_KERNEL);
if (fbi->map_cpu) {
/* prevent initial garbage on screen */
memset(fbi->map_cpu, 0, fbi->map_size);
fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
/*
* FIXME: this is actually the wrong thing to place in
* smem_start. But fbdev suffers from the problem that
* it needs an API which doesn't exist (in this case,
* dma_writecombine_mmap)
*/
fbi->fb.fix.smem_start = fbi->screen_dma;
fbi->palette_size = fbi->fb.var.bits_per_pixel == 8 ? 256 : 16;
palette_mem_size = fbi->palette_size * sizeof(u16);
DPRINTK("palette_mem_size = 0x%08lx\n", (u_long) palette_mem_size);
fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
}
return fbi->map_cpu ? 0 : -ENOMEM;
}
static struct pxafb_info * __init pxafb_init_fbinfo(struct device *dev)
{
struct pxafb_info *fbi;
void *addr;
struct pxafb_mach_info *inf = dev->platform_data;
/* Alloc the pxafb_info and pseudo_palette in one step */
fbi = kmalloc(sizeof(struct pxafb_info) + sizeof(u32) * 17, GFP_KERNEL);
if (!fbi)
return NULL;
memset(fbi, 0, sizeof(struct pxafb_info));
fbi->dev = dev;
strcpy(fbi->fb.fix.id, PXA_NAME);
fbi->fb.fix.type = FB_TYPE_PACKED_PIXELS;
fbi->fb.fix.type_aux = 0;
fbi->fb.fix.xpanstep = 0;
fbi->fb.fix.ypanstep = 0;
fbi->fb.fix.ywrapstep = 0;
fbi->fb.fix.accel = FB_ACCEL_NONE;
fbi->fb.var.nonstd = 0;
fbi->fb.var.activate = FB_ACTIVATE_NOW;
fbi->fb.var.height = -1;
fbi->fb.var.width = -1;
fbi->fb.var.accel_flags = 0;
fbi->fb.var.vmode = FB_VMODE_NONINTERLACED;
fbi->fb.fbops = &pxafb_ops;
fbi->fb.flags = FBINFO_FLAG_DEFAULT;
fbi->fb.node = -1;
fbi->fb.currcon = -1;
addr = fbi;
addr = addr + sizeof(struct pxafb_info);
fbi->fb.pseudo_palette = addr;
fbi->max_xres = inf->xres;
fbi->fb.var.xres = inf->xres;
fbi->fb.var.xres_virtual = inf->xres;
fbi->max_yres = inf->yres;
fbi->fb.var.yres = inf->yres;
fbi->fb.var.yres_virtual = inf->yres;
fbi->max_bpp = inf->bpp;
fbi->fb.var.bits_per_pixel = inf->bpp;
fbi->fb.var.pixclock = inf->pixclock;
fbi->fb.var.hsync_len = inf->hsync_len;
fbi->fb.var.left_margin = inf->left_margin;
fbi->fb.var.right_margin = inf->right_margin;
fbi->fb.var.vsync_len = inf->vsync_len;
fbi->fb.var.upper_margin = inf->upper_margin;
fbi->fb.var.lower_margin = inf->lower_margin;
fbi->fb.var.sync = inf->sync;
fbi->fb.var.grayscale = inf->cmap_greyscale;
fbi->cmap_inverse = inf->cmap_inverse;
fbi->cmap_static = inf->cmap_static;
fbi->lccr0 = inf->lccr0;
fbi->lccr3 = inf->lccr3;
fbi->state = C_STARTUP;
fbi->task_state = (u_char)-1;
fbi->fb.fix.smem_len = fbi->max_xres * fbi->max_yres *
fbi->max_bpp / 8;
init_waitqueue_head(&fbi->ctrlr_wait);
INIT_WORK(&fbi->task, pxafb_task, fbi);
init_MUTEX(&fbi->ctrlr_sem);
return fbi;
}
#ifdef CONFIG_FB_PXA_PARAMETERS
static int __init pxafb_parse_options(struct device *dev, char *options)
{
struct pxafb_mach_info *inf = dev->platform_data;
char *this_opt;
if (!options || !*options)
return 0;
dev_dbg(dev, "options are \"%s\"\n", options ? options : "null");
/* could be made table driven or similar?... */
while ((this_opt = strsep(&options, ",")) != NULL) {
if (!strncmp(this_opt, "mode:", 5)) {
const char *name = this_opt+5;
unsigned int namelen = strlen(name);
int res_specified = 0, bpp_specified = 0;
unsigned int xres = 0, yres = 0, bpp = 0;
int yres_specified = 0;
int i;
for (i = namelen-1; i >= 0; i--) {
switch (name[i]) {
case '-':
namelen = i;
if (!bpp_specified && !yres_specified) {
bpp = simple_strtoul(&name[i+1], NULL, 0);
bpp_specified = 1;
} else
goto done;
break;
case 'x':
if (!yres_specified) {
yres = simple_strtoul(&name[i+1], NULL, 0);
yres_specified = 1;
} else
goto done;
break;
case '0'...'9':
break;
default:
goto done;
}
}
if (i < 0 && yres_specified) {
xres = simple_strtoul(name, NULL, 0);
res_specified = 1;
}
done:
if ( res_specified ) {
dev_info(dev, "overriding resolution: %dx%x\n", xres, yres);
inf->xres = xres; inf->yres = yres;
}
if ( bpp_specified )
switch (bpp) {
case 1:
case 2:
case 4:
case 8:
case 16:
inf->bpp = bpp;
dev_info(dev, "overriding bit depth: %d\n", bpp);
break;
default:
dev_err(dev, "Depth %d is not valid\n", bpp);
}
} else if (!strncmp(this_opt, "pixclock:", 9)) {
inf->pixclock = simple_strtoul(this_opt+9, NULL, 0);
dev_info(dev, "override pixclock: %uld\n", inf->pixclock);
} else if (!strncmp(this_opt, "left:", 5)) {
inf->left_margin = simple_strtoul(this_opt+5, NULL, 0);
dev_info(dev, "override left: %d\n", inf->left_margin);
} else if (!strncmp(this_opt, "right:", 6)) {
inf->right_margin = simple_strtoul(this_opt+6, NULL, 0);
dev_info(dev, "override right: %d\n", inf->right_margin);
} else if (!strncmp(this_opt, "upper:", 6)) {
inf->upper_margin = simple_strtoul(this_opt+6, NULL, 0);
dev_info(dev, "override upper: %d\n", inf->upper_margin);
} else if (!strncmp(this_opt, "lower:", 6)) {
inf->lower_margin = simple_strtoul(this_opt+6, NULL, 0);
dev_info(dev, "override lower: %d\n", inf->lower_margin);
} else if (!strncmp(this_opt, "hsynclen:", 9)) {
inf->hsync_len = simple_strtoul(this_opt+9, NULL, 0);
dev_info(dev, "override hsynclen: %d\n", inf->hsync_len);
} else if (!strncmp(this_opt, "vsynclen:", 9)) {
inf->vsync_len = simple_strtoul(this_opt+9, NULL, 0);
dev_info(dev, "override vsynclen: %d\n", inf->vsync_len);
} else if (!strncmp(this_opt, "hsync:", 6)) {
if ( simple_strtoul(this_opt+6, NULL, 0) == 0 ) {
dev_info(dev, "override hsync: Active Low\n");
inf->sync &= ~FB_SYNC_HOR_HIGH_ACT;
} else {
dev_info(dev, "override hsync: Active High\n");
inf->sync |= FB_SYNC_HOR_HIGH_ACT;
}
} else if (!strncmp(this_opt, "vsync:", 6)) {
if ( simple_strtoul(this_opt+6, NULL, 0) == 0 ) {
dev_info(dev, "override vsync: Active Low\n");
inf->sync &= ~FB_SYNC_VERT_HIGH_ACT;
} else {
dev_info(dev, "override vsync: Active High\n");
inf->sync |= FB_SYNC_VERT_HIGH_ACT;
}
} else if (!strncmp(this_opt, "dpc:", 4)) {
if ( simple_strtoul(this_opt+4, NULL, 0) == 0 ) {
dev_info(dev, "override double pixel clock: false\n");
inf->lccr3 &= ~LCCR3_DPC;
} else {
dev_info(dev, "override double pixel clock: true\n");
inf->lccr3 |= LCCR3_DPC;
}
} else if (!strncmp(this_opt, "outputen:", 9)) {
if ( simple_strtoul(this_opt+9, NULL, 0) == 0 ) {
dev_info(dev, "override output enable: active low\n");
inf->lccr3 = ( inf->lccr3 & ~LCCR3_OEP ) | LCCR3_OutEnL;
} else {
dev_info(dev, "override output enable: active high\n");
inf->lccr3 = ( inf->lccr3 & ~LCCR3_OEP ) | LCCR3_OutEnH;
}
} else if (!strncmp(this_opt, "pixclockpol:", 12)) {
if ( simple_strtoul(this_opt+12, NULL, 0) == 0 ) {
dev_info(dev, "override pixel clock polarity: falling edge\n");
inf->lccr3 = ( inf->lccr3 & ~LCCR3_PCP ) | LCCR3_PixFlEdg;
} else {
dev_info(dev, "override pixel clock polarity: rising edge\n");
inf->lccr3 = ( inf->lccr3 & ~LCCR3_PCP ) | LCCR3_PixRsEdg;
}
} else if (!strncmp(this_opt, "color", 5)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Color;
} else if (!strncmp(this_opt, "mono", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_CMS) | LCCR0_Mono;
} else if (!strncmp(this_opt, "active", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Act;
} else if (!strncmp(this_opt, "passive", 7)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_PAS) | LCCR0_Pas;
} else if (!strncmp(this_opt, "single", 6)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Sngl;
} else if (!strncmp(this_opt, "dual", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_SDS) | LCCR0_Dual;
} else if (!strncmp(this_opt, "4pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_4PixMono;
} else if (!strncmp(this_opt, "8pix", 4)) {
inf->lccr0 = (inf->lccr0 & ~LCCR0_DPD) | LCCR0_8PixMono;
} else {
dev_err(dev, "unknown option: %s\n", this_opt);
return -EINVAL;
}
}
return 0;
}
#endif
int __init pxafb_probe(struct device *dev)
{
struct pxafb_info *fbi;
struct pxafb_mach_info *inf;
unsigned long flags;
int ret;
dev_dbg(dev, "pxafb_probe\n");
inf = dev->platform_data;
ret = -ENOMEM;
fbi = NULL;
if (!inf)
goto failed;
#ifdef CONFIG_FB_PXA_PARAMETERS
ret = pxafb_parse_options(dev, g_options);
if ( ret < 0 )
goto failed;
#endif
#ifdef DEBUG_VAR
/* Check for various illegal bit-combinations. Currently only
* a warning is given. */
if ( inf->lccr0 & LCCR0_INVALID_CONFIG_MASK )
dev_warn(dev, "machine LCCR0 setting contains illegal bits: %08x\n",
inf->lccr0 & LCCR0_INVALID_CONFIG_MASK);
if ( inf->lccr3 & LCCR3_INVALID_CONFIG_MASK )
dev_warn(dev, "machine LCCR3 setting contains illegal bits: %08x\n",
inf->lccr3 & LCCR3_INVALID_CONFIG_MASK);
if ( inf->lccr0 & LCCR0_DPD &&
( ( inf->lccr0 & LCCR0_PAS ) != LCCR0_Pas ||
( inf->lccr0 & LCCR0_SDS ) != LCCR0_Sngl ||
( inf->lccr0 & LCCR0_CMS ) != LCCR0_Mono ) )
dev_warn(dev, "Double Pixel Data (DPD) mode is only valid in passive mono"
" single panel mode\n");
if ( (inf->lccr0 & LCCR0_PAS) == LCCR0_Act &&
( inf->lccr0 & LCCR0_SDS ) == LCCR0_Dual )
dev_warn(dev, "Dual panel only valid in passive mode\n");
if ( (inf->lccr0 & LCCR0_PAS ) == LCCR0_Pas &&
(inf->upper_margin || inf->lower_margin) )
dev_warn(dev, "Upper and lower margins must be 0 in passive mode\n");
#endif
dev_dbg(dev, "got a %dx%dx%d LCD\n",inf->xres, inf->yres, inf->bpp);
if (inf->xres == 0 || inf->yres == 0 || inf->bpp == 0) {
dev_err(dev, "Invalid resolution or bit depth\n");
ret = -EINVAL;
goto failed;
}
pxafb_backlight_power = inf->pxafb_backlight_power;
pxafb_lcd_power = inf->pxafb_lcd_power;
fbi = pxafb_init_fbinfo(dev);
if (!fbi) {
dev_err(dev, "Failed to initialize framebuffer device\n");
ret = -ENOMEM; // only reason for pxafb_init_fbinfo to fail is kmalloc
goto failed;
}
/* Initialize video memory */
ret = pxafb_map_video_memory(fbi);
if (ret) {
dev_err(dev, "Failed to allocate video RAM: %d\n", ret);
ret = -ENOMEM;
goto failed;
}
/* enable LCD controller clock */
local_irq_save(flags);
CKEN |= CKEN16_LCD;
local_irq_restore(flags);
ret = request_irq(IRQ_LCD, pxafb_handle_irq, SA_INTERRUPT, "LCD", fbi);
if (ret) {
dev_err(dev, "request_irq failed: %d\n", ret);
ret = -EBUSY;
goto failed;
}
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
*/
pxafb_check_var(&fbi->fb.var, &fbi->fb);
pxafb_set_par(&fbi->fb);
dev_set_drvdata(dev, fbi);
ret = register_framebuffer(&fbi->fb);
if (ret < 0) {
dev_err(dev, "Failed to register framebuffer device: %d\n", ret);
goto failed;
}
#ifdef CONFIG_PM
// TODO
#endif
#ifdef CONFIG_CPU_FREQ
fbi->freq_transition.notifier_call = pxafb_freq_transition;
fbi->freq_policy.notifier_call = pxafb_freq_policy;
cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
#endif
/*
* Ok, now enable the LCD controller
*/
set_ctrlr_state(fbi, C_ENABLE);
return 0;
failed:
dev_set_drvdata(dev, NULL);
if (fbi)
kfree(fbi);
return ret;
}
static struct device_driver pxafb_driver = {
.name = "pxafb",
.bus = &platform_bus_type,
.probe = pxafb_probe,
#ifdef CONFIG_PM
.suspend = pxafb_suspend,
.resume = pxafb_resume,
#endif
};
int __devinit pxafb_init(void)
{
return driver_register(&pxafb_driver);
}
#ifndef MODULE
int __devinit pxafb_setup(char *options)
{
# ifdef CONFIG_FB_PXA_PARAMETERS
strlcpy(g_options, options, sizeof(g_options));
# endif
return 0;
}
#else
module_init(pxafb_init);
# ifdef CONFIG_FB_PXA_PARAMETERS
module_param_string(options, g_options, sizeof(g_options), 0);
MODULE_PARM_DESC(options, "LCD parameters (see Documentation/fb/pxafb.txt)");
# endif
#endif
MODULE_DESCRIPTION("loadable framebuffer driver for PXA");
MODULE_LICENSE("GPL");
#ifndef __PXAFB_H__
#define __PXAFB_H__
/*
* linux/drivers/video/pxafb.h
* -- Intel PXA250/210 LCD Controller Frame Buffer Device
*
* Copyright (C) 1999 Eric A. Thomas.
* Copyright (C) 2004 Jean-Frederic Clere.
* Copyright (C) 2004 Ian Campbell.
* Copyright (C) 2004 Jeff Lackey.
* Based on sa1100fb.c Copyright (C) 1999 Eric A. Thomas
* which in turn is
* Based on acornfb.c Copyright (C) Russell King.
*
* 2001-08-03: Cliff Brake <cbrake@acclent.com>
* - ported SA1100 code to PXA
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
/* Shadows for LCD controller registers */
struct pxafb_lcd_reg {
unsigned int lccr0;
unsigned int lccr1;
unsigned int lccr2;
unsigned int lccr3;
};
/* PXA LCD DMA descriptor */
struct pxafb_dma_descriptor {
unsigned int fdadr;
unsigned int fsadr;
unsigned int fidr;
unsigned int ldcmd;
};
struct pxafb_info {
struct fb_info fb;
struct device *dev;
u_int max_bpp;
u_int max_xres;
u_int max_yres;
/*
* These are the addresses we mapped
* the framebuffer memory region to.
*/
/* raw memory addresses */
dma_addr_t map_dma; /* physical */
u_char * map_cpu; /* virtual */
u_int map_size;
/* addresses of pieces placed in raw buffer */
u_char * screen_cpu; /* virtual address of frame buffer */
dma_addr_t screen_dma; /* physical address of frame buffer */
u16 * palette_cpu; /* virtual address of palette memory */
dma_addr_t palette_dma; /* physical address of palette memory */
u_int palette_size;
/* DMA descriptors */
struct pxafb_dma_descriptor * dmadesc_fblow_cpu;
dma_addr_t dmadesc_fblow_dma;
struct pxafb_dma_descriptor * dmadesc_fbhigh_cpu;
dma_addr_t dmadesc_fbhigh_dma;
struct pxafb_dma_descriptor * dmadesc_palette_cpu;
dma_addr_t dmadesc_palette_dma;
dma_addr_t fdadr0;
dma_addr_t fdadr1;
u_int lccr0;
u_int lccr3;
u_int cmap_inverse:1,
cmap_static:1,
unused:30;
u_int reg_lccr0;
u_int reg_lccr1;
u_int reg_lccr2;
u_int reg_lccr3;
volatile u_char state;
volatile u_char task_state;
struct semaphore ctrlr_sem;
wait_queue_head_t ctrlr_wait;
struct work_struct task;
#ifdef CONFIG_CPU_FREQ
struct notifier_block freq_transition;
struct notifier_block freq_policy;
#endif
};
#define TO_INF(ptr,member) container_of(ptr,struct pxafb_info,member)
/*
* These are the actions for set_ctrlr_state
*/
#define C_DISABLE (0)
#define C_ENABLE (1)
#define C_DISABLE_CLKCHANGE (2)
#define C_ENABLE_CLKCHANGE (3)
#define C_REENABLE (4)
#define C_DISABLE_PM (5)
#define C_ENABLE_PM (6)
#define C_STARTUP (7)
#define PXA_NAME "PXA"
/*
* Debug macros
*/
#if DEBUG
# define DPRINTK(fmt, args...) printk("%s: " fmt, __FUNCTION__ , ## args)
#else
# define DPRINTK(fmt, args...)
#endif
/*
* Minimum X and Y resolutions
*/
#define MIN_XRES 64
#define MIN_YRES 64
#endif /* __PXAFB_H__ */
......@@ -1175,6 +1175,12 @@ typedef void (*ExcpHndlr) (void) ;
#define TMEDRGBR __REG(0x44000040) /* TMED RGB Seed Register */
#define TMEDCR __REG(0x44000044) /* TMED Control Register */
#define LCCR3_1BPP (0 << 24)
#define LCCR3_2BPP (1 << 24)
#define LCCR3_4BPP (2 << 24)
#define LCCR3_8BPP (3 << 24)
#define LCCR3_16BPP (4 << 24)
#define FDADR0 __REG(0x44000200) /* DMA Channel 0 Frame Descriptor Address Register */
#define FSADR0 __REG(0x44000204) /* DMA Channel 0 Frame Source Address Register */
#define FIDR0 __REG(0x44000208) /* DMA Channel 0 Frame ID Register */
......@@ -1185,15 +1191,27 @@ typedef void (*ExcpHndlr) (void) ;
#define LDCMD1 __REG(0x4400021C) /* DMA Channel 1 Command Register */
#define LCCR0_ENB (1 << 0) /* LCD Controller enable */
#define LCCR0_CMS (1 << 1) /* Color = 0, Monochrome = 1 */
#define LCCR0_SDS (1 << 2) /* Single Panel = 0, Dual Panel = 1 */
#define LCCR0_CMS (1 << 1) /* Color/Monochrome Display Select */
#define LCCR0_Color (LCCR0_CMS*0) /* Color display */
#define LCCR0_Mono (LCCR0_CMS*1) /* Monochrome display */
#define LCCR0_SDS (1 << 2) /* Single/Dual Panel Display */
/* Select */
#define LCCR0_Sngl (LCCR0_SDS*0) /* Single panel display */
#define LCCR0_Dual (LCCR0_SDS*1) /* Dual panel display */
#define LCCR0_LDM (1 << 3) /* LCD Disable Done Mask */
#define LCCR0_SFM (1 << 4) /* Start of frame mask */
#define LCCR0_IUM (1 << 5) /* Input FIFO underrun mask */
#define LCCR0_EFM (1 << 6) /* End of Frame mask */
#define LCCR0_PAS (1 << 7) /* Passive = 0, Active = 1 */
#define LCCR0_BLE (1 << 8) /* Little Endian = 0, Big Endian = 1 */
#define LCCR0_DPD (1 << 9) /* Double Pixel mode, 4 pixel value = 0, 8 pixle values = 1 */
#define LCCR0_PAS (1 << 7) /* Passive/Active display Select */
#define LCCR0_Pas (LCCR0_PAS*0) /* Passive display (STN) */
#define LCCR0_Act (LCCR0_PAS*1) /* Active display (TFT) */
#define LCCR0_DPD (1 << 9) /* Double Pixel Data (monochrome */
/* display mode) */
#define LCCR0_4PixMono (LCCR0_DPD*0) /* 4-Pixel/clock Monochrome */
/* display */
#define LCCR0_8PixMono (LCCR0_DPD*1) /* 8-Pixel/clock Monochrome */
/* display */
#define LCCR0_DIS (1 << 10) /* LCD Disable */
#define LCCR0_QDM (1 << 11) /* LCD Quick Disable mask */
#define LCCR0_PDD (0xff << 12) /* Palette DMA request delay */
......@@ -1255,8 +1273,15 @@ typedef void (*ExcpHndlr) (void) ;
#define LCCR3_API_S 16
#define LCCR3_VSP (1 << 20) /* vertical sync polarity */
#define LCCR3_HSP (1 << 21) /* horizontal sync polarity */
#define LCCR3_PCP (1 << 22) /* pixel clock polarity */
#define LCCR3_OEP (1 << 23) /* output enable polarity */
#define LCCR3_PCP (1 << 22) /* Pixel Clock Polarity (L_PCLK) */
#define LCCR3_PixRsEdg (LCCR3_PCP*0) /* Pixel clock Rising-Edge */
#define LCCR3_PixFlEdg (LCCR3_PCP*1) /* Pixel clock Falling-Edge */
#define LCCR3_OEP (1 << 23) /* Output Enable Polarity (L_BIAS, */
/* active display mode) */
#define LCCR3_OutEnH (LCCR3_OEP*0) /* Output Enable active High */
#define LCCR3_OutEnL (LCCR3_OEP*1) /* Output Enable active Low */
#if 0
#define LCCR3_BPP (7 << 24) /* bits per pixel */
#define LCCR3_BPP_S 24
......
/*
* linux/include/asm-arm/arch-pxa/pxafb.h
*
* Support for the xscale frame buffer.
*
* Author: Jean-Frederic Clere
* Created: Sep 22, 2003
* Copyright: jfclere@sinix.net
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* This structure describes the machine which we are running on.
* It is set in linux/arch/arm/mach-pxa/machine_name.c and used in the probe routine
* of linux/drivers/video/pxafb.c
*/
struct pxafb_mach_info {
u_long pixclock;
u_short xres;
u_short yres;
u_char bpp;
u_char hsync_len;
u_char left_margin;
u_char right_margin;
u_char vsync_len;
u_char upper_margin;
u_char lower_margin;
u_char sync;
u_int cmap_greyscale:1,
cmap_inverse:1,
cmap_static:1,
unused:29;
/* The following should be defined in LCCR0
* LCCR0_Act or LCCR0_Pas Active or Passive
* LCCR0_Sngl or LCCR0_Dual Single/Dual panel
* LCCR0_Mono or LCCR0_Color Mono/Color
* LCCR0_4PixMono or LCCR0_8PixMono (in mono single mode)
* LCCR0_DMADel(Tcpu) (optional) DMA request delay
*
* The following should not be defined in LCCR0:
* LCCR0_OUM, LCCR0_BM, LCCR0_QDM, LCCR0_DIS, LCCR0_EFM
* LCCR0_IUM, LCCR0_SFM, LCCR0_LDM, LCCR0_ENB
*/
u_int lccr0;
/* The following should be defined in LCCR3
* LCCR3_OutEnH or LCCR3_OutEnL Output enable polarity
* LCCR3_PixRsEdg or LCCR3_PixFlEdg Pixel clock edge type
* LCCR3_Acb(X) AB Bias pin frequency
* LCCR3_DPC (optional) Double Pixel Clock mode (untested)
*
* The following should not be defined in LCCR3
* LCCR3_HSP, LCCR3_VSP, LCCR0_Pcd(x), LCCR3_Bpp
*/
u_int lccr3;
void (*pxafb_backlight_power)(int);
void (*pxafb_lcd_power)(int);
};
void set_pxa_fb_info(struct pxafb_mach_info *hard_pxa_fb_info);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment