Commit 3da1b617 authored by Bjorn Helgaas's avatar Bjorn Helgaas Committed by Bjorn Helgaas

Merge branch 'pci/lpc'

  - add support for PCI I/O port space that's neither directly accessible
    via CPU in/out instructions nor directly mapped into CPU physical
    memory space (Zhichang Yuan)

  - add support for HiSilicon Hip06/Hip07 LPC I/O space (Zhichang Yuan,
    John Garry)

* pci/lpc:
  MAINTAINERS: Add John Garry as maintainer for HiSilicon LPC driver
  HISI LPC: Add ACPI support
  ACPI / scan: Do not enumerate Indirect IO host children
  ACPI / scan: Rename acpi_is_serial_bus_slave() for more general use
  HISI LPC: Support the LPC host on Hip06/Hip07 with DT bindings
  of: Add missing I/O range exception for indirect-IO devices
  PCI: Apply the new generic I/O management on PCI IO hosts
  PCI: Add fwnode handler as input param of pci_register_io_range()
  PCI: Remove __weak tag from pci_register_io_range()
  lib: Add generic PIO mapping method
parents a5c6ad78 6183d9b3
Hisilicon Hip06 Low Pin Count device
Hisilicon Hip06 SoCs implement a Low Pin Count (LPC) controller, which
provides I/O access to some legacy ISA devices.
Hip06 is based on arm64 architecture where there is no I/O space. So, the
I/O ports here are not CPU addresses, and there is no 'ranges' property in
LPC device node.
Required properties:
- compatible: value should be as follows:
(a) "hisilicon,hip06-lpc"
(b) "hisilicon,hip07-lpc"
- #address-cells: must be 2 which stick to the ISA/EISA binding doc.
- #size-cells: must be 1 which stick to the ISA/EISA binding doc.
- reg: base memory range where the LPC register set is mapped.
Note:
The node name before '@' must be "isa" to represent the binding stick to the
ISA/EISA binding specification.
Example:
isa@a01b0000 {
compatible = "hisilicon,hip06-lpc";
#address-cells = <2>;
#size-cells = <1>;
reg = <0x0 0xa01b0000 0x0 0x1000>;
ipmi0: bt@e4 {
compatible = "ipmi-bt";
device_type = "ipmi";
reg = <0x01 0xe4 0x04>;
};
};
......@@ -6386,6 +6386,13 @@ W: http://www.hisilicon.com
S: Maintained
F: drivers/net/ethernet/hisilicon/hns3/
HISILICON LPC BUS DRIVER
M: john.garry@huawei.com
W: http://www.hisilicon.com
S: Maintained
F: drivers/bus/hisi_lpc.c
F: Documentation/devicetree/bindings/arm/hisilicon/hisilicon-low-pin-count.txt
HISILICON NETWORK SUBSYSTEM DRIVER
M: Yisen Zhuang <yisen.zhuang@huawei.com>
M: Salil Mehta <salil.mehta@huawei.com>
......
......@@ -729,7 +729,8 @@ static void acpi_pci_root_validate_resources(struct device *dev,
}
}
static void acpi_pci_root_remap_iospace(struct resource_entry *entry)
static void acpi_pci_root_remap_iospace(struct fwnode_handle *fwnode,
struct resource_entry *entry)
{
#ifdef PCI_IOBASE
struct resource *res = entry->res;
......@@ -738,7 +739,7 @@ static void acpi_pci_root_remap_iospace(struct resource_entry *entry)
resource_size_t length = resource_size(res);
unsigned long port;
if (pci_register_io_range(cpu_addr, length))
if (pci_register_io_range(fwnode, cpu_addr, length))
goto err;
port = pci_address_to_pio(cpu_addr);
......@@ -780,7 +781,8 @@ int acpi_pci_probe_root_resources(struct acpi_pci_root_info *info)
else {
resource_list_for_each_entry_safe(entry, tmp, list) {
if (entry->res->flags & IORESOURCE_IO)
acpi_pci_root_remap_iospace(entry);
acpi_pci_root_remap_iospace(&device->fwnode,
entry);
if (entry->res->flags & IORESOURCE_DISABLED)
resource_list_destroy_entry(entry);
......
......@@ -1524,11 +1524,25 @@ static int acpi_check_serial_bus_slave(struct acpi_resource *ares, void *data)
return -1;
}
static bool acpi_is_serial_bus_slave(struct acpi_device *device)
static bool acpi_is_indirect_io_slave(struct acpi_device *device)
{
struct acpi_device *parent = device->parent;
const struct acpi_device_id indirect_io_hosts[] = {
{"HISI0191", 0},
{}
};
return parent && !acpi_match_device_ids(parent, indirect_io_hosts);
}
static bool acpi_device_enumeration_by_parent(struct acpi_device *device)
{
struct list_head resource_list;
bool is_serial_bus_slave = false;
if (acpi_is_indirect_io_slave(device))
return true;
/* Macs use device properties in lieu of _CRS resources */
if (x86_apple_machine &&
(fwnode_property_present(&device->fwnode, "spiSclkPeriod") ||
......@@ -1560,7 +1574,8 @@ void acpi_init_device_object(struct acpi_device *device, acpi_handle handle,
acpi_bus_get_flags(device);
device->flags.match_driver = false;
device->flags.initialized = true;
device->flags.serial_bus_slave = acpi_is_serial_bus_slave(device);
device->flags.enumeration_by_parent =
acpi_device_enumeration_by_parent(device);
acpi_device_clear_enumerated(device);
device_initialize(&device->dev);
dev_set_uevent_suppress(&device->dev, true);
......@@ -1858,10 +1873,10 @@ static acpi_status acpi_bus_check_add(acpi_handle handle, u32 lvl_not_used,
static void acpi_default_enumeration(struct acpi_device *device)
{
/*
* Do not enumerate SPI/I2C/UART slaves as they will be enumerated by
* their respective parents.
* Do not enumerate devices with enumeration_by_parent flag set as
* they will be enumerated by their respective parents.
*/
if (!device->flags.serial_bus_slave) {
if (!device->flags.enumeration_by_parent) {
acpi_create_platform_device(device, NULL);
acpi_device_set_enumerated(device);
} else {
......@@ -1958,7 +1973,7 @@ static void acpi_bus_attach(struct acpi_device *device)
return;
device->flags.match_driver = true;
if (ret > 0 && !device->flags.serial_bus_slave) {
if (ret > 0 && !device->flags.enumeration_by_parent) {
acpi_device_set_enumerated(device);
goto ok;
}
......@@ -1967,10 +1982,10 @@ static void acpi_bus_attach(struct acpi_device *device)
if (ret < 0)
return;
if (!device->pnp.type.platform_id && !device->flags.serial_bus_slave)
acpi_device_set_enumerated(device);
else
if (device->pnp.type.platform_id || device->flags.enumeration_by_parent)
acpi_default_enumeration(device);
else
acpi_device_set_enumerated(device);
ok:
list_for_each_entry(child, &device->children, node)
......
......@@ -65,6 +65,14 @@ config BRCMSTB_GISB_ARB
arbiter. This driver provides timeout and target abort error handling
and internal bus master decoding.
config HISILICON_LPC
bool "Support for ISA I/O space on HiSilicon Hip06/7"
depends on ARM64 && (ARCH_HISI || COMPILE_TEST)
select INDIRECT_PIO
help
Driver to enable I/O access to devices attached to the Low Pin
Count bus on the HiSilicon Hip06/7 SoC.
config IMX_WEIM
bool "Freescale EIM DRIVER"
depends on ARCH_MXC
......
......@@ -7,6 +7,7 @@
obj-$(CONFIG_ARM_CCI) += arm-cci.o
obj-$(CONFIG_ARM_CCN) += arm-ccn.o
obj-$(CONFIG_HISILICON_LPC) += hisi_lpc.o
obj-$(CONFIG_BRCMSTB_GISB_ARB) += brcmstb_gisb.o
obj-$(CONFIG_IMX_WEIM) += imx-weim.o
obj-$(CONFIG_MIPS_CDMM) += mips_cdmm.o
......
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 Hisilicon Limited, All Rights Reserved.
* Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
* Author: Zou Rongrong <zourongrong@huawei.com>
* Author: John Garry <john.garry@huawei.com>
*/
#include <linux/acpi.h>
#include <linux/console.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/logic_pio.h>
#include <linux/mfd/core.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/slab.h>
#define DRV_NAME "hisi-lpc"
/*
* Setting this bit means each IO operation will target a different port
* address; 0 means repeated IO operations will use the same port,
* such as BT.
*/
#define FG_INCRADDR_LPC 0x02
struct lpc_cycle_para {
unsigned int opflags;
unsigned int csize; /* data length of each operation */
};
struct hisi_lpc_dev {
spinlock_t cycle_lock;
void __iomem *membase;
struct logic_pio_hwaddr *io_host;
};
/* The max IO cycle counts supported is four per operation at maximum */
#define LPC_MAX_DWIDTH 4
#define LPC_REG_STARTUP_SIGNAL 0x00
#define LPC_REG_STARTUP_SIGNAL_START BIT(0)
#define LPC_REG_OP_STATUS 0x04
#define LPC_REG_OP_STATUS_IDLE BIT(0)
#define LPC_REG_OP_STATUS_FINISHED BIT(1)
#define LPC_REG_OP_LEN 0x10 /* LPC cycles count per start */
#define LPC_REG_CMD 0x14
#define LPC_REG_CMD_OP BIT(0) /* 0: read, 1: write */
#define LPC_REG_CMD_SAMEADDR BIT(3)
#define LPC_REG_ADDR 0x20 /* target address */
#define LPC_REG_WDATA 0x24 /* write FIFO */
#define LPC_REG_RDATA 0x28 /* read FIFO */
/* The minimal nanosecond interval for each query on LPC cycle status */
#define LPC_NSEC_PERWAIT 100
/*
* The maximum waiting time is about 128us. It is specific for stream I/O,
* such as ins.
*
* The fastest IO cycle time is about 390ns, but the worst case will wait
* for extra 256 lpc clocks, so (256 + 13) * 30ns = 8 us. The maximum burst
* cycles is 16. So, the maximum waiting time is about 128us under worst
* case.
*
* Choose 1300 as the maximum.
*/
#define LPC_MAX_WAITCNT 1300
/* About 10us. This is specific for single IO operations, such as inb */
#define LPC_PEROP_WAITCNT 100
static int wait_lpc_idle(unsigned char *mbase, unsigned int waitcnt)
{
u32 status;
do {
status = readl(mbase + LPC_REG_OP_STATUS);
if (status & LPC_REG_OP_STATUS_IDLE)
return (status & LPC_REG_OP_STATUS_FINISHED) ? 0 : -EIO;
ndelay(LPC_NSEC_PERWAIT);
} while (--waitcnt);
return -ETIME;
}
/*
* hisi_lpc_target_in - trigger a series of LPC cycles for read operation
* @lpcdev: pointer to hisi lpc device
* @para: some parameters used to control the lpc I/O operations
* @addr: the lpc I/O target port address
* @buf: where the read back data is stored
* @opcnt: how many I/O operations required, i.e. data width
*
* Returns 0 on success, non-zero on fail.
*/
static int hisi_lpc_target_in(struct hisi_lpc_dev *lpcdev,
struct lpc_cycle_para *para, unsigned long addr,
unsigned char *buf, unsigned long opcnt)
{
unsigned int cmd_word;
unsigned int waitcnt;
unsigned long flags;
int ret;
if (!buf || !opcnt || !para || !para->csize || !lpcdev)
return -EINVAL;
cmd_word = 0; /* IO mode, Read */
waitcnt = LPC_PEROP_WAITCNT;
if (!(para->opflags & FG_INCRADDR_LPC)) {
cmd_word |= LPC_REG_CMD_SAMEADDR;
waitcnt = LPC_MAX_WAITCNT;
}
/* whole operation must be atomic */
spin_lock_irqsave(&lpcdev->cycle_lock, flags);
writel_relaxed(opcnt, lpcdev->membase + LPC_REG_OP_LEN);
writel_relaxed(cmd_word, lpcdev->membase + LPC_REG_CMD);
writel_relaxed(addr, lpcdev->membase + LPC_REG_ADDR);
writel(LPC_REG_STARTUP_SIGNAL_START,
lpcdev->membase + LPC_REG_STARTUP_SIGNAL);
/* whether the operation is finished */
ret = wait_lpc_idle(lpcdev->membase, waitcnt);
if (ret) {
spin_unlock_irqrestore(&lpcdev->cycle_lock, flags);
return ret;
}
readsb(lpcdev->membase + LPC_REG_RDATA, buf, opcnt);
spin_unlock_irqrestore(&lpcdev->cycle_lock, flags);
return 0;
}
/*
* hisi_lpc_target_out - trigger a series of LPC cycles for write operation
* @lpcdev: pointer to hisi lpc device
* @para: some parameters used to control the lpc I/O operations
* @addr: the lpc I/O target port address
* @buf: where the data to be written is stored
* @opcnt: how many I/O operations required, i.e. data width
*
* Returns 0 on success, non-zero on fail.
*/
static int hisi_lpc_target_out(struct hisi_lpc_dev *lpcdev,
struct lpc_cycle_para *para, unsigned long addr,
const unsigned char *buf, unsigned long opcnt)
{
unsigned int waitcnt;
unsigned long flags;
u32 cmd_word;
int ret;
if (!buf || !opcnt || !para || !lpcdev)
return -EINVAL;
/* default is increasing address */
cmd_word = LPC_REG_CMD_OP; /* IO mode, write */
waitcnt = LPC_PEROP_WAITCNT;
if (!(para->opflags & FG_INCRADDR_LPC)) {
cmd_word |= LPC_REG_CMD_SAMEADDR;
waitcnt = LPC_MAX_WAITCNT;
}
spin_lock_irqsave(&lpcdev->cycle_lock, flags);
writel_relaxed(opcnt, lpcdev->membase + LPC_REG_OP_LEN);
writel_relaxed(cmd_word, lpcdev->membase + LPC_REG_CMD);
writel_relaxed(addr, lpcdev->membase + LPC_REG_ADDR);
writesb(lpcdev->membase + LPC_REG_WDATA, buf, opcnt);
writel(LPC_REG_STARTUP_SIGNAL_START,
lpcdev->membase + LPC_REG_STARTUP_SIGNAL);
/* whether the operation is finished */
ret = wait_lpc_idle(lpcdev->membase, waitcnt);
spin_unlock_irqrestore(&lpcdev->cycle_lock, flags);
return ret;
}
static unsigned long hisi_lpc_pio_to_addr(struct hisi_lpc_dev *lpcdev,
unsigned long pio)
{
return pio - lpcdev->io_host->io_start + lpcdev->io_host->hw_start;
}
/*
* hisi_lpc_comm_in - input the data in a single operation
* @hostdata: pointer to the device information relevant to LPC controller
* @pio: the target I/O port address
* @dwidth: the data length required to read from the target I/O port
*
* When success, data is returned. Otherwise, ~0 is returned.
*/
static u32 hisi_lpc_comm_in(void *hostdata, unsigned long pio, size_t dwidth)
{
struct hisi_lpc_dev *lpcdev = hostdata;
struct lpc_cycle_para iopara;
unsigned long addr;
u32 rd_data = 0;
int ret;
if (!lpcdev || !dwidth || dwidth > LPC_MAX_DWIDTH)
return ~0;
addr = hisi_lpc_pio_to_addr(lpcdev, pio);
iopara.opflags = FG_INCRADDR_LPC;
iopara.csize = dwidth;
ret = hisi_lpc_target_in(lpcdev, &iopara, addr,
(unsigned char *)&rd_data, dwidth);
if (ret)
return ~0;
return le32_to_cpu(rd_data);
}
/*
* hisi_lpc_comm_out - output the data in a single operation
* @hostdata: pointer to the device information relevant to LPC controller
* @pio: the target I/O port address
* @val: a value to be output from caller, maximum is four bytes
* @dwidth: the data width required writing to the target I/O port
*
* This function corresponds to out(b,w,l) only.
*/
static void hisi_lpc_comm_out(void *hostdata, unsigned long pio,
u32 val, size_t dwidth)
{
struct hisi_lpc_dev *lpcdev = hostdata;
struct lpc_cycle_para iopara;
const unsigned char *buf;
unsigned long addr;
if (!lpcdev || !dwidth || dwidth > LPC_MAX_DWIDTH)
return;
val = cpu_to_le32(val);
buf = (const unsigned char *)&val;
addr = hisi_lpc_pio_to_addr(lpcdev, pio);
iopara.opflags = FG_INCRADDR_LPC;
iopara.csize = dwidth;
hisi_lpc_target_out(lpcdev, &iopara, addr, buf, dwidth);
}
/*
* hisi_lpc_comm_ins - input the data in the buffer in multiple operations
* @hostdata: pointer to the device information relevant to LPC controller
* @pio: the target I/O port address
* @buffer: a buffer where read/input data bytes are stored
* @dwidth: the data width required writing to the target I/O port
* @count: how many data units whose length is dwidth will be read
*
* When success, the data read back is stored in buffer pointed by buffer.
* Returns 0 on success, -errno otherwise.
*/
static u32 hisi_lpc_comm_ins(void *hostdata, unsigned long pio, void *buffer,
size_t dwidth, unsigned int count)
{
struct hisi_lpc_dev *lpcdev = hostdata;
unsigned char *buf = buffer;
struct lpc_cycle_para iopara;
unsigned long addr;
if (!lpcdev || !buf || !count || !dwidth || dwidth > LPC_MAX_DWIDTH)
return -EINVAL;
iopara.opflags = 0;
if (dwidth > 1)
iopara.opflags |= FG_INCRADDR_LPC;
iopara.csize = dwidth;
addr = hisi_lpc_pio_to_addr(lpcdev, pio);
do {
int ret;
ret = hisi_lpc_target_in(lpcdev, &iopara, addr, buf, dwidth);
if (ret)
return ret;
buf += dwidth;
} while (--count);
return 0;
}
/*
* hisi_lpc_comm_outs - output the data in the buffer in multiple operations
* @hostdata: pointer to the device information relevant to LPC controller
* @pio: the target I/O port address
* @buffer: a buffer where write/output data bytes are stored
* @dwidth: the data width required writing to the target I/O port
* @count: how many data units whose length is dwidth will be written
*/
static void hisi_lpc_comm_outs(void *hostdata, unsigned long pio,
const void *buffer, size_t dwidth,
unsigned int count)
{
struct hisi_lpc_dev *lpcdev = hostdata;
struct lpc_cycle_para iopara;
const unsigned char *buf = buffer;
unsigned long addr;
if (!lpcdev || !buf || !count || !dwidth || dwidth > LPC_MAX_DWIDTH)
return;
iopara.opflags = 0;
if (dwidth > 1)
iopara.opflags |= FG_INCRADDR_LPC;
iopara.csize = dwidth;
addr = hisi_lpc_pio_to_addr(lpcdev, pio);
do {
if (hisi_lpc_target_out(lpcdev, &iopara, addr, buf, dwidth))
break;
buf += dwidth;
} while (--count);
}
static const struct logic_pio_host_ops hisi_lpc_ops = {
.in = hisi_lpc_comm_in,
.out = hisi_lpc_comm_out,
.ins = hisi_lpc_comm_ins,
.outs = hisi_lpc_comm_outs,
};
#ifdef CONFIG_ACPI
#define MFD_CHILD_NAME_PREFIX DRV_NAME"-"
#define MFD_CHILD_NAME_LEN (ACPI_ID_LEN + sizeof(MFD_CHILD_NAME_PREFIX) - 1)
struct hisi_lpc_mfd_cell {
struct mfd_cell_acpi_match acpi_match;
char name[MFD_CHILD_NAME_LEN];
char pnpid[ACPI_ID_LEN];
};
static int hisi_lpc_acpi_xlat_io_res(struct acpi_device *adev,
struct acpi_device *host,
struct resource *res)
{
unsigned long sys_port;
resource_size_t len = resource_size(res);
sys_port = logic_pio_trans_hwaddr(&host->fwnode, res->start, len);
if (sys_port == ~0UL)
return -EFAULT;
res->start = sys_port;
res->end = sys_port + len;
return 0;
}
/*
* hisi_lpc_acpi_set_io_res - set the resources for a child's MFD
* @child: the device node to be updated the I/O resource
* @hostdev: the device node associated with host controller
* @res: double pointer to be set to the address of translated resources
* @num_res: pointer to variable to hold the number of translated resources
*
* Returns 0 when successful, and a negative value for failure.
*
* For a given host controller, each child device will have an associated
* host-relative address resource. This function will return the translated
* logical PIO addresses for each child devices resources.
*/
static int hisi_lpc_acpi_set_io_res(struct device *child,
struct device *hostdev,
const struct resource **res, int *num_res)
{
struct acpi_device *adev;
struct acpi_device *host;
struct resource_entry *rentry;
LIST_HEAD(resource_list);
struct resource *resources;
int count;
int i;
if (!child || !hostdev)
return -EINVAL;
host = to_acpi_device(hostdev);
adev = to_acpi_device(child);
if (!adev->status.present) {
dev_dbg(child, "device is not present\n");
return -EIO;
}
if (acpi_device_enumerated(adev)) {
dev_dbg(child, "has been enumerated\n");
return -EIO;
}
/*
* The following code segment to retrieve the resources is common to
* acpi_create_platform_device(), so consider a common helper function
* in future.
*/
count = acpi_dev_get_resources(adev, &resource_list, NULL, NULL);
if (count <= 0) {
dev_dbg(child, "failed to get resources\n");
return count ? count : -EIO;
}
resources = devm_kcalloc(hostdev, count, sizeof(*resources),
GFP_KERNEL);
if (!resources) {
dev_warn(hostdev, "could not allocate memory for %d resources\n",
count);
acpi_dev_free_resource_list(&resource_list);
return -ENOMEM;
}
count = 0;
list_for_each_entry(rentry, &resource_list, node)
resources[count++] = *rentry->res;
acpi_dev_free_resource_list(&resource_list);
/* translate the I/O resources */
for (i = 0; i < count; i++) {
int ret;
if (!(resources[i].flags & IORESOURCE_IO))
continue;
ret = hisi_lpc_acpi_xlat_io_res(adev, host, &resources[i]);
if (ret) {
dev_err(child, "translate IO range %pR failed (%d)\n",
&resources[i], ret);
return ret;
}
}
*res = resources;
*num_res = count;
return 0;
}
/*
* hisi_lpc_acpi_probe - probe children for ACPI FW
* @hostdev: LPC host device pointer
*
* Returns 0 when successful, and a negative value for failure.
*
* Scan all child devices and create a per-device MFD with
* logical PIO translated IO resources.
*/
static int hisi_lpc_acpi_probe(struct device *hostdev)
{
struct acpi_device *adev = ACPI_COMPANION(hostdev);
struct hisi_lpc_mfd_cell *hisi_lpc_mfd_cells;
struct mfd_cell *mfd_cells;
struct acpi_device *child;
int size, ret, count = 0, cell_num = 0;
list_for_each_entry(child, &adev->children, node)
cell_num++;
/* allocate the mfd cell and companion ACPI info, one per child */
size = sizeof(*mfd_cells) + sizeof(*hisi_lpc_mfd_cells);
mfd_cells = devm_kcalloc(hostdev, cell_num, size, GFP_KERNEL);
if (!mfd_cells)
return -ENOMEM;
hisi_lpc_mfd_cells = (struct hisi_lpc_mfd_cell *)&mfd_cells[cell_num];
/* Only consider the children of the host */
list_for_each_entry(child, &adev->children, node) {
struct mfd_cell *mfd_cell = &mfd_cells[count];
struct hisi_lpc_mfd_cell *hisi_lpc_mfd_cell =
&hisi_lpc_mfd_cells[count];
struct mfd_cell_acpi_match *acpi_match =
&hisi_lpc_mfd_cell->acpi_match;
char *name = hisi_lpc_mfd_cell[count].name;
char *pnpid = hisi_lpc_mfd_cell[count].pnpid;
struct mfd_cell_acpi_match match = {
.pnpid = pnpid,
};
/*
* For any instances of this host controller (Hip06 and Hip07
* are the only chipsets), we would not have multiple slaves
* with the same HID. And in any system we would have just one
* controller active. So don't worrry about MFD name clashes.
*/
snprintf(name, MFD_CHILD_NAME_LEN, MFD_CHILD_NAME_PREFIX"%s",
acpi_device_hid(child));
snprintf(pnpid, ACPI_ID_LEN, "%s", acpi_device_hid(child));
memcpy(acpi_match, &match, sizeof(*acpi_match));
mfd_cell->name = name;
mfd_cell->acpi_match = acpi_match;
ret = hisi_lpc_acpi_set_io_res(&child->dev, &adev->dev,
&mfd_cell->resources,
&mfd_cell->num_resources);
if (ret) {
dev_warn(&child->dev, "set resource fail (%d)\n", ret);
return ret;
}
count++;
}
ret = mfd_add_devices(hostdev, PLATFORM_DEVID_NONE,
mfd_cells, cell_num, NULL, 0, NULL);
if (ret) {
dev_err(hostdev, "failed to add mfd cells (%d)\n", ret);
return ret;
}
return 0;
}
static const struct acpi_device_id hisi_lpc_acpi_match[] = {
{"HISI0191"},
{}
};
#else
static int hisi_lpc_acpi_probe(struct device *dev)
{
return -ENODEV;
}
#endif // CONFIG_ACPI
/*
* hisi_lpc_probe - the probe callback function for hisi lpc host,
* will finish all the initialization.
* @pdev: the platform device corresponding to hisi lpc host
*
* Returns 0 on success, non-zero on fail.
*/
static int hisi_lpc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct acpi_device *acpi_device = ACPI_COMPANION(dev);
struct logic_pio_hwaddr *range;
struct hisi_lpc_dev *lpcdev;
resource_size_t io_end;
struct resource *res;
int ret;
lpcdev = devm_kzalloc(dev, sizeof(*lpcdev), GFP_KERNEL);
if (!lpcdev)
return -ENOMEM;
spin_lock_init(&lpcdev->cycle_lock);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
lpcdev->membase = devm_ioremap_resource(dev, res);
if (IS_ERR(lpcdev->membase))
return PTR_ERR(lpcdev->membase);
range = devm_kzalloc(dev, sizeof(*range), GFP_KERNEL);
if (!range)
return -ENOMEM;
range->fwnode = dev->fwnode;
range->flags = LOGIC_PIO_INDIRECT;
range->size = PIO_INDIRECT_SIZE;
ret = logic_pio_register_range(range);
if (ret) {
dev_err(dev, "register IO range failed (%d)!\n", ret);
return ret;
}
lpcdev->io_host = range;
/* register the LPC host PIO resources */
if (acpi_device)
ret = hisi_lpc_acpi_probe(dev);
else
ret = of_platform_populate(dev->of_node, NULL, NULL, dev);
if (ret)
return ret;
lpcdev->io_host->hostdata = lpcdev;
lpcdev->io_host->ops = &hisi_lpc_ops;
io_end = lpcdev->io_host->io_start + lpcdev->io_host->size;
dev_info(dev, "registered range [%pa - %pa]\n",
&lpcdev->io_host->io_start, &io_end);
return ret;
}
static const struct of_device_id hisi_lpc_of_match[] = {
{ .compatible = "hisilicon,hip06-lpc", },
{ .compatible = "hisilicon,hip07-lpc", },
{}
};
static struct platform_driver hisi_lpc_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = hisi_lpc_of_match,
.acpi_match_table = ACPI_PTR(hisi_lpc_acpi_match),
},
.probe = hisi_lpc_probe,
};
builtin_platform_driver(hisi_lpc_driver);
......@@ -2,8 +2,10 @@
#define pr_fmt(fmt) "OF: " fmt
#include <linux/device.h>
#include <linux/fwnode.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/logic_pio.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/pci.h>
......@@ -333,7 +335,8 @@ int of_pci_range_to_resource(struct of_pci_range *range,
if (res->flags & IORESOURCE_IO) {
unsigned long port;
err = pci_register_io_range(range->cpu_addr, range->size);
err = pci_register_io_range(&np->fwnode, range->cpu_addr,
range->size);
if (err)
goto invalid_range;
port = pci_address_to_pio(range->cpu_addr);
......@@ -560,9 +563,14 @@ static int of_translate_one(struct device_node *parent, struct of_bus *bus,
* that translation is impossible (that is we are not dealing with a value
* that can be mapped to a cpu physical address). This is not really specified
* that way, but this is traditionally the way IBM at least do things
*
* Whenever the translation fails, the *host pointer will be set to the
* device that had registered logical PIO mapping, and the return code is
* relative to that node.
*/
static u64 __of_translate_address(struct device_node *dev,
const __be32 *in_addr, const char *rprop)
const __be32 *in_addr, const char *rprop,
struct device_node **host)
{
struct device_node *parent = NULL;
struct of_bus *bus, *pbus;
......@@ -575,6 +583,7 @@ static u64 __of_translate_address(struct device_node *dev,
/* Increase refcount at current level */
of_node_get(dev);
*host = NULL;
/* Get parent & match bus type */
parent = of_get_parent(dev);
if (parent == NULL)
......@@ -595,6 +604,8 @@ static u64 __of_translate_address(struct device_node *dev,
/* Translate */
for (;;) {
struct logic_pio_hwaddr *iorange;
/* Switch to parent bus */
of_node_put(dev);
dev = parent;
......@@ -607,6 +618,19 @@ static u64 __of_translate_address(struct device_node *dev,
break;
}
/*
* For indirectIO device which has no ranges property, get
* the address from reg directly.
*/
iorange = find_io_range_by_fwnode(&dev->fwnode);
if (iorange && (iorange->flags != LOGIC_PIO_CPU_MMIO)) {
result = of_read_number(addr + 1, na - 1);
pr_debug("indirectIO matched(%pOF) 0x%llx\n",
dev, result);
*host = of_node_get(dev);
break;
}
/* Get new parent bus and counts */
pbus = of_match_bus(parent);
pbus->count_cells(dev, &pna, &pns);
......@@ -638,13 +662,32 @@ static u64 __of_translate_address(struct device_node *dev,
u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
{
return __of_translate_address(dev, in_addr, "ranges");
struct device_node *host;
u64 ret;
ret = __of_translate_address(dev, in_addr, "ranges", &host);
if (host) {
of_node_put(host);
return OF_BAD_ADDR;
}
return ret;
}
EXPORT_SYMBOL(of_translate_address);
u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
{
return __of_translate_address(dev, in_addr, "dma-ranges");
struct device_node *host;
u64 ret;
ret = __of_translate_address(dev, in_addr, "dma-ranges", &host);
if (host) {
of_node_put(host);
return OF_BAD_ADDR;
}
return ret;
}
EXPORT_SYMBOL(of_translate_dma_address);
......@@ -686,29 +729,48 @@ const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
}
EXPORT_SYMBOL(of_get_address);
static u64 of_translate_ioport(struct device_node *dev, const __be32 *in_addr,
u64 size)
{
u64 taddr;
unsigned long port;
struct device_node *host;
taddr = __of_translate_address(dev, in_addr, "ranges", &host);
if (host) {
/* host-specific port access */
port = logic_pio_trans_hwaddr(&host->fwnode, taddr, size);
of_node_put(host);
} else {
/* memory-mapped I/O range */
port = pci_address_to_pio(taddr);
}
if (port == (unsigned long)-1)
return OF_BAD_ADDR;
return port;
}
static int __of_address_to_resource(struct device_node *dev,
const __be32 *addrp, u64 size, unsigned int flags,
const char *name, struct resource *r)
{
u64 taddr;
if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
return -EINVAL;
if (flags & IORESOURCE_MEM)
taddr = of_translate_address(dev, addrp);
else if (flags & IORESOURCE_IO)
taddr = of_translate_ioport(dev, addrp, size);
else
return -EINVAL;
if (taddr == OF_BAD_ADDR)
return -EINVAL;
memset(r, 0, sizeof(struct resource));
if (flags & IORESOURCE_IO) {
unsigned long port;
port = pci_address_to_pio(taddr);
if (port == (unsigned long)-1)
return -EINVAL;
r->start = port;
r->end = port + size - 1;
} else {
r->start = taddr;
r->end = taddr + size - 1;
}
r->flags = flags;
r->name = name ? name : dev->full_name;
......
......@@ -22,6 +22,7 @@
#include <linux/spinlock.h>
#include <linux/string.h>
#include <linux/log2.h>
#include <linux/logic_pio.h>
#include <linux/pci-aspm.h>
#include <linux/pm_wakeup.h>
#include <linux/interrupt.h>
......@@ -3440,68 +3441,35 @@ int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
}
EXPORT_SYMBOL(pci_request_regions_exclusive);
#ifdef PCI_IOBASE
struct io_range {
struct list_head list;
phys_addr_t start;
resource_size_t size;
};
static LIST_HEAD(io_range_list);
static DEFINE_SPINLOCK(io_range_lock);
#endif
/*
* Record the PCI IO range (expressed as CPU physical address + size).
* Return a negative value if an error has occured, zero otherwise
*/
int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
resource_size_t size)
{
int err = 0;
int ret = 0;
#ifdef PCI_IOBASE
struct io_range *range;
resource_size_t allocated_size = 0;
/* check if the range hasn't been previously recorded */
spin_lock(&io_range_lock);
list_for_each_entry(range, &io_range_list, list) {
if (addr >= range->start && addr + size <= range->start + size) {
/* range already registered, bail out */
goto end_register;
}
allocated_size += range->size;
}
/* range not registed yet, check for available space */
if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
/* if it's too big check if 64K space can be reserved */
if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
err = -E2BIG;
goto end_register;
}
struct logic_pio_hwaddr *range;
size = SZ_64K;
pr_warn("Requested IO range too big, new size set to 64K\n");
}
if (!size || addr + size < addr)
return -EINVAL;
/* add the range to the list */
range = kzalloc(sizeof(*range), GFP_ATOMIC);
if (!range) {
err = -ENOMEM;
goto end_register;
}
if (!range)
return -ENOMEM;
range->start = addr;
range->fwnode = fwnode;
range->size = size;
range->hw_start = addr;
range->flags = LOGIC_PIO_CPU_MMIO;
list_add_tail(&range->list, &io_range_list);
end_register:
spin_unlock(&io_range_lock);
ret = logic_pio_register_range(range);
if (ret)
kfree(range);
#endif
return err;
return ret;
}
phys_addr_t pci_pio_to_address(unsigned long pio)
......@@ -3509,21 +3477,10 @@ phys_addr_t pci_pio_to_address(unsigned long pio)
phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
#ifdef PCI_IOBASE
struct io_range *range;
resource_size_t allocated_size = 0;
if (pio > IO_SPACE_LIMIT)
if (pio >= MMIO_UPPER_LIMIT)
return address;
spin_lock(&io_range_lock);
list_for_each_entry(range, &io_range_list, list) {
if (pio >= allocated_size && pio < allocated_size + range->size) {
address = range->start + pio - allocated_size;
break;
}
allocated_size += range->size;
}
spin_unlock(&io_range_lock);
address = logic_pio_to_hwaddr(pio);
#endif
return address;
......@@ -3532,21 +3489,7 @@ phys_addr_t pci_pio_to_address(unsigned long pio)
unsigned long __weak pci_address_to_pio(phys_addr_t address)
{
#ifdef PCI_IOBASE
struct io_range *res;
resource_size_t offset = 0;
unsigned long addr = -1;
spin_lock(&io_range_lock);
list_for_each_entry(res, &io_range_list, list) {
if (address >= res->start && address < res->start + res->size) {
addr = address - res->start + offset;
break;
}
offset += res->size;
}
spin_unlock(&io_range_lock);
return addr;
return logic_pio_trans_cpuaddr(address);
#else
if (address > IO_SPACE_LIMIT)
return (unsigned long)-1;
......
......@@ -215,7 +215,7 @@ struct acpi_device_flags {
u32 of_compatible_ok:1;
u32 coherent_dma:1;
u32 cca_seen:1;
u32 serial_bus_slave:1;
u32 enumeration_by_parent:1;
u32 reserved:19;
};
......
......@@ -351,6 +351,8 @@ static inline void writesq(volatile void __iomem *addr, const void *buffer,
#define IO_SPACE_LIMIT 0xffff
#endif
#include <linux/logic_pio.h>
/*
* {in,out}{b,w,l}() access little endian I/O. {in,out}{b,w,l}_p() can be
* implemented on hardware that needs an additional delay for I/O accesses to
......@@ -899,7 +901,7 @@ static inline void iounmap(void __iomem *addr)
#define ioport_map ioport_map
static inline void __iomem *ioport_map(unsigned long port, unsigned int nr)
{
return PCI_IOBASE + (port & IO_SPACE_LIMIT);
return PCI_IOBASE + (port & MMIO_UPPER_LIMIT);
}
#endif
......
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
* Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
* Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
*/
#ifndef __LINUX_LOGIC_PIO_H
#define __LINUX_LOGIC_PIO_H
#include <linux/fwnode.h>
enum {
LOGIC_PIO_INDIRECT, /* Indirect IO flag */
LOGIC_PIO_CPU_MMIO, /* Memory-mapped IO flag */
};
struct logic_pio_hwaddr {
struct list_head list;
struct fwnode_handle *fwnode;
resource_size_t hw_start;
resource_size_t io_start;
resource_size_t size; /* range size populated */
unsigned long flags;
void *hostdata;
const struct logic_pio_host_ops *ops;
};
struct logic_pio_host_ops {
u32 (*in)(void *hostdata, unsigned long addr, size_t dwidth);
void (*out)(void *hostdata, unsigned long addr, u32 val,
size_t dwidth);
u32 (*ins)(void *hostdata, unsigned long addr, void *buffer,
size_t dwidth, unsigned int count);
void (*outs)(void *hostdata, unsigned long addr, const void *buffer,
size_t dwidth, unsigned int count);
};
#ifdef CONFIG_INDIRECT_PIO
u8 logic_inb(unsigned long addr);
void logic_outb(u8 value, unsigned long addr);
void logic_outw(u16 value, unsigned long addr);
void logic_outl(u32 value, unsigned long addr);
u16 logic_inw(unsigned long addr);
u32 logic_inl(unsigned long addr);
void logic_outb(u8 value, unsigned long addr);
void logic_outw(u16 value, unsigned long addr);
void logic_outl(u32 value, unsigned long addr);
void logic_insb(unsigned long addr, void *buffer, unsigned int count);
void logic_insl(unsigned long addr, void *buffer, unsigned int count);
void logic_insw(unsigned long addr, void *buffer, unsigned int count);
void logic_outsb(unsigned long addr, const void *buffer, unsigned int count);
void logic_outsw(unsigned long addr, const void *buffer, unsigned int count);
void logic_outsl(unsigned long addr, const void *buffer, unsigned int count);
#ifndef inb
#define inb logic_inb
#endif
#ifndef inw
#define inw logic_inw
#endif
#ifndef inl
#define inl logic_inl
#endif
#ifndef outb
#define outb logic_outb
#endif
#ifndef outw
#define outw logic_outw
#endif
#ifndef outl
#define outl logic_outl
#endif
#ifndef insb
#define insb logic_insb
#endif
#ifndef insw
#define insw logic_insw
#endif
#ifndef insl
#define insl logic_insl
#endif
#ifndef outsb
#define outsb logic_outsb
#endif
#ifndef outsw
#define outsw logic_outsw
#endif
#ifndef outsl
#define outsl logic_outsl
#endif
/*
* We reserve 0x4000 bytes for Indirect IO as so far this library is only
* used by the HiSilicon LPC Host. If needed, we can reserve a wider IO
* area by redefining the macro below.
*/
#define PIO_INDIRECT_SIZE 0x4000
#define MMIO_UPPER_LIMIT (IO_SPACE_LIMIT - PIO_INDIRECT_SIZE)
#else
#define MMIO_UPPER_LIMIT IO_SPACE_LIMIT
#endif /* CONFIG_INDIRECT_PIO */
struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode);
unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
resource_size_t hw_addr, resource_size_t size);
int logic_pio_register_range(struct logic_pio_hwaddr *newrange);
resource_size_t logic_pio_to_hwaddr(unsigned long pio);
unsigned long logic_pio_trans_cpuaddr(resource_size_t hw_addr);
#endif /* __LINUX_LOGIC_PIO_H */
......@@ -1226,7 +1226,8 @@ int __must_check pci_bus_alloc_resource(struct pci_bus *bus,
void *alignf_data);
int pci_register_io_range(phys_addr_t addr, resource_size_t size);
int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
resource_size_t size);
unsigned long pci_address_to_pio(phys_addr_t addr);
phys_addr_t pci_pio_to_address(unsigned long pio);
int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr);
......
......@@ -55,6 +55,22 @@ config ARCH_USE_CMPXCHG_LOCKREF
config ARCH_HAS_FAST_MULTIPLIER
bool
config INDIRECT_PIO
bool "Access I/O in non-MMIO mode"
depends on ARM64
help
On some platforms where no separate I/O space exists, there are I/O
hosts which can not be accessed in MMIO mode. Using the logical PIO
mechanism, the host-local I/O resource can be mapped into system
logic PIO space shared with MMIO hosts, such as PCI/PCIe, then the
system can access the I/O devices with the mapped-logic PIO through
I/O accessors.
This way has relatively little I/O performance cost. Please make
sure your devices really need this configure item enabled.
When in doubt, say N.
config CRC_CCITT
tristate "CRC-CCITT functions"
help
......
......@@ -81,6 +81,8 @@ obj-$(CONFIG_HAS_IOMEM) += iomap_copy.o devres.o
obj-$(CONFIG_CHECK_SIGNATURE) += check_signature.o
obj-$(CONFIG_DEBUG_LOCKING_API_SELFTESTS) += locking-selftest.o
obj-y += logic_pio.o
obj-$(CONFIG_GENERIC_HWEIGHT) += hweight.o
obj-$(CONFIG_BTREE) += btree.o
......
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
* Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
* Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
*/
#define pr_fmt(fmt) "LOGIC PIO: " fmt
#include <linux/of.h>
#include <linux/io.h>
#include <linux/logic_pio.h>
#include <linux/mm.h>
#include <linux/rculist.h>
#include <linux/sizes.h>
#include <linux/slab.h>
/* The unique hardware address list */
static LIST_HEAD(io_range_list);
static DEFINE_MUTEX(io_range_mutex);
/* Consider a kernel general helper for this */
#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
/**
* logic_pio_register_range - register logical PIO range for a host
* @new_range: pointer to the IO range to be registered.
*
* Returns 0 on success, the error code in case of failure.
*
* Register a new IO range node in the IO range list.
*/
int logic_pio_register_range(struct logic_pio_hwaddr *new_range)
{
struct logic_pio_hwaddr *range;
resource_size_t start;
resource_size_t end;
resource_size_t mmio_sz = 0;
resource_size_t iio_sz = MMIO_UPPER_LIMIT;
int ret = 0;
if (!new_range || !new_range->fwnode || !new_range->size)
return -EINVAL;
start = new_range->hw_start;
end = new_range->hw_start + new_range->size;
mutex_lock(&io_range_mutex);
list_for_each_entry_rcu(range, &io_range_list, list) {
if (range->fwnode == new_range->fwnode) {
/* range already there */
goto end_register;
}
if (range->flags == LOGIC_PIO_CPU_MMIO &&
new_range->flags == LOGIC_PIO_CPU_MMIO) {
/* for MMIO ranges we need to check for overlap */
if (start >= range->hw_start + range->size ||
end < range->hw_start) {
mmio_sz += range->size;
} else {
ret = -EFAULT;
goto end_register;
}
} else if (range->flags == LOGIC_PIO_INDIRECT &&
new_range->flags == LOGIC_PIO_INDIRECT) {
iio_sz += range->size;
}
}
/* range not registered yet, check for available space */
if (new_range->flags == LOGIC_PIO_CPU_MMIO) {
if (mmio_sz + new_range->size - 1 > MMIO_UPPER_LIMIT) {
/* if it's too big check if 64K space can be reserved */
if (mmio_sz + SZ_64K - 1 > MMIO_UPPER_LIMIT) {
ret = -E2BIG;
goto end_register;
}
new_range->size = SZ_64K;
pr_warn("Requested IO range too big, new size set to 64K\n");
}
new_range->io_start = mmio_sz;
} else if (new_range->flags == LOGIC_PIO_INDIRECT) {
if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) {
ret = -E2BIG;
goto end_register;
}
new_range->io_start = iio_sz;
} else {
/* invalid flag */
ret = -EINVAL;
goto end_register;
}
list_add_tail_rcu(&new_range->list, &io_range_list);
end_register:
mutex_unlock(&io_range_mutex);
return ret;
}
/**
* find_io_range_by_fwnode - find logical PIO range for given FW node
* @fwnode: FW node handle associated with logical PIO range
*
* Returns pointer to node on success, NULL otherwise.
*
* Traverse the io_range_list to find the registered node for @fwnode.
*/
struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode)
{
struct logic_pio_hwaddr *range;
list_for_each_entry_rcu(range, &io_range_list, list) {
if (range->fwnode == fwnode)
return range;
}
return NULL;
}
/* Return a registered range given an input PIO token */
static struct logic_pio_hwaddr *find_io_range(unsigned long pio)
{
struct logic_pio_hwaddr *range;
list_for_each_entry_rcu(range, &io_range_list, list) {
if (in_range(pio, range->io_start, range->size))
return range;
}
pr_err("PIO entry token %lx invalid\n", pio);
return NULL;
}
/**
* logic_pio_to_hwaddr - translate logical PIO to HW address
* @pio: logical PIO value
*
* Returns HW address if valid, ~0 otherwise.
*
* Translate the input logical PIO to the corresponding hardware address.
* The input PIO should be unique in the whole logical PIO space.
*/
resource_size_t logic_pio_to_hwaddr(unsigned long pio)
{
struct logic_pio_hwaddr *range;
range = find_io_range(pio);
if (range)
return range->hw_start + pio - range->io_start;
return (resource_size_t)~0;
}
/**
* logic_pio_trans_hwaddr - translate HW address to logical PIO
* @fwnode: FW node reference for the host
* @addr: Host-relative HW address
* @size: size to translate
*
* Returns Logical PIO value if successful, ~0UL otherwise
*/
unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
resource_size_t addr, resource_size_t size)
{
struct logic_pio_hwaddr *range;
range = find_io_range_by_fwnode(fwnode);
if (!range || range->flags == LOGIC_PIO_CPU_MMIO) {
pr_err("IO range not found or invalid\n");
return ~0UL;
}
if (range->size < size) {
pr_err("resource size %pa cannot fit in IO range size %pa\n",
&size, &range->size);
return ~0UL;
}
return addr - range->hw_start + range->io_start;
}
unsigned long logic_pio_trans_cpuaddr(resource_size_t addr)
{
struct logic_pio_hwaddr *range;
list_for_each_entry_rcu(range, &io_range_list, list) {
if (range->flags != LOGIC_PIO_CPU_MMIO)
continue;
if (in_range(addr, range->hw_start, range->size))
return addr - range->hw_start + range->io_start;
}
pr_err("addr %llx not registered in io_range_list\n",
(unsigned long long) addr);
return ~0UL;
}
#if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
#define BUILD_LOGIC_IO(bw, type) \
type logic_in##bw(unsigned long addr) \
{ \
type ret = (type)~0; \
\
if (addr < MMIO_UPPER_LIMIT) { \
ret = read##bw(PCI_IOBASE + addr); \
} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
struct logic_pio_hwaddr *entry = find_io_range(addr); \
\
if (entry && entry->ops) \
ret = entry->ops->in(entry->hostdata, \
addr, sizeof(type)); \
else \
WARN_ON_ONCE(1); \
} \
return ret; \
} \
\
void logic_out##bw(type value, unsigned long addr) \
{ \
if (addr < MMIO_UPPER_LIMIT) { \
write##bw(value, PCI_IOBASE + addr); \
} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
struct logic_pio_hwaddr *entry = find_io_range(addr); \
\
if (entry && entry->ops) \
entry->ops->out(entry->hostdata, \
addr, value, sizeof(type)); \
else \
WARN_ON_ONCE(1); \
} \
} \
\
void logic_ins##bw(unsigned long addr, void *buffer, \
unsigned int count) \
{ \
if (addr < MMIO_UPPER_LIMIT) { \
reads##bw(PCI_IOBASE + addr, buffer, count); \
} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
struct logic_pio_hwaddr *entry = find_io_range(addr); \
\
if (entry && entry->ops) \
entry->ops->ins(entry->hostdata, \
addr, buffer, sizeof(type), count); \
else \
WARN_ON_ONCE(1); \
} \
\
} \
\
void logic_outs##bw(unsigned long addr, const void *buffer, \
unsigned int count) \
{ \
if (addr < MMIO_UPPER_LIMIT) { \
writes##bw(PCI_IOBASE + addr, buffer, count); \
} else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
struct logic_pio_hwaddr *entry = find_io_range(addr); \
\
if (entry && entry->ops) \
entry->ops->outs(entry->hostdata, \
addr, buffer, sizeof(type), count); \
else \
WARN_ON_ONCE(1); \
} \
}
BUILD_LOGIC_IO(b, u8)
EXPORT_SYMBOL(logic_inb);
EXPORT_SYMBOL(logic_insb);
EXPORT_SYMBOL(logic_outb);
EXPORT_SYMBOL(logic_outsb);
BUILD_LOGIC_IO(w, u16)
EXPORT_SYMBOL(logic_inw);
EXPORT_SYMBOL(logic_insw);
EXPORT_SYMBOL(logic_outw);
EXPORT_SYMBOL(logic_outsw);
BUILD_LOGIC_IO(l, u32)
EXPORT_SYMBOL(logic_inl);
EXPORT_SYMBOL(logic_insl);
EXPORT_SYMBOL(logic_outl);
EXPORT_SYMBOL(logic_outsl);
#endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment