Commit 63c92c9d authored by Sasha Neftin's avatar Sasha Neftin Committed by Jeff Kirsher

igc: Remove no need declaration of the igc_sw_init

We want to avoid forward-declarations of function if possible.
Rearrange the igc_sw_init function implementation.
Signed-off-by: default avatarSasha Neftin <sasha.neftin@intel.com>
Tested-by: default avatarAaron Brown <aaron.f.brown@intel.com>
Signed-off-by: default avatarJeff Kirsher <jeffrey.t.kirsher@intel.com>
parent 55cd7386
......@@ -51,9 +51,6 @@ static const struct pci_device_id igc_pci_tbl[] = {
MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
/* forward declaration */
static int igc_sw_init(struct igc_adapter *);
enum latency_range {
lowest_latency = 0,
low_latency = 1,
......@@ -2354,1230 +2351,1302 @@ static void igc_irq_disable(struct igc_adapter *adapter)
}
}
/**
* igc_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
*/
void igc_up(struct igc_adapter *adapter)
void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
const u32 max_rss_queues)
{
struct igc_hw *hw = &adapter->hw;
int i = 0;
/* hardware has been reset, we need to reload some things */
igc_configure(adapter);
/* Determine if we need to pair queues. */
/* If rss_queues > half of max_rss_queues, pair the queues in
* order to conserve interrupts due to limited supply.
*/
if (adapter->rss_queues > (max_rss_queues / 2))
adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
else
adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
}
clear_bit(__IGC_DOWN, &adapter->state);
unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
{
unsigned int max_rss_queues;
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&adapter->q_vector[i]->napi);
/* Determine the maximum number of RSS queues supported. */
max_rss_queues = IGC_MAX_RX_QUEUES;
if (adapter->msix_entries)
igc_configure_msix(adapter);
else
igc_assign_vector(adapter->q_vector[0], 0);
return max_rss_queues;
}
/* Clear any pending interrupts. */
rd32(IGC_ICR);
igc_irq_enable(adapter);
static void igc_init_queue_configuration(struct igc_adapter *adapter)
{
u32 max_rss_queues;
netif_tx_start_all_queues(adapter->netdev);
max_rss_queues = igc_get_max_rss_queues(adapter);
adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
igc_set_flag_queue_pairs(adapter, max_rss_queues);
}
/**
* igc_update_stats - Update the board statistics counters
* @adapter: board private structure
* igc_reset_q_vector - Reset config for interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be reset
*
* If NAPI is enabled it will delete any references to the
* NAPI struct. This is preparation for igc_free_q_vector.
*/
void igc_update_stats(struct igc_adapter *adapter)
static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
{
struct rtnl_link_stats64 *net_stats = &adapter->stats64;
struct pci_dev *pdev = adapter->pdev;
struct igc_hw *hw = &adapter->hw;
u64 _bytes, _packets;
u64 bytes, packets;
unsigned int start;
u32 mpc;
int i;
struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
/* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
/* if we're coming from igc_set_interrupt_capability, the vectors are
* not yet allocated
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
if (!q_vector)
return;
packets = 0;
bytes = 0;
if (q_vector->tx.ring)
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
rcu_read_lock();
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igc_ring *ring = adapter->rx_ring[i];
u32 rqdpc = rd32(IGC_RQDPC(i));
if (q_vector->rx.ring)
adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
if (hw->mac.type >= igc_i225)
wr32(IGC_RQDPC(i), 0);
netif_napi_del(&q_vector->napi);
}
if (rqdpc) {
ring->rx_stats.drops += rqdpc;
net_stats->rx_fifo_errors += rqdpc;
/**
* igc_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector.
*/
static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
{
struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
adapter->q_vector[v_idx] = NULL;
/* igc_get_stats64() might access the rings on this vector,
* we must wait a grace period before freeing it.
*/
if (q_vector)
kfree_rcu(q_vector, rcu);
}
/**
* igc_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
*/
static void igc_free_q_vectors(struct igc_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--) {
igc_reset_q_vector(adapter, v_idx);
igc_free_q_vector(adapter, v_idx);
}
}
do {
start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
_bytes = ring->rx_stats.bytes;
_packets = ring->rx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
bytes += _bytes;
packets += _packets;
/**
* igc_update_itr - update the dynamic ITR value based on statistics
* @q_vector: pointer to q_vector
* @ring_container: ring info to update the itr for
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* NOTE: These calculations are only valid when operating in a single-
* queue environment.
*/
static void igc_update_itr(struct igc_q_vector *q_vector,
struct igc_ring_container *ring_container)
{
unsigned int packets = ring_container->total_packets;
unsigned int bytes = ring_container->total_bytes;
u8 itrval = ring_container->itr;
/* no packets, exit with status unchanged */
if (packets == 0)
return;
switch (itrval) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes / packets > 8000)
itrval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
itrval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes / packets > 8000)
itrval = bulk_latency;
else if ((packets < 10) || ((bytes / packets) > 1200))
itrval = bulk_latency;
else if ((packets > 35))
itrval = lowest_latency;
} else if (bytes / packets > 2000) {
itrval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
itrval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
itrval = low_latency;
} else if (bytes < 1500) {
itrval = low_latency;
}
break;
}
net_stats->rx_bytes = bytes;
net_stats->rx_packets = packets;
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
packets = 0;
bytes = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
/* write updated itr to ring container */
ring_container->itr = itrval;
}
do {
start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
_bytes = ring->tx_stats.bytes;
_packets = ring->tx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
bytes += _bytes;
packets += _packets;
static void igc_set_itr(struct igc_q_vector *q_vector)
{
struct igc_adapter *adapter = q_vector->adapter;
u32 new_itr = q_vector->itr_val;
u8 current_itr = 0;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
current_itr = 0;
new_itr = IGC_4K_ITR;
goto set_itr_now;
default:
break;
}
net_stats->tx_bytes = bytes;
net_stats->tx_packets = packets;
rcu_read_unlock();
/* read stats registers */
adapter->stats.crcerrs += rd32(IGC_CRCERRS);
adapter->stats.gprc += rd32(IGC_GPRC);
adapter->stats.gorc += rd32(IGC_GORCL);
rd32(IGC_GORCH); /* clear GORCL */
adapter->stats.bprc += rd32(IGC_BPRC);
adapter->stats.mprc += rd32(IGC_MPRC);
adapter->stats.roc += rd32(IGC_ROC);
igc_update_itr(q_vector, &q_vector->tx);
igc_update_itr(q_vector, &q_vector->rx);
adapter->stats.prc64 += rd32(IGC_PRC64);
adapter->stats.prc127 += rd32(IGC_PRC127);
adapter->stats.prc255 += rd32(IGC_PRC255);
adapter->stats.prc511 += rd32(IGC_PRC511);
adapter->stats.prc1023 += rd32(IGC_PRC1023);
adapter->stats.prc1522 += rd32(IGC_PRC1522);
adapter->stats.symerrs += rd32(IGC_SYMERRS);
adapter->stats.sec += rd32(IGC_SEC);
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
mpc = rd32(IGC_MPC);
adapter->stats.mpc += mpc;
net_stats->rx_fifo_errors += mpc;
adapter->stats.scc += rd32(IGC_SCC);
adapter->stats.ecol += rd32(IGC_ECOL);
adapter->stats.mcc += rd32(IGC_MCC);
adapter->stats.latecol += rd32(IGC_LATECOL);
adapter->stats.dc += rd32(IGC_DC);
adapter->stats.rlec += rd32(IGC_RLEC);
adapter->stats.xonrxc += rd32(IGC_XONRXC);
adapter->stats.xontxc += rd32(IGC_XONTXC);
adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
adapter->stats.fcruc += rd32(IGC_FCRUC);
adapter->stats.gptc += rd32(IGC_GPTC);
adapter->stats.gotc += rd32(IGC_GOTCL);
rd32(IGC_GOTCH); /* clear GOTCL */
adapter->stats.rnbc += rd32(IGC_RNBC);
adapter->stats.ruc += rd32(IGC_RUC);
adapter->stats.rfc += rd32(IGC_RFC);
adapter->stats.rjc += rd32(IGC_RJC);
adapter->stats.tor += rd32(IGC_TORH);
adapter->stats.tot += rd32(IGC_TOTH);
adapter->stats.tpr += rd32(IGC_TPR);
adapter->stats.ptc64 += rd32(IGC_PTC64);
adapter->stats.ptc127 += rd32(IGC_PTC127);
adapter->stats.ptc255 += rd32(IGC_PTC255);
adapter->stats.ptc511 += rd32(IGC_PTC511);
adapter->stats.ptc1023 += rd32(IGC_PTC1023);
adapter->stats.ptc1522 += rd32(IGC_PTC1522);
adapter->stats.mptc += rd32(IGC_MPTC);
adapter->stats.bptc += rd32(IGC_BPTC);
adapter->stats.tpt += rd32(IGC_TPT);
adapter->stats.colc += rd32(IGC_COLC);
adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
adapter->stats.tsctc += rd32(IGC_TSCTC);
adapter->stats.tsctfc += rd32(IGC_TSCTFC);
adapter->stats.iac += rd32(IGC_IAC);
adapter->stats.icrxoc += rd32(IGC_ICRXOC);
adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
adapter->stats.icrxatc += rd32(IGC_ICRXATC);
adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
adapter->stats.ictxatc += rd32(IGC_ICTXATC);
adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
/* Fill out the OS statistics structure */
net_stats->multicast = adapter->stats.mprc;
net_stats->collisions = adapter->stats.colc;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (current_itr == lowest_latency &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
current_itr = low_latency;
/* Rx Errors */
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
break;
case low_latency:
new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
break;
case bulk_latency:
new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
break;
default:
break;
}
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
set_itr_now:
if (new_itr != q_vector->itr_val) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
net_stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
net_stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
net_stats->rx_crc_errors = adapter->stats.crcerrs;
net_stats->rx_frame_errors = adapter->stats.algnerrc;
net_stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
net_stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
net_stats->tx_aborted_errors = adapter->stats.ecol;
net_stats->tx_window_errors = adapter->stats.latecol;
net_stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Management Stats */
adapter->stats.mgptc += rd32(IGC_MGTPTC);
adapter->stats.mgprc += rd32(IGC_MGTPRC);
adapter->stats.mgpdc += rd32(IGC_MGTPDC);
new_itr = new_itr > q_vector->itr_val ?
max((new_itr * q_vector->itr_val) /
(new_itr + (q_vector->itr_val >> 2)),
new_itr) : new_itr;
/* Don't write the value here; it resets the adapter's
* internal timer, and causes us to delay far longer than
* we should between interrupts. Instead, we write the ITR
* value at the beginning of the next interrupt so the timing
* ends up being correct.
*/
q_vector->itr_val = new_itr;
q_vector->set_itr = 1;
}
}
static void igc_nfc_filter_exit(struct igc_adapter *adapter)
static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
{
struct igc_nfc_filter *rule;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
igc_erase_filter(adapter, rule);
int v_idx = adapter->num_q_vectors;
hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
igc_erase_filter(adapter, rule);
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
pci_disable_msi(adapter->pdev);
}
spin_unlock(&adapter->nfc_lock);
while (v_idx--)
igc_reset_q_vector(adapter, v_idx);
}
/**
* igc_down - Close the interface
* @adapter: board private structure
* igc_set_interrupt_capability - set MSI or MSI-X if supported
* @adapter: Pointer to adapter structure
* @msix: boolean value for MSI-X capability
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
*/
void igc_down(struct igc_adapter *adapter)
static void igc_set_interrupt_capability(struct igc_adapter *adapter,
bool msix)
{
struct net_device *netdev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
u32 tctl, rctl;
int i = 0;
set_bit(__IGC_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = rd32(IGC_RCTL);
wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
/* flush and sleep below */
igc_nfc_filter_exit(adapter);
/* set trans_start so we don't get spurious watchdogs during reset */
netif_trans_update(netdev);
int numvecs, i;
int err;
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
if (!msix)
goto msi_only;
adapter->flags |= IGC_FLAG_HAS_MSIX;
/* disable transmits in the hardware */
tctl = rd32(IGC_TCTL);
tctl &= ~IGC_TCTL_EN;
wr32(IGC_TCTL, tctl);
/* flush both disables and wait for them to finish */
wrfl();
usleep_range(10000, 20000);
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
igc_irq_disable(adapter);
adapter->num_tx_queues = adapter->rss_queues;
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
/* start with one vector for every Rx queue */
numvecs = adapter->num_rx_queues;
for (i = 0; i < adapter->num_q_vectors; i++) {
if (adapter->q_vector[i]) {
napi_synchronize(&adapter->q_vector[i]->napi);
napi_disable(&adapter->q_vector[i]->napi);
}
}
/* if Tx handler is separate add 1 for every Tx queue */
if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
/* record the stats before reset*/
spin_lock(&adapter->stats64_lock);
igc_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
/* add 1 vector for link status interrupts */
numvecs++;
adapter->link_speed = 0;
adapter->link_duplex = 0;
adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
GFP_KERNEL);
if (!pci_channel_offline(adapter->pdev))
igc_reset(adapter);
if (!adapter->msix_entries)
return;
/* clear VLAN promisc flag so VFTA will be updated if necessary */
adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
/* populate entry values */
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
igc_clean_all_tx_rings(adapter);
igc_clean_all_rx_rings(adapter);
}
err = pci_enable_msix_range(adapter->pdev,
adapter->msix_entries,
numvecs,
numvecs);
if (err > 0)
return;
void igc_reinit_locked(struct igc_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igc_down(adapter);
igc_up(adapter);
clear_bit(__IGC_RESETTING, &adapter->state);
}
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
static void igc_reset_task(struct work_struct *work)
{
struct igc_adapter *adapter;
igc_reset_interrupt_capability(adapter);
adapter = container_of(work, struct igc_adapter, reset_task);
msi_only:
adapter->flags &= ~IGC_FLAG_HAS_MSIX;
netdev_err(adapter->netdev, "Reset adapter\n");
igc_reinit_locked(adapter);
adapter->rss_queues = 1;
adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
if (!pci_enable_msi(adapter->pdev))
adapter->flags |= IGC_FLAG_HAS_MSI;
}
/**
* igc_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
* igc_update_ring_itr - update the dynamic ITR value based on packet size
* @q_vector: pointer to q_vector
*
* Returns 0 on success, negative on failure
* Stores a new ITR value based on strictly on packet size. This
* algorithm is less sophisticated than that used in igc_update_itr,
* due to the difficulty of synchronizing statistics across multiple
* receive rings. The divisors and thresholds used by this function
* were determined based on theoretical maximum wire speed and testing
* data, in order to minimize response time while increasing bulk
* throughput.
* NOTE: This function is called only when operating in a multiqueue
* receive environment.
*/
static int igc_change_mtu(struct net_device *netdev, int new_mtu)
static void igc_update_ring_itr(struct igc_q_vector *q_vector)
{
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_adapter *adapter = q_vector->adapter;
int new_val = q_vector->itr_val;
int avg_wire_size = 0;
unsigned int packets;
/* adjust max frame to be at least the size of a standard frame */
if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
/* For non-gigabit speeds, just fix the interrupt rate at 4000
* ints/sec - ITR timer value of 120 ticks.
*/
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
new_val = IGC_4K_ITR;
goto set_itr_val;
default:
break;
}
while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
usleep_range(1000, 2000);
packets = q_vector->rx.total_packets;
if (packets)
avg_wire_size = q_vector->rx.total_bytes / packets;
/* igc_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
packets = q_vector->tx.total_packets;
if (packets)
avg_wire_size = max_t(u32, avg_wire_size,
q_vector->tx.total_bytes / packets);
if (netif_running(netdev))
igc_down(adapter);
/* if avg_wire_size isn't set no work was done */
if (!avg_wire_size)
goto clear_counts;
netdev_dbg(netdev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
if (netif_running(netdev))
igc_up(adapter);
/* Don't starve jumbo frames */
avg_wire_size = min(avg_wire_size, 3000);
/* Give a little boost to mid-size frames */
if (avg_wire_size > 300 && avg_wire_size < 1200)
new_val = avg_wire_size / 3;
else
igc_reset(adapter);
new_val = avg_wire_size / 2;
clear_bit(__IGC_RESETTING, &adapter->state);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (new_val < IGC_20K_ITR &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
new_val = IGC_20K_ITR;
return 0;
set_itr_val:
if (new_val != q_vector->itr_val) {
q_vector->itr_val = new_val;
q_vector->set_itr = 1;
}
clear_counts:
q_vector->rx.total_bytes = 0;
q_vector->rx.total_packets = 0;
q_vector->tx.total_bytes = 0;
q_vector->tx.total_packets = 0;
}
/**
* igc_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are updated here and also from the timer callback.
*/
static struct net_device_stats *igc_get_stats(struct net_device *netdev)
static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
{
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_adapter *adapter = q_vector->adapter;
struct igc_hw *hw = &adapter->hw;
if (!test_bit(__IGC_RESETTING, &adapter->state))
igc_update_stats(adapter);
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
if (adapter->num_q_vectors == 1)
igc_set_itr(q_vector);
else
igc_update_ring_itr(q_vector);
}
/* only return the current stats */
return &netdev->stats;
if (!test_bit(__IGC_DOWN, &adapter->state)) {
if (adapter->msix_entries)
wr32(IGC_EIMS, q_vector->eims_value);
else
igc_irq_enable(adapter);
}
}
static netdev_features_t igc_fix_features(struct net_device *netdev,
netdev_features_t features)
static void igc_add_ring(struct igc_ring *ring,
struct igc_ring_container *head)
{
/* Since there is no support for separate Rx/Tx vlan accel
* enable/disable make sure Tx flag is always in same state as Rx.
head->ring = ring;
head->count++;
}
/**
* igc_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
static void igc_cache_ring_register(struct igc_adapter *adapter)
{
int i = 0, j = 0;
return features;
switch (adapter->hw.mac.type) {
case igc_i225:
/* Fall through */
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = j;
break;
}
}
static int igc_set_features(struct net_device *netdev,
netdev_features_t features)
/**
* igc_poll - NAPI Rx polling callback
* @napi: napi polling structure
* @budget: count of how many packets we should handle
*/
static int igc_poll(struct napi_struct *napi, int budget)
{
netdev_features_t changed = netdev->features ^ features;
struct igc_adapter *adapter = netdev_priv(netdev);
struct igc_q_vector *q_vector = container_of(napi,
struct igc_q_vector,
napi);
bool clean_complete = true;
int work_done = 0;
/* Add VLAN support */
if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
return 0;
if (q_vector->tx.ring)
clean_complete = igc_clean_tx_irq(q_vector, budget);
if (!(features & NETIF_F_NTUPLE)) {
struct hlist_node *node2;
struct igc_nfc_filter *rule;
if (q_vector->rx.ring) {
int cleaned = igc_clean_rx_irq(q_vector, budget);
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry_safe(rule, node2,
&adapter->nfc_filter_list, nfc_node) {
igc_erase_filter(adapter, rule);
hlist_del(&rule->nfc_node);
kfree(rule);
}
spin_unlock(&adapter->nfc_lock);
adapter->nfc_filter_count = 0;
work_done += cleaned;
if (cleaned >= budget)
clean_complete = false;
}
netdev->features = features;
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
if (netif_running(netdev))
igc_reinit_locked(adapter);
else
igc_reset(adapter);
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done)))
igc_ring_irq_enable(q_vector);
return 1;
return min(work_done, budget - 1);
}
static netdev_features_t
igc_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
/**
* igc_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_count: q_vectors allocated on adapter, used for ring interleaving
* @v_idx: index of vector in adapter struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
*/
static int igc_alloc_q_vector(struct igc_adapter *adapter,
unsigned int v_count, unsigned int v_idx,
unsigned int txr_count, unsigned int txr_idx,
unsigned int rxr_count, unsigned int rxr_idx)
{
unsigned int network_hdr_len, mac_hdr_len;
/* Make certain the headers can be described by a context descriptor */
mac_hdr_len = skb_network_header(skb) - skb->data;
if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6);
struct igc_q_vector *q_vector;
struct igc_ring *ring;
int ring_count;
network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_TSO |
NETIF_F_TSO6);
/* igc only supports 1 Tx and/or 1 Rx queue per vector */
if (txr_count > 1 || rxr_count > 1)
return -ENOMEM;
/* We can only support IPv4 TSO in tunnels if we can mangle the
* inner IP ID field, so strip TSO if MANGLEID is not supported.
*/
if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
features &= ~NETIF_F_TSO;
ring_count = txr_count + rxr_count;
return features;
}
/* allocate q_vector and rings */
q_vector = adapter->q_vector[v_idx];
if (!q_vector)
q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
GFP_KERNEL);
else
memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
if (!q_vector)
return -ENOMEM;
/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
* 'flags' is used to indicate what kind of match is made, match is by
* default for the destination address, if matching by source address
* is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
*/
static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
const u8 *addr, const u8 queue,
const u8 flags)
{
struct igc_hw *hw = &adapter->hw;
int rar_entries = hw->mac.rar_entry_count;
int i;
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi,
igc_poll, 64);
if (is_zero_ether_addr(addr))
return -EINVAL;
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
/* Search for the first empty entry in the MAC table.
* Do not touch entries at the end of the table reserved for the VF MAC
* addresses.
*/
for (i = 0; i < rar_entries; i++) {
if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
addr, flags))
continue;
/* initialize work limits */
q_vector->tx.work_limit = adapter->tx_work_limit;
ether_addr_copy(adapter->mac_table[i].addr, addr);
adapter->mac_table[i].queue = queue;
adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
/* initialize ITR configuration */
q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
q_vector->itr_val = IGC_START_ITR;
igc_rar_set_index(adapter, i);
return i;
/* initialize pointer to rings */
ring = q_vector->ring;
/* initialize ITR */
if (rxr_count) {
/* rx or rx/tx vector */
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
q_vector->itr_val = adapter->rx_itr_setting;
} else {
/* tx only vector */
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
q_vector->itr_val = adapter->tx_itr_setting;
}
return -ENOSPC;
}
if (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
int igc_add_mac_steering_filter(struct igc_adapter *adapter,
const u8 *addr, u8 queue, u8 flags)
{
return igc_add_mac_filter_flags(adapter, addr, queue,
IGC_MAC_STATE_QUEUE_STEERING | flags);
}
/* configure backlink on ring */
ring->q_vector = q_vector;
/* Remove a MAC filter for 'addr' directing matching traffic to
* 'queue', 'flags' is used to indicate what kind of match need to be
* removed, match is by default for the destination address, if
* matching by source address is to be removed the flag
* IGC_MAC_STATE_SRC_ADDR can be used.
*/
static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
const u8 *addr, const u8 queue,
const u8 flags)
{
struct igc_hw *hw = &adapter->hw;
int rar_entries = hw->mac.rar_entry_count;
int i;
/* update q_vector Tx values */
igc_add_ring(ring, &q_vector->tx);
if (is_zero_ether_addr(addr))
return -EINVAL;
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
/* Search for matching entry in the MAC table based on given address
* and queue. Do not touch entries at the end of the table reserved
* for the VF MAC addresses.
*/
for (i = 0; i < rar_entries; i++) {
if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
continue;
if ((adapter->mac_table[i].state & flags) != flags)
continue;
if (adapter->mac_table[i].queue != queue)
continue;
if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
continue;
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* When a filter for the default address is "deleted",
* we return it to its initial configuration
*/
if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
adapter->mac_table[i].state =
IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
} else {
adapter->mac_table[i].state = 0;
adapter->mac_table[i].queue = 0;
memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
/* push pointer to next ring */
ring++;
}
igc_rar_set_index(adapter, i);
return 0;
}
if (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
return -ENOENT;
}
/* configure backlink on ring */
ring->q_vector = q_vector;
int igc_del_mac_steering_filter(struct igc_adapter *adapter,
const u8 *addr, u8 queue, u8 flags)
{
return igc_del_mac_filter_flags(adapter, addr, queue,
IGC_MAC_STATE_QUEUE_STEERING | flags);
/* update q_vector Rx values */
igc_add_ring(ring, &q_vector->rx);
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
}
return 0;
}
/**
* igc_msix_other - msix other interrupt handler
* @irq: interrupt number
* @data: pointer to a q_vector
* igc_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
*/
static irqreturn_t igc_msix_other(int irq, void *data)
static int igc_alloc_q_vectors(struct igc_adapter *adapter)
{
struct igc_adapter *adapter = data;
struct igc_hw *hw = &adapter->hw;
u32 icr = rd32(IGC_ICR);
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int q_vectors = adapter->num_q_vectors;
int err;
/* reading ICR causes bit 31 of EICR to be cleared */
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
0, 0, 1, rxr_idx);
if (icr & IGC_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
if (err)
goto err_out;
if (icr & IGC_ICR_LSC) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
}
wr32(IGC_EIMS, adapter->eims_other);
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
return IRQ_HANDLED;
}
err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
tqpv, txr_idx, rqpv, rxr_idx);
static void igc_write_itr(struct igc_q_vector *q_vector)
{
u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
if (err)
goto err_out;
if (!q_vector->set_itr)
return;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
}
if (!itr_val)
itr_val = IGC_ITR_VAL_MASK;
return 0;
itr_val |= IGC_EITR_CNT_IGNR;
err_out:
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
writel(itr_val, q_vector->itr_register);
q_vector->set_itr = 0;
while (v_idx--)
igc_free_q_vector(adapter, v_idx);
return -ENOMEM;
}
static irqreturn_t igc_msix_ring(int irq, void *data)
/**
* igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
* @adapter: Pointer to adapter structure
* @msix: boolean for MSI-X capability
*
* This function initializes the interrupts and allocates all of the queues.
*/
static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
{
struct igc_q_vector *q_vector = data;
struct pci_dev *pdev = adapter->pdev;
int err = 0;
/* Write the ITR value calculated from the previous interrupt. */
igc_write_itr(q_vector);
igc_set_interrupt_capability(adapter, msix);
napi_schedule(&q_vector->napi);
err = igc_alloc_q_vectors(adapter);
if (err) {
dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
}
return IRQ_HANDLED;
igc_cache_ring_register(adapter);
return 0;
err_alloc_q_vectors:
igc_reset_interrupt_capability(adapter);
return err;
}
/**
* igc_request_msix - Initialize MSI-X interrupts
* @adapter: Pointer to adapter structure
* igc_sw_init - Initialize general software structures (struct igc_adapter)
* @adapter: board private structure to initialize
*
* igc_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
* igc_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int igc_request_msix(struct igc_adapter *adapter)
static int igc_sw_init(struct igc_adapter *adapter)
{
int i = 0, err = 0, vector = 0, free_vector = 0;
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct igc_hw *hw = &adapter->hw;
err = request_irq(adapter->msix_entries[vector].vector,
&igc_msix_other, 0, netdev->name, adapter);
if (err)
goto err_out;
int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
for (i = 0; i < adapter->num_q_vectors; i++) {
struct igc_q_vector *q_vector = adapter->q_vector[i];
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
vector++;
/* set default ring sizes */
adapter->tx_ring_count = IGC_DEFAULT_TXD;
adapter->rx_ring_count = IGC_DEFAULT_RXD;
q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
/* set default ITR values */
adapter->rx_itr_setting = IGC_DEFAULT_ITR;
adapter->tx_itr_setting = IGC_DEFAULT_ITR;
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
/* set default work limits */
adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
err = request_irq(adapter->msix_entries[vector].vector,
igc_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto err_free;
}
/* adjust max frame to be at least the size of a standard frame */
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
VLAN_HLEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
igc_configure_msix(adapter);
return 0;
spin_lock_init(&adapter->nfc_lock);
spin_lock_init(&adapter->stats64_lock);
/* Assume MSI-X interrupts, will be checked during IRQ allocation */
adapter->flags |= IGC_FLAG_HAS_MSIX;
err_free:
/* free already assigned IRQs */
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
adapter->mac_table = kzalloc(size, GFP_ATOMIC);
if (!adapter->mac_table)
return -ENOMEM;
vector--;
for (i = 0; i < vector; i++) {
free_irq(adapter->msix_entries[free_vector++].vector,
adapter->q_vector[i]);
igc_init_queue_configuration(adapter);
/* This call may decrease the number of queues */
if (igc_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
err_out:
return err;
/* Explicitly disable IRQ since the NIC can be in any state. */
igc_irq_disable(adapter);
set_bit(__IGC_DOWN, &adapter->state);
return 0;
}
/**
* igc_reset_q_vector - Reset config for interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be reset
*
* If NAPI is enabled it will delete any references to the
* NAPI struct. This is preparation for igc_free_q_vector.
* igc_up - Open the interface and prepare it to handle traffic
* @adapter: board private structure
*/
static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
void igc_up(struct igc_adapter *adapter)
{
struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
struct igc_hw *hw = &adapter->hw;
int i = 0;
/* if we're coming from igc_set_interrupt_capability, the vectors are
* not yet allocated
*/
if (!q_vector)
return;
/* hardware has been reset, we need to reload some things */
igc_configure(adapter);
if (q_vector->tx.ring)
adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
clear_bit(__IGC_DOWN, &adapter->state);
if (q_vector->rx.ring)
adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
for (i = 0; i < adapter->num_q_vectors; i++)
napi_enable(&adapter->q_vector[i]->napi);
netif_napi_del(&q_vector->napi);
}
if (adapter->msix_entries)
igc_configure_msix(adapter);
else
igc_assign_vector(adapter->q_vector[0], 0);
static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
/* Clear any pending interrupts. */
rd32(IGC_ICR);
igc_irq_enable(adapter);
if (adapter->msix_entries) {
pci_disable_msix(adapter->pdev);
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
pci_disable_msi(adapter->pdev);
}
netif_tx_start_all_queues(adapter->netdev);
while (v_idx--)
igc_reset_q_vector(adapter, v_idx);
/* start the watchdog. */
hw->mac.get_link_status = 1;
schedule_work(&adapter->watchdog_task);
}
/**
* igc_set_interrupt_capability - set MSI or MSI-X if supported
* @adapter: Pointer to adapter structure
* @msix: boolean value for MSI-X capability
*
* Attempt to configure interrupts using the best available
* capabilities of the hardware and kernel.
* igc_update_stats - Update the board statistics counters
* @adapter: board private structure
*/
static void igc_set_interrupt_capability(struct igc_adapter *adapter,
bool msix)
void igc_update_stats(struct igc_adapter *adapter)
{
int numvecs, i;
int err;
if (!msix)
goto msi_only;
adapter->flags |= IGC_FLAG_HAS_MSIX;
/* Number of supported queues. */
adapter->num_rx_queues = adapter->rss_queues;
adapter->num_tx_queues = adapter->rss_queues;
/* start with one vector for every Rx queue */
numvecs = adapter->num_rx_queues;
struct rtnl_link_stats64 *net_stats = &adapter->stats64;
struct pci_dev *pdev = adapter->pdev;
struct igc_hw *hw = &adapter->hw;
u64 _bytes, _packets;
u64 bytes, packets;
unsigned int start;
u32 mpc;
int i;
/* if Tx handler is separate add 1 for every Tx queue */
if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
numvecs += adapter->num_tx_queues;
/* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
/* store the number of vectors reserved for queues */
adapter->num_q_vectors = numvecs;
packets = 0;
bytes = 0;
/* add 1 vector for link status interrupts */
numvecs++;
rcu_read_lock();
for (i = 0; i < adapter->num_rx_queues; i++) {
struct igc_ring *ring = adapter->rx_ring[i];
u32 rqdpc = rd32(IGC_RQDPC(i));
adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
GFP_KERNEL);
if (hw->mac.type >= igc_i225)
wr32(IGC_RQDPC(i), 0);
if (!adapter->msix_entries)
return;
if (rqdpc) {
ring->rx_stats.drops += rqdpc;
net_stats->rx_fifo_errors += rqdpc;
}
/* populate entry values */
for (i = 0; i < numvecs; i++)
adapter->msix_entries[i].entry = i;
do {
start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
_bytes = ring->rx_stats.bytes;
_packets = ring->rx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
bytes += _bytes;
packets += _packets;
}
err = pci_enable_msix_range(adapter->pdev,
adapter->msix_entries,
numvecs,
numvecs);
if (err > 0)
return;
net_stats->rx_bytes = bytes;
net_stats->rx_packets = packets;
kfree(adapter->msix_entries);
adapter->msix_entries = NULL;
packets = 0;
bytes = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *ring = adapter->tx_ring[i];
igc_reset_interrupt_capability(adapter);
do {
start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
_bytes = ring->tx_stats.bytes;
_packets = ring->tx_stats.packets;
} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
bytes += _bytes;
packets += _packets;
}
net_stats->tx_bytes = bytes;
net_stats->tx_packets = packets;
rcu_read_unlock();
msi_only:
adapter->flags &= ~IGC_FLAG_HAS_MSIX;
/* read stats registers */
adapter->stats.crcerrs += rd32(IGC_CRCERRS);
adapter->stats.gprc += rd32(IGC_GPRC);
adapter->stats.gorc += rd32(IGC_GORCL);
rd32(IGC_GORCH); /* clear GORCL */
adapter->stats.bprc += rd32(IGC_BPRC);
adapter->stats.mprc += rd32(IGC_MPRC);
adapter->stats.roc += rd32(IGC_ROC);
adapter->rss_queues = 1;
adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
adapter->num_rx_queues = 1;
adapter->num_tx_queues = 1;
adapter->num_q_vectors = 1;
if (!pci_enable_msi(adapter->pdev))
adapter->flags |= IGC_FLAG_HAS_MSI;
}
adapter->stats.prc64 += rd32(IGC_PRC64);
adapter->stats.prc127 += rd32(IGC_PRC127);
adapter->stats.prc255 += rd32(IGC_PRC255);
adapter->stats.prc511 += rd32(IGC_PRC511);
adapter->stats.prc1023 += rd32(IGC_PRC1023);
adapter->stats.prc1522 += rd32(IGC_PRC1522);
adapter->stats.symerrs += rd32(IGC_SYMERRS);
adapter->stats.sec += rd32(IGC_SEC);
/**
* igc_free_q_vector - Free memory allocated for specific interrupt vector
* @adapter: board private structure to initialize
* @v_idx: Index of vector to be freed
*
* This function frees the memory allocated to the q_vector.
*/
static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
{
struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
mpc = rd32(IGC_MPC);
adapter->stats.mpc += mpc;
net_stats->rx_fifo_errors += mpc;
adapter->stats.scc += rd32(IGC_SCC);
adapter->stats.ecol += rd32(IGC_ECOL);
adapter->stats.mcc += rd32(IGC_MCC);
adapter->stats.latecol += rd32(IGC_LATECOL);
adapter->stats.dc += rd32(IGC_DC);
adapter->stats.rlec += rd32(IGC_RLEC);
adapter->stats.xonrxc += rd32(IGC_XONRXC);
adapter->stats.xontxc += rd32(IGC_XONTXC);
adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
adapter->stats.fcruc += rd32(IGC_FCRUC);
adapter->stats.gptc += rd32(IGC_GPTC);
adapter->stats.gotc += rd32(IGC_GOTCL);
rd32(IGC_GOTCH); /* clear GOTCL */
adapter->stats.rnbc += rd32(IGC_RNBC);
adapter->stats.ruc += rd32(IGC_RUC);
adapter->stats.rfc += rd32(IGC_RFC);
adapter->stats.rjc += rd32(IGC_RJC);
adapter->stats.tor += rd32(IGC_TORH);
adapter->stats.tot += rd32(IGC_TOTH);
adapter->stats.tpr += rd32(IGC_TPR);
adapter->q_vector[v_idx] = NULL;
adapter->stats.ptc64 += rd32(IGC_PTC64);
adapter->stats.ptc127 += rd32(IGC_PTC127);
adapter->stats.ptc255 += rd32(IGC_PTC255);
adapter->stats.ptc511 += rd32(IGC_PTC511);
adapter->stats.ptc1023 += rd32(IGC_PTC1023);
adapter->stats.ptc1522 += rd32(IGC_PTC1522);
/* igc_get_stats64() might access the rings on this vector,
* we must wait a grace period before freeing it.
*/
if (q_vector)
kfree_rcu(q_vector, rcu);
}
adapter->stats.mptc += rd32(IGC_MPTC);
adapter->stats.bptc += rd32(IGC_BPTC);
/**
* igc_free_q_vectors - Free memory allocated for interrupt vectors
* @adapter: board private structure to initialize
*
* This function frees the memory allocated to the q_vectors. In addition if
* NAPI is enabled it will delete any references to the NAPI struct prior
* to freeing the q_vector.
*/
static void igc_free_q_vectors(struct igc_adapter *adapter)
{
int v_idx = adapter->num_q_vectors;
adapter->stats.tpt += rd32(IGC_TPT);
adapter->stats.colc += rd32(IGC_COLC);
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
while (v_idx--) {
igc_reset_q_vector(adapter, v_idx);
igc_free_q_vector(adapter, v_idx);
}
}
adapter->stats.tsctc += rd32(IGC_TSCTC);
adapter->stats.tsctfc += rd32(IGC_TSCTFC);
/**
* igc_clear_interrupt_scheme - reset the device to a state of no interrupts
* @adapter: Pointer to adapter structure
*
* This function resets the device so that it has 0 rx queues, tx queues, and
* MSI-X interrupts allocated.
adapter->stats.iac += rd32(IGC_IAC);
adapter->stats.icrxoc += rd32(IGC_ICRXOC);
adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
adapter->stats.icrxatc += rd32(IGC_ICRXATC);
adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
adapter->stats.ictxatc += rd32(IGC_ICTXATC);
adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
/* Fill out the OS statistics structure */
net_stats->multicast = adapter->stats.mprc;
net_stats->collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
{
igc_free_q_vectors(adapter);
igc_reset_interrupt_capability(adapter);
net_stats->rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
net_stats->rx_length_errors = adapter->stats.ruc +
adapter->stats.roc;
net_stats->rx_crc_errors = adapter->stats.crcerrs;
net_stats->rx_frame_errors = adapter->stats.algnerrc;
net_stats->rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
net_stats->tx_errors = adapter->stats.ecol +
adapter->stats.latecol;
net_stats->tx_aborted_errors = adapter->stats.ecol;
net_stats->tx_window_errors = adapter->stats.latecol;
net_stats->tx_carrier_errors = adapter->stats.tncrs;
/* Tx Dropped needs to be maintained elsewhere */
/* Management Stats */
adapter->stats.mgptc += rd32(IGC_MGTPTC);
adapter->stats.mgprc += rd32(IGC_MGTPRC);
adapter->stats.mgpdc += rd32(IGC_MGTPDC);
}
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void igc_update_phy_info(struct timer_list *t)
static void igc_nfc_filter_exit(struct igc_adapter *adapter)
{
struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
struct igc_nfc_filter *rule;
igc_get_phy_info(&adapter->hw);
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
igc_erase_filter(adapter, rule);
hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
igc_erase_filter(adapter, rule);
spin_unlock(&adapter->nfc_lock);
}
/**
* igc_has_link - check shared code for link and determine up/down
* @adapter: pointer to driver private info
* igc_down - Close the interface
* @adapter: board private structure
*/
bool igc_has_link(struct igc_adapter *adapter)
void igc_down(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
bool link_active = false;
u32 tctl, rctl;
int i = 0;
/* get_link_status is set on LSC (link status) interrupt or
* rx sequence error interrupt. get_link_status will stay
* false until the igc_check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case igc_media_type_copper:
if (!hw->mac.get_link_status)
return true;
hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
break;
default:
case igc_media_type_unknown:
break;
}
set_bit(__IGC_DOWN, &adapter->state);
/* disable receives in the hardware */
rctl = rd32(IGC_RCTL);
wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
/* flush and sleep below */
igc_nfc_filter_exit(adapter);
/* set trans_start so we don't get spurious watchdogs during reset */
netif_trans_update(netdev);
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
/* disable transmits in the hardware */
tctl = rd32(IGC_TCTL);
tctl &= ~IGC_TCTL_EN;
wr32(IGC_TCTL, tctl);
/* flush both disables and wait for them to finish */
wrfl();
usleep_range(10000, 20000);
igc_irq_disable(adapter);
if (hw->mac.type == igc_i225 &&
hw->phy.id == I225_I_PHY_ID) {
if (!netif_carrier_ok(adapter->netdev)) {
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
adapter->link_check_timeout = jiffies;
for (i = 0; i < adapter->num_q_vectors; i++) {
if (adapter->q_vector[i]) {
napi_synchronize(&adapter->q_vector[i]->napi);
napi_disable(&adapter->q_vector[i]->napi);
}
}
return link_active;
del_timer_sync(&adapter->watchdog_timer);
del_timer_sync(&adapter->phy_info_timer);
/* record the stats before reset*/
spin_lock(&adapter->stats64_lock);
igc_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
adapter->link_speed = 0;
adapter->link_duplex = 0;
if (!pci_channel_offline(adapter->pdev))
igc_reset(adapter);
/* clear VLAN promisc flag so VFTA will be updated if necessary */
adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
igc_clean_all_tx_rings(adapter);
igc_clean_all_rx_rings(adapter);
}
/**
* igc_watchdog - Timer Call-back
* @t: timer for the watchdog
*/
static void igc_watchdog(struct timer_list *t)
void igc_reinit_locked(struct igc_adapter *adapter)
{
struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
WARN_ON(in_interrupt());
while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
usleep_range(1000, 2000);
igc_down(adapter);
igc_up(adapter);
clear_bit(__IGC_RESETTING, &adapter->state);
}
static void igc_watchdog_task(struct work_struct *work)
static void igc_reset_task(struct work_struct *work)
{
struct igc_adapter *adapter = container_of(work,
struct igc_adapter,
watchdog_task);
struct net_device *netdev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
struct igc_phy_info *phy = &hw->phy;
u16 phy_data, retry_count = 20;
u32 connsw;
u32 link;
int i;
struct igc_adapter *adapter;
link = igc_has_link(adapter);
adapter = container_of(work, struct igc_adapter, reset_task);
if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
else
link = false;
}
netdev_err(adapter->netdev, "Reset adapter\n");
igc_reinit_locked(adapter);
}
/* Force link down if we have fiber to swap to */
if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
if (hw->phy.media_type == igc_media_type_copper) {
connsw = rd32(IGC_CONNSW);
if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
link = 0;
}
}
if (link) {
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
hw->mac.ops.get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
ctrl = rd32(IGC_CTRL);
/* Link status message must follow this format */
netdev_info(netdev,
"igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full" : "Half",
(ctrl & IGC_CTRL_TFCE) &&
(ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
(ctrl & IGC_CTRL_RFCE) ? "RX" :
(ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
/**
* igc_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int igc_change_mtu(struct net_device *netdev, int new_mtu)
{
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
struct igc_adapter *adapter = netdev_priv(netdev);
/* check if SmartSpeed worked */
igc_check_downshift(hw);
if (phy->speed_downgraded)
netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
/* adjust max frame to be at least the size of a standard frame */
if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 14;
break;
case SPEED_100:
/* maybe add some timeout factor ? */
break;
}
while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
usleep_range(1000, 2000);
if (adapter->link_speed != SPEED_1000)
goto no_wait;
/* igc_down has a dependency on max_frame_size */
adapter->max_frame_size = max_frame;
/* wait for Remote receiver status OK */
retry_read_status:
if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data)) {
if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
retry_count) {
msleep(100);
retry_count--;
goto retry_read_status;
} else if (!retry_count) {
dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
}
} else {
dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
}
no_wait:
netif_carrier_on(netdev);
if (netif_running(netdev))
igc_down(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
netdev_dbg(netdev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
/* Links status message must follow this format */
netdev_info(netdev, "igc: %s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
if (netif_running(netdev))
igc_up(adapter);
else
igc_reset(adapter);
/* link state has changed, schedule phy info update */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
clear_bit(__IGC_RESETTING, &adapter->state);
/* link is down, time to check for alternate media */
if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
return 0;
}
/* also check for alternate media here */
} else if (!netif_carrier_ok(netdev) &&
(adapter->flags & IGC_FLAG_MAS_ENABLE)) {
if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
}
/**
* igc_get_stats - Get System Network Statistics
* @netdev: network interface device structure
*
* Returns the address of the device statistics structure.
* The statistics are updated here and also from the timer callback.
*/
static struct net_device_stats *igc_get_stats(struct net_device *netdev)
{
struct igc_adapter *adapter = netdev_priv(netdev);
spin_lock(&adapter->stats64_lock);
if (!test_bit(__IGC_RESETTING, &adapter->state))
igc_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *tx_ring = adapter->tx_ring[i];
/* only return the current stats */
return &netdev->stats;
}
if (!netif_carrier_ok(netdev)) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
static netdev_features_t igc_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/* Since there is no support for separate Rx/Tx vlan accel
* enable/disable make sure Tx flag is always in same state as Rx.
*/
if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
}
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
/* Force detection of hung controller every watchdog period */
set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
}
return features;
}
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->flags & IGC_FLAG_HAS_MSIX) {
u32 eics = 0;
static int igc_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct igc_adapter *adapter = netdev_priv(netdev);
for (i = 0; i < adapter->num_q_vectors; i++)
eics |= adapter->q_vector[i]->eims_value;
wr32(IGC_EICS, eics);
} else {
wr32(IGC_ICS, IGC_ICS_RXDMT0);
/* Add VLAN support */
if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
return 0;
if (!(features & NETIF_F_NTUPLE)) {
struct hlist_node *node2;
struct igc_nfc_filter *rule;
spin_lock(&adapter->nfc_lock);
hlist_for_each_entry_safe(rule, node2,
&adapter->nfc_filter_list, nfc_node) {
igc_erase_filter(adapter, rule);
hlist_del(&rule->nfc_node);
kfree(rule);
}
spin_unlock(&adapter->nfc_lock);
adapter->nfc_filter_count = 0;
}
/* Reset the timer */
if (!test_bit(__IGC_DOWN, &adapter->state)) {
if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + HZ));
netdev->features = features;
if (netif_running(netdev))
igc_reinit_locked(adapter);
else
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
igc_reset(adapter);
return 1;
}
/**
* igc_update_ring_itr - update the dynamic ITR value based on packet size
* @q_vector: pointer to q_vector
*
* Stores a new ITR value based on strictly on packet size. This
* algorithm is less sophisticated than that used in igc_update_itr,
* due to the difficulty of synchronizing statistics across multiple
* receive rings. The divisors and thresholds used by this function
* were determined based on theoretical maximum wire speed and testing
* data, in order to minimize response time while increasing bulk
* throughput.
* NOTE: This function is called only when operating in a multiqueue
* receive environment.
*/
static void igc_update_ring_itr(struct igc_q_vector *q_vector)
static netdev_features_t
igc_features_check(struct sk_buff *skb, struct net_device *dev,
netdev_features_t features)
{
struct igc_adapter *adapter = q_vector->adapter;
int new_val = q_vector->itr_val;
int avg_wire_size = 0;
unsigned int packets;
unsigned int network_hdr_len, mac_hdr_len;
/* For non-gigabit speeds, just fix the interrupt rate at 4000
* ints/sec - ITR timer value of 120 ticks.
*/
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
new_val = IGC_4K_ITR;
goto set_itr_val;
default:
break;
}
/* Make certain the headers can be described by a context descriptor */
mac_hdr_len = skb_network_header(skb) - skb->data;
if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_TSO |
NETIF_F_TSO6);
packets = q_vector->rx.total_packets;
if (packets)
avg_wire_size = q_vector->rx.total_bytes / packets;
network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
return features & ~(NETIF_F_HW_CSUM |
NETIF_F_SCTP_CRC |
NETIF_F_TSO |
NETIF_F_TSO6);
packets = q_vector->tx.total_packets;
if (packets)
avg_wire_size = max_t(u32, avg_wire_size,
q_vector->tx.total_bytes / packets);
/* We can only support IPv4 TSO in tunnels if we can mangle the
* inner IP ID field, so strip TSO if MANGLEID is not supported.
*/
if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
features &= ~NETIF_F_TSO;
/* if avg_wire_size isn't set no work was done */
if (!avg_wire_size)
goto clear_counts;
return features;
}
/* Add 24 bytes to size to account for CRC, preamble, and gap */
avg_wire_size += 24;
/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
* 'flags' is used to indicate what kind of match is made, match is by
* default for the destination address, if matching by source address
* is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
*/
static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
const u8 *addr, const u8 queue,
const u8 flags)
{
struct igc_hw *hw = &adapter->hw;
int rar_entries = hw->mac.rar_entry_count;
int i;
/* Don't starve jumbo frames */
avg_wire_size = min(avg_wire_size, 3000);
if (is_zero_ether_addr(addr))
return -EINVAL;
/* Give a little boost to mid-size frames */
if (avg_wire_size > 300 && avg_wire_size < 1200)
new_val = avg_wire_size / 3;
else
new_val = avg_wire_size / 2;
/* Search for the first empty entry in the MAC table.
* Do not touch entries at the end of the table reserved for the VF MAC
* addresses.
*/
for (i = 0; i < rar_entries; i++) {
if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
addr, flags))
continue;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (new_val < IGC_20K_ITR &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
new_val = IGC_20K_ITR;
ether_addr_copy(adapter->mac_table[i].addr, addr);
adapter->mac_table[i].queue = queue;
adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
set_itr_val:
if (new_val != q_vector->itr_val) {
q_vector->itr_val = new_val;
q_vector->set_itr = 1;
igc_rar_set_index(adapter, i);
return i;
}
clear_counts:
q_vector->rx.total_bytes = 0;
q_vector->rx.total_packets = 0;
q_vector->tx.total_bytes = 0;
q_vector->tx.total_packets = 0;
return -ENOSPC;
}
/**
* igc_update_itr - update the dynamic ITR value based on statistics
* @q_vector: pointer to q_vector
* @ring_container: ring info to update the itr for
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* NOTE: These calculations are only valid when operating in a single-
* queue environment.
*/
static void igc_update_itr(struct igc_q_vector *q_vector,
struct igc_ring_container *ring_container)
int igc_add_mac_steering_filter(struct igc_adapter *adapter,
const u8 *addr, u8 queue, u8 flags)
{
unsigned int packets = ring_container->total_packets;
unsigned int bytes = ring_container->total_bytes;
u8 itrval = ring_container->itr;
return igc_add_mac_filter_flags(adapter, addr, queue,
IGC_MAC_STATE_QUEUE_STEERING | flags);
}
/* no packets, exit with status unchanged */
if (packets == 0)
return;
/* Remove a MAC filter for 'addr' directing matching traffic to
* 'queue', 'flags' is used to indicate what kind of match need to be
* removed, match is by default for the destination address, if
* matching by source address is to be removed the flag
* IGC_MAC_STATE_SRC_ADDR can be used.
*/
static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
const u8 *addr, const u8 queue,
const u8 flags)
{
struct igc_hw *hw = &adapter->hw;
int rar_entries = hw->mac.rar_entry_count;
int i;
switch (itrval) {
case lowest_latency:
/* handle TSO and jumbo frames */
if (bytes / packets > 8000)
itrval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
itrval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* this if handles the TSO accounting */
if (bytes / packets > 8000)
itrval = bulk_latency;
else if ((packets < 10) || ((bytes / packets) > 1200))
itrval = bulk_latency;
else if ((packets > 35))
itrval = lowest_latency;
} else if (bytes / packets > 2000) {
itrval = bulk_latency;
} else if (packets <= 2 && bytes < 512) {
itrval = lowest_latency;
}
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
itrval = low_latency;
} else if (bytes < 1500) {
itrval = low_latency;
if (is_zero_ether_addr(addr))
return -EINVAL;
/* Search for matching entry in the MAC table based on given address
* and queue. Do not touch entries at the end of the table reserved
* for the VF MAC addresses.
*/
for (i = 0; i < rar_entries; i++) {
if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
continue;
if ((adapter->mac_table[i].state & flags) != flags)
continue;
if (adapter->mac_table[i].queue != queue)
continue;
if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
continue;
/* When a filter for the default address is "deleted",
* we return it to its initial configuration
*/
if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
adapter->mac_table[i].state =
IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
} else {
adapter->mac_table[i].state = 0;
adapter->mac_table[i].queue = 0;
memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
}
break;
igc_rar_set_index(adapter, i);
return 0;
}
/* clear work counters since we have the values we need */
ring_container->total_bytes = 0;
ring_container->total_packets = 0;
return -ENOENT;
}
/* write updated itr to ring container */
ring_container->itr = itrval;
int igc_del_mac_steering_filter(struct igc_adapter *adapter,
const u8 *addr, u8 queue, u8 flags)
{
return igc_del_mac_filter_flags(adapter, addr, queue,
IGC_MAC_STATE_QUEUE_STEERING | flags);
}
/**
* igc_intr_msi - Interrupt Handler
* igc_msix_other - msix other interrupt handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
* @data: pointer to a q_vector
*/
static irqreturn_t igc_intr_msi(int irq, void *data)
static irqreturn_t igc_msix_other(int irq, void *data)
{
struct igc_adapter *adapter = data;
struct igc_q_vector *q_vector = adapter->q_vector[0];
struct igc_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = rd32(IGC_ICR);
igc_write_itr(q_vector);
/* reading ICR causes bit 31 of EICR to be cleared */
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
......@@ -3586,408 +3655,428 @@ static irqreturn_t igc_intr_msi(int irq, void *data)
adapter->stats.doosync++;
}
if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
if (icr & IGC_ICR_LSC) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
napi_schedule(&q_vector->napi);
wr32(IGC_EIMS, adapter->eims_other);
return IRQ_HANDLED;
}
/**
* igc_intr - Legacy Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static irqreturn_t igc_intr(int irq, void *data)
static void igc_write_itr(struct igc_q_vector *q_vector)
{
struct igc_adapter *adapter = data;
struct igc_q_vector *q_vector = adapter->q_vector[0];
struct igc_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write
*/
u32 icr = rd32(IGC_ICR);
u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
if (!(icr & IGC_ICR_INT_ASSERTED))
return IRQ_NONE;
if (!q_vector->set_itr)
return;
igc_write_itr(q_vector);
if (!itr_val)
itr_val = IGC_ITR_VAL_MASK;
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
itr_val |= IGC_EITR_CNT_IGNR;
if (icr & IGC_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
writel(itr_val, q_vector->itr_register);
q_vector->set_itr = 0;
}
if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
static irqreturn_t igc_msix_ring(int irq, void *data)
{
struct igc_q_vector *q_vector = data;
/* Write the ITR value calculated from the previous interrupt. */
igc_write_itr(q_vector);
napi_schedule(&q_vector->napi);
return IRQ_HANDLED;
}
static void igc_set_itr(struct igc_q_vector *q_vector)
/**
* igc_request_msix - Initialize MSI-X interrupts
* @adapter: Pointer to adapter structure
*
* igc_request_msix allocates MSI-X vectors and requests interrupts from the
* kernel.
*/
static int igc_request_msix(struct igc_adapter *adapter)
{
struct igc_adapter *adapter = q_vector->adapter;
u32 new_itr = q_vector->itr_val;
u8 current_itr = 0;
int i = 0, err = 0, vector = 0, free_vector = 0;
struct net_device *netdev = adapter->netdev;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
switch (adapter->link_speed) {
case SPEED_10:
case SPEED_100:
current_itr = 0;
new_itr = IGC_4K_ITR;
goto set_itr_now;
default:
break;
}
err = request_irq(adapter->msix_entries[vector].vector,
&igc_msix_other, 0, netdev->name, adapter);
if (err)
goto err_out;
igc_update_itr(q_vector, &q_vector->tx);
igc_update_itr(q_vector, &q_vector->rx);
for (i = 0; i < adapter->num_q_vectors; i++) {
struct igc_q_vector *q_vector = adapter->q_vector[i];
current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
vector++;
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (current_itr == lowest_latency &&
((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
(!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
current_itr = low_latency;
q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
break;
case low_latency:
new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
break;
case bulk_latency:
new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
break;
default:
break;
}
if (q_vector->rx.ring && q_vector->tx.ring)
sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else if (q_vector->tx.ring)
sprintf(q_vector->name, "%s-tx-%u", netdev->name,
q_vector->tx.ring->queue_index);
else if (q_vector->rx.ring)
sprintf(q_vector->name, "%s-rx-%u", netdev->name,
q_vector->rx.ring->queue_index);
else
sprintf(q_vector->name, "%s-unused", netdev->name);
set_itr_now:
if (new_itr != q_vector->itr_val) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > q_vector->itr_val ?
max((new_itr * q_vector->itr_val) /
(new_itr + (q_vector->itr_val >> 2)),
new_itr) : new_itr;
/* Don't write the value here; it resets the adapter's
* internal timer, and causes us to delay far longer than
* we should between interrupts. Instead, we write the ITR
* value at the beginning of the next interrupt so the timing
* ends up being correct.
*/
q_vector->itr_val = new_itr;
q_vector->set_itr = 1;
err = request_irq(adapter->msix_entries[vector].vector,
igc_msix_ring, 0, q_vector->name,
q_vector);
if (err)
goto err_free;
}
}
static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
{
struct igc_adapter *adapter = q_vector->adapter;
struct igc_hw *hw = &adapter->hw;
igc_configure_msix(adapter);
return 0;
if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
(!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
if (adapter->num_q_vectors == 1)
igc_set_itr(q_vector);
else
igc_update_ring_itr(q_vector);
}
err_free:
/* free already assigned IRQs */
free_irq(adapter->msix_entries[free_vector++].vector, adapter);
if (!test_bit(__IGC_DOWN, &adapter->state)) {
if (adapter->msix_entries)
wr32(IGC_EIMS, q_vector->eims_value);
else
igc_irq_enable(adapter);
vector--;
for (i = 0; i < vector; i++) {
free_irq(adapter->msix_entries[free_vector++].vector,
adapter->q_vector[i]);
}
err_out:
return err;
}
/**
* igc_poll - NAPI Rx polling callback
* @napi: napi polling structure
* @budget: count of how many packets we should handle
* igc_clear_interrupt_scheme - reset the device to a state of no interrupts
* @adapter: Pointer to adapter structure
*
* This function resets the device so that it has 0 rx queues, tx queues, and
* MSI-X interrupts allocated.
*/
static int igc_poll(struct napi_struct *napi, int budget)
static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
{
struct igc_q_vector *q_vector = container_of(napi,
struct igc_q_vector,
napi);
bool clean_complete = true;
int work_done = 0;
if (q_vector->tx.ring)
clean_complete = igc_clean_tx_irq(q_vector, budget);
if (q_vector->rx.ring) {
int cleaned = igc_clean_rx_irq(q_vector, budget);
work_done += cleaned;
if (cleaned >= budget)
clean_complete = false;
}
/* If all work not completed, return budget and keep polling */
if (!clean_complete)
return budget;
igc_free_q_vectors(adapter);
igc_reset_interrupt_capability(adapter);
}
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
if (likely(napi_complete_done(napi, work_done)))
igc_ring_irq_enable(q_vector);
static void igc_update_phy_info(struct timer_list *t)
{
struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
return min(work_done, budget - 1);
igc_get_phy_info(&adapter->hw);
}
static void igc_add_ring(struct igc_ring *ring,
struct igc_ring_container *head)
/**
* igc_has_link - check shared code for link and determine up/down
* @adapter: pointer to driver private info
*/
bool igc_has_link(struct igc_adapter *adapter)
{
head->ring = ring;
head->count++;
struct igc_hw *hw = &adapter->hw;
bool link_active = false;
/* get_link_status is set on LSC (link status) interrupt or
* rx sequence error interrupt. get_link_status will stay
* false until the igc_check_for_link establishes link
* for copper adapters ONLY
*/
switch (hw->phy.media_type) {
case igc_media_type_copper:
if (!hw->mac.get_link_status)
return true;
hw->mac.ops.check_for_link(hw);
link_active = !hw->mac.get_link_status;
break;
default:
case igc_media_type_unknown:
break;
}
if (hw->mac.type == igc_i225 &&
hw->phy.id == I225_I_PHY_ID) {
if (!netif_carrier_ok(adapter->netdev)) {
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
adapter->link_check_timeout = jiffies;
}
}
return link_active;
}
/**
* igc_alloc_q_vector - Allocate memory for a single interrupt vector
* @adapter: board private structure to initialize
* @v_count: q_vectors allocated on adapter, used for ring interleaving
* @v_idx: index of vector in adapter struct
* @txr_count: total number of Tx rings to allocate
* @txr_idx: index of first Tx ring to allocate
* @rxr_count: total number of Rx rings to allocate
* @rxr_idx: index of first Rx ring to allocate
*
* We allocate one q_vector. If allocation fails we return -ENOMEM.
* igc_watchdog - Timer Call-back
* @t: timer for the watchdog
*/
static int igc_alloc_q_vector(struct igc_adapter *adapter,
unsigned int v_count, unsigned int v_idx,
unsigned int txr_count, unsigned int txr_idx,
unsigned int rxr_count, unsigned int rxr_idx)
static void igc_watchdog(struct timer_list *t)
{
struct igc_q_vector *q_vector;
struct igc_ring *ring;
int ring_count;
struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
/* Do the rest outside of interrupt context */
schedule_work(&adapter->watchdog_task);
}
/* igc only supports 1 Tx and/or 1 Rx queue per vector */
if (txr_count > 1 || rxr_count > 1)
return -ENOMEM;
static void igc_watchdog_task(struct work_struct *work)
{
struct igc_adapter *adapter = container_of(work,
struct igc_adapter,
watchdog_task);
struct net_device *netdev = adapter->netdev;
struct igc_hw *hw = &adapter->hw;
struct igc_phy_info *phy = &hw->phy;
u16 phy_data, retry_count = 20;
u32 connsw;
u32 link;
int i;
ring_count = txr_count + rxr_count;
link = igc_has_link(adapter);
/* allocate q_vector and rings */
q_vector = adapter->q_vector[v_idx];
if (!q_vector)
q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
GFP_KERNEL);
if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
else
memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
if (!q_vector)
return -ENOMEM;
link = false;
}
/* initialize NAPI */
netif_napi_add(adapter->netdev, &q_vector->napi,
igc_poll, 64);
/* Force link down if we have fiber to swap to */
if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
if (hw->phy.media_type == igc_media_type_copper) {
connsw = rd32(IGC_CONNSW);
if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
link = 0;
}
}
if (link) {
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
/* tie q_vector and adapter together */
adapter->q_vector[v_idx] = q_vector;
q_vector->adapter = adapter;
hw->mac.ops.get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
/* initialize work limits */
q_vector->tx.work_limit = adapter->tx_work_limit;
ctrl = rd32(IGC_CTRL);
/* Link status message must follow this format */
netdev_info(netdev,
"igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full" : "Half",
(ctrl & IGC_CTRL_TFCE) &&
(ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
(ctrl & IGC_CTRL_RFCE) ? "RX" :
(ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
/* initialize ITR configuration */
q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
q_vector->itr_val = IGC_START_ITR;
/* check if SmartSpeed worked */
igc_check_downshift(hw);
if (phy->speed_downgraded)
netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
/* initialize pointer to rings */
ring = q_vector->ring;
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 14;
break;
case SPEED_100:
/* maybe add some timeout factor ? */
break;
}
/* initialize ITR */
if (rxr_count) {
/* rx or rx/tx vector */
if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
q_vector->itr_val = adapter->rx_itr_setting;
if (adapter->link_speed != SPEED_1000)
goto no_wait;
/* wait for Remote receiver status OK */
retry_read_status:
if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
&phy_data)) {
if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
retry_count) {
msleep(100);
retry_count--;
goto retry_read_status;
} else if (!retry_count) {
dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
}
} else {
/* tx only vector */
if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
q_vector->itr_val = adapter->tx_itr_setting;
dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
}
no_wait:
netif_carrier_on(netdev);
if (txr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
/* configure backlink on ring */
ring->q_vector = q_vector;
/* link state has changed, schedule phy info update */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
/* update q_vector Tx values */
igc_add_ring(ring, &q_vector->tx);
/* Links status message must follow this format */
netdev_info(netdev, "igc: %s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
/* apply Tx specific ring traits */
ring->count = adapter->tx_ring_count;
ring->queue_index = txr_idx;
/* link state has changed, schedule phy info update */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->phy_info_timer,
round_jiffies(jiffies + 2 * HZ));
/* assign ring to adapter */
adapter->tx_ring[txr_idx] = ring;
/* link is down, time to check for alternate media */
if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
/* push pointer to next ring */
ring++;
/* also check for alternate media here */
} else if (!netif_carrier_ok(netdev) &&
(adapter->flags & IGC_FLAG_MAS_ENABLE)) {
if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
schedule_work(&adapter->reset_task);
/* return immediately */
return;
}
}
}
if (rxr_count) {
/* assign generic ring traits */
ring->dev = &adapter->pdev->dev;
ring->netdev = adapter->netdev;
spin_lock(&adapter->stats64_lock);
igc_update_stats(adapter);
spin_unlock(&adapter->stats64_lock);
/* configure backlink on ring */
ring->q_vector = q_vector;
for (i = 0; i < adapter->num_tx_queues; i++) {
struct igc_ring *tx_ring = adapter->tx_ring[i];
if (!netif_carrier_ok(netdev)) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* return immediately since reset is imminent */
return;
}
}
/* update q_vector Rx values */
igc_add_ring(ring, &q_vector->rx);
/* Force detection of hung controller every watchdog period */
set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
}
/* apply Rx specific ring traits */
ring->count = adapter->rx_ring_count;
ring->queue_index = rxr_idx;
/* Cause software interrupt to ensure Rx ring is cleaned */
if (adapter->flags & IGC_FLAG_HAS_MSIX) {
u32 eics = 0;
/* assign ring to adapter */
adapter->rx_ring[rxr_idx] = ring;
for (i = 0; i < adapter->num_q_vectors; i++)
eics |= adapter->q_vector[i]->eims_value;
wr32(IGC_EICS, eics);
} else {
wr32(IGC_ICS, IGC_ICS_RXDMT0);
}
return 0;
/* Reset the timer */
if (!test_bit(__IGC_DOWN, &adapter->state)) {
if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + HZ));
else
mod_timer(&adapter->watchdog_timer,
round_jiffies(jiffies + 2 * HZ));
}
}
/**
* igc_alloc_q_vectors - Allocate memory for interrupt vectors
* @adapter: board private structure to initialize
*
* We allocate one q_vector per queue interrupt. If allocation fails we
* return -ENOMEM.
* igc_intr_msi - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static int igc_alloc_q_vectors(struct igc_adapter *adapter)
static irqreturn_t igc_intr_msi(int irq, void *data)
{
int rxr_remaining = adapter->num_rx_queues;
int txr_remaining = adapter->num_tx_queues;
int rxr_idx = 0, txr_idx = 0, v_idx = 0;
int q_vectors = adapter->num_q_vectors;
int err;
struct igc_adapter *adapter = data;
struct igc_q_vector *q_vector = adapter->q_vector[0];
struct igc_hw *hw = &adapter->hw;
/* read ICR disables interrupts using IAM */
u32 icr = rd32(IGC_ICR);
if (q_vectors >= (rxr_remaining + txr_remaining)) {
for (; rxr_remaining; v_idx++) {
err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
0, 0, 1, rxr_idx);
igc_write_itr(q_vector);
if (err)
goto err_out;
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
/* update counts and index */
rxr_remaining--;
rxr_idx++;
}
if (icr & IGC_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
for (; v_idx < q_vectors; v_idx++) {
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
tqpv, txr_idx, rqpv, rxr_idx);
if (err)
goto err_out;
/* update counts and index */
rxr_remaining -= rqpv;
txr_remaining -= tqpv;
rxr_idx++;
txr_idx++;
if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
hw->mac.get_link_status = 1;
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
return 0;
err_out:
adapter->num_tx_queues = 0;
adapter->num_rx_queues = 0;
adapter->num_q_vectors = 0;
while (v_idx--)
igc_free_q_vector(adapter, v_idx);
napi_schedule(&q_vector->napi);
return -ENOMEM;
return IRQ_HANDLED;
}
/**
* igc_cache_ring_register - Descriptor ring to register mapping
* @adapter: board private structure to initialize
*
* Once we know the feature-set enabled for the device, we'll cache
* the register offset the descriptor ring is assigned to.
* igc_intr - Legacy Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
*/
static void igc_cache_ring_register(struct igc_adapter *adapter)
static irqreturn_t igc_intr(int irq, void *data)
{
int i = 0, j = 0;
switch (adapter->hw.mac.type) {
case igc_i225:
/* Fall through */
default:
for (; i < adapter->num_rx_queues; i++)
adapter->rx_ring[i]->reg_idx = i;
for (; j < adapter->num_tx_queues; j++)
adapter->tx_ring[j]->reg_idx = j;
break;
}
}
struct igc_adapter *adapter = data;
struct igc_q_vector *q_vector = adapter->q_vector[0];
struct igc_hw *hw = &adapter->hw;
/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
* need for the IMC write
*/
u32 icr = rd32(IGC_ICR);
/**
* igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
* @adapter: Pointer to adapter structure
* @msix: boolean for MSI-X capability
*
* This function initializes the interrupts and allocates all of the queues.
/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
* not set, then the adapter didn't send an interrupt
*/
static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
{
struct pci_dev *pdev = adapter->pdev;
int err = 0;
if (!(icr & IGC_ICR_INT_ASSERTED))
return IRQ_NONE;
igc_set_interrupt_capability(adapter, msix);
igc_write_itr(q_vector);
err = igc_alloc_q_vectors(adapter);
if (err) {
dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
goto err_alloc_q_vectors;
if (icr & IGC_ICR_DRSTA)
schedule_work(&adapter->reset_task);
if (icr & IGC_ICR_DOUTSYNC) {
/* HW is reporting DMA is out of sync */
adapter->stats.doosync++;
}
igc_cache_ring_register(adapter);
if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
hw->mac.get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__IGC_DOWN, &adapter->state))
mod_timer(&adapter->watchdog_timer, jiffies + 1);
}
return 0;
napi_schedule(&q_vector->napi);
err_alloc_q_vectors:
igc_reset_interrupt_capability(adapter);
return err;
return IRQ_HANDLED;
}
static void igc_free_irq(struct igc_adapter *adapter)
......@@ -4776,98 +4865,6 @@ static struct pci_driver igc_driver = {
.shutdown = igc_shutdown,
};
void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
const u32 max_rss_queues)
{
/* Determine if we need to pair queues. */
/* If rss_queues > half of max_rss_queues, pair the queues in
* order to conserve interrupts due to limited supply.
*/
if (adapter->rss_queues > (max_rss_queues / 2))
adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
else
adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
}
unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
{
unsigned int max_rss_queues;
/* Determine the maximum number of RSS queues supported. */
max_rss_queues = IGC_MAX_RX_QUEUES;
return max_rss_queues;
}
static void igc_init_queue_configuration(struct igc_adapter *adapter)
{
u32 max_rss_queues;
max_rss_queues = igc_get_max_rss_queues(adapter);
adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
igc_set_flag_queue_pairs(adapter, max_rss_queues);
}
/**
* igc_sw_init - Initialize general software structures (struct igc_adapter)
* @adapter: board private structure to initialize
*
* igc_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
*/
static int igc_sw_init(struct igc_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct igc_hw *hw = &adapter->hw;
int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
/* set default ring sizes */
adapter->tx_ring_count = IGC_DEFAULT_TXD;
adapter->rx_ring_count = IGC_DEFAULT_RXD;
/* set default ITR values */
adapter->rx_itr_setting = IGC_DEFAULT_ITR;
adapter->tx_itr_setting = IGC_DEFAULT_ITR;
/* set default work limits */
adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
/* adjust max frame to be at least the size of a standard frame */
adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
VLAN_HLEN;
adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
spin_lock_init(&adapter->nfc_lock);
spin_lock_init(&adapter->stats64_lock);
/* Assume MSI-X interrupts, will be checked during IRQ allocation */
adapter->flags |= IGC_FLAG_HAS_MSIX;
adapter->mac_table = kzalloc(size, GFP_ATOMIC);
if (!adapter->mac_table)
return -ENOMEM;
igc_init_queue_configuration(adapter);
/* This call may decrease the number of queues */
if (igc_init_interrupt_scheme(adapter, true)) {
dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* Explicitly disable IRQ since the NIC can be in any state. */
igc_irq_disable(adapter);
set_bit(__IGC_DOWN, &adapter->state);
return 0;
}
/**
* igc_reinit_queues - return error
* @adapter: pointer to adapter structure
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment