Commit 45b5913e authored by Andrew Morton's avatar Andrew Morton Committed by David S. Miller

[CRYPTO]: aes-586-asm: formatting changes

From: Denis Vlasenko <vda@port.imtp.ilyichevsk.odessa.ua>

- Macro parameters renamed for clarity.

- Inaccurate comments fixed.

- ebp register usage de-obfuscated (this is needed for next patch).

No real code changes.
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent e0abaeba
......@@ -61,7 +61,6 @@
#define r3 edx
#define r4 esi
#define r5 edi
#define r6 ebp
#define eaxl al
#define eaxh ah
......@@ -84,60 +83,61 @@
// output registers r0, r1, r4 or r5.
// Parameters:
// table table base address
// %1 out_state[0]
// %2 out_state[1]
// %3 out_state[2]
// %4 out_state[3]
// %5 table base address
// %6 input register for the round (destroyed)
// %7 scratch register for the round
#define do_col(a1, a2, a3, a4, a5, a6, a7) \
movzx %l(a6),%a7; \
xor a5(,%a7,4),%a1; \
movzx %h(a6),%a7; \
shr $16,%a6; \
xor a5+tlen(,%a7,4),%a2; \
movzx %l(a6),%a7; \
movzx %h(a6),%a6; \
xor a5+2*tlen(,%a7,4),%a3; \
xor a5+3*tlen(,%a6,4),%a4;
// idx input register for the round (destroyed)
// tmp scratch register for the round
// sched key schedule
#define do_col(table, a1,a2,a3,a4, idx, tmp) \
movzx %l(idx),%tmp; \
xor table(,%tmp,4),%a1; \
movzx %h(idx),%tmp; \
shr $16,%idx; \
xor table+tlen(,%tmp,4),%a2; \
movzx %l(idx),%tmp; \
movzx %h(idx),%idx; \
xor table+2*tlen(,%tmp,4),%a3; \
xor table+3*tlen(,%idx,4),%a4;
// initialise output registers from the key schedule
#define do_fcol(a1, a2, a3, a4, a5, a6, a7, a8) \
mov 0 a8,%a1; \
movzx %l(a6),%a7; \
mov 12 a8,%a2; \
xor a5(,%a7,4),%a1; \
mov 4 a8,%a4; \
movzx %h(a6),%a7; \
shr $16,%a6; \
xor a5+tlen(,%a7,4),%a2; \
movzx %l(a6),%a7; \
movzx %h(a6),%a6; \
xor a5+3*tlen(,%a6,4),%a4; \
mov %a3,%a6; \
mov 8 a8,%a3; \
xor a5+2*tlen(,%a7,4),%a3;
// NB: original a3 is in idx on exit
#define do_fcol(table, a1,a2,a3,a4, idx, tmp, sched) \
mov 0 sched,%a1; \
movzx %l(idx),%tmp; \
mov 12 sched,%a2; \
xor table(,%tmp,4),%a1; \
mov 4 sched,%a4; \
movzx %h(idx),%tmp; \
shr $16,%idx; \
xor table+tlen(,%tmp,4),%a2; \
movzx %l(idx),%tmp; \
movzx %h(idx),%idx; \
xor table+3*tlen(,%idx,4),%a4; \
mov %a3,%idx; \
mov 8 sched,%a3; \
xor table+2*tlen(,%tmp,4),%a3;
// initialise output registers from the key schedule
#define do_icol(a1, a2, a3, a4, a5, a6, a7, a8) \
mov 0 a8,%a1; \
movzx %l(a6),%a7; \
mov 4 a8,%a2; \
xor a5(,%a7,4),%a1; \
mov 12 a8,%a4; \
movzx %h(a6),%a7; \
shr $16,%a6; \
xor a5+tlen(,%a7,4),%a2; \
movzx %l(a6),%a7; \
movzx %h(a6),%a6; \
xor a5+3*tlen(,%a6,4),%a4; \
mov %a3,%a6; \
mov 8 a8,%a3; \
xor a5+2*tlen(,%a7,4),%a3;
// NB: original a3 is in idx on exit
#define do_icol(table, a1,a2,a3,a4, idx, tmp, sched) \
mov 0 sched,%a1; \
movzx %l(idx),%tmp; \
mov 4 sched,%a2; \
xor table(,%tmp,4),%a1; \
mov 12 sched,%a4; \
movzx %h(idx),%tmp; \
shr $16,%idx; \
xor table+tlen(,%tmp,4),%a2; \
movzx %l(idx),%tmp; \
movzx %h(idx),%idx; \
xor table+3*tlen(,%idx,4),%a4; \
mov %a3,%idx; \
mov 8 sched,%a3; \
xor table+2*tlen(,%tmp,4),%a3;
// original Gladman had conditional saves to MMX regs.
......@@ -149,42 +149,39 @@
// This macro performs a forward encryption cycle. It is entered with
// the first previous round column values in r0, r1, r4 and r5 and
// exits with the final values in the same registers, using the MMX
// registers mm0-mm1 or the stack for temporary storage
// exits with the final values in the same registers, using stack
// for temporary storage
// mov current column values into the MMX registers
#define fwd_rnd(arg, table) \
/* mov current column values into the MMX registers */ \
mov %r0,%r2; \
save (0,r1); \
save (1,r5); \
\
/* compute new column values */ \
do_fcol(r0,r5,r4,r1,table, r2,r3, arg); \
do_col (r4,r1,r0,r5,table, r2,r3); \
do_fcol(table, r0,r5,r4,r1, r2,r3, arg); \
do_col (table, r4,r1,r0,r5, r2,r3); \
restore(r2,0); \
do_col (r1,r0,r5,r4,table, r2,r3); \
do_col (table, r1,r0,r5,r4, r2,r3); \
restore(r2,1); \
do_col (r5,r4,r1,r0,table, r2,r3);
do_col (table, r5,r4,r1,r0, r2,r3);
// This macro performs an inverse encryption cycle. It is entered with
// the first previous round column values in r0, r1, r4 and r5 and
// exits with the final values in the same registers, using the MMX
// registers mm0-mm1 or the stack for temporary storage
// exits with the final values in the same registers, using stack
// for temporary storage
#define inv_rnd(arg, table) \
/* mov current column values into the MMX registers */ \
mov %r0,%r2; \
save (0,r1); \
save (1,r5); \
\
/* compute new column values */ \
do_icol(r0,r1,r4,r5, table, r2,r3, arg); \
do_col (r4,r5,r0,r1, table, r2,r3); \
do_icol(table, r0,r1,r4,r5, r2,r3, arg); \
do_col (table, r4,r5,r0,r1, r2,r3); \
restore(r2,0); \
do_col (r1,r4,r5,r0, table, r2,r3); \
do_col (table, r1,r4,r5,r0, r2,r3); \
restore(r2,1); \
do_col (r5,r0,r1,r4, table, r2,r3);
do_col (table, r5,r0,r1,r4, r2,r3);
// AES (Rijndael) Encryption Subroutine
......@@ -208,7 +205,7 @@ aes_enc_blk:
push %esi
mov nrnd(%ebp),%r3 // number of rounds
push %edi
lea ekey(%ebp),%r6 // key pointer
lea ekey(%ebp),%ebp // key pointer
// input four columns and xor in first round key
......@@ -216,47 +213,47 @@ aes_enc_blk:
mov 4(%r2),%r1
mov 8(%r2),%r4
mov 12(%r2),%r5
xor (%r6),%r0
xor 4(%r6),%r1
xor 8(%r6),%r4
xor 12(%r6),%r5
xor (%ebp),%r0
xor 4(%ebp),%r1
xor 8(%ebp),%r4
xor 12(%ebp),%r5
sub $8,%esp // space for register saves on stack
add $16,%r6 // increment to next round key
add $16,%ebp // increment to next round key
sub $10,%r3
je 4f // 10 rounds for 128-bit key
add $32,%r6
add $32,%ebp
sub $2,%r3
je 3f // 12 rounds for 128-bit key
add $32,%r6
2: fwd_rnd( -64(%r6) ,ft_tab) // 14 rounds for 128-bit key
fwd_rnd( -48(%r6) ,ft_tab)
3: fwd_rnd( -32(%r6) ,ft_tab) // 12 rounds for 128-bit key
fwd_rnd( -16(%r6) ,ft_tab)
4: fwd_rnd( (%r6) ,ft_tab) // 10 rounds for 128-bit key
fwd_rnd( +16(%r6) ,ft_tab)
fwd_rnd( +32(%r6) ,ft_tab)
fwd_rnd( +48(%r6) ,ft_tab)
fwd_rnd( +64(%r6) ,ft_tab)
fwd_rnd( +80(%r6) ,ft_tab)
fwd_rnd( +96(%r6) ,ft_tab)
fwd_rnd(+112(%r6) ,ft_tab)
fwd_rnd(+128(%r6) ,ft_tab)
fwd_rnd(+144(%r6) ,fl_tab) // last round uses a different table
add $32,%ebp
2: fwd_rnd( -64(%ebp) ,ft_tab) // 14 rounds for 128-bit key
fwd_rnd( -48(%ebp) ,ft_tab)
3: fwd_rnd( -32(%ebp) ,ft_tab) // 12 rounds for 128-bit key
fwd_rnd( -16(%ebp) ,ft_tab)
4: fwd_rnd( (%ebp) ,ft_tab) // 10 rounds for 128-bit key
fwd_rnd( +16(%ebp) ,ft_tab)
fwd_rnd( +32(%ebp) ,ft_tab)
fwd_rnd( +48(%ebp) ,ft_tab)
fwd_rnd( +64(%ebp) ,ft_tab)
fwd_rnd( +80(%ebp) ,ft_tab)
fwd_rnd( +96(%ebp) ,ft_tab)
fwd_rnd(+112(%ebp) ,ft_tab)
fwd_rnd(+128(%ebp) ,ft_tab)
fwd_rnd(+144(%ebp) ,fl_tab) // last round uses a different table
// move final values to the output array. CAUTION: the
// order of these assigns rely on the register mappings
add $8,%esp
mov out_blk+12(%esp),%r6
mov %r5,12(%r6)
mov out_blk+12(%esp),%ebp
mov %r5,12(%ebp)
pop %edi
mov %r4,8(%r6)
mov %r4,8(%ebp)
pop %esi
mov %r1,4(%r6)
mov %r1,4(%ebp)
pop %ebx
mov %r0,(%r6)
mov %r0,(%ebp)
pop %ebp
mov $1,%eax
ret
......@@ -283,10 +280,10 @@ aes_dec_blk:
push %esi
mov nrnd(%ebp),%r3 // number of rounds
push %edi
lea dkey(%ebp),%r6 // key pointer
lea dkey(%ebp),%ebp // key pointer
mov %r3,%r0
shl $4,%r0
add %r0,%r6
add %r0,%ebp
// input four columns and xor in first round key
......@@ -294,47 +291,47 @@ aes_dec_blk:
mov 4(%r2),%r1
mov 8(%r2),%r4
mov 12(%r2),%r5
xor (%r6),%r0
xor 4(%r6),%r1
xor 8(%r6),%r4
xor 12(%r6),%r5
xor (%ebp),%r0
xor 4(%ebp),%r1
xor 8(%ebp),%r4
xor 12(%ebp),%r5
sub $8,%esp // space for register saves on stack
sub $16,%r6 // increment to next round key
sub $8,%esp // space for register saves on stack
sub $16,%ebp // increment to next round key
sub $10,%r3
je 4f // 10 rounds for 128-bit key
sub $32,%r6
sub $32,%ebp
sub $2,%r3
je 3f // 12 rounds for 128-bit key
sub $32,%r6
2: inv_rnd( +64(%r6), it_tab) // 14 rounds for 128-bit key
inv_rnd( +48(%r6), it_tab)
3: inv_rnd( +32(%r6), it_tab) // 12 rounds for 128-bit key
inv_rnd( +16(%r6), it_tab)
4: inv_rnd( (%r6), it_tab) // 10 rounds for 128-bit key
inv_rnd( -16(%r6), it_tab)
inv_rnd( -32(%r6), it_tab)
inv_rnd( -48(%r6), it_tab)
inv_rnd( -64(%r6), it_tab)
inv_rnd( -80(%r6), it_tab)
inv_rnd( -96(%r6), it_tab)
inv_rnd(-112(%r6), it_tab)
inv_rnd(-128(%r6), it_tab)
inv_rnd(-144(%r6), il_tab) // last round uses a different table
sub $32,%ebp
2: inv_rnd( +64(%ebp), it_tab) // 14 rounds for 128-bit key
inv_rnd( +48(%ebp), it_tab)
3: inv_rnd( +32(%ebp), it_tab) // 12 rounds for 128-bit key
inv_rnd( +16(%ebp), it_tab)
4: inv_rnd( (%ebp), it_tab) // 10 rounds for 128-bit key
inv_rnd( -16(%ebp), it_tab)
inv_rnd( -32(%ebp), it_tab)
inv_rnd( -48(%ebp), it_tab)
inv_rnd( -64(%ebp), it_tab)
inv_rnd( -80(%ebp), it_tab)
inv_rnd( -96(%ebp), it_tab)
inv_rnd(-112(%ebp), it_tab)
inv_rnd(-128(%ebp), it_tab)
inv_rnd(-144(%ebp), il_tab) // last round uses a different table
// move final values to the output array. CAUTION: the
// order of these assigns rely on the register mappings
add $8,%esp
mov out_blk+12(%esp),%r6
mov %r5,12(%r6)
mov out_blk+12(%esp),%ebp
mov %r5,12(%ebp)
pop %edi
mov %r4,8(%r6)
mov %r4,8(%ebp)
pop %esi
mov %r1,4(%r6)
mov %r1,4(%ebp)
pop %ebx
mov %r0,(%r6)
mov %r0,(%ebp)
pop %ebp
mov $1,%eax
ret
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment