Commit 4a53ada8 authored by Andrew Morton's avatar Andrew Morton Committed by Jeff Garzik

[PATCH] x440 SRAT parsing

Use the early ioremap code to parse the Static Resource Affinity Table on
x440 machines.
parent 68e72499
...@@ -75,6 +75,11 @@ config X86_SUMMIT ...@@ -75,6 +75,11 @@ config X86_SUMMIT
If you don't have one of these computers, you should say N here. If you don't have one of these computers, you should say N here.
config ACPI_SRAT
bool
default y
depends on NUMA && X86_SUMMIT
config X86_BIGSMP config X86_BIGSMP
bool "Support for other sub-arch SMP systems with more than 8 CPUs" bool "Support for other sub-arch SMP systems with more than 8 CPUs"
help help
...@@ -483,7 +488,7 @@ config NR_CPUS ...@@ -483,7 +488,7 @@ config NR_CPUS
# Common NUMA Features # Common NUMA Features
config NUMA config NUMA
bool "Numa Memory Allocation Support" bool "Numa Memory Allocation Support"
depends on X86_NUMAQ depends on (HIGHMEM64G && (X86_NUMAQ || (X86_SUMMIT && ACPI && !ACPI_HT_ONLY)))
config DISCONTIGMEM config DISCONTIGMEM
bool bool
......
...@@ -28,6 +28,7 @@ obj-$(CONFIG_X86_NUMAQ) += numaq.o ...@@ -28,6 +28,7 @@ obj-$(CONFIG_X86_NUMAQ) += numaq.o
obj-$(CONFIG_EDD) += edd.o obj-$(CONFIG_EDD) += edd.o
obj-$(CONFIG_MODULES) += module.o obj-$(CONFIG_MODULES) += module.o
obj-y += sysenter.o obj-y += sysenter.o
obj-$(CONFIG_ACPI_SRAT) += srat.o
EXTRA_AFLAGS := -traditional EXTRA_AFLAGS := -traditional
......
/*
* Some of the code in this file has been gleaned from the 64 bit
* discontigmem support code base.
*
* Copyright (C) 2002, IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to Pat Gaughen <gone@us.ibm.com>
*/
#include <linux/config.h>
#include <linux/mm.h>
#include <linux/bootmem.h>
#include <linux/mmzone.h>
#include <linux/acpi.h>
#include <asm/srat.h>
/*
* proximity macros and definitions
*/
#define NODE_ARRAY_INDEX(x) ((x) / 8) /* 8 bits/char */
#define NODE_ARRAY_OFFSET(x) ((x) % 8) /* 8 bits/char */
#define BMAP_SET(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] |= 1 << NODE_ARRAY_OFFSET(bit))
#define BMAP_TEST(bmap, bit) ((bmap)[NODE_ARRAY_INDEX(bit)] & (1 << NODE_ARRAY_OFFSET(bit)))
#define MAX_PXM_DOMAINS 256 /* 1 byte and no promises about values */
/* bitmap length; _PXM is at most 255 */
#define PXM_BITMAP_LEN (MAX_PXM_DOMAINS / 8)
static u8 pxm_bitmap[PXM_BITMAP_LEN]; /* bitmap of proximity domains */
#define MAX_CHUNKS_PER_NODE 4
#define MAXCHUNKS (MAX_CHUNKS_PER_NODE * MAX_NUMNODES)
struct node_memory_chunk_s {
unsigned long start_pfn;
unsigned long end_pfn;
u8 pxm; // proximity domain of node
u8 nid; // which cnode contains this chunk?
u8 bank; // which mem bank on this node
};
static struct node_memory_chunk_s node_memory_chunk[MAXCHUNKS];
static int num_memory_chunks; /* total number of memory chunks */
static int zholes_size_init;
static unsigned long zholes_size[MAX_NUMNODES * MAX_NR_ZONES];
unsigned long node_start_pfn[MAX_NUMNODES];
unsigned long node_end_pfn[MAX_NUMNODES];
extern void * boot_ioremap(unsigned long, unsigned long);
/* Identify CPU proximity domains */
static void __init parse_cpu_affinity_structure(char *p)
{
struct acpi_table_processor_affinity *cpu_affinity =
(struct acpi_table_processor_affinity *) p;
if (!cpu_affinity->flags.enabled)
return; /* empty entry */
/* mark this node as "seen" in node bitmap */
BMAP_SET(pxm_bitmap, cpu_affinity->proximity_domain);
printk("CPU 0x%02X in proximity domain 0x%02X\n",
cpu_affinity->apic_id, cpu_affinity->proximity_domain);
}
/*
* Identify memory proximity domains and hot-remove capabilities.
* Fill node memory chunk list structure.
*/
static void __init parse_memory_affinity_structure (char *sratp)
{
unsigned long long paddr, size;
unsigned long start_pfn, end_pfn;
u8 pxm;
struct node_memory_chunk_s *p, *q, *pend;
struct acpi_table_memory_affinity *memory_affinity =
(struct acpi_table_memory_affinity *) sratp;
if (!memory_affinity->flags.enabled)
return; /* empty entry */
/* mark this node as "seen" in node bitmap */
BMAP_SET(pxm_bitmap, memory_affinity->proximity_domain);
/* calculate info for memory chunk structure */
paddr = memory_affinity->base_addr_hi;
paddr = (paddr << 32) | memory_affinity->base_addr_lo;
size = memory_affinity->length_hi;
size = (size << 32) | memory_affinity->length_lo;
start_pfn = paddr >> PAGE_SHIFT;
end_pfn = (paddr + size) >> PAGE_SHIFT;
pxm = memory_affinity->proximity_domain;
if (num_memory_chunks >= MAXCHUNKS) {
printk("Too many mem chunks in SRAT. Ignoring %lld MBytes at %llx\n",
size/(1024*1024), paddr);
return;
}
/* Insertion sort based on base address */
pend = &node_memory_chunk[num_memory_chunks];
for (p = &node_memory_chunk[0]; p < pend; p++) {
if (start_pfn < p->start_pfn)
break;
}
if (p < pend) {
for (q = pend; q >= p; q--)
*(q + 1) = *q;
}
p->start_pfn = start_pfn;
p->end_pfn = end_pfn;
p->pxm = pxm;
num_memory_chunks++;
printk("Memory range 0x%lX to 0x%lX (type 0x%X) in proximity domain 0x%02X %s\n",
start_pfn, end_pfn,
memory_affinity->memory_type,
memory_affinity->proximity_domain,
(memory_affinity->flags.hot_pluggable ?
"enabled and removable" : "enabled" ) );
}
#if MAX_NR_ZONES != 3
#error "MAX_NR_ZONES != 3, chunk_to_zone requires review"
#endif
/* Take a chunk of pages from page frame cstart to cend and count the number
* of pages in each zone, returned via zones[].
*/
static __init void chunk_to_zones(unsigned long cstart, unsigned long cend,
unsigned long *zones)
{
unsigned long max_dma;
extern unsigned long max_low_pfn;
int z;
unsigned long rend;
/* FIXME: MAX_DMA_ADDRESS and max_low_pfn are trying to provide
* similarly scoped information and should be handled in a consistant
* manner.
*/
max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;
/* Split the hole into the zones in which it falls. Repeatedly
* take the segment in which the remaining hole starts, round it
* to the end of that zone.
*/
memset(zones, 0, MAX_NR_ZONES * sizeof(long));
while (cstart < cend) {
if (cstart < max_dma) {
z = ZONE_DMA;
rend = (cend < max_dma)? cend : max_dma;
} else if (cstart < max_low_pfn) {
z = ZONE_NORMAL;
rend = (cend < max_low_pfn)? cend : max_low_pfn;
} else {
z = ZONE_HIGHMEM;
rend = cend;
}
zones[z] += rend - cstart;
cstart = rend;
}
}
/*
* physnode_map keeps track of the physical memory layout of the
* numaq nodes on a 256Mb break (each element of the array will
* represent 256Mb of memory and will be marked by the node id. so,
* if the first gig is on node 0, and the second gig is on node 1
* physnode_map will contain:
* physnode_map[0-3] = 0;
* physnode_map[4-7] = 1;
* physnode_map[8- ] = -1;
*/
int pfnnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1};
EXPORT_SYMBOL(pfnnode_map);
static void __init initialize_pfnnode_map(void)
{
unsigned long topofchunk, cur = 0;
int i;
for (i = 0; i < num_memory_chunks; i++) {
cur = node_memory_chunk[i].start_pfn;
topofchunk = node_memory_chunk[i].end_pfn;
while (cur < topofchunk) {
pfnnode_map[PFN_TO_ELEMENT(cur)] = node_memory_chunk[i].nid;
cur ++;
}
}
}
/* Parse the ACPI Static Resource Affinity Table */
static int __init acpi20_parse_srat(struct acpi_table_srat *sratp)
{
u8 *start, *end, *p;
int i, j, nid;
u8 pxm_to_nid_map[MAX_PXM_DOMAINS];/* _PXM to logical node ID map */
u8 nid_to_pxm_map[MAX_NUMNODES];/* logical node ID to _PXM map */
start = (u8 *)(&(sratp->reserved) + 1); /* skip header */
p = start;
end = (u8 *)sratp + sratp->header.length;
memset(pxm_bitmap, 0, sizeof(pxm_bitmap)); /* init proximity domain bitmap */
memset(node_memory_chunk, 0, sizeof(node_memory_chunk));
memset(zholes_size, 0, sizeof(zholes_size));
/* -1 in these maps means not available */
memset(pxm_to_nid_map, -1, sizeof(pxm_to_nid_map));
memset(nid_to_pxm_map, -1, sizeof(nid_to_pxm_map));
num_memory_chunks = 0;
while (p < end) {
switch (*p) {
case ACPI_SRAT_PROCESSOR_AFFINITY:
parse_cpu_affinity_structure(p);
break;
case ACPI_SRAT_MEMORY_AFFINITY:
parse_memory_affinity_structure(p);
break;
default:
printk("ACPI 2.0 SRAT: unknown entry skipped: type=0x%02X, len=%d\n", p[0], p[1]);
break;
}
p += p[1];
if (p[1] == 0) {
printk("acpi20_parse_srat: Entry length value is zero;"
" can't parse any further!\n");
break;
}
}
/* Calculate total number of nodes in system from PXM bitmap and create
* a set of sequential node IDs starting at zero. (ACPI doesn't seem
* to specify the range of _PXM values.)
*/
numnodes = 0; /* init total nodes in system */
for (i = 0; i < MAX_PXM_DOMAINS; i++) {
if (BMAP_TEST(pxm_bitmap, i)) {
pxm_to_nid_map[i] = numnodes;
nid_to_pxm_map[numnodes] = i;
node_set_online(numnodes);
++numnodes;
}
}
if (numnodes == 0)
BUG();
/* set cnode id in memory chunk structure */
for (i = 0; i < num_memory_chunks; i++)
node_memory_chunk[i].nid = pxm_to_nid_map[node_memory_chunk[i].pxm];
initialize_pfnnode_map();
printk("pxm bitmap: ");
for (i = 0; i < sizeof(pxm_bitmap); i++) {
printk("%02X ", pxm_bitmap[i]);
}
printk("\n");
printk("Number of logical nodes in system = %d\n", numnodes);
printk("Number of memory chunks in system = %d\n", num_memory_chunks);
for (j = 0; j < num_memory_chunks; j++){
printk("chunk %d nid %d start_pfn %08lx end_pfn %08lx\n",
j, node_memory_chunk[j].nid,
node_memory_chunk[j].start_pfn,
node_memory_chunk[j].end_pfn);
}
/*calculate node_start_pfn/node_end_pfn arrays*/
for (nid = 0; nid < numnodes; nid++) {
int been_here_before = 0;
for (j = 0; j < num_memory_chunks; j++){
if (node_memory_chunk[j].nid == nid) {
if (been_here_before == 0) {
node_start_pfn[nid] = node_memory_chunk[j].start_pfn;
node_end_pfn[nid] = node_memory_chunk[j].end_pfn;
been_here_before = 1;
} else { /* We've found another chunk of memory for the node */
if (node_start_pfn[nid] < node_memory_chunk[j].start_pfn) {
node_end_pfn[nid] = node_memory_chunk[j].end_pfn;
}
}
}
}
}
return 0;
}
void __init get_memcfg_from_srat(void)
{
struct acpi_table_header *header = NULL;
struct acpi_table_rsdp *rsdp = NULL;
struct acpi_table_rsdt *rsdt = NULL;
struct acpi_pointer *rsdp_address = NULL;
struct acpi_table_rsdt saved_rsdt;
int tables = 0;
int i = 0;
acpi_find_root_pointer(ACPI_PHYSICAL_ADDRESSING, rsdp_address);
if (rsdp_address->pointer_type == ACPI_PHYSICAL_POINTER) {
printk("%s: assigning address to rsdp\n", __FUNCTION__);
rsdp = (struct acpi_table_rsdp *)rsdp_address->pointer.physical;
} else {
printk("%s: rsdp_address is not a physical pointer\n", __FUNCTION__);
return;
}
if (!rsdp) {
printk("%s: Didn't find ACPI root!\n", __FUNCTION__);
return;
}
printk(KERN_INFO "%.8s v%d [%.6s]\n", rsdp->signature, rsdp->revision,
rsdp->oem_id);
if (strncmp(rsdp->signature, RSDP_SIG,strlen(RSDP_SIG))) {
printk(KERN_WARNING "%s: RSDP table signature incorrect\n", __FUNCTION__);
return;
}
rsdt = (struct acpi_table_rsdt *)
boot_ioremap(rsdp->rsdt_address, sizeof(struct acpi_table_rsdt));
if (!rsdt) {
printk(KERN_WARNING
"%s: ACPI: Invalid root system description tables (RSDT)\n",
__FUNCTION__);
return;
}
header = & rsdt->header;
if (strncmp(header->signature, RSDT_SIG, strlen(RSDT_SIG))) {
printk(KERN_WARNING "ACPI: RSDT signature incorrect\n");
return;
}
/*
* The number of tables is computed by taking the
* size of all entries (header size minus total
* size of RSDT) divided by the size of each entry
* (4-byte table pointers).
*/
tables = (header->length - sizeof(struct acpi_table_header)) / 4;
memcpy(&saved_rsdt, rsdt, sizeof(saved_rsdt));
if (saved_rsdt.header.length > sizeof(saved_rsdt)) {
printk(KERN_WARNING "ACPI: Too big length in RSDT: %d\n",
saved_rsdt.header.length);
return;
}
printk("Begin table scan....\n");
for (i = 0; i < tables; i++) {
/* Map in header, then map in full table length. */
header = (struct acpi_table_header *)
boot_ioremap(saved_rsdt.entry[i], sizeof(struct acpi_table_header));
if (!header)
break;
header = (struct acpi_table_header *)
boot_ioremap(saved_rsdt.entry[i], header->length);
if (!header)
break;
if (strncmp((char *) &header->signature, "SRAT", 4))
continue;
acpi20_parse_srat((struct acpi_table_srat *)header);
/* we've found the srat table. don't need to look at any more tables */
break;
}
}
/* For each node run the memory list to determine whether there are
* any memory holes. For each hole determine which ZONE they fall
* into.
*
* NOTE#1: this requires knowledge of the zone boundries and so
* _cannot_ be performed before those are calculated in setup_memory.
*
* NOTE#2: we rely on the fact that the memory chunks are ordered by
* start pfn number during setup.
*/
static void __init get_zholes_init(void)
{
int nid;
int c;
int first;
unsigned long end = 0;
for (nid = 0; nid < numnodes; nid++) {
first = 1;
for (c = 0; c < num_memory_chunks; c++){
if (node_memory_chunk[c].nid == nid) {
if (first) {
end = node_memory_chunk[c].end_pfn;
first = 0;
} else {
/* Record any gap between this chunk
* and the previous chunk on this node
* against the zones it spans.
*/
chunk_to_zones(end,
node_memory_chunk[c].start_pfn,
&zholes_size[nid * MAX_NR_ZONES]);
}
}
}
}
}
unsigned long * __init get_zholes_size(int nid)
{
if (!zholes_size_init) {
zholes_size_init++;
get_zholes_init();
}
if((nid >= numnodes) | (nid >= MAX_NUMNODES))
printk("%s: nid = %d is invalid. numnodes = %d",
__FUNCTION__, nid, numnodes);
return &zholes_size[nid * MAX_NR_ZONES];
}
...@@ -284,6 +284,7 @@ void __init zone_sizes_init(void) ...@@ -284,6 +284,7 @@ void __init zone_sizes_init(void)
for (nid = 0; nid < numnodes; nid++) { for (nid = 0; nid < numnodes; nid++) {
unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};
unsigned long *zholes_size;
unsigned int max_dma; unsigned int max_dma;
unsigned long low = max_low_pfn; unsigned long low = max_low_pfn;
...@@ -307,6 +308,7 @@ void __init zone_sizes_init(void) ...@@ -307,6 +308,7 @@ void __init zone_sizes_init(void)
#endif #endif
} }
} }
zholes_size = get_zholes_size(nid);
/* /*
* We let the lmem_map for node 0 be allocated from the * We let the lmem_map for node 0 be allocated from the
* normal bootmem allocator, but other nodes come from the * normal bootmem allocator, but other nodes come from the
...@@ -315,10 +317,10 @@ void __init zone_sizes_init(void) ...@@ -315,10 +317,10 @@ void __init zone_sizes_init(void)
if (nid) if (nid)
free_area_init_node(nid, NODE_DATA(nid), free_area_init_node(nid, NODE_DATA(nid),
node_remap_start_vaddr[nid], zones_size, node_remap_start_vaddr[nid], zones_size,
start, 0); start, zholes_size);
else else
free_area_init_node(nid, NODE_DATA(nid), 0, free_area_init_node(nid, NODE_DATA(nid), 0,
zones_size, start, 0); zones_size, start, zholes_size);
} }
return; return;
} }
......
...@@ -12,6 +12,8 @@ ...@@ -12,6 +12,8 @@
#ifdef CONFIG_X86_NUMAQ #ifdef CONFIG_X86_NUMAQ
#include <asm/numaq.h> #include <asm/numaq.h>
#elif CONFIG_X86_SUMMIT
#include <asm/srat.h>
#else #else
#define pfn_to_nid(pfn) (0) #define pfn_to_nid(pfn) (0)
#endif /* CONFIG_X86_NUMAQ */ #endif /* CONFIG_X86_NUMAQ */
......
...@@ -168,6 +168,10 @@ struct sys_cfg_data { ...@@ -168,6 +168,10 @@ struct sys_cfg_data {
struct eachquadmem eq[MAX_NUMNODES]; /* indexed by quad id */ struct eachquadmem eq[MAX_NUMNODES]; /* indexed by quad id */
}; };
static inline unsigned long get_zholes_size(int nid)
{
return 0;
}
#endif /* CONFIG_X86_NUMAQ */ #endif /* CONFIG_X86_NUMAQ */
#endif /* NUMAQ_H */ #endif /* NUMAQ_H */
...@@ -5,6 +5,8 @@ ...@@ -5,6 +5,8 @@
#ifdef CONFIG_X86_NUMAQ #ifdef CONFIG_X86_NUMAQ
#include <asm/numaq.h> #include <asm/numaq.h>
#elif CONFIG_X86_SUMMIT
#include <asm/srat.h>
#else #else
#define MAX_NUMNODES 1 #define MAX_NUMNODES 1
#endif /* CONFIG_X86_NUMAQ */ #endif /* CONFIG_X86_NUMAQ */
......
/*
* Some of the code in this file has been gleaned from the 64 bit
* discontigmem support code base.
*
* Copyright (C) 2002, IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to Pat Gaughen <gone@us.ibm.com>
*/
#ifndef _ASM_SRAT_H_
#define _ASM_SRAT_H_
/*
* each element in pfnnode_map represents 256 MB (2^28) of pages.
* so, to represent 64GB we need 256 elements.
*/
#define MAX_ELEMENTS 256
#define PFN_TO_ELEMENT(pfn) ((pfn)>>(28 - PAGE_SHIFT))
extern int pfnnode_map[];
#define pfn_to_nid(pfn) ({ pfnnode_map[PFN_TO_ELEMENT(pfn)]; })
#define pfn_to_pgdat(pfn) NODE_DATA(pfn_to_nid(pfn))
#define PHYSADDR_TO_NID(pa) pfn_to_nid(pa >> PAGE_SHIFT)
#define MAX_NUMNODES 8
extern void get_memcfg_from_srat(void);
extern unsigned long *get_zholes_size(int);
#define get_memcfg_numa() get_memcfg_from_srat()
#endif /* _ASM_SRAT_H_ */
...@@ -79,7 +79,7 @@ typedef struct { ...@@ -79,7 +79,7 @@ typedef struct {
struct acpi_table_rsdt { struct acpi_table_rsdt {
struct acpi_table_header header; struct acpi_table_header header;
u32 entry[1]; u32 entry[8];
} __attribute__ ((packed)); } __attribute__ ((packed));
/* Extended System Description Table (XSDT) */ /* Extended System Description Table (XSDT) */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment