Commit 431959c0 authored by Mark Brown's avatar Mark Brown

Merge remote-tracking branches 'spi/topic/blackfin', 'spi/topic/cadence',...

Merge remote-tracking branches 'spi/topic/blackfin', 'spi/topic/cadence', 'spi/topic/dw' and 'spi/topic/err' into spi-next
...@@ -51,19 +51,6 @@ config INTEL_MIC_X100_DMA ...@@ -51,19 +51,6 @@ config INTEL_MIC_X100_DMA
OS and tools for MIC to use with this driver are available from OS and tools for MIC to use with this driver are available from
<http://software.intel.com/en-us/mic-developer>. <http://software.intel.com/en-us/mic-developer>.
config INTEL_MID_DMAC
tristate "Intel MID DMA support for Peripheral DMA controllers"
depends on PCI && X86
select DMA_ENGINE
default n
help
Enable support for the Intel(R) MID DMA engine present
in Intel MID chipsets.
Say Y here if you have such a chipset.
If unsure, say N.
config ASYNC_TX_ENABLE_CHANNEL_SWITCH config ASYNC_TX_ENABLE_CHANNEL_SWITCH
bool bool
......
...@@ -6,7 +6,6 @@ obj-$(CONFIG_DMA_VIRTUAL_CHANNELS) += virt-dma.o ...@@ -6,7 +6,6 @@ obj-$(CONFIG_DMA_VIRTUAL_CHANNELS) += virt-dma.o
obj-$(CONFIG_DMA_ACPI) += acpi-dma.o obj-$(CONFIG_DMA_ACPI) += acpi-dma.o
obj-$(CONFIG_DMA_OF) += of-dma.o obj-$(CONFIG_DMA_OF) += of-dma.o
obj-$(CONFIG_INTEL_MID_DMAC) += intel_mid_dma.o
obj-$(CONFIG_DMATEST) += dmatest.o obj-$(CONFIG_DMATEST) += dmatest.o
obj-$(CONFIG_INTEL_IOATDMA) += ioat/ obj-$(CONFIG_INTEL_IOATDMA) += ioat/
obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o
......
/*
* intel_mid_dma.c - Intel Langwell DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* The driver design is based on dw_dmac driver
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/pm_runtime.h>
#include <linux/intel_mid_dma.h>
#include <linux/module.h>
#include "dmaengine.h"
#define MAX_CHAN 4 /*max ch across controllers*/
#include "intel_mid_dma_regs.h"
#define INTEL_MID_DMAC1_ID 0x0814
#define INTEL_MID_DMAC2_ID 0x0813
#define INTEL_MID_GP_DMAC2_ID 0x0827
#define INTEL_MFLD_DMAC1_ID 0x0830
#define LNW_PERIPHRAL_MASK_BASE 0xFFAE8008
#define LNW_PERIPHRAL_MASK_SIZE 0x10
#define LNW_PERIPHRAL_STATUS 0x0
#define LNW_PERIPHRAL_MASK 0x8
struct intel_mid_dma_probe_info {
u8 max_chan;
u8 ch_base;
u16 block_size;
u32 pimr_mask;
};
#define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
((kernel_ulong_t)&(struct intel_mid_dma_probe_info) { \
.max_chan = (_max_chan), \
.ch_base = (_ch_base), \
.block_size = (_block_size), \
.pimr_mask = (_pimr_mask), \
})
/*****************************************************************************
Utility Functions*/
/**
* get_ch_index - convert status to channel
* @status: status mask
* @base: dma ch base value
*
* Modify the status mask and return the channel index needing
* attention (or -1 if neither)
*/
static int get_ch_index(int *status, unsigned int base)
{
int i;
for (i = 0; i < MAX_CHAN; i++) {
if (*status & (1 << (i + base))) {
*status = *status & ~(1 << (i + base));
pr_debug("MDMA: index %d New status %x\n", i, *status);
return i;
}
}
return -1;
}
/**
* get_block_ts - calculates dma transaction length
* @len: dma transfer length
* @tx_width: dma transfer src width
* @block_size: dma controller max block size
*
* Based on src width calculate the DMA trsaction length in data items
* return data items or FFFF if exceeds max length for block
*/
static int get_block_ts(int len, int tx_width, int block_size)
{
int byte_width = 0, block_ts = 0;
switch (tx_width) {
case DMA_SLAVE_BUSWIDTH_1_BYTE:
byte_width = 1;
break;
case DMA_SLAVE_BUSWIDTH_2_BYTES:
byte_width = 2;
break;
case DMA_SLAVE_BUSWIDTH_4_BYTES:
default:
byte_width = 4;
break;
}
block_ts = len/byte_width;
if (block_ts > block_size)
block_ts = 0xFFFF;
return block_ts;
}
/*****************************************************************************
DMAC1 interrupt Functions*/
/**
* dmac1_mask_periphral_intr - mask the periphral interrupt
* @mid: dma device for which masking is required
*
* Masks the DMA periphral interrupt
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_mask_periphral_intr(struct middma_device *mid)
{
u32 pimr;
if (mid->pimr_mask) {
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
pimr |= mid->pimr_mask;
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
}
return;
}
/**
* dmac1_unmask_periphral_intr - unmask the periphral interrupt
* @midc: dma channel for which masking is required
*
* UnMasks the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
{
u32 pimr;
struct middma_device *mid = to_middma_device(midc->chan.device);
if (mid->pimr_mask) {
pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
pimr &= ~mid->pimr_mask;
writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
}
return;
}
/**
* enable_dma_interrupt - enable the periphral interrupt
* @midc: dma channel for which enable interrupt is required
*
* Enable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
dmac1_unmask_periphral_intr(midc);
/*en ch interrupts*/
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
return;
}
/**
* disable_dma_interrupt - disable the periphral interrupt
* @midc: dma channel for which disable interrupt is required
*
* Disable the DMA periphral interrupt,
* this is valid for DMAC1 family controllers only
* This controller should have periphral mask registers already mapped
*/
static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
{
/*Check LPE PISR, make sure fwd is disabled*/
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
return;
}
/*****************************************************************************
DMA channel helper Functions*/
/**
* mid_desc_get - get a descriptor
* @midc: dma channel for which descriptor is required
*
* Obtain a descriptor for the channel. Returns NULL if none are free.
* Once the descriptor is returned it is private until put on another
* list or freed
*/
static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc, *_desc;
struct intel_mid_dma_desc *ret = NULL;
spin_lock_bh(&midc->lock);
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
if (async_tx_test_ack(&desc->txd)) {
list_del(&desc->desc_node);
ret = desc;
break;
}
}
spin_unlock_bh(&midc->lock);
return ret;
}
/**
* mid_desc_put - put a descriptor
* @midc: dma channel for which descriptor is required
* @desc: descriptor to put
*
* Return a descriptor from lwn_desc_get back to the free pool
*/
static void midc_desc_put(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
{
if (desc) {
spin_lock_bh(&midc->lock);
list_add_tail(&desc->desc_node, &midc->free_list);
spin_unlock_bh(&midc->lock);
}
}
/**
* midc_dostart - begin a DMA transaction
* @midc: channel for which txn is to be started
* @first: first descriptor of series
*
* Load a transaction into the engine. This must be called with midc->lock
* held and bh disabled.
*/
static void midc_dostart(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *first)
{
struct middma_device *mid = to_middma_device(midc->chan.device);
/* channel is idle */
if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
/*error*/
pr_err("ERR_MDMA: channel is busy in start\n");
/* The tasklet will hopefully advance the queue... */
return;
}
midc->busy = true;
/*write registers and en*/
iowrite32(first->sar, midc->ch_regs + SAR);
iowrite32(first->dar, midc->ch_regs + DAR);
iowrite32(first->lli_phys, midc->ch_regs + LLP);
iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
(int)first->sar, (int)first->dar, first->cfg_hi,
first->cfg_lo, first->ctl_hi, first->ctl_lo);
first->status = DMA_IN_PROGRESS;
iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
}
/**
* midc_descriptor_complete - process completed descriptor
* @midc: channel owning the descriptor
* @desc: the descriptor itself
*
* Process a completed descriptor and perform any callbacks upon
* the completion. The completion handling drops the lock during the
* callbacks but must be called with the lock held.
*/
static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc)
__releases(&midc->lock) __acquires(&midc->lock)
{
struct dma_async_tx_descriptor *txd = &desc->txd;
dma_async_tx_callback callback_txd = NULL;
struct intel_mid_dma_lli *llitem;
void *param_txd = NULL;
dma_cookie_complete(txd);
callback_txd = txd->callback;
param_txd = txd->callback_param;
if (desc->lli != NULL) {
/*clear the DONE bit of completed LLI in memory*/
llitem = desc->lli + desc->current_lli;
llitem->ctl_hi &= CLEAR_DONE;
if (desc->current_lli < desc->lli_length-1)
(desc->current_lli)++;
else
desc->current_lli = 0;
}
spin_unlock_bh(&midc->lock);
if (callback_txd) {
pr_debug("MDMA: TXD callback set ... calling\n");
callback_txd(param_txd);
}
if (midc->raw_tfr) {
desc->status = DMA_COMPLETE;
if (desc->lli != NULL) {
pci_pool_free(desc->lli_pool, desc->lli,
desc->lli_phys);
pci_pool_destroy(desc->lli_pool);
desc->lli = NULL;
}
list_move(&desc->desc_node, &midc->free_list);
midc->busy = false;
}
spin_lock_bh(&midc->lock);
}
/**
* midc_scan_descriptors - check the descriptors in channel
* mark completed when tx is completete
* @mid: device
* @midc: channel to scan
*
* Walk the descriptor chain for the device and process any entries
* that are complete.
*/
static void midc_scan_descriptors(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
/*tx is complete*/
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
if (desc->status == DMA_IN_PROGRESS)
midc_descriptor_complete(midc, desc);
}
return;
}
/**
* midc_lli_fill_sg - Helper function to convert
* SG list to Linked List Items.
*@midc: Channel
*@desc: DMA descriptor
*@sglist: Pointer to SG list
*@sglen: SG list length
*@flags: DMA transaction flags
*
* Walk through the SG list and convert the SG list into Linked
* List Items (LLI).
*/
static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
struct intel_mid_dma_desc *desc,
struct scatterlist *sglist,
unsigned int sglen,
unsigned int flags)
{
struct intel_mid_dma_slave *mids;
struct scatterlist *sg;
dma_addr_t lli_next, sg_phy_addr;
struct intel_mid_dma_lli *lli_bloc_desc;
union intel_mid_dma_ctl_lo ctl_lo;
union intel_mid_dma_ctl_hi ctl_hi;
int i;
pr_debug("MDMA: Entered midc_lli_fill_sg\n");
mids = midc->mid_slave;
lli_bloc_desc = desc->lli;
lli_next = desc->lli_phys;
ctl_lo.ctl_lo = desc->ctl_lo;
ctl_hi.ctl_hi = desc->ctl_hi;
for_each_sg(sglist, sg, sglen, i) {
/*Populate CTL_LOW and LLI values*/
if (i != sglen - 1) {
lli_next = lli_next +
sizeof(struct intel_mid_dma_lli);
} else {
/*Check for circular list, otherwise terminate LLI to ZERO*/
if (flags & DMA_PREP_CIRCULAR_LIST) {
pr_debug("MDMA: LLI is configured in circular mode\n");
lli_next = desc->lli_phys;
} else {
lli_next = 0;
ctl_lo.ctlx.llp_dst_en = 0;
ctl_lo.ctlx.llp_src_en = 0;
}
}
/*Populate CTL_HI values*/
ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
desc->width,
midc->dma->block_size);
/*Populate SAR and DAR values*/
sg_phy_addr = sg_dma_address(sg);
if (desc->dirn == DMA_MEM_TO_DEV) {
lli_bloc_desc->sar = sg_phy_addr;
lli_bloc_desc->dar = mids->dma_slave.dst_addr;
} else if (desc->dirn == DMA_DEV_TO_MEM) {
lli_bloc_desc->sar = mids->dma_slave.src_addr;
lli_bloc_desc->dar = sg_phy_addr;
}
/*Copy values into block descriptor in system memroy*/
lli_bloc_desc->llp = lli_next;
lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
lli_bloc_desc++;
}
/*Copy very first LLI values to descriptor*/
desc->ctl_lo = desc->lli->ctl_lo;
desc->ctl_hi = desc->lli->ctl_hi;
desc->sar = desc->lli->sar;
desc->dar = desc->lli->dar;
return 0;
}
/*****************************************************************************
DMA engine callback Functions*/
/**
* intel_mid_dma_tx_submit - callback to submit DMA transaction
* @tx: dma engine descriptor
*
* Submit the DMA transaction for this descriptor, start if ch idle
*/
static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct intel_mid_dma_desc *desc = to_intel_mid_dma_desc(tx);
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(tx->chan);
dma_cookie_t cookie;
spin_lock_bh(&midc->lock);
cookie = dma_cookie_assign(tx);
if (list_empty(&midc->active_list))
list_add_tail(&desc->desc_node, &midc->active_list);
else
list_add_tail(&desc->desc_node, &midc->queue);
midc_dostart(midc, desc);
spin_unlock_bh(&midc->lock);
return cookie;
}
/**
* intel_mid_dma_issue_pending - callback to issue pending txn
* @chan: chan where pending trascation needs to be checked and submitted
*
* Call for scan to issue pending descriptors
*/
static void intel_mid_dma_issue_pending(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
spin_lock_bh(&midc->lock);
if (!list_empty(&midc->queue))
midc_scan_descriptors(to_middma_device(chan->device), midc);
spin_unlock_bh(&midc->lock);
}
/**
* intel_mid_dma_tx_status - Return status of txn
* @chan: chan for where status needs to be checked
* @cookie: cookie for txn
* @txstate: DMA txn state
*
* Return status of DMA txn
*/
static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
enum dma_status ret;
ret = dma_cookie_status(chan, cookie, txstate);
if (ret != DMA_COMPLETE) {
spin_lock_bh(&midc->lock);
midc_scan_descriptors(to_middma_device(chan->device), midc);
spin_unlock_bh(&midc->lock);
ret = dma_cookie_status(chan, cookie, txstate);
}
return ret;
}
static int intel_mid_dma_config(struct dma_chan *chan,
struct dma_slave_config *slave)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct intel_mid_dma_slave *mid_slave;
BUG_ON(!midc);
BUG_ON(!slave);
pr_debug("MDMA: slave control called\n");
mid_slave = to_intel_mid_dma_slave(slave);
BUG_ON(!mid_slave);
midc->mid_slave = mid_slave;
return 0;
}
static int intel_mid_dma_terminate_all(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
union intel_mid_dma_cfg_lo cfg_lo;
spin_lock_bh(&midc->lock);
if (midc->busy == false) {
spin_unlock_bh(&midc->lock);
return 0;
}
/*Suspend and disable the channel*/
cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
cfg_lo.cfgx.ch_susp = 1;
iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
midc->busy = false;
/* Disable interrupts */
disable_dma_interrupt(midc);
midc->descs_allocated = 0;
spin_unlock_bh(&midc->lock);
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
if (desc->lli != NULL) {
pci_pool_free(desc->lli_pool, desc->lli,
desc->lli_phys);
pci_pool_destroy(desc->lli_pool);
desc->lli = NULL;
}
list_move(&desc->desc_node, &midc->free_list);
}
return 0;
}
/**
* intel_mid_dma_prep_memcpy - Prep memcpy txn
* @chan: chan for DMA transfer
* @dest: destn address
* @src: src address
* @len: DMA transfer len
* @flags: DMA flags
*
* Perform a DMA memcpy. Note we support slave periphral DMA transfers only
* The periphral txn details should be filled in slave structure properly
* Returns the descriptor for this txn
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
struct dma_chan *chan, dma_addr_t dest,
dma_addr_t src, size_t len, unsigned long flags)
{
struct intel_mid_dma_chan *midc;
struct intel_mid_dma_desc *desc = NULL;
struct intel_mid_dma_slave *mids;
union intel_mid_dma_ctl_lo ctl_lo;
union intel_mid_dma_ctl_hi ctl_hi;
union intel_mid_dma_cfg_lo cfg_lo;
union intel_mid_dma_cfg_hi cfg_hi;
enum dma_slave_buswidth width;
pr_debug("MDMA: Prep for memcpy\n");
BUG_ON(!chan);
if (!len)
return NULL;
midc = to_intel_mid_dma_chan(chan);
BUG_ON(!midc);
mids = midc->mid_slave;
BUG_ON(!mids);
pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
midc->dma->pci_id, midc->ch_id, len);
pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
mids->cfg_mode, mids->dma_slave.direction,
mids->hs_mode, mids->dma_slave.src_addr_width);
/*calculate CFG_LO*/
if (mids->hs_mode == LNW_DMA_SW_HS) {
cfg_lo.cfg_lo = 0;
cfg_lo.cfgx.hs_sel_dst = 1;
cfg_lo.cfgx.hs_sel_src = 1;
} else if (mids->hs_mode == LNW_DMA_HW_HS)
cfg_lo.cfg_lo = 0x00000;
/*calculate CFG_HI*/
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
/*SW HS only*/
cfg_hi.cfg_hi = 0;
} else {
cfg_hi.cfg_hi = 0;
if (midc->dma->pimr_mask) {
cfg_hi.cfgx.protctl = 0x0; /*default value*/
cfg_hi.cfgx.fifo_mode = 1;
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
cfg_hi.cfgx.src_per = 0;
if (mids->device_instance == 0)
cfg_hi.cfgx.dst_per = 3;
if (mids->device_instance == 1)
cfg_hi.cfgx.dst_per = 1;
} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
if (mids->device_instance == 0)
cfg_hi.cfgx.src_per = 2;
if (mids->device_instance == 1)
cfg_hi.cfgx.src_per = 0;
cfg_hi.cfgx.dst_per = 0;
}
} else {
cfg_hi.cfgx.protctl = 0x1; /*default value*/
cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
midc->ch_id - midc->dma->chan_base;
}
}
/*calculate CTL_HI*/
ctl_hi.ctlx.reser = 0;
ctl_hi.ctlx.done = 0;
width = mids->dma_slave.src_addr_width;
ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
pr_debug("MDMA:calc len %d for block size %d\n",
ctl_hi.ctlx.block_ts, midc->dma->block_size);
/*calculate CTL_LO*/
ctl_lo.ctl_lo = 0;
ctl_lo.ctlx.int_en = 1;
ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
/*
* Here we need some translation from "enum dma_slave_buswidth"
* to the format for our dma controller
* standard intel_mid_dmac's format
* 1 Byte 0b000
* 2 Bytes 0b001
* 4 Bytes 0b010
*/
ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
ctl_lo.ctlx.tt_fc = 0;
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 0;
} else {
if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
ctl_lo.ctlx.sinc = 0;
ctl_lo.ctlx.dinc = 2;
ctl_lo.ctlx.tt_fc = 1;
} else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
ctl_lo.ctlx.sinc = 2;
ctl_lo.ctlx.dinc = 0;
ctl_lo.ctlx.tt_fc = 2;
}
}
pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
enable_dma_interrupt(midc);
desc = midc_desc_get(midc);
if (desc == NULL)
goto err_desc_get;
desc->sar = src;
desc->dar = dest ;
desc->len = len;
desc->cfg_hi = cfg_hi.cfg_hi;
desc->cfg_lo = cfg_lo.cfg_lo;
desc->ctl_lo = ctl_lo.ctl_lo;
desc->ctl_hi = ctl_hi.ctl_hi;
desc->width = width;
desc->dirn = mids->dma_slave.direction;
desc->lli_phys = 0;
desc->lli = NULL;
desc->lli_pool = NULL;
return &desc->txd;
err_desc_get:
pr_err("ERR_MDMA: Failed to get desc\n");
midc_desc_put(midc, desc);
return NULL;
}
/**
* intel_mid_dma_prep_slave_sg - Prep slave sg txn
* @chan: chan for DMA transfer
* @sgl: scatter gather list
* @sg_len: length of sg txn
* @direction: DMA transfer dirtn
* @flags: DMA flags
* @context: transfer context (ignored)
*
* Prepares LLI based periphral transfer
*/
static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
struct dma_chan *chan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction direction,
unsigned long flags, void *context)
{
struct intel_mid_dma_chan *midc = NULL;
struct intel_mid_dma_slave *mids = NULL;
struct intel_mid_dma_desc *desc = NULL;
struct dma_async_tx_descriptor *txd = NULL;
union intel_mid_dma_ctl_lo ctl_lo;
pr_debug("MDMA: Prep for slave SG\n");
if (!sg_len) {
pr_err("MDMA: Invalid SG length\n");
return NULL;
}
midc = to_intel_mid_dma_chan(chan);
BUG_ON(!midc);
mids = midc->mid_slave;
BUG_ON(!mids);
if (!midc->dma->pimr_mask) {
/* We can still handle sg list with only one item */
if (sg_len == 1) {
txd = intel_mid_dma_prep_memcpy(chan,
mids->dma_slave.dst_addr,
mids->dma_slave.src_addr,
sg_dma_len(sgl),
flags);
return txd;
} else {
pr_warn("MDMA: SG list is not supported by this controller\n");
return NULL;
}
}
pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
sg_len, direction, flags);
txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
if (NULL == txd) {
pr_err("MDMA: Prep memcpy failed\n");
return NULL;
}
desc = to_intel_mid_dma_desc(txd);
desc->dirn = direction;
ctl_lo.ctl_lo = desc->ctl_lo;
ctl_lo.ctlx.llp_dst_en = 1;
ctl_lo.ctlx.llp_src_en = 1;
desc->ctl_lo = ctl_lo.ctl_lo;
desc->lli_length = sg_len;
desc->current_lli = 0;
/* DMA coherent memory pool for LLI descriptors*/
desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
midc->dma->pdev,
(sizeof(struct intel_mid_dma_lli)*sg_len),
32, 0);
if (NULL == desc->lli_pool) {
pr_err("MID_DMA:LLI pool create failed\n");
return NULL;
}
desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
if (!desc->lli) {
pr_err("MID_DMA: LLI alloc failed\n");
pci_pool_destroy(desc->lli_pool);
return NULL;
}
midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
if (flags & DMA_PREP_INTERRUPT) {
iowrite32(UNMASK_INTR_REG(midc->ch_id),
midc->dma_base + MASK_BLOCK);
pr_debug("MDMA:Enabled Block interrupt\n");
}
return &desc->txd;
}
/**
* intel_mid_dma_free_chan_resources - Frees dma resources
* @chan: chan requiring attention
*
* Frees the allocated resources on this DMA chan
*/
static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc, *_desc;
if (true == midc->busy) {
/*trying to free ch in use!!!!!*/
pr_err("ERR_MDMA: trying to free ch in use\n");
}
spin_lock_bh(&midc->lock);
midc->descs_allocated = 0;
list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
list_del(&desc->desc_node);
pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
}
spin_unlock_bh(&midc->lock);
midc->in_use = false;
midc->busy = false;
/* Disable CH interrupts */
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
pm_runtime_put(&mid->pdev->dev);
}
/**
* intel_mid_dma_alloc_chan_resources - Allocate dma resources
* @chan: chan requiring attention
*
* Allocates DMA resources on this chan
* Return the descriptors allocated
*/
static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
{
struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
struct middma_device *mid = to_middma_device(chan->device);
struct intel_mid_dma_desc *desc;
dma_addr_t phys;
int i = 0;
pm_runtime_get_sync(&mid->pdev->dev);
if (mid->state == SUSPENDED) {
if (dma_resume(&mid->pdev->dev)) {
pr_err("ERR_MDMA: resume failed");
return -EFAULT;
}
}
/* ASSERT: channel is idle */
if (test_ch_en(mid->dma_base, midc->ch_id)) {
/*ch is not idle*/
pr_err("ERR_MDMA: ch not idle\n");
pm_runtime_put(&mid->pdev->dev);
return -EIO;
}
dma_cookie_init(chan);
spin_lock_bh(&midc->lock);
while (midc->descs_allocated < DESCS_PER_CHANNEL) {
spin_unlock_bh(&midc->lock);
desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
if (!desc) {
pr_err("ERR_MDMA: desc failed\n");
pm_runtime_put(&mid->pdev->dev);
return -ENOMEM;
/*check*/
}
dma_async_tx_descriptor_init(&desc->txd, chan);
desc->txd.tx_submit = intel_mid_dma_tx_submit;
desc->txd.flags = DMA_CTRL_ACK;
desc->txd.phys = phys;
spin_lock_bh(&midc->lock);
i = ++midc->descs_allocated;
list_add_tail(&desc->desc_node, &midc->free_list);
}
spin_unlock_bh(&midc->lock);
midc->in_use = true;
midc->busy = false;
pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
return i;
}
/**
* midc_handle_error - Handle DMA txn error
* @mid: controller where error occurred
* @midc: chan where error occurred
*
* Scan the descriptor for error
*/
static void midc_handle_error(struct middma_device *mid,
struct intel_mid_dma_chan *midc)
{
midc_scan_descriptors(mid, midc);
}
/**
* dma_tasklet - DMA interrupt tasklet
* @data: tasklet arg (the controller structure)
*
* Scan the controller for interrupts for completion/error
* Clear the interrupt and call for handling completion/error
*/
static void dma_tasklet(unsigned long data)
{
struct middma_device *mid = NULL;
struct intel_mid_dma_chan *midc = NULL;
u32 status, raw_tfr, raw_block;
int i;
mid = (struct middma_device *)data;
if (mid == NULL) {
pr_err("ERR_MDMA: tasklet Null param\n");
return;
}
pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
raw_tfr = ioread32(mid->dma_base + RAW_TFR);
raw_block = ioread32(mid->dma_base + RAW_BLOCK);
status = raw_tfr | raw_block;
status &= mid->intr_mask;
while (status) {
/*txn interrupt*/
i = get_ch_index(&status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
midc->raw_tfr = raw_tfr;
midc->raw_block = raw_block;
spin_lock_bh(&midc->lock);
/*clearing this interrupts first*/
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
if (raw_block) {
iowrite32((1 << midc->ch_id),
mid->dma_base + CLEAR_BLOCK);
}
midc_scan_descriptors(mid, midc);
pr_debug("MDMA:Scan of desc... complete, unmasking\n");
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_TFR);
if (raw_block) {
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_BLOCK);
}
spin_unlock_bh(&midc->lock);
}
status = ioread32(mid->dma_base + RAW_ERR);
status &= mid->intr_mask;
while (status) {
/*err interrupt*/
i = get_ch_index(&status, mid->chan_base);
if (i < 0) {
pr_err("ERR_MDMA:Invalid ch index %x\n", i);
return;
}
midc = &mid->ch[i];
if (midc == NULL) {
pr_err("ERR_MDMA:Null param midc\n");
return;
}
pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
status, midc->ch_id, i);
iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
spin_lock_bh(&midc->lock);
midc_handle_error(mid, midc);
iowrite32(UNMASK_INTR_REG(midc->ch_id),
mid->dma_base + MASK_ERR);
spin_unlock_bh(&midc->lock);
}
pr_debug("MDMA:Exiting takslet...\n");
return;
}
static void dma_tasklet1(unsigned long data)
{
pr_debug("MDMA:in takslet1...\n");
return dma_tasklet(data);
}
static void dma_tasklet2(unsigned long data)
{
pr_debug("MDMA:in takslet2...\n");
return dma_tasklet(data);
}
/**
* intel_mid_dma_interrupt - DMA ISR
* @irq: IRQ where interrupt occurred
* @data: ISR cllback data (the controller structure)
*
* See if this is our interrupt if so then schedule the tasklet
* otherwise ignore
*/
static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
{
struct middma_device *mid = data;
u32 tfr_status, err_status;
int call_tasklet = 0;
tfr_status = ioread32(mid->dma_base + RAW_TFR);
err_status = ioread32(mid->dma_base + RAW_ERR);
if (!tfr_status && !err_status)
return IRQ_NONE;
/*DMA Interrupt*/
pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
tfr_status &= mid->intr_mask;
if (tfr_status) {
/*need to disable intr*/
iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
call_tasklet = 1;
}
err_status &= mid->intr_mask;
if (err_status) {
iowrite32((err_status << INT_MASK_WE),
mid->dma_base + MASK_ERR);
call_tasklet = 1;
}
if (call_tasklet)
tasklet_schedule(&mid->tasklet);
return IRQ_HANDLED;
}
static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
{
return intel_mid_dma_interrupt(irq, data);
}
/**
* mid_setup_dma - Setup the DMA controller
* @pdev: Controller PCI device structure
*
* Initialize the DMA controller, channels, registers with DMA engine,
* ISR. Initialize DMA controller channels.
*/
static int mid_setup_dma(struct pci_dev *pdev)
{
struct middma_device *dma = pci_get_drvdata(pdev);
int err, i;
/* DMA coherent memory pool for DMA descriptor allocations */
dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
sizeof(struct intel_mid_dma_desc),
32, 0);
if (NULL == dma->dma_pool) {
pr_err("ERR_MDMA:pci_pool_create failed\n");
err = -ENOMEM;
goto err_dma_pool;
}
INIT_LIST_HEAD(&dma->common.channels);
dma->pci_id = pdev->device;
if (dma->pimr_mask) {
dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
LNW_PERIPHRAL_MASK_SIZE);
if (dma->mask_reg == NULL) {
pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
err = -ENOMEM;
goto err_ioremap;
}
} else
dma->mask_reg = NULL;
pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
/*init CH structures*/
dma->intr_mask = 0;
dma->state = RUNNING;
for (i = 0; i < dma->max_chan; i++) {
struct intel_mid_dma_chan *midch = &dma->ch[i];
midch->chan.device = &dma->common;
dma_cookie_init(&midch->chan);
midch->ch_id = dma->chan_base + i;
pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
midch->dma_base = dma->dma_base;
midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
midch->dma = dma;
dma->intr_mask |= 1 << (dma->chan_base + i);
spin_lock_init(&midch->lock);
INIT_LIST_HEAD(&midch->active_list);
INIT_LIST_HEAD(&midch->queue);
INIT_LIST_HEAD(&midch->free_list);
/*mask interrupts*/
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_BLOCK);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_SRC_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_DST_TRAN);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_ERR);
iowrite32(MASK_INTR_REG(midch->ch_id),
dma->dma_base + MASK_TFR);
disable_dma_interrupt(midch);
list_add_tail(&midch->chan.device_node, &dma->common.channels);
}
pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
/*init dma structure*/
dma_cap_zero(dma->common.cap_mask);
dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
dma->common.dev = &pdev->dev;
dma->common.device_alloc_chan_resources =
intel_mid_dma_alloc_chan_resources;
dma->common.device_free_chan_resources =
intel_mid_dma_free_chan_resources;
dma->common.device_tx_status = intel_mid_dma_tx_status;
dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
dma->common.device_issue_pending = intel_mid_dma_issue_pending;
dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
dma->common.device_config = intel_mid_dma_config;
dma->common.device_terminate_all = intel_mid_dma_terminate_all;
/*enable dma cntrl*/
iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
/*register irq */
if (dma->pimr_mask) {
pr_debug("MDMA:Requesting irq shared for DMAC1\n");
err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
IRQF_SHARED, "INTEL_MID_DMAC1", dma);
if (0 != err)
goto err_irq;
} else {
dma->intr_mask = 0x03;
pr_debug("MDMA:Requesting irq for DMAC2\n");
err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
IRQF_SHARED, "INTEL_MID_DMAC2", dma);
if (0 != err)
goto err_irq;
}
/*register device w/ engine*/
err = dma_async_device_register(&dma->common);
if (0 != err) {
pr_err("ERR_MDMA:device_register failed: %d\n", err);
goto err_engine;
}
if (dma->pimr_mask) {
pr_debug("setting up tasklet1 for DMAC1\n");
tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
} else {
pr_debug("setting up tasklet2 for DMAC2\n");
tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
}
return 0;
err_engine:
free_irq(pdev->irq, dma);
err_irq:
if (dma->mask_reg)
iounmap(dma->mask_reg);
err_ioremap:
pci_pool_destroy(dma->dma_pool);
err_dma_pool:
pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
return err;
}
/**
* middma_shutdown - Shutdown the DMA controller
* @pdev: Controller PCI device structure
*
* Called by remove
* Unregister DMa controller, clear all structures and free interrupt
*/
static void middma_shutdown(struct pci_dev *pdev)
{
struct middma_device *device = pci_get_drvdata(pdev);
dma_async_device_unregister(&device->common);
pci_pool_destroy(device->dma_pool);
if (device->mask_reg)
iounmap(device->mask_reg);
if (device->dma_base)
iounmap(device->dma_base);
free_irq(pdev->irq, device);
return;
}
/**
* intel_mid_dma_probe - PCI Probe
* @pdev: Controller PCI device structure
* @id: pci device id structure
*
* Initialize the PCI device, map BARs, query driver data.
* Call setup_dma to complete contoller and chan initilzation
*/
static int intel_mid_dma_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct middma_device *device;
u32 base_addr, bar_size;
struct intel_mid_dma_probe_info *info;
int err;
pr_debug("MDMA: probe for %x\n", pdev->device);
info = (void *)id->driver_data;
pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
info->max_chan, info->ch_base,
info->block_size, info->pimr_mask);
err = pci_enable_device(pdev);
if (err)
goto err_enable_device;
err = pci_request_regions(pdev, "intel_mid_dmac");
if (err)
goto err_request_regions;
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
if (err)
goto err_set_dma_mask;
device = kzalloc(sizeof(*device), GFP_KERNEL);
if (!device) {
pr_err("ERR_MDMA:kzalloc failed probe\n");
err = -ENOMEM;
goto err_kzalloc;
}
device->pdev = pci_dev_get(pdev);
base_addr = pci_resource_start(pdev, 0);
bar_size = pci_resource_len(pdev, 0);
device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
if (!device->dma_base) {
pr_err("ERR_MDMA:ioremap failed\n");
err = -ENOMEM;
goto err_ioremap;
}
pci_set_drvdata(pdev, device);
pci_set_master(pdev);
device->max_chan = info->max_chan;
device->chan_base = info->ch_base;
device->block_size = info->block_size;
device->pimr_mask = info->pimr_mask;
err = mid_setup_dma(pdev);
if (err)
goto err_dma;
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_allow(&pdev->dev);
return 0;
err_dma:
iounmap(device->dma_base);
err_ioremap:
pci_dev_put(pdev);
kfree(device);
err_kzalloc:
err_set_dma_mask:
pci_release_regions(pdev);
pci_disable_device(pdev);
err_request_regions:
err_enable_device:
pr_err("ERR_MDMA:Probe failed %d\n", err);
return err;
}
/**
* intel_mid_dma_remove - PCI remove
* @pdev: Controller PCI device structure
*
* Free up all resources and data
* Call shutdown_dma to complete contoller and chan cleanup
*/
static void intel_mid_dma_remove(struct pci_dev *pdev)
{
struct middma_device *device = pci_get_drvdata(pdev);
pm_runtime_get_noresume(&pdev->dev);
pm_runtime_forbid(&pdev->dev);
middma_shutdown(pdev);
pci_dev_put(pdev);
kfree(device);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
/* Power Management */
/*
* dma_suspend - PCI suspend function
*
* @pci: PCI device structure
* @state: PM message
*
* This function is called by OS when a power event occurs
*/
static int dma_suspend(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
int i;
struct middma_device *device = pci_get_drvdata(pci);
pr_debug("MDMA: dma_suspend called\n");
for (i = 0; i < device->max_chan; i++) {
if (device->ch[i].in_use)
return -EAGAIN;
}
dmac1_mask_periphral_intr(device);
device->state = SUSPENDED;
pci_save_state(pci);
pci_disable_device(pci);
pci_set_power_state(pci, PCI_D3hot);
return 0;
}
/**
* dma_resume - PCI resume function
*
* @pci: PCI device structure
*
* This function is called by OS when a power event occurs
*/
int dma_resume(struct device *dev)
{
struct pci_dev *pci = to_pci_dev(dev);
int ret;
struct middma_device *device = pci_get_drvdata(pci);
pr_debug("MDMA: dma_resume called\n");
pci_set_power_state(pci, PCI_D0);
pci_restore_state(pci);
ret = pci_enable_device(pci);
if (ret) {
pr_err("MDMA: device can't be enabled for %x\n", pci->device);
return ret;
}
device->state = RUNNING;
iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
return 0;
}
static int dma_runtime_suspend(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct middma_device *device = pci_get_drvdata(pci_dev);
device->state = SUSPENDED;
return 0;
}
static int dma_runtime_resume(struct device *dev)
{
struct pci_dev *pci_dev = to_pci_dev(dev);
struct middma_device *device = pci_get_drvdata(pci_dev);
device->state = RUNNING;
iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
return 0;
}
static int dma_runtime_idle(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct middma_device *device = pci_get_drvdata(pdev);
int i;
for (i = 0; i < device->max_chan; i++) {
if (device->ch[i].in_use)
return -EAGAIN;
}
return 0;
}
/******************************************************************************
* PCI stuff
*/
static struct pci_device_id intel_mid_dma_ids[] = {
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID), INFO(2, 6, 4095, 0x200020)},
{ PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID), INFO(2, 0, 2047, 0)},
{ PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID), INFO(2, 0, 2047, 0)},
{ PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID), INFO(4, 0, 4095, 0x400040)},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
static const struct dev_pm_ops intel_mid_dma_pm = {
.runtime_suspend = dma_runtime_suspend,
.runtime_resume = dma_runtime_resume,
.runtime_idle = dma_runtime_idle,
.suspend = dma_suspend,
.resume = dma_resume,
};
static struct pci_driver intel_mid_dma_pci_driver = {
.name = "Intel MID DMA",
.id_table = intel_mid_dma_ids,
.probe = intel_mid_dma_probe,
.remove = intel_mid_dma_remove,
#ifdef CONFIG_PM
.driver = {
.pm = &intel_mid_dma_pm,
},
#endif
};
static int __init intel_mid_dma_init(void)
{
pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
INTEL_MID_DMA_DRIVER_VERSION);
return pci_register_driver(&intel_mid_dma_pci_driver);
}
fs_initcall(intel_mid_dma_init);
static void __exit intel_mid_dma_exit(void)
{
pci_unregister_driver(&intel_mid_dma_pci_driver);
}
module_exit(intel_mid_dma_exit);
MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);
/*
* intel_mid_dma_regs.h - Intel MID DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#ifndef __INTEL_MID_DMAC_REGS_H__
#define __INTEL_MID_DMAC_REGS_H__
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
#include <linux/pci_ids.h>
#define INTEL_MID_DMA_DRIVER_VERSION "1.1.0"
#define REG_BIT0 0x00000001
#define REG_BIT8 0x00000100
#define INT_MASK_WE 0x8
#define CLEAR_DONE 0xFFFFEFFF
#define UNMASK_INTR_REG(chan_num) \
((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
#define MASK_INTR_REG(chan_num) (REG_BIT8 << chan_num)
#define ENABLE_CHANNEL(chan_num) \
((REG_BIT0 << chan_num) | (REG_BIT8 << chan_num))
#define DISABLE_CHANNEL(chan_num) \
(REG_BIT8 << chan_num)
#define DESCS_PER_CHANNEL 16
/*DMA Registers*/
/*registers associated with channel programming*/
#define DMA_REG_SIZE 0x400
#define DMA_CH_SIZE 0x58
/*CH X REG = (DMA_CH_SIZE)*CH_NO + REG*/
#define SAR 0x00 /* Source Address Register*/
#define DAR 0x08 /* Destination Address Register*/
#define LLP 0x10 /* Linked List Pointer Register*/
#define CTL_LOW 0x18 /* Control Register*/
#define CTL_HIGH 0x1C /* Control Register*/
#define CFG_LOW 0x40 /* Configuration Register Low*/
#define CFG_HIGH 0x44 /* Configuration Register high*/
#define STATUS_TFR 0x2E8
#define STATUS_BLOCK 0x2F0
#define STATUS_ERR 0x308
#define RAW_TFR 0x2C0
#define RAW_BLOCK 0x2C8
#define RAW_ERR 0x2E0
#define MASK_TFR 0x310
#define MASK_BLOCK 0x318
#define MASK_SRC_TRAN 0x320
#define MASK_DST_TRAN 0x328
#define MASK_ERR 0x330
#define CLEAR_TFR 0x338
#define CLEAR_BLOCK 0x340
#define CLEAR_SRC_TRAN 0x348
#define CLEAR_DST_TRAN 0x350
#define CLEAR_ERR 0x358
#define INTR_STATUS 0x360
#define DMA_CFG 0x398
#define DMA_CHAN_EN 0x3A0
/*DMA channel control registers*/
union intel_mid_dma_ctl_lo {
struct {
u32 int_en:1; /*enable or disable interrupts*/
/*should be 0*/
u32 dst_tr_width:3; /*destination transfer width*/
/*usually 32 bits = 010*/
u32 src_tr_width:3; /*source transfer width*/
/*usually 32 bits = 010*/
u32 dinc:2; /*destination address inc/dec*/
/*For mem:INC=00, Periphral NoINC=11*/
u32 sinc:2; /*source address inc or dec, as above*/
u32 dst_msize:3; /*destination burst transaction length*/
/*always = 16 ie 011*/
u32 src_msize:3; /*source burst transaction length*/
/*always = 16 ie 011*/
u32 reser1:3;
u32 tt_fc:3; /*transfer type and flow controller*/
/*M-M = 000
P-M = 010
M-P = 001*/
u32 dms:2; /*destination master select = 0*/
u32 sms:2; /*source master select = 0*/
u32 llp_dst_en:1; /*enable/disable destination LLP = 0*/
u32 llp_src_en:1; /*enable/disable source LLP = 0*/
u32 reser2:3;
} ctlx;
u32 ctl_lo;
};
union intel_mid_dma_ctl_hi {
struct {
u32 block_ts:12; /*block transfer size*/
u32 done:1; /*Done - updated by DMAC*/
u32 reser:19; /*configured by DMAC*/
} ctlx;
u32 ctl_hi;
};
/*DMA channel configuration registers*/
union intel_mid_dma_cfg_lo {
struct {
u32 reser1:5;
u32 ch_prior:3; /*channel priority = 0*/
u32 ch_susp:1; /*channel suspend = 0*/
u32 fifo_empty:1; /*FIFO empty or not R bit = 0*/
u32 hs_sel_dst:1; /*select HW/SW destn handshaking*/
/*HW = 0, SW = 1*/
u32 hs_sel_src:1; /*select HW/SW src handshaking*/
u32 reser2:6;
u32 dst_hs_pol:1; /*dest HS interface polarity*/
u32 src_hs_pol:1; /*src HS interface polarity*/
u32 max_abrst:10; /*max AMBA burst len = 0 (no sw limit*/
u32 reload_src:1; /*auto reload src addr =1 if src is P*/
u32 reload_dst:1; /*AR destn addr =1 if dstn is P*/
} cfgx;
u32 cfg_lo;
};
union intel_mid_dma_cfg_hi {
struct {
u32 fcmode:1; /*flow control mode = 1*/
u32 fifo_mode:1; /*FIFO mode select = 1*/
u32 protctl:3; /*protection control = 0*/
u32 rsvd:2;
u32 src_per:4; /*src hw HS interface*/
u32 dst_per:4; /*dstn hw HS interface*/
u32 reser2:17;
} cfgx;
u32 cfg_hi;
};
/**
* struct intel_mid_dma_chan - internal mid representation of a DMA channel
* @chan: dma_chan strcture represetation for mid chan
* @ch_regs: MMIO register space pointer to channel register
* @dma_base: MMIO register space DMA engine base pointer
* @ch_id: DMA channel id
* @lock: channel spinlock
* @active_list: current active descriptors
* @queue: current queued up descriptors
* @free_list: current free descriptors
* @slave: dma slave structure
* @descs_allocated: total number of descriptors allocated
* @dma: dma device structure pointer
* @busy: bool representing if ch is busy (active txn) or not
* @in_use: bool representing if ch is in use or not
* @raw_tfr: raw trf interrupt received
* @raw_block: raw block interrupt received
*/
struct intel_mid_dma_chan {
struct dma_chan chan;
void __iomem *ch_regs;
void __iomem *dma_base;
int ch_id;
spinlock_t lock;
struct list_head active_list;
struct list_head queue;
struct list_head free_list;
unsigned int descs_allocated;
struct middma_device *dma;
bool busy;
bool in_use;
u32 raw_tfr;
u32 raw_block;
struct intel_mid_dma_slave *mid_slave;
};
static inline struct intel_mid_dma_chan *to_intel_mid_dma_chan(
struct dma_chan *chan)
{
return container_of(chan, struct intel_mid_dma_chan, chan);
}
enum intel_mid_dma_state {
RUNNING = 0,
SUSPENDED,
};
/**
* struct middma_device - internal representation of a DMA device
* @pdev: PCI device
* @dma_base: MMIO register space pointer of DMA
* @dma_pool: for allocating DMA descriptors
* @common: embedded struct dma_device
* @tasklet: dma tasklet for processing interrupts
* @ch: per channel data
* @pci_id: DMA device PCI ID
* @intr_mask: Interrupt mask to be used
* @mask_reg: MMIO register for periphral mask
* @chan_base: Base ch index (read from driver data)
* @max_chan: max number of chs supported (from drv_data)
* @block_size: Block size of DMA transfer supported (from drv_data)
* @pimr_mask: MMIO register addr for periphral interrupt (from drv_data)
* @state: dma PM device state
*/
struct middma_device {
struct pci_dev *pdev;
void __iomem *dma_base;
struct pci_pool *dma_pool;
struct dma_device common;
struct tasklet_struct tasklet;
struct intel_mid_dma_chan ch[MAX_CHAN];
unsigned int pci_id;
unsigned int intr_mask;
void __iomem *mask_reg;
int chan_base;
int max_chan;
int block_size;
unsigned int pimr_mask;
enum intel_mid_dma_state state;
};
static inline struct middma_device *to_middma_device(struct dma_device *common)
{
return container_of(common, struct middma_device, common);
}
struct intel_mid_dma_desc {
void __iomem *block; /*ch ptr*/
struct list_head desc_node;
struct dma_async_tx_descriptor txd;
size_t len;
dma_addr_t sar;
dma_addr_t dar;
u32 cfg_hi;
u32 cfg_lo;
u32 ctl_lo;
u32 ctl_hi;
struct pci_pool *lli_pool;
struct intel_mid_dma_lli *lli;
dma_addr_t lli_phys;
unsigned int lli_length;
unsigned int current_lli;
dma_addr_t next;
enum dma_transfer_direction dirn;
enum dma_status status;
enum dma_slave_buswidth width; /*width of DMA txn*/
enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
};
struct intel_mid_dma_lli {
dma_addr_t sar;
dma_addr_t dar;
dma_addr_t llp;
u32 ctl_lo;
u32 ctl_hi;
} __attribute__ ((packed));
static inline int test_ch_en(void __iomem *dma, u32 ch_no)
{
u32 en_reg = ioread32(dma + DMA_CHAN_EN);
return (en_reg >> ch_no) & 0x1;
}
static inline struct intel_mid_dma_desc *to_intel_mid_dma_desc
(struct dma_async_tx_descriptor *txd)
{
return container_of(txd, struct intel_mid_dma_desc, txd);
}
static inline struct intel_mid_dma_slave *to_intel_mid_dma_slave
(struct dma_slave_config *slave)
{
return container_of(slave, struct intel_mid_dma_slave, dma_slave);
}
int dma_resume(struct device *dev);
#endif /*__INTEL_MID_DMAC_REGS_H__*/
...@@ -159,10 +159,9 @@ config SPI_BUTTERFLY ...@@ -159,10 +159,9 @@ config SPI_BUTTERFLY
config SPI_CADENCE config SPI_CADENCE
tristate "Cadence SPI controller" tristate "Cadence SPI controller"
depends on ARM
help help
This selects the Cadence SPI controller master driver This selects the Cadence SPI controller master driver
used by Xilinx Zynq. used by Xilinx Zynq and ZynqMP.
config SPI_CLPS711X config SPI_CLPS711X
tristate "CLPS711X host SPI controller" tristate "CLPS711X host SPI controller"
...@@ -632,7 +631,7 @@ config SPI_DW_PCI ...@@ -632,7 +631,7 @@ config SPI_DW_PCI
config SPI_DW_MID_DMA config SPI_DW_MID_DMA
bool "DMA support for DW SPI controller on Intel MID platform" bool "DMA support for DW SPI controller on Intel MID platform"
depends on SPI_DW_PCI && INTEL_MID_DMAC depends on SPI_DW_PCI && DW_DMAC_PCI
config SPI_DW_MMIO config SPI_DW_MMIO
tristate "Memory-mapped io interface driver for DW SPI core" tristate "Memory-mapped io interface driver for DW SPI core"
......
...@@ -559,7 +559,7 @@ static void bfin_spi_pump_transfers(unsigned long data) ...@@ -559,7 +559,7 @@ static void bfin_spi_pump_transfers(unsigned long data)
struct spi_transfer *previous = NULL; struct spi_transfer *previous = NULL;
struct bfin_spi_slave_data *chip = NULL; struct bfin_spi_slave_data *chip = NULL;
unsigned int bits_per_word; unsigned int bits_per_word;
u16 cr, cr_width, dma_width, dma_config; u16 cr, cr_width = 0, dma_width, dma_config;
u32 tranf_success = 1; u32 tranf_success = 1;
u8 full_duplex = 0; u8 full_duplex = 0;
...@@ -648,7 +648,6 @@ static void bfin_spi_pump_transfers(unsigned long data) ...@@ -648,7 +648,6 @@ static void bfin_spi_pump_transfers(unsigned long data)
} else if (bits_per_word == 8) { } else if (bits_per_word == 8) {
drv_data->n_bytes = bits_per_word/8; drv_data->n_bytes = bits_per_word/8;
drv_data->len = transfer->len; drv_data->len = transfer->len;
cr_width = 0;
drv_data->ops = &bfin_bfin_spi_transfer_ops_u8; drv_data->ops = &bfin_bfin_spi_transfer_ops_u8;
} }
cr = bfin_read(&drv_data->regs->ctl) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE); cr = bfin_read(&drv_data->regs->ctl) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
......
...@@ -23,29 +23,31 @@ ...@@ -23,29 +23,31 @@
#include "spi-dw.h" #include "spi-dw.h"
#ifdef CONFIG_SPI_DW_MID_DMA #ifdef CONFIG_SPI_DW_MID_DMA
#include <linux/intel_mid_dma.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#define RX_BUSY 0 #define RX_BUSY 0
#define TX_BUSY 1 #define TX_BUSY 1
struct mid_dma { static struct dw_dma_slave mid_dma_tx = { .dst_id = 1 };
struct intel_mid_dma_slave dmas_tx; static struct dw_dma_slave mid_dma_rx = { .src_id = 0 };
struct intel_mid_dma_slave dmas_rx;
};
static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param) static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{ {
struct dw_spi *dws = param; struct dw_dma_slave *s = param;
if (s->dma_dev != chan->device->dev)
return false;
return dws->dma_dev == chan->device->dev; chan->private = s;
return true;
} }
static int mid_spi_dma_init(struct dw_spi *dws) static int mid_spi_dma_init(struct dw_spi *dws)
{ {
struct mid_dma *dw_dma = dws->dma_priv;
struct pci_dev *dma_dev; struct pci_dev *dma_dev;
struct intel_mid_dma_slave *rxs, *txs; struct dw_dma_slave *tx = dws->dma_tx;
struct dw_dma_slave *rx = dws->dma_rx;
dma_cap_mask_t mask; dma_cap_mask_t mask;
/* /*
...@@ -56,28 +58,22 @@ static int mid_spi_dma_init(struct dw_spi *dws) ...@@ -56,28 +58,22 @@ static int mid_spi_dma_init(struct dw_spi *dws)
if (!dma_dev) if (!dma_dev)
return -ENODEV; return -ENODEV;
dws->dma_dev = &dma_dev->dev;
dma_cap_zero(mask); dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask); dma_cap_set(DMA_SLAVE, mask);
/* 1. Init rx channel */ /* 1. Init rx channel */
dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws); rx->dma_dev = &dma_dev->dev;
dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, rx);
if (!dws->rxchan) if (!dws->rxchan)
goto err_exit; goto err_exit;
rxs = &dw_dma->dmas_rx; dws->master->dma_rx = dws->rxchan;
rxs->hs_mode = LNW_DMA_HW_HS;
rxs->cfg_mode = LNW_DMA_PER_TO_MEM;
dws->rxchan->private = rxs;
/* 2. Init tx channel */ /* 2. Init tx channel */
dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, dws); tx->dma_dev = &dma_dev->dev;
dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, tx);
if (!dws->txchan) if (!dws->txchan)
goto free_rxchan; goto free_rxchan;
txs = &dw_dma->dmas_tx; dws->master->dma_tx = dws->txchan;
txs->hs_mode = LNW_DMA_HW_HS;
txs->cfg_mode = LNW_DMA_MEM_TO_PER;
dws->txchan->private = txs;
dws->dma_inited = 1; dws->dma_inited = 1;
return 0; return 0;
...@@ -100,6 +96,42 @@ static void mid_spi_dma_exit(struct dw_spi *dws) ...@@ -100,6 +96,42 @@ static void mid_spi_dma_exit(struct dw_spi *dws)
dma_release_channel(dws->rxchan); dma_release_channel(dws->rxchan);
} }
static irqreturn_t dma_transfer(struct dw_spi *dws)
{
u16 irq_status = dw_readl(dws, DW_SPI_ISR);
if (!irq_status)
return IRQ_NONE;
dw_readl(dws, DW_SPI_ICR);
spi_reset_chip(dws);
dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
dws->master->cur_msg->status = -EIO;
spi_finalize_current_transfer(dws->master);
return IRQ_HANDLED;
}
static bool mid_spi_can_dma(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer)
{
struct dw_spi *dws = spi_master_get_devdata(master);
if (!dws->dma_inited)
return false;
return xfer->len > dws->fifo_len;
}
static enum dma_slave_buswidth convert_dma_width(u32 dma_width) {
if (dma_width == 1)
return DMA_SLAVE_BUSWIDTH_1_BYTE;
else if (dma_width == 2)
return DMA_SLAVE_BUSWIDTH_2_BYTES;
return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}
/* /*
* dws->dma_chan_busy is set before the dma transfer starts, callback for tx * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
* channel will clear a corresponding bit. * channel will clear a corresponding bit.
...@@ -111,33 +143,30 @@ static void dw_spi_dma_tx_done(void *arg) ...@@ -111,33 +143,30 @@ static void dw_spi_dma_tx_done(void *arg)
clear_bit(TX_BUSY, &dws->dma_chan_busy); clear_bit(TX_BUSY, &dws->dma_chan_busy);
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) if (test_bit(RX_BUSY, &dws->dma_chan_busy))
return; return;
dw_spi_xfer_done(dws); spi_finalize_current_transfer(dws->master);
} }
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws) static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
struct spi_transfer *xfer)
{ {
struct dma_slave_config txconf; struct dma_slave_config txconf;
struct dma_async_tx_descriptor *txdesc; struct dma_async_tx_descriptor *txdesc;
if (!dws->tx_dma) if (!xfer->tx_buf)
return NULL; return NULL;
txconf.direction = DMA_MEM_TO_DEV; txconf.direction = DMA_MEM_TO_DEV;
txconf.dst_addr = dws->dma_addr; txconf.dst_addr = dws->dma_addr;
txconf.dst_maxburst = LNW_DMA_MSIZE_16; txconf.dst_maxburst = 16;
txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
txconf.dst_addr_width = dws->dma_width; txconf.dst_addr_width = convert_dma_width(dws->dma_width);
txconf.device_fc = false; txconf.device_fc = false;
dmaengine_slave_config(dws->txchan, &txconf); dmaengine_slave_config(dws->txchan, &txconf);
memset(&dws->tx_sgl, 0, sizeof(dws->tx_sgl));
dws->tx_sgl.dma_address = dws->tx_dma;
dws->tx_sgl.length = dws->len;
txdesc = dmaengine_prep_slave_sg(dws->txchan, txdesc = dmaengine_prep_slave_sg(dws->txchan,
&dws->tx_sgl, xfer->tx_sg.sgl,
1, xfer->tx_sg.nents,
DMA_MEM_TO_DEV, DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK); DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc) if (!txdesc)
...@@ -160,33 +189,30 @@ static void dw_spi_dma_rx_done(void *arg) ...@@ -160,33 +189,30 @@ static void dw_spi_dma_rx_done(void *arg)
clear_bit(RX_BUSY, &dws->dma_chan_busy); clear_bit(RX_BUSY, &dws->dma_chan_busy);
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) if (test_bit(TX_BUSY, &dws->dma_chan_busy))
return; return;
dw_spi_xfer_done(dws); spi_finalize_current_transfer(dws->master);
} }
static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws) static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
struct spi_transfer *xfer)
{ {
struct dma_slave_config rxconf; struct dma_slave_config rxconf;
struct dma_async_tx_descriptor *rxdesc; struct dma_async_tx_descriptor *rxdesc;
if (!dws->rx_dma) if (!xfer->rx_buf)
return NULL; return NULL;
rxconf.direction = DMA_DEV_TO_MEM; rxconf.direction = DMA_DEV_TO_MEM;
rxconf.src_addr = dws->dma_addr; rxconf.src_addr = dws->dma_addr;
rxconf.src_maxburst = LNW_DMA_MSIZE_16; rxconf.src_maxburst = 16;
rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
rxconf.src_addr_width = dws->dma_width; rxconf.src_addr_width = convert_dma_width(dws->dma_width);
rxconf.device_fc = false; rxconf.device_fc = false;
dmaengine_slave_config(dws->rxchan, &rxconf); dmaengine_slave_config(dws->rxchan, &rxconf);
memset(&dws->rx_sgl, 0, sizeof(dws->rx_sgl));
dws->rx_sgl.dma_address = dws->rx_dma;
dws->rx_sgl.length = dws->len;
rxdesc = dmaengine_prep_slave_sg(dws->rxchan, rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
&dws->rx_sgl, xfer->rx_sg.sgl,
1, xfer->rx_sg.nents,
DMA_DEV_TO_MEM, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK); DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc) if (!rxdesc)
...@@ -198,37 +224,36 @@ static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws) ...@@ -198,37 +224,36 @@ static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws)
return rxdesc; return rxdesc;
} }
static void dw_spi_dma_setup(struct dw_spi *dws) static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{ {
u16 dma_ctrl = 0; u16 dma_ctrl = 0;
spi_enable_chip(dws, 0); dw_writel(dws, DW_SPI_DMARDLR, 0xf);
dw_writel(dws, DW_SPI_DMATDLR, 0x10);
dw_writew(dws, DW_SPI_DMARDLR, 0xf);
dw_writew(dws, DW_SPI_DMATDLR, 0x10);
if (dws->tx_dma) if (xfer->tx_buf)
dma_ctrl |= SPI_DMA_TDMAE; dma_ctrl |= SPI_DMA_TDMAE;
if (dws->rx_dma) if (xfer->rx_buf)
dma_ctrl |= SPI_DMA_RDMAE; dma_ctrl |= SPI_DMA_RDMAE;
dw_writew(dws, DW_SPI_DMACR, dma_ctrl); dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
/* Set the interrupt mask */
spi_umask_intr(dws, SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI);
dws->transfer_handler = dma_transfer;
spi_enable_chip(dws, 1); return 0;
} }
static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change) static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{ {
struct dma_async_tx_descriptor *txdesc, *rxdesc; struct dma_async_tx_descriptor *txdesc, *rxdesc;
/* 1. setup DMA related registers */ /* Prepare the TX dma transfer */
if (cs_change) txdesc = dw_spi_dma_prepare_tx(dws, xfer);
dw_spi_dma_setup(dws);
/* 2. Prepare the TX dma transfer */
txdesc = dw_spi_dma_prepare_tx(dws);
/* 3. Prepare the RX dma transfer */ /* Prepare the RX dma transfer */
rxdesc = dw_spi_dma_prepare_rx(dws); rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
/* rx must be started before tx due to spi instinct */ /* rx must be started before tx due to spi instinct */
if (rxdesc) { if (rxdesc) {
...@@ -246,10 +271,25 @@ static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change) ...@@ -246,10 +271,25 @@ static int mid_spi_dma_transfer(struct dw_spi *dws, int cs_change)
return 0; return 0;
} }
static void mid_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_all(dws->txchan);
clear_bit(TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_all(dws->rxchan);
clear_bit(RX_BUSY, &dws->dma_chan_busy);
}
}
static struct dw_spi_dma_ops mid_dma_ops = { static struct dw_spi_dma_ops mid_dma_ops = {
.dma_init = mid_spi_dma_init, .dma_init = mid_spi_dma_init,
.dma_exit = mid_spi_dma_exit, .dma_exit = mid_spi_dma_exit,
.dma_setup = mid_spi_dma_setup,
.can_dma = mid_spi_can_dma,
.dma_transfer = mid_spi_dma_transfer, .dma_transfer = mid_spi_dma_transfer,
.dma_stop = mid_spi_dma_stop,
}; };
#endif #endif
...@@ -282,9 +322,8 @@ int dw_spi_mid_init(struct dw_spi *dws) ...@@ -282,9 +322,8 @@ int dw_spi_mid_init(struct dw_spi *dws)
iounmap(clk_reg); iounmap(clk_reg);
#ifdef CONFIG_SPI_DW_MID_DMA #ifdef CONFIG_SPI_DW_MID_DMA
dws->dma_priv = kzalloc(sizeof(struct mid_dma), GFP_KERNEL); dws->dma_tx = &mid_dma_tx;
if (!dws->dma_priv) dws->dma_rx = &mid_dma_rx;
return -ENOMEM;
dws->dma_ops = &mid_dma_ops; dws->dma_ops = &mid_dma_ops;
#endif #endif
return 0; return 0;
......
...@@ -28,11 +28,6 @@ ...@@ -28,11 +28,6 @@
#include <linux/debugfs.h> #include <linux/debugfs.h>
#endif #endif
#define START_STATE ((void *)0)
#define RUNNING_STATE ((void *)1)
#define DONE_STATE ((void *)2)
#define ERROR_STATE ((void *)-1)
/* Slave spi_dev related */ /* Slave spi_dev related */
struct chip_data { struct chip_data {
u16 cr0; u16 cr0;
...@@ -143,13 +138,26 @@ static inline void dw_spi_debugfs_remove(struct dw_spi *dws) ...@@ -143,13 +138,26 @@ static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
} }
#endif /* CONFIG_DEBUG_FS */ #endif /* CONFIG_DEBUG_FS */
static void dw_spi_set_cs(struct spi_device *spi, bool enable)
{
struct dw_spi *dws = spi_master_get_devdata(spi->master);
struct chip_data *chip = spi_get_ctldata(spi);
/* Chip select logic is inverted from spi_set_cs() */
if (chip && chip->cs_control)
chip->cs_control(!enable);
if (!enable)
dw_writel(dws, DW_SPI_SER, BIT(spi->chip_select));
}
/* Return the max entries we can fill into tx fifo */ /* Return the max entries we can fill into tx fifo */
static inline u32 tx_max(struct dw_spi *dws) static inline u32 tx_max(struct dw_spi *dws)
{ {
u32 tx_left, tx_room, rxtx_gap; u32 tx_left, tx_room, rxtx_gap;
tx_left = (dws->tx_end - dws->tx) / dws->n_bytes; tx_left = (dws->tx_end - dws->tx) / dws->n_bytes;
tx_room = dws->fifo_len - dw_readw(dws, DW_SPI_TXFLR); tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
/* /*
* Another concern is about the tx/rx mismatch, we * Another concern is about the tx/rx mismatch, we
...@@ -170,7 +178,7 @@ static inline u32 rx_max(struct dw_spi *dws) ...@@ -170,7 +178,7 @@ static inline u32 rx_max(struct dw_spi *dws)
{ {
u32 rx_left = (dws->rx_end - dws->rx) / dws->n_bytes; u32 rx_left = (dws->rx_end - dws->rx) / dws->n_bytes;
return min_t(u32, rx_left, dw_readw(dws, DW_SPI_RXFLR)); return min_t(u32, rx_left, dw_readl(dws, DW_SPI_RXFLR));
} }
static void dw_writer(struct dw_spi *dws) static void dw_writer(struct dw_spi *dws)
...@@ -186,7 +194,7 @@ static void dw_writer(struct dw_spi *dws) ...@@ -186,7 +194,7 @@ static void dw_writer(struct dw_spi *dws)
else else
txw = *(u16 *)(dws->tx); txw = *(u16 *)(dws->tx);
} }
dw_writew(dws, DW_SPI_DR, txw); dw_writel(dws, DW_SPI_DR, txw);
dws->tx += dws->n_bytes; dws->tx += dws->n_bytes;
} }
} }
...@@ -197,7 +205,7 @@ static void dw_reader(struct dw_spi *dws) ...@@ -197,7 +205,7 @@ static void dw_reader(struct dw_spi *dws)
u16 rxw; u16 rxw;
while (max--) { while (max--) {
rxw = dw_readw(dws, DW_SPI_DR); rxw = dw_readl(dws, DW_SPI_DR);
/* Care rx only if the transfer's original "rx" is not null */ /* Care rx only if the transfer's original "rx" is not null */
if (dws->rx_end - dws->len) { if (dws->rx_end - dws->len) {
if (dws->n_bytes == 1) if (dws->n_bytes == 1)
...@@ -209,103 +217,22 @@ static void dw_reader(struct dw_spi *dws) ...@@ -209,103 +217,22 @@ static void dw_reader(struct dw_spi *dws)
} }
} }
static void *next_transfer(struct dw_spi *dws)
{
struct spi_message *msg = dws->cur_msg;
struct spi_transfer *trans = dws->cur_transfer;
/* Move to next transfer */
if (trans->transfer_list.next != &msg->transfers) {
dws->cur_transfer =
list_entry(trans->transfer_list.next,
struct spi_transfer,
transfer_list);
return RUNNING_STATE;
}
return DONE_STATE;
}
/*
* Note: first step is the protocol driver prepares
* a dma-capable memory, and this func just need translate
* the virt addr to physical
*/
static int map_dma_buffers(struct dw_spi *dws)
{
if (!dws->cur_msg->is_dma_mapped
|| !dws->dma_inited
|| !dws->cur_chip->enable_dma
|| !dws->dma_ops)
return 0;
if (dws->cur_transfer->tx_dma)
dws->tx_dma = dws->cur_transfer->tx_dma;
if (dws->cur_transfer->rx_dma)
dws->rx_dma = dws->cur_transfer->rx_dma;
return 1;
}
/* Caller already set message->status; dma and pio irqs are blocked */
static void giveback(struct dw_spi *dws)
{
struct spi_transfer *last_transfer;
struct spi_message *msg;
msg = dws->cur_msg;
dws->cur_msg = NULL;
dws->cur_transfer = NULL;
dws->prev_chip = dws->cur_chip;
dws->cur_chip = NULL;
dws->dma_mapped = 0;
last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
transfer_list);
if (!last_transfer->cs_change)
spi_chip_sel(dws, msg->spi, 0);
spi_finalize_current_message(dws->master);
}
static void int_error_stop(struct dw_spi *dws, const char *msg) static void int_error_stop(struct dw_spi *dws, const char *msg)
{ {
/* Stop the hw */ spi_reset_chip(dws);
spi_enable_chip(dws, 0);
dev_err(&dws->master->dev, "%s\n", msg); dev_err(&dws->master->dev, "%s\n", msg);
dws->cur_msg->state = ERROR_STATE; dws->master->cur_msg->status = -EIO;
tasklet_schedule(&dws->pump_transfers); spi_finalize_current_transfer(dws->master);
} }
void dw_spi_xfer_done(struct dw_spi *dws)
{
/* Update total byte transferred return count actual bytes read */
dws->cur_msg->actual_length += dws->len;
/* Move to next transfer */
dws->cur_msg->state = next_transfer(dws);
/* Handle end of message */
if (dws->cur_msg->state == DONE_STATE) {
dws->cur_msg->status = 0;
giveback(dws);
} else
tasklet_schedule(&dws->pump_transfers);
}
EXPORT_SYMBOL_GPL(dw_spi_xfer_done);
static irqreturn_t interrupt_transfer(struct dw_spi *dws) static irqreturn_t interrupt_transfer(struct dw_spi *dws)
{ {
u16 irq_status = dw_readw(dws, DW_SPI_ISR); u16 irq_status = dw_readl(dws, DW_SPI_ISR);
/* Error handling */ /* Error handling */
if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) { if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
dw_readw(dws, DW_SPI_TXOICR); dw_readl(dws, DW_SPI_ICR);
dw_readw(dws, DW_SPI_RXOICR);
dw_readw(dws, DW_SPI_RXUICR);
int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun"); int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun");
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -313,7 +240,7 @@ static irqreturn_t interrupt_transfer(struct dw_spi *dws) ...@@ -313,7 +240,7 @@ static irqreturn_t interrupt_transfer(struct dw_spi *dws)
dw_reader(dws); dw_reader(dws);
if (dws->rx_end == dws->rx) { if (dws->rx_end == dws->rx) {
spi_mask_intr(dws, SPI_INT_TXEI); spi_mask_intr(dws, SPI_INT_TXEI);
dw_spi_xfer_done(dws); spi_finalize_current_transfer(dws->master);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
if (irq_status & SPI_INT_TXEI) { if (irq_status & SPI_INT_TXEI) {
...@@ -328,13 +255,14 @@ static irqreturn_t interrupt_transfer(struct dw_spi *dws) ...@@ -328,13 +255,14 @@ static irqreturn_t interrupt_transfer(struct dw_spi *dws)
static irqreturn_t dw_spi_irq(int irq, void *dev_id) static irqreturn_t dw_spi_irq(int irq, void *dev_id)
{ {
struct dw_spi *dws = dev_id; struct spi_master *master = dev_id;
u16 irq_status = dw_readw(dws, DW_SPI_ISR) & 0x3f; struct dw_spi *dws = spi_master_get_devdata(master);
u16 irq_status = dw_readl(dws, DW_SPI_ISR) & 0x3f;
if (!irq_status) if (!irq_status)
return IRQ_NONE; return IRQ_NONE;
if (!dws->cur_msg) { if (!master->cur_msg) {
spi_mask_intr(dws, SPI_INT_TXEI); spi_mask_intr(dws, SPI_INT_TXEI);
return IRQ_HANDLED; return IRQ_HANDLED;
} }
...@@ -343,7 +271,7 @@ static irqreturn_t dw_spi_irq(int irq, void *dev_id) ...@@ -343,7 +271,7 @@ static irqreturn_t dw_spi_irq(int irq, void *dev_id)
} }
/* Must be called inside pump_transfers() */ /* Must be called inside pump_transfers() */
static void poll_transfer(struct dw_spi *dws) static int poll_transfer(struct dw_spi *dws)
{ {
do { do {
dw_writer(dws); dw_writer(dws);
...@@ -351,64 +279,32 @@ static void poll_transfer(struct dw_spi *dws) ...@@ -351,64 +279,32 @@ static void poll_transfer(struct dw_spi *dws)
cpu_relax(); cpu_relax();
} while (dws->rx_end > dws->rx); } while (dws->rx_end > dws->rx);
dw_spi_xfer_done(dws); return 0;
} }
static void pump_transfers(unsigned long data) static int dw_spi_transfer_one(struct spi_master *master,
struct spi_device *spi, struct spi_transfer *transfer)
{ {
struct dw_spi *dws = (struct dw_spi *)data; struct dw_spi *dws = spi_master_get_devdata(master);
struct spi_message *message = NULL; struct chip_data *chip = spi_get_ctldata(spi);
struct spi_transfer *transfer = NULL;
struct spi_transfer *previous = NULL;
struct spi_device *spi = NULL;
struct chip_data *chip = NULL;
u8 bits = 0;
u8 imask = 0; u8 imask = 0;
u8 cs_change = 0; u16 txlevel = 0;
u16 txint_level = 0;
u16 clk_div = 0; u16 clk_div = 0;
u32 speed = 0; u32 speed = 0;
u32 cr0 = 0; u32 cr0 = 0;
int ret;
/* Get current state information */ dws->dma_mapped = 0;
message = dws->cur_msg;
transfer = dws->cur_transfer;
chip = dws->cur_chip;
spi = message->spi;
if (message->state == ERROR_STATE) {
message->status = -EIO;
goto early_exit;
}
/* Handle end of message */
if (message->state == DONE_STATE) {
message->status = 0;
goto early_exit;
}
/* Delay if requested at end of transfer */
if (message->state == RUNNING_STATE) {
previous = list_entry(transfer->transfer_list.prev,
struct spi_transfer,
transfer_list);
if (previous->delay_usecs)
udelay(previous->delay_usecs);
}
dws->n_bytes = chip->n_bytes; dws->n_bytes = chip->n_bytes;
dws->dma_width = chip->dma_width; dws->dma_width = chip->dma_width;
dws->cs_control = chip->cs_control;
dws->rx_dma = transfer->rx_dma;
dws->tx_dma = transfer->tx_dma;
dws->tx = (void *)transfer->tx_buf; dws->tx = (void *)transfer->tx_buf;
dws->tx_end = dws->tx + transfer->len; dws->tx_end = dws->tx + transfer->len;
dws->rx = transfer->rx_buf; dws->rx = transfer->rx_buf;
dws->rx_end = dws->rx + transfer->len; dws->rx_end = dws->rx + transfer->len;
dws->len = dws->cur_transfer->len; dws->len = transfer->len;
if (chip != dws->prev_chip)
cs_change = 1; spi_enable_chip(dws, 0);
cr0 = chip->cr0; cr0 = chip->cr0;
...@@ -416,32 +312,37 @@ static void pump_transfers(unsigned long data) ...@@ -416,32 +312,37 @@ static void pump_transfers(unsigned long data)
if (transfer->speed_hz) { if (transfer->speed_hz) {
speed = chip->speed_hz; speed = chip->speed_hz;
if ((transfer->speed_hz != speed) || (!chip->clk_div)) { if ((transfer->speed_hz != speed) || !chip->clk_div) {
speed = transfer->speed_hz; speed = transfer->speed_hz;
/* clk_div doesn't support odd number */ /* clk_div doesn't support odd number */
clk_div = dws->max_freq / speed; clk_div = (dws->max_freq / speed + 1) & 0xfffe;
clk_div = (clk_div + 1) & 0xfffe;
chip->speed_hz = speed; chip->speed_hz = speed;
chip->clk_div = clk_div; chip->clk_div = clk_div;
spi_set_clk(dws, chip->clk_div);
} }
} }
if (transfer->bits_per_word) { if (transfer->bits_per_word) {
bits = transfer->bits_per_word; if (transfer->bits_per_word == 8) {
dws->n_bytes = dws->dma_width = bits >> 3; dws->n_bytes = 1;
cr0 = (bits - 1) dws->dma_width = 1;
} else if (transfer->bits_per_word == 16) {
dws->n_bytes = 2;
dws->dma_width = 2;
}
cr0 = (transfer->bits_per_word - 1)
| (chip->type << SPI_FRF_OFFSET) | (chip->type << SPI_FRF_OFFSET)
| (spi->mode << SPI_MODE_OFFSET) | (spi->mode << SPI_MODE_OFFSET)
| (chip->tmode << SPI_TMOD_OFFSET); | (chip->tmode << SPI_TMOD_OFFSET);
} }
message->state = RUNNING_STATE;
/* /*
* Adjust transfer mode if necessary. Requires platform dependent * Adjust transfer mode if necessary. Requires platform dependent
* chipselect mechanism. * chipselect mechanism.
*/ */
if (dws->cs_control) { if (chip->cs_control) {
if (dws->rx && dws->tx) if (dws->rx && dws->tx)
chip->tmode = SPI_TMOD_TR; chip->tmode = SPI_TMOD_TR;
else if (dws->rx) else if (dws->rx)
...@@ -453,80 +354,60 @@ static void pump_transfers(unsigned long data) ...@@ -453,80 +354,60 @@ static void pump_transfers(unsigned long data)
cr0 |= (chip->tmode << SPI_TMOD_OFFSET); cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
} }
dw_writel(dws, DW_SPI_CTRL0, cr0);
/* Check if current transfer is a DMA transaction */ /* Check if current transfer is a DMA transaction */
dws->dma_mapped = map_dma_buffers(dws); if (master->can_dma && master->can_dma(master, spi, transfer))
dws->dma_mapped = master->cur_msg_mapped;
/* For poll mode just disable all interrupts */
spi_mask_intr(dws, 0xff);
/* /*
* Interrupt mode * Interrupt mode
* we only need set the TXEI IRQ, as TX/RX always happen syncronizely * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
*/ */
if (!dws->dma_mapped && !chip->poll_mode) { if (dws->dma_mapped) {
int templen = dws->len / dws->n_bytes; ret = dws->dma_ops->dma_setup(dws, transfer);
if (ret < 0) {
txint_level = dws->fifo_len / 2; spi_enable_chip(dws, 1);
txint_level = (templen > txint_level) ? txint_level : templen; return ret;
}
} else if (!chip->poll_mode) {
txlevel = min_t(u16, dws->fifo_len / 2, dws->len / dws->n_bytes);
dw_writel(dws, DW_SPI_TXFLTR, txlevel);
/* Set the interrupt mask */
imask |= SPI_INT_TXEI | SPI_INT_TXOI | imask |= SPI_INT_TXEI | SPI_INT_TXOI |
SPI_INT_RXUI | SPI_INT_RXOI; SPI_INT_RXUI | SPI_INT_RXOI;
spi_umask_intr(dws, imask);
dws->transfer_handler = interrupt_transfer; dws->transfer_handler = interrupt_transfer;
} }
/*
* Reprogram registers only if
* 1. chip select changes
* 2. clk_div is changed
* 3. control value changes
*/
if (dw_readw(dws, DW_SPI_CTRL0) != cr0 || cs_change || clk_div || imask) {
spi_enable_chip(dws, 0);
if (dw_readw(dws, DW_SPI_CTRL0) != cr0)
dw_writew(dws, DW_SPI_CTRL0, cr0);
spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
spi_chip_sel(dws, spi, 1);
/* Set the interrupt mask, for poll mode just disable all int */
spi_mask_intr(dws, 0xff);
if (imask)
spi_umask_intr(dws, imask);
if (txint_level)
dw_writew(dws, DW_SPI_TXFLTR, txint_level);
spi_enable_chip(dws, 1); spi_enable_chip(dws, 1);
if (cs_change)
dws->prev_chip = chip;
}
if (dws->dma_mapped) if (dws->dma_mapped) {
dws->dma_ops->dma_transfer(dws, cs_change); ret = dws->dma_ops->dma_transfer(dws, transfer);
if (ret < 0)
return ret;
}
if (chip->poll_mode) if (chip->poll_mode)
poll_transfer(dws); return poll_transfer(dws);
return; return 1;
early_exit:
giveback(dws);
} }
static int dw_spi_transfer_one_message(struct spi_master *master, static void dw_spi_handle_err(struct spi_master *master,
struct spi_message *msg) struct spi_message *msg)
{ {
struct dw_spi *dws = spi_master_get_devdata(master); struct dw_spi *dws = spi_master_get_devdata(master);
dws->cur_msg = msg; if (dws->dma_mapped)
/* Initial message state */ dws->dma_ops->dma_stop(dws);
dws->cur_msg->state = START_STATE;
dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
struct spi_transfer,
transfer_list);
dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
/* Launch transfers */
tasklet_schedule(&dws->pump_transfers);
return 0; spi_reset_chip(dws);
} }
/* This may be called twice for each spi dev */ /* This may be called twice for each spi dev */
...@@ -561,8 +442,6 @@ static int dw_spi_setup(struct spi_device *spi) ...@@ -561,8 +442,6 @@ static int dw_spi_setup(struct spi_device *spi)
chip->rx_threshold = 0; chip->rx_threshold = 0;
chip->tx_threshold = 0; chip->tx_threshold = 0;
chip->enable_dma = chip_info->enable_dma;
} }
if (spi->bits_per_word == 8) { if (spi->bits_per_word == 8) {
...@@ -610,9 +489,7 @@ static void dw_spi_cleanup(struct spi_device *spi) ...@@ -610,9 +489,7 @@ static void dw_spi_cleanup(struct spi_device *spi)
/* Restart the controller, disable all interrupts, clean rx fifo */ /* Restart the controller, disable all interrupts, clean rx fifo */
static void spi_hw_init(struct device *dev, struct dw_spi *dws) static void spi_hw_init(struct device *dev, struct dw_spi *dws)
{ {
spi_enable_chip(dws, 0); spi_reset_chip(dws);
spi_mask_intr(dws, 0xff);
spi_enable_chip(dws, 1);
/* /*
* Try to detect the FIFO depth if not set by interface driver, * Try to detect the FIFO depth if not set by interface driver,
...@@ -622,11 +499,11 @@ static void spi_hw_init(struct device *dev, struct dw_spi *dws) ...@@ -622,11 +499,11 @@ static void spi_hw_init(struct device *dev, struct dw_spi *dws)
u32 fifo; u32 fifo;
for (fifo = 1; fifo < 256; fifo++) { for (fifo = 1; fifo < 256; fifo++) {
dw_writew(dws, DW_SPI_TXFLTR, fifo); dw_writel(dws, DW_SPI_TXFLTR, fifo);
if (fifo != dw_readw(dws, DW_SPI_TXFLTR)) if (fifo != dw_readl(dws, DW_SPI_TXFLTR))
break; break;
} }
dw_writew(dws, DW_SPI_TXFLTR, 0); dw_writel(dws, DW_SPI_TXFLTR, 0);
dws->fifo_len = (fifo == 1) ? 0 : fifo; dws->fifo_len = (fifo == 1) ? 0 : fifo;
dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
...@@ -646,13 +523,12 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws) ...@@ -646,13 +523,12 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
dws->master = master; dws->master = master;
dws->type = SSI_MOTO_SPI; dws->type = SSI_MOTO_SPI;
dws->prev_chip = NULL;
dws->dma_inited = 0; dws->dma_inited = 0;
dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60); dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
snprintf(dws->name, sizeof(dws->name), "dw_spi%d", dws->bus_num); snprintf(dws->name, sizeof(dws->name), "dw_spi%d", dws->bus_num);
ret = devm_request_irq(dev, dws->irq, dw_spi_irq, IRQF_SHARED, ret = devm_request_irq(dev, dws->irq, dw_spi_irq, IRQF_SHARED,
dws->name, dws); dws->name, master);
if (ret < 0) { if (ret < 0) {
dev_err(&master->dev, "can not get IRQ\n"); dev_err(&master->dev, "can not get IRQ\n");
goto err_free_master; goto err_free_master;
...@@ -664,7 +540,9 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws) ...@@ -664,7 +540,9 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
master->num_chipselect = dws->num_cs; master->num_chipselect = dws->num_cs;
master->setup = dw_spi_setup; master->setup = dw_spi_setup;
master->cleanup = dw_spi_cleanup; master->cleanup = dw_spi_cleanup;
master->transfer_one_message = dw_spi_transfer_one_message; master->set_cs = dw_spi_set_cs;
master->transfer_one = dw_spi_transfer_one;
master->handle_err = dw_spi_handle_err;
master->max_speed_hz = dws->max_freq; master->max_speed_hz = dws->max_freq;
master->dev.of_node = dev->of_node; master->dev.of_node = dev->of_node;
...@@ -676,11 +554,11 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws) ...@@ -676,11 +554,11 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
if (ret) { if (ret) {
dev_warn(dev, "DMA init failed\n"); dev_warn(dev, "DMA init failed\n");
dws->dma_inited = 0; dws->dma_inited = 0;
} else {
master->can_dma = dws->dma_ops->can_dma;
} }
} }
tasklet_init(&dws->pump_transfers, pump_transfers, (unsigned long)dws);
spi_master_set_devdata(master, dws); spi_master_set_devdata(master, dws);
ret = devm_spi_register_master(dev, master); ret = devm_spi_register_master(dev, master);
if (ret) { if (ret) {
......
...@@ -91,12 +91,15 @@ struct dw_spi; ...@@ -91,12 +91,15 @@ struct dw_spi;
struct dw_spi_dma_ops { struct dw_spi_dma_ops {
int (*dma_init)(struct dw_spi *dws); int (*dma_init)(struct dw_spi *dws);
void (*dma_exit)(struct dw_spi *dws); void (*dma_exit)(struct dw_spi *dws);
int (*dma_transfer)(struct dw_spi *dws, int cs_change); int (*dma_setup)(struct dw_spi *dws, struct spi_transfer *xfer);
bool (*can_dma)(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *xfer);
int (*dma_transfer)(struct dw_spi *dws, struct spi_transfer *xfer);
void (*dma_stop)(struct dw_spi *dws);
}; };
struct dw_spi { struct dw_spi {
struct spi_master *master; struct spi_master *master;
struct spi_device *cur_dev;
enum dw_ssi_type type; enum dw_ssi_type type;
char name[16]; char name[16];
...@@ -109,41 +112,26 @@ struct dw_spi { ...@@ -109,41 +112,26 @@ struct dw_spi {
u16 bus_num; u16 bus_num;
u16 num_cs; /* supported slave numbers */ u16 num_cs; /* supported slave numbers */
/* Message Transfer pump */
struct tasklet_struct pump_transfers;
/* Current message transfer state info */ /* Current message transfer state info */
struct spi_message *cur_msg;
struct spi_transfer *cur_transfer;
struct chip_data *cur_chip;
struct chip_data *prev_chip;
size_t len; size_t len;
void *tx; void *tx;
void *tx_end; void *tx_end;
void *rx; void *rx;
void *rx_end; void *rx_end;
int dma_mapped; int dma_mapped;
dma_addr_t rx_dma;
dma_addr_t tx_dma;
size_t rx_map_len;
size_t tx_map_len;
u8 n_bytes; /* current is a 1/2 bytes op */ u8 n_bytes; /* current is a 1/2 bytes op */
u8 max_bits_per_word; /* maxim is 16b */
u32 dma_width; u32 dma_width;
irqreturn_t (*transfer_handler)(struct dw_spi *dws); irqreturn_t (*transfer_handler)(struct dw_spi *dws);
void (*cs_control)(u32 command);
/* Dma info */ /* DMA info */
int dma_inited; int dma_inited;
struct dma_chan *txchan; struct dma_chan *txchan;
struct scatterlist tx_sgl;
struct dma_chan *rxchan; struct dma_chan *rxchan;
struct scatterlist rx_sgl;
unsigned long dma_chan_busy; unsigned long dma_chan_busy;
struct device *dma_dev;
dma_addr_t dma_addr; /* phy address of the Data register */ dma_addr_t dma_addr; /* phy address of the Data register */
struct dw_spi_dma_ops *dma_ops; struct dw_spi_dma_ops *dma_ops;
void *dma_priv; /* platform relate info */ void *dma_tx;
void *dma_rx;
/* Bus interface info */ /* Bus interface info */
void *priv; void *priv;
...@@ -162,16 +150,6 @@ static inline void dw_writel(struct dw_spi *dws, u32 offset, u32 val) ...@@ -162,16 +150,6 @@ static inline void dw_writel(struct dw_spi *dws, u32 offset, u32 val)
__raw_writel(val, dws->regs + offset); __raw_writel(val, dws->regs + offset);
} }
static inline u16 dw_readw(struct dw_spi *dws, u32 offset)
{
return __raw_readw(dws->regs + offset);
}
static inline void dw_writew(struct dw_spi *dws, u32 offset, u16 val)
{
__raw_writew(val, dws->regs + offset);
}
static inline void spi_enable_chip(struct dw_spi *dws, int enable) static inline void spi_enable_chip(struct dw_spi *dws, int enable)
{ {
dw_writel(dws, DW_SPI_SSIENR, (enable ? 1 : 0)); dw_writel(dws, DW_SPI_SSIENR, (enable ? 1 : 0));
...@@ -182,22 +160,6 @@ static inline void spi_set_clk(struct dw_spi *dws, u16 div) ...@@ -182,22 +160,6 @@ static inline void spi_set_clk(struct dw_spi *dws, u16 div)
dw_writel(dws, DW_SPI_BAUDR, div); dw_writel(dws, DW_SPI_BAUDR, div);
} }
static inline void spi_chip_sel(struct dw_spi *dws, struct spi_device *spi,
int active)
{
u16 cs = spi->chip_select;
int gpio_val = active ? (spi->mode & SPI_CS_HIGH) :
!(spi->mode & SPI_CS_HIGH);
if (dws->cs_control)
dws->cs_control(active);
if (gpio_is_valid(spi->cs_gpio))
gpio_set_value(spi->cs_gpio, gpio_val);
if (active)
dw_writel(dws, DW_SPI_SER, 1 << cs);
}
/* Disable IRQ bits */ /* Disable IRQ bits */
static inline void spi_mask_intr(struct dw_spi *dws, u32 mask) static inline void spi_mask_intr(struct dw_spi *dws, u32 mask)
{ {
...@@ -216,16 +178,27 @@ static inline void spi_umask_intr(struct dw_spi *dws, u32 mask) ...@@ -216,16 +178,27 @@ static inline void spi_umask_intr(struct dw_spi *dws, u32 mask)
dw_writel(dws, DW_SPI_IMR, new_mask); dw_writel(dws, DW_SPI_IMR, new_mask);
} }
/*
* This does disable the SPI controller, interrupts, and re-enable the
* controller back. Transmit and receive FIFO buffers are cleared when the
* device is disabled.
*/
static inline void spi_reset_chip(struct dw_spi *dws)
{
spi_enable_chip(dws, 0);
spi_mask_intr(dws, 0xff);
spi_enable_chip(dws, 1);
}
/* /*
* Each SPI slave device to work with dw_api controller should * Each SPI slave device to work with dw_api controller should
* has such a structure claiming its working mode (PIO/DMA etc), * has such a structure claiming its working mode (poll or PIO/DMA),
* which can be save in the "controller_data" member of the * which can be save in the "controller_data" member of the
* struct spi_device. * struct spi_device.
*/ */
struct dw_spi_chip { struct dw_spi_chip {
u8 poll_mode; /* 1 for controller polling mode */ u8 poll_mode; /* 1 for controller polling mode */
u8 type; /* SPI/SSP/MicroWire */ u8 type; /* SPI/SSP/MicroWire */
u8 enable_dma;
void (*cs_control)(u32 command); void (*cs_control)(u32 command);
}; };
...@@ -233,7 +206,6 @@ extern int dw_spi_add_host(struct device *dev, struct dw_spi *dws); ...@@ -233,7 +206,6 @@ extern int dw_spi_add_host(struct device *dev, struct dw_spi *dws);
extern void dw_spi_remove_host(struct dw_spi *dws); extern void dw_spi_remove_host(struct dw_spi *dws);
extern int dw_spi_suspend_host(struct dw_spi *dws); extern int dw_spi_suspend_host(struct dw_spi *dws);
extern int dw_spi_resume_host(struct dw_spi *dws); extern int dw_spi_resume_host(struct dw_spi *dws);
extern void dw_spi_xfer_done(struct dw_spi *dws);
/* platform related setup */ /* platform related setup */
extern int dw_spi_mid_init(struct dw_spi *dws); /* Intel MID platforms */ extern int dw_spi_mid_init(struct dw_spi *dws); /* Intel MID platforms */
......
...@@ -850,7 +850,7 @@ static int spi_transfer_one_message(struct spi_master *master, ...@@ -850,7 +850,7 @@ static int spi_transfer_one_message(struct spi_master *master,
if (msg->status == -EINPROGRESS) if (msg->status == -EINPROGRESS)
msg->status = ret; msg->status = ret;
if (msg->status) if (msg->status && master->handle_err)
master->handle_err(master, msg); master->handle_err(master, msg);
spi_finalize_current_message(master); spi_finalize_current_message(master);
......
/*
* intel_mid_dma.h - Intel MID DMA Drivers
*
* Copyright (C) 2008-10 Intel Corp
* Author: Vinod Koul <vinod.koul@intel.com>
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*
*/
#ifndef __INTEL_MID_DMA_H__
#define __INTEL_MID_DMA_H__
#include <linux/dmaengine.h>
#define DMA_PREP_CIRCULAR_LIST (1 << 10)
/*DMA mode configurations*/
enum intel_mid_dma_mode {
LNW_DMA_PER_TO_MEM = 0, /*periphral to memory configuration*/
LNW_DMA_MEM_TO_PER, /*memory to periphral configuration*/
LNW_DMA_MEM_TO_MEM, /*mem to mem confg (testing only)*/
};
/*DMA handshaking*/
enum intel_mid_dma_hs_mode {
LNW_DMA_HW_HS = 0, /*HW Handshaking only*/
LNW_DMA_SW_HS = 1, /*SW Handshaking not recommended*/
};
/*Burst size configuration*/
enum intel_mid_dma_msize {
LNW_DMA_MSIZE_1 = 0x0,
LNW_DMA_MSIZE_4 = 0x1,
LNW_DMA_MSIZE_8 = 0x2,
LNW_DMA_MSIZE_16 = 0x3,
LNW_DMA_MSIZE_32 = 0x4,
LNW_DMA_MSIZE_64 = 0x5,
};
/**
* struct intel_mid_dma_slave - DMA slave structure
*
* @dirn: DMA trf direction
* @src_width: tx register width
* @dst_width: rx register width
* @hs_mode: HW/SW handshaking mode
* @cfg_mode: DMA data transfer mode (per-per/mem-per/mem-mem)
* @src_msize: Source DMA burst size
* @dst_msize: Dst DMA burst size
* @per_addr: Periphral address
* @device_instance: DMA peripheral device instance, we can have multiple
* peripheral device connected to single DMAC
*/
struct intel_mid_dma_slave {
enum intel_mid_dma_hs_mode hs_mode; /*handshaking*/
enum intel_mid_dma_mode cfg_mode; /*mode configuration*/
unsigned int device_instance; /*0, 1 for periphral instance*/
struct dma_slave_config dma_slave;
};
#endif /*__INTEL_MID_DMA_H__*/
...@@ -294,7 +294,7 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv) ...@@ -294,7 +294,7 @@ static inline void spi_unregister_driver(struct spi_driver *sdrv)
* transfer_one_message are mutually exclusive; when both * transfer_one_message are mutually exclusive; when both
* are set, the generic subsystem does not call your * are set, the generic subsystem does not call your
* transfer_one callback. * transfer_one callback.
* @handle_err: the subsystem calls the driver to handle and error that occurs * @handle_err: the subsystem calls the driver to handle an error that occurs
* in the generic implementation of transfer_one_message(). * in the generic implementation of transfer_one_message().
* @unprepare_message: undo any work done by prepare_message(). * @unprepare_message: undo any work done by prepare_message().
* @cs_gpios: Array of GPIOs to use as chip select lines; one per CS * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment