Commit 70ccab60 authored by Harry Wentland's avatar Harry Wentland Committed by Alex Deucher

drm/amdgpu/display: Add core dc support for DCN

Core display support for DCN.
Signed-off-by: default avatarHarry Wentland <harry.wentland@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 74c49c7a
#
# Makefile for DCN.
DCN10 = dcn10_resource.o dcn10_ipp.o dcn10_hw_sequencer.o \
dcn10_transform.o dcn10_opp.o dcn10_timing_generator.o \
dcn10_mem_input.o dcn10_mpc.o
AMD_DAL_DCN10 = $(addprefix $(AMDDALPATH)/dc/dcn10/,$(DCN10))
AMD_DISPLAY_FILES += $(AMD_DAL_DCN10)
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "core_dc.h"
#include "core_types.h"
#include "core_status.h"
#include "resource.h"
#include "hw_sequencer.h"
#include "dcn10_hw_sequencer.h"
#include "dce110/dce110_hw_sequencer.h"
#include "abm.h"
#include "dcn10/dcn10_transform.h"
#include "dcn10/dcn10_mpc.h"
#include "dcn10/dcn10_timing_generator.h"
#include "mem_input.h"
#include "timing_generator.h"
#include "opp.h"
#include "ipp.h"
#include "dc_bios_types.h"
#include "raven1/DCN/dcn_1_0_offset.h"
#include "raven1/DCN/dcn_1_0_sh_mask.h"
#include "vega10/soc15ip.h"
#include "custom_float.h"
struct dcn10_hwseq_reg_offsets {
uint32_t dchubp;
uint32_t dpp;
uint32_t otg;
uint32_t vtg;
uint32_t fmt;
};
/* TODO: move to resource */
static const struct dcn10_hwseq_reg_offsets reg_offsets[] = {
{
.dchubp = (mmHUBP0_DCHUBP_CNTL - mmHUBP0_DCHUBP_CNTL),
.dpp = (mmCM0_CM_DGAM_CONTROL - mmCM0_CM_DGAM_CONTROL),
.otg = (mmOTG0_OTG_CONTROL - mmOTG0_OTG_CONTROL),
.vtg = (mmVTG0_CONTROL - mmVTG0_CONTROL),
.fmt = (mmFMT0_FMT_BIT_DEPTH_CONTROL -
mmFMT0_FMT_BIT_DEPTH_CONTROL),
},
{
.dchubp = (mmHUBP1_DCHUBP_CNTL - mmHUBP0_DCHUBP_CNTL),
.dpp = (mmCM1_CM_DGAM_CONTROL - mmCM0_CM_DGAM_CONTROL),
.otg = (mmOTG1_OTG_CONTROL - mmOTG0_OTG_CONTROL),
.vtg = (mmVTG1_CONTROL - mmVTG0_CONTROL),
.fmt = (mmFMT1_FMT_BIT_DEPTH_CONTROL -
mmFMT0_FMT_BIT_DEPTH_CONTROL),
},
{
.dchubp = (mmHUBP2_DCHUBP_CNTL - mmHUBP0_DCHUBP_CNTL),
.dpp = (mmCM2_CM_DGAM_CONTROL - mmCM0_CM_DGAM_CONTROL),
.otg = (mmOTG2_OTG_CONTROL - mmOTG0_OTG_CONTROL),
.vtg = (mmVTG2_CONTROL - mmVTG0_CONTROL),
.fmt = (mmFMT2_FMT_BIT_DEPTH_CONTROL -
mmFMT0_FMT_BIT_DEPTH_CONTROL),
},
{
.dchubp = (mmHUBP3_DCHUBP_CNTL - mmHUBP0_DCHUBP_CNTL),
.dpp = (mmCM3_CM_DGAM_CONTROL - mmCM0_CM_DGAM_CONTROL),
.otg = (mmOTG3_OTG_CONTROL - mmOTG0_OTG_CONTROL),
.vtg = (mmVTG3_CONTROL - mmVTG0_CONTROL),
.fmt = (mmFMT3_FMT_BIT_DEPTH_CONTROL -
mmFMT0_FMT_BIT_DEPTH_CONTROL),
}
};
#define HWSEQ_REG_UPDATE_N(reg_name, n, ...) \
generic_reg_update_soc15(ctx, inst_offset, reg_name, n, __VA_ARGS__)
#define HWSEQ_REG_SET_N(reg_name, n, ...) \
generic_reg_set_soc15(ctx, inst_offset, reg_name, n, __VA_ARGS__)
#define HWSEQ_REG_UPDATE(reg, field, val) \
HWSEQ_REG_UPDATE_N(reg, 1, FD(reg##__##field), val)
#define HWSEQ_REG_UPDATE_2(reg, field1, val1, field2, val2) \
HWSEQ_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2)
#define HWSEQ_REG_UPDATE_3(reg, field1, val1, field2, val2, field3, val3) \
HWSEQ_REG_UPDATE_N(reg, 2, FD(reg##__##field1), val1, FD(reg##__##field2), val2, FD(reg##__##field3), val3)
#define HWSEQ_REG_SET(reg, field, val) \
HWSEQ_REG_SET_N(reg, 1, FD(reg##__##field), val)
/* TODO should be moved to OTG */
static void lock_otg_master_update(
struct dc_context *ctx,
uint8_t inst)
{
uint32_t inst_offset = reg_offsets[inst].otg;
HWSEQ_REG_UPDATE(OTG0_OTG_GLOBAL_CONTROL0,
OTG_MASTER_UPDATE_LOCK_SEL, inst);
/* unlock master locker */
HWSEQ_REG_UPDATE(OTG0_OTG_MASTER_UPDATE_LOCK,
OTG_MASTER_UPDATE_LOCK, 1);
/* wait for unlock happens */
if (!wait_reg(ctx, inst_offset, OTG0_OTG_MASTER_UPDATE_LOCK, UPDATE_LOCK_STATUS, 1))
BREAK_TO_DEBUGGER();
}
static bool unlock_master_tg_and_wait(
struct dc_context *ctx,
uint8_t inst)
{
uint32_t inst_offset = reg_offsets[inst].otg;
HWSEQ_REG_UPDATE(OTG0_OTG_GLOBAL_SYNC_STATUS,
VUPDATE_NO_LOCK_EVENT_CLEAR, 1);
HWSEQ_REG_UPDATE(OTG0_OTG_MASTER_UPDATE_LOCK, OTG_MASTER_UPDATE_LOCK, 0);
if (!wait_reg(ctx, inst_offset, OTG0_OTG_GLOBAL_SYNC_STATUS, VUPDATE_NO_LOCK_EVENT_OCCURRED, 1)) {
dm_logger_write(ctx->logger, LOG_ERROR,
"wait for VUPDATE_NO_LOCK_EVENT_OCCURRED failed\n");
BREAK_TO_DEBUGGER();
return false;
}
return true;
}
/* TODO: should be moved to OTG ? */
static void unlock_otg_master(
struct dc_context *ctx,
uint8_t inst)
{
uint32_t inst_offset = reg_offsets[inst].otg;
/* unlock master locker */
HWSEQ_REG_UPDATE(OTG0_OTG_MASTER_UPDATE_LOCK,
OTG_MASTER_UPDATE_LOCK, 0);
}
static void wait_no_outstanding_request(
struct dc_context *ctx,
uint8_t plane_id)
{
uint32_t inst_offset = reg_offsets[plane_id].dchubp;
if (!wait_reg(ctx, inst_offset, HUBP0_DCHUBP_CNTL, HUBP_NO_OUTSTANDING_REQ, 1))
BREAK_TO_DEBUGGER();
}
static void disable_clocks(
struct dc_context *ctx,
uint8_t plane_id)
{
uint32_t inst_offset = reg_offsets[plane_id].dchubp;
generic_reg_update_soc15(ctx, inst_offset, HUBP0_HUBP_CLK_CNTL, 1,
FD(HUBP0_HUBP_CLK_CNTL__HUBP_CLOCK_ENABLE), 0);
inst_offset = reg_offsets[plane_id].dpp;
generic_reg_update_soc15(ctx, inst_offset, DPP_TOP0_DPP_CONTROL, 1,
FD(DPP_TOP0_DPP_CONTROL__DPP_CLOCK_ENABLE), 0);
}
/* TODO: This is one time program during system boot up,
* this should be done within BIOS or CAIL
*/
static void dchubp_map_fb_to_mc(struct dc_context *ctx)
{
/* TODO: do not know where to program
* DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB
*/
/*
* TODO: For real ASIC, FB_OFFSET may be need change to the same value
* as FB_BASE. Need re-visit this for real ASIC.
*/
dm_write_reg_soc15(ctx, mmDCHUBBUB_SDPIF_FB_BASE, 0, 0x80);
dm_write_reg_soc15(ctx, mmDCHUBBUB_SDPIF_FB_OFFSET, 0, 0);
dm_write_reg_soc15(ctx, mmDCHUBBUB_SDPIF_FB_TOP, 0, 0xFF);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_CFG0, 7,
FD(DCHUBBUB_SDPIF_CFG0__SDPIF_DATA_RESPONSE_STATUS_CLEAR), 0,
FD(DCHUBBUB_SDPIF_CFG0__SDPIF_REQ_CREDIT_ERROR_CLEAR), 0,
FD(DCHUBBUB_SDPIF_CFG0__SDPIF_FLUSH_REQ_CREDIT_EN), 0,
FD(DCHUBBUB_SDPIF_CFG0__SDPIF_REQ_CREDIT_EN), 0,
FD(DCHUBBUB_SDPIF_CFG0__SDPIF_PORT_CONTROL), 1,
FD(DCHUBBUB_SDPIF_CFG0__SDPIF_UNIT_ID_BITMASK), 0xd3,
FD(DCHUBBUB_SDPIF_CFG0__SDPIF_CREDIT_DISCONNECT_DELAY), 0xc);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_CFG1, 4,
FD(DCHUBBUB_SDPIF_CFG1__SDPIF_INSIDE_FB_IO), 0,
FD(DCHUBBUB_SDPIF_CFG1__SDPIF_INSIDE_FB_VC), 6,
FD(DCHUBBUB_SDPIF_CFG1__SDPIF_OUTSIDE_FB_IO), 1,
FD(DCHUBBUB_SDPIF_CFG1__SDPIF_OUTSIDE_FB_VC), 6);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_FB_BASE, 1,
FD(DCHUBBUB_SDPIF_FB_BASE__SDPIF_FB_BASE), 0x000080);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_FB_TOP, 1,
FD(DCHUBBUB_SDPIF_FB_TOP__SDPIF_FB_TOP), 0x0000ff);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_AGP_BOT, 1,
FD(DCHUBBUB_SDPIF_AGP_BOT__SDPIF_AGP_BOT), 0x0000040);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_AGP_TOP, 1,
FD(DCHUBBUB_SDPIF_AGP_TOP__SDPIF_AGP_TOP), 0x00001ff);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_AGP_BASE, 1,
FD(DCHUBBUB_SDPIF_AGP_BASE__SDPIF_AGP_BASE), 0x0000080);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_APER_TOP, 1,
FD(DCHUBBUB_SDPIF_APER_TOP__SDPIF_APER_TOP), 0x00007ff);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_APER_DEF_0, 1,
FD(DCHUBBUB_SDPIF_APER_DEF_0__SDPIF_APER_DEF_0), 0xdeadbeef);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_RELOC_LO_0, 2,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_0__SDPIF_MARC_EN_0), 0,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_0__SDPIF_MARC_RELOC_LO_0), 0x90000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_LENGTH_LO_0, 1,
FD(DCHUBBUB_SDPIF_MARC_LENGTH_LO_0__SDPIF_MARC_LENGTH_LO_0), 0x10000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_BASE_LO_1, 1,
FD(DCHUBBUB_SDPIF_MARC_BASE_LO_1__SDPIF_MARC_BASE_LO_1), 0x10000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_RELOC_LO_1, 2,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_1__SDPIF_MARC_EN_1), 0,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_1__SDPIF_MARC_RELOC_LO_1), 0xa0000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_LENGTH_LO_1, 1,
FD(DCHUBBUB_SDPIF_MARC_LENGTH_LO_1__SDPIF_MARC_LENGTH_LO_1), 0x10000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_BASE_LO_2, 1,
FD(DCHUBBUB_SDPIF_MARC_BASE_LO_2__SDPIF_MARC_BASE_LO_2), 0x20000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_RELOC_LO_2, 2,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_2__SDPIF_MARC_EN_2), 0,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_2__SDPIF_MARC_RELOC_LO_2), 0xb0000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_LENGTH_LO_2, 1,
FD(DCHUBBUB_SDPIF_MARC_LENGTH_LO_2__SDPIF_MARC_LENGTH_LO_2), 0x10000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_BASE_LO_3, 1,
FD(DCHUBBUB_SDPIF_MARC_BASE_LO_3__SDPIF_MARC_BASE_LO_3), 0x30000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_RELOC_LO_3, 2,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_3__SDPIF_MARC_EN_3), 0,
FD(DCHUBBUB_SDPIF_MARC_RELOC_LO_3__SDPIF_MARC_RELOC_LO_3), 0xc0000);
generic_reg_set_soc15(ctx, 0, DCHUBBUB_SDPIF_MARC_LENGTH_LO_3, 1,
FD(DCHUBBUB_SDPIF_MARC_LENGTH_LO_3__SDPIF_MARC_LENGTH_LO_3), 0x10000);
/* TODO: Is DCN_VM_SYSTEM_APERTURE address one time programming?
* Are all 4 hubp programmed with the same address?
*/
dm_write_reg_soc15(ctx, mmHUBPREQ0_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ0_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ0_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, 0, 0x100000);
dm_write_reg_soc15(ctx, mmHUBPREQ0_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ0_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ0_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ1_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ1_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ1_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, 0, 0x100000);
dm_write_reg_soc15(ctx, mmHUBPREQ1_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ1_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ1_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ2_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ2_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ2_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, 0, 0x100000);
dm_write_reg_soc15(ctx, mmHUBPREQ2_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ2_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ2_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ3_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ3_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ3_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, 0, 0x100000);
dm_write_reg_soc15(ctx, mmHUBPREQ3_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, 0, 0);
dm_write_reg_soc15(ctx, mmHUBPREQ3_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, 0, 0x80000);
dm_write_reg_soc15(ctx, mmHUBPREQ3_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, 0, 0);
}
/* TODO: This is one time program during system boot up,
* this should be done within BIOS
*/
static void dchubup_setup_timer(struct dc_context *ctx)
{
dm_write_reg_soc15(ctx, mmREFCLK_CNTL, 0, 0);
generic_reg_update_soc15(ctx, 0, DCHUBBUB_GLOBAL_TIMER_CNTL, 1,
FD(DCHUBBUB_GLOBAL_TIMER_CNTL__DCHUBBUB_GLOBAL_TIMER_ENABLE), 1);
}
/* TODO: Need input parameter to tell current DCHUB pipe tie to which OTG
* VTG is within DCHUBBUB which is commond block share by each pipe HUBP.
* VTG is 1:1 mapping with OTG. Each pipe HUBP will select which VTG
*/
static void select_vtg(
struct dc_context *ctx,
uint8_t plane_id,
uint8_t inst)
{
uint32_t inst_offset = reg_offsets[plane_id].dchubp;
HWSEQ_REG_UPDATE(HUBP0_DCHUBP_CNTL, HUBP_VTG_SEL, inst);
}
static void enable_dcfclk(
struct dc_context *ctx,
uint8_t plane_id,
uint32_t requested_pix_clk,
bool dppclk_div)
{
uint32_t inst_offset = reg_offsets[plane_id].dchubp;
HWSEQ_REG_UPDATE(HUBP0_HUBP_CLK_CNTL, HUBP_CLOCK_ENABLE, 1);
}
static void enable_dppclk(
struct dc_context *ctx,
uint8_t plane_id,
uint32_t requested_pix_clk,
bool dppclk_div)
{
uint32_t inst_offset = reg_offsets[plane_id].dpp;
dm_logger_write(ctx->logger, LOG_SURFACE,
"dppclk_rate_control for pipe %d programed to %d\n",
plane_id,
dppclk_div);
/* TODO: find condition for DPP clock to DISPCLK or 1/2 DISPCLK */
if (dppclk_div) {
/* 1/2 DISPCLK*/
HWSEQ_REG_UPDATE_2(DPP_TOP0_DPP_CONTROL,
DPPCLK_RATE_CONTROL, 1,
DPP_CLOCK_ENABLE, 1);
} else {
/* DISPCLK */
HWSEQ_REG_UPDATE_2(DPP_TOP0_DPP_CONTROL,
DPPCLK_RATE_CONTROL, 0,
DPP_CLOCK_ENABLE, 1);
}
}
static void enable_power_gating_plane(
struct dc_context *ctx,
bool enable)
{
uint32_t inst_offset = 0; /* each register only has one instance */
bool force_on = 1; /* disable power gating */
if (enable)
force_on = 0;
/* DCHUBP0/1/2/3 */
HWSEQ_REG_UPDATE(DOMAIN0_PG_CONFIG, DOMAIN0_POWER_FORCEON, force_on);
HWSEQ_REG_UPDATE(DOMAIN2_PG_CONFIG, DOMAIN2_POWER_FORCEON, force_on);
HWSEQ_REG_UPDATE(DOMAIN4_PG_CONFIG, DOMAIN4_POWER_FORCEON, force_on);
HWSEQ_REG_UPDATE(DOMAIN6_PG_CONFIG, DOMAIN6_POWER_FORCEON, force_on);
/* DPP0/1/2/3 */
HWSEQ_REG_UPDATE(DOMAIN1_PG_CONFIG, DOMAIN1_POWER_FORCEON, force_on);
HWSEQ_REG_UPDATE(DOMAIN3_PG_CONFIG, DOMAIN3_POWER_FORCEON, force_on);
HWSEQ_REG_UPDATE(DOMAIN5_PG_CONFIG, DOMAIN5_POWER_FORCEON, force_on);
HWSEQ_REG_UPDATE(DOMAIN7_PG_CONFIG, DOMAIN7_POWER_FORCEON, force_on);
if (ctx->dc->debug.disable_clock_gate) {
/* probably better to just write entire register to 0xffff to
* ensure all clock gating is disabled
*/
HWSEQ_REG_UPDATE_3(DCCG_GATE_DISABLE_CNTL,
DISPCLK_R_DCCG_GATE_DISABLE, 1,
DPREFCLK_R_DCCG_GATE_DISABLE, 1,
REFCLK_R_DIG_GATE_DISABLE, 1);
HWSEQ_REG_UPDATE(DCFCLK_CNTL,
DCFCLK_GATE_DIS, 1);
}
}
static void dpp_pg_control(
struct dc_context *ctx,
unsigned int dpp_inst,
bool power_on)
{
uint32_t inst_offset = 0;
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (ctx->dc->debug.disable_dpp_power_gate)
return;
switch (dpp_inst) {
case 0: /* DPP0 */
HWSEQ_REG_UPDATE(DOMAIN1_PG_CONFIG,
DOMAIN1_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN1_PG_STATUS,
DOMAIN1_PGFSM_PWR_STATUS, pwr_status);
break;
case 1: /* DPP1 */
HWSEQ_REG_UPDATE(DOMAIN3_PG_CONFIG,
DOMAIN3_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN3_PG_STATUS,
DOMAIN3_PGFSM_PWR_STATUS, pwr_status);
break;
case 2: /* DPP2 */
HWSEQ_REG_UPDATE(DOMAIN5_PG_CONFIG,
DOMAIN5_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN5_PG_STATUS,
DOMAIN5_PGFSM_PWR_STATUS, pwr_status);
break;
case 3: /* DPP3 */
HWSEQ_REG_UPDATE(DOMAIN7_PG_CONFIG,
DOMAIN7_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN7_PG_STATUS,
DOMAIN7_PGFSM_PWR_STATUS, pwr_status);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void hubp_pg_control(
struct dc_context *ctx,
unsigned int hubp_inst,
bool power_on)
{
uint32_t inst_offset = 0;
uint32_t power_gate = power_on ? 0 : 1;
uint32_t pwr_status = power_on ? 0 : 2;
if (ctx->dc->debug.disable_hubp_power_gate)
return;
switch (hubp_inst) {
case 0: /* DCHUBP0 */
HWSEQ_REG_UPDATE(DOMAIN0_PG_CONFIG,
DOMAIN0_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN0_PG_STATUS,
DOMAIN0_PGFSM_PWR_STATUS, pwr_status);
break;
case 1: /* DCHUBP1 */
HWSEQ_REG_UPDATE(DOMAIN2_PG_CONFIG,
DOMAIN2_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN2_PG_STATUS,
DOMAIN2_PGFSM_PWR_STATUS, pwr_status);
break;
case 2: /* DCHUBP2 */
HWSEQ_REG_UPDATE(DOMAIN4_PG_CONFIG,
DOMAIN4_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN4_PG_STATUS,
DOMAIN4_PGFSM_PWR_STATUS, pwr_status);
break;
case 3: /* DCHUBP3 */
HWSEQ_REG_UPDATE(DOMAIN6_PG_CONFIG,
DOMAIN6_POWER_GATE, power_gate);
wait_reg(ctx, 0, DOMAIN6_PG_STATUS,
DOMAIN6_PGFSM_PWR_STATUS, pwr_status);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static void power_on_plane(
struct dc_context *ctx,
uint8_t plane_id,
uint8_t inst)
{
uint32_t inst_offset = 0;
/* disable clock power gating */
/* DCCG_GATE_DISABLE_CNTL only has one instance */
HWSEQ_REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL,
DISPCLK_DCCG_GATE_DISABLE, 1,
DPPCLK_GATE_DISABLE, 1);
/* DCFCLK_CNTL only has one instance */
HWSEQ_REG_UPDATE(DCFCLK_CNTL,
DCFCLK_GATE_DIS, 1);
HWSEQ_REG_SET(DC_IP_REQUEST_CNTL,
IP_REQUEST_EN, 1);
dpp_pg_control(ctx, plane_id, true);
hubp_pg_control(ctx, plane_id, true);
HWSEQ_REG_SET(DC_IP_REQUEST_CNTL,
IP_REQUEST_EN, 0);
if (ctx->dc->debug.disable_clock_gate) {
HWSEQ_REG_UPDATE(DCCG_GATE_DISABLE_CNTL,
DISPCLK_DCCG_GATE_DISABLE, 0);
} else {
/* DCCG_GATE_DISABLE_CNTL only has one instance. inst_offset = 0 */
HWSEQ_REG_UPDATE_2(DCCG_GATE_DISABLE_CNTL,
DISPCLK_DCCG_GATE_DISABLE, 0,
DPPCLK_GATE_DISABLE, 0);
/* DCFCLK_CNTL only has one instance. inst_offset = 0 */
HWSEQ_REG_UPDATE(DCFCLK_CNTL,
DCFCLK_GATE_DIS, 0);
}
}
/* fully check bios enabledisplaypowergating table. dal only need dce init
* other power, clock gate register will be handle by dal itself.
* further may be put within init_hw
*/
static bool dcn10_enable_display_power_gating(
struct core_dc *dc,
uint8_t controller_id,
struct dc_bios *dcb,
enum pipe_gating_control power_gating)
{
/* TODOFPGA */
#if 0
if (power_gating != PIPE_GATING_CONTROL_ENABLE)
dce110_init_pte(ctx);
#endif
return true;
}
static void bios_golden_init(struct core_dc *dc)
{
struct dc_bios *bp = dc->ctx->dc_bios;
int i;
/* initialize dcn global */
bp->funcs->enable_disp_power_gating(bp,
CONTROLLER_ID_D0, ASIC_PIPE_INIT);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
/* initialize dcn per pipe */
bp->funcs->enable_disp_power_gating(bp,
CONTROLLER_ID_D0 + i, ASIC_PIPE_DISABLE);
}
}
static void init_hw(struct core_dc *dc)
{
int i;
struct dc_bios *bp;
struct transform *xfm;
struct abm *abm;
bp = dc->ctx->dc_bios;
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
/* TODO: this will be moved to Diag or BIOS */
dchubup_setup_timer(dc->ctx);
/* TODO: dchubp_map_fb_to_mc will be moved to dchub interface
* between dc and kmd
*/
dchubp_map_fb_to_mc(dc->ctx);
enable_power_gating_plane(dc->ctx, true);
return;
}
/* end of FPGA. Below if real ASIC */
bios_golden_init(dc);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
xfm = dc->res_pool->transforms[i];
xfm->funcs->transform_reset(xfm);
/* TODOFPGA: may need later */
#if 0
xfm->funcs->transform_power_up(xfm);
dc->hwss.enable_display_pipe_clock_gating(
dc->ctx,
true);
#endif
}
/* TODOFPGA: light sleep */
#if 0
dc->hwss.clock_gating_power_up(dc->ctx, false);
#endif
for (i = 0; i < dc->link_count; i++) {
/* Power up AND update implementation according to the
* required signal (which may be different from the
* default signal on connector).
*/
struct core_link *link = dc->links[i];
link->link_enc->funcs->hw_init(link->link_enc);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct timing_generator *tg =
dc->res_pool->timing_generators[i];
tg->funcs->disable_vga(tg);
/* Blank controller using driver code instead of
* command table.
*/
tg->funcs->set_blank(tg, true);
hwss_wait_for_blank_complete(tg);
}
for (i = 0; i < dc->res_pool->audio_count; i++) {
struct audio *audio = dc->res_pool->audios[i];
audio->funcs->hw_init(audio);
}
abm = dc->res_pool->abm;
if (abm != NULL) {
abm->funcs->init_backlight(abm);
abm->funcs->abm_init(abm);
}
/* power AFMT HDMI memory TODO: may move to dis/en output save power*/
generic_reg_set_soc15(dc->ctx, 0, DIO_MEM_PWR_CTRL, 7,
FD(DIO_MEM_PWR_CTRL__HDMI0_MEM_PWR_FORCE), 0,
FD(DIO_MEM_PWR_CTRL__HDMI1_MEM_PWR_FORCE), 0,
FD(DIO_MEM_PWR_CTRL__HDMI2_MEM_PWR_FORCE), 0,
FD(DIO_MEM_PWR_CTRL__HDMI3_MEM_PWR_FORCE), 0,
FD(DIO_MEM_PWR_CTRL__HDMI4_MEM_PWR_FORCE), 0,
FD(DIO_MEM_PWR_CTRL__HDMI5_MEM_PWR_FORCE), 0,
FD(DIO_MEM_PWR_CTRL__HDMI6_MEM_PWR_FORCE), 0);
/* This power gating should be one-time program for DAL.
* It can only change by registry key
* TODO: new task will for this.
* if power gating is disable, power_on_plane and power_off_plane
* should be skip. Otherwise, hand will be met in power_off_plane
*/
enable_power_gating_plane(dc->ctx, true);
}
static enum dc_status dcn10_prog_pixclk_crtc_otg(
struct pipe_ctx *pipe_ctx,
struct validate_context *context,
struct core_dc *dc)
{
struct core_stream *stream = pipe_ctx->stream;
enum dc_color_space color_space;
struct tg_color black_color = {0};
bool enableStereo = stream->public.timing.timing_3d_format == TIMING_3D_FORMAT_NONE ?
false:true;
bool rightEyePolarity = stream->public.timing.flags.RIGHT_EYE_3D_POLARITY;
/* by upper caller loop, pipe0 is parent pipe and be called first.
* back end is set up by for pipe0. Other children pipe share back end
* with pipe 0. No program is needed.
*/
if (pipe_ctx->top_pipe != NULL)
return DC_OK;
/* TODO check if timing_changed, disable stream if timing changed */
/* HW program guide assume display already disable
* by unplug sequence. OTG assume stop.
*/
pipe_ctx->tg->funcs->enable_optc_clock(pipe_ctx->tg, true);
if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
pipe_ctx->clock_source,
&pipe_ctx->pix_clk_params,
&pipe_ctx->pll_settings)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
pipe_ctx->tg->dlg_otg_param.vready_offset = pipe_ctx->pipe_dlg_param.vready_offset;
pipe_ctx->tg->dlg_otg_param.vstartup_start = pipe_ctx->pipe_dlg_param.vstartup_start;
pipe_ctx->tg->dlg_otg_param.vupdate_offset = pipe_ctx->pipe_dlg_param.vupdate_offset;
pipe_ctx->tg->dlg_otg_param.vupdate_width = pipe_ctx->pipe_dlg_param.vupdate_width;
pipe_ctx->tg->dlg_otg_param.signal = pipe_ctx->stream->signal;
pipe_ctx->tg->funcs->program_timing(
pipe_ctx->tg,
&stream->public.timing,
true);
pipe_ctx->opp->funcs->opp_set_stereo_polarity(
pipe_ctx->opp,
enableStereo,
rightEyePolarity);
#if 0 /* move to after enable_crtc */
/* TODO: OPP FMT, ABM. etc. should be done here. */
/* or FPGA now. instance 0 only. TODO: move to opp.c */
inst_offset = reg_offsets[pipe_ctx->tg->inst].fmt;
pipe_ctx->opp->funcs->opp_program_fmt(
pipe_ctx->opp,
&stream->bit_depth_params,
&stream->clamping);
#endif
/* program otg blank color */
color_space = stream->public.output_color_space;
color_space_to_black_color(dc, color_space, &black_color);
pipe_ctx->tg->funcs->set_blank_color(
pipe_ctx->tg,
&black_color);
pipe_ctx->tg->funcs->set_blank(pipe_ctx->tg, true);
hwss_wait_for_blank_complete(pipe_ctx->tg);
/* VTG is within DCHUB command block. DCFCLK is always on */
if (false == pipe_ctx->tg->funcs->enable_crtc(pipe_ctx->tg)) {
BREAK_TO_DEBUGGER();
return DC_ERROR_UNEXPECTED;
}
/* TODO program crtc source select for non-virtual signal*/
/* TODO program FMT */
/* TODO setup link_enc */
/* TODO set stream attributes */
/* TODO program audio */
/* TODO enable stream if timing changed */
/* TODO unblank stream if DP */
return DC_OK;
}
static void reset_back_end_for_pipe(
struct core_dc *dc,
struct pipe_ctx *pipe_ctx,
struct validate_context *context)
{
int i;
struct dc_bios *bp;
bp = dc->ctx->dc_bios;
if (pipe_ctx->stream_enc == NULL) {
pipe_ctx->stream = NULL;
return;
}
/* TODOFPGA break core_link_disable_stream into 2 functions:
* disable_stream and disable_link. disable_link will disable PHYPLL
* which is used by otg. Move disable_link after disable_crtc
*/
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
core_link_disable_stream(pipe_ctx);
/* by upper caller loop, parent pipe: pipe0, will be reset last.
* back end share by all pipes and will be disable only when disable
* parent pipe.
*/
if (pipe_ctx->top_pipe == NULL) {
pipe_ctx->tg->funcs->disable_crtc(pipe_ctx->tg);
pipe_ctx->tg->funcs->enable_optc_clock(pipe_ctx->tg, false);
}
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
resource_unreference_clock_source(
&context->res_ctx, dc->res_pool,
&pipe_ctx->clock_source);
for (i = 0; i < dc->res_pool->pipe_count; i++)
if (&dc->current_context->res_ctx.pipe_ctx[i] == pipe_ctx)
break;
if (i == dc->res_pool->pipe_count)
return;
pipe_ctx->stream = NULL;
}
static void reset_front_end_for_pipe(
struct core_dc *dc,
struct pipe_ctx *pipe_ctx,
struct validate_context *context)
{
struct dcn10_mpc *mpc = TO_DCN10_MPC(dc->res_pool->mpc);
struct mpc_tree_cfg *tree_cfg = NULL;
if (!pipe_ctx->surface)
return;
lock_otg_master_update(dc->ctx, pipe_ctx->tg->inst);
/* TODO: build stream pipes group id. For now, use stream otg
* id as pipe group id
*/
tree_cfg = &context->res_ctx.mpc_tree[pipe_ctx->mpc_idx];
if (pipe_ctx->top_pipe == NULL)
dcn10_delete_mpc_tree(mpc, tree_cfg);
else {
if (dcn10_remove_dpp(mpc, tree_cfg, pipe_ctx->pipe_idx))
pipe_ctx->top_pipe->bottom_pipe = NULL;
else {
dm_logger_write(dc->ctx->logger, LOG_RESOURCE,
"%s: failed to find dpp to be removed!\n",
__func__);
}
}
pipe_ctx->top_pipe = NULL;
pipe_ctx->bottom_pipe = NULL;
pipe_ctx->mpc_idx = -1;
unlock_master_tg_and_wait(dc->ctx, pipe_ctx->tg->inst);
pipe_ctx->mi->funcs->disable_request(pipe_ctx->mi);
wait_no_outstanding_request(dc->ctx, pipe_ctx->pipe_idx);
wait_mpcc_idle(mpc, pipe_ctx->pipe_idx);
disable_clocks(dc->ctx, pipe_ctx->pipe_idx);
pipe_ctx->xfm->funcs->transform_reset(pipe_ctx->xfm);
dm_logger_write(dc->ctx->logger, LOG_DC,
"Reset front end for pipe %d\n",
pipe_ctx->pipe_idx);
pipe_ctx->surface = NULL;
}
static void reset_hw_ctx(struct core_dc *dc,
struct validate_context *context,
void (*reset)(struct core_dc *dc,
struct pipe_ctx *pipe_ctx,
struct validate_context *context))
{
int i;
for (i = dc->res_pool->pipe_count - 1; i >= 0 ; i--) {
struct pipe_ctx *pipe_ctx_old =
&dc->current_context->res_ctx.pipe_ctx[i];
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx_old->stream)
continue;
if (!pipe_ctx->stream ||
pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
reset(dc, pipe_ctx_old, dc->current_context);
}
}
static void reset_hw_ctx_wrap(
struct core_dc *dc,
struct validate_context *context)
{
/* Reset Front End*/
reset_hw_ctx(dc, context, reset_front_end_for_pipe);
/* Reset Back End*/
reset_hw_ctx(dc, context, reset_back_end_for_pipe);
memcpy(context->res_ctx.mpc_tree,
dc->current_context->res_ctx.mpc_tree,
sizeof(struct mpc_tree_cfg) * dc->res_pool->pipe_count);
}
static bool patch_address_for_sbs_tb_stereo(struct pipe_ctx *pipe_ctx,
PHYSICAL_ADDRESS_LOC *addr)
{
struct core_surface *surface = pipe_ctx->surface;
bool sec_split = pipe_ctx->top_pipe &&
pipe_ctx->top_pipe->surface == pipe_ctx->surface;
if (sec_split && surface->public.address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
(pipe_ctx->stream->public.timing.timing_3d_format ==
TIMING_3D_FORMAT_SIDE_BY_SIDE ||
pipe_ctx->stream->public.timing.timing_3d_format ==
TIMING_3D_FORMAT_TOP_AND_BOTTOM)) {
*addr = surface->public.address.grph_stereo.left_addr;
surface->public.address.grph_stereo.left_addr =\
surface->public.address.grph_stereo.right_addr;
return true;
}
return false;
}
static void update_plane_addr(const struct core_dc *dc, struct pipe_ctx *pipe_ctx)
{
bool addr_patched = false;
PHYSICAL_ADDRESS_LOC addr;
struct core_surface *surface = pipe_ctx->surface;
if (surface == NULL)
return;
addr_patched = patch_address_for_sbs_tb_stereo(pipe_ctx, &addr);
pipe_ctx->mi->funcs->mem_input_program_surface_flip_and_addr(
pipe_ctx->mi,
&surface->public.address,
surface->public.flip_immediate);
surface->status.requested_address = surface->public.address;
if (addr_patched)
pipe_ctx->surface->public.address.grph_stereo.left_addr = addr;
}
static bool dcn10_set_input_transfer_func(
struct pipe_ctx *pipe_ctx,
const struct core_surface *surface)
{
struct input_pixel_processor *ipp = pipe_ctx->ipp;
const struct core_transfer_func *tf = NULL;
bool result = true;
if (ipp == NULL)
return false;
if (surface->public.in_transfer_func)
tf = DC_TRANSFER_FUNC_TO_CORE(surface->public.in_transfer_func);
if (tf == NULL)
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
else if (tf->public.type == TF_TYPE_PREDEFINED) {
switch (tf->public.tf) {
case TRANSFER_FUNCTION_SRGB:
ipp->funcs->ipp_set_degamma(ipp,
IPP_DEGAMMA_MODE_HW_sRGB);
break;
case TRANSFER_FUNCTION_BT709:
ipp->funcs->ipp_set_degamma(ipp,
IPP_DEGAMMA_MODE_HW_xvYCC);
break;
case TRANSFER_FUNCTION_LINEAR:
ipp->funcs->ipp_set_degamma(ipp,
IPP_DEGAMMA_MODE_BYPASS);
break;
case TRANSFER_FUNCTION_PQ:
result = false;
break;
default:
result = false;
break;
}
} else if (tf->public.type == TF_TYPE_BYPASS) {
ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
} else {
/*TF_TYPE_DISTRIBUTED_POINTS*/
result = false;
}
return result;
}
/*modify the method to handle rgb for arr_points*/
static bool convert_to_custom_float(
struct pwl_result_data *rgb_resulted,
struct curve_points *arr_points,
uint32_t hw_points_num)
{
struct custom_float_format fmt;
struct pwl_result_data *rgb = rgb_resulted;
uint32_t i = 0;
fmt.exponenta_bits = 6;
fmt.mantissa_bits = 12;
fmt.sign = false;
if (!convert_to_custom_float_format(
arr_points[0].x,
&fmt,
&arr_points[0].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[0].offset,
&fmt,
&arr_points[0].custom_float_offset)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[0].slope,
&fmt,
&arr_points[0].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 10;
fmt.sign = false;
if (!convert_to_custom_float_format(
arr_points[1].x,
&fmt,
&arr_points[1].custom_float_x)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[1].y,
&fmt,
&arr_points[1].custom_float_y)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
arr_points[1].slope,
&fmt,
&arr_points[1].custom_float_slope)) {
BREAK_TO_DEBUGGER();
return false;
}
fmt.mantissa_bits = 12;
fmt.sign = true;
while (i != hw_points_num) {
if (!convert_to_custom_float_format(
rgb->red,
&fmt,
&rgb->red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->green,
&fmt,
&rgb->green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->blue,
&fmt,
&rgb->blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->delta_red,
&fmt,
&rgb->delta_red_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->delta_green,
&fmt,
&rgb->delta_green_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
if (!convert_to_custom_float_format(
rgb->delta_blue,
&fmt,
&rgb->delta_blue_reg)) {
BREAK_TO_DEBUGGER();
return false;
}
++rgb;
++i;
}
return true;
}
#define MAX_REGIONS_NUMBER 34
#define MAX_LOW_POINT 25
#define NUMBER_SEGMENTS 32
static bool dcn10_translate_regamma_to_hw_format(const struct dc_transfer_func
*output_tf, struct pwl_params *regamma_params)
{
struct curve_points *arr_points;
struct pwl_result_data *rgb_resulted;
struct pwl_result_data *rgb;
struct pwl_result_data *rgb_plus_1;
struct fixed31_32 y_r;
struct fixed31_32 y_g;
struct fixed31_32 y_b;
struct fixed31_32 y1_min;
struct fixed31_32 y3_max;
int32_t segment_start, segment_end;
int32_t i;
uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points;
if (output_tf == NULL || regamma_params == NULL ||
output_tf->type == TF_TYPE_BYPASS)
return false;
arr_points = regamma_params->arr_points;
rgb_resulted = regamma_params->rgb_resulted;
hw_points = 0;
memset(regamma_params, 0, sizeof(struct pwl_params));
memset(seg_distr, 0, sizeof(seg_distr));
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* 32 segments
* segments are from 2^-25 to 2^7
*/
for (i = 0; i < 32 ; i++)
seg_distr[i] = 3;
segment_start = -25;
segment_end = 7;
} else {
/* 10 segments
* segment is from 2^-10 to 2^0
* There are less than 256 points, for optimization
*/
seg_distr[0] = 3;
seg_distr[1] = 4;
seg_distr[2] = 4;
seg_distr[3] = 4;
seg_distr[4] = 4;
seg_distr[5] = 4;
seg_distr[6] = 4;
seg_distr[7] = 4;
seg_distr[8] = 5;
seg_distr[9] = 5;
segment_start = -10;
segment_end = 0;
}
for (i = segment_end - segment_start; i < MAX_REGIONS_NUMBER ; i++)
seg_distr[i] = -1;
for (k = 0; k < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1)
hw_points += (1 << seg_distr[k]);
}
j = 0;
for (k = 0; k < (segment_end - segment_start); k++) {
increment = NUMBER_SEGMENTS / (1 << seg_distr[k]);
start_index = (segment_start + k + MAX_LOW_POINT) * NUMBER_SEGMENTS;
for (i = start_index; i < start_index + NUMBER_SEGMENTS; i += increment) {
if (j == hw_points - 1)
break;
rgb_resulted[j].red = output_tf->tf_pts.red[i];
rgb_resulted[j].green = output_tf->tf_pts.green[i];
rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
j++;
}
}
/* last point */
start_index = (segment_end + MAX_LOW_POINT) * NUMBER_SEGMENTS;
rgb_resulted[hw_points - 1].red =
output_tf->tf_pts.red[start_index];
rgb_resulted[hw_points - 1].green =
output_tf->tf_pts.green[start_index];
rgb_resulted[hw_points - 1].blue =
output_tf->tf_pts.blue[start_index];
arr_points[0].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(segment_start));
arr_points[1].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(segment_end));
arr_points[2].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
dal_fixed31_32_from_int(segment_end));
y_r = rgb_resulted[0].red;
y_g = rgb_resulted[0].green;
y_b = rgb_resulted[0].blue;
y1_min = dal_fixed31_32_min(y_r, dal_fixed31_32_min(y_g, y_b));
arr_points[0].y = y1_min;
arr_points[0].slope = dal_fixed31_32_div(
arr_points[0].y,
arr_points[0].x);
y_r = rgb_resulted[hw_points - 1].red;
y_g = rgb_resulted[hw_points - 1].green;
y_b = rgb_resulted[hw_points - 1].blue;
/* see comment above, m_arrPoints[1].y should be the Y value for the
* region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
*/
y3_max = dal_fixed31_32_max(y_r, dal_fixed31_32_max(y_g, y_b));
arr_points[1].y = y3_max;
arr_points[2].y = y3_max;
arr_points[1].slope = dal_fixed31_32_zero;
arr_points[2].slope = dal_fixed31_32_zero;
if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
/* for PQ, we want to have a straight line from last HW X point,
* and the slope to be such that we hit 1.0 at 10000 nits.
*/
const struct fixed31_32 end_value =
dal_fixed31_32_from_int(125);
arr_points[1].slope = dal_fixed31_32_div(
dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
dal_fixed31_32_sub(end_value, arr_points[1].x));
arr_points[2].slope = dal_fixed31_32_div(
dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
dal_fixed31_32_sub(end_value, arr_points[1].x));
}
regamma_params->hw_points_num = hw_points;
i = 1;
for (k = 0; k < MAX_REGIONS_NUMBER && i < MAX_REGIONS_NUMBER; k++) {
if (seg_distr[k] != -1) {
regamma_params->arr_curve_points[k].segments_num =
seg_distr[k];
regamma_params->arr_curve_points[i].offset =
regamma_params->arr_curve_points[k].
offset + (1 << seg_distr[k]);
}
i++;
}
if (seg_distr[k] != -1)
regamma_params->arr_curve_points[k].segments_num =
seg_distr[k];
rgb = rgb_resulted;
rgb_plus_1 = rgb_resulted + 1;
i = 1;
while (i != hw_points + 1) {
if (dal_fixed31_32_lt(rgb_plus_1->red, rgb->red))
rgb_plus_1->red = rgb->red;
if (dal_fixed31_32_lt(rgb_plus_1->green, rgb->green))
rgb_plus_1->green = rgb->green;
if (dal_fixed31_32_lt(rgb_plus_1->blue, rgb->blue))
rgb_plus_1->blue = rgb->blue;
rgb->delta_red = dal_fixed31_32_sub(
rgb_plus_1->red,
rgb->red);
rgb->delta_green = dal_fixed31_32_sub(
rgb_plus_1->green,
rgb->green);
rgb->delta_blue = dal_fixed31_32_sub(
rgb_plus_1->blue,
rgb->blue);
++rgb_plus_1;
++rgb;
++i;
}
convert_to_custom_float(rgb_resulted, arr_points, hw_points);
return true;
}
static bool dcn10_set_output_transfer_func(
struct pipe_ctx *pipe_ctx,
const struct core_surface *surface,
const struct core_stream *stream)
{
struct output_pixel_processor *opp = pipe_ctx->opp;
opp->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
if (stream->public.out_transfer_func &&
stream->public.out_transfer_func->type ==
TF_TYPE_PREDEFINED &&
stream->public.out_transfer_func->tf ==
TRANSFER_FUNCTION_SRGB) {
opp->funcs->opp_set_regamma_mode(opp, OPP_REGAMMA_SRGB);
} else if (dcn10_translate_regamma_to_hw_format(
stream->public.out_transfer_func, &opp->regamma_params)) {
opp->funcs->opp_program_regamma_pwl(opp, &opp->regamma_params);
opp->funcs->opp_set_regamma_mode(opp, OPP_REGAMMA_USER);
} else {
opp->funcs->opp_set_regamma_mode(opp, OPP_REGAMMA_BYPASS);
}
return true;
}
static void dcn10_pipe_control_lock(
struct core_dc *dc,
struct pipe_ctx *pipe,
bool lock)
{
struct dce_hwseq *hws = hws = dc->hwseq;
/* use TG master update lock to lock everything on the TG
* therefore only top pipe need to lock
*/
if (pipe->top_pipe)
return;
if (lock)
dcn10_lock(pipe->tg);
else
dcn10_unlock(pipe->tg);
}
static bool wait_for_reset_trigger_to_occur(
struct dc_context *dc_ctx,
struct timing_generator *tg)
{
bool rc = false;
/* To avoid endless loop we wait at most
* frames_to_wait_on_triggered_reset frames for the reset to occur. */
const uint32_t frames_to_wait_on_triggered_reset = 10;
int i;
for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
if (!tg->funcs->is_counter_moving(tg)) {
DC_ERROR("TG counter is not moving!\n");
break;
}
if (tg->funcs->did_triggered_reset_occur(tg)) {
rc = true;
/* usually occurs at i=1 */
DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
i);
break;
}
/* Wait for one frame. */
tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
}
if (false == rc)
DC_ERROR("GSL: Timeout on reset trigger!\n");
return rc;
}
static void dcn10_enable_timing_synchronization(
struct core_dc *dc,
int group_index,
int group_size,
struct pipe_ctx *grouped_pipes[])
{
struct dc_context *dc_ctx = dc->ctx;
int i;
DC_SYNC_INFO("Setting up OTG reset trigger\n");
for (i = 1; i < group_size; i++)
grouped_pipes[i]->tg->funcs->enable_reset_trigger(
grouped_pipes[i]->tg, grouped_pipes[0]->tg->inst);
DC_SYNC_INFO("Waiting for trigger\n");
/* Need to get only check 1 pipe for having reset as all the others are
* synchronized. Look at last pipe programmed to reset.
*/
wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[1]->tg);
for (i = 1; i < group_size; i++)
grouped_pipes[i]->tg->funcs->disable_reset_trigger(
grouped_pipes[i]->tg);
DC_SYNC_INFO("Sync complete\n");
}
static void dcn10_power_on_fe(
struct core_dc *dc,
struct pipe_ctx *pipe_ctx,
struct validate_context *context)
{
struct dc_surface *dc_surface = &pipe_ctx->surface->public;
/* power up DCHUP and DPP from pseudo code pipe_move.c */
/*TODO: function: power_on_plane. If already power up, skip
*/
{
power_on_plane(dc->ctx,
pipe_ctx->pipe_idx, pipe_ctx->tg->inst);
/* enable DCFCLK current DCHUB */
enable_dcfclk(dc->ctx,
pipe_ctx->pipe_idx,
pipe_ctx->pix_clk_params.requested_pix_clk,
context->dppclk_div);
if (dc_surface) {
dm_logger_write(dc->ctx->logger, LOG_DC,
"Pipe:%d 0x%x: addr hi:0x%x, "
"addr low:0x%x, "
"src: %d, %d, %d,"
" %d; dst: %d, %d, %d, %d;\n",
pipe_ctx->pipe_idx,
dc_surface,
dc_surface->address.grph.addr.high_part,
dc_surface->address.grph.addr.low_part,
dc_surface->src_rect.x,
dc_surface->src_rect.y,
dc_surface->src_rect.width,
dc_surface->src_rect.height,
dc_surface->dst_rect.x,
dc_surface->dst_rect.y,
dc_surface->dst_rect.width,
dc_surface->dst_rect.height);
dm_logger_write(dc->ctx->logger, LOG_HW_SET_MODE,
"Pipe %d: width, height, x, y\n"
"viewport:%d, %d, %d, %d\n"
"recout: %d, %d, %d, %d\n",
pipe_ctx->pipe_idx,
pipe_ctx->scl_data.viewport.width,
pipe_ctx->scl_data.viewport.height,
pipe_ctx->scl_data.viewport.x,
pipe_ctx->scl_data.viewport.y,
pipe_ctx->scl_data.recout.width,
pipe_ctx->scl_data.recout.height,
pipe_ctx->scl_data.recout.x,
pipe_ctx->scl_data.recout.y);
}
}
}
static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
{
struct xfm_grph_csc_adjustment adjust;
memset(&adjust, 0, sizeof(adjust));
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
if (pipe_ctx->stream->public.gamut_remap_matrix.enable_remap == true) {
adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
adjust.temperature_matrix[0] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[0];
adjust.temperature_matrix[1] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[1];
adjust.temperature_matrix[2] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[2];
adjust.temperature_matrix[3] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[4];
adjust.temperature_matrix[4] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[5];
adjust.temperature_matrix[5] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[6];
adjust.temperature_matrix[6] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[8];
adjust.temperature_matrix[7] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[9];
adjust.temperature_matrix[8] =
pipe_ctx->stream->
public.gamut_remap_matrix.matrix[10];
}
pipe_ctx->xfm->funcs->transform_set_gamut_remap(pipe_ctx->xfm, &adjust);
}
static void update_dchubp_dpp(
struct core_dc *dc,
struct pipe_ctx *pipe_ctx,
struct validate_context *context)
{
struct mem_input *mi = pipe_ctx->mi;
struct input_pixel_processor *ipp = pipe_ctx->ipp;
struct core_surface *surface = pipe_ctx->surface;
union plane_size size = surface->public.plane_size;
struct mpc_tree_cfg *tree_cfg = NULL;
struct default_adjustment ocsc = {0};
enum dc_color_space color_space;
struct tg_color black_color = {0};
struct dcn10_mpc *mpc = TO_DCN10_MPC(dc->res_pool->mpc);
/* depends on DML calculation, DPP clock value may change dynamically */
enable_dppclk(
dc->ctx,
pipe_ctx->pipe_idx,
pipe_ctx->pix_clk_params.requested_pix_clk,
context->dppclk_div);
select_vtg(dc->ctx, pipe_ctx->pipe_idx, pipe_ctx->tg->inst);
update_plane_addr(dc, pipe_ctx);
mi->funcs->mem_input_setup(
mi,
&pipe_ctx->dlg_regs,
&pipe_ctx->ttu_regs,
&pipe_ctx->rq_regs,
&pipe_ctx->pipe_dlg_param);
size.grph.surface_size = pipe_ctx->scl_data.viewport;
if (dc->public.config.gpu_vm_support)
mi->funcs->mem_input_program_pte_vm(
pipe_ctx->mi,
surface->public.format,
&surface->public.tiling_info,
surface->public.rotation);
ipp->funcs->ipp_setup(ipp,
surface->public.format,
1,
IPP_OUTPUT_FORMAT_12_BIT_FIX);
/* mpc TODO un-hardcode object ids
* for pseudo code pipe_move.c :
* add_plane_mpcc(added_plane_inst, mpcc_inst, ...);
* Do we want to cache the tree_cfg?
*/
/* TODO: build stream pipes group id. For now, use stream otg
* id as pipe group id
*/
pipe_ctx->mpc_idx = pipe_ctx->tg->inst;
tree_cfg = &context->res_ctx.mpc_tree[pipe_ctx->mpc_idx];
/* enable when bottom pipe is present and
* it does not share a surface with current pipe
*/
if (pipe_ctx->bottom_pipe && surface != pipe_ctx->bottom_pipe->surface) {
pipe_ctx->scl_data.lb_params.alpha_en = 1;
tree_cfg->mode = TOP_BLND;
} else {
pipe_ctx->scl_data.lb_params.alpha_en = 0;
tree_cfg->mode = TOP_PASSTHRU;
}
if (!pipe_ctx->top_pipe) {
/* primary pipe, set mpc tree index 0 only */
tree_cfg->num_pipes = 1;
tree_cfg->opp_id = pipe_ctx->tg->inst;
tree_cfg->dpp[0] = pipe_ctx->pipe_idx;
tree_cfg->mpcc[0] = pipe_ctx->pipe_idx;
dcn10_set_mpc_tree(mpc, tree_cfg);
} else {
/* TODO: add position is hard code to 1 for now
* If more than 2 pipes are supported, calculate position
*/
dcn10_add_dpp(mpc, tree_cfg,
pipe_ctx->pipe_idx, pipe_ctx->pipe_idx, 1);
}
color_space = pipe_ctx->stream->public.output_color_space;
color_space_to_black_color(dc, color_space, &black_color);
dcn10_set_mpc_background_color(mpc, pipe_ctx->pipe_idx, &black_color);
pipe_ctx->scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
/* scaler configuration */
pipe_ctx->xfm->funcs->transform_set_scaler(
pipe_ctx->xfm, &pipe_ctx->scl_data);
/*gamut remap*/
program_gamut_remap(pipe_ctx);
/*TODO add adjustments parameters*/
ocsc.out_color_space = pipe_ctx->stream->public.output_color_space;
pipe_ctx->opp->funcs->opp_set_csc_default(pipe_ctx->opp, &ocsc);
mi->funcs->mem_input_program_surface_config(
mi,
surface->public.format,
&surface->public.tiling_info,
&size,
surface->public.rotation,
&surface->public.dcc,
surface->public.horizontal_mirror,
surface->public.visible);
/* Only support one plane for now. */
pipe_ctx->tg->funcs->set_blank(pipe_ctx->tg, !surface->public.visible);
}
static void program_all_pipe_in_tree(
struct core_dc *dc,
struct pipe_ctx *pipe_ctx,
struct validate_context *context)
{
unsigned int ref_clk_mhz = dc->res_pool->ref_clock_inKhz/1000;
if (pipe_ctx->surface->public.visible || pipe_ctx->top_pipe == NULL) {
dcn10_power_on_fe(dc, pipe_ctx, context);
/* lock otg_master_update to process all pipes associated with
* this OTG. this is done only one time.
*/
if (pipe_ctx->top_pipe == NULL) {
/* watermark is for all pipes */
pipe_ctx->mi->funcs->program_watermarks(
pipe_ctx->mi, &context->watermarks, ref_clk_mhz);
lock_otg_master_update(dc->ctx, pipe_ctx->tg->inst);
}
pipe_ctx->tg->dlg_otg_param.vready_offset = pipe_ctx->pipe_dlg_param.vready_offset;
pipe_ctx->tg->dlg_otg_param.vstartup_start = pipe_ctx->pipe_dlg_param.vstartup_start;
pipe_ctx->tg->dlg_otg_param.vupdate_offset = pipe_ctx->pipe_dlg_param.vupdate_offset;
pipe_ctx->tg->dlg_otg_param.vupdate_width = pipe_ctx->pipe_dlg_param.vupdate_width;
pipe_ctx->tg->dlg_otg_param.signal = pipe_ctx->stream->signal;
pipe_ctx->tg->funcs->program_global_sync(
pipe_ctx->tg);
update_dchubp_dpp(dc, pipe_ctx, context);
}
if (pipe_ctx->bottom_pipe != NULL)
program_all_pipe_in_tree(dc, pipe_ctx->bottom_pipe, context);
}
static void dcn10_pplib_apply_display_requirements(
struct core_dc *dc,
struct validate_context *context)
{
struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
pp_display_cfg->all_displays_in_sync = false;/*todo*/
pp_display_cfg->nb_pstate_switch_disable = false;
pp_display_cfg->min_engine_clock_khz = context->dcfclk_khz;
pp_display_cfg->min_memory_clock_khz = context->fclk_khz;
pp_display_cfg->min_engine_clock_deep_sleep_khz = context->dcfclk_deep_sleep_khz;
pp_display_cfg->min_dcfc_deep_sleep_clock_khz = context->dcfclk_deep_sleep_khz;
pp_display_cfg->avail_mclk_switch_time_us =
context->dram_ccm_us > 0 ? context->dram_ccm_us : 0;
pp_display_cfg->avail_mclk_switch_time_in_disp_active_us =
context->min_active_dram_ccm_us > 0 ? context->min_active_dram_ccm_us : 0;
pp_display_cfg->min_dcfclock_khz = context->dcfclk_khz;
pp_display_cfg->disp_clk_khz = context->dispclk_khz;
dce110_fill_display_configs(context, pp_display_cfg);
if (memcmp(&dc->prev_display_config, pp_display_cfg, sizeof(
struct dm_pp_display_configuration)) != 0)
dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
dc->prev_display_config = *pp_display_cfg;
}
static void dcn10_apply_ctx_for_surface(
struct core_dc *dc,
struct core_surface *surface,
struct validate_context *context)
{
int i;
memcpy(context->res_ctx.mpc_tree,
dc->current_context->res_ctx.mpc_tree,
sizeof(struct mpc_tree_cfg) * dc->res_pool->pipe_count);
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx->surface)
continue;
/* looking for top pipe to program */
if (!pipe_ctx->top_pipe)
program_all_pipe_in_tree(dc, pipe_ctx, context);
}
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
if (!pipe_ctx->surface || pipe_ctx->top_pipe)
continue;
/* unlock master update lock */
unlock_otg_master(dc->ctx, pipe_ctx->tg->inst);
}
/* reset unused pipe */
for (i = 0; i < dc->res_pool->pipe_count; i++) {
struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
struct pipe_ctx *old_pipe_ctx =
&dc->current_context->res_ctx.pipe_ctx[i];
if ((!pipe_ctx->surface && old_pipe_ctx->surface)
|| (!pipe_ctx->stream && old_pipe_ctx->stream))
reset_front_end_for_pipe(dc,
old_pipe_ctx, dc->current_context);
}
}
static void dcn10_set_bandwidth(
struct core_dc *dc,
struct validate_context *context,
bool decrease_allowed)
{
struct dm_pp_clock_for_voltage_req clock;
if (IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment))
return;
if (decrease_allowed || context->dispclk_khz > dc->current_context->dispclk_khz) {
dc->res_pool->display_clock->funcs->set_clock(
dc->res_pool->display_clock,
context->dispclk_khz);
dc->current_context->dispclk_khz = context->dispclk_khz;
}
if (decrease_allowed || context->dcfclk_khz > dc->current_context->dcfclk_khz) {
clock.clk_type = DM_PP_CLOCK_TYPE_DCFCLK;
clock.clocks_in_khz = context->dcfclk_khz;
dm_pp_apply_clock_for_voltage_request(dc->ctx, &clock);
}
if (decrease_allowed || context->fclk_khz > dc->current_context->fclk_khz) {
clock.clk_type = DM_PP_CLOCK_TYPE_FCLK;
clock.clocks_in_khz = context->fclk_khz;
dm_pp_apply_clock_for_voltage_request(dc->ctx, &clock);
dc->current_context->fclk_khz = clock.clocks_in_khz ;
}
dcn10_pplib_apply_display_requirements(dc, context);
}
static void dcn10_power_down_fe(struct core_dc *dc, struct pipe_ctx *pipe)
{
struct dc_context *ctx = dc->ctx;
uint32_t inst_offset = 0;
HWSEQ_REG_SET(DC_IP_REQUEST_CNTL,
IP_REQUEST_EN, 1);
dpp_pg_control(ctx, pipe->pipe_idx, false);
hubp_pg_control(ctx, pipe->pipe_idx, false);
HWSEQ_REG_SET(DC_IP_REQUEST_CNTL,
IP_REQUEST_EN, 0);
if (pipe->xfm)
pipe->xfm->funcs->transform_reset(pipe->xfm);
memset(&pipe->scl_data, 0, sizeof(pipe->scl_data));
}
static void set_drr(struct pipe_ctx **pipe_ctx,
int num_pipes, int vmin, int vmax)
{
int i = 0;
struct drr_params params = {0};
params.vertical_total_max = vmax;
params.vertical_total_min = vmin;
/* TODO: If multiple pipes are to be supported, you need
* some GSL stuff
*/
for (i = 0; i < num_pipes; i++) {
pipe_ctx[i]->tg->funcs->set_drr(pipe_ctx[i]->tg, &params);
}
}
static void get_position(struct pipe_ctx **pipe_ctx,
int num_pipes,
struct crtc_position *position)
{
int i = 0;
/* TODO: handle pipes > 1
*/
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->tg->funcs->get_position(pipe_ctx[i]->tg, position);
}
static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
int num_pipes, const struct dc_static_screen_events *events)
{
unsigned int i;
unsigned int value = 0;
if (events->surface_update)
value |= 0x80;
if (events->cursor_update)
value |= 0x2;
for (i = 0; i < num_pipes; i++)
pipe_ctx[i]->tg->funcs->
set_static_screen_control(pipe_ctx[i]->tg, value);
}
static void set_plane_config(
const struct core_dc *dc,
struct pipe_ctx *pipe_ctx,
struct resource_context *res_ctx)
{
/* TODO */
program_gamut_remap(pipe_ctx);
}
static const struct hw_sequencer_funcs dcn10_funcs = {
.init_hw = init_hw,
.apply_ctx_to_hw = dce110_apply_ctx_to_hw,
.apply_ctx_for_surface = dcn10_apply_ctx_for_surface,
.set_plane_config = set_plane_config,
.update_plane_addr = update_plane_addr,
.update_pending_status = dce110_update_pending_status,
.set_input_transfer_func = dcn10_set_input_transfer_func,
.set_output_transfer_func = dcn10_set_output_transfer_func,
.power_down = dce110_power_down,
.enable_accelerated_mode = dce110_enable_accelerated_mode,
.enable_timing_synchronization = dcn10_enable_timing_synchronization,
.update_info_frame = dce110_update_info_frame,
.enable_stream = dce110_enable_stream,
.disable_stream = dce110_disable_stream,
.unblank_stream = dce110_unblank_stream,
.enable_display_pipe_clock_gating = NULL, /* TODOFPGA */
.enable_display_power_gating = dcn10_enable_display_power_gating,
.power_down_front_end = dcn10_power_down_fe,
.power_on_front_end = dcn10_power_on_fe,
.pipe_control_lock = dcn10_pipe_control_lock,
.set_bandwidth = dcn10_set_bandwidth,
.reset_hw_ctx_wrap = reset_hw_ctx_wrap,
.prog_pixclk_crtc_otg = dcn10_prog_pixclk_crtc_otg,
.set_drr = set_drr,
.get_position = get_position,
.set_static_screen_control = set_static_screen_control
};
bool dcn10_hw_sequencer_construct(struct core_dc *dc)
{
dc->hwss = dcn10_funcs;
return true;
}
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_HWSS_DCN10_H__
#define __DC_HWSS_DCN10_H__
#include "core_types.h"
struct core_dc;
bool dcn10_hw_sequencer_construct(struct core_dc *dc);
extern void fill_display_configs(
const struct validate_context *context,
struct dm_pp_display_configuration *pp_display_cfg);
#endif /* __DC_HWSS_DCN10_H__ */
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dcn10_ipp.h"
#include "reg_helper.h"
#define REG(reg) \
(ippn10->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
ippn10->ipp_shift->field_name, ippn10->ipp_mask->field_name
#define CTX \
ippn10->base.ctx
struct dcn10_input_csc_matrix {
enum dc_color_space color_space;
uint32_t regval[12];
};
static const struct dcn10_input_csc_matrix dcn10_input_csc_matrix[] = {
{COLOR_SPACE_SRGB,
{0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
{COLOR_SPACE_SRGB_LIMITED,
{0x2000, 0, 0, 0, 0, 0x2000, 0, 0, 0, 0, 0x2000, 0} },
{COLOR_SPACE_YCBCR601,
{0x2cdd, 0x2000, 0, 0xe991, 0xe926, 0x2000, 0xf4fd, 0x10ef,
0, 0x2000, 0x38b4, 0xe3a6} },
{COLOR_SPACE_YCBCR601_LIMITED,
{0x3353, 0x2568, 0, 0xe400, 0xe5dc, 0x2568, 0xf367, 0x1108,
0, 0x2568, 0x40de, 0xdd3a} },
{COLOR_SPACE_YCBCR709,
{0x3265, 0x2000, 0, 0xe6ce, 0xf105, 0x2000, 0xfa01, 0xa7d, 0,
0x2000, 0x3b61, 0xe24f} },
{COLOR_SPACE_YCBCR709_LIMITED,
{0x39a6, 0x2568, 0, 0xe0d6, 0xeedd, 0x2568, 0xf925, 0x9a8, 0,
0x2568, 0x43ee, 0xdbb2} }
};
enum dcn10_input_csc_select {
INPUT_CSC_SELECT_BYPASS = 0,
INPUT_CSC_SELECT_ICSC,
INPUT_CSC_SELECT_COMA
};
static void dcn10_program_input_csc(
struct input_pixel_processor *ipp,
enum dc_color_space color_space,
enum dcn10_input_csc_select select)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
int i;
int arr_size = sizeof(dcn10_input_csc_matrix)/sizeof(struct dcn10_input_csc_matrix);
const uint32_t *regval = NULL;
uint32_t selection = 1;
if (select == INPUT_CSC_SELECT_BYPASS) {
REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
return;
}
for (i = 0; i < arr_size; i++)
if (dcn10_input_csc_matrix[i].color_space == color_space) {
regval = dcn10_input_csc_matrix[i].regval;
break;
}
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
if (select == INPUT_CSC_SELECT_COMA)
selection = 2;
REG_SET(CM_ICSC_CONTROL, 0,
CM_ICSC_MODE, selection);
if (select == INPUT_CSC_SELECT_ICSC) {
/*R*/
REG_SET_2(CM_ICSC_C11_C12, 0,
CM_ICSC_C11, regval[0],
CM_ICSC_C12, regval[1]);
regval += 2;
REG_SET_2(CM_ICSC_C13_C14, 0,
CM_ICSC_C13, regval[0],
CM_ICSC_C14, regval[1]);
/*G*/
regval += 2;
REG_SET_2(CM_ICSC_C21_C22, 0,
CM_ICSC_C21, regval[0],
CM_ICSC_C22, regval[1]);
regval += 2;
REG_SET_2(CM_ICSC_C23_C24, 0,
CM_ICSC_C23, regval[0],
CM_ICSC_C24, regval[1]);
/*B*/
regval += 2;
REG_SET_2(CM_ICSC_C31_C32, 0,
CM_ICSC_C31, regval[0],
CM_ICSC_C32, regval[1]);
regval += 2;
REG_SET_2(CM_ICSC_C33_C34, 0,
CM_ICSC_C33, regval[0],
CM_ICSC_C34, regval[1]);
} else {
/*R*/
REG_SET_2(CM_COMA_C11_C12, 0,
CM_COMA_C11, regval[0],
CM_COMA_C12, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C13_C14, 0,
CM_COMA_C13, regval[0],
CM_COMA_C14, regval[1]);
/*G*/
regval += 2;
REG_SET_2(CM_COMA_C21_C22, 0,
CM_COMA_C21, regval[0],
CM_COMA_C22, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C23_C24, 0,
CM_COMA_C23, regval[0],
CM_COMA_C24, regval[1]);
/*B*/
regval += 2;
REG_SET_2(CM_COMA_C31_C32, 0,
CM_COMA_C31, regval[0],
CM_COMA_C32, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C33_C34, 0,
CM_COMA_C33, regval[0],
CM_COMA_C34, regval[1]);
}
}
/*program de gamma RAM B*/
static void dcn10_ipp_program_degamma_lutb_settings(
struct input_pixel_processor *ipp,
const struct pwl_params *params)
{
const struct gamma_curve *curve;
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
REG_SET_2(CM_DGAM_RAMB_START_CNTL_B, 0,
CM_DGAM_RAMB_EXP_REGION_START_B, params->arr_points[0].custom_float_x,
CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(CM_DGAM_RAMB_START_CNTL_G, 0,
CM_DGAM_RAMB_EXP_REGION_START_G, params->arr_points[0].custom_float_x,
CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_G, 0);
REG_SET_2(CM_DGAM_RAMB_START_CNTL_R, 0,
CM_DGAM_RAMB_EXP_REGION_START_R, params->arr_points[0].custom_float_x,
CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_R, 0);
REG_SET(CM_DGAM_RAMB_SLOPE_CNTL_B, 0,
CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B, params->arr_points[0].custom_float_slope);
REG_SET(CM_DGAM_RAMB_SLOPE_CNTL_G, 0,
CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_G, params->arr_points[0].custom_float_slope);
REG_SET(CM_DGAM_RAMB_SLOPE_CNTL_R, 0,
CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_R, params->arr_points[0].custom_float_slope);
REG_SET(CM_DGAM_RAMB_END_CNTL1_B, 0,
CM_DGAM_RAMB_EXP_REGION_END_B, params->arr_points[1].custom_float_x);
REG_SET_2(CM_DGAM_RAMB_END_CNTL2_B, 0,
CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B, params->arr_points[1].custom_float_y,
CM_DGAM_RAMB_EXP_REGION_END_BASE_B, params->arr_points[2].custom_float_slope);
REG_SET(CM_DGAM_RAMB_END_CNTL1_G, 0,
CM_DGAM_RAMB_EXP_REGION_END_G, params->arr_points[1].custom_float_x);
REG_SET_2(CM_DGAM_RAMB_END_CNTL2_G, 0,
CM_DGAM_RAMB_EXP_REGION_END_SLOPE_G, params->arr_points[1].custom_float_y,
CM_DGAM_RAMB_EXP_REGION_END_BASE_G, params->arr_points[2].custom_float_slope);
REG_SET(CM_DGAM_RAMB_END_CNTL1_R, 0,
CM_DGAM_RAMB_EXP_REGION_END_R, params->arr_points[1].custom_float_x);
REG_SET_2(CM_DGAM_RAMB_END_CNTL2_R, 0,
CM_DGAM_RAMB_EXP_REGION_END_SLOPE_R, params->arr_points[1].custom_float_y,
CM_DGAM_RAMB_EXP_REGION_END_BASE_R, params->arr_points[2].custom_float_slope);
curve = params->arr_curve_points;
REG_SET_4(CM_DGAM_RAMB_REGION_0_1, 0,
CM_DGAM_RAMB_EXP_REGION0_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION1_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMB_REGION_2_3, 0,
CM_DGAM_RAMB_EXP_REGION2_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION3_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMB_REGION_4_5, 0,
CM_DGAM_RAMB_EXP_REGION4_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION5_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMB_REGION_6_7, 0,
CM_DGAM_RAMB_EXP_REGION6_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION7_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMB_REGION_8_9, 0,
CM_DGAM_RAMB_EXP_REGION8_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION9_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMB_REGION_10_11, 0,
CM_DGAM_RAMB_EXP_REGION10_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION11_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMB_REGION_12_13, 0,
CM_DGAM_RAMB_EXP_REGION12_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION13_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMB_REGION_14_15, 0,
CM_DGAM_RAMB_EXP_REGION14_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMB_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMB_EXP_REGION15_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMB_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num);
}
/*program de gamma RAM A*/
static void dcn10_ipp_program_degamma_luta_settings(
struct input_pixel_processor *ipp,
const struct pwl_params *params)
{
const struct gamma_curve *curve;
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
REG_SET_2(CM_DGAM_RAMA_START_CNTL_B, 0,
CM_DGAM_RAMA_EXP_REGION_START_B, params->arr_points[0].custom_float_x,
CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(CM_DGAM_RAMA_START_CNTL_G, 0,
CM_DGAM_RAMA_EXP_REGION_START_G, params->arr_points[0].custom_float_x,
CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_G, 0);
REG_SET_2(CM_DGAM_RAMA_START_CNTL_R, 0,
CM_DGAM_RAMA_EXP_REGION_START_R, params->arr_points[0].custom_float_x,
CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_R, 0);
REG_SET(CM_DGAM_RAMA_SLOPE_CNTL_B, 0,
CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B, params->arr_points[0].custom_float_slope);
REG_SET(CM_DGAM_RAMA_SLOPE_CNTL_G, 0,
CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_G, params->arr_points[0].custom_float_slope);
REG_SET(CM_DGAM_RAMA_SLOPE_CNTL_R, 0,
CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_R, params->arr_points[0].custom_float_slope);
REG_SET(CM_DGAM_RAMA_END_CNTL1_B, 0,
CM_DGAM_RAMA_EXP_REGION_END_B, params->arr_points[1].custom_float_x);
REG_SET_2(CM_DGAM_RAMA_END_CNTL2_B, 0,
CM_DGAM_RAMA_EXP_REGION_END_SLOPE_B, params->arr_points[1].custom_float_y,
CM_DGAM_RAMA_EXP_REGION_END_BASE_B, params->arr_points[2].custom_float_slope);
REG_SET(CM_DGAM_RAMA_END_CNTL1_G, 0,
CM_DGAM_RAMA_EXP_REGION_END_G, params->arr_points[1].custom_float_x);
REG_SET_2(CM_DGAM_RAMA_END_CNTL2_G, 0,
CM_DGAM_RAMA_EXP_REGION_END_SLOPE_G, params->arr_points[1].custom_float_y,
CM_DGAM_RAMA_EXP_REGION_END_BASE_G, params->arr_points[2].custom_float_slope);
REG_SET(CM_DGAM_RAMA_END_CNTL1_R, 0,
CM_DGAM_RAMA_EXP_REGION_END_R, params->arr_points[1].custom_float_x);
REG_SET_2(CM_DGAM_RAMA_END_CNTL2_R, 0,
CM_DGAM_RAMA_EXP_REGION_END_SLOPE_R, params->arr_points[1].custom_float_y,
CM_DGAM_RAMA_EXP_REGION_END_BASE_R, params->arr_points[2].custom_float_slope);
curve = params->arr_curve_points;
REG_SET_4(CM_DGAM_RAMA_REGION_0_1, 0,
CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMA_REGION_2_3, 0,
CM_DGAM_RAMA_EXP_REGION2_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION3_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMA_REGION_4_5, 0,
CM_DGAM_RAMA_EXP_REGION4_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION5_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMA_REGION_6_7, 0,
CM_DGAM_RAMA_EXP_REGION6_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION7_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMA_REGION_8_9, 0,
CM_DGAM_RAMA_EXP_REGION8_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION9_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMA_REGION_10_11, 0,
CM_DGAM_RAMA_EXP_REGION10_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION11_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMA_REGION_12_13, 0,
CM_DGAM_RAMA_EXP_REGION12_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION13_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_DGAM_RAMA_REGION_14_15, 0,
CM_DGAM_RAMA_EXP_REGION14_LUT_OFFSET, curve[0].offset,
CM_DGAM_RAMA_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num,
CM_DGAM_RAMA_EXP_REGION15_LUT_OFFSET, curve[1].offset,
CM_DGAM_RAMA_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num);
}
static void ipp_power_on_degamma_lut(
struct input_pixel_processor *ipp,
bool power_on)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
REG_SET(CM_MEM_PWR_CTRL, 0,
SHARED_MEM_PWR_DIS, power_on == true ? 0:1);
}
static void ipp_program_degamma_lut(
struct input_pixel_processor *ipp,
const struct pwl_result_data *rgb,
uint32_t num,
bool is_ram_a)
{
uint32_t i;
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0);
REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
CM_DGAM_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
is_ram_a == true ? 0:1);
REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
for (i = 0 ; i < num; i++) {
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
}
}
static void dcn10_ipp_enable_cm_block(
struct input_pixel_processor *ipp)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
REG_UPDATE(DPP_CONTROL, DPP_CLOCK_ENABLE, 1);
REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0);
}
static void dcn10_ipp_full_bypass(struct input_pixel_processor *ipp)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
/* Input pixel format: ARGB8888 */
REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
CNVC_SURFACE_PIXEL_FORMAT, 0x8);
/* Zero expansion */
REG_SET_3(FORMAT_CONTROL, 0,
CNVC_BYPASS, 0,
ALPHA_EN, 0,
FORMAT_EXPANSION_MODE, 0);
/* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */
REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1);
/* Setting degamma bypass for now */
REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0);
REG_SET(CM_IGAM_CONTROL, 0, CM_IGAM_LUT_MODE, 0);
}
static void dcn10_ipp_set_degamma(
struct input_pixel_processor *ipp,
enum ipp_degamma_mode mode)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
dcn10_ipp_enable_cm_block(ipp);
switch (mode) {
case IPP_DEGAMMA_MODE_BYPASS:
/* Setting de gamma bypass for now */
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
break;
case IPP_DEGAMMA_MODE_HW_sRGB:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
break;
case IPP_DEGAMMA_MODE_HW_xvYCC:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
}
static bool dcn10_cursor_program_control(
struct dcn10_ipp *ippn10,
bool pixel_data_invert,
enum dc_cursor_color_format color_format)
{
REG_SET_2(CURSOR_SETTINS, 0,
/* no shift of the cursor HDL schedule */
CURSOR0_DST_Y_OFFSET, 0,
/* used to shift the cursor chunk request deadline */
CURSOR0_CHUNK_HDL_ADJUST, 3);
REG_UPDATE_2(CURSOR0_CONTROL,
CUR0_MODE, color_format,
CUR0_INVERT_MODE, 0);
if (color_format == CURSOR_MODE_MONO) {
/* todo: clarify what to program these to */
REG_UPDATE(CURSOR0_COLOR0,
CUR0_COLOR0, 0x00000000);
REG_UPDATE(CURSOR0_COLOR1,
CUR0_COLOR1, 0xFFFFFFFF);
}
/* TODO: Fixed vs float */
REG_UPDATE_3(FORMAT_CONTROL,
CNVC_BYPASS, 0,
ALPHA_EN, 1,
FORMAT_EXPANSION_MODE, 0);
REG_UPDATE(CURSOR0_CONTROL,
CUR0_EXPANSION_MODE, 0);
if (0 /*attributes->attribute_flags.bits.MIN_MAX_INVERT*/) {
REG_UPDATE(CURSOR0_CONTROL,
CUR0_MAX,
0 /* TODO */);
REG_UPDATE(CURSOR0_CONTROL,
CUR0_MIN,
0 /* TODO */);
}
return true;
}
enum cursor_pitch {
CURSOR_PITCH_64_PIXELS = 0,
CURSOR_PITCH_128_PIXELS,
CURSOR_PITCH_256_PIXELS
};
enum cursor_lines_per_chunk {
CURSOR_LINE_PER_CHUNK_2 = 1,
CURSOR_LINE_PER_CHUNK_4,
CURSOR_LINE_PER_CHUNK_8,
CURSOR_LINE_PER_CHUNK_16
};
static enum cursor_pitch dcn10_get_cursor_pitch(
unsigned int pitch)
{
enum cursor_pitch hw_pitch;
switch (pitch) {
case 64:
hw_pitch = CURSOR_PITCH_64_PIXELS;
break;
case 128:
hw_pitch = CURSOR_PITCH_128_PIXELS;
break;
case 256:
hw_pitch = CURSOR_PITCH_256_PIXELS;
break;
default:
DC_ERR("Invalid cursor pitch of %d. "
"Only 64/128/256 is supported on DCN.\n", pitch);
hw_pitch = CURSOR_PITCH_64_PIXELS;
break;
}
return hw_pitch;
}
static enum cursor_lines_per_chunk dcn10_get_lines_per_chunk(
unsigned int cur_width,
enum dc_cursor_color_format format)
{
enum cursor_lines_per_chunk line_per_chunk;
if (format == CURSOR_MODE_MONO)
/* impl B. expansion in CUR Buffer reader */
line_per_chunk = CURSOR_LINE_PER_CHUNK_16;
else if (cur_width <= 32)
line_per_chunk = CURSOR_LINE_PER_CHUNK_16;
else if (cur_width <= 64)
line_per_chunk = CURSOR_LINE_PER_CHUNK_8;
else if (cur_width <= 128)
line_per_chunk = CURSOR_LINE_PER_CHUNK_4;
else
line_per_chunk = CURSOR_LINE_PER_CHUNK_2;
return line_per_chunk;
}
static void dcn10_cursor_set_attributes(
struct input_pixel_processor *ipp,
const struct dc_cursor_attributes *attr)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
enum cursor_pitch hw_pitch = dcn10_get_cursor_pitch(attr->pitch);
enum cursor_lines_per_chunk lpc = dcn10_get_lines_per_chunk(
attr->width, attr->color_format);
ippn10->curs_attr = *attr;
REG_UPDATE(CURSOR_SURFACE_ADDRESS_HIGH,
CURSOR_SURFACE_ADDRESS_HIGH, attr->address.high_part);
REG_UPDATE(CURSOR_SURFACE_ADDRESS,
CURSOR_SURFACE_ADDRESS, attr->address.low_part);
REG_UPDATE_2(CURSOR_SIZE,
CURSOR_WIDTH, attr->width,
CURSOR_HEIGHT, attr->height);
REG_UPDATE_3(CURSOR_CONTROL,
CURSOR_MODE, attr->color_format,
CURSOR_PITCH, hw_pitch,
CURSOR_LINES_PER_CHUNK, lpc);
dcn10_cursor_program_control(ippn10,
attr->attribute_flags.bits.INVERT_PIXEL_DATA,
attr->color_format);
}
static void dcn10_cursor_set_position(
struct input_pixel_processor *ipp,
const struct dc_cursor_position *pos,
const struct dc_cursor_mi_param *param)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
int src_x_offset = pos->x - pos->x_hotspot - param->viewport_x_start;
uint32_t cur_en = pos->enable ? 1 : 0;
uint32_t dst_x_offset = (src_x_offset >= 0) ? src_x_offset : 0;
dst_x_offset *= param->ref_clk_khz;
dst_x_offset /= param->pixel_clk_khz;
ASSERT(param->h_scale_ratio.value);
if (param->h_scale_ratio.value)
dst_x_offset = dal_fixed31_32_floor(dal_fixed31_32_div(
dal_fixed31_32_from_int(dst_x_offset),
param->h_scale_ratio));
if (src_x_offset >= (int)param->viewport_width)
cur_en = 0; /* not visible beyond right edge*/
if (src_x_offset + (int)ippn10->curs_attr.width < 0)
cur_en = 0; /* not visible beyond left edge*/
if (cur_en && REG_READ(CURSOR_SURFACE_ADDRESS) == 0)
dcn10_cursor_set_attributes(ipp, &ippn10->curs_attr);
REG_UPDATE(CURSOR_CONTROL,
CURSOR_ENABLE, cur_en);
REG_UPDATE(CURSOR0_CONTROL,
CUR0_ENABLE, cur_en);
REG_SET_2(CURSOR_POSITION, 0,
CURSOR_X_POSITION, pos->x,
CURSOR_Y_POSITION, pos->y);
REG_SET_2(CURSOR_HOT_SPOT, 0,
CURSOR_HOT_SPOT_X, pos->x_hotspot,
CURSOR_HOT_SPOT_Y, pos->y_hotspot);
REG_SET(CURSOR_DST_OFFSET, 0,
CURSOR_DST_X_OFFSET, dst_x_offset);
/* TODO Handle surface pixel formats other than 4:4:4 */
}
enum pixel_format_description {
PIXEL_FORMAT_FIXED = 0,
PIXEL_FORMAT_FIXED16,
PIXEL_FORMAT_FLOAT
};
static void dcn10_setup_format_flags(enum surface_pixel_format input_format,\
enum pixel_format_description *fmt)
{
if (input_format == SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F ||
input_format == SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F)
*fmt = PIXEL_FORMAT_FLOAT;
else if (input_format == SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616)
*fmt = PIXEL_FORMAT_FIXED16;
else
*fmt = PIXEL_FORMAT_FIXED;
}
static void dcn10_ipp_set_degamma_format_float(struct input_pixel_processor *ipp,
bool is_float)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
if (is_float) {
REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 3);
REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, 1);
} else {
REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 2);
REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, 0);
}
}
static void dcn10_ipp_cnv_setup (
struct input_pixel_processor *ipp,
enum surface_pixel_format input_format,
enum expansion_mode mode,
enum ipp_output_format cnv_out_format)
{
uint32_t pixel_format;
uint32_t alpha_en;
enum pixel_format_description fmt ;
enum dc_color_space color_space;
enum dcn10_input_csc_select select;
bool is_float;
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
bool force_disable_cursor = false;
dcn10_setup_format_flags(input_format, &fmt);
alpha_en = 1;
pixel_format = 0;
color_space = COLOR_SPACE_SRGB;
select = INPUT_CSC_SELECT_BYPASS;
is_float = false;
switch (fmt) {
case PIXEL_FORMAT_FIXED:
case PIXEL_FORMAT_FIXED16:
/*when output is float then FORMAT_CONTROL__OUTPUT_FP=1*/
REG_SET_3(FORMAT_CONTROL, 0,
CNVC_BYPASS, 0,
FORMAT_EXPANSION_MODE, mode,
OUTPUT_FP, 0);
break;
case PIXEL_FORMAT_FLOAT:
REG_SET_3(FORMAT_CONTROL, 0,
CNVC_BYPASS, 0,
FORMAT_EXPANSION_MODE, mode,
OUTPUT_FP, 1);
is_float = true;
break;
default:
break;
}
dcn10_ipp_set_degamma_format_float(ipp, is_float);
switch (input_format) {
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
pixel_format = 1;
break;
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
pixel_format = 3;
alpha_en = 0;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
pixel_format = 8;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
pixel_format = 10;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
force_disable_cursor = false;
pixel_format = 65;
color_space = COLOR_SPACE_YCBCR709;
select = INPUT_CSC_SELECT_ICSC;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
force_disable_cursor = true;
pixel_format = 64;
color_space = COLOR_SPACE_YCBCR709;
select = INPUT_CSC_SELECT_ICSC;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
force_disable_cursor = true;
pixel_format = 67;
color_space = COLOR_SPACE_YCBCR709;
select = INPUT_CSC_SELECT_ICSC;
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
force_disable_cursor = true;
pixel_format = 66;
color_space = COLOR_SPACE_YCBCR709;
select = INPUT_CSC_SELECT_ICSC;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
pixel_format = 22;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
pixel_format = 24;
break;
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
pixel_format = 25;
break;
default:
break;
}
REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
CNVC_SURFACE_PIXEL_FORMAT, pixel_format);
REG_UPDATE(FORMAT_CONTROL, ALPHA_EN, alpha_en);
dcn10_program_input_csc(ipp, color_space, select);
if (force_disable_cursor) {
REG_UPDATE(CURSOR_CONTROL,
CURSOR_ENABLE, 0);
REG_UPDATE(CURSOR0_CONTROL,
CUR0_ENABLE, 0);
}
}
static bool dcn10_degamma_ram_inuse(struct input_pixel_processor *ipp,
bool *ram_a_inuse)
{
bool ret = false;
uint32_t status_reg = 0;
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
status_reg = (REG_READ(CM_IGAM_LUT_RW_CONTROL) & 0x0F00) >>16;
if (status_reg == 9) {
*ram_a_inuse = true;
ret = true;
} else if (status_reg == 10) {
*ram_a_inuse = false;
ret = true;
}
return ret;
}
static void dcn10_degamma_ram_select(struct input_pixel_processor *ipp,
bool use_ram_a)
{
struct dcn10_ipp *ippn10 = TO_DCN10_IPP(ipp);
if (use_ram_a)
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
else
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4);
}
static void dcn10_ipp_set_degamma_pwl(struct input_pixel_processor *ipp,
const struct pwl_params *params)
{
bool is_ram_a = true;
ipp_power_on_degamma_lut(ipp, true);
dcn10_ipp_enable_cm_block(ipp);
dcn10_degamma_ram_inuse(ipp, &is_ram_a);
if (is_ram_a == true)
dcn10_ipp_program_degamma_lutb_settings(ipp, params);
else
dcn10_ipp_program_degamma_luta_settings(ipp, params);
ipp_program_degamma_lut(ipp, params->rgb_resulted,
params->hw_points_num, !is_ram_a);
dcn10_degamma_ram_select(ipp, !is_ram_a);
}
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
static void dcn10_ipp_destroy(struct input_pixel_processor **ipp)
{
dm_free(TO_DCN10_IPP(*ipp));
*ipp = NULL;
}
static const struct ipp_funcs dcn10_ipp_funcs = {
.ipp_cursor_set_attributes = dcn10_cursor_set_attributes,
.ipp_cursor_set_position = dcn10_cursor_set_position,
.ipp_set_degamma = dcn10_ipp_set_degamma,
.ipp_full_bypass = dcn10_ipp_full_bypass,
.ipp_setup = dcn10_ipp_cnv_setup,
.ipp_program_degamma_pwl = dcn10_ipp_set_degamma_pwl,
.ipp_destroy = dcn10_ipp_destroy
};
void dcn10_ipp_construct(
struct dcn10_ipp *ippn10,
struct dc_context *ctx,
int inst,
const struct dcn10_ipp_registers *regs,
const struct dcn10_ipp_shift *ipp_shift,
const struct dcn10_ipp_mask *ipp_mask)
{
ippn10->base.ctx = ctx;
ippn10->base.inst = inst;
ippn10->base.funcs = &dcn10_ipp_funcs;
ippn10->regs = regs;
ippn10->ipp_shift = ipp_shift;
ippn10->ipp_mask = ipp_mask;
}
/*
* Copyright 2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef _DCN10_IPP_H_
#define _DCN10_IPP_H_
#include "ipp.h"
#define TO_DCN10_IPP(ipp)\
container_of(ipp, struct dcn10_ipp, base)
#define IPP_DCN10_REG_LIST(id) \
SRI(CM_ICSC_CONTROL, CM, id), \
SRI(CM_ICSC_C11_C12, CM, id), \
SRI(CM_ICSC_C13_C14, CM, id), \
SRI(CM_ICSC_C21_C22, CM, id), \
SRI(CM_ICSC_C23_C24, CM, id), \
SRI(CM_ICSC_C31_C32, CM, id), \
SRI(CM_ICSC_C33_C34, CM, id), \
SRI(CM_COMA_C11_C12, CM, id), \
SRI(CM_COMA_C13_C14, CM, id), \
SRI(CM_COMA_C21_C22, CM, id), \
SRI(CM_COMA_C23_C24, CM, id), \
SRI(CM_COMA_C31_C32, CM, id), \
SRI(CM_COMA_C33_C34, CM, id), \
SRI(CM_DGAM_RAMB_START_CNTL_B, CM, id), \
SRI(CM_DGAM_RAMB_START_CNTL_G, CM, id), \
SRI(CM_DGAM_RAMB_START_CNTL_R, CM, id), \
SRI(CM_DGAM_RAMB_SLOPE_CNTL_B, CM, id), \
SRI(CM_DGAM_RAMB_SLOPE_CNTL_G, CM, id), \
SRI(CM_DGAM_RAMB_SLOPE_CNTL_R, CM, id), \
SRI(CM_DGAM_RAMB_END_CNTL1_B, CM, id), \
SRI(CM_DGAM_RAMB_END_CNTL2_B, CM, id), \
SRI(CM_DGAM_RAMB_END_CNTL1_G, CM, id), \
SRI(CM_DGAM_RAMB_END_CNTL2_G, CM, id), \
SRI(CM_DGAM_RAMB_END_CNTL1_R, CM, id), \
SRI(CM_DGAM_RAMB_END_CNTL2_R, CM, id), \
SRI(CM_DGAM_RAMB_REGION_0_1, CM, id), \
SRI(CM_DGAM_RAMB_REGION_2_3, CM, id), \
SRI(CM_DGAM_RAMB_REGION_4_5, CM, id), \
SRI(CM_DGAM_RAMB_REGION_6_7, CM, id), \
SRI(CM_DGAM_RAMB_REGION_8_9, CM, id), \
SRI(CM_DGAM_RAMB_REGION_10_11, CM, id), \
SRI(CM_DGAM_RAMB_REGION_12_13, CM, id), \
SRI(CM_DGAM_RAMB_REGION_14_15, CM, id), \
SRI(CM_DGAM_RAMA_START_CNTL_B, CM, id), \
SRI(CM_DGAM_RAMA_START_CNTL_G, CM, id), \
SRI(CM_DGAM_RAMA_START_CNTL_R, CM, id), \
SRI(CM_DGAM_RAMA_SLOPE_CNTL_B, CM, id), \
SRI(CM_DGAM_RAMA_SLOPE_CNTL_G, CM, id), \
SRI(CM_DGAM_RAMA_SLOPE_CNTL_R, CM, id), \
SRI(CM_DGAM_RAMA_END_CNTL1_B, CM, id), \
SRI(CM_DGAM_RAMA_END_CNTL2_B, CM, id), \
SRI(CM_DGAM_RAMA_END_CNTL1_G, CM, id), \
SRI(CM_DGAM_RAMA_END_CNTL2_G, CM, id), \
SRI(CM_DGAM_RAMA_END_CNTL1_R, CM, id), \
SRI(CM_DGAM_RAMA_END_CNTL2_R, CM, id), \
SRI(CM_DGAM_RAMA_REGION_0_1, CM, id), \
SRI(CM_DGAM_RAMA_REGION_2_3, CM, id), \
SRI(CM_DGAM_RAMA_REGION_4_5, CM, id), \
SRI(CM_DGAM_RAMA_REGION_6_7, CM, id), \
SRI(CM_DGAM_RAMA_REGION_8_9, CM, id), \
SRI(CM_DGAM_RAMA_REGION_10_11, CM, id), \
SRI(CM_DGAM_RAMA_REGION_12_13, CM, id), \
SRI(CM_DGAM_RAMA_REGION_14_15, CM, id), \
SRI(CM_MEM_PWR_CTRL, CM, id), \
SRI(CM_IGAM_LUT_RW_CONTROL, CM, id), \
SRI(CM_DGAM_LUT_WRITE_EN_MASK, CM, id), \
SRI(CM_DGAM_LUT_INDEX, CM, id), \
SRI(CM_DGAM_LUT_DATA, CM, id), \
SRI(CM_CONTROL, CM, id), \
SRI(CM_DGAM_CONTROL, CM, id), \
SRI(CM_IGAM_CONTROL, CM, id), \
SRI(DPP_CONTROL, DPP_TOP, id), \
SRI(CURSOR_SETTINS, HUBPREQ, id), \
SRI(CNVC_SURFACE_PIXEL_FORMAT, CNVC_CFG, id), \
SRI(CURSOR0_CONTROL, CNVC_CUR, id), \
SRI(CURSOR0_COLOR0, CNVC_CUR, id), \
SRI(CURSOR0_COLOR1, CNVC_CUR, id), \
SRI(FORMAT_CONTROL, CNVC_CFG, id), \
SRI(CURSOR_SURFACE_ADDRESS_HIGH, CURSOR, id), \
SRI(CURSOR_SURFACE_ADDRESS, CURSOR, id), \
SRI(CURSOR_SIZE, CURSOR, id), \
SRI(CURSOR_CONTROL, CURSOR, id), \
SRI(CURSOR_POSITION, CURSOR, id), \
SRI(CURSOR_HOT_SPOT, CURSOR, id), \
SRI(CURSOR_DST_OFFSET, CURSOR, id)
#define IPP_SF(reg_name, field_name, post_fix)\
.field_name = reg_name ## __ ## field_name ## post_fix
#define IPP_DCN10_MASK_SH_LIST(mask_sh) \
IPP_SF(CM0_CM_ICSC_CONTROL, CM_ICSC_MODE, mask_sh), \
IPP_SF(CM0_CM_ICSC_C11_C12, CM_ICSC_C11, mask_sh), \
IPP_SF(CM0_CM_ICSC_C11_C12, CM_ICSC_C12, mask_sh), \
IPP_SF(CM0_CM_ICSC_C13_C14, CM_ICSC_C13, mask_sh), \
IPP_SF(CM0_CM_ICSC_C13_C14, CM_ICSC_C14, mask_sh), \
IPP_SF(CM0_CM_ICSC_C21_C22, CM_ICSC_C21, mask_sh), \
IPP_SF(CM0_CM_ICSC_C21_C22, CM_ICSC_C22, mask_sh), \
IPP_SF(CM0_CM_ICSC_C23_C24, CM_ICSC_C23, mask_sh), \
IPP_SF(CM0_CM_ICSC_C23_C24, CM_ICSC_C24, mask_sh), \
IPP_SF(CM0_CM_ICSC_C31_C32, CM_ICSC_C31, mask_sh), \
IPP_SF(CM0_CM_ICSC_C31_C32, CM_ICSC_C32, mask_sh), \
IPP_SF(CM0_CM_ICSC_C33_C34, CM_ICSC_C33, mask_sh), \
IPP_SF(CM0_CM_ICSC_C33_C34, CM_ICSC_C34, mask_sh), \
IPP_SF(CM0_CM_COMA_C11_C12, CM_COMA_C11, mask_sh), \
IPP_SF(CM0_CM_COMA_C11_C12, CM_COMA_C12, mask_sh), \
IPP_SF(CM0_CM_COMA_C13_C14, CM_COMA_C13, mask_sh), \
IPP_SF(CM0_CM_COMA_C13_C14, CM_COMA_C14, mask_sh), \
IPP_SF(CM0_CM_COMA_C21_C22, CM_COMA_C21, mask_sh), \
IPP_SF(CM0_CM_COMA_C21_C22, CM_COMA_C22, mask_sh), \
IPP_SF(CM0_CM_COMA_C23_C24, CM_COMA_C23, mask_sh), \
IPP_SF(CM0_CM_COMA_C23_C24, CM_COMA_C24, mask_sh), \
IPP_SF(CM0_CM_COMA_C31_C32, CM_COMA_C31, mask_sh), \
IPP_SF(CM0_CM_COMA_C31_C32, CM_COMA_C32, mask_sh), \
IPP_SF(CM0_CM_COMA_C33_C34, CM_COMA_C33, mask_sh), \
IPP_SF(CM0_CM_COMA_C33_C34, CM_COMA_C34, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_START_CNTL_B, CM_DGAM_RAMB_EXP_REGION_START_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_START_CNTL_B, CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_START_CNTL_G, CM_DGAM_RAMB_EXP_REGION_START_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_START_CNTL_G, CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_START_CNTL_R, CM_DGAM_RAMB_EXP_REGION_START_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_START_CNTL_R, CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_SLOPE_CNTL_B, CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_SLOPE_CNTL_G, CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_SLOPE_CNTL_R, CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL1_B, CM_DGAM_RAMB_EXP_REGION_END_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL2_B, CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL2_B, CM_DGAM_RAMB_EXP_REGION_END_BASE_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL1_G, CM_DGAM_RAMB_EXP_REGION_END_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL2_G, CM_DGAM_RAMB_EXP_REGION_END_SLOPE_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL2_G, CM_DGAM_RAMB_EXP_REGION_END_BASE_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL1_R, CM_DGAM_RAMB_EXP_REGION_END_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL2_R, CM_DGAM_RAMB_EXP_REGION_END_SLOPE_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_END_CNTL2_R, CM_DGAM_RAMB_EXP_REGION_END_BASE_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_0_1, CM_DGAM_RAMB_EXP_REGION0_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_0_1, CM_DGAM_RAMB_EXP_REGION0_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_0_1, CM_DGAM_RAMB_EXP_REGION1_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_0_1, CM_DGAM_RAMB_EXP_REGION1_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_2_3, CM_DGAM_RAMB_EXP_REGION2_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_2_3, CM_DGAM_RAMB_EXP_REGION2_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_2_3, CM_DGAM_RAMB_EXP_REGION3_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_2_3, CM_DGAM_RAMB_EXP_REGION3_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_4_5, CM_DGAM_RAMB_EXP_REGION4_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_4_5, CM_DGAM_RAMB_EXP_REGION4_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_4_5, CM_DGAM_RAMB_EXP_REGION5_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_4_5, CM_DGAM_RAMB_EXP_REGION5_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_6_7, CM_DGAM_RAMB_EXP_REGION6_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_6_7, CM_DGAM_RAMB_EXP_REGION6_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_6_7, CM_DGAM_RAMB_EXP_REGION7_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_6_7, CM_DGAM_RAMB_EXP_REGION7_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_8_9, CM_DGAM_RAMB_EXP_REGION8_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_8_9, CM_DGAM_RAMB_EXP_REGION8_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_8_9, CM_DGAM_RAMB_EXP_REGION9_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_8_9, CM_DGAM_RAMB_EXP_REGION9_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_10_11, CM_DGAM_RAMB_EXP_REGION10_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_10_11, CM_DGAM_RAMB_EXP_REGION10_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_10_11, CM_DGAM_RAMB_EXP_REGION11_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_10_11, CM_DGAM_RAMB_EXP_REGION11_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_12_13, CM_DGAM_RAMB_EXP_REGION12_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_12_13, CM_DGAM_RAMB_EXP_REGION12_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_12_13, CM_DGAM_RAMB_EXP_REGION13_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_12_13, CM_DGAM_RAMB_EXP_REGION13_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_14_15, CM_DGAM_RAMB_EXP_REGION14_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_14_15, CM_DGAM_RAMB_EXP_REGION14_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_14_15, CM_DGAM_RAMB_EXP_REGION15_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMB_REGION_14_15, CM_DGAM_RAMB_EXP_REGION15_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_START_CNTL_B, CM_DGAM_RAMA_EXP_REGION_START_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_START_CNTL_B, CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_START_CNTL_G, CM_DGAM_RAMA_EXP_REGION_START_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_START_CNTL_G, CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_START_CNTL_R, CM_DGAM_RAMA_EXP_REGION_START_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_START_CNTL_R, CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_SLOPE_CNTL_B, CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_SLOPE_CNTL_G, CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_SLOPE_CNTL_R, CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL1_B, CM_DGAM_RAMA_EXP_REGION_END_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL2_B, CM_DGAM_RAMA_EXP_REGION_END_SLOPE_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL2_B, CM_DGAM_RAMA_EXP_REGION_END_BASE_B, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL1_G, CM_DGAM_RAMA_EXP_REGION_END_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL2_G, CM_DGAM_RAMA_EXP_REGION_END_SLOPE_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL2_G, CM_DGAM_RAMA_EXP_REGION_END_BASE_G, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL1_R, CM_DGAM_RAMA_EXP_REGION_END_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL2_R, CM_DGAM_RAMA_EXP_REGION_END_SLOPE_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_END_CNTL2_R, CM_DGAM_RAMA_EXP_REGION_END_BASE_R, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_0_1, CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_0_1, CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_0_1, CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_0_1, CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_2_3, CM_DGAM_RAMA_EXP_REGION2_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_2_3, CM_DGAM_RAMA_EXP_REGION2_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_2_3, CM_DGAM_RAMA_EXP_REGION3_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_2_3, CM_DGAM_RAMA_EXP_REGION3_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_4_5, CM_DGAM_RAMA_EXP_REGION4_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_4_5, CM_DGAM_RAMA_EXP_REGION4_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_4_5, CM_DGAM_RAMA_EXP_REGION5_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_4_5, CM_DGAM_RAMA_EXP_REGION5_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_6_7, CM_DGAM_RAMA_EXP_REGION6_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_6_7, CM_DGAM_RAMA_EXP_REGION6_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_6_7, CM_DGAM_RAMA_EXP_REGION7_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_6_7, CM_DGAM_RAMA_EXP_REGION7_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_8_9, CM_DGAM_RAMA_EXP_REGION8_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_8_9, CM_DGAM_RAMA_EXP_REGION8_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_8_9, CM_DGAM_RAMA_EXP_REGION9_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_8_9, CM_DGAM_RAMA_EXP_REGION9_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_10_11, CM_DGAM_RAMA_EXP_REGION10_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_10_11, CM_DGAM_RAMA_EXP_REGION10_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_10_11, CM_DGAM_RAMA_EXP_REGION11_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_10_11, CM_DGAM_RAMA_EXP_REGION11_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_12_13, CM_DGAM_RAMA_EXP_REGION12_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_12_13, CM_DGAM_RAMA_EXP_REGION12_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_12_13, CM_DGAM_RAMA_EXP_REGION13_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_12_13, CM_DGAM_RAMA_EXP_REGION13_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_14_15, CM_DGAM_RAMA_EXP_REGION14_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_14_15, CM_DGAM_RAMA_EXP_REGION14_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_14_15, CM_DGAM_RAMA_EXP_REGION15_LUT_OFFSET, mask_sh), \
IPP_SF(CM0_CM_DGAM_RAMA_REGION_14_15, CM_DGAM_RAMA_EXP_REGION15_NUM_SEGMENTS, mask_sh), \
IPP_SF(CM0_CM_MEM_PWR_CTRL, SHARED_MEM_PWR_DIS, mask_sh), \
IPP_SF(CM0_CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, mask_sh), \
IPP_SF(CM0_CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_EN_MASK, mask_sh), \
IPP_SF(CM0_CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL, mask_sh), \
IPP_SF(CM0_CM_DGAM_LUT_INDEX, CM_DGAM_LUT_INDEX, mask_sh), \
IPP_SF(CM0_CM_DGAM_LUT_DATA, CM_DGAM_LUT_DATA, mask_sh), \
IPP_SF(DPP_TOP0_DPP_CONTROL, DPP_CLOCK_ENABLE, mask_sh), \
IPP_SF(CM0_CM_CONTROL, CM_BYPASS_EN, mask_sh), \
IPP_SF(CNVC_CFG0_CNVC_SURFACE_PIXEL_FORMAT, CNVC_SURFACE_PIXEL_FORMAT, mask_sh), \
IPP_SF(CNVC_CFG0_FORMAT_CONTROL, CNVC_BYPASS, mask_sh), \
IPP_SF(CNVC_CFG0_FORMAT_CONTROL, ALPHA_EN, mask_sh), \
IPP_SF(CNVC_CFG0_FORMAT_CONTROL, FORMAT_EXPANSION_MODE, mask_sh), \
IPP_SF(CM0_CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, mask_sh), \
IPP_SF(CM0_CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, mask_sh), \
IPP_SF(HUBPREQ0_CURSOR_SETTINS, CURSOR0_DST_Y_OFFSET, mask_sh), \
IPP_SF(HUBPREQ0_CURSOR_SETTINS, CURSOR0_CHUNK_HDL_ADJUST, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_CONTROL, CUR0_MODE, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_CONTROL, CUR0_INVERT_MODE, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_COLOR0, CUR0_COLOR0, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_COLOR1, CUR0_COLOR1, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_CONTROL, CUR0_EXPANSION_MODE, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_CONTROL, CUR0_MAX, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_CONTROL, CUR0_MIN, mask_sh), \
IPP_SF(CURSOR0_CURSOR_SURFACE_ADDRESS_HIGH, CURSOR_SURFACE_ADDRESS_HIGH, mask_sh), \
IPP_SF(CURSOR0_CURSOR_SURFACE_ADDRESS, CURSOR_SURFACE_ADDRESS, mask_sh), \
IPP_SF(CURSOR0_CURSOR_SIZE, CURSOR_WIDTH, mask_sh), \
IPP_SF(CURSOR0_CURSOR_SIZE, CURSOR_HEIGHT, mask_sh), \
IPP_SF(CURSOR0_CURSOR_CONTROL, CURSOR_MODE, mask_sh), \
IPP_SF(CURSOR0_CURSOR_CONTROL, CURSOR_PITCH, mask_sh), \
IPP_SF(CURSOR0_CURSOR_CONTROL, CURSOR_LINES_PER_CHUNK, mask_sh), \
IPP_SF(CURSOR0_CURSOR_CONTROL, CURSOR_ENABLE, mask_sh), \
IPP_SF(CNVC_CUR0_CURSOR0_CONTROL, CUR0_ENABLE, mask_sh), \
IPP_SF(CURSOR0_CURSOR_POSITION, CURSOR_X_POSITION, mask_sh), \
IPP_SF(CURSOR0_CURSOR_POSITION, CURSOR_Y_POSITION, mask_sh), \
IPP_SF(CURSOR0_CURSOR_HOT_SPOT, CURSOR_HOT_SPOT_X, mask_sh), \
IPP_SF(CURSOR0_CURSOR_HOT_SPOT, CURSOR_HOT_SPOT_Y, mask_sh), \
IPP_SF(CURSOR0_CURSOR_DST_OFFSET, CURSOR_DST_X_OFFSET, mask_sh), \
IPP_SF(CM0_CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, mask_sh), \
IPP_SF(CNVC_CFG0_FORMAT_CONTROL, OUTPUT_FP, mask_sh)
#define IPP_DCN10_REG_FIELD_LIST(type) \
type CM_ICSC_MODE; \
type CM_ICSC_C11; \
type CM_ICSC_C12; \
type CM_ICSC_C13; \
type CM_ICSC_C14; \
type CM_ICSC_C21; \
type CM_ICSC_C22; \
type CM_ICSC_C23; \
type CM_ICSC_C24; \
type CM_ICSC_C31; \
type CM_ICSC_C32; \
type CM_ICSC_C33; \
type CM_ICSC_C34; \
type CM_COMA_C11; \
type CM_COMA_C12; \
type CM_COMA_C13; \
type CM_COMA_C14; \
type CM_COMA_C21; \
type CM_COMA_C22; \
type CM_COMA_C23; \
type CM_COMA_C24; \
type CM_COMA_C31; \
type CM_COMA_C32; \
type CM_COMA_C33; \
type CM_COMA_C34; \
type CM_DGAM_RAMB_EXP_REGION_START_B; \
type CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B; \
type CM_DGAM_RAMB_EXP_REGION_START_G; \
type CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_G; \
type CM_DGAM_RAMB_EXP_REGION_START_R; \
type CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_R; \
type CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; \
type CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_G; \
type CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_R; \
type CM_DGAM_RAMB_EXP_REGION_END_B; \
type CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B; \
type CM_DGAM_RAMB_EXP_REGION_END_BASE_B; \
type CM_DGAM_RAMB_EXP_REGION_END_G; \
type CM_DGAM_RAMB_EXP_REGION_END_SLOPE_G; \
type CM_DGAM_RAMB_EXP_REGION_END_BASE_G; \
type CM_DGAM_RAMB_EXP_REGION_END_R; \
type CM_DGAM_RAMB_EXP_REGION_END_SLOPE_R; \
type CM_DGAM_RAMB_EXP_REGION_END_BASE_R; \
type CM_DGAM_RAMB_EXP_REGION0_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION0_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION1_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION1_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION2_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION2_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION3_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION3_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION4_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION4_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION5_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION5_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION6_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION6_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION7_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION7_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION8_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION8_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION9_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION9_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION10_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION10_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION11_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION11_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION12_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION12_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION13_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION13_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION14_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION14_NUM_SEGMENTS; \
type CM_DGAM_RAMB_EXP_REGION15_LUT_OFFSET; \
type CM_DGAM_RAMB_EXP_REGION15_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION_START_B; \
type CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_B; \
type CM_DGAM_RAMA_EXP_REGION_START_G; \
type CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_G; \
type CM_DGAM_RAMA_EXP_REGION_START_R; \
type CM_DGAM_RAMA_EXP_REGION_START_SEGMENT_R; \
type CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; \
type CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_G; \
type CM_DGAM_RAMA_EXP_REGION_LINEAR_SLOPE_R; \
type CM_DGAM_RAMA_EXP_REGION_END_B; \
type CM_DGAM_RAMA_EXP_REGION_END_SLOPE_B; \
type CM_DGAM_RAMA_EXP_REGION_END_BASE_B; \
type CM_DGAM_RAMA_EXP_REGION_END_G; \
type CM_DGAM_RAMA_EXP_REGION_END_SLOPE_G; \
type CM_DGAM_RAMA_EXP_REGION_END_BASE_G; \
type CM_DGAM_RAMA_EXP_REGION_END_R; \
type CM_DGAM_RAMA_EXP_REGION_END_SLOPE_R; \
type CM_DGAM_RAMA_EXP_REGION_END_BASE_R; \
type CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION2_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION2_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION3_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION3_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION4_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION4_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION5_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION5_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION6_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION6_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION7_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION7_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION8_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION8_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION9_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION9_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION10_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION10_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION11_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION11_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION12_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION12_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION13_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION13_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION14_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION14_NUM_SEGMENTS; \
type CM_DGAM_RAMA_EXP_REGION15_LUT_OFFSET; \
type CM_DGAM_RAMA_EXP_REGION15_NUM_SEGMENTS; \
type SHARED_MEM_PWR_DIS; \
type CM_IGAM_LUT_HOST_EN; \
type CM_DGAM_LUT_WRITE_EN_MASK; \
type CM_DGAM_LUT_WRITE_SEL; \
type CM_DGAM_LUT_INDEX; \
type CM_DGAM_LUT_DATA; \
type DPP_CLOCK_ENABLE; \
type CM_BYPASS_EN; \
type CNVC_SURFACE_PIXEL_FORMAT; \
type CNVC_BYPASS; \
type ALPHA_EN; \
type FORMAT_EXPANSION_MODE; \
type CM_DGAM_LUT_MODE; \
type CM_IGAM_LUT_MODE; \
type CURSOR0_DST_Y_OFFSET; \
type CURSOR0_CHUNK_HDL_ADJUST; \
type CUR0_MODE; \
type CUR0_INVERT_MODE; \
type CUR0_COLOR0; \
type CUR0_COLOR1; \
type CUR0_EXPANSION_MODE; \
type CUR0_MAX; \
type CUR0_MIN; \
type CURSOR_SURFACE_ADDRESS_HIGH; \
type CURSOR_SURFACE_ADDRESS; \
type CURSOR_WIDTH; \
type CURSOR_HEIGHT; \
type CURSOR_MODE; \
type CURSOR_PITCH; \
type CURSOR_LINES_PER_CHUNK; \
type CURSOR_ENABLE; \
type CUR0_ENABLE; \
type CURSOR_X_POSITION; \
type CURSOR_Y_POSITION; \
type CURSOR_HOT_SPOT_X; \
type CURSOR_HOT_SPOT_Y; \
type CURSOR_DST_X_OFFSET; \
type CM_IGAM_INPUT_FORMAT; \
type OUTPUT_FP
struct dcn10_ipp_shift {
IPP_DCN10_REG_FIELD_LIST(uint8_t);
};
struct dcn10_ipp_mask {
IPP_DCN10_REG_FIELD_LIST(uint32_t);
};
struct dcn10_ipp_registers {
uint32_t CM_ICSC_CONTROL;
uint32_t CM_ICSC_C11_C12;
uint32_t CM_ICSC_C13_C14;
uint32_t CM_ICSC_C21_C22;
uint32_t CM_ICSC_C23_C24;
uint32_t CM_ICSC_C31_C32;
uint32_t CM_ICSC_C33_C34;
uint32_t CM_COMA_C11_C12;
uint32_t CM_COMA_C13_C14;
uint32_t CM_COMA_C21_C22;
uint32_t CM_COMA_C23_C24;
uint32_t CM_COMA_C31_C32;
uint32_t CM_COMA_C33_C34;
uint32_t CM_DGAM_RAMB_START_CNTL_B;
uint32_t CM_DGAM_RAMB_START_CNTL_G;
uint32_t CM_DGAM_RAMB_START_CNTL_R;
uint32_t CM_DGAM_RAMB_SLOPE_CNTL_B;
uint32_t CM_DGAM_RAMB_SLOPE_CNTL_G;
uint32_t CM_DGAM_RAMB_SLOPE_CNTL_R;
uint32_t CM_DGAM_RAMB_END_CNTL1_B;
uint32_t CM_DGAM_RAMB_END_CNTL2_B;
uint32_t CM_DGAM_RAMB_END_CNTL1_G;
uint32_t CM_DGAM_RAMB_END_CNTL2_G;
uint32_t CM_DGAM_RAMB_END_CNTL1_R;
uint32_t CM_DGAM_RAMB_END_CNTL2_R;
uint32_t CM_DGAM_RAMB_REGION_0_1;
uint32_t CM_DGAM_RAMB_REGION_2_3;
uint32_t CM_DGAM_RAMB_REGION_4_5;
uint32_t CM_DGAM_RAMB_REGION_6_7;
uint32_t CM_DGAM_RAMB_REGION_8_9;
uint32_t CM_DGAM_RAMB_REGION_10_11;
uint32_t CM_DGAM_RAMB_REGION_12_13;
uint32_t CM_DGAM_RAMB_REGION_14_15;
uint32_t CM_DGAM_RAMA_START_CNTL_B;
uint32_t CM_DGAM_RAMA_START_CNTL_G;
uint32_t CM_DGAM_RAMA_START_CNTL_R;
uint32_t CM_DGAM_RAMA_SLOPE_CNTL_B;
uint32_t CM_DGAM_RAMA_SLOPE_CNTL_G;
uint32_t CM_DGAM_RAMA_SLOPE_CNTL_R;
uint32_t CM_DGAM_RAMA_END_CNTL1_B;
uint32_t CM_DGAM_RAMA_END_CNTL2_B;
uint32_t CM_DGAM_RAMA_END_CNTL1_G;
uint32_t CM_DGAM_RAMA_END_CNTL2_G;
uint32_t CM_DGAM_RAMA_END_CNTL1_R;
uint32_t CM_DGAM_RAMA_END_CNTL2_R;
uint32_t CM_DGAM_RAMA_REGION_0_1;
uint32_t CM_DGAM_RAMA_REGION_2_3;
uint32_t CM_DGAM_RAMA_REGION_4_5;
uint32_t CM_DGAM_RAMA_REGION_6_7;
uint32_t CM_DGAM_RAMA_REGION_8_9;
uint32_t CM_DGAM_RAMA_REGION_10_11;
uint32_t CM_DGAM_RAMA_REGION_12_13;
uint32_t CM_DGAM_RAMA_REGION_14_15;
uint32_t CM_MEM_PWR_CTRL;
uint32_t CM_IGAM_LUT_RW_CONTROL;
uint32_t CM_DGAM_LUT_WRITE_EN_MASK;
uint32_t CM_DGAM_LUT_INDEX;
uint32_t CM_DGAM_LUT_DATA;
uint32_t CM_CONTROL;
uint32_t CM_DGAM_CONTROL;
uint32_t CM_IGAM_CONTROL;
uint32_t DPP_CONTROL;
uint32_t CURSOR_SETTINS;
uint32_t CNVC_SURFACE_PIXEL_FORMAT;
uint32_t CURSOR0_CONTROL;
uint32_t CURSOR0_COLOR0;
uint32_t CURSOR0_COLOR1;
uint32_t FORMAT_CONTROL;
uint32_t CURSOR_SURFACE_ADDRESS_HIGH;
uint32_t CURSOR_SURFACE_ADDRESS;
uint32_t CURSOR_SIZE;
uint32_t CURSOR_CONTROL;
uint32_t CURSOR_POSITION;
uint32_t CURSOR_HOT_SPOT;
uint32_t CURSOR_DST_OFFSET;
};
struct dcn10_ipp {
struct input_pixel_processor base;
const struct dcn10_ipp_registers *regs;
const struct dcn10_ipp_shift *ipp_shift;
const struct dcn10_ipp_mask *ipp_mask;
struct dc_cursor_attributes curs_attr;
};
void dcn10_ipp_construct(struct dcn10_ipp *ippn10,
struct dc_context *ctx,
int inst,
const struct dcn10_ipp_registers *regs,
const struct dcn10_ipp_shift *ipp_shift,
const struct dcn10_ipp_mask *ipp_mask);
#endif /* _DCN10_IPP_H_ */
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dce_calcs.h"
#include "dcn10_mem_input.h"
#include "reg_helper.h"
#include "basics/conversion.h"
#define REG(reg)\
mi->mi_regs->reg
#define CTX \
mi->base.ctx
#undef FN
#define FN(reg_name, field_name) \
mi->mi_shift->field_name, mi->mi_mask->field_name
static void set_blank(struct dcn10_mem_input *mi, bool blank)
{
uint32_t blank_en = blank ? 1 : 0;
REG_UPDATE_2(DCHUBP_CNTL,
HUBP_BLANK_EN, blank_en,
HUBP_TTU_DISABLE, blank_en);
}
static void disable_request(struct mem_input *mem_input)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
/* To disable the requestors, set blank_en to 1 */
set_blank(mi, true);
}
static void vready_workaround(struct mem_input *mem_input,
struct _vcs_dpi_display_pipe_dest_params_st *pipe_dest)
{
uint32_t value = 0;
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
/* set HBUBREQ_DEBUG_DB[12] = 1 */
value = REG_READ(HUBPREQ_DEBUG_DB);
/* hack mode disable */
value |= 0x100;
value &= ~0x1000;
if ((pipe_dest->vstartup_start - 2*(pipe_dest->vready_offset+pipe_dest->vupdate_width
+ pipe_dest->vupdate_offset) / pipe_dest->htotal) <= pipe_dest->vblank_end) {
/* if (eco_fix_needed(otg_global_sync_timing)
* set HBUBREQ_DEBUG_DB[12] = 1 */
value |= 0x1000;
}
REG_WRITE(HUBPREQ_DEBUG_DB, value);
}
static void program_tiling(
struct dcn10_mem_input *mi,
const union dc_tiling_info *info,
const enum surface_pixel_format pixel_format)
{
REG_UPDATE_6(DCSURF_ADDR_CONFIG,
NUM_PIPES, log_2(info->gfx9.num_pipes),
NUM_BANKS, log_2(info->gfx9.num_banks),
PIPE_INTERLEAVE, info->gfx9.pipe_interleave,
NUM_SE, log_2(info->gfx9.num_shader_engines),
NUM_RB_PER_SE, log_2(info->gfx9.num_rb_per_se),
MAX_COMPRESSED_FRAGS, log_2(info->gfx9.max_compressed_frags));
REG_UPDATE_4(DCSURF_TILING_CONFIG,
SW_MODE, info->gfx9.swizzle,
META_LINEAR, info->gfx9.meta_linear,
RB_ALIGNED, info->gfx9.rb_aligned,
PIPE_ALIGNED, info->gfx9.pipe_aligned);
}
static void program_size_and_rotation(
struct dcn10_mem_input *mi,
enum dc_rotation_angle rotation,
enum surface_pixel_format format,
const union plane_size *plane_size,
struct dc_plane_dcc_param *dcc,
bool horizontal_mirror)
{
uint32_t pitch, meta_pitch, pitch_c, meta_pitch_c, mirror;
/* Program data and meta surface pitch (calculation from addrlib)
* 444 or 420 luma
*/
if (format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN) {
pitch = plane_size->video.luma_pitch - 1;
meta_pitch = dcc->video.meta_pitch_l - 1;
pitch_c = plane_size->video.chroma_pitch - 1;
meta_pitch_c = dcc->video.meta_pitch_c - 1;
} else {
pitch = plane_size->grph.surface_pitch - 1;
meta_pitch = dcc->grph.meta_pitch - 1;
pitch_c = 0;
meta_pitch_c = 0;
}
if (!dcc->enable) {
meta_pitch = 0;
meta_pitch_c = 0;
}
REG_UPDATE_2(DCSURF_SURFACE_PITCH,
PITCH, pitch, META_PITCH, meta_pitch);
if (format >= SURFACE_PIXEL_FORMAT_VIDEO_BEGIN)
REG_UPDATE_2(DCSURF_SURFACE_PITCH_C,
PITCH_C, pitch_c, META_PITCH_C, meta_pitch_c);
if (horizontal_mirror)
mirror = 1;
else
mirror = 0;
/* Program rotation angle and horz mirror - no mirror */
if (rotation == ROTATION_ANGLE_0)
REG_UPDATE_2(DCSURF_SURFACE_CONFIG,
ROTATION_ANGLE, 0,
H_MIRROR_EN, mirror);
else if (rotation == ROTATION_ANGLE_90)
REG_UPDATE_2(DCSURF_SURFACE_CONFIG,
ROTATION_ANGLE, 1,
H_MIRROR_EN, mirror);
else if (rotation == ROTATION_ANGLE_180)
REG_UPDATE_2(DCSURF_SURFACE_CONFIG,
ROTATION_ANGLE, 2,
H_MIRROR_EN, mirror);
else if (rotation == ROTATION_ANGLE_270)
REG_UPDATE_2(DCSURF_SURFACE_CONFIG,
ROTATION_ANGLE, 3,
H_MIRROR_EN, mirror);
}
static void program_pixel_format(
struct dcn10_mem_input *mi,
enum surface_pixel_format format)
{
uint32_t red_bar = 3;
uint32_t blue_bar = 2;
/* swap for ABGR format */
if (format == SURFACE_PIXEL_FORMAT_GRPH_ABGR8888
|| format == SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010
|| format == SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS
|| format == SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F) {
red_bar = 2;
blue_bar = 3;
}
REG_UPDATE_2(HUBPRET_CONTROL,
CROSSBAR_SRC_CB_B, blue_bar,
CROSSBAR_SRC_CR_R, red_bar);
/* Mapping is same as ipp programming (cnvc) */
switch (format) {
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 1);
break;
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 3);
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 8);
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 10);
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 22);
break;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:/*we use crossbar already*/
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 24);
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 65);
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 64);
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 67);
break;
case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
REG_UPDATE(DCSURF_SURFACE_CONFIG,
SURFACE_PIXEL_FORMAT, 66);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
/* don't see the need of program the xbar in DCN 1.0 */
}
static bool mem_input_program_surface_flip_and_addr(
struct mem_input *mem_input,
const struct dc_plane_address *address,
bool flip_immediate)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
/* program flip type */
REG_UPDATE(DCSURF_FLIP_CONTROL,
SURFACE_FLIP_TYPE, flip_immediate);
/* REG_UPDATE(FLIP_CONTROL, SURFACE_UPDATE_LOCK, 1); */
/* program high first and then the low addr, order matters! */
switch (address->type) {
case PLN_ADDR_TYPE_GRAPHICS:
if (address->grph.addr.quad_part == 0)
break;
if (address->grph.meta_addr.quad_part != 0) {
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH,
PRIMARY_META_SURFACE_ADDRESS_HIGH,
address->grph.meta_addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS,
PRIMARY_META_SURFACE_ADDRESS,
address->grph.meta_addr.low_part);
}
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH,
PRIMARY_SURFACE_ADDRESS_HIGH,
address->grph.addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS,
PRIMARY_SURFACE_ADDRESS,
address->grph.addr.low_part);
/* DCN1.0 does not support const color
* TODO: program DCHUBBUB_RET_PATH_DCC_CFGx_0/1
* base on address->grph.dcc_const_color
* x = 0, 2, 4, 6 for pipe 0, 1, 2, 3 for rgb and luma
* x = 1, 3, 5, 7 for pipe 0, 1, 2, 3 for chroma
*/
break;
case PLN_ADDR_TYPE_VIDEO_PROGRESSIVE:
if (address->video_progressive.luma_addr.quad_part == 0
|| address->video_progressive.chroma_addr.quad_part == 0)
break;
if (address->video_progressive.luma_meta_addr.quad_part != 0) {
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH,
PRIMARY_META_SURFACE_ADDRESS_HIGH,
address->video_progressive.luma_meta_addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS,
PRIMARY_META_SURFACE_ADDRESS,
address->video_progressive.luma_meta_addr.low_part);
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH_C,
PRIMARY_META_SURFACE_ADDRESS_HIGH_C,
address->video_progressive.chroma_meta_addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS_C,
PRIMARY_META_SURFACE_ADDRESS_C,
address->video_progressive.chroma_meta_addr.low_part);
}
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH,
PRIMARY_SURFACE_ADDRESS_HIGH,
address->video_progressive.luma_addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS,
PRIMARY_SURFACE_ADDRESS,
address->video_progressive.luma_addr.low_part);
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH_C,
PRIMARY_SURFACE_ADDRESS_HIGH_C,
address->video_progressive.chroma_addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS_C,
PRIMARY_SURFACE_ADDRESS_C,
address->video_progressive.chroma_addr.low_part);
break;
case PLN_ADDR_TYPE_GRPH_STEREO:
if (address->grph_stereo.left_addr.quad_part == 0)
break;
if (address->grph_stereo.right_addr.quad_part == 0)
break;
if (address->grph_stereo.right_meta_addr.quad_part != 0) {
REG_UPDATE(DCSURF_SECONDARY_META_SURFACE_ADDRESS_HIGH,
SECONDARY_META_SURFACE_ADDRESS_HIGH,
address->grph_stereo.right_meta_addr.high_part);
REG_UPDATE(DCSURF_SECONDARY_META_SURFACE_ADDRESS,
SECONDARY_META_SURFACE_ADDRESS,
address->grph_stereo.right_meta_addr.low_part);
}
if (address->grph_stereo.left_meta_addr.quad_part != 0) {
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH,
PRIMARY_META_SURFACE_ADDRESS_HIGH,
address->grph_stereo.left_meta_addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_META_SURFACE_ADDRESS,
PRIMARY_META_SURFACE_ADDRESS,
address->grph_stereo.left_meta_addr.low_part);
}
REG_UPDATE(DCSURF_SECONDARY_SURFACE_ADDRESS_HIGH,
SECONDARY_SURFACE_ADDRESS_HIGH,
address->grph_stereo.right_addr.high_part);
REG_UPDATE(DCSURF_SECONDARY_SURFACE_ADDRESS,
SECONDARY_SURFACE_ADDRESS,
address->grph_stereo.right_addr.low_part);
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH,
PRIMARY_SURFACE_ADDRESS_HIGH,
address->grph_stereo.left_addr.high_part);
REG_UPDATE(DCSURF_PRIMARY_SURFACE_ADDRESS,
PRIMARY_SURFACE_ADDRESS,
address->grph_stereo.left_addr.low_part);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
/* REG_UPDATE(FLIP_CONTROL, SURFACE_UPDATE_LOCK, 0); */
mem_input->request_address = *address;
if (flip_immediate)
mem_input->current_address = *address;
return true;
}
static void program_control(struct dcn10_mem_input *mi,
struct dc_plane_dcc_param *dcc)
{
uint32_t dcc_en = dcc->enable ? 1 : 0;
uint32_t dcc_ind_64b_blk = dcc->grph.independent_64b_blks ? 1 : 0;
REG_UPDATE_2(DCSURF_SURFACE_CONTROL,
PRIMARY_SURFACE_DCC_EN, dcc_en,
PRIMARY_SURFACE_DCC_IND_64B_BLK, dcc_ind_64b_blk);
}
static void mem_input_program_surface_config(
struct mem_input *mem_input,
enum surface_pixel_format format,
union dc_tiling_info *tiling_info,
union plane_size *plane_size,
enum dc_rotation_angle rotation,
struct dc_plane_dcc_param *dcc,
bool horizontal_mirror,
bool visible)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
program_control(mi, dcc);
program_tiling(mi, tiling_info, format);
program_size_and_rotation(
mi, rotation, format, plane_size, dcc, horizontal_mirror);
program_pixel_format(mi, format);
set_blank(mi, !visible);
}
static void program_requestor(
struct mem_input *mem_input,
struct _vcs_dpi_display_rq_regs_st *rq_regs)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
REG_UPDATE(HUBPRET_CONTROL,
DET_BUF_PLANE1_BASE_ADDRESS, rq_regs->plane1_base_address);
REG_SET_4(DCN_EXPANSION_MODE, 0,
DRQ_EXPANSION_MODE, rq_regs->drq_expansion_mode,
PRQ_EXPANSION_MODE, rq_regs->prq_expansion_mode,
MRQ_EXPANSION_MODE, rq_regs->mrq_expansion_mode,
CRQ_EXPANSION_MODE, rq_regs->crq_expansion_mode);
REG_SET_8(DCHUBP_REQ_SIZE_CONFIG, 0,
CHUNK_SIZE, rq_regs->rq_regs_l.chunk_size,
MIN_CHUNK_SIZE, rq_regs->rq_regs_l.min_chunk_size,
META_CHUNK_SIZE, rq_regs->rq_regs_l.meta_chunk_size,
MIN_META_CHUNK_SIZE, rq_regs->rq_regs_l.min_meta_chunk_size,
DPTE_GROUP_SIZE, rq_regs->rq_regs_l.dpte_group_size,
MPTE_GROUP_SIZE, rq_regs->rq_regs_l.mpte_group_size,
SWATH_HEIGHT, rq_regs->rq_regs_l.swath_height,
PTE_ROW_HEIGHT_LINEAR, rq_regs->rq_regs_l.pte_row_height_linear);
REG_SET_8(DCHUBP_REQ_SIZE_CONFIG_C, 0,
CHUNK_SIZE_C, rq_regs->rq_regs_c.chunk_size,
MIN_CHUNK_SIZE_C, rq_regs->rq_regs_c.min_chunk_size,
META_CHUNK_SIZE_C, rq_regs->rq_regs_c.meta_chunk_size,
MIN_META_CHUNK_SIZE_C, rq_regs->rq_regs_c.min_meta_chunk_size,
DPTE_GROUP_SIZE_C, rq_regs->rq_regs_c.dpte_group_size,
MPTE_GROUP_SIZE_C, rq_regs->rq_regs_c.mpte_group_size,
SWATH_HEIGHT_C, rq_regs->rq_regs_c.swath_height,
PTE_ROW_HEIGHT_LINEAR_C, rq_regs->rq_regs_c.pte_row_height_linear);
}
static void program_deadline(
struct mem_input *mem_input,
struct _vcs_dpi_display_dlg_regs_st *dlg_attr,
struct _vcs_dpi_display_ttu_regs_st *ttu_attr)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
/* DLG - Per hubp */
REG_SET_2(BLANK_OFFSET_0, 0,
REFCYC_H_BLANK_END, dlg_attr->refcyc_h_blank_end,
DLG_V_BLANK_END, dlg_attr->dlg_vblank_end);
REG_SET(BLANK_OFFSET_1, 0,
MIN_DST_Y_NEXT_START, dlg_attr->min_dst_y_next_start);
REG_SET(DST_DIMENSIONS, 0,
REFCYC_PER_HTOTAL, dlg_attr->refcyc_per_htotal);
REG_SET_2(DST_AFTER_SCALER, 0,
REFCYC_X_AFTER_SCALER, dlg_attr->refcyc_x_after_scaler,
DST_Y_AFTER_SCALER, dlg_attr->dst_y_after_scaler);
REG_SET_2(PREFETCH_SETTINS, 0,
DST_Y_PREFETCH, dlg_attr->dst_y_prefetch,
VRATIO_PREFETCH, dlg_attr->vratio_prefetch);
REG_SET_2(VBLANK_PARAMETERS_0, 0,
DST_Y_PER_VM_VBLANK, dlg_attr->dst_y_per_vm_vblank,
DST_Y_PER_ROW_VBLANK, dlg_attr->dst_y_per_row_vblank);
REG_SET(REF_FREQ_TO_PIX_FREQ, 0,
REF_FREQ_TO_PIX_FREQ, dlg_attr->ref_freq_to_pix_freq);
/* DLG - Per luma/chroma */
REG_SET(VBLANK_PARAMETERS_1, 0,
REFCYC_PER_PTE_GROUP_VBLANK_L, dlg_attr->refcyc_per_pte_group_vblank_l);
REG_SET(VBLANK_PARAMETERS_3, 0,
REFCYC_PER_META_CHUNK_VBLANK_L, dlg_attr->refcyc_per_meta_chunk_vblank_l);
REG_SET(NOM_PARAMETERS_0, 0,
DST_Y_PER_PTE_ROW_NOM_L, dlg_attr->dst_y_per_pte_row_nom_l);
REG_SET(NOM_PARAMETERS_1, 0,
REFCYC_PER_PTE_GROUP_NOM_L, dlg_attr->refcyc_per_pte_group_nom_l);
REG_SET(NOM_PARAMETERS_4, 0,
DST_Y_PER_META_ROW_NOM_L, dlg_attr->dst_y_per_meta_row_nom_l);
REG_SET(NOM_PARAMETERS_5, 0,
REFCYC_PER_META_CHUNK_NOM_L, dlg_attr->refcyc_per_meta_chunk_nom_l);
REG_SET_2(PER_LINE_DELIVERY_PRE, 0,
REFCYC_PER_LINE_DELIVERY_PRE_L, dlg_attr->refcyc_per_line_delivery_pre_l,
REFCYC_PER_LINE_DELIVERY_PRE_C, dlg_attr->refcyc_per_line_delivery_pre_c);
REG_SET_2(PER_LINE_DELIVERY, 0,
REFCYC_PER_LINE_DELIVERY_L, dlg_attr->refcyc_per_line_delivery_l,
REFCYC_PER_LINE_DELIVERY_C, dlg_attr->refcyc_per_line_delivery_c);
REG_SET(PREFETCH_SETTINS_C, 0,
VRATIO_PREFETCH_C, dlg_attr->vratio_prefetch_c);
REG_SET(VBLANK_PARAMETERS_2, 0,
REFCYC_PER_PTE_GROUP_VBLANK_C, dlg_attr->refcyc_per_pte_group_vblank_c);
REG_SET(VBLANK_PARAMETERS_4, 0,
REFCYC_PER_META_CHUNK_VBLANK_C, dlg_attr->refcyc_per_meta_chunk_vblank_c);
REG_SET(NOM_PARAMETERS_2, 0,
DST_Y_PER_PTE_ROW_NOM_C, dlg_attr->dst_y_per_pte_row_nom_c);
REG_SET(NOM_PARAMETERS_3, 0,
REFCYC_PER_PTE_GROUP_NOM_C, dlg_attr->refcyc_per_pte_group_nom_c);
REG_SET(NOM_PARAMETERS_6, 0,
DST_Y_PER_META_ROW_NOM_C, dlg_attr->dst_y_per_meta_row_nom_c);
REG_SET(NOM_PARAMETERS_7, 0,
REFCYC_PER_META_CHUNK_NOM_C, dlg_attr->refcyc_per_meta_chunk_nom_c);
/* TTU - per hubp */
REG_SET_2(DCN_TTU_QOS_WM, 0,
QoS_LEVEL_LOW_WM, ttu_attr->qos_level_low_wm,
QoS_LEVEL_HIGH_WM, ttu_attr->qos_level_high_wm);
REG_SET_2(DCN_GLOBAL_TTU_CNTL, 0,
MIN_TTU_VBLANK, ttu_attr->min_ttu_vblank,
QoS_LEVEL_FLIP, ttu_attr->qos_level_flip);
/* TTU - per luma/chroma */
/* Assumed surf0 is luma and 1 is chroma */
REG_SET_3(DCN_SURF0_TTU_CNTL0, 0,
REFCYC_PER_REQ_DELIVERY, ttu_attr->refcyc_per_req_delivery_l,
QoS_LEVEL_FIXED, ttu_attr->qos_level_fixed_l,
QoS_RAMP_DISABLE, ttu_attr->qos_ramp_disable_l);
REG_SET(DCN_SURF0_TTU_CNTL1, 0,
REFCYC_PER_REQ_DELIVERY_PRE,
ttu_attr->refcyc_per_req_delivery_pre_l);
REG_SET_3(DCN_SURF1_TTU_CNTL0, 0,
REFCYC_PER_REQ_DELIVERY, ttu_attr->refcyc_per_req_delivery_c,
QoS_LEVEL_FIXED, ttu_attr->qos_level_fixed_c,
QoS_RAMP_DISABLE, ttu_attr->qos_ramp_disable_c);
REG_SET(DCN_SURF1_TTU_CNTL1, 0,
REFCYC_PER_REQ_DELIVERY_PRE,
ttu_attr->refcyc_per_req_delivery_pre_c);
}
static void mem_input_setup(
struct mem_input *mem_input,
struct _vcs_dpi_display_dlg_regs_st *dlg_attr,
struct _vcs_dpi_display_ttu_regs_st *ttu_attr,
struct _vcs_dpi_display_rq_regs_st *rq_regs,
struct _vcs_dpi_display_pipe_dest_params_st *pipe_dest)
{
/* otg is locked when this func is called. Register are double buffered.
* disable the requestors is not needed
*/
/* disable_request(mem_input); */
program_requestor(mem_input, rq_regs);
program_deadline(mem_input, dlg_attr, ttu_attr);
vready_workaround(mem_input, pipe_dest);
}
static uint32_t convert_and_clamp(
uint32_t wm_ns,
uint32_t refclk_mhz,
uint32_t clamp_value)
{
uint32_t ret_val = 0;
ret_val = wm_ns * refclk_mhz;
ret_val /= 1000;
if (ret_val > clamp_value)
ret_val = clamp_value;
return ret_val;
}
static void program_watermarks(
struct mem_input *mem_input,
struct dcn_watermark_set *watermarks,
unsigned int refclk_mhz)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
/*
* Need to clamp to max of the register values (i.e. no wrap)
* for dcn1, all wm registers are 21-bit wide
*/
uint32_t prog_wm_value;
/* Repeat for water mark set A, B, C and D. */
/* clock state A */
prog_wm_value = convert_and_clamp(watermarks->a.urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"URGENCY_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(watermarks->a.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"PTE_META_URGENCY_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.pte_meta_urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_ENTER_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_EXIT_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->a.cstate_pstate.cstate_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->a.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"DRAM_CLK_CHANGE_WATERMARK_A calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->a.cstate_pstate.pstate_change_ns, prog_wm_value);
/* clock state B */
prog_wm_value = convert_and_clamp(
watermarks->b.urgent_ns, refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"URGENCY_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->b.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"PTE_META_URGENCY_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.pte_meta_urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_ENTER_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_EXIT_WATERMARK_B calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.cstate_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->b.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"DRAM_CLK_CHANGE_WATERMARK_B calculated =%d\n\n"
"HW register value = 0x%x\n",
watermarks->b.cstate_pstate.pstate_change_ns, prog_wm_value);
/* clock state C */
prog_wm_value = convert_and_clamp(
watermarks->c.urgent_ns, refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"URGENCY_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->c.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"PTE_META_URGENCY_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.pte_meta_urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_ENTER_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_EXIT_WATERMARK_C calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.cstate_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->c.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"DRAM_CLK_CHANGE_WATERMARK_C calculated =%d\n\n"
"HW register value = 0x%x\n",
watermarks->c.cstate_pstate.pstate_change_ns, prog_wm_value);
/* clock state D */
prog_wm_value = convert_and_clamp(
watermarks->d.urgent_ns, refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"URGENCY_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->d.pte_meta_urgent_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"PTE_META_URGENCY_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.pte_meta_urgent_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_ENTER_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_enter_plus_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.cstate_exit_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"SR_EXIT_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n",
watermarks->d.cstate_pstate.cstate_exit_ns, prog_wm_value);
prog_wm_value = convert_and_clamp(
watermarks->d.cstate_pstate.pstate_change_ns,
refclk_mhz, 0x1fffff);
REG_WRITE(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D, prog_wm_value);
dm_logger_write(mem_input->ctx->logger, LOG_HW_MARKS,
"DRAM_CLK_CHANGE_WATERMARK_D calculated =%d\n"
"HW register value = 0x%x\n\n",
watermarks->d.cstate_pstate.pstate_change_ns, prog_wm_value);
REG_UPDATE(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, 1);
REG_UPDATE(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, 0);
REG_UPDATE(DCHUBBUB_ARB_SAT_LEVEL,
DCHUBBUB_ARB_SAT_LEVEL, 60 * refclk_mhz);
REG_UPDATE(DCHUBBUB_ARB_DF_REQ_OUTSTAND,
DCHUBBUB_ARB_MIN_REQ_OUTSTAND, 68);
#if 0
REG_UPDATE_2(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL,
DCHUBBUB_ARB_WATERMARK_CHANGE_DONE_INTERRUPT_DISABLE, 1,
DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, 1);
#endif
}
static void mem_input_program_display_marks(
struct mem_input *mem_input,
struct bw_watermarks nbp,
struct bw_watermarks stutter,
struct bw_watermarks urgent,
uint32_t total_dest_line_time_ns)
{
/* only for dce
* dcn use only program_watermarks
*/
}
bool mem_input_is_flip_pending(struct mem_input *mem_input)
{
uint32_t update_pending = 0;
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
REG_GET(DCSURF_FLIP_CONTROL,
SURFACE_UPDATE_PENDING, &update_pending);
if (update_pending)
return true;
mem_input->current_address = mem_input->request_address;
return false;
}
static void mem_input_update_dchub(
struct mem_input *mem_input,
struct dchub_init_data *dh_data)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
/* TODO: port code from dal2 */
switch (dh_data->fb_mode) {
case FRAME_BUFFER_MODE_ZFB_ONLY:
/*For ZFB case need to put DCHUB FB BASE and TOP upside down to indicate ZFB mode*/
REG_UPDATE(DCHUBBUB_SDPIF_FB_TOP,
SDPIF_FB_TOP, 0);
REG_UPDATE(DCHUBBUB_SDPIF_FB_BASE,
SDPIF_FB_BASE, 0x0FFFF);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BASE,
SDPIF_AGP_BASE, dh_data->zfb_phys_addr_base >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BOT,
SDPIF_AGP_BOT, dh_data->zfb_mc_base_addr >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_TOP,
SDPIF_AGP_TOP, (dh_data->zfb_mc_base_addr +
dh_data->zfb_size_in_byte - 1) >> 22);
break;
case FRAME_BUFFER_MODE_MIXED_ZFB_AND_LOCAL:
/*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BASE,
SDPIF_AGP_BASE, dh_data->zfb_phys_addr_base >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BOT,
SDPIF_AGP_BOT, dh_data->zfb_mc_base_addr >> 22);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_TOP,
SDPIF_AGP_TOP, (dh_data->zfb_mc_base_addr +
dh_data->zfb_size_in_byte - 1) >> 22);
break;
case FRAME_BUFFER_MODE_LOCAL_ONLY:
/*Should not touch FB LOCATION (done by VBIOS on AsicInit table)*/
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BASE,
SDPIF_AGP_BASE, 0);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_BOT,
SDPIF_AGP_BOT, 0X03FFFF);
REG_UPDATE(DCHUBBUB_SDPIF_AGP_TOP,
SDPIF_AGP_TOP, 0);
break;
default:
break;
}
dh_data->dchub_initialzied = true;
dh_data->dchub_info_valid = false;
}
struct vm_system_aperture_param {
PHYSICAL_ADDRESS_LOC sys_default;
PHYSICAL_ADDRESS_LOC sys_low;
PHYSICAL_ADDRESS_LOC sys_high;
};
static void read_vm_system_aperture_settings(struct dcn10_mem_input *mi,
struct vm_system_aperture_param *apt)
{
PHYSICAL_ADDRESS_LOC physical_page_number;
uint32_t logical_addr_low;
uint32_t logical_addr_high;
REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB,
PHYSICAL_PAGE_NUMBER_MSB, &physical_page_number.high_part);
REG_GET(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB,
PHYSICAL_PAGE_NUMBER_LSB, &physical_page_number.low_part);
REG_GET(MC_VM_SYSTEM_APERTURE_LOW_ADDR,
LOGICAL_ADDR, &logical_addr_low);
REG_GET(MC_VM_SYSTEM_APERTURE_HIGH_ADDR,
LOGICAL_ADDR, &logical_addr_high);
apt->sys_default.quad_part = physical_page_number.quad_part << 12;
apt->sys_low.quad_part = (int64_t)logical_addr_low << 18;
apt->sys_high.quad_part = (int64_t)logical_addr_high << 18;
}
static void set_vm_system_aperture_settings(struct dcn10_mem_input *mi,
struct vm_system_aperture_param *apt)
{
PHYSICAL_ADDRESS_LOC mc_vm_apt_default;
PHYSICAL_ADDRESS_LOC mc_vm_apt_low;
PHYSICAL_ADDRESS_LOC mc_vm_apt_high;
mc_vm_apt_default.quad_part = apt->sys_default.quad_part >> 12;
mc_vm_apt_low.quad_part = apt->sys_low.quad_part >> 12;
mc_vm_apt_high.quad_part = apt->sys_high.quad_part >> 12;
REG_SET_2(DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, 0,
MC_VM_SYSTEM_APERTURE_DEFAULT_SYSTEM, 1, /* 1 = system physical memory */
MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, mc_vm_apt_default.high_part);
REG_SET(DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, 0,
MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, mc_vm_apt_default.low_part);
REG_SET(DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, 0,
MC_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, mc_vm_apt_low.high_part);
REG_SET(DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, 0,
MC_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, mc_vm_apt_low.low_part);
REG_SET(DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, 0,
MC_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, mc_vm_apt_high.high_part);
REG_SET(DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, 0,
MC_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, mc_vm_apt_high.low_part);
}
struct vm_context0_param {
PHYSICAL_ADDRESS_LOC pte_base;
PHYSICAL_ADDRESS_LOC pte_start;
PHYSICAL_ADDRESS_LOC pte_end;
PHYSICAL_ADDRESS_LOC fault_default;
};
/* Temporary read settings, future will get values from kmd directly */
static void read_vm_context0_settings(struct dcn10_mem_input *mi,
struct vm_context0_param *vm0)
{
PHYSICAL_ADDRESS_LOC fb_base;
PHYSICAL_ADDRESS_LOC fb_offset;
uint32_t fb_base_value;
uint32_t fb_offset_value;
REG_GET(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, &fb_base_value);
REG_GET(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, &fb_offset_value);
REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32,
PAGE_DIRECTORY_ENTRY_HI32, &vm0->pte_base.high_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32,
PAGE_DIRECTORY_ENTRY_LO32, &vm0->pte_base.low_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32,
LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_start.high_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32,
LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_start.low_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32,
LOGICAL_PAGE_NUMBER_HI4, &vm0->pte_end.high_part);
REG_GET(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32,
LOGICAL_PAGE_NUMBER_LO32, &vm0->pte_end.low_part);
REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32,
PHYSICAL_PAGE_ADDR_HI4, &vm0->fault_default.high_part);
REG_GET(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32,
PHYSICAL_PAGE_ADDR_LO32, &vm0->fault_default.low_part);
/*
* The values in VM_CONTEXT0_PAGE_TABLE_BASE_ADDR is in UMA space.
* Therefore we need to do
* DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR = VM_CONTEXT0_PAGE_TABLE_BASE_ADDR
* - DCHUBBUB_SDPIF_FB_OFFSET + DCHUBBUB_SDPIF_FB_BASE
*/
fb_base.quad_part = (uint64_t)fb_base_value << 24;
fb_offset.quad_part = (uint64_t)fb_offset_value << 24;
vm0->pte_base.quad_part += fb_base.quad_part;
vm0->pte_base.quad_part -= fb_offset.quad_part;
}
static void set_vm_context0_settings(struct dcn10_mem_input *mi,
const struct vm_context0_param *vm0)
{
/* pte base */
REG_SET(DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_MSB, 0,
VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_MSB, vm0->pte_base.high_part);
REG_SET(DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LSB, 0,
VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LSB, vm0->pte_base.low_part);
/* pte start */
REG_SET(DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_MSB, 0,
VM_CONTEXT0_PAGE_TABLE_START_ADDR_MSB, vm0->pte_start.high_part);
REG_SET(DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_LSB, 0,
VM_CONTEXT0_PAGE_TABLE_START_ADDR_LSB, vm0->pte_start.low_part);
/* pte end */
REG_SET(DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB, 0,
VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB, vm0->pte_end.high_part);
REG_SET(DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_LSB, 0,
VM_CONTEXT0_PAGE_TABLE_END_ADDR_LSB, vm0->pte_end.low_part);
/* fault handling */
REG_SET(DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_MSB, 0,
VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB, vm0->fault_default.high_part);
/* VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_SYSTEM, 0 */
REG_SET(DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_LSB, 0,
VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_LSB, vm0->fault_default.low_part);
}
void dcn_mem_input_program_pte_vm(struct mem_input *mem_input,
enum surface_pixel_format format,
union dc_tiling_info *tiling_info,
enum dc_rotation_angle rotation)
{
struct dcn10_mem_input *mi = TO_DCN10_MEM_INPUT(mem_input);
struct vm_system_aperture_param apt = { {{ 0 } } };
struct vm_context0_param vm0 = { { { 0 } } };
read_vm_system_aperture_settings(mi, &apt);
read_vm_context0_settings(mi, &vm0);
set_vm_system_aperture_settings(mi, &apt);
set_vm_context0_settings(mi, &vm0);
/* control: enable VM PTE*/
REG_SET_2(DCN_VM_MX_L1_TLB_CNTL, 0,
ENABLE_L1_TLB, 1,
SYSTEM_ACCESS_MODE, 3);
}
static struct mem_input_funcs dcn10_mem_input_funcs = {
.mem_input_program_display_marks = mem_input_program_display_marks,
.allocate_mem_input = NULL,
.free_mem_input = NULL,
.disable_request = disable_request,
.mem_input_program_surface_flip_and_addr =
mem_input_program_surface_flip_and_addr,
.mem_input_program_surface_config =
mem_input_program_surface_config,
.mem_input_is_flip_pending = mem_input_is_flip_pending,
.mem_input_setup = mem_input_setup,
.program_watermarks = program_watermarks,
.mem_input_update_dchub = mem_input_update_dchub,
.mem_input_program_pte_vm = dcn_mem_input_program_pte_vm,
};
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
bool dcn10_mem_input_construct(
struct dcn10_mem_input *mi,
struct dc_context *ctx,
uint32_t inst,
const struct dcn_mi_registers *mi_regs,
const struct dcn_mi_shift *mi_shift,
const struct dcn_mi_mask *mi_mask)
{
mi->base.funcs = &dcn10_mem_input_funcs;
mi->base.ctx = ctx;
mi->mi_regs = mi_regs;
mi->mi_shift = mi_shift;
mi->mi_mask = mi_mask;
mi->base.inst = inst;
return true;
}
/* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_MEM_INPUT_DCN10_H__
#define __DC_MEM_INPUT_DCN10_H__
#include "mem_input.h"
#define TO_DCN10_MEM_INPUT(mi)\
container_of(mi, struct dcn10_mem_input, base)
#define MI_DCN10_REG_LIST(id)\
SRI(DCHUBP_CNTL, HUBP, id),\
SRI(HUBPREQ_DEBUG_DB, HUBP, id),\
SRI(DCSURF_ADDR_CONFIG, HUBP, id),\
SRI(DCSURF_TILING_CONFIG, HUBP, id),\
SRI(DCSURF_SURFACE_PITCH, HUBPREQ, id),\
SRI(DCSURF_SURFACE_PITCH_C, HUBPREQ, id),\
SRI(DCSURF_SURFACE_CONFIG, HUBP, id),\
SRI(DCSURF_FLIP_CONTROL, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_SURFACE_ADDRESS, HUBPREQ, id),\
SRI(DCSURF_SECONDARY_SURFACE_ADDRESS_HIGH, HUBPREQ, id),\
SRI(DCSURF_SECONDARY_SURFACE_ADDRESS, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_META_SURFACE_ADDRESS, HUBPREQ, id),\
SRI(DCSURF_SECONDARY_META_SURFACE_ADDRESS_HIGH, HUBPREQ, id),\
SRI(DCSURF_SECONDARY_META_SURFACE_ADDRESS, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH_C, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_SURFACE_ADDRESS_C, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH_C, HUBPREQ, id),\
SRI(DCSURF_PRIMARY_META_SURFACE_ADDRESS_C, HUBPREQ, id),\
SRI(DCSURF_SURFACE_CONTROL, HUBPREQ, id),\
SRI(HUBPRET_CONTROL, HUBPRET, id),\
SRI(DCN_EXPANSION_MODE, HUBPREQ, id),\
SRI(DCHUBP_REQ_SIZE_CONFIG, HUBP, id),\
SRI(DCHUBP_REQ_SIZE_CONFIG_C, HUBP, id),\
SRI(BLANK_OFFSET_0, HUBPREQ, id),\
SRI(BLANK_OFFSET_1, HUBPREQ, id),\
SRI(DST_DIMENSIONS, HUBPREQ, id),\
SRI(DST_AFTER_SCALER, HUBPREQ, id),\
SRI(PREFETCH_SETTINS, HUBPREQ, id),\
SRI(VBLANK_PARAMETERS_0, HUBPREQ, id),\
SRI(REF_FREQ_TO_PIX_FREQ, HUBPREQ, id),\
SRI(VBLANK_PARAMETERS_1, HUBPREQ, id),\
SRI(VBLANK_PARAMETERS_3, HUBPREQ, id),\
SRI(NOM_PARAMETERS_0, HUBPREQ, id),\
SRI(NOM_PARAMETERS_1, HUBPREQ, id),\
SRI(NOM_PARAMETERS_4, HUBPREQ, id),\
SRI(NOM_PARAMETERS_5, HUBPREQ, id),\
SRI(PER_LINE_DELIVERY_PRE, HUBPREQ, id),\
SRI(PER_LINE_DELIVERY, HUBPREQ, id),\
SRI(PREFETCH_SETTINS_C, HUBPREQ, id),\
SRI(VBLANK_PARAMETERS_2, HUBPREQ, id),\
SRI(VBLANK_PARAMETERS_4, HUBPREQ, id),\
SRI(NOM_PARAMETERS_2, HUBPREQ, id),\
SRI(NOM_PARAMETERS_3, HUBPREQ, id),\
SRI(NOM_PARAMETERS_6, HUBPREQ, id),\
SRI(NOM_PARAMETERS_7, HUBPREQ, id),\
SRI(DCN_TTU_QOS_WM, HUBPREQ, id),\
SRI(DCN_GLOBAL_TTU_CNTL, HUBPREQ, id),\
SRI(DCN_SURF0_TTU_CNTL0, HUBPREQ, id),\
SRI(DCN_SURF0_TTU_CNTL1, HUBPREQ, id),\
SRI(DCN_SURF1_TTU_CNTL0, HUBPREQ, id),\
SRI(DCN_SURF1_TTU_CNTL1, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_MSB, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LSB, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_MSB, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_LSB, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_LSB, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_MSB, HUBPREQ, id),\
SRI(DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_LSB, HUBPREQ, id),\
SRI(DCN_VM_MX_L1_TLB_CNTL, HUBPREQ, id),\
SRI(DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, HUBPREQ, id),\
SRI(DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, HUBPREQ, id),\
SRI(DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, HUBPREQ, id),\
SRI(DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, HUBPREQ, id),\
SRI(DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, HUBPREQ, id),\
SRI(DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, HUBPREQ, id),\
SR(DCHUBBUB_SDPIF_FB_TOP),\
SR(DCHUBBUB_SDPIF_FB_BASE),\
SR(DCHUBBUB_SDPIF_FB_OFFSET),\
SR(DCHUBBUB_SDPIF_AGP_BASE),\
SR(DCHUBBUB_SDPIF_AGP_BOT),\
SR(DCHUBBUB_SDPIF_AGP_TOP),\
SR(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A),\
SR(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A),\
SR(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A),\
SR(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A),\
SR(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A),\
SR(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B),\
SR(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B),\
SR(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B),\
SR(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B),\
SR(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B),\
SR(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C),\
SR(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C),\
SR(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C),\
SR(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C),\
SR(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C),\
SR(DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D),\
SR(DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D),\
SR(DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D),\
SR(DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D),\
SR(DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D),\
SR(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL),\
SR(DCHUBBUB_ARB_SAT_LEVEL),\
SR(DCHUBBUB_ARB_DF_REQ_OUTSTAND),\
/* todo: get these from GVM instead of reading registers ourselves */\
GC_SR(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32),\
GC_SR(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32),\
GC_SR(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32),\
GC_SR(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32),\
GC_SR(VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32),\
GC_SR(VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32),\
GC_SR(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32),\
GC_SR(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32),\
GC_SR(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB),\
GC_SR(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB),\
GC_SR(MC_VM_SYSTEM_APERTURE_LOW_ADDR),\
GC_SR(MC_VM_SYSTEM_APERTURE_HIGH_ADDR)
struct dcn_mi_registers {
uint32_t DCHUBP_CNTL;
uint32_t HUBPREQ_DEBUG_DB;
uint32_t DCSURF_ADDR_CONFIG;
uint32_t DCSURF_TILING_CONFIG;
uint32_t DCSURF_SURFACE_PITCH;
uint32_t DCSURF_SURFACE_PITCH_C;
uint32_t DCSURF_SURFACE_CONFIG;
uint32_t DCSURF_FLIP_CONTROL;
uint32_t DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH;
uint32_t DCSURF_PRIMARY_SURFACE_ADDRESS;
uint32_t DCSURF_SECONDARY_SURFACE_ADDRESS_HIGH;
uint32_t DCSURF_SECONDARY_SURFACE_ADDRESS;
uint32_t DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH;
uint32_t DCSURF_PRIMARY_META_SURFACE_ADDRESS;
uint32_t DCSURF_SECONDARY_META_SURFACE_ADDRESS_HIGH;
uint32_t DCSURF_SECONDARY_META_SURFACE_ADDRESS;
uint32_t DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH_C;
uint32_t DCSURF_PRIMARY_SURFACE_ADDRESS_C;
uint32_t DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH_C;
uint32_t DCSURF_PRIMARY_META_SURFACE_ADDRESS_C;
uint32_t DCSURF_SURFACE_CONTROL;
uint32_t HUBPRET_CONTROL;
uint32_t DCN_EXPANSION_MODE;
uint32_t DCHUBP_REQ_SIZE_CONFIG;
uint32_t DCHUBP_REQ_SIZE_CONFIG_C;
uint32_t BLANK_OFFSET_0;
uint32_t BLANK_OFFSET_1;
uint32_t DST_DIMENSIONS;
uint32_t DST_AFTER_SCALER;
uint32_t PREFETCH_SETTINS;
uint32_t VBLANK_PARAMETERS_0;
uint32_t REF_FREQ_TO_PIX_FREQ;
uint32_t VBLANK_PARAMETERS_1;
uint32_t VBLANK_PARAMETERS_3;
uint32_t NOM_PARAMETERS_0;
uint32_t NOM_PARAMETERS_1;
uint32_t NOM_PARAMETERS_4;
uint32_t NOM_PARAMETERS_5;
uint32_t PER_LINE_DELIVERY_PRE;
uint32_t PER_LINE_DELIVERY;
uint32_t PREFETCH_SETTINS_C;
uint32_t VBLANK_PARAMETERS_2;
uint32_t VBLANK_PARAMETERS_4;
uint32_t NOM_PARAMETERS_2;
uint32_t NOM_PARAMETERS_3;
uint32_t NOM_PARAMETERS_6;
uint32_t NOM_PARAMETERS_7;
uint32_t DCN_TTU_QOS_WM;
uint32_t DCN_GLOBAL_TTU_CNTL;
uint32_t DCN_SURF0_TTU_CNTL0;
uint32_t DCN_SURF0_TTU_CNTL1;
uint32_t DCN_SURF1_TTU_CNTL0;
uint32_t DCN_SURF1_TTU_CNTL1;
uint32_t DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_MSB;
uint32_t DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LSB;
uint32_t DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_MSB;
uint32_t DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_LSB;
uint32_t DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB;
uint32_t DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_LSB;
uint32_t DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_MSB;
uint32_t DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_LSB;
uint32_t DCN_VM_MX_L1_TLB_CNTL;
uint32_t DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB;
uint32_t DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB;
uint32_t DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB;
uint32_t DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB;
uint32_t DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB;
uint32_t DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB;
uint32_t DCHUBBUB_SDPIF_FB_TOP;
uint32_t DCHUBBUB_SDPIF_FB_BASE;
uint32_t DCHUBBUB_SDPIF_FB_OFFSET;
uint32_t DCHUBBUB_SDPIF_AGP_BASE;
uint32_t DCHUBBUB_SDPIF_AGP_BOT;
uint32_t DCHUBBUB_SDPIF_AGP_TOP;
uint32_t DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_A;
uint32_t DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_A;
uint32_t DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_A;
uint32_t DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_A;
uint32_t DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_A;
uint32_t DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_B;
uint32_t DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_B;
uint32_t DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_B;
uint32_t DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_B;
uint32_t DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_B;
uint32_t DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_C;
uint32_t DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_C;
uint32_t DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_C;
uint32_t DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_C;
uint32_t DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_C;
uint32_t DCHUBBUB_ARB_DATA_URGENCY_WATERMARK_D;
uint32_t DCHUBBUB_ARB_PTE_META_URGENCY_WATERMARK_D;
uint32_t DCHUBBUB_ARB_ALLOW_SR_ENTER_WATERMARK_D;
uint32_t DCHUBBUB_ARB_ALLOW_SR_EXIT_WATERMARK_D;
uint32_t DCHUBBUB_ARB_ALLOW_DRAM_CLK_CHANGE_WATERMARK_D;
uint32_t DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL;
uint32_t DCHUBBUB_ARB_SAT_LEVEL;
uint32_t DCHUBBUB_ARB_DF_REQ_OUTSTAND;
/* GC registers. read only. temporary hack */
uint32_t VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32;
uint32_t VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32;
uint32_t VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32;
uint32_t VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32;
uint32_t VM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32;
uint32_t VM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32;
uint32_t VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32;
uint32_t VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32;
uint32_t MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB;
uint32_t MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB;
uint32_t MC_VM_SYSTEM_APERTURE_LOW_ADDR;
uint32_t MC_VM_SYSTEM_APERTURE_HIGH_ADDR;
};
#define MI_SF(reg_name, field_name, post_fix)\
.field_name = reg_name ## __ ## field_name ## post_fix
#define MI_DCN10_MASK_SH_LIST(mask_sh)\
MI_SF(HUBP0_DCHUBP_CNTL, HUBP_BLANK_EN, mask_sh),\
MI_SF(HUBP0_DCHUBP_CNTL, HUBP_TTU_DISABLE, mask_sh),\
MI_SF(HUBP0_DCSURF_ADDR_CONFIG, NUM_PIPES, mask_sh),\
MI_SF(HUBP0_DCSURF_ADDR_CONFIG, NUM_BANKS, mask_sh),\
MI_SF(HUBP0_DCSURF_ADDR_CONFIG, PIPE_INTERLEAVE, mask_sh),\
MI_SF(HUBP0_DCSURF_ADDR_CONFIG, NUM_SE, mask_sh),\
MI_SF(HUBP0_DCSURF_ADDR_CONFIG, NUM_RB_PER_SE, mask_sh),\
MI_SF(HUBP0_DCSURF_ADDR_CONFIG, MAX_COMPRESSED_FRAGS, mask_sh),\
MI_SF(HUBP0_DCSURF_TILING_CONFIG, SW_MODE, mask_sh),\
MI_SF(HUBP0_DCSURF_TILING_CONFIG, META_LINEAR, mask_sh),\
MI_SF(HUBP0_DCSURF_TILING_CONFIG, RB_ALIGNED, mask_sh),\
MI_SF(HUBP0_DCSURF_TILING_CONFIG, PIPE_ALIGNED, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SURFACE_PITCH, PITCH, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SURFACE_PITCH, META_PITCH, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SURFACE_PITCH_C, PITCH_C, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SURFACE_PITCH_C, META_PITCH_C, mask_sh),\
MI_SF(HUBP0_DCSURF_SURFACE_CONFIG, ROTATION_ANGLE, mask_sh),\
MI_SF(HUBP0_DCSURF_SURFACE_CONFIG, H_MIRROR_EN, mask_sh),\
MI_SF(HUBP0_DCSURF_SURFACE_CONFIG, SURFACE_PIXEL_FORMAT, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_FLIP_CONTROL, SURFACE_FLIP_TYPE, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_FLIP_CONTROL, SURFACE_UPDATE_PENDING, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH, PRIMARY_SURFACE_ADDRESS_HIGH, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_SURFACE_ADDRESS, PRIMARY_SURFACE_ADDRESS, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SECONDARY_SURFACE_ADDRESS_HIGH, SECONDARY_SURFACE_ADDRESS_HIGH, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SECONDARY_SURFACE_ADDRESS, SECONDARY_SURFACE_ADDRESS, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH, PRIMARY_META_SURFACE_ADDRESS_HIGH, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_META_SURFACE_ADDRESS, PRIMARY_META_SURFACE_ADDRESS, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SECONDARY_META_SURFACE_ADDRESS_HIGH, SECONDARY_META_SURFACE_ADDRESS_HIGH, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SECONDARY_META_SURFACE_ADDRESS, SECONDARY_META_SURFACE_ADDRESS, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_SURFACE_ADDRESS_HIGH_C, PRIMARY_SURFACE_ADDRESS_HIGH_C, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_SURFACE_ADDRESS_C, PRIMARY_SURFACE_ADDRESS_C, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_META_SURFACE_ADDRESS_HIGH_C, PRIMARY_META_SURFACE_ADDRESS_HIGH_C, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_PRIMARY_META_SURFACE_ADDRESS_C, PRIMARY_META_SURFACE_ADDRESS_C, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SURFACE_CONTROL, PRIMARY_SURFACE_DCC_EN, mask_sh),\
MI_SF(HUBPREQ0_DCSURF_SURFACE_CONTROL, PRIMARY_SURFACE_DCC_IND_64B_BLK, mask_sh),\
MI_SF(HUBPRET0_HUBPRET_CONTROL, DET_BUF_PLANE1_BASE_ADDRESS, mask_sh),\
MI_SF(HUBPRET0_HUBPRET_CONTROL, CROSSBAR_SRC_CB_B, mask_sh),\
MI_SF(HUBPRET0_HUBPRET_CONTROL, CROSSBAR_SRC_CR_R, mask_sh),\
MI_SF(HUBPREQ0_DCN_EXPANSION_MODE, DRQ_EXPANSION_MODE, mask_sh),\
MI_SF(HUBPREQ0_DCN_EXPANSION_MODE, PRQ_EXPANSION_MODE, mask_sh),\
MI_SF(HUBPREQ0_DCN_EXPANSION_MODE, MRQ_EXPANSION_MODE, mask_sh),\
MI_SF(HUBPREQ0_DCN_EXPANSION_MODE, CRQ_EXPANSION_MODE, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, CHUNK_SIZE, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, MIN_CHUNK_SIZE, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, META_CHUNK_SIZE, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, MIN_META_CHUNK_SIZE, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, DPTE_GROUP_SIZE, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, MPTE_GROUP_SIZE, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, SWATH_HEIGHT, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG, PTE_ROW_HEIGHT_LINEAR, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, CHUNK_SIZE_C, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, MIN_CHUNK_SIZE_C, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, META_CHUNK_SIZE_C, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, MIN_META_CHUNK_SIZE_C, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, DPTE_GROUP_SIZE_C, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, MPTE_GROUP_SIZE_C, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, SWATH_HEIGHT_C, mask_sh),\
MI_SF(HUBP0_DCHUBP_REQ_SIZE_CONFIG_C, PTE_ROW_HEIGHT_LINEAR_C, mask_sh),\
MI_SF(HUBPREQ0_BLANK_OFFSET_0, REFCYC_H_BLANK_END, mask_sh),\
MI_SF(HUBPREQ0_BLANK_OFFSET_0, DLG_V_BLANK_END, mask_sh),\
MI_SF(HUBPREQ0_BLANK_OFFSET_1, MIN_DST_Y_NEXT_START, mask_sh),\
MI_SF(HUBPREQ0_DST_DIMENSIONS, REFCYC_PER_HTOTAL, mask_sh),\
MI_SF(HUBPREQ0_DST_AFTER_SCALER, REFCYC_X_AFTER_SCALER, mask_sh),\
MI_SF(HUBPREQ0_DST_AFTER_SCALER, DST_Y_AFTER_SCALER, mask_sh),\
MI_SF(HUBPREQ0_PREFETCH_SETTINS, DST_Y_PREFETCH, mask_sh),\
MI_SF(HUBPREQ0_PREFETCH_SETTINS, VRATIO_PREFETCH, mask_sh),\
MI_SF(HUBPREQ0_VBLANK_PARAMETERS_0, DST_Y_PER_VM_VBLANK, mask_sh),\
MI_SF(HUBPREQ0_VBLANK_PARAMETERS_0, DST_Y_PER_ROW_VBLANK, mask_sh),\
MI_SF(HUBPREQ0_REF_FREQ_TO_PIX_FREQ, REF_FREQ_TO_PIX_FREQ, mask_sh),\
MI_SF(HUBPREQ0_VBLANK_PARAMETERS_1, REFCYC_PER_PTE_GROUP_VBLANK_L, mask_sh),\
MI_SF(HUBPREQ0_VBLANK_PARAMETERS_3, REFCYC_PER_META_CHUNK_VBLANK_L, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_0, DST_Y_PER_PTE_ROW_NOM_L, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_1, REFCYC_PER_PTE_GROUP_NOM_L, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_4, DST_Y_PER_META_ROW_NOM_L, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_5, REFCYC_PER_META_CHUNK_NOM_L, mask_sh),\
MI_SF(HUBPREQ0_PER_LINE_DELIVERY_PRE, REFCYC_PER_LINE_DELIVERY_PRE_L, mask_sh),\
MI_SF(HUBPREQ0_PER_LINE_DELIVERY_PRE, REFCYC_PER_LINE_DELIVERY_PRE_C, mask_sh),\
MI_SF(HUBPREQ0_PER_LINE_DELIVERY, REFCYC_PER_LINE_DELIVERY_L, mask_sh),\
MI_SF(HUBPREQ0_PER_LINE_DELIVERY, REFCYC_PER_LINE_DELIVERY_C, mask_sh),\
MI_SF(HUBPREQ0_PREFETCH_SETTINS_C, VRATIO_PREFETCH_C, mask_sh),\
MI_SF(HUBPREQ0_VBLANK_PARAMETERS_2, REFCYC_PER_PTE_GROUP_VBLANK_C, mask_sh),\
MI_SF(HUBPREQ0_VBLANK_PARAMETERS_4, REFCYC_PER_META_CHUNK_VBLANK_C, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_2, DST_Y_PER_PTE_ROW_NOM_C, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_3, REFCYC_PER_PTE_GROUP_NOM_C, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_6, DST_Y_PER_META_ROW_NOM_C, mask_sh),\
MI_SF(HUBPREQ0_NOM_PARAMETERS_7, REFCYC_PER_META_CHUNK_NOM_C, mask_sh),\
MI_SF(HUBPREQ0_DCN_TTU_QOS_WM, QoS_LEVEL_LOW_WM, mask_sh),\
MI_SF(HUBPREQ0_DCN_TTU_QOS_WM, QoS_LEVEL_HIGH_WM, mask_sh),\
MI_SF(HUBPREQ0_DCN_GLOBAL_TTU_CNTL, MIN_TTU_VBLANK, mask_sh),\
MI_SF(HUBPREQ0_DCN_GLOBAL_TTU_CNTL, QoS_LEVEL_FLIP, mask_sh),\
MI_SF(HUBPREQ0_DCN_SURF0_TTU_CNTL0, REFCYC_PER_REQ_DELIVERY, mask_sh),\
MI_SF(HUBPREQ0_DCN_SURF0_TTU_CNTL0, QoS_LEVEL_FIXED, mask_sh),\
MI_SF(HUBPREQ0_DCN_SURF0_TTU_CNTL0, QoS_RAMP_DISABLE, mask_sh),\
MI_SF(HUBPREQ0_DCN_SURF0_TTU_CNTL1, REFCYC_PER_REQ_DELIVERY_PRE, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_MSB, VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_MSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LSB, VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_MSB, VM_CONTEXT0_PAGE_TABLE_START_ADDR_MSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PAGE_TABLE_START_ADDR_LSB, VM_CONTEXT0_PAGE_TABLE_START_ADDR_LSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB, VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PAGE_TABLE_END_ADDR_LSB, VM_CONTEXT0_PAGE_TABLE_END_ADDR_LSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_MSB, VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_MSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_LSB, VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_LSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_MX_L1_TLB_CNTL, ENABLE_L1_TLB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_MX_L1_TLB_CNTL, SYSTEM_ACCESS_MODE, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, MC_VM_SYSTEM_APERTURE_DEFAULT_SYSTEM, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, MC_VM_SYSTEM_APERTURE_LOW_ADDR_MSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, MC_VM_SYSTEM_APERTURE_LOW_ADDR_LSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, MC_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB, mask_sh),\
MI_SF(HUBPREQ0_DCN_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, MC_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB, mask_sh),\
MI_SF(DCHUBBUB_SDPIF_FB_TOP, SDPIF_FB_TOP, mask_sh),\
MI_SF(DCHUBBUB_SDPIF_FB_BASE, SDPIF_FB_BASE, mask_sh),\
MI_SF(DCHUBBUB_SDPIF_FB_OFFSET, SDPIF_FB_OFFSET, mask_sh),\
MI_SF(DCHUBBUB_SDPIF_AGP_BASE, SDPIF_AGP_BASE, mask_sh),\
MI_SF(DCHUBBUB_SDPIF_AGP_BOT, SDPIF_AGP_BOT, mask_sh),\
MI_SF(DCHUBBUB_SDPIF_AGP_TOP, SDPIF_AGP_TOP, mask_sh),\
MI_SF(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL, DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST, mask_sh),\
MI_SF(DCHUBBUB_ARB_WATERMARK_CHANGE_CNTL, DCHUBBUB_ARB_WATERMARK_CHANGE_DONE_INTERRUPT_DISABLE, mask_sh),\
MI_SF(DCHUBBUB_ARB_SAT_LEVEL, DCHUBBUB_ARB_SAT_LEVEL, mask_sh),\
MI_SF(DCHUBBUB_ARB_DF_REQ_OUTSTAND, DCHUBBUB_ARB_MIN_REQ_OUTSTAND, mask_sh),\
/* todo: get these from GVM instead of reading registers ourselves */\
MI_SF(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32, PAGE_DIRECTORY_ENTRY_HI32, mask_sh),\
MI_SF(VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32, PAGE_DIRECTORY_ENTRY_LO32, mask_sh),\
MI_SF(VM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32, LOGICAL_PAGE_NUMBER_HI4, mask_sh),\
MI_SF(VM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32, LOGICAL_PAGE_NUMBER_LO32, mask_sh),\
MI_SF(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_HI32, PHYSICAL_PAGE_ADDR_HI4, mask_sh),\
MI_SF(VM_L2_PROTECTION_FAULT_DEFAULT_ADDR_LO32, PHYSICAL_PAGE_ADDR_LO32, mask_sh),\
MI_SF(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB, PHYSICAL_PAGE_NUMBER_MSB, mask_sh),\
MI_SF(MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB, PHYSICAL_PAGE_NUMBER_LSB, mask_sh),\
MI_SF(MC_VM_SYSTEM_APERTURE_LOW_ADDR, LOGICAL_ADDR, mask_sh)
#define DCN_MI_REG_FIELD_LIST(type) \
type HUBP_BLANK_EN;\
type HUBP_TTU_DISABLE;\
type NUM_PIPES;\
type NUM_BANKS;\
type PIPE_INTERLEAVE;\
type NUM_SE;\
type NUM_RB_PER_SE;\
type MAX_COMPRESSED_FRAGS;\
type SW_MODE;\
type META_LINEAR;\
type RB_ALIGNED;\
type PIPE_ALIGNED;\
type PITCH;\
type META_PITCH;\
type PITCH_C;\
type META_PITCH_C;\
type ROTATION_ANGLE;\
type H_MIRROR_EN;\
type SURFACE_PIXEL_FORMAT;\
type SURFACE_FLIP_TYPE;\
type SURFACE_UPDATE_PENDING;\
type PRIMARY_SURFACE_ADDRESS_HIGH;\
type PRIMARY_SURFACE_ADDRESS;\
type SECONDARY_SURFACE_ADDRESS_HIGH;\
type SECONDARY_SURFACE_ADDRESS;\
type PRIMARY_META_SURFACE_ADDRESS_HIGH;\
type PRIMARY_META_SURFACE_ADDRESS;\
type SECONDARY_META_SURFACE_ADDRESS_HIGH;\
type SECONDARY_META_SURFACE_ADDRESS;\
type PRIMARY_SURFACE_ADDRESS_HIGH_C;\
type PRIMARY_SURFACE_ADDRESS_C;\
type PRIMARY_META_SURFACE_ADDRESS_HIGH_C;\
type PRIMARY_META_SURFACE_ADDRESS_C;\
type PRIMARY_SURFACE_DCC_EN;\
type PRIMARY_SURFACE_DCC_IND_64B_BLK;\
type DET_BUF_PLANE1_BASE_ADDRESS;\
type CROSSBAR_SRC_CB_B;\
type CROSSBAR_SRC_CR_R;\
type DRQ_EXPANSION_MODE;\
type PRQ_EXPANSION_MODE;\
type MRQ_EXPANSION_MODE;\
type CRQ_EXPANSION_MODE;\
type CHUNK_SIZE;\
type MIN_CHUNK_SIZE;\
type META_CHUNK_SIZE;\
type MIN_META_CHUNK_SIZE;\
type DPTE_GROUP_SIZE;\
type MPTE_GROUP_SIZE;\
type SWATH_HEIGHT;\
type PTE_ROW_HEIGHT_LINEAR;\
type CHUNK_SIZE_C;\
type MIN_CHUNK_SIZE_C;\
type META_CHUNK_SIZE_C;\
type MIN_META_CHUNK_SIZE_C;\
type DPTE_GROUP_SIZE_C;\
type MPTE_GROUP_SIZE_C;\
type SWATH_HEIGHT_C;\
type PTE_ROW_HEIGHT_LINEAR_C;\
type REFCYC_H_BLANK_END;\
type DLG_V_BLANK_END;\
type MIN_DST_Y_NEXT_START;\
type REFCYC_PER_HTOTAL;\
type REFCYC_X_AFTER_SCALER;\
type DST_Y_AFTER_SCALER;\
type DST_Y_PREFETCH;\
type VRATIO_PREFETCH;\
type DST_Y_PER_VM_VBLANK;\
type DST_Y_PER_ROW_VBLANK;\
type REF_FREQ_TO_PIX_FREQ;\
type REFCYC_PER_PTE_GROUP_VBLANK_L;\
type REFCYC_PER_META_CHUNK_VBLANK_L;\
type DST_Y_PER_PTE_ROW_NOM_L;\
type REFCYC_PER_PTE_GROUP_NOM_L;\
type DST_Y_PER_META_ROW_NOM_L;\
type REFCYC_PER_META_CHUNK_NOM_L;\
type REFCYC_PER_LINE_DELIVERY_PRE_L;\
type REFCYC_PER_LINE_DELIVERY_PRE_C;\
type REFCYC_PER_LINE_DELIVERY_L;\
type REFCYC_PER_LINE_DELIVERY_C;\
type VRATIO_PREFETCH_C;\
type REFCYC_PER_PTE_GROUP_VBLANK_C;\
type REFCYC_PER_META_CHUNK_VBLANK_C;\
type DST_Y_PER_PTE_ROW_NOM_C;\
type REFCYC_PER_PTE_GROUP_NOM_C;\
type DST_Y_PER_META_ROW_NOM_C;\
type REFCYC_PER_META_CHUNK_NOM_C;\
type QoS_LEVEL_LOW_WM;\
type QoS_LEVEL_HIGH_WM;\
type MIN_TTU_VBLANK;\
type QoS_LEVEL_FLIP;\
type REFCYC_PER_REQ_DELIVERY;\
type QoS_LEVEL_FIXED;\
type QoS_RAMP_DISABLE;\
type REFCYC_PER_REQ_DELIVERY_PRE;\
type VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_MSB;\
type VM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LSB;\
type VM_CONTEXT0_PAGE_TABLE_START_ADDR_MSB;\
type VM_CONTEXT0_PAGE_TABLE_START_ADDR_LSB;\
type VM_CONTEXT0_PAGE_TABLE_END_ADDR_MSB;\
type VM_CONTEXT0_PAGE_TABLE_END_ADDR_LSB;\
type VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_MSB;\
type VM_CONTEXT0_PROTECTION_FAULT_DEFAULT_ADDR_LSB;\
type ENABLE_L1_TLB;\
type SYSTEM_ACCESS_MODE;\
type MC_VM_SYSTEM_APERTURE_DEFAULT_SYSTEM;\
type MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_MSB;\
type MC_VM_SYSTEM_APERTURE_DEFAULT_ADDR_LSB;\
type MC_VM_SYSTEM_APERTURE_LOW_ADDR_MSB;\
type MC_VM_SYSTEM_APERTURE_LOW_ADDR_LSB;\
type MC_VM_SYSTEM_APERTURE_HIGH_ADDR_MSB;\
type MC_VM_SYSTEM_APERTURE_HIGH_ADDR_LSB;\
type SDPIF_FB_TOP;\
type SDPIF_FB_BASE;\
type SDPIF_FB_OFFSET;\
type SDPIF_AGP_BASE;\
type SDPIF_AGP_BOT;\
type SDPIF_AGP_TOP;\
type DCHUBBUB_ARB_WATERMARK_CHANGE_REQUEST;\
type DCHUBBUB_ARB_WATERMARK_CHANGE_DONE_INTERRUPT_DISABLE;\
type DCHUBBUB_ARB_SAT_LEVEL;\
type DCHUBBUB_ARB_MIN_REQ_OUTSTAND;\
/* todo: get these from GVM instead of reading registers ourselves */\
type PAGE_DIRECTORY_ENTRY_HI32;\
type PAGE_DIRECTORY_ENTRY_LO32;\
type LOGICAL_PAGE_NUMBER_HI4;\
type LOGICAL_PAGE_NUMBER_LO32;\
type PHYSICAL_PAGE_ADDR_HI4;\
type PHYSICAL_PAGE_ADDR_LO32;\
type PHYSICAL_PAGE_NUMBER_MSB;\
type PHYSICAL_PAGE_NUMBER_LSB;\
type LOGICAL_ADDR
struct dcn_mi_shift {
DCN_MI_REG_FIELD_LIST(uint8_t);
};
struct dcn_mi_mask {
DCN_MI_REG_FIELD_LIST(uint32_t);
};
struct dcn10_mem_input {
struct mem_input base;
const struct dcn_mi_registers *mi_regs;
const struct dcn_mi_shift *mi_shift;
const struct dcn_mi_mask *mi_mask;
};
bool dcn10_mem_input_construct(
struct dcn10_mem_input *mi,
struct dc_context *ctx,
uint32_t inst,
const struct dcn_mi_registers *mi_regs,
const struct dcn_mi_shift *mi_shift,
const struct dcn_mi_mask *mi_mask);
#endif
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "dcn10_mpc.h"
#define REG(reg)\
mpc->mpc_regs->reg
#define CTX \
mpc->base.ctx
#undef FN
#define FN(reg_name, field_name) \
mpc->mpc_shift->field_name, mpc->mpc_mask->field_name
/* Internal function to set mpc output mux */
static void set_output_mux(struct dcn10_mpc *mpc,
uint8_t opp_id,
uint8_t mpcc_id)
{
if (mpcc_id != 0xf)
REG_UPDATE(OPP_PIPE_CONTROL[opp_id],
OPP_PIPE_CLOCK_EN, 1);
REG_SET(MUX[opp_id], 0,
MPC_OUT_MUX, mpcc_id);
/* TODO: Move to post when ready.
if (mpcc_id == 0xf) {
MPCC_REG_UPDATE(OPP_PIPE0_OPP_PIPE_CONTROL,
OPP_PIPE_CLOCK_EN, 0);
}
*/
}
static void set_blend_mode(struct dcn10_mpc *mpc,
enum blend_mode mode,
uint8_t mpcc_id)
{
/* Enable per-pixel alpha on this pipe */
if (mode == TOP_BLND)
REG_UPDATE_3(MPCC_CONTROL[mpcc_id],
MPCC_ALPHA_BLND_MODE, 0,
MPCC_ALPHA_MULTIPLIED_MODE, 0,
MPCC_BLND_ACTIVE_OVERLAP_ONLY, 0);
else
REG_UPDATE_3(MPCC_CONTROL[mpcc_id],
MPCC_ALPHA_BLND_MODE, 0,
MPCC_ALPHA_MULTIPLIED_MODE, 1,
MPCC_BLND_ACTIVE_OVERLAP_ONLY, 1);
}
void dcn10_set_mpc_background_color(struct dcn10_mpc *mpc,
unsigned int mpcc_inst,
struct tg_color *bg_color)
{
/* mpc color is 12 bit. tg_color is 10 bit */
/* todo: might want to use 16 bit to represent color and have each
* hw block translate to correct color depth.
*/
uint32_t bg_r_cr = bg_color->color_r_cr << 2;
uint32_t bg_g_y = bg_color->color_g_y << 2;
uint32_t bg_b_cb = bg_color->color_b_cb << 2;
REG_SET(MPCC_BG_R_CR[mpcc_inst], 0,
MPCC_BG_R_CR, bg_r_cr);
REG_SET(MPCC_BG_G_Y[mpcc_inst], 0,
MPCC_BG_G_Y, bg_g_y);
REG_SET(MPCC_BG_B_CB[mpcc_inst], 0,
MPCC_BG_B_CB, bg_b_cb);
}
/* This function programs MPC tree configuration
* Assume it is the initial time to setup MPC tree_configure, means
* the instance of dpp/mpcc/opp specified in structure tree_cfg are
* in idle status.
* Before invoke this function, ensure that master lock of OPTC specified
* by opp_id is set.
*
* tree_cfg[in] - new MPC_TREE_CFG
*/
void dcn10_set_mpc_tree(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg)
{
int i;
for (i = 0; i < tree_cfg->num_pipes; i++) {
uint8_t mpcc_inst = tree_cfg->mpcc[i];
REG_SET(MPCC_OPP_ID[mpcc_inst], 0,
MPCC_OPP_ID, tree_cfg->opp_id);
REG_SET(MPCC_TOP_SEL[mpcc_inst], 0,
MPCC_TOP_SEL, tree_cfg->dpp[i]);
if (i == tree_cfg->num_pipes-1) {
REG_SET(MPCC_BOT_SEL[mpcc_inst], 0,
MPCC_BOT_SEL, 0xF);
/* MPCC_CONTROL->MPCC_MODE */
REG_UPDATE(MPCC_CONTROL[mpcc_inst],
MPCC_MODE, tree_cfg->mode);
} else {
REG_SET(MPCC_BOT_SEL[mpcc_inst], 0,
MPCC_BOT_SEL, tree_cfg->dpp[i+1]);
/* MPCC_CONTROL->MPCC_MODE */
REG_UPDATE(MPCC_CONTROL[mpcc_inst],
MPCC_MODE, 3);
}
if (i == 0)
set_output_mux(
mpc, tree_cfg->opp_id, mpcc_inst);
set_blend_mode(mpc, tree_cfg->mode, mpcc_inst);
}
}
void dcn10_set_mpc_passthrough(struct dcn10_mpc *mpc,
uint8_t dpp_idx,
uint8_t mpcc_idx,
uint8_t opp_idx)
{
struct mpc_tree_cfg tree_cfg = { 0 };
tree_cfg.num_pipes = 1;
tree_cfg.opp_id = opp_idx;
tree_cfg.mode = TOP_PASSTHRU;
/* TODO: FPGA bring up one MPC has only 1 DPP and 1 MPCC
* For blend case, need fill mode DPP and cascade MPCC
*/
tree_cfg.dpp[0] = dpp_idx;
tree_cfg.mpcc[0] = mpcc_idx;
dcn10_set_mpc_tree(mpc, &tree_cfg);
}
/*
* This is the function to remove current MPC tree specified by tree_cfg
* Before invoke this function, ensure that master lock of OPTC specified
* by opp_id is set.
*
*tree_cfg[in/out] - current MPC_TREE_CFG
*/
void dcn10_delete_mpc_tree(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg)
{
int i;
for (i = 0; i < tree_cfg->num_pipes; i++) {
uint8_t mpcc_inst = tree_cfg->mpcc[i];
REG_SET(MPCC_OPP_ID[mpcc_inst], 0,
MPCC_OPP_ID, 0xf);
REG_SET(MPCC_TOP_SEL[mpcc_inst], 0,
MPCC_TOP_SEL, 0xf);
REG_SET(MPCC_BOT_SEL[mpcc_inst], 0,
MPCC_BOT_SEL, 0xF);
/* add remove dpp/mpcc pair into pending list
* TODO FPGA AddToPendingList if empty from pseudo code
*/
tree_cfg->dpp[i] = 0xf;
tree_cfg->mpcc[i] = 0xf;
}
set_output_mux(mpc, tree_cfg->opp_id, 0xf);
tree_cfg->opp_id = 0xf;
tree_cfg->num_pipes = 0;
}
/* TODO FPGA: how to handle DPP?
* Function to remove one of pipe from MPC configure tree by dpp idx
* Before invoke this function, ensure that master lock of OPTC specified
* by opp_id is set
* This function can be invoke multiple times to remove more than 1 dpps.
*
* tree_cfg[in/out] - current MPC_TREE_CFG
* idx[in] - index of dpp from tree_cfg to be removed.
*/
bool dcn10_remove_dpp(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg,
uint8_t idx)
{
int i;
bool found = false;
/* find dpp_idx from dpp array of tree_cfg */
for (i = 0; i < tree_cfg->num_pipes; i++) {
if (tree_cfg->dpp[i] == idx) {
found = true;
break;
}
}
if (found) {
/* add remove dpp/mpcc pair into pending list */
/* TODO FPGA AddToPendingList if empty from pseudo code
* AddToPendingList(tree_cfg->dpp[i],tree_cfg->mpcc[i]);
*/
uint8_t mpcc_inst = tree_cfg->mpcc[i];
REG_SET(MPCC_OPP_ID[mpcc_inst], 0,
MPCC_OPP_ID, 0xf);
REG_SET(MPCC_TOP_SEL[mpcc_inst], 0,
MPCC_TOP_SEL, 0xf);
REG_SET(MPCC_BOT_SEL[mpcc_inst], 0,
MPCC_BOT_SEL, 0xF);
if (i == 0) {
if (tree_cfg->num_pipes > 1)
set_output_mux(mpc,
tree_cfg->opp_id, tree_cfg->mpcc[i+1]);
else
set_output_mux(mpc, tree_cfg->opp_id, 0xf);
} else if (i == tree_cfg->num_pipes-1) {
mpcc_inst = tree_cfg->mpcc[i - 1];
REG_SET(MPCC_BOT_SEL[mpcc_inst], 0,
MPCC_BOT_SEL, 0xF);
REG_UPDATE(MPCC_CONTROL[mpcc_inst],
MPCC_MODE, tree_cfg->mode);
} else {
mpcc_inst = tree_cfg->mpcc[i - 1];
REG_SET(MPCC_BOT_SEL[mpcc_inst], 0,
MPCC_BOT_SEL, tree_cfg->mpcc[i+1]);
}
set_blend_mode(mpc, tree_cfg->mode, mpcc_inst);
/* update tree_cfg structure */
while (i < tree_cfg->num_pipes - 1) {
tree_cfg->dpp[i] = tree_cfg->dpp[i+1];
tree_cfg->mpcc[i] = tree_cfg->mpcc[i+1];
i++;
}
tree_cfg->num_pipes--;
}
return found;
}
/* TODO FPGA: how to handle DPP?
* Function to add DPP/MPCC pair into MPC configure tree by position.
* Before invoke this function, ensure that master lock of OPTC specified
* by opp_id is set
* This function can be invoke multiple times to add more than 1 pipes.
*
* tree_cfg[in/out] - current MPC_TREE_CFG
* dpp_idx[in] - index of an idle dpp insatnce to be added.
* mpcc_idx[in] - index of an idle mpcc instance to be added.
* poistion[in] - position of dpp/mpcc pair to be added into current tree_cfg
* 0 means insert to the most top layer of MPC tree
*/
void dcn10_add_dpp(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg,
uint8_t dpp_idx,
uint8_t mpcc_idx,
uint8_t position)
{
uint8_t temp;
uint8_t temp1;
REG_SET(MPCC_OPP_ID[mpcc_idx], 0,
MPCC_OPP_ID, tree_cfg->opp_id);
REG_SET(MPCC_TOP_SEL[mpcc_idx], 0,
MPCC_TOP_SEL, dpp_idx);
if (position == 0) {
/* idle dpp/mpcc is added to the top layer of tree */
REG_SET(MPCC_BOT_SEL[mpcc_idx], 0,
MPCC_BOT_SEL, tree_cfg->mpcc[0]);
REG_UPDATE(MPCC_CONTROL[mpcc_idx],
MPCC_MODE, 3);
/* opp will get new output. from new added mpcc */
set_output_mux(mpc, tree_cfg->opp_id, mpcc_idx);
set_blend_mode(mpc, tree_cfg->mode, mpcc_idx);
} else if (position == tree_cfg->num_pipes) {
/* idle dpp/mpcc is added to the bottom layer of tree */
/* get instance of previous bottom mpcc, set to middle layer */
temp = tree_cfg->mpcc[tree_cfg->num_pipes - 1];
REG_SET(MPCC_BOT_SEL[temp], 0,
MPCC_BOT_SEL, mpcc_idx);
REG_UPDATE(MPCC_CONTROL[temp],
MPCC_MODE, 3);
/* mpcc_idx become new bottom mpcc*/
REG_SET(MPCC_BOT_SEL[mpcc_idx], 0,
MPCC_BOT_SEL, 0xf);
REG_UPDATE(MPCC_CONTROL[mpcc_idx],
MPCC_MODE, tree_cfg->mode);
set_blend_mode(mpc, tree_cfg->mode, mpcc_idx);
} else {
/* idle dpp/mpcc is added to middle of tree */
temp = tree_cfg->mpcc[position - 1];
temp1 = tree_cfg->mpcc[position];
/* new mpcc instance temp1 is added right after temp*/
REG_SET(MPCC_BOT_SEL[temp], 0,
MPCC_BOT_SEL, mpcc_idx);
/* mpcc_idx connect previous temp+1 to new mpcc */
REG_SET(MPCC_BOT_SEL[mpcc_idx], 0,
MPCC_BOT_SEL, temp1);
/* temp TODO: may not need*/
REG_UPDATE(MPCC_CONTROL[temp],
MPCC_MODE, 3);
set_blend_mode(mpc, tree_cfg->mode, temp);
}
/* update tree_cfg structure */
temp = tree_cfg->num_pipes - 1;
/*
* iterating from the last mpc/dpp pair to the one being added, shift
* them down one position
*/
while (temp > position) {
tree_cfg->dpp[temp + 1] = tree_cfg->dpp[temp];
tree_cfg->mpcc[temp + 1] = tree_cfg->mpcc[temp];
temp--;
}
/* insert the new mpc/dpp pair into the tree_cfg*/
tree_cfg->dpp[position] = dpp_idx;
tree_cfg->mpcc[position] = mpcc_idx;
tree_cfg->num_pipes++;
}
void wait_mpcc_idle(struct dcn10_mpc *mpc,
uint8_t mpcc_id)
{
REG_WAIT(MPCC_STATUS[mpcc_id],
MPCC_IDLE, 1,
1000, 1000);
}
/* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_MPC_DCN10_H__
#define __DC_MPC_DCN10_H__
#include "mpc.h"
#define TO_DCN10_MPC(mpc_base)\
container_of(mpc_base, struct dcn10_mpc, base)
#define MAX_MPCC 4
#define MAX_MPC_OUT 4
#define MAX_OPP 4
#define MPC_COMMON_REG_LIST_DCN1_0(inst) \
SRII(MPCC_TOP_SEL, MPCC, inst),\
SRII(MPCC_BOT_SEL, MPCC, inst),\
SRII(MPCC_CONTROL, MPCC, inst),\
SRII(MPCC_STATUS, MPCC, inst),\
SRII(MPCC_OPP_ID, MPCC, inst),\
SRII(MPCC_BG_G_Y, MPCC, inst),\
SRII(MPCC_BG_R_CR, MPCC, inst),\
SRII(MPCC_BG_B_CB, MPCC, inst),\
SRII(MPCC_BG_B_CB, MPCC, inst),\
SRII(MUX, MPC_OUT, inst),\
SRII(OPP_PIPE_CONTROL, OPP_PIPE, inst)
struct dcn_mpc_registers {
uint32_t MPCC_TOP_SEL[MAX_MPCC];
uint32_t MPCC_BOT_SEL[MAX_MPCC];
uint32_t MPCC_CONTROL[MAX_MPCC];
uint32_t MPCC_STATUS[MAX_MPCC];
uint32_t MPCC_OPP_ID[MAX_MPCC];
uint32_t MPCC_BG_G_Y[MAX_MPCC];
uint32_t MPCC_BG_R_CR[MAX_MPCC];
uint32_t MPCC_BG_B_CB[MAX_MPCC];
uint32_t MUX[MAX_MPC_OUT];
uint32_t OPP_PIPE_CONTROL[MAX_OPP];
};
#define MPC_COMMON_MASK_SH_LIST_DCN1_0(mask_sh)\
SF(MPCC0_MPCC_TOP_SEL, MPCC_TOP_SEL, mask_sh),\
SF(MPCC0_MPCC_BOT_SEL, MPCC_BOT_SEL, mask_sh),\
SF(MPCC0_MPCC_CONTROL, MPCC_MODE, mask_sh),\
SF(MPCC0_MPCC_CONTROL, MPCC_ALPHA_BLND_MODE, mask_sh),\
SF(MPCC0_MPCC_CONTROL, MPCC_ALPHA_MULTIPLIED_MODE, mask_sh),\
SF(MPCC0_MPCC_CONTROL, MPCC_BLND_ACTIVE_OVERLAP_ONLY, mask_sh),\
SF(MPCC0_MPCC_STATUS, MPCC_IDLE, mask_sh),\
SF(MPCC0_MPCC_OPP_ID, MPCC_OPP_ID, mask_sh),\
SF(MPCC0_MPCC_BG_G_Y, MPCC_BG_G_Y, mask_sh),\
SF(MPCC0_MPCC_BG_R_CR, MPCC_BG_R_CR, mask_sh),\
SF(MPCC0_MPCC_BG_B_CB, MPCC_BG_B_CB, mask_sh),\
SF(MPC_OUT0_MUX, MPC_OUT_MUX, mask_sh),\
SF(OPP_PIPE0_OPP_PIPE_CONTROL, OPP_PIPE_CLOCK_EN, mask_sh)
#define MPC_REG_FIELD_LIST(type) \
type MPCC_TOP_SEL;\
type MPCC_BOT_SEL;\
type MPCC_MODE;\
type MPCC_ALPHA_BLND_MODE;\
type MPCC_ALPHA_MULTIPLIED_MODE;\
type MPCC_BLND_ACTIVE_OVERLAP_ONLY;\
type MPCC_IDLE;\
type MPCC_OPP_ID;\
type MPCC_BG_G_Y;\
type MPCC_BG_R_CR;\
type MPCC_BG_B_CB;\
type MPC_OUT_MUX;\
type OPP_PIPE_CLOCK_EN;\
struct dcn_mpc_shift {
MPC_REG_FIELD_LIST(uint8_t)
};
struct dcn_mpc_mask {
MPC_REG_FIELD_LIST(uint32_t)
};
struct dcn10_mpc {
struct mpc base;
const struct dcn_mpc_registers *mpc_regs;
const struct dcn_mpc_shift *mpc_shift;
const struct dcn_mpc_mask *mpc_mask;
};
void dcn10_set_mpc_passthrough(struct dcn10_mpc *mpc,
uint8_t dpp_idx,
uint8_t mpcc_idx,
uint8_t opp_idx);
void dcn10_delete_mpc_tree(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg);
bool dcn10_remove_dpp(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg,
uint8_t idx);
void dcn10_add_dpp(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg,
uint8_t dpp_idx,
uint8_t mpcc_idx,
uint8_t position);
void wait_mpcc_idle(struct dcn10_mpc *mpc,
uint8_t mpcc_id);
void dcn10_set_mpc_tree(struct dcn10_mpc *mpc,
struct mpc_tree_cfg *tree_cfg);
void dcn10_set_mpc_background_color(struct dcn10_mpc *mpc,
unsigned int mpcc_inst,
struct tg_color *bg_color);
#endif
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dcn10_opp.h"
#include "reg_helper.h"
#define REG(reg) \
(oppn10->regs->reg)
#undef FN
#define FN(reg_name, field_name) \
oppn10->opp_shift->field_name, oppn10->opp_mask->field_name
#define CTX \
oppn10->base.ctx
static void opp_set_regamma_mode(
struct output_pixel_processor *opp,
enum opp_regamma mode)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
uint32_t re_mode = 0;
uint32_t obuf_bypass = 0; /* need for pipe split */
uint32_t obuf_hupscale = 0;
switch (mode) {
case OPP_REGAMMA_BYPASS:
re_mode = 0;
break;
case OPP_REGAMMA_SRGB:
re_mode = 1;
break;
case OPP_REGAMMA_3_6:
re_mode = 2;
break;
case OPP_REGAMMA_USER:
re_mode = oppn10->is_write_to_ram_a_safe ? 3 : 4;
oppn10->is_write_to_ram_a_safe = !oppn10->is_write_to_ram_a_safe;
break;
default:
break;
}
REG_SET(CM_RGAM_CONTROL, 0, CM_RGAM_LUT_MODE, re_mode);
REG_UPDATE_2(OBUF_CONTROL,
OBUF_BYPASS, obuf_bypass,
OBUF_H_2X_UPSCALE_EN, obuf_hupscale);
}
/************* FORMATTER ************/
/**
* set_truncation
* 1) set truncation depth: 0 for 18 bpp or 1 for 24 bpp
* 2) enable truncation
* 3) HW remove 12bit FMT support for DCE11 power saving reason.
*/
static void set_truncation(
struct dcn10_opp *oppn10,
const struct bit_depth_reduction_params *params)
{
REG_UPDATE_3(FMT_BIT_DEPTH_CONTROL,
FMT_TRUNCATE_EN, params->flags.TRUNCATE_ENABLED,
FMT_TRUNCATE_DEPTH, params->flags.TRUNCATE_DEPTH,
FMT_TRUNCATE_MODE, params->flags.TRUNCATE_MODE);
}
static void set_spatial_dither(
struct dcn10_opp *oppn10,
const struct bit_depth_reduction_params *params)
{
/*Disable spatial (random) dithering*/
REG_UPDATE_7(FMT_BIT_DEPTH_CONTROL,
FMT_SPATIAL_DITHER_EN, 0,
FMT_SPATIAL_DITHER_MODE, 0,
FMT_SPATIAL_DITHER_DEPTH, 0,
FMT_TEMPORAL_DITHER_EN, 0,
FMT_HIGHPASS_RANDOM_ENABLE, 0,
FMT_FRAME_RANDOM_ENABLE, 0,
FMT_RGB_RANDOM_ENABLE, 0);
/* only use FRAME_COUNTER_MAX if frameRandom == 1*/
if (params->flags.FRAME_RANDOM == 1) {
if (params->flags.SPATIAL_DITHER_DEPTH == 0 || params->flags.SPATIAL_DITHER_DEPTH == 1) {
REG_UPDATE_2(FMT_CONTROL,
FMT_SPATIAL_DITHER_FRAME_COUNTER_MAX, 15,
FMT_SPATIAL_DITHER_FRAME_COUNTER_BIT_SWAP, 2);
} else if (params->flags.SPATIAL_DITHER_DEPTH == 2) {
REG_UPDATE_2(FMT_CONTROL,
FMT_SPATIAL_DITHER_FRAME_COUNTER_MAX, 3,
FMT_SPATIAL_DITHER_FRAME_COUNTER_BIT_SWAP, 1);
} else {
return;
}
} else {
REG_UPDATE_2(FMT_CONTROL,
FMT_SPATIAL_DITHER_FRAME_COUNTER_MAX, 0,
FMT_SPATIAL_DITHER_FRAME_COUNTER_BIT_SWAP, 0);
}
/*Set seed for random values for
* spatial dithering for R,G,B channels*/
REG_SET(FMT_DITHER_RAND_R_SEED, 0,
FMT_RAND_R_SEED, params->r_seed_value);
REG_SET(FMT_DITHER_RAND_G_SEED, 0,
FMT_RAND_G_SEED, params->g_seed_value);
REG_SET(FMT_DITHER_RAND_B_SEED, 0,
FMT_RAND_B_SEED, params->b_seed_value);
/* FMT_OFFSET_R_Cr 31:16 0x0 Setting the zero
* offset for the R/Cr channel, lower 4LSB
* is forced to zeros. Typically set to 0
* RGB and 0x80000 YCbCr.
*/
/* FMT_OFFSET_G_Y 31:16 0x0 Setting the zero
* offset for the G/Y channel, lower 4LSB is
* forced to zeros. Typically set to 0 RGB
* and 0x80000 YCbCr.
*/
/* FMT_OFFSET_B_Cb 31:16 0x0 Setting the zero
* offset for the B/Cb channel, lower 4LSB is
* forced to zeros. Typically set to 0 RGB and
* 0x80000 YCbCr.
*/
REG_UPDATE_6(FMT_BIT_DEPTH_CONTROL,
/*Enable spatial dithering*/
FMT_SPATIAL_DITHER_EN, params->flags.SPATIAL_DITHER_ENABLED,
/* Set spatial dithering mode
* (default is Seed patterrn AAAA...)
*/
FMT_SPATIAL_DITHER_MODE, params->flags.SPATIAL_DITHER_MODE,
/*Set spatial dithering bit depth*/
FMT_SPATIAL_DITHER_DEPTH, params->flags.SPATIAL_DITHER_DEPTH,
/*Disable High pass filter*/
FMT_HIGHPASS_RANDOM_ENABLE, params->flags.HIGHPASS_RANDOM,
/*Reset only at startup*/
FMT_FRAME_RANDOM_ENABLE, params->flags.FRAME_RANDOM,
/*Set RGB data dithered with x^28+x^3+1*/
FMT_RGB_RANDOM_ENABLE, params->flags.RGB_RANDOM);
}
static void opp_program_bit_depth_reduction(
struct output_pixel_processor *opp,
const struct bit_depth_reduction_params *params)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
set_truncation(oppn10, params);
set_spatial_dither(oppn10, params);
/* TODO
* set_temporal_dither(oppn10, params);
*/
}
/**
* set_pixel_encoding
*
* Set Pixel Encoding
* 0: RGB 4:4:4 or YCbCr 4:4:4 or YOnly
* 1: YCbCr 4:2:2
*/
static void set_pixel_encoding(
struct dcn10_opp *oppn10,
const struct clamping_and_pixel_encoding_params *params)
{
switch (params->pixel_encoding) {
case PIXEL_ENCODING_RGB:
case PIXEL_ENCODING_YCBCR444:
REG_UPDATE(FMT_CONTROL, FMT_PIXEL_ENCODING, 0);
break;
case PIXEL_ENCODING_YCBCR422:
REG_UPDATE(FMT_CONTROL, FMT_PIXEL_ENCODING, 1);
break;
case PIXEL_ENCODING_YCBCR420:
REG_UPDATE(FMT_CONTROL, FMT_PIXEL_ENCODING, 2);
break;
default:
break;
}
}
/**
* Set Clamping
* 1) Set clamping format based on bpc - 0 for 6bpc (No clamping)
* 1 for 8 bpc
* 2 for 10 bpc
* 3 for 12 bpc
* 7 for programable
* 2) Enable clamp if Limited range requested
*/
static void opp_set_clamping(
struct dcn10_opp *oppn10,
const struct clamping_and_pixel_encoding_params *params)
{
REG_UPDATE_2(FMT_CLAMP_CNTL,
FMT_CLAMP_DATA_EN, 0,
FMT_CLAMP_COLOR_FORMAT, 0);
switch (params->clamping_level) {
case CLAMPING_FULL_RANGE:
REG_UPDATE_2(FMT_CLAMP_CNTL,
FMT_CLAMP_DATA_EN, 1,
FMT_CLAMP_COLOR_FORMAT, 0);
break;
case CLAMPING_LIMITED_RANGE_8BPC:
REG_UPDATE_2(FMT_CLAMP_CNTL,
FMT_CLAMP_DATA_EN, 1,
FMT_CLAMP_COLOR_FORMAT, 1);
break;
case CLAMPING_LIMITED_RANGE_10BPC:
REG_UPDATE_2(FMT_CLAMP_CNTL,
FMT_CLAMP_DATA_EN, 1,
FMT_CLAMP_COLOR_FORMAT, 2);
break;
case CLAMPING_LIMITED_RANGE_12BPC:
REG_UPDATE_2(FMT_CLAMP_CNTL,
FMT_CLAMP_DATA_EN, 1,
FMT_CLAMP_COLOR_FORMAT, 3);
break;
case CLAMPING_LIMITED_RANGE_PROGRAMMABLE:
/* TODO */
default:
break;
}
}
static void opp_set_dyn_expansion(
struct output_pixel_processor *opp,
enum dc_color_space color_sp,
enum dc_color_depth color_dpth,
enum signal_type signal)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
REG_UPDATE_2(FMT_DYNAMIC_EXP_CNTL,
FMT_DYNAMIC_EXP_EN, 0,
FMT_DYNAMIC_EXP_MODE, 0);
/*00 - 10-bit -> 12-bit dynamic expansion*/
/*01 - 8-bit -> 12-bit dynamic expansion*/
if (signal == SIGNAL_TYPE_HDMI_TYPE_A ||
signal == SIGNAL_TYPE_DISPLAY_PORT ||
signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
switch (color_dpth) {
case COLOR_DEPTH_888:
REG_UPDATE_2(FMT_DYNAMIC_EXP_CNTL,
FMT_DYNAMIC_EXP_EN, 1,
FMT_DYNAMIC_EXP_MODE, 1);
break;
case COLOR_DEPTH_101010:
REG_UPDATE_2(FMT_DYNAMIC_EXP_CNTL,
FMT_DYNAMIC_EXP_EN, 1,
FMT_DYNAMIC_EXP_MODE, 0);
break;
case COLOR_DEPTH_121212:
REG_UPDATE_2(FMT_DYNAMIC_EXP_CNTL,
FMT_DYNAMIC_EXP_EN, 1,/*otherwise last two bits are zero*/
FMT_DYNAMIC_EXP_MODE, 0);
break;
default:
break;
}
}
}
static void opp_program_clamping_and_pixel_encoding(
struct output_pixel_processor *opp,
const struct clamping_and_pixel_encoding_params *params)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
opp_set_clamping(oppn10, params);
set_pixel_encoding(oppn10, params);
}
static void opp_program_fmt(
struct output_pixel_processor *opp,
struct bit_depth_reduction_params *fmt_bit_depth,
struct clamping_and_pixel_encoding_params *clamping)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
if (clamping->pixel_encoding == PIXEL_ENCODING_YCBCR420)
REG_UPDATE(FMT_MAP420_MEMORY_CONTROL, FMT_MAP420MEM_PWR_FORCE, 0);
/* dithering is affected by <CrtcSourceSelect>, hence should be
* programmed afterwards */
opp_program_bit_depth_reduction(
opp,
fmt_bit_depth);
opp_program_clamping_and_pixel_encoding(
opp,
clamping);
return;
}
static void opp_set_output_csc_default(
struct output_pixel_processor *opp,
const struct default_adjustment *default_adjust)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
uint32_t ocsc_mode = 0;
if (default_adjust != NULL) {
switch (default_adjust->out_color_space) {
case COLOR_SPACE_SRGB:
ocsc_mode = 0;
break;
case COLOR_SPACE_SRGB_LIMITED:
ocsc_mode = 1;
break;
case COLOR_SPACE_YCBCR601:
case COLOR_SPACE_YCBCR601_LIMITED:
ocsc_mode = 2;
break;
case COLOR_SPACE_YCBCR709:
case COLOR_SPACE_YCBCR709_LIMITED:
ocsc_mode = 3;
break;
case COLOR_SPACE_UNKNOWN:
default:
break;
}
}
REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);
}
/*program re gamma RAM B*/
static void opp_program_regamma_lutb_settings(
struct output_pixel_processor *opp,
const struct pwl_params *params)
{
const struct gamma_curve *curve;
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
REG_SET_2(CM_RGAM_RAMB_START_CNTL_B, 0,
CM_RGAM_RAMB_EXP_REGION_START_B, params->arr_points[0].custom_float_x,
CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(CM_RGAM_RAMB_START_CNTL_G, 0,
CM_RGAM_RAMB_EXP_REGION_START_G, params->arr_points[0].custom_float_x,
CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_G, 0);
REG_SET_2(CM_RGAM_RAMB_START_CNTL_R, 0,
CM_RGAM_RAMB_EXP_REGION_START_R, params->arr_points[0].custom_float_x,
CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_R, 0);
REG_SET(CM_RGAM_RAMB_SLOPE_CNTL_B, 0,
CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B, params->arr_points[0].custom_float_slope);
REG_SET(CM_RGAM_RAMB_SLOPE_CNTL_G, 0,
CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_G, params->arr_points[0].custom_float_slope);
REG_SET(CM_RGAM_RAMB_SLOPE_CNTL_R, 0,
CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_R, params->arr_points[0].custom_float_slope);
REG_SET(CM_RGAM_RAMB_END_CNTL1_B, 0,
CM_RGAM_RAMB_EXP_REGION_END_B, params->arr_points[1].custom_float_x);
REG_SET_2(CM_RGAM_RAMB_END_CNTL2_B, 0,
CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B, params->arr_points[1].custom_float_slope,
CM_RGAM_RAMB_EXP_REGION_END_BASE_B, params->arr_points[1].custom_float_y);
REG_SET(CM_RGAM_RAMB_END_CNTL1_G, 0,
CM_RGAM_RAMB_EXP_REGION_END_G, params->arr_points[1].custom_float_x);
REG_SET_2(CM_RGAM_RAMB_END_CNTL2_G, 0,
CM_RGAM_RAMB_EXP_REGION_END_SLOPE_G, params->arr_points[1].custom_float_slope,
CM_RGAM_RAMB_EXP_REGION_END_BASE_G, params->arr_points[1].custom_float_y);
REG_SET(CM_RGAM_RAMB_END_CNTL1_R, 0,
CM_RGAM_RAMB_EXP_REGION_END_R, params->arr_points[1].custom_float_x);
REG_SET_2(CM_RGAM_RAMB_END_CNTL2_R, 0,
CM_RGAM_RAMB_EXP_REGION_END_SLOPE_R, params->arr_points[1].custom_float_slope,
CM_RGAM_RAMB_EXP_REGION_END_BASE_R, params->arr_points[1].custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(CM_RGAM_RAMB_REGION_0_1, 0,
CM_RGAM_RAMB_EXP_REGION0_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION1_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_2_3, 0,
CM_RGAM_RAMB_EXP_REGION2_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION3_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_4_5, 0,
CM_RGAM_RAMB_EXP_REGION4_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION5_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_6_7, 0,
CM_RGAM_RAMB_EXP_REGION6_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION7_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_8_9, 0,
CM_RGAM_RAMB_EXP_REGION8_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION9_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_10_11, 0,
CM_RGAM_RAMB_EXP_REGION10_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION11_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_12_13, 0,
CM_RGAM_RAMB_EXP_REGION12_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION13_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_14_15, 0,
CM_RGAM_RAMB_EXP_REGION14_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION15_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_16_17, 0,
CM_RGAM_RAMB_EXP_REGION16_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION17_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_18_19, 0,
CM_RGAM_RAMB_EXP_REGION18_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION19_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_20_21, 0,
CM_RGAM_RAMB_EXP_REGION20_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION21_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_22_23, 0,
CM_RGAM_RAMB_EXP_REGION22_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION23_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_24_25, 0,
CM_RGAM_RAMB_EXP_REGION24_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION25_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_26_27, 0,
CM_RGAM_RAMB_EXP_REGION26_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION27_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_28_29, 0,
CM_RGAM_RAMB_EXP_REGION28_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION29_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_30_31, 0,
CM_RGAM_RAMB_EXP_REGION30_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION31_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMB_REGION_32_33, 0,
CM_RGAM_RAMB_EXP_REGION32_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMB_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMB_EXP_REGION33_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMB_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num);
}
/*program re gamma RAM A*/
static void opp_program_regamma_luta_settings(
struct output_pixel_processor *opp,
const struct pwl_params *params)
{
const struct gamma_curve *curve;
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
REG_SET_2(CM_RGAM_RAMA_START_CNTL_B, 0,
CM_RGAM_RAMA_EXP_REGION_START_B, params->arr_points[0].custom_float_x,
CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_B, 0);
REG_SET_2(CM_RGAM_RAMA_START_CNTL_G, 0,
CM_RGAM_RAMA_EXP_REGION_START_G, params->arr_points[0].custom_float_x,
CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_G, 0);
REG_SET_2(CM_RGAM_RAMA_START_CNTL_R, 0,
CM_RGAM_RAMA_EXP_REGION_START_R, params->arr_points[0].custom_float_x,
CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_R, 0);
REG_SET(CM_RGAM_RAMA_SLOPE_CNTL_B, 0,
CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B, params->arr_points[0].custom_float_slope);
REG_SET(CM_RGAM_RAMA_SLOPE_CNTL_G, 0,
CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_G, params->arr_points[0].custom_float_slope);
REG_SET(CM_RGAM_RAMA_SLOPE_CNTL_R, 0,
CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_R, params->arr_points[0].custom_float_slope);
REG_SET(CM_RGAM_RAMA_END_CNTL1_B, 0,
CM_RGAM_RAMA_EXP_REGION_END_B, params->arr_points[1].custom_float_x);
REG_SET_2(CM_RGAM_RAMA_END_CNTL2_B, 0,
CM_RGAM_RAMA_EXP_REGION_END_SLOPE_B, params->arr_points[1].custom_float_slope,
CM_RGAM_RAMA_EXP_REGION_END_BASE_B, params->arr_points[1].custom_float_y);
REG_SET(CM_RGAM_RAMA_END_CNTL1_G, 0,
CM_RGAM_RAMA_EXP_REGION_END_G, params->arr_points[1].custom_float_x);
REG_SET_2(CM_RGAM_RAMA_END_CNTL2_G, 0,
CM_RGAM_RAMA_EXP_REGION_END_SLOPE_G, params->arr_points[1].custom_float_slope,
CM_RGAM_RAMA_EXP_REGION_END_BASE_G, params->arr_points[1].custom_float_y);
REG_SET(CM_RGAM_RAMA_END_CNTL1_R, 0,
CM_RGAM_RAMA_EXP_REGION_END_R, params->arr_points[1].custom_float_x);
REG_SET_2(CM_RGAM_RAMA_END_CNTL2_R, 0,
CM_RGAM_RAMA_EXP_REGION_END_SLOPE_R, params->arr_points[1].custom_float_slope,
CM_RGAM_RAMA_EXP_REGION_END_BASE_R, params->arr_points[1].custom_float_y);
curve = params->arr_curve_points;
REG_SET_4(CM_RGAM_RAMA_REGION_0_1, 0,
CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_2_3, 0,
CM_RGAM_RAMA_EXP_REGION2_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION2_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION3_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION3_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_4_5, 0,
CM_RGAM_RAMA_EXP_REGION4_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION4_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION5_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION5_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_6_7, 0,
CM_RGAM_RAMA_EXP_REGION6_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION6_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION7_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION7_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_8_9, 0,
CM_RGAM_RAMA_EXP_REGION8_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION8_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION9_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION9_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_10_11, 0,
CM_RGAM_RAMA_EXP_REGION10_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION10_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION11_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION11_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_12_13, 0,
CM_RGAM_RAMA_EXP_REGION12_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION12_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION13_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION13_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_14_15, 0,
CM_RGAM_RAMA_EXP_REGION14_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION14_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION15_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION15_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_16_17, 0,
CM_RGAM_RAMA_EXP_REGION16_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION16_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION17_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION17_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_18_19, 0,
CM_RGAM_RAMA_EXP_REGION18_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION18_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION19_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION19_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_20_21, 0,
CM_RGAM_RAMA_EXP_REGION20_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION20_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION21_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION21_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_22_23, 0,
CM_RGAM_RAMA_EXP_REGION22_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION22_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION23_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION23_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_24_25, 0,
CM_RGAM_RAMA_EXP_REGION24_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION24_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION25_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION25_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_26_27, 0,
CM_RGAM_RAMA_EXP_REGION26_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION26_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION27_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION27_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_28_29, 0,
CM_RGAM_RAMA_EXP_REGION28_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION28_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION29_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION29_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_30_31, 0,
CM_RGAM_RAMA_EXP_REGION30_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION30_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION31_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION31_NUM_SEGMENTS, curve[1].segments_num);
curve += 2;
REG_SET_4(CM_RGAM_RAMA_REGION_32_33, 0,
CM_RGAM_RAMA_EXP_REGION32_LUT_OFFSET, curve[0].offset,
CM_RGAM_RAMA_EXP_REGION32_NUM_SEGMENTS, curve[0].segments_num,
CM_RGAM_RAMA_EXP_REGION33_LUT_OFFSET, curve[1].offset,
CM_RGAM_RAMA_EXP_REGION33_NUM_SEGMENTS, curve[1].segments_num);
}
static void opp_configure_regamma_lut(
struct output_pixel_processor *opp,
bool is_ram_a)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
CM_RGAM_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0);
}
static void opp_power_on_regamma_lut(
struct output_pixel_processor *opp,
bool power_on)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
REG_SET(CM_MEM_PWR_CTRL, 0,
RGAM_MEM_PWR_FORCE, power_on == true ? 0:1);
}
static void opp_program_regamma_lut(
struct output_pixel_processor *opp,
const struct pwl_result_data *rgb,
uint32_t num)
{
uint32_t i;
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
for (i = 0 ; i < num; i++) {
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(CM_RGAM_LUT_DATA, 0,
CM_RGAM_LUT_DATA, rgb[i].delta_red_reg);
REG_SET(CM_RGAM_LUT_DATA, 0,
CM_RGAM_LUT_DATA, rgb[i].delta_green_reg);
REG_SET(CM_RGAM_LUT_DATA, 0,
CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg);
}
}
static bool opp_set_regamma_pwl(
struct output_pixel_processor *opp, const struct pwl_params *params)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
opp_power_on_regamma_lut(opp, true);
opp_configure_regamma_lut(opp, oppn10->is_write_to_ram_a_safe);
if (oppn10->is_write_to_ram_a_safe)
opp_program_regamma_luta_settings(opp, params);
else
opp_program_regamma_lutb_settings(opp, params);
opp_program_regamma_lut(
opp, params->rgb_resulted, params->hw_points_num);
return true;
}
static void opp_set_stereo_polarity(
struct output_pixel_processor *opp,
bool enable, bool rightEyePolarity)
{
struct dcn10_opp *oppn10 = TO_DCN10_OPP(opp);
REG_UPDATE(FMT_CONTROL, FMT_STEREOSYNC_OVERRIDE, enable);
}
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
static void dcn10_opp_destroy(struct output_pixel_processor **opp)
{
dm_free(TO_DCN10_OPP(*opp));
*opp = NULL;
}
static struct opp_funcs dcn10_opp_funcs = {
.opp_power_on_regamma_lut = opp_power_on_regamma_lut,
.opp_set_csc_adjustment = NULL,
.opp_set_csc_default = opp_set_output_csc_default,
.opp_set_dyn_expansion = opp_set_dyn_expansion,
.opp_program_regamma_pwl = opp_set_regamma_pwl,
.opp_set_regamma_mode = opp_set_regamma_mode,
.opp_program_fmt = opp_program_fmt,
.opp_program_bit_depth_reduction = opp_program_bit_depth_reduction,
.opp_set_stereo_polarity = opp_set_stereo_polarity,
.opp_destroy = dcn10_opp_destroy
};
void dcn10_opp_construct(struct dcn10_opp *oppn10,
struct dc_context *ctx,
uint32_t inst,
const struct dcn10_opp_registers *regs,
const struct dcn10_opp_shift *opp_shift,
const struct dcn10_opp_mask *opp_mask)
{
oppn10->base.ctx = ctx;
oppn10->base.inst = inst;
oppn10->base.funcs = &dcn10_opp_funcs;
oppn10->regs = regs;
oppn10->opp_shift = opp_shift;
oppn10->opp_mask = opp_mask;
}
/* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_OPP_DCN10_H__
#define __DC_OPP_DCN10_H__
#include "opp.h"
#define TO_DCN10_OPP(opp)\
container_of(opp, struct dcn10_opp, base)
#define OPP_SF(reg_name, field_name, post_fix)\
.field_name = reg_name ## __ ## field_name ## post_fix
#define OPP_DCN10_REG_LIST(id) \
SRI(CM_RGAM_LUT_WRITE_EN_MASK, CM, id), \
SRI(CM_RGAM_CONTROL, CM, id), \
SRI(OBUF_CONTROL, DSCL, id), \
SRI(FMT_BIT_DEPTH_CONTROL, FMT, id), \
SRI(FMT_CONTROL, FMT, id), \
SRI(FMT_DITHER_RAND_R_SEED, FMT, id), \
SRI(FMT_DITHER_RAND_G_SEED, FMT, id), \
SRI(FMT_DITHER_RAND_B_SEED, FMT, id), \
SRI(FMT_CLAMP_CNTL, FMT, id), \
SRI(FMT_DYNAMIC_EXP_CNTL, FMT, id), \
SRI(FMT_MAP420_MEMORY_CONTROL, FMT, id), \
SRI(CM_OCSC_CONTROL, CM, id), \
SRI(CM_RGAM_RAMB_START_CNTL_B, CM, id), \
SRI(CM_RGAM_RAMB_START_CNTL_G, CM, id), \
SRI(CM_RGAM_RAMB_START_CNTL_R, CM, id), \
SRI(CM_RGAM_RAMB_SLOPE_CNTL_B, CM, id), \
SRI(CM_RGAM_RAMB_SLOPE_CNTL_G, CM, id), \
SRI(CM_RGAM_RAMB_SLOPE_CNTL_R, CM, id), \
SRI(CM_RGAM_RAMB_END_CNTL1_B, CM, id), \
SRI(CM_RGAM_RAMB_END_CNTL2_B, CM, id), \
SRI(CM_RGAM_RAMB_END_CNTL1_G, CM, id), \
SRI(CM_RGAM_RAMB_END_CNTL2_G, CM, id), \
SRI(CM_RGAM_RAMB_END_CNTL1_R, CM, id), \
SRI(CM_RGAM_RAMB_END_CNTL2_R, CM, id), \
SRI(CM_RGAM_RAMB_REGION_0_1, CM, id), \
SRI(CM_RGAM_RAMB_REGION_2_3, CM, id), \
SRI(CM_RGAM_RAMB_REGION_4_5, CM, id), \
SRI(CM_RGAM_RAMB_REGION_6_7, CM, id), \
SRI(CM_RGAM_RAMB_REGION_8_9, CM, id), \
SRI(CM_RGAM_RAMB_REGION_10_11, CM, id), \
SRI(CM_RGAM_RAMB_REGION_12_13, CM, id), \
SRI(CM_RGAM_RAMB_REGION_14_15, CM, id), \
SRI(CM_RGAM_RAMB_REGION_16_17, CM, id), \
SRI(CM_RGAM_RAMB_REGION_18_19, CM, id), \
SRI(CM_RGAM_RAMB_REGION_20_21, CM, id), \
SRI(CM_RGAM_RAMB_REGION_22_23, CM, id), \
SRI(CM_RGAM_RAMB_REGION_24_25, CM, id), \
SRI(CM_RGAM_RAMB_REGION_26_27, CM, id), \
SRI(CM_RGAM_RAMB_REGION_28_29, CM, id), \
SRI(CM_RGAM_RAMB_REGION_30_31, CM, id), \
SRI(CM_RGAM_RAMB_REGION_32_33, CM, id), \
SRI(CM_RGAM_RAMA_START_CNTL_B, CM, id), \
SRI(CM_RGAM_RAMA_START_CNTL_G, CM, id), \
SRI(CM_RGAM_RAMA_START_CNTL_R, CM, id), \
SRI(CM_RGAM_RAMA_SLOPE_CNTL_B, CM, id), \
SRI(CM_RGAM_RAMA_SLOPE_CNTL_G, CM, id), \
SRI(CM_RGAM_RAMA_SLOPE_CNTL_R, CM, id), \
SRI(CM_RGAM_RAMA_END_CNTL1_B, CM, id), \
SRI(CM_RGAM_RAMA_END_CNTL2_B, CM, id), \
SRI(CM_RGAM_RAMA_END_CNTL1_G, CM, id), \
SRI(CM_RGAM_RAMA_END_CNTL2_G, CM, id), \
SRI(CM_RGAM_RAMA_END_CNTL1_R, CM, id), \
SRI(CM_RGAM_RAMA_END_CNTL2_R, CM, id), \
SRI(CM_RGAM_RAMA_REGION_0_1, CM, id), \
SRI(CM_RGAM_RAMA_REGION_2_3, CM, id), \
SRI(CM_RGAM_RAMA_REGION_4_5, CM, id), \
SRI(CM_RGAM_RAMA_REGION_6_7, CM, id), \
SRI(CM_RGAM_RAMA_REGION_8_9, CM, id), \
SRI(CM_RGAM_RAMA_REGION_10_11, CM, id), \
SRI(CM_RGAM_RAMA_REGION_12_13, CM, id), \
SRI(CM_RGAM_RAMA_REGION_14_15, CM, id), \
SRI(CM_RGAM_RAMA_REGION_16_17, CM, id), \
SRI(CM_RGAM_RAMA_REGION_18_19, CM, id), \
SRI(CM_RGAM_RAMA_REGION_20_21, CM, id), \
SRI(CM_RGAM_RAMA_REGION_22_23, CM, id), \
SRI(CM_RGAM_RAMA_REGION_24_25, CM, id), \
SRI(CM_RGAM_RAMA_REGION_26_27, CM, id), \
SRI(CM_RGAM_RAMA_REGION_28_29, CM, id), \
SRI(CM_RGAM_RAMA_REGION_30_31, CM, id), \
SRI(CM_RGAM_RAMA_REGION_32_33, CM, id), \
SRI(CM_RGAM_LUT_INDEX, CM, id), \
SRI(CM_MEM_PWR_CTRL, CM, id), \
SRI(CM_RGAM_LUT_DATA, CM, id)
#define OPP_DCN10_MASK_SH_LIST(mask_sh) \
OPP_SF(CM0_CM_RGAM_CONTROL, CM_RGAM_LUT_MODE, mask_sh), \
OPP_SF(DSCL0_OBUF_CONTROL, OBUF_BYPASS, mask_sh), \
OPP_SF(DSCL0_OBUF_CONTROL, OBUF_H_2X_UPSCALE_EN, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_EN, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_DEPTH, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_TRUNCATE_MODE, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_EN, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_MODE, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_SPATIAL_DITHER_DEPTH, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_TEMPORAL_DITHER_EN, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_HIGHPASS_RANDOM_ENABLE, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_FRAME_RANDOM_ENABLE, mask_sh), \
OPP_SF(FMT0_FMT_BIT_DEPTH_CONTROL, FMT_RGB_RANDOM_ENABLE, mask_sh), \
OPP_SF(FMT0_FMT_CONTROL, FMT_SPATIAL_DITHER_FRAME_COUNTER_MAX, mask_sh), \
OPP_SF(FMT0_FMT_CONTROL, FMT_SPATIAL_DITHER_FRAME_COUNTER_BIT_SWAP, mask_sh), \
OPP_SF(FMT0_FMT_DITHER_RAND_R_SEED, FMT_RAND_R_SEED, mask_sh), \
OPP_SF(FMT0_FMT_DITHER_RAND_G_SEED, FMT_RAND_G_SEED, mask_sh), \
OPP_SF(FMT0_FMT_DITHER_RAND_B_SEED, FMT_RAND_B_SEED, mask_sh), \
OPP_SF(FMT0_FMT_CONTROL, FMT_PIXEL_ENCODING, mask_sh), \
OPP_SF(FMT0_FMT_CLAMP_CNTL, FMT_CLAMP_DATA_EN, mask_sh), \
OPP_SF(FMT0_FMT_CLAMP_CNTL, FMT_CLAMP_COLOR_FORMAT, mask_sh), \
OPP_SF(FMT0_FMT_DYNAMIC_EXP_CNTL, FMT_DYNAMIC_EXP_EN, mask_sh), \
OPP_SF(FMT0_FMT_DYNAMIC_EXP_CNTL, FMT_DYNAMIC_EXP_MODE, mask_sh), \
OPP_SF(FMT0_FMT_MAP420_MEMORY_CONTROL, FMT_MAP420MEM_PWR_FORCE, mask_sh), \
OPP_SF(CM0_CM_OCSC_CONTROL, CM_OCSC_MODE, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_START_CNTL_B, CM_RGAM_RAMB_EXP_REGION_START_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_START_CNTL_B, CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_START_CNTL_G, CM_RGAM_RAMB_EXP_REGION_START_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_START_CNTL_G, CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_START_CNTL_R, CM_RGAM_RAMB_EXP_REGION_START_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_START_CNTL_R, CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_SLOPE_CNTL_B, CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_SLOPE_CNTL_G, CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_SLOPE_CNTL_R, CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL1_B, CM_RGAM_RAMB_EXP_REGION_END_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL2_B, CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL2_B, CM_RGAM_RAMB_EXP_REGION_END_BASE_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL1_G, CM_RGAM_RAMB_EXP_REGION_END_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL2_G, CM_RGAM_RAMB_EXP_REGION_END_SLOPE_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL2_G, CM_RGAM_RAMB_EXP_REGION_END_BASE_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL1_R, CM_RGAM_RAMB_EXP_REGION_END_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL2_R, CM_RGAM_RAMB_EXP_REGION_END_SLOPE_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_END_CNTL2_R, CM_RGAM_RAMB_EXP_REGION_END_BASE_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_0_1, CM_RGAM_RAMB_EXP_REGION0_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_0_1, CM_RGAM_RAMB_EXP_REGION0_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_0_1, CM_RGAM_RAMB_EXP_REGION1_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_0_1, CM_RGAM_RAMB_EXP_REGION1_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_2_3, CM_RGAM_RAMB_EXP_REGION2_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_2_3, CM_RGAM_RAMB_EXP_REGION2_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_2_3, CM_RGAM_RAMB_EXP_REGION3_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_2_3, CM_RGAM_RAMB_EXP_REGION3_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_4_5, CM_RGAM_RAMB_EXP_REGION4_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_4_5, CM_RGAM_RAMB_EXP_REGION4_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_4_5, CM_RGAM_RAMB_EXP_REGION5_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_4_5, CM_RGAM_RAMB_EXP_REGION5_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_6_7, CM_RGAM_RAMB_EXP_REGION6_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_6_7, CM_RGAM_RAMB_EXP_REGION6_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_6_7, CM_RGAM_RAMB_EXP_REGION7_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_6_7, CM_RGAM_RAMB_EXP_REGION7_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_8_9, CM_RGAM_RAMB_EXP_REGION8_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_8_9, CM_RGAM_RAMB_EXP_REGION8_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_8_9, CM_RGAM_RAMB_EXP_REGION9_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_8_9, CM_RGAM_RAMB_EXP_REGION9_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_10_11, CM_RGAM_RAMB_EXP_REGION10_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_10_11, CM_RGAM_RAMB_EXP_REGION10_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_10_11, CM_RGAM_RAMB_EXP_REGION11_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_10_11, CM_RGAM_RAMB_EXP_REGION11_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_12_13, CM_RGAM_RAMB_EXP_REGION12_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_12_13, CM_RGAM_RAMB_EXP_REGION12_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_12_13, CM_RGAM_RAMB_EXP_REGION13_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_12_13, CM_RGAM_RAMB_EXP_REGION13_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_14_15, CM_RGAM_RAMB_EXP_REGION14_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_14_15, CM_RGAM_RAMB_EXP_REGION14_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_14_15, CM_RGAM_RAMB_EXP_REGION15_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_14_15, CM_RGAM_RAMB_EXP_REGION15_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_16_17, CM_RGAM_RAMB_EXP_REGION16_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_16_17, CM_RGAM_RAMB_EXP_REGION16_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_16_17, CM_RGAM_RAMB_EXP_REGION17_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_16_17, CM_RGAM_RAMB_EXP_REGION17_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_18_19, CM_RGAM_RAMB_EXP_REGION18_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_18_19, CM_RGAM_RAMB_EXP_REGION18_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_18_19, CM_RGAM_RAMB_EXP_REGION19_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_18_19, CM_RGAM_RAMB_EXP_REGION19_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_20_21, CM_RGAM_RAMB_EXP_REGION20_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_20_21, CM_RGAM_RAMB_EXP_REGION20_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_20_21, CM_RGAM_RAMB_EXP_REGION21_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_20_21, CM_RGAM_RAMB_EXP_REGION21_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_22_23, CM_RGAM_RAMB_EXP_REGION22_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_22_23, CM_RGAM_RAMB_EXP_REGION22_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_22_23, CM_RGAM_RAMB_EXP_REGION23_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_22_23, CM_RGAM_RAMB_EXP_REGION23_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_24_25, CM_RGAM_RAMB_EXP_REGION24_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_24_25, CM_RGAM_RAMB_EXP_REGION24_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_24_25, CM_RGAM_RAMB_EXP_REGION25_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_24_25, CM_RGAM_RAMB_EXP_REGION25_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_26_27, CM_RGAM_RAMB_EXP_REGION26_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_26_27, CM_RGAM_RAMB_EXP_REGION26_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_26_27, CM_RGAM_RAMB_EXP_REGION27_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_26_27, CM_RGAM_RAMB_EXP_REGION27_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_28_29, CM_RGAM_RAMB_EXP_REGION28_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_28_29, CM_RGAM_RAMB_EXP_REGION28_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_28_29, CM_RGAM_RAMB_EXP_REGION29_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_28_29, CM_RGAM_RAMB_EXP_REGION29_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_30_31, CM_RGAM_RAMB_EXP_REGION30_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_30_31, CM_RGAM_RAMB_EXP_REGION30_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_30_31, CM_RGAM_RAMB_EXP_REGION31_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_30_31, CM_RGAM_RAMB_EXP_REGION31_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_32_33, CM_RGAM_RAMB_EXP_REGION32_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_32_33, CM_RGAM_RAMB_EXP_REGION32_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_32_33, CM_RGAM_RAMB_EXP_REGION33_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMB_REGION_32_33, CM_RGAM_RAMB_EXP_REGION33_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_START_CNTL_B, CM_RGAM_RAMA_EXP_REGION_START_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_START_CNTL_B, CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_START_CNTL_G, CM_RGAM_RAMA_EXP_REGION_START_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_START_CNTL_G, CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_START_CNTL_R, CM_RGAM_RAMA_EXP_REGION_START_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_START_CNTL_R, CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_SLOPE_CNTL_B, CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_SLOPE_CNTL_G, CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_SLOPE_CNTL_R, CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL1_B, CM_RGAM_RAMA_EXP_REGION_END_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL2_B, CM_RGAM_RAMA_EXP_REGION_END_SLOPE_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL2_B, CM_RGAM_RAMA_EXP_REGION_END_BASE_B, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL1_G, CM_RGAM_RAMA_EXP_REGION_END_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL2_G, CM_RGAM_RAMA_EXP_REGION_END_SLOPE_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL2_G, CM_RGAM_RAMA_EXP_REGION_END_BASE_G, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL1_R, CM_RGAM_RAMA_EXP_REGION_END_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL2_R, CM_RGAM_RAMA_EXP_REGION_END_SLOPE_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_END_CNTL2_R, CM_RGAM_RAMA_EXP_REGION_END_BASE_R, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_0_1, CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_0_1, CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_0_1, CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_0_1, CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_2_3, CM_RGAM_RAMA_EXP_REGION2_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_2_3, CM_RGAM_RAMA_EXP_REGION2_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_2_3, CM_RGAM_RAMA_EXP_REGION3_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_2_3, CM_RGAM_RAMA_EXP_REGION3_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_4_5, CM_RGAM_RAMA_EXP_REGION4_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_4_5, CM_RGAM_RAMA_EXP_REGION4_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_4_5, CM_RGAM_RAMA_EXP_REGION5_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_4_5, CM_RGAM_RAMA_EXP_REGION5_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_6_7, CM_RGAM_RAMA_EXP_REGION6_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_6_7, CM_RGAM_RAMA_EXP_REGION6_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_6_7, CM_RGAM_RAMA_EXP_REGION7_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_6_7, CM_RGAM_RAMA_EXP_REGION7_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_8_9, CM_RGAM_RAMA_EXP_REGION8_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_8_9, CM_RGAM_RAMA_EXP_REGION8_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_8_9, CM_RGAM_RAMA_EXP_REGION9_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_8_9, CM_RGAM_RAMA_EXP_REGION9_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_10_11, CM_RGAM_RAMA_EXP_REGION10_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_10_11, CM_RGAM_RAMA_EXP_REGION10_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_10_11, CM_RGAM_RAMA_EXP_REGION11_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_10_11, CM_RGAM_RAMA_EXP_REGION11_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_12_13, CM_RGAM_RAMA_EXP_REGION12_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_12_13, CM_RGAM_RAMA_EXP_REGION12_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_12_13, CM_RGAM_RAMA_EXP_REGION13_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_12_13, CM_RGAM_RAMA_EXP_REGION13_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_14_15, CM_RGAM_RAMA_EXP_REGION14_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_14_15, CM_RGAM_RAMA_EXP_REGION14_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_14_15, CM_RGAM_RAMA_EXP_REGION15_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_14_15, CM_RGAM_RAMA_EXP_REGION15_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_16_17, CM_RGAM_RAMA_EXP_REGION16_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_16_17, CM_RGAM_RAMA_EXP_REGION16_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_16_17, CM_RGAM_RAMA_EXP_REGION17_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_16_17, CM_RGAM_RAMA_EXP_REGION17_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_18_19, CM_RGAM_RAMA_EXP_REGION18_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_18_19, CM_RGAM_RAMA_EXP_REGION18_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_18_19, CM_RGAM_RAMA_EXP_REGION19_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_18_19, CM_RGAM_RAMA_EXP_REGION19_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_20_21, CM_RGAM_RAMA_EXP_REGION20_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_20_21, CM_RGAM_RAMA_EXP_REGION20_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_20_21, CM_RGAM_RAMA_EXP_REGION21_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_20_21, CM_RGAM_RAMA_EXP_REGION21_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_22_23, CM_RGAM_RAMA_EXP_REGION22_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_22_23, CM_RGAM_RAMA_EXP_REGION22_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_22_23, CM_RGAM_RAMA_EXP_REGION23_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_22_23, CM_RGAM_RAMA_EXP_REGION23_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_24_25, CM_RGAM_RAMA_EXP_REGION24_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_24_25, CM_RGAM_RAMA_EXP_REGION24_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_24_25, CM_RGAM_RAMA_EXP_REGION25_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_24_25, CM_RGAM_RAMA_EXP_REGION25_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_26_27, CM_RGAM_RAMA_EXP_REGION26_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_26_27, CM_RGAM_RAMA_EXP_REGION26_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_26_27, CM_RGAM_RAMA_EXP_REGION27_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_26_27, CM_RGAM_RAMA_EXP_REGION27_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_28_29, CM_RGAM_RAMA_EXP_REGION28_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_28_29, CM_RGAM_RAMA_EXP_REGION28_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_28_29, CM_RGAM_RAMA_EXP_REGION29_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_28_29, CM_RGAM_RAMA_EXP_REGION29_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_30_31, CM_RGAM_RAMA_EXP_REGION30_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_30_31, CM_RGAM_RAMA_EXP_REGION30_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_30_31, CM_RGAM_RAMA_EXP_REGION31_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_30_31, CM_RGAM_RAMA_EXP_REGION31_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_32_33, CM_RGAM_RAMA_EXP_REGION32_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_32_33, CM_RGAM_RAMA_EXP_REGION32_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_32_33, CM_RGAM_RAMA_EXP_REGION33_LUT_OFFSET, mask_sh), \
OPP_SF(CM0_CM_RGAM_RAMA_REGION_32_33, CM_RGAM_RAMA_EXP_REGION33_NUM_SEGMENTS, mask_sh), \
OPP_SF(CM0_CM_RGAM_LUT_WRITE_EN_MASK, CM_RGAM_LUT_WRITE_EN_MASK, mask_sh), \
OPP_SF(CM0_CM_RGAM_LUT_WRITE_EN_MASK, CM_RGAM_LUT_WRITE_SEL, mask_sh), \
OPP_SF(CM0_CM_RGAM_LUT_INDEX, CM_RGAM_LUT_INDEX, mask_sh), \
OPP_SF(CM0_CM_MEM_PWR_CTRL, RGAM_MEM_PWR_FORCE, mask_sh), \
OPP_SF(CM0_CM_RGAM_LUT_DATA, CM_RGAM_LUT_DATA, mask_sh), \
OPP_SF(FMT0_FMT_CONTROL, FMT_STEREOSYNC_OVERRIDE, mask_sh)
#define OPP_DCN10_REG_FIELD_LIST(type) \
type CM_RGAM_LUT_MODE; \
type OBUF_BYPASS; \
type OBUF_H_2X_UPSCALE_EN; \
type FMT_TRUNCATE_EN; \
type FMT_TRUNCATE_DEPTH; \
type FMT_TRUNCATE_MODE; \
type FMT_SPATIAL_DITHER_EN; \
type FMT_SPATIAL_DITHER_MODE; \
type FMT_SPATIAL_DITHER_DEPTH; \
type FMT_TEMPORAL_DITHER_EN; \
type FMT_HIGHPASS_RANDOM_ENABLE; \
type FMT_FRAME_RANDOM_ENABLE; \
type FMT_RGB_RANDOM_ENABLE; \
type FMT_SPATIAL_DITHER_FRAME_COUNTER_MAX; \
type FMT_SPATIAL_DITHER_FRAME_COUNTER_BIT_SWAP; \
type FMT_RAND_R_SEED; \
type FMT_RAND_G_SEED; \
type FMT_RAND_B_SEED; \
type FMT_PIXEL_ENCODING; \
type FMT_CLAMP_DATA_EN; \
type FMT_CLAMP_COLOR_FORMAT; \
type FMT_DYNAMIC_EXP_EN; \
type FMT_DYNAMIC_EXP_MODE; \
type FMT_MAP420MEM_PWR_FORCE; \
type CM_OCSC_MODE; \
type CM_RGAM_RAMB_EXP_REGION_START_B; \
type CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B; \
type CM_RGAM_RAMB_EXP_REGION_START_G; \
type CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_G; \
type CM_RGAM_RAMB_EXP_REGION_START_R; \
type CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_R; \
type CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B; \
type CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_G; \
type CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_R; \
type CM_RGAM_RAMB_EXP_REGION_END_B; \
type CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B; \
type CM_RGAM_RAMB_EXP_REGION_END_BASE_B; \
type CM_RGAM_RAMB_EXP_REGION_END_G; \
type CM_RGAM_RAMB_EXP_REGION_END_SLOPE_G; \
type CM_RGAM_RAMB_EXP_REGION_END_BASE_G; \
type CM_RGAM_RAMB_EXP_REGION_END_R; \
type CM_RGAM_RAMB_EXP_REGION_END_SLOPE_R; \
type CM_RGAM_RAMB_EXP_REGION_END_BASE_R; \
type CM_RGAM_RAMB_EXP_REGION0_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION0_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION1_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION1_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION2_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION2_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION3_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION3_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION4_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION4_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION5_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION5_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION6_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION6_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION7_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION7_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION8_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION8_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION9_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION9_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION10_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION10_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION11_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION11_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION12_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION12_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION13_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION13_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION14_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION14_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION15_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION15_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION16_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION16_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION17_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION17_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION18_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION18_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION19_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION19_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION20_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION20_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION21_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION21_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION22_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION22_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION23_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION23_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION24_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION24_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION25_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION25_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION26_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION26_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION27_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION27_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION28_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION28_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION29_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION29_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION30_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION30_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION31_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION31_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION32_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION32_NUM_SEGMENTS; \
type CM_RGAM_RAMB_EXP_REGION33_LUT_OFFSET; \
type CM_RGAM_RAMB_EXP_REGION33_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION_START_B; \
type CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_B; \
type CM_RGAM_RAMA_EXP_REGION_START_G; \
type CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_G; \
type CM_RGAM_RAMA_EXP_REGION_START_R; \
type CM_RGAM_RAMA_EXP_REGION_START_SEGMENT_R; \
type CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_B; \
type CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_G; \
type CM_RGAM_RAMA_EXP_REGION_LINEAR_SLOPE_R; \
type CM_RGAM_RAMA_EXP_REGION_END_B; \
type CM_RGAM_RAMA_EXP_REGION_END_SLOPE_B; \
type CM_RGAM_RAMA_EXP_REGION_END_BASE_B; \
type CM_RGAM_RAMA_EXP_REGION_END_G; \
type CM_RGAM_RAMA_EXP_REGION_END_SLOPE_G; \
type CM_RGAM_RAMA_EXP_REGION_END_BASE_G; \
type CM_RGAM_RAMA_EXP_REGION_END_R; \
type CM_RGAM_RAMA_EXP_REGION_END_SLOPE_R; \
type CM_RGAM_RAMA_EXP_REGION_END_BASE_R; \
type CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION2_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION2_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION3_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION3_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION4_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION4_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION5_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION5_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION6_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION6_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION7_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION7_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION8_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION8_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION9_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION9_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION10_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION10_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION11_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION11_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION12_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION12_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION13_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION13_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION14_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION14_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION15_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION15_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION16_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION16_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION17_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION17_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION18_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION18_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION19_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION19_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION20_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION20_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION21_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION21_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION22_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION22_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION23_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION23_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION24_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION24_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION25_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION25_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION26_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION26_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION27_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION27_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION28_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION28_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION29_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION29_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION30_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION30_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION31_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION31_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION32_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION32_NUM_SEGMENTS; \
type CM_RGAM_RAMA_EXP_REGION33_LUT_OFFSET; \
type CM_RGAM_RAMA_EXP_REGION33_NUM_SEGMENTS; \
type CM_RGAM_LUT_WRITE_EN_MASK; \
type CM_RGAM_LUT_WRITE_SEL; \
type CM_RGAM_LUT_INDEX; \
type RGAM_MEM_PWR_FORCE; \
type CM_RGAM_LUT_DATA; \
type FMT_STEREOSYNC_OVERRIDE
struct dcn10_opp_shift {
OPP_DCN10_REG_FIELD_LIST(uint8_t);
};
struct dcn10_opp_mask {
OPP_DCN10_REG_FIELD_LIST(uint32_t);
};
struct dcn10_opp_registers {
uint32_t CM_RGAM_LUT_WRITE_EN_MASK;
uint32_t CM_RGAM_CONTROL;
uint32_t OBUF_CONTROL;
uint32_t FMT_BIT_DEPTH_CONTROL;
uint32_t FMT_CONTROL;
uint32_t FMT_DITHER_RAND_R_SEED;
uint32_t FMT_DITHER_RAND_G_SEED;
uint32_t FMT_DITHER_RAND_B_SEED;
uint32_t FMT_CLAMP_CNTL;
uint32_t FMT_DYNAMIC_EXP_CNTL;
uint32_t FMT_MAP420_MEMORY_CONTROL;
uint32_t CM_OCSC_CONTROL;
uint32_t CM_RGAM_RAMB_START_CNTL_B;
uint32_t CM_RGAM_RAMB_START_CNTL_G;
uint32_t CM_RGAM_RAMB_START_CNTL_R;
uint32_t CM_RGAM_RAMB_SLOPE_CNTL_B;
uint32_t CM_RGAM_RAMB_SLOPE_CNTL_G;
uint32_t CM_RGAM_RAMB_SLOPE_CNTL_R;
uint32_t CM_RGAM_RAMB_END_CNTL1_B;
uint32_t CM_RGAM_RAMB_END_CNTL2_B;
uint32_t CM_RGAM_RAMB_END_CNTL1_G;
uint32_t CM_RGAM_RAMB_END_CNTL2_G;
uint32_t CM_RGAM_RAMB_END_CNTL1_R;
uint32_t CM_RGAM_RAMB_END_CNTL2_R;
uint32_t CM_RGAM_RAMB_REGION_0_1;
uint32_t CM_RGAM_RAMB_REGION_2_3;
uint32_t CM_RGAM_RAMB_REGION_4_5;
uint32_t CM_RGAM_RAMB_REGION_6_7;
uint32_t CM_RGAM_RAMB_REGION_8_9;
uint32_t CM_RGAM_RAMB_REGION_10_11;
uint32_t CM_RGAM_RAMB_REGION_12_13;
uint32_t CM_RGAM_RAMB_REGION_14_15;
uint32_t CM_RGAM_RAMB_REGION_16_17;
uint32_t CM_RGAM_RAMB_REGION_18_19;
uint32_t CM_RGAM_RAMB_REGION_20_21;
uint32_t CM_RGAM_RAMB_REGION_22_23;
uint32_t CM_RGAM_RAMB_REGION_24_25;
uint32_t CM_RGAM_RAMB_REGION_26_27;
uint32_t CM_RGAM_RAMB_REGION_28_29;
uint32_t CM_RGAM_RAMB_REGION_30_31;
uint32_t CM_RGAM_RAMB_REGION_32_33;
uint32_t CM_RGAM_RAMA_START_CNTL_B;
uint32_t CM_RGAM_RAMA_START_CNTL_G;
uint32_t CM_RGAM_RAMA_START_CNTL_R;
uint32_t CM_RGAM_RAMA_SLOPE_CNTL_B;
uint32_t CM_RGAM_RAMA_SLOPE_CNTL_G;
uint32_t CM_RGAM_RAMA_SLOPE_CNTL_R;
uint32_t CM_RGAM_RAMA_END_CNTL1_B;
uint32_t CM_RGAM_RAMA_END_CNTL2_B;
uint32_t CM_RGAM_RAMA_END_CNTL1_G;
uint32_t CM_RGAM_RAMA_END_CNTL2_G;
uint32_t CM_RGAM_RAMA_END_CNTL1_R;
uint32_t CM_RGAM_RAMA_END_CNTL2_R;
uint32_t CM_RGAM_RAMA_REGION_0_1;
uint32_t CM_RGAM_RAMA_REGION_2_3;
uint32_t CM_RGAM_RAMA_REGION_4_5;
uint32_t CM_RGAM_RAMA_REGION_6_7;
uint32_t CM_RGAM_RAMA_REGION_8_9;
uint32_t CM_RGAM_RAMA_REGION_10_11;
uint32_t CM_RGAM_RAMA_REGION_12_13;
uint32_t CM_RGAM_RAMA_REGION_14_15;
uint32_t CM_RGAM_RAMA_REGION_16_17;
uint32_t CM_RGAM_RAMA_REGION_18_19;
uint32_t CM_RGAM_RAMA_REGION_20_21;
uint32_t CM_RGAM_RAMA_REGION_22_23;
uint32_t CM_RGAM_RAMA_REGION_24_25;
uint32_t CM_RGAM_RAMA_REGION_26_27;
uint32_t CM_RGAM_RAMA_REGION_28_29;
uint32_t CM_RGAM_RAMA_REGION_30_31;
uint32_t CM_RGAM_RAMA_REGION_32_33;
uint32_t CM_RGAM_LUT_INDEX;
uint32_t CM_MEM_PWR_CTRL;
uint32_t CM_RGAM_LUT_DATA;
};
struct dcn10_opp {
struct output_pixel_processor base;
const struct dcn10_opp_registers *regs;
const struct dcn10_opp_shift *opp_shift;
const struct dcn10_opp_mask *opp_mask;
bool is_write_to_ram_a_safe;
};
void dcn10_opp_construct(struct dcn10_opp *oppn10,
struct dc_context *ctx,
uint32_t inst,
const struct dcn10_opp_registers *regs,
const struct dcn10_opp_shift *opp_shift,
const struct dcn10_opp_mask *opp_mask);
#endif
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "dc.h"
#include "resource.h"
#include "include/irq_service_interface.h"
#include "dcn10/dcn10_resource.h"
#include "dcn10/dcn10_ipp.h"
#include "dcn10/dcn10_mpc.h"
#include "irq/dcn10/irq_service_dcn10.h"
#include "dcn10/dcn10_transform.h"
#include "dcn10/dcn10_timing_generator.h"
#include "dcn10/dcn10_hw_sequencer.h"
#include "dce110/dce110_hw_sequencer.h"
#include "dcn10/dcn10_opp.h"
#include "dce/dce_link_encoder.h"
#include "dce/dce_stream_encoder.h"
#include "dce/dce_clocks.h"
#include "dce/dce_clock_source.h"
#include "dcn10/dcn10_mem_input.h"
#include "dce/dce_audio.h"
#include "dce/dce_hwseq.h"
#include "../virtual/virtual_stream_encoder.h"
#include "dce110/dce110_resource.h"
#include "vega10/soc15ip.h"
#include "raven1/DCN/dcn_1_0_offset.h"
#include "raven1/DCN/dcn_1_0_sh_mask.h"
#include "raven1/NBIO/nbio_7_0_offset.h"
#include "raven1/MMHUB/mmhub_9_1_offset.h"
#include "raven1/MMHUB/mmhub_9_1_sh_mask.h"
#include "reg_helper.h"
#include "dce/dce_abm.h"
#include "dce/dce_dmcu.h"
#ifndef mmDP0_DP_DPHY_INTERNAL_CTRL
#define mmDP0_DP_DPHY_INTERNAL_CTRL 0x210f
#define mmDP0_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP1_DP_DPHY_INTERNAL_CTRL 0x220f
#define mmDP1_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP2_DP_DPHY_INTERNAL_CTRL 0x230f
#define mmDP2_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP3_DP_DPHY_INTERNAL_CTRL 0x240f
#define mmDP3_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP4_DP_DPHY_INTERNAL_CTRL 0x250f
#define mmDP4_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP5_DP_DPHY_INTERNAL_CTRL 0x260f
#define mmDP5_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#define mmDP6_DP_DPHY_INTERNAL_CTRL 0x270f
#define mmDP6_DP_DPHY_INTERNAL_CTRL_BASE_IDX 2
#endif
enum dcn10_clk_src_array_id {
DCN10_CLK_SRC_PLL0,
DCN10_CLK_SRC_PLL1,
DCN10_CLK_SRC_PLL2,
DCN10_CLK_SRC_PLL3,
DCN10_CLK_SRC_TOTAL
};
/* begin *********************
* macros to expend register list macro defined in HW object header file */
/* DCN */
#define BASE_INNER(seg) \
DCE_BASE__INST0_SEG ## seg
#define BASE(seg) \
BASE_INNER(seg)
#define SR(reg_name)\
.reg_name = BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
#define SRI(reg_name, block, id)\
.reg_name = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
#define SRII(reg_name, block, id)\
.reg_name[id] = BASE(mm ## block ## id ## _ ## reg_name ## _BASE_IDX) + \
mm ## block ## id ## _ ## reg_name
/* NBIO */
#define NBIO_BASE_INNER(seg) \
NBIF_BASE__INST0_SEG ## seg
#define NBIO_BASE(seg) \
NBIO_BASE_INNER(seg)
#define NBIO_SR(reg_name)\
.reg_name = NBIO_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* GC */
#define GC_BASE_INNER(seg) \
GC_BASE__INST0_SEG ## seg
#define GC_BASE(seg) \
GC_BASE_INNER(seg)
#define GC_SR(reg_name)\
.reg_name = GC_BASE(mm ## reg_name ## _BASE_IDX) + \
mm ## reg_name
/* macros to expend register list macro defined in HW object header file
* end *********************/
static const struct dce_disp_clk_registers disp_clk_regs = {
CLK_DCN10_REG_LIST()
};
static const struct dce_disp_clk_shift disp_clk_shift = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(__SHIFT)
};
static const struct dce_disp_clk_mask disp_clk_mask = {
CLK_COMMON_MASK_SH_LIST_DCE_COMMON_BASE(_MASK)
};
static const struct dce_dmcu_registers dmcu_regs = {
DMCU_DCN10_REG_LIST()
};
static const struct dce_dmcu_shift dmcu_shift = {
DMCU_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_dmcu_mask dmcu_mask = {
DMCU_MASK_SH_LIST_DCN10(_MASK)
};
static const struct dce_abm_registers abm_regs = {
ABM_DCN10_REG_LIST(0)
};
static const struct dce_abm_shift abm_shift = {
ABM_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_abm_mask abm_mask = {
ABM_MASK_SH_LIST_DCN10(_MASK)
};
#define stream_enc_regs(id)\
[id] = {\
SE_DCN_REG_LIST(id),\
.TMDS_CNTL = 0,\
.AFMT_AVI_INFO0 = 0,\
.AFMT_AVI_INFO1 = 0,\
.AFMT_AVI_INFO2 = 0,\
.AFMT_AVI_INFO3 = 0,\
}
static const struct dce110_stream_enc_registers stream_enc_regs[] = {
stream_enc_regs(0),
stream_enc_regs(1),
stream_enc_regs(2),
stream_enc_regs(3),
};
static const struct dce_stream_encoder_shift se_shift = {
SE_COMMON_MASK_SH_LIST_DCN10(__SHIFT)
};
static const struct dce_stream_encoder_mask se_mask = {
SE_COMMON_MASK_SH_LIST_DCN10(_MASK),
.AFMT_GENERIC0_UPDATE = 0,
.AFMT_GENERIC2_UPDATE = 0,
.DP_DYN_RANGE = 0,
.DP_YCBCR_RANGE = 0,
.HDMI_AVI_INFO_SEND = 0,
.HDMI_AVI_INFO_CONT = 0,
.HDMI_AVI_INFO_LINE = 0,
.DP_SEC_AVI_ENABLE = 0,
.AFMT_AVI_INFO_VERSION = 0
};
#define audio_regs(id)\
[id] = {\
AUD_COMMON_REG_LIST(id)\
}
static const struct dce_audio_registers audio_regs[] = {
audio_regs(0),
audio_regs(1),
audio_regs(2),
audio_regs(3),
};
#define DCE120_AUD_COMMON_MASK_SH_LIST(mask_sh)\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_INDEX, AZALIA_ENDPOINT_REG_INDEX, mask_sh),\
SF(AZF0ENDPOINT0_AZALIA_F0_CODEC_ENDPOINT_DATA, AZALIA_ENDPOINT_REG_DATA, mask_sh),\
AUD_COMMON_MASK_SH_LIST_BASE(mask_sh)
static const struct dce_audio_shift audio_shift = {
DCE120_AUD_COMMON_MASK_SH_LIST(__SHIFT)
};
static const struct dce_aduio_mask audio_mask = {
DCE120_AUD_COMMON_MASK_SH_LIST(_MASK)
};
#define aux_regs(id)\
[id] = {\
AUX_REG_LIST(id)\
}
static const struct dce110_link_enc_aux_registers link_enc_aux_regs[] = {
aux_regs(0),
aux_regs(1),
aux_regs(2),
aux_regs(3),
aux_regs(4),
aux_regs(5)
};
#define hpd_regs(id)\
[id] = {\
HPD_REG_LIST(id)\
}
static const struct dce110_link_enc_hpd_registers link_enc_hpd_regs[] = {
hpd_regs(0),
hpd_regs(1),
hpd_regs(2),
hpd_regs(3),
hpd_regs(4),
hpd_regs(5)
};
#define link_regs(id)\
[id] = {\
LE_DCN10_REG_LIST(id), \
SRI(DP_DPHY_INTERNAL_CTRL, DP, id) \
}
static const struct dce110_link_enc_registers link_enc_regs[] = {
link_regs(0),
link_regs(1),
link_regs(2),
link_regs(3),
link_regs(4),
link_regs(5),
link_regs(6),
};
#define ipp_regs(id)\
[id] = {\
IPP_DCN10_REG_LIST(id),\
}
static const struct dcn10_ipp_registers ipp_regs[] = {
ipp_regs(0),
ipp_regs(1),
ipp_regs(2),
ipp_regs(3),
};
static const struct dcn10_ipp_shift ipp_shift = {
IPP_DCN10_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_ipp_mask ipp_mask = {
IPP_DCN10_MASK_SH_LIST(_MASK),
};
#define opp_regs(id)\
[id] = {\
OPP_DCN10_REG_LIST(id),\
}
static const struct dcn10_opp_registers opp_regs[] = {
opp_regs(0),
opp_regs(1),
opp_regs(2),
opp_regs(3),
};
static const struct dcn10_opp_shift opp_shift = {
OPP_DCN10_MASK_SH_LIST(__SHIFT)
};
static const struct dcn10_opp_mask opp_mask = {
OPP_DCN10_MASK_SH_LIST(_MASK),
};
#define tf_regs(id)\
[id] = {\
TF_REG_LIST_DCN(id),\
}
static const struct dcn_transform_registers tf_regs[] = {
tf_regs(0),
tf_regs(1),
tf_regs(2),
tf_regs(3),
};
static const struct dcn_transform_shift tf_shift = {
TF_REG_LIST_SH_MASK_DCN(__SHIFT)
};
static const struct dcn_transform_mask tf_mask = {
TF_REG_LIST_SH_MASK_DCN(_MASK),
};
static const struct dcn_mpc_registers mpc_regs = {
MPC_COMMON_REG_LIST_DCN1_0(0),
MPC_COMMON_REG_LIST_DCN1_0(1),
MPC_COMMON_REG_LIST_DCN1_0(2),
MPC_COMMON_REG_LIST_DCN1_0(3),
};
static const struct dcn_mpc_shift mpc_shift = {
MPC_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT)
};
static const struct dcn_mpc_mask mpc_mask = {
MPC_COMMON_MASK_SH_LIST_DCN1_0(_MASK),
};
#define tg_regs(id)\
[id] = {TG_COMMON_REG_LIST_DCN1_0(id)}
static const struct dcn_tg_registers tg_regs[] = {
tg_regs(0),
tg_regs(1),
tg_regs(2),
tg_regs(3),
};
static const struct dcn_tg_shift tg_shift = {
TG_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT)
};
static const struct dcn_tg_mask tg_mask = {
TG_COMMON_MASK_SH_LIST_DCN1_0(_MASK)
};
static const struct bios_registers bios_regs = {
NBIO_SR(BIOS_SCRATCH_6)
};
#define mi_regs(id)\
[id] = {\
MI_DCN10_REG_LIST(id)\
}
static const struct dcn_mi_registers mi_regs[] = {
mi_regs(0),
mi_regs(1),
mi_regs(2),
mi_regs(3),
};
static const struct dcn_mi_shift mi_shift = {
MI_DCN10_MASK_SH_LIST(__SHIFT)
};
static const struct dcn_mi_mask mi_mask = {
MI_DCN10_MASK_SH_LIST(_MASK)
};
#define clk_src_regs(index, pllid)\
[index] = {\
CS_COMMON_REG_LIST_DCN1_0(index, pllid),\
}
static const struct dce110_clk_src_regs clk_src_regs[] = {
clk_src_regs(0, A),
clk_src_regs(1, B),
clk_src_regs(2, C),
clk_src_regs(3, D)
};
static const struct dce110_clk_src_shift cs_shift = {
CS_COMMON_MASK_SH_LIST_DCN1_0(__SHIFT)
};
static const struct dce110_clk_src_mask cs_mask = {
CS_COMMON_MASK_SH_LIST_DCN1_0(_MASK)
};
static const struct resource_caps res_cap = {
.num_timing_generator = 4,
.num_video_plane = 4,
.num_audio = 4,
.num_stream_encoder = 4,
.num_pll = 4,
};
static const struct dc_debug debug_defaults_drv = {
.disable_dcc = false,
.disable_dpp_power_gate = false,
.disable_hubp_power_gate = false,
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = false,
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
.use_dml_wm = false,
.use_max_voltage = true
#endif
};
static const struct dc_debug debug_defaults_diags = {
.disable_dpp_power_gate = false,
.disable_hubp_power_gate = false,
.disable_clock_gate = true,
.disable_dmcu = true,
.force_abm_enable = false,
.timing_trace = true,
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
.disable_pplib_clock_request = true,
.disable_pplib_wm_range = true,
.use_dml_wm = false,
.use_max_voltage = false
#endif
};
static void dcn10_transform_destroy(struct transform **xfm)
{
dm_free(TO_DCN10_TRANSFORM(*xfm));
*xfm = NULL;
}
static struct transform *dcn10_transform_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn10_transform *transform =
dm_alloc(sizeof(struct dcn10_transform));
if (!transform)
return NULL;
if (dcn10_transform_construct(transform, ctx,
&tf_regs[inst], &tf_shift, &tf_mask))
return &transform->base;
BREAK_TO_DEBUGGER();
dm_free(transform);
return NULL;
}
static struct input_pixel_processor *dcn10_ipp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn10_ipp *ipp =
dm_alloc(sizeof(struct dcn10_ipp));
if (!ipp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn10_ipp_construct(ipp, ctx, inst,
&ipp_regs[inst], &ipp_shift, &ipp_mask);
return &ipp->base;
}
static struct output_pixel_processor *dcn10_opp_create(
struct dc_context *ctx, uint32_t inst)
{
struct dcn10_opp *opp =
dm_alloc(sizeof(struct dcn10_opp));
if (!opp) {
BREAK_TO_DEBUGGER();
return NULL;
}
dcn10_opp_construct(opp, ctx, inst,
&opp_regs[inst], &opp_shift, &opp_mask);
return &opp->base;
}
static struct mpc *dcn10_mpc_create(
struct dc_context *ctx)
{
struct dcn10_mpc *mpc = dm_alloc(sizeof(struct dcn10_mpc));
if (!mpc)
return NULL;
mpc->base.ctx = ctx;
mpc->mpc_regs = &mpc_regs;
mpc->mpc_shift = &mpc_shift;
mpc->mpc_mask = &mpc_mask;
return &mpc->base;
}
static void dcn10_mpc_destroy(struct mpc **mpc_base)
{
if (*mpc_base)
dm_free(TO_DCN10_MPC(*mpc_base));
*mpc_base = NULL;
}
static struct timing_generator *dcn10_timing_generator_create(
struct dc_context *ctx,
uint32_t instance)
{
struct dcn10_timing_generator *tgn10 =
dm_alloc(sizeof(struct dcn10_timing_generator));
if (!tgn10)
return NULL;
tgn10->base.inst = instance;
tgn10->base.ctx = ctx;
tgn10->tg_regs = &tg_regs[instance];
tgn10->tg_shift = &tg_shift;
tgn10->tg_mask = &tg_mask;
dcn10_timing_generator_init(tgn10);
return &tgn10->base;
}
static const struct encoder_feature_support link_enc_feature = {
.max_hdmi_deep_color = COLOR_DEPTH_121212,
.max_hdmi_pixel_clock = 600000,
.ycbcr420_supported = true,
.flags.bits.IS_HBR2_CAPABLE = true,
.flags.bits.IS_HBR3_CAPABLE = true,
.flags.bits.IS_TPS3_CAPABLE = true,
.flags.bits.IS_TPS4_CAPABLE = true,
.flags.bits.IS_YCBCR_CAPABLE = true
};
struct link_encoder *dcn10_link_encoder_create(
const struct encoder_init_data *enc_init_data)
{
struct dce110_link_encoder *enc110 =
dm_alloc(sizeof(struct dce110_link_encoder));
if (!enc110)
return NULL;
if (dce110_link_encoder_construct(
enc110,
enc_init_data,
&link_enc_feature,
&link_enc_regs[enc_init_data->transmitter],
&link_enc_aux_regs[enc_init_data->channel - 1],
&link_enc_hpd_regs[enc_init_data->hpd_source])) {
return &enc110->base;
}
BREAK_TO_DEBUGGER();
dm_free(enc110);
return NULL;
}
struct clock_source *dcn10_clock_source_create(
struct dc_context *ctx,
struct dc_bios *bios,
enum clock_source_id id,
const struct dce110_clk_src_regs *regs,
bool dp_clk_src)
{
struct dce110_clk_src *clk_src =
dm_alloc(sizeof(struct dce110_clk_src));
if (!clk_src)
return NULL;
if (dce110_clk_src_construct(clk_src, ctx, bios, id,
regs, &cs_shift, &cs_mask)) {
clk_src->base.dp_clk_src = dp_clk_src;
return &clk_src->base;
}
BREAK_TO_DEBUGGER();
return NULL;
}
static void read_dce_straps(
struct dc_context *ctx,
struct resource_straps *straps)
{
/* TODO: Registers are missing */
/*REG_GET_2(CC_DC_HDMI_STRAPS,
HDMI_DISABLE, &straps->hdmi_disable,
AUDIO_STREAM_NUMBER, &straps->audio_stream_number);
REG_GET(DC_PINSTRAPS, DC_PINSTRAPS_AUDIO, &straps->dc_pinstraps_audio);*/
}
static struct audio *create_audio(
struct dc_context *ctx, unsigned int inst)
{
return dce_audio_create(ctx, inst,
&audio_regs[inst], &audio_shift, &audio_mask);
}
static struct stream_encoder *dcn10_stream_encoder_create(
enum engine_id eng_id,
struct dc_context *ctx)
{
struct dce110_stream_encoder *enc110 =
dm_alloc(sizeof(struct dce110_stream_encoder));
if (!enc110)
return NULL;
if (dce110_stream_encoder_construct(
enc110, ctx, ctx->dc_bios, eng_id,
&stream_enc_regs[eng_id], &se_shift, &se_mask))
return &enc110->base;
BREAK_TO_DEBUGGER();
dm_free(enc110);
return NULL;
}
static const struct dce_hwseq_registers hwseq_reg = {
HWSEQ_DCN1_REG_LIST()
};
static const struct dce_hwseq_shift hwseq_shift = {
HWSEQ_DCN1_MASK_SH_LIST(__SHIFT)
};
static const struct dce_hwseq_mask hwseq_mask = {
HWSEQ_DCN1_MASK_SH_LIST(_MASK)
};
static struct dce_hwseq *dcn10_hwseq_create(
struct dc_context *ctx)
{
struct dce_hwseq *hws = dm_alloc(sizeof(struct dce_hwseq));
if (hws) {
hws->ctx = ctx;
hws->regs = &hwseq_reg;
hws->shifts = &hwseq_shift;
hws->masks = &hwseq_mask;
}
return hws;
}
static const struct resource_create_funcs res_create_funcs = {
.read_dce_straps = read_dce_straps,
.create_audio = create_audio,
.create_stream_encoder = dcn10_stream_encoder_create,
.create_hwseq = dcn10_hwseq_create,
};
static const struct resource_create_funcs res_create_maximus_funcs = {
.read_dce_straps = NULL,
.create_audio = NULL,
.create_stream_encoder = NULL,
.create_hwseq = dcn10_hwseq_create,
};
void dcn10_clock_source_destroy(struct clock_source **clk_src)
{
dm_free(TO_DCE110_CLK_SRC(*clk_src));
*clk_src = NULL;
}
static void destruct(struct dcn10_resource_pool *pool)
{
unsigned int i;
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL) {
/* TODO: free dcn version of stream encoder once implemented
* rather than using virtual stream encoder
*/
dm_free(pool->base.stream_enc[i]);
pool->base.stream_enc[i] = NULL;
}
}
for (i = 0; i < pool->base.pipe_count; i++) {
if (pool->base.opps[i] != NULL)
pool->base.opps[i]->funcs->opp_destroy(&pool->base.opps[i]);
if (pool->base.transforms[i] != NULL)
dcn10_transform_destroy(&pool->base.transforms[i]);
if (pool->base.ipps[i] != NULL)
pool->base.ipps[i]->funcs->ipp_destroy(&pool->base.ipps[i]);
if (pool->base.mis[i] != NULL) {
dm_free(TO_DCN10_MEM_INPUT(pool->base.mis[i]));
pool->base.mis[i] = NULL;
}
if (pool->base.irqs != NULL) {
dal_irq_service_destroy(&pool->base.irqs);
}
if (pool->base.timing_generators[i] != NULL) {
dm_free(DCN10TG_FROM_TG(pool->base.timing_generators[i]));
pool->base.timing_generators[i] = NULL;
}
}
for (i = 0; i < pool->base.stream_enc_count; i++) {
if (pool->base.stream_enc[i] != NULL)
dm_free(DCE110STRENC_FROM_STRENC(pool->base.stream_enc[i]));
}
for (i = 0; i < pool->base.audio_count; i++) {
if (pool->base.audios[i])
dce_aud_destroy(&pool->base.audios[i]);
}
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] != NULL) {
dcn10_clock_source_destroy(&pool->base.clock_sources[i]);
pool->base.clock_sources[i] = NULL;
}
}
if (pool->base.dp_clock_source != NULL) {
dcn10_clock_source_destroy(&pool->base.dp_clock_source);
pool->base.dp_clock_source = NULL;
}
if (pool->base.mpc != NULL)
dcn10_mpc_destroy(&pool->base.mpc);
if (pool->base.abm != NULL)
dce_abm_destroy(&pool->base.abm);
if (pool->base.dmcu != NULL)
dce_dmcu_destroy(&pool->base.dmcu);
if (pool->base.display_clock != NULL)
dce_disp_clk_destroy(&pool->base.display_clock);
}
static struct mem_input *dcn10_mem_input_create(
struct dc_context *ctx,
uint32_t inst)
{
struct dcn10_mem_input *mem_inputn10 =
dm_alloc(sizeof(struct dcn10_mem_input));
if (!mem_inputn10)
return NULL;
if (dcn10_mem_input_construct(mem_inputn10, ctx, inst,
&mi_regs[inst], &mi_shift, &mi_mask))
return &mem_inputn10->base;
BREAK_TO_DEBUGGER();
dm_free(mem_inputn10);
return NULL;
}
static void get_pixel_clock_parameters(
const struct pipe_ctx *pipe_ctx,
struct pixel_clk_params *pixel_clk_params)
{
const struct core_stream *stream = pipe_ctx->stream;
pixel_clk_params->requested_pix_clk = stream->public.timing.pix_clk_khz;
pixel_clk_params->encoder_object_id = stream->sink->link->link_enc->id;
pixel_clk_params->signal_type = pipe_ctx->stream->signal;
pixel_clk_params->controller_id = pipe_ctx->pipe_idx + 1;
/* TODO: un-hardcode*/
pixel_clk_params->requested_sym_clk = LINK_RATE_LOW *
LINK_RATE_REF_FREQ_IN_KHZ;
pixel_clk_params->flags.ENABLE_SS = 0;
pixel_clk_params->color_depth =
stream->public.timing.display_color_depth;
pixel_clk_params->flags.DISPLAY_BLANKED = 1;
pixel_clk_params->pixel_encoding = stream->public.timing.pixel_encoding;
if (stream->public.timing.pixel_encoding == PIXEL_ENCODING_YCBCR422)
pixel_clk_params->color_depth = COLOR_DEPTH_888;
if (stream->public.timing.pixel_encoding == PIXEL_ENCODING_YCBCR420)
pixel_clk_params->requested_pix_clk /= 2;
if (stream->public.timing. timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING ||
stream->public.timing. timing_3d_format == TIMING_3D_FORMAT_SW_FRAME_PACKING ||
stream->public.timing. timing_3d_format == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA)
pixel_clk_params->requested_pix_clk *= 2;
}
static void build_clamping_params(struct core_stream *stream)
{
stream->clamping.clamping_level = CLAMPING_FULL_RANGE;
stream->clamping.c_depth = stream->public.timing.display_color_depth;
stream->clamping.pixel_encoding = stream->public.timing.pixel_encoding;
}
static enum dc_status build_pipe_hw_param(struct pipe_ctx *pipe_ctx)
{
get_pixel_clock_parameters(pipe_ctx, &pipe_ctx->pix_clk_params);
pipe_ctx->clock_source->funcs->get_pix_clk_dividers(
pipe_ctx->clock_source,
&pipe_ctx->pix_clk_params,
&pipe_ctx->pll_settings);
pipe_ctx->stream->clamping.pixel_encoding = pipe_ctx->stream->public.timing.pixel_encoding;
resource_build_bit_depth_reduction_params(pipe_ctx->stream,
&pipe_ctx->stream->bit_depth_params);
build_clamping_params(pipe_ctx->stream);
return DC_OK;
}
static enum dc_status validate_mapped_resource(
const struct core_dc *dc,
struct validate_context *context)
{
enum dc_status status = DC_OK;
uint8_t i, j;
for (i = 0; i < context->stream_count; i++) {
struct core_stream *stream = context->streams[i];
struct core_link *link = stream->sink->link;
if (resource_is_stream_unchanged(dc->current_context, stream)) {
if (stream != NULL && dc->current_context->streams[i] != NULL) {
/* todo: shouldn't have to copy missing parameter here */
resource_build_bit_depth_reduction_params(stream,
&stream->bit_depth_params);
stream->clamping.pixel_encoding =
stream->public.timing.pixel_encoding;
resource_build_bit_depth_reduction_params(stream,
&stream->bit_depth_params);
build_clamping_params(stream);
continue;
}
}
for (j = 0; j < dc->res_pool->pipe_count ; j++) {
struct pipe_ctx *pipe_ctx =
&context->res_ctx.pipe_ctx[j];
if (context->res_ctx.pipe_ctx[j].stream != stream)
continue;
if (!pipe_ctx->tg->funcs->validate_timing(
pipe_ctx->tg, &stream->public.timing))
return DC_FAIL_CONTROLLER_VALIDATE;
status = build_pipe_hw_param(pipe_ctx);
if (status != DC_OK)
return status;
if (!link->link_enc->funcs->validate_output_with_stream(
link->link_enc, pipe_ctx))
return DC_FAIL_ENC_VALIDATE;
/* TODO: validate audio ASIC caps, encoder */
status = dc_link_validate_mode_timing(
stream, link, &stream->public.timing);
if (status != DC_OK)
return status;
/* do not need to validate non root pipes */
break;
}
}
return DC_OK;
}
enum dc_status dcn10_validate_with_context(
const struct core_dc *dc,
const struct dc_validation_set set[],
int set_count,
struct validate_context *context)
{
enum dc_status result = DC_OK;
int i;
if (set_count == 0)
return result;
for (i = 0; i < set_count; i++) {
context->streams[i] = DC_STREAM_TO_CORE(set[i].stream);
dc_stream_retain(&context->streams[i]->public);
context->stream_count++;
}
result = resource_map_pool_resources(dc, context);
if (result != DC_OK)
return result;
result = resource_map_phy_clock_resources(dc, context);
if (result != DC_OK)
return result;
result = validate_mapped_resource(dc, context);
if (result != DC_OK)
return result;
if (!resource_validate_attach_surfaces(set, set_count,
dc->current_context, context, dc->res_pool))
return DC_FAIL_ATTACH_SURFACES;
result = resource_build_scaling_params_for_context(dc, context);
if (result != DC_OK)
return result;
if (!dcn_validate_bandwidth(dc, context))
return DC_FAIL_BANDWIDTH_VALIDATE;
return result;
}
enum dc_status dcn10_validate_guaranteed(
const struct core_dc *dc,
const struct dc_stream *dc_stream,
struct validate_context *context)
{
enum dc_status result = DC_ERROR_UNEXPECTED;
context->streams[0] = DC_STREAM_TO_CORE(dc_stream);
dc_stream_retain(&context->streams[0]->public);
context->stream_count++;
result = resource_map_pool_resources(dc, context);
if (result == DC_OK)
result = resource_map_phy_clock_resources(dc, context);
if (result == DC_OK)
result = validate_mapped_resource(dc, context);
if (result == DC_OK) {
validate_guaranteed_copy_streams(
context, dc->public.caps.max_streams);
result = resource_build_scaling_params_for_context(dc, context);
}
if (result == DC_OK && !dcn_validate_bandwidth(dc, context))
return DC_FAIL_BANDWIDTH_VALIDATE;
return result;
}
static struct pipe_ctx *dcn10_acquire_idle_pipe_for_layer(
struct validate_context *context,
const struct resource_pool *pool,
struct core_stream *stream)
{
struct resource_context *res_ctx = &context->res_ctx;
struct pipe_ctx *head_pipe = resource_get_head_pipe_for_stream(res_ctx, stream);
struct pipe_ctx *idle_pipe = find_idle_secondary_pipe(res_ctx, pool);
if (!head_pipe)
ASSERT(0);
if (!idle_pipe)
return false;
idle_pipe->stream = head_pipe->stream;
idle_pipe->tg = head_pipe->tg;
idle_pipe->mi = pool->mis[idle_pipe->pipe_idx];
idle_pipe->ipp = pool->ipps[idle_pipe->pipe_idx];
idle_pipe->xfm = pool->transforms[idle_pipe->pipe_idx];
idle_pipe->opp = pool->opps[idle_pipe->pipe_idx];
return idle_pipe;
}
enum dcc_control {
dcc_control__256_256_xxx,
dcc_control__128_128_xxx,
dcc_control__256_64_64,
};
enum segment_order {
segment_order__na,
segment_order__contiguous,
segment_order__non_contiguous,
};
static bool dcc_support_pixel_format(
enum surface_pixel_format format,
unsigned int *bytes_per_element)
{
/* DML: get_bytes_per_element */
switch (format) {
case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
*bytes_per_element = 2;
return true;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
*bytes_per_element = 4;
return true;
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
*bytes_per_element = 8;
return true;
default:
return false;
}
}
static bool dcc_support_swizzle(
enum swizzle_mode_values swizzle,
unsigned int bytes_per_element,
enum segment_order *segment_order_horz,
enum segment_order *segment_order_vert)
{
bool standard_swizzle = false;
bool display_swizzle = false;
switch (swizzle) {
case DC_SW_4KB_S:
case DC_SW_64KB_S:
case DC_SW_VAR_S:
case DC_SW_4KB_S_X:
case DC_SW_64KB_S_X:
case DC_SW_VAR_S_X:
standard_swizzle = true;
break;
case DC_SW_4KB_D:
case DC_SW_64KB_D:
case DC_SW_VAR_D:
case DC_SW_4KB_D_X:
case DC_SW_64KB_D_X:
case DC_SW_VAR_D_X:
display_swizzle = true;
break;
default:
break;
};
if (bytes_per_element == 1 && standard_swizzle) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__na;
return true;
}
if (bytes_per_element == 2 && standard_swizzle) {
*segment_order_horz = segment_order__non_contiguous;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 4 && standard_swizzle) {
*segment_order_horz = segment_order__non_contiguous;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 8 && standard_swizzle) {
*segment_order_horz = segment_order__na;
*segment_order_vert = segment_order__contiguous;
return true;
}
if (bytes_per_element == 8 && display_swizzle) {
*segment_order_horz = segment_order__contiguous;
*segment_order_vert = segment_order__non_contiguous;
return true;
}
return false;
}
static void get_blk256_size(unsigned int *blk256_width, unsigned int *blk256_height,
unsigned int bytes_per_element)
{
/* copied from DML. might want to refactor DML to leverage from DML */
/* DML : get_blk256_size */
if (bytes_per_element == 1) {
*blk256_width = 16;
*blk256_height = 16;
} else if (bytes_per_element == 2) {
*blk256_width = 16;
*blk256_height = 8;
} else if (bytes_per_element == 4) {
*blk256_width = 8;
*blk256_height = 8;
} else if (bytes_per_element == 8) {
*blk256_width = 8;
*blk256_height = 4;
}
}
static void det_request_size(
unsigned int height,
unsigned int width,
unsigned int bpe,
bool *req128_horz_wc,
bool *req128_vert_wc)
{
unsigned int detile_buf_size = 164 * 1024; /* 164KB for DCN1.0 */
unsigned int blk256_height = 0;
unsigned int blk256_width = 0;
unsigned int swath_bytes_horz_wc, swath_bytes_vert_wc;
get_blk256_size(&blk256_width, &blk256_height, bpe);
swath_bytes_horz_wc = height * blk256_height * bpe;
swath_bytes_vert_wc = width * blk256_width * bpe;
*req128_horz_wc = (2 * swath_bytes_horz_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
*req128_vert_wc = (2 * swath_bytes_vert_wc <= detile_buf_size) ?
false : /* full 256B request */
true; /* half 128b request */
}
static bool get_dcc_compression_cap(const struct dc *dc,
const struct dc_dcc_surface_param *input,
struct dc_surface_dcc_cap *output)
{
/* implement section 1.6.2.1 of DCN1_Programming_Guide.docx */
enum dcc_control dcc_control;
unsigned int bpe;
enum segment_order segment_order_horz, segment_order_vert;
bool req128_horz_wc, req128_vert_wc;
memset(output, 0, sizeof(*output));
if (dc->debug.disable_dcc)
return false;
if (!dcc_support_pixel_format(input->format,
&bpe))
return false;
if (!dcc_support_swizzle(input->swizzle_mode, bpe,
&segment_order_horz, &segment_order_vert))
return false;
det_request_size(input->surface_size.height, input->surface_size.width,
bpe, &req128_horz_wc, &req128_vert_wc);
if (!req128_horz_wc && !req128_vert_wc) {
dcc_control = dcc_control__256_256_xxx;
} else if (input->scan == SCAN_DIRECTION_HORIZONTAL) {
if (!req128_horz_wc)
dcc_control = dcc_control__256_256_xxx;
else if (segment_order_horz == segment_order__contiguous)
dcc_control = dcc_control__128_128_xxx;
else
dcc_control = dcc_control__256_64_64;
} else if (input->scan == SCAN_DIRECTION_VERTICAL) {
if (!req128_vert_wc)
dcc_control = dcc_control__256_256_xxx;
else if (segment_order_vert == segment_order__contiguous)
dcc_control = dcc_control__128_128_xxx;
else
dcc_control = dcc_control__256_64_64;
} else {
if ((req128_horz_wc &&
segment_order_horz == segment_order__non_contiguous) ||
(req128_vert_wc &&
segment_order_vert == segment_order__non_contiguous))
/* access_dir not known, must use most constraining */
dcc_control = dcc_control__256_64_64;
else
/* reg128 is true for either horz and vert
* but segment_order is contiguous
*/
dcc_control = dcc_control__128_128_xxx;
}
switch (dcc_control) {
case dcc_control__256_256_xxx:
output->grph.rgb.max_uncompressed_blk_size = 256;
output->grph.rgb.max_compressed_blk_size = 256;
output->grph.rgb.independent_64b_blks = false;
break;
case dcc_control__128_128_xxx:
output->grph.rgb.max_uncompressed_blk_size = 128;
output->grph.rgb.max_compressed_blk_size = 128;
output->grph.rgb.independent_64b_blks = false;
break;
case dcc_control__256_64_64:
output->grph.rgb.max_uncompressed_blk_size = 256;
output->grph.rgb.max_compressed_blk_size = 64;
output->grph.rgb.independent_64b_blks = true;
break;
}
output->capable = true;
output->const_color_support = false;
return true;
}
static void dcn10_destroy_resource_pool(struct resource_pool **pool)
{
struct dcn10_resource_pool *dcn10_pool = TO_DCN10_RES_POOL(*pool);
destruct(dcn10_pool);
dm_free(dcn10_pool);
*pool = NULL;
}
static struct dc_cap_funcs cap_funcs = {
.get_dcc_compression_cap = get_dcc_compression_cap
};
static struct resource_funcs dcn10_res_pool_funcs = {
.destroy = dcn10_destroy_resource_pool,
.link_enc_create = dcn10_link_encoder_create,
.validate_with_context = dcn10_validate_with_context,
.validate_guaranteed = dcn10_validate_guaranteed,
.validate_bandwidth = dcn_validate_bandwidth,
.acquire_idle_pipe_for_layer = dcn10_acquire_idle_pipe_for_layer,
};
static bool construct(
uint8_t num_virtual_links,
struct core_dc *dc,
struct dcn10_resource_pool *pool)
{
int i;
struct dc_context *ctx = dc->ctx;
ctx->dc_bios->regs = &bios_regs;
pool->base.res_cap = &res_cap;
pool->base.funcs = &dcn10_res_pool_funcs;
/*
* TODO fill in from actual raven resource when we create
* more than virtual encoder
*/
/*************************************************
* Resource + asic cap harcoding *
*************************************************/
pool->base.underlay_pipe_index = NO_UNDERLAY_PIPE;
/* TODO: Hardcode to correct number of functional controllers */
pool->base.pipe_count = 4;
dc->public.caps.max_downscale_ratio = 200;
dc->public.caps.i2c_speed_in_khz = 100;
dc->public.caps.max_cursor_size = 256;
if (dc->ctx->dce_environment == DCE_ENV_PRODUCTION_DRV)
dc->public.debug = debug_defaults_drv;
else
dc->public.debug = debug_defaults_diags;
/*************************************************
* Create resources *
*************************************************/
pool->base.clock_sources[DCN10_CLK_SRC_PLL0] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL0,
&clk_src_regs[0], false);
pool->base.clock_sources[DCN10_CLK_SRC_PLL1] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL1,
&clk_src_regs[1], false);
pool->base.clock_sources[DCN10_CLK_SRC_PLL2] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL2,
&clk_src_regs[2], false);
pool->base.clock_sources[DCN10_CLK_SRC_PLL3] =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_COMBO_PHY_PLL3,
&clk_src_regs[3], false);
pool->base.clk_src_count = DCN10_CLK_SRC_TOTAL;
pool->base.dp_clock_source =
dcn10_clock_source_create(ctx, ctx->dc_bios,
CLOCK_SOURCE_ID_DP_DTO,
/* todo: not reuse phy_pll registers */
&clk_src_regs[0], true);
for (i = 0; i < pool->base.clk_src_count; i++) {
if (pool->base.clock_sources[i] == NULL) {
dm_error("DC: failed to create clock sources!\n");
BREAK_TO_DEBUGGER();
goto clock_source_create_fail;
}
}
if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) {
pool->base.display_clock = dce120_disp_clk_create(ctx,
&disp_clk_regs,
&disp_clk_shift,
&disp_clk_mask);
if (pool->base.display_clock == NULL) {
dm_error("DC: failed to create display clock!\n");
BREAK_TO_DEBUGGER();
goto disp_clk_create_fail;
}
}
pool->base.dmcu = dcn10_dmcu_create(ctx,
&dmcu_regs,
&dmcu_shift,
&dmcu_mask);
if (pool->base.dmcu == NULL) {
dm_error("DC: failed to create dmcu!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
pool->base.abm = dce_abm_create(ctx,
&abm_regs,
&abm_shift,
&abm_mask);
if (pool->base.abm == NULL) {
dm_error("DC: failed to create abm!\n");
BREAK_TO_DEBUGGER();
goto res_create_fail;
}
dml_init_instance(&dc->dml, DML_PROJECT_RAVEN1);
dc->dcn_ip = dcn10_ip_defaults;
dc->dcn_soc = dcn10_soc_defaults;
if (!dc->public.debug.disable_pplib_clock_request)
dcn_bw_update_from_pplib(dc);
dcn_bw_sync_calcs_and_dml(dc);
if (!dc->public.debug.disable_pplib_wm_range)
dcn_bw_notify_pplib_of_wm_ranges(dc);
{
#if defined(CONFIG_DRM_AMD_DC_DCN1_0)
struct irq_service_init_data init_data;
init_data.ctx = dc->ctx;
pool->base.irqs = dal_irq_service_dcn10_create(&init_data);
if (!pool->base.irqs)
goto irqs_create_fail;
#endif
}
/* mem input -> ipp -> transform -> opp -> TG */
for (i = 0; i < pool->base.pipe_count; i++) {
pool->base.mis[i] = dcn10_mem_input_create(ctx, i);
if (pool->base.mis[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create memory input!\n");
goto mi_create_fail;
}
pool->base.ipps[i] = dcn10_ipp_create(ctx, i);
if (pool->base.ipps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create input pixel processor!\n");
goto ipp_create_fail;
}
pool->base.transforms[i] = dcn10_transform_create(ctx, i);
if (pool->base.transforms[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create transform!\n");
goto transform_create_fail;
}
pool->base.opps[i] = dcn10_opp_create(ctx, i);
if (pool->base.opps[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error(
"DC: failed to create output pixel processor!\n");
goto opp_create_fail;
}
pool->base.timing_generators[i] = dcn10_timing_generator_create(
ctx, i);
if (pool->base.timing_generators[i] == NULL) {
BREAK_TO_DEBUGGER();
dm_error("DC: failed to create tg!\n");
goto otg_create_fail;
}
}
pool->base.mpc = dcn10_mpc_create(ctx);
if (!resource_construct(num_virtual_links, dc, &pool->base,
(!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment) ?
&res_create_funcs : &res_create_maximus_funcs)))
goto res_create_fail;
dcn10_hw_sequencer_construct(dc);
dc->public.caps.max_surfaces = pool->base.pipe_count;
dc->public.cap_funcs = cap_funcs;
return true;
disp_clk_create_fail:
otg_create_fail:
opp_create_fail:
transform_create_fail:
ipp_create_fail:
mi_create_fail:
irqs_create_fail:
res_create_fail:
clock_source_create_fail:
destruct(pool);
return false;
}
struct resource_pool *dcn10_create_resource_pool(
uint8_t num_virtual_links,
struct core_dc *dc)
{
struct dcn10_resource_pool *pool =
dm_alloc(sizeof(struct dcn10_resource_pool));
if (!pool)
return NULL;
if (construct(num_virtual_links, dc, pool))
return &pool->base;
BREAK_TO_DEBUGGER();
return NULL;
}
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_RESOURCE_DCN10_H__
#define __DC_RESOURCE_DCN10_H__
#include "core_types.h"
#define TO_DCN10_RES_POOL(pool)\
container_of(pool, struct dcn10_resource_pool, base)
struct core_dc;
struct resource_pool;
struct _vcs_dpi_display_pipe_params_st;
struct dcn10_resource_pool {
struct resource_pool base;
};
struct resource_pool *dcn10_create_resource_pool(
uint8_t num_virtual_links,
struct core_dc *dc);
#endif /* __DC_RESOURCE_DCN10_H__ */
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "reg_helper.h"
#include "dcn10_timing_generator.h"
#define REG(reg)\
tgn10->tg_regs->reg
#define CTX \
tgn10->base.ctx
#undef FN
#define FN(reg_name, field_name) \
tgn10->tg_shift->field_name, tgn10->tg_mask->field_name
#define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
/**
* apply_front_porch_workaround TODO FPGA still need?
*
* This is a workaround for a bug that has existed since R5xx and has not been
* fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
*/
static void tg_apply_front_porch_workaround(
struct timing_generator *tg,
struct dc_crtc_timing *timing)
{
if (timing->flags.INTERLACE == 1) {
if (timing->v_front_porch < 2)
timing->v_front_porch = 2;
} else {
if (timing->v_front_porch < 1)
timing->v_front_porch = 1;
}
}
static void dcn10_program_global_sync(
struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
if (tg->dlg_otg_param.vstartup_start == 0) {
BREAK_TO_DEBUGGER();
return;
}
REG_SET(OTG_VSTARTUP_PARAM, 0,
VSTARTUP_START, tg->dlg_otg_param.vstartup_start);
REG_SET_2(OTG_VUPDATE_PARAM, 0,
VUPDATE_OFFSET, tg->dlg_otg_param.vupdate_offset,
VUPDATE_WIDTH, tg->dlg_otg_param.vupdate_width);
REG_SET(OTG_VREADY_PARAM, 0,
VREADY_OFFSET, tg->dlg_otg_param.vready_offset);
}
struct crtc_stereo_flags {
uint8_t PROGRAM_STEREO :1;
uint8_t PROGRAM_POLARITY :1;
uint8_t RIGHT_EYE_POLARITY :1;
uint8_t FRAME_PACKED :1;
uint8_t DISABLE_STEREO_DP_SYNC :1;
};
static void dcn10_enable_stereo(struct timing_generator *tg,
const struct crtc_stereo_flags *flags,
const struct dc_crtc_timing *timing)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
uint32_t active_width = timing->h_addressable;
uint32_t space1_size = timing->v_total - timing->v_addressable;
if (flags) {
uint32_t stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
if (flags->PROGRAM_STEREO)
REG_UPDATE_3(OTG_STEREO_CONTROL,
OTG_STEREO_EN, stereo_en,
OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
if (flags->PROGRAM_POLARITY)
REG_UPDATE(OTG_STEREO_CONTROL,
OTG_STEREO_EYE_FLAG_POLARITY,
flags->RIGHT_EYE_POLARITY == 0 ? 0:1);
if (flags->DISABLE_STEREO_DP_SYNC)
REG_UPDATE(OTG_STEREO_CONTROL,
OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
if (flags->PROGRAM_STEREO && flags->FRAME_PACKED)
REG_UPDATE_3(OTG_3D_STRUCTURE_CONTROL,
OTG_3D_STRUCTURE_EN, 1,
OTG_3D_STRUCTURE_V_UPDATE_MODE, 1,
OTG_3D_STRUCTURE_STEREO_SEL_OVR, 1);
}
REG_UPDATE(OPPBUF_CONTROL,
OPPBUF_ACTIVE_WIDTH, active_width);
REG_UPDATE(OPPBUF_3D_PARAMETERS_0,
OPPBUF_3D_VACT_SPACE1_SIZE, space1_size);
return;
}
static void dcn10_disable_stereo(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_SET(OTG_STEREO_CONTROL, 0,
OTG_STEREO_EN, 0);
REG_SET_3(OTG_3D_STRUCTURE_CONTROL, 0,
OTG_3D_STRUCTURE_EN, 0,
OTG_3D_STRUCTURE_V_UPDATE_MODE, 0,
OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
REG_UPDATE(OPPBUF_CONTROL,
OPPBUF_ACTIVE_WIDTH, 0);
REG_UPDATE(OPPBUF_3D_PARAMETERS_0,
OPPBUF_3D_VACT_SPACE1_SIZE, 0);
return;
}
static bool is_frame_alternate_stereo(enum dc_timing_3d_format fmt)
{
bool ret = false;
if (fmt == TIMING_3D_FORMAT_FRAME_ALTERNATE ||
fmt == TIMING_3D_FORMAT_INBAND_FA ||
fmt == TIMING_3D_FORMAT_DP_HDMI_INBAND_FA ||
fmt == TIMING_3D_FORMAT_SIDEBAND_FA)
ret = true;
return ret;
}
static void dcn10_do_stereo(struct timing_generator *tg,
const struct dc_crtc_timing *dc_crtc_timing)
{
struct crtc_stereo_flags stereo_flags = {0};
if (dc_crtc_timing->timing_3d_format == TIMING_3D_FORMAT_NONE ||
dc_crtc_timing->timing_3d_format == TIMING_3D_FORMAT_SIDE_BY_SIDE ||
dc_crtc_timing->timing_3d_format == TIMING_3D_FORMAT_TOP_AND_BOTTOM)
dcn10_disable_stereo(tg);
else {
stereo_flags.PROGRAM_STEREO = 1;
stereo_flags.PROGRAM_POLARITY = 1;
stereo_flags.DISABLE_STEREO_DP_SYNC = 0;
stereo_flags.RIGHT_EYE_POLARITY =
dc_crtc_timing->flags.RIGHT_EYE_3D_POLARITY;
if (dc_crtc_timing->timing_3d_format ==
TIMING_3D_FORMAT_HW_FRAME_PACKING)
stereo_flags.FRAME_PACKED = 1;
if (is_frame_alternate_stereo(
dc_crtc_timing->timing_3d_format) ||
dc_crtc_timing->timing_3d_format ==
TIMING_3D_FORMAT_HW_FRAME_PACKING)
dcn10_enable_stereo(tg, &stereo_flags, dc_crtc_timing);
}
}
/**
* program_timing_generator used by mode timing set
* Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
* Including SYNC. Call BIOS command table to program Timings.
*/
static void tg_program_timing_generator(
struct timing_generator *tg,
const struct dc_crtc_timing *dc_crtc_timing)
{
struct dc_crtc_timing patched_crtc_timing;
uint32_t vesa_sync_start;
uint32_t asic_blank_end;
uint32_t asic_blank_start;
uint32_t v_total;
uint32_t v_sync_end;
uint32_t v_init, v_fp2;
uint32_t h_sync_polarity, v_sync_polarity;
uint32_t interlace_factor;
uint32_t start_point = 0;
uint32_t field_num = 0;
uint32_t h_div_2;
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
patched_crtc_timing = *dc_crtc_timing;
tg_apply_front_porch_workaround(tg, &patched_crtc_timing);
/* Load horizontal timing */
/* CRTC_H_TOTAL = vesa.h_total - 1 */
REG_SET(OTG_H_TOTAL, 0,
OTG_H_TOTAL, patched_crtc_timing.h_total - 1);
/* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
REG_UPDATE_2(OTG_H_SYNC_A,
OTG_H_SYNC_A_START, 0,
OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
/* asic_h_blank_end = HsyncWidth + HbackPorch =
* vesa. usHorizontalTotal - vesa. usHorizontalSyncStart -
* vesa.h_left_border
*/
vesa_sync_start = patched_crtc_timing.h_addressable +
patched_crtc_timing.h_border_right +
patched_crtc_timing.h_front_porch;
asic_blank_end = patched_crtc_timing.h_total -
vesa_sync_start -
patched_crtc_timing.h_border_left;
/* h_blank_start = v_blank_end + v_active */
asic_blank_start = asic_blank_end +
patched_crtc_timing.h_border_left +
patched_crtc_timing.h_addressable +
patched_crtc_timing.h_border_right;
REG_UPDATE_2(OTG_H_BLANK_START_END,
OTG_H_BLANK_START, asic_blank_start,
OTG_H_BLANK_END, asic_blank_end);
/* h_sync polarity */
h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
0 : 1;
REG_UPDATE(OTG_H_SYNC_A_CNTL,
OTG_H_SYNC_A_POL, h_sync_polarity);
/* Load vertical timing */
/* CRTC_V_TOTAL = v_total - 1 */
if (patched_crtc_timing.flags.INTERLACE) {
interlace_factor = 2;
v_total = 2 * patched_crtc_timing.v_total;
} else {
interlace_factor = 1;
v_total = patched_crtc_timing.v_total - 1;
}
REG_SET(OTG_V_TOTAL, 0,
OTG_V_TOTAL, v_total);
/* v_sync_start = 0, v_sync_end = v_sync_width */
v_sync_end = patched_crtc_timing.v_sync_width * interlace_factor;
REG_UPDATE_2(OTG_V_SYNC_A,
OTG_V_SYNC_A_START, 0,
OTG_V_SYNC_A_END, v_sync_end);
vesa_sync_start = patched_crtc_timing.v_addressable +
patched_crtc_timing.v_border_bottom +
patched_crtc_timing.v_front_porch;
asic_blank_end = (patched_crtc_timing.v_total -
vesa_sync_start -
patched_crtc_timing.v_border_top)
* interlace_factor;
/* v_blank_start = v_blank_end + v_active */
asic_blank_start = asic_blank_end +
(patched_crtc_timing.v_border_top +
patched_crtc_timing.v_addressable +
patched_crtc_timing.v_border_bottom)
* interlace_factor;
REG_UPDATE_2(OTG_V_BLANK_START_END,
OTG_V_BLANK_START, asic_blank_start,
OTG_V_BLANK_END, asic_blank_end);
/* v_sync polarity */
v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
0 : 1;
REG_UPDATE(OTG_V_SYNC_A_CNTL,
OTG_V_SYNC_A_POL, v_sync_polarity);
v_init = asic_blank_start;
if (tg->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT ||
tg->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
tg->dlg_otg_param.signal == SIGNAL_TYPE_EDP) {
v_init = asic_blank_start;
start_point = 1;
if (patched_crtc_timing.flags.INTERLACE == 1)
field_num = 1;
}
if (v_init < 0)
v_init = 0;
v_fp2 = 0;
if (tg->dlg_otg_param.vstartup_start > asic_blank_end)
v_fp2 = tg->dlg_otg_param.vstartup_start > asic_blank_end;
/* Interlace */
if (patched_crtc_timing.flags.INTERLACE == 1) {
REG_UPDATE(OTG_INTERLACE_CONTROL,
OTG_INTERLACE_ENABLE, 1);
v_init = v_init / 2;
if ((tg->dlg_otg_param.vstartup_start/2)*2 > asic_blank_end)
v_fp2 = v_fp2 / 2;
}
else
REG_UPDATE(OTG_INTERLACE_CONTROL,
OTG_INTERLACE_ENABLE, 0);
/* VTG enable set to 0 first VInit */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 0);
REG_UPDATE_2(CONTROL,
VTG0_FP2, v_fp2,
VTG0_VCOUNT_INIT, v_init);
/* original code is using VTG offset to address OTG reg, seems wrong */
REG_UPDATE_2(OTG_CONTROL,
OTG_START_POINT_CNTL, start_point,
OTG_FIELD_NUMBER_CNTL, field_num);
dcn10_program_global_sync(tg);
/* TODO
* patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
* program_horz_count_by_2
* for DVI 30bpp mode, 0 otherwise
* program_horz_count_by_2(tg, &patched_crtc_timing);
*/
/* Enable stereo - only when we need to pack 3D frame. Other types
* of stereo handled in explicit call
*/
h_div_2 = (dc_crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) ?
1 : 0;
REG_UPDATE(OTG_H_TIMING_CNTL,
OTG_H_TIMING_DIV_BY2, h_div_2);
/* Enable crtc stereo frame pack tested... todo more
*/
dcn10_do_stereo(tg, &patched_crtc_timing);
}
/** tg_program_blanking
* Only programmed part of OTG_H, OTG_V register for set_plane_config
* Assume other OTG registers are programmed by video mode set already.
* This function is for underlay. DCN will have new sequence.
* This function will be removed. Need remove it from set_plane_config
*/
static void tg_program_timing(struct timing_generator *tg,
const struct dc_crtc_timing *timing,
bool use_vbios)
{
tg_program_timing_generator(tg, timing);
}
/**
* unblank_crtc
* Call ASIC Control Object to UnBlank CRTC.
*/
static void tg_unblank_crtc(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_UPDATE_2(OTG_BLANK_CONTROL,
OTG_BLANK_DATA_EN, 0,
OTG_BLANK_DE_MODE, 0);
}
/**
* blank_crtc
* Call ASIC Control Object to Blank CRTC.
*/
static void tg_blank_crtc(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_UPDATE_2(OTG_BLANK_CONTROL,
OTG_BLANK_DATA_EN, 1,
OTG_BLANK_DE_MODE, 0);
/* todo: why are we waiting for BLANK_DATA_EN? shouldn't we be waiting
* for status?
*/
REG_WAIT(OTG_BLANK_CONTROL,
OTG_BLANK_DATA_EN, 1,
20000, 200000);
REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
OTG_BLANK_DATA_DOUBLE_BUFFER_EN, 0);
}
static void tg_set_blank(struct timing_generator *tg,
bool enable_blanking)
{
if (enable_blanking)
tg_blank_crtc(tg);
else
tg_unblank_crtc(tg);
}
static bool tg_is_blanked(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
uint32_t blank_en;
uint32_t blank_state;
REG_GET_2(OTG_BLANK_CONTROL,
OTG_BLANK_DATA_EN, &blank_en,
OTG_CURRENT_BLANK_STATE, &blank_state);
return blank_en && blank_state;
}
static void enable_optc_clock(struct timing_generator *tg, bool enable)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
if (enable) {
REG_UPDATE(OPTC_INPUT_CLOCK_CONTROL,
OPTC_INPUT_CLK_EN, 1);
REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
OPTC_INPUT_CLK_ON, 1,
20000, 200000);
/* Enable clock */
REG_UPDATE(OTG_CLOCK_CONTROL,
OTG_CLOCK_EN, 1);
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_CLOCK_ON, 1,
20000, 200000);
} else {
REG_UPDATE_2(OTG_CLOCK_CONTROL,
OTG_CLOCK_GATE_DIS, 0,
OTG_CLOCK_EN, 0);
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_CLOCK_ON, 0,
20000, 200000);
REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
OPTC_INPUT_CLK_GATE_DIS, 0,
OPTC_INPUT_CLK_EN, 0);
REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
OPTC_INPUT_CLK_ON, 0,
20000, 200000);
}
}
/**
* Enable CRTC
* Enable CRTC - call ASIC Control Object to enable Timing generator.
*/
static bool tg_enable_crtc(struct timing_generator *tg)
{
/* TODO FPGA wait for answer
* OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
* OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
*/
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
/* opp instance for OTG. For DCN1.0, ODM is remoed.
* OPP and OPTC should 1:1 mapping
*/
REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
OPTC_SRC_SEL, tg->inst);
/* VTG enable first is for HW workaround */
REG_UPDATE(CONTROL,
VTG0_ENABLE, 1);
/* Enable CRTC */
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 3,
OTG_MASTER_EN, 1);
return true;
}
/* disable_crtc - call ASIC Control Object to disable Timing generator. */
static bool tg_disable_crtc(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
/* disable otg request until end of the first line
* in the vertical blank region
*/
REG_UPDATE_2(OTG_CONTROL,
OTG_DISABLE_POINT_CNTL, 3,
OTG_MASTER_EN, 0);
REG_UPDATE(CONTROL,
VTG0_ENABLE, 0);
/* CRTC disabled, so disable clock. */
REG_WAIT(OTG_CLOCK_CONTROL,
OTG_BUSY, 0,
2000, 20000);
return true;
}
static void tg_program_blank_color(
struct timing_generator *tg,
const struct tg_color *black_color)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_SET_3(OTG_BLACK_COLOR, 0,
OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
}
/**
* dcn10_dcn10_timing_generator_disable_vga
* Turn OFF VGA Mode and Timing - DxVGA_CONTROL
* VGA Mode and VGA Timing is used by VBIOS on CRT Monitors;
*/
/* TODO FPGA FPGA setup is done by Diag which does not enable VGA mode.
* VGA is disable by ASIC default. This function is not needed for
* FPGA story.
* usage:
* init_hw within dc.c
* disable_vga_and_power_gate_all_controllers within dce110_hw_sequencer.c
* We may move init_hw into DC specific so that we can remove
* .disable_vga from upper layer stack
*/
static void dcn10_timing_generator_disable_vga(
struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
switch (tgn10->base.inst) {
case 0:
REG_WRITE(D1VGA_CONTROL, 0);
break;
case 1:
REG_WRITE(D2VGA_CONTROL, 0);
break;
case 2:
REG_WRITE(D2VGA_CONTROL, 0);
break;
case 3:
REG_WRITE(D4VGA_CONTROL, 0);
break;
default:
break;
}
}
static bool tg_validate_timing(
struct timing_generator *tg,
const struct dc_crtc_timing *timing)
{
uint32_t interlace_factor;
uint32_t v_blank;
uint32_t h_blank;
uint32_t min_v_blank;
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
ASSERT(timing != NULL);
interlace_factor = timing->flags.INTERLACE ? 2 : 1;
v_blank = (timing->v_total - timing->v_addressable -
timing->v_border_top - timing->v_border_bottom) *
interlace_factor;
h_blank = (timing->h_total - timing->h_addressable -
timing->h_border_right -
timing->h_border_left);
if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE)
return false;
/* Temporarily blocking interlacing mode until it's supported */
if (timing->flags.INTERLACE == 1)
return false;
/* Check maximum number of pixels supported by Timing Generator
* (Currently will never fail, in order to fail needs display which
* needs more than 8192 horizontal and
* more than 8192 vertical total pixels)
*/
if (timing->h_total > tgn10->max_h_total ||
timing->v_total > tgn10->max_v_total)
return false;
if (h_blank < tgn10->min_h_blank)
return false;
if (timing->h_sync_width < tgn10->min_h_sync_width ||
timing->v_sync_width < tgn10->min_v_sync_width)
return false;
min_v_blank = timing->flags.INTERLACE?tgn10->min_v_blank_interlace:tgn10->min_v_blank;
if (v_blank < min_v_blank)
return false;
return true;
}
/*
* get_vblank_counter
*
* @brief
* Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
* holds the counter of frames.
*
* @param
* struct timing_generator *tg - [in] timing generator which controls the
* desired CRTC
*
* @return
* Counter of frames, which should equal to number of vblanks.
*/
static uint32_t tg_get_vblank_counter(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
uint32_t frame_count;
REG_GET(OTG_STATUS_FRAME_COUNT,
OTG_FRAME_COUNT, &frame_count);
return frame_count;
}
void dcn10_lock(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 1);
}
void dcn10_unlock(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
OTG_MASTER_UPDATE_LOCK, 0);
/* why are we waiting here? */
REG_WAIT(OTG_DOUBLE_BUFFER_CONTROL,
OTG_UPDATE_PENDING, 0,
20000, 200000);
}
static void dcn10_get_position(struct timing_generator *tg,
struct crtc_position *position)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_GET_2(OTG_STATUS_POSITION,
OTG_HORZ_COUNT, &position->horizontal_count,
OTG_VERT_COUNT, &position->vertical_count);
REG_GET(OTG_NOM_VERT_POSITION,
OTG_VERT_COUNT_NOM, &position->nominal_vcount);
}
bool dcn10_is_counter_moving(struct timing_generator *tg)
{
struct crtc_position position1, position2;
tg->funcs->get_position(tg, &position1);
tg->funcs->get_position(tg, &position2);
if (position1.horizontal_count == position2.horizontal_count &&
position1.vertical_count == position2.vertical_count)
return false;
else
return true;
}
static bool dcn10_did_triggered_reset_occur(
struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
uint32_t occurred;
REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
OTG_FORCE_COUNT_NOW_OCCURRED, &occurred);
return occurred != 0;
}
static void dcn10_enable_reset_trigger(struct timing_generator *tg, int source_tg_inst)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
uint32_t falling_edge;
REG_GET(OTG_V_SYNC_A_CNTL,
OTG_V_SYNC_A_POL, &falling_edge);
if (falling_edge)
REG_SET_3(OTG_TRIGA_CNTL, 0,
/* vsync signal from selected OTG pipe based
* on OTG_TRIG_SOURCE_PIPE_SELECT setting
*/
OTG_TRIGA_SOURCE_SELECT, 20,
OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
/* always detect falling edge */
OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
else
REG_SET_3(OTG_TRIGA_CNTL, 0,
/* vsync signal from selected OTG pipe based
* on OTG_TRIG_SOURCE_PIPE_SELECT setting
*/
OTG_TRIGA_SOURCE_SELECT, 20,
OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
/* always detect rising edge */
OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
/* force H count to H_TOTAL and V count to V_TOTAL in
* progressive mode and V_TOTAL-1 in interlaced mode
*/
OTG_FORCE_COUNT_NOW_MODE, 2);
}
static void dcn10_disable_reset_trigger(struct timing_generator *tg)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
REG_WRITE(OTG_TRIGA_CNTL, 0);
REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
OTG_FORCE_COUNT_NOW_CLEAR, 1);
}
static void dcn10_wait_for_state(struct timing_generator *tg,
enum crtc_state state)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
switch (state) {
case CRTC_STATE_VBLANK:
REG_WAIT(OTG_STATUS,
OTG_V_BLANK, 1,
100, 100000); /* 1 vupdate at 10hz */
break;
case CRTC_STATE_VACTIVE:
REG_WAIT(OTG_STATUS,
OTG_V_ACTIVE_DISP, 1,
100, 100000); /* 1 vupdate at 10hz */
break;
default:
break;
}
}
static void set_early_control(
struct timing_generator *tg,
uint32_t early_cntl)
{
/* asic design change, do not need this control
* empty for share caller logic
*/
}
static void set_static_screen_control(
struct timing_generator *tg,
uint32_t value)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
/* Bit 8 is no longer applicable in RV for PSR case,
* set bit 8 to 0 if given
*/
if ((value & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
!= 0)
value = value &
~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
OTG_STATIC_SCREEN_EVENT_MASK, value,
OTG_STATIC_SCREEN_FRAME_COUNT, 2);
}
/**
*****************************************************************************
* Function: set_drr
*
* @brief
* Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
*
*****************************************************************************
*/
void dcn10_timing_generator_set_drr(
struct timing_generator *tg,
const struct drr_params *params)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
if (params != NULL &&
params->vertical_total_max > 0 &&
params->vertical_total_min > 0) {
REG_SET(OTG_V_TOTAL_MAX, 0,
OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
REG_SET(OTG_V_TOTAL_MIN, 0,
OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
OTG_V_TOTAL_MIN_SEL, 1,
OTG_V_TOTAL_MAX_SEL, 1,
OTG_FORCE_LOCK_ON_EVENT, 0,
OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
OTG_SET_V_TOTAL_MIN_MASK, 0);
} else {
REG_SET(OTG_V_TOTAL_MIN, 0,
OTG_V_TOTAL_MIN, 0);
REG_SET(OTG_V_TOTAL_MAX, 0,
OTG_V_TOTAL_MAX, 0);
REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
OTG_SET_V_TOTAL_MIN_MASK, 0,
OTG_V_TOTAL_MIN_SEL, 0,
OTG_V_TOTAL_MAX_SEL, 0,
OTG_FORCE_LOCK_ON_EVENT, 0);
}
}
static void dcn10_timing_generator_set_test_pattern(
struct timing_generator *tg,
/* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
* because this is not DP-specific (which is probably somewhere in DP
* encoder) */
enum controller_dp_test_pattern test_pattern,
enum dc_color_depth color_depth)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
enum test_pattern_color_format bit_depth;
enum test_pattern_dyn_range dyn_range;
enum test_pattern_mode mode;
uint32_t pattern_mask;
uint32_t pattern_data;
/* color ramp generator mixes 16-bits color */
uint32_t src_bpc = 16;
/* requested bpc */
uint32_t dst_bpc;
uint32_t index;
/* RGB values of the color bars.
* Produce two RGB colors: RGB0 - white (all Fs)
* and RGB1 - black (all 0s)
* (three RGB components for two colors)
*/
uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
0x0000, 0x0000};
/* dest color (converted to the specified color format) */
uint16_t dst_color[6];
uint32_t inc_base;
/* translate to bit depth */
switch (color_depth) {
case COLOR_DEPTH_666:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
break;
case COLOR_DEPTH_888:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
case COLOR_DEPTH_101010:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
break;
case COLOR_DEPTH_121212:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
break;
default:
bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
break;
}
switch (test_pattern) {
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
{
dyn_range = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
TEST_PATTERN_DYN_RANGE_CEA :
TEST_PATTERN_DYN_RANGE_VESA);
mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_VRES, 6,
OTG_TEST_PATTERN_HRES, 6);
REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
OTG_TEST_PATTERN_EN, 1,
OTG_TEST_PATTERN_MODE, mode,
OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
{
mode = (test_pattern ==
CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
TEST_PATTERN_MODE_VERTICALBARS :
TEST_PATTERN_MODE_HORIZONTALBARS);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* adjust color to the required colorFormat */
for (index = 0; index < 6; index++) {
/* dst = 2^dstBpc * src / 2^srcBpc = src >>
* (srcBpc - dstBpc);
*/
dst_color[index] =
src_color[index] >> (src_bpc - dst_bpc);
/* CRTC_TEST_PATTERN_DATA has 16 bits,
* lowest 6 are hardwired to ZERO
* color bits should be left aligned aligned to MSB
* XXXXXXXXXX000000 for 10 bit,
* XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
*/
dst_color[index] <<= (16 - dst_bpc);
}
REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
/* We have to write the mask before data, similar to pipeline.
* For example, for 8 bpc, if we want RGB0 to be magenta,
* and RGB1 to be cyan,
* we need to make 7 writes:
* MASK DATA
* 000001 00000000 00000000 set mask to R0
* 000010 11111111 00000000 R0 255, 0xFF00, set mask to G0
* 000100 00000000 00000000 G0 0, 0x0000, set mask to B0
* 001000 11111111 00000000 B0 255, 0xFF00, set mask to R1
* 010000 00000000 00000000 R1 0, 0x0000, set mask to G1
* 100000 11111111 00000000 G1 255, 0xFF00, set mask to B1
* 100000 11111111 00000000 B1 255, 0xFF00
*
* we will make a loop of 6 in which we prepare the mask,
* then write, then prepare the color for next write.
* first iteration will write mask only,
* but each next iteration color prepared in
* previous iteration will be written within new mask,
* the last component will written separately,
* mask is not changing between 6th and 7th write
* and color will be prepared by last iteration
*/
/* write color, color values mask in CRTC_TEST_PATTERN_MASK
* is B1, G1, R1, B0, G0, R0
*/
pattern_data = 0;
for (index = 0; index < 6; index++) {
/* prepare color mask, first write PATTERN_DATA
* will have all zeros
*/
pattern_mask = (1 << index);
/* write color component */
REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
OTG_TEST_PATTERN_MASK, pattern_mask,
OTG_TEST_PATTERN_DATA, pattern_data);
/* prepare next color component,
* will be written in the next iteration
*/
pattern_data = dst_color[index];
}
/* write last color component,
* it's been already prepared in the loop
*/
REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
OTG_TEST_PATTERN_MASK, pattern_mask,
OTG_TEST_PATTERN_DATA, pattern_data);
/* enable test pattern */
REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
OTG_TEST_PATTERN_EN, 1,
OTG_TEST_PATTERN_MODE, mode,
OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
{
mode = (bit_depth ==
TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
TEST_PATTERN_MODE_DUALRAMP_RGB :
TEST_PATTERN_MODE_SINGLERAMP_RGB);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
dst_bpc = 6;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
dst_bpc = 8;
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
dst_bpc = 10;
break;
default:
dst_bpc = 8;
break;
}
/* increment for the first ramp for one color gradation
* 1 gradation for 6-bit color is 2^10
* gradations in 16-bit color
*/
inc_base = (src_bpc - dst_bpc);
switch (bit_depth) {
case TEST_PATTERN_COLOR_FORMAT_BPC_6:
{
REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_INC0, inc_base,
OTG_TEST_PATTERN_INC1, 0,
OTG_TEST_PATTERN_HRES, 6,
OTG_TEST_PATTERN_VRES, 6,
OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_8:
{
REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_INC0, inc_base,
OTG_TEST_PATTERN_INC1, 0,
OTG_TEST_PATTERN_HRES, 8,
OTG_TEST_PATTERN_VRES, 6,
OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
}
break;
case TEST_PATTERN_COLOR_FORMAT_BPC_10:
{
REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
OTG_TEST_PATTERN_INC0, inc_base,
OTG_TEST_PATTERN_INC1, inc_base + 2,
OTG_TEST_PATTERN_HRES, 8,
OTG_TEST_PATTERN_VRES, 5,
OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
}
break;
default:
break;
}
REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
/* enable test pattern */
REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
OTG_TEST_PATTERN_EN, 1,
OTG_TEST_PATTERN_MODE, mode,
OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
}
break;
case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
{
REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
}
break;
default:
break;
}
}
void dcn10_timing_generator_get_crtc_scanoutpos(
struct timing_generator *tg,
uint32_t *v_blank_start,
uint32_t *v_blank_end,
uint32_t *h_position,
uint32_t *v_position)
{
struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
struct crtc_position position;
REG_GET_2(OTG_V_BLANK_START_END,
OTG_V_BLANK_START, v_blank_start,
OTG_V_BLANK_END, v_blank_end);
dcn10_get_position(tg, &position);
*h_position = position.horizontal_count;
*v_position = position.vertical_count;
}
static struct timing_generator_funcs dcn10_tg_funcs = {
.validate_timing = tg_validate_timing,
.program_timing = tg_program_timing,
.program_global_sync = dcn10_program_global_sync,
.enable_crtc = tg_enable_crtc,
.disable_crtc = tg_disable_crtc,
/* used by enable_timing_synchronization. Not need for FPGA */
.is_counter_moving = dcn10_is_counter_moving,
/* never be called */
.get_position = dcn10_get_position,
.get_frame_count = tg_get_vblank_counter,
.get_scanoutpos = dcn10_timing_generator_get_crtc_scanoutpos,
.set_early_control = set_early_control,
/* used by enable_timing_synchronization. Not need for FPGA */
.wait_for_state = dcn10_wait_for_state,
.set_blank = tg_set_blank,
.is_blanked = tg_is_blanked,
/* never be called */
.set_colors = NULL,
/* this function will be called by .progam_scaler. dcn and dce
* scaler top level functions are different. .program_scaler is
* not need for dcn. within program_scaler, dcn will return
* early before set_overscan_blank_color is reached
*/
.set_overscan_blank_color = NULL,
.set_blank_color = tg_program_blank_color,
/* dcn10_timing_generator_disable_vga */
.disable_vga = dcn10_timing_generator_disable_vga,
.did_triggered_reset_occur = dcn10_did_triggered_reset_occur,
.enable_reset_trigger = dcn10_enable_reset_trigger,
.disable_reset_trigger = dcn10_disable_reset_trigger,
.lock = dcn10_lock,
.unlock = dcn10_unlock,
/* dcn10_timing_generator_enable_advanced_request*/
.enable_advanced_request = NULL,
.enable_optc_clock = enable_optc_clock,
.set_drr = dcn10_timing_generator_set_drr,
.set_static_screen_control = set_static_screen_control,
.set_test_pattern = dcn10_timing_generator_set_test_pattern
};
void dcn10_timing_generator_init(struct dcn10_timing_generator *tgn10)
{
tgn10->base.funcs = &dcn10_tg_funcs;
tgn10->max_h_total = tgn10->tg_mask->OTG_H_TOTAL + 1;
tgn10->max_v_total = tgn10->tg_mask->OTG_V_TOTAL + 1;
tgn10->min_h_blank = 32;
tgn10->min_v_blank = 3;
tgn10->min_v_blank_interlace = 5;
tgn10->min_h_sync_width = 8;
tgn10->min_v_sync_width = 1;
}
/*
* Copyright 2012-15 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DC_TIMING_GENERATOR_DCN10_H__
#define __DC_TIMING_GENERATOR_DCN10_H__
#include "timing_generator.h"
#define DCN10TG_FROM_TG(tg)\
container_of(tg, struct dcn10_timing_generator, base)
#define TG_COMMON_REG_LIST_DCN1_0(inst) \
SRI(OTG_VSTARTUP_PARAM, OTG, inst),\
SRI(OTG_VUPDATE_PARAM, OTG, inst),\
SRI(OTG_VREADY_PARAM, OTG, inst),\
SRI(OTG_BLANK_CONTROL, OTG, inst),\
SRI(OTG_MASTER_UPDATE_LOCK, OTG, inst),\
SRI(OTG_DOUBLE_BUFFER_CONTROL, OTG, inst),\
SRI(OTG_H_TOTAL, OTG, inst),\
SRI(OTG_H_BLANK_START_END, OTG, inst),\
SRI(OTG_H_SYNC_A, OTG, inst),\
SRI(OTG_H_SYNC_A_CNTL, OTG, inst),\
SRI(OTG_H_TIMING_CNTL, OTG, inst),\
SRI(OTG_V_TOTAL, OTG, inst),\
SRI(OTG_V_BLANK_START_END, OTG, inst),\
SRI(OTG_V_SYNC_A, OTG, inst),\
SRI(OTG_V_SYNC_A_CNTL, OTG, inst),\
SRI(OTG_INTERLACE_CONTROL, OTG, inst),\
SRI(OTG_CONTROL, OTG, inst),\
SRI(OTG_STEREO_CONTROL, OTG, inst),\
SRI(OTG_3D_STRUCTURE_CONTROL, OTG, inst),\
SRI(OTG_V_TOTAL_MAX, OTG, inst),\
SRI(OTG_V_TOTAL_MIN, OTG, inst),\
SRI(OTG_V_TOTAL_CONTROL, OTG, inst),\
SRI(OTG_TRIGA_CNTL, OTG, inst),\
SRI(OTG_FORCE_COUNT_NOW_CNTL, OTG, inst),\
SRI(OTG_STATIC_SCREEN_CONTROL, OTG, inst),\
SRI(OTG_STATUS_FRAME_COUNT, OTG, inst),\
SRI(OTG_STATUS, OTG, inst),\
SRI(OTG_STATUS_POSITION, OTG, inst),\
SRI(OTG_NOM_VERT_POSITION, OTG, inst),\
SRI(OTG_BLACK_COLOR, OTG, inst),\
SRI(OTG_TEST_PATTERN_PARAMETERS, OTG, inst),\
SRI(OTG_TEST_PATTERN_CONTROL, OTG, inst),\
SRI(OTG_TEST_PATTERN_COLOR, OTG, inst),\
SRI(OTG_CLOCK_CONTROL, OTG, inst),\
SRI(OPTC_INPUT_CLOCK_CONTROL, ODM, inst),\
SRI(OPTC_DATA_SOURCE_SELECT, ODM, inst),\
SRI(OPPBUF_CONTROL, OPPBUF, inst),\
SRI(OPPBUF_3D_PARAMETERS_0, OPPBUF, inst),\
SRI(CONTROL, VTG, inst),\
SR(D1VGA_CONTROL),\
SR(D2VGA_CONTROL),\
SR(D3VGA_CONTROL),\
SR(D4VGA_CONTROL),\
struct dcn_tg_registers {
uint32_t OTG_VSTARTUP_PARAM;
uint32_t OTG_VUPDATE_PARAM;
uint32_t OTG_VREADY_PARAM;
uint32_t OTG_BLANK_CONTROL;
uint32_t OTG_MASTER_UPDATE_LOCK;
uint32_t OTG_DOUBLE_BUFFER_CONTROL;
uint32_t OTG_H_TOTAL;
uint32_t OTG_H_BLANK_START_END;
uint32_t OTG_H_SYNC_A;
uint32_t OTG_H_SYNC_A_CNTL;
uint32_t OTG_H_TIMING_CNTL;
uint32_t OTG_V_TOTAL;
uint32_t OTG_V_BLANK_START_END;
uint32_t OTG_V_SYNC_A;
uint32_t OTG_V_SYNC_A_CNTL;
uint32_t OTG_INTERLACE_CONTROL;
uint32_t OTG_CONTROL;
uint32_t OTG_STEREO_CONTROL;
uint32_t OTG_3D_STRUCTURE_CONTROL;
uint32_t OTG_V_TOTAL_MAX;
uint32_t OTG_V_TOTAL_MIN;
uint32_t OTG_V_TOTAL_CONTROL;
uint32_t OTG_TRIGA_CNTL;
uint32_t OTG_FORCE_COUNT_NOW_CNTL;
uint32_t OTG_STATIC_SCREEN_CONTROL;
uint32_t OTG_STATUS_FRAME_COUNT;
uint32_t OTG_STATUS;
uint32_t OTG_STATUS_POSITION;
uint32_t OTG_NOM_VERT_POSITION;
uint32_t OTG_BLACK_COLOR;
uint32_t OTG_TEST_PATTERN_PARAMETERS;
uint32_t OTG_TEST_PATTERN_CONTROL;
uint32_t OTG_TEST_PATTERN_COLOR;
uint32_t OTG_CLOCK_CONTROL;
uint32_t OPTC_INPUT_CLOCK_CONTROL;
uint32_t OPTC_DATA_SOURCE_SELECT;
uint32_t OPPBUF_CONTROL;
uint32_t OPPBUF_3D_PARAMETERS_0;
uint32_t CONTROL;
/*todo: move VGA to HWSS */
uint32_t D1VGA_CONTROL;
uint32_t D2VGA_CONTROL;
uint32_t D3VGA_CONTROL;
uint32_t D4VGA_CONTROL;
};
#define TG_COMMON_MASK_SH_LIST_DCN1_0(mask_sh)\
SF(OTG0_OTG_VSTARTUP_PARAM, VSTARTUP_START, mask_sh),\
SF(OTG0_OTG_VUPDATE_PARAM, VUPDATE_OFFSET, mask_sh),\
SF(OTG0_OTG_VUPDATE_PARAM, VUPDATE_WIDTH, mask_sh),\
SF(OTG0_OTG_VREADY_PARAM, VREADY_OFFSET, mask_sh),\
SF(OTG0_OTG_BLANK_CONTROL, OTG_BLANK_DATA_EN, mask_sh),\
SF(OTG0_OTG_BLANK_CONTROL, OTG_BLANK_DE_MODE, mask_sh),\
SF(OTG0_OTG_BLANK_CONTROL, OTG_CURRENT_BLANK_STATE, mask_sh),\
SF(OTG0_OTG_MASTER_UPDATE_LOCK, OTG_MASTER_UPDATE_LOCK, mask_sh),\
SF(OTG0_OTG_DOUBLE_BUFFER_CONTROL, OTG_UPDATE_PENDING, mask_sh),\
SF(OTG0_OTG_DOUBLE_BUFFER_CONTROL, OTG_BLANK_DATA_DOUBLE_BUFFER_EN, mask_sh),\
SF(OTG0_OTG_H_TOTAL, OTG_H_TOTAL, mask_sh),\
SF(OTG0_OTG_H_BLANK_START_END, OTG_H_BLANK_START, mask_sh),\
SF(OTG0_OTG_H_BLANK_START_END, OTG_H_BLANK_END, mask_sh),\
SF(OTG0_OTG_H_SYNC_A, OTG_H_SYNC_A_START, mask_sh),\
SF(OTG0_OTG_H_SYNC_A, OTG_H_SYNC_A_END, mask_sh),\
SF(OTG0_OTG_H_SYNC_A_CNTL, OTG_H_SYNC_A_POL, mask_sh),\
SF(OTG0_OTG_H_TIMING_CNTL, OTG_H_TIMING_DIV_BY2, mask_sh),\
SF(OTG0_OTG_V_TOTAL, OTG_V_TOTAL, mask_sh),\
SF(OTG0_OTG_V_BLANK_START_END, OTG_V_BLANK_START, mask_sh),\
SF(OTG0_OTG_V_BLANK_START_END, OTG_V_BLANK_END, mask_sh),\
SF(OTG0_OTG_V_SYNC_A, OTG_V_SYNC_A_START, mask_sh),\
SF(OTG0_OTG_V_SYNC_A, OTG_V_SYNC_A_END, mask_sh),\
SF(OTG0_OTG_V_SYNC_A_CNTL, OTG_V_SYNC_A_POL, mask_sh),\
SF(OTG0_OTG_INTERLACE_CONTROL, OTG_INTERLACE_ENABLE, mask_sh),\
SF(OTG0_OTG_CONTROL, OTG_MASTER_EN, mask_sh),\
SF(OTG0_OTG_CONTROL, OTG_START_POINT_CNTL, mask_sh),\
SF(OTG0_OTG_CONTROL, OTG_DISABLE_POINT_CNTL, mask_sh),\
SF(OTG0_OTG_CONTROL, OTG_FIELD_NUMBER_CNTL, mask_sh),\
SF(OTG0_OTG_STEREO_CONTROL, OTG_STEREO_EN, mask_sh),\
SF(OTG0_OTG_STEREO_CONTROL, OTG_STEREO_SYNC_OUTPUT_LINE_NUM, mask_sh),\
SF(OTG0_OTG_STEREO_CONTROL, OTG_STEREO_SYNC_OUTPUT_POLARITY, mask_sh),\
SF(OTG0_OTG_STEREO_CONTROL, OTG_STEREO_EYE_FLAG_POLARITY, mask_sh),\
SF(OTG0_OTG_STEREO_CONTROL, OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, mask_sh),\
SF(OTG0_OTG_3D_STRUCTURE_CONTROL, OTG_3D_STRUCTURE_EN, mask_sh),\
SF(OTG0_OTG_3D_STRUCTURE_CONTROL, OTG_3D_STRUCTURE_V_UPDATE_MODE, mask_sh),\
SF(OTG0_OTG_3D_STRUCTURE_CONTROL, OTG_3D_STRUCTURE_STEREO_SEL_OVR, mask_sh),\
SF(OTG0_OTG_V_TOTAL_MAX, OTG_V_TOTAL_MAX, mask_sh),\
SF(OTG0_OTG_V_TOTAL_MIN, OTG_V_TOTAL_MIN, mask_sh),\
SF(OTG0_OTG_V_TOTAL_CONTROL, OTG_V_TOTAL_MIN_SEL, mask_sh),\
SF(OTG0_OTG_V_TOTAL_CONTROL, OTG_V_TOTAL_MAX_SEL, mask_sh),\
SF(OTG0_OTG_V_TOTAL_CONTROL, OTG_FORCE_LOCK_ON_EVENT, mask_sh),\
SF(OTG0_OTG_V_TOTAL_CONTROL, OTG_SET_V_TOTAL_MIN_MASK_EN, mask_sh),\
SF(OTG0_OTG_V_TOTAL_CONTROL, OTG_SET_V_TOTAL_MIN_MASK, mask_sh),\
SF(OTG0_OTG_FORCE_COUNT_NOW_CNTL, OTG_FORCE_COUNT_NOW_CLEAR, mask_sh),\
SF(OTG0_OTG_FORCE_COUNT_NOW_CNTL, OTG_FORCE_COUNT_NOW_MODE, mask_sh),\
SF(OTG0_OTG_FORCE_COUNT_NOW_CNTL, OTG_FORCE_COUNT_NOW_OCCURRED, mask_sh),\
SF(OTG0_OTG_TRIGA_CNTL, OTG_TRIGA_SOURCE_SELECT, mask_sh),\
SF(OTG0_OTG_TRIGA_CNTL, OTG_TRIGA_SOURCE_PIPE_SELECT, mask_sh),\
SF(OTG0_OTG_TRIGA_CNTL, OTG_TRIGA_RISING_EDGE_DETECT_CNTL, mask_sh),\
SF(OTG0_OTG_TRIGA_CNTL, OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, mask_sh),\
SF(OTG0_OTG_STATIC_SCREEN_CONTROL, OTG_STATIC_SCREEN_EVENT_MASK, mask_sh),\
SF(OTG0_OTG_STATIC_SCREEN_CONTROL, OTG_STATIC_SCREEN_FRAME_COUNT, mask_sh),\
SF(OTG0_OTG_STATUS_FRAME_COUNT, OTG_FRAME_COUNT, mask_sh),\
SF(OTG0_OTG_STATUS, OTG_V_BLANK, mask_sh),\
SF(OTG0_OTG_STATUS, OTG_V_ACTIVE_DISP, mask_sh),\
SF(OTG0_OTG_STATUS_POSITION, OTG_HORZ_COUNT, mask_sh),\
SF(OTG0_OTG_STATUS_POSITION, OTG_VERT_COUNT, mask_sh),\
SF(OTG0_OTG_NOM_VERT_POSITION, OTG_VERT_COUNT_NOM, mask_sh),\
SF(OTG0_OTG_BLACK_COLOR, OTG_BLACK_COLOR_B_CB, mask_sh),\
SF(OTG0_OTG_BLACK_COLOR, OTG_BLACK_COLOR_G_Y, mask_sh),\
SF(OTG0_OTG_BLACK_COLOR, OTG_BLACK_COLOR_R_CR, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_INC0, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_INC1, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_VRES, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_HRES, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_PARAMETERS, OTG_TEST_PATTERN_RAMP0_OFFSET, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_CONTROL, OTG_TEST_PATTERN_EN, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_CONTROL, OTG_TEST_PATTERN_MODE, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_CONTROL, OTG_TEST_PATTERN_DYNAMIC_RANGE, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_CONTROL, OTG_TEST_PATTERN_COLOR_FORMAT, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_COLOR, OTG_TEST_PATTERN_MASK, mask_sh),\
SF(OTG0_OTG_TEST_PATTERN_COLOR, OTG_TEST_PATTERN_DATA, mask_sh),\
SF(OTG0_OTG_CLOCK_CONTROL, OTG_BUSY, mask_sh),\
SF(OTG0_OTG_CLOCK_CONTROL, OTG_CLOCK_EN, mask_sh),\
SF(OTG0_OTG_CLOCK_CONTROL, OTG_CLOCK_ON, mask_sh),\
SF(OTG0_OTG_CLOCK_CONTROL, OTG_CLOCK_GATE_DIS, mask_sh),\
SF(ODM0_OPTC_INPUT_CLOCK_CONTROL, OPTC_INPUT_CLK_EN, mask_sh),\
SF(ODM0_OPTC_INPUT_CLOCK_CONTROL, OPTC_INPUT_CLK_ON, mask_sh),\
SF(ODM0_OPTC_INPUT_CLOCK_CONTROL, OPTC_INPUT_CLK_GATE_DIS, mask_sh),\
SF(ODM0_OPTC_DATA_SOURCE_SELECT, OPTC_SRC_SEL, mask_sh),\
SF(OPPBUF0_OPPBUF_CONTROL, OPPBUF_ACTIVE_WIDTH, mask_sh),\
SF(OPPBUF0_OPPBUF_3D_PARAMETERS_0, OPPBUF_3D_VACT_SPACE1_SIZE, mask_sh),\
SF(VTG0_CONTROL, VTG0_ENABLE, mask_sh),\
SF(VTG0_CONTROL, VTG0_FP2, mask_sh),\
SF(VTG0_CONTROL, VTG0_VCOUNT_INIT, mask_sh),\
#define TG_REG_FIELD_LIST(type) \
type VSTARTUP_START;\
type VUPDATE_OFFSET;\
type VUPDATE_WIDTH;\
type VREADY_OFFSET;\
type OTG_BLANK_DATA_EN;\
type OTG_BLANK_DE_MODE;\
type OTG_CURRENT_BLANK_STATE;\
type OTG_MASTER_UPDATE_LOCK;\
type OTG_UPDATE_PENDING;\
type OTG_BLANK_DATA_DOUBLE_BUFFER_EN;\
type OTG_H_TOTAL;\
type OTG_H_BLANK_START;\
type OTG_H_BLANK_END;\
type OTG_H_SYNC_A_START;\
type OTG_H_SYNC_A_END;\
type OTG_H_SYNC_A_POL;\
type OTG_H_TIMING_DIV_BY2;\
type OTG_V_TOTAL;\
type OTG_V_BLANK_START;\
type OTG_V_BLANK_END;\
type OTG_V_SYNC_A_START;\
type OTG_V_SYNC_A_END;\
type OTG_V_SYNC_A_POL;\
type OTG_INTERLACE_ENABLE;\
type OTG_MASTER_EN;\
type OTG_START_POINT_CNTL;\
type OTG_DISABLE_POINT_CNTL;\
type OTG_FIELD_NUMBER_CNTL;\
type OTG_STEREO_EN;\
type OTG_STEREO_SYNC_OUTPUT_LINE_NUM;\
type OTG_STEREO_SYNC_OUTPUT_POLARITY;\
type OTG_STEREO_EYE_FLAG_POLARITY;\
type OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP;\
type OTG_3D_STRUCTURE_EN;\
type OTG_3D_STRUCTURE_V_UPDATE_MODE;\
type OTG_3D_STRUCTURE_STEREO_SEL_OVR;\
type OTG_V_TOTAL_MAX;\
type OTG_V_TOTAL_MIN;\
type OTG_V_TOTAL_MIN_SEL;\
type OTG_V_TOTAL_MAX_SEL;\
type OTG_FORCE_LOCK_ON_EVENT;\
type OTG_SET_V_TOTAL_MIN_MASK_EN;\
type OTG_SET_V_TOTAL_MIN_MASK;\
type OTG_FORCE_COUNT_NOW_CLEAR;\
type OTG_FORCE_COUNT_NOW_MODE;\
type OTG_FORCE_COUNT_NOW_OCCURRED;\
type OTG_TRIGA_SOURCE_SELECT;\
type OTG_TRIGA_SOURCE_PIPE_SELECT;\
type OTG_TRIGA_RISING_EDGE_DETECT_CNTL;\
type OTG_TRIGA_FALLING_EDGE_DETECT_CNTL;\
type OTG_STATIC_SCREEN_EVENT_MASK;\
type OTG_STATIC_SCREEN_FRAME_COUNT;\
type OTG_FRAME_COUNT;\
type OTG_V_BLANK;\
type OTG_V_ACTIVE_DISP;\
type OTG_HORZ_COUNT;\
type OTG_VERT_COUNT;\
type OTG_VERT_COUNT_NOM;\
type OTG_BLACK_COLOR_B_CB;\
type OTG_BLACK_COLOR_G_Y;\
type OTG_BLACK_COLOR_R_CR;\
type OTG_TEST_PATTERN_INC0;\
type OTG_TEST_PATTERN_INC1;\
type OTG_TEST_PATTERN_VRES;\
type OTG_TEST_PATTERN_HRES;\
type OTG_TEST_PATTERN_RAMP0_OFFSET;\
type OTG_TEST_PATTERN_EN;\
type OTG_TEST_PATTERN_MODE;\
type OTG_TEST_PATTERN_DYNAMIC_RANGE;\
type OTG_TEST_PATTERN_COLOR_FORMAT;\
type OTG_TEST_PATTERN_MASK;\
type OTG_TEST_PATTERN_DATA;\
type OTG_BUSY;\
type OTG_CLOCK_EN;\
type OTG_CLOCK_ON;\
type OTG_CLOCK_GATE_DIS;\
type OPTC_INPUT_CLK_EN;\
type OPTC_INPUT_CLK_ON;\
type OPTC_INPUT_CLK_GATE_DIS;\
type OPTC_SRC_SEL;\
type OPPBUF_ACTIVE_WIDTH;\
type OPPBUF_3D_VACT_SPACE1_SIZE;\
type VTG0_ENABLE;\
type VTG0_FP2;\
type VTG0_VCOUNT_INIT;\
struct dcn_tg_shift {
TG_REG_FIELD_LIST(uint8_t)
};
struct dcn_tg_mask {
TG_REG_FIELD_LIST(uint32_t)
};
struct dcn10_timing_generator {
struct timing_generator base;
const struct dcn_tg_registers *tg_regs;
const struct dcn_tg_shift *tg_shift;
const struct dcn_tg_mask *tg_mask;
enum controller_id controller_id;
uint32_t max_h_total;
uint32_t max_v_total;
uint32_t min_h_blank;
uint32_t min_h_sync_width;
uint32_t min_v_sync_width;
uint32_t min_v_blank;
uint32_t min_v_blank_interlace;
};
void dcn10_timing_generator_init(struct dcn10_timing_generator *tg);
void dcn10_timing_generator_set_drr(struct timing_generator *tg,
const struct drr_params *params);
void dcn10_unlock(struct timing_generator *tg);
void dcn10_lock(struct timing_generator *tg);
#endif /* __DC_TIMING_GENERATOR_DCN10_H__ */
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "include/grph_object_id.h"
#include "include/fixed31_32.h"
#include "include/logger_interface.h"
#include "reg_helper.h"
#include "dcn10_transform.h"
#include "basics/conversion.h"
#define NUM_PHASES 64
#define HORZ_MAX_TAPS 8
#define VERT_MAX_TAPS 8
#define BLACK_OFFSET_RGB_Y 0x0
#define BLACK_OFFSET_CBCR 0x8000
#define REG(reg)\
xfm->tf_regs->reg
#define CTX \
xfm->base.ctx
#undef FN
#define FN(reg_name, field_name) \
xfm->tf_shift->field_name, xfm->tf_mask->field_name
enum dcn10_coef_filter_type_sel {
SCL_COEF_LUMA_VERT_FILTER = 0,
SCL_COEF_LUMA_HORZ_FILTER = 1,
SCL_COEF_CHROMA_VERT_FILTER = 2,
SCL_COEF_CHROMA_HORZ_FILTER = 3,
SCL_COEF_ALPHA_VERT_FILTER = 4,
SCL_COEF_ALPHA_HORZ_FILTER = 5
};
enum lb_memory_config {
/* Enable all 3 pieces of memory */
LB_MEMORY_CONFIG_0 = 0,
/* Enable only the first piece of memory */
LB_MEMORY_CONFIG_1 = 1,
/* Enable only the second piece of memory */
LB_MEMORY_CONFIG_2 = 2,
/* Only applicable in 4:2:0 mode, enable all 3 pieces of memory and the
* last piece of chroma memory used for the luma storage
*/
LB_MEMORY_CONFIG_3 = 3
};
enum dscl_autocal_mode {
AUTOCAL_MODE_OFF = 0,
/* Autocal calculate the scaling ratio and initial phase and the
* DSCL_MODE_SEL must be set to 1
*/
AUTOCAL_MODE_AUTOSCALE = 1,
/* Autocal perform auto centering without replication and the
* DSCL_MODE_SEL must be set to 0
*/
AUTOCAL_MODE_AUTOCENTER = 2,
/* Autocal perform auto centering and auto replication and the
* DSCL_MODE_SEL must be set to 0
*/
AUTOCAL_MODE_AUTOREPLICATE = 3
};
enum dscl_mode_sel {
DSCL_MODE_SCALING_444_BYPASS = 0,
DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
DSCL_MODE_DSCL_BYPASS = 6
};
enum gamut_remap_select {
GAMUT_REMAP_BYPASS = 0,
GAMUT_REMAP_COEFF,
GAMUT_REMAP_COMA_COEFF,
GAMUT_REMAP_COMB_COEFF
};
static void transform_set_overscan(
struct dcn10_transform *xfm,
const struct scaler_data *data)
{
uint32_t left = data->recout.x;
uint32_t top = data->recout.y;
int right = data->h_active - data->recout.x - data->recout.width;
int bottom = data->v_active - data->recout.y - data->recout.height;
if (right < 0) {
BREAK_TO_DEBUGGER();
right = 0;
}
if (bottom < 0) {
BREAK_TO_DEBUGGER();
bottom = 0;
}
REG_SET_2(DSCL_EXT_OVERSCAN_LEFT_RIGHT, 0,
EXT_OVERSCAN_LEFT, left,
EXT_OVERSCAN_RIGHT, right);
REG_SET_2(DSCL_EXT_OVERSCAN_TOP_BOTTOM, 0,
EXT_OVERSCAN_BOTTOM, bottom,
EXT_OVERSCAN_TOP, top);
}
static void transform_set_otg_blank(
struct dcn10_transform *xfm, const struct scaler_data *data)
{
uint32_t h_blank_start = data->h_active;
uint32_t h_blank_end = 0;
uint32_t v_blank_start = data->v_active;
uint32_t v_blank_end = 0;
REG_SET_2(OTG_H_BLANK, 0,
OTG_H_BLANK_START, h_blank_start,
OTG_H_BLANK_END, h_blank_end);
REG_SET_2(OTG_V_BLANK, 0,
OTG_V_BLANK_START, v_blank_start,
OTG_V_BLANK_END, v_blank_end);
}
static enum dscl_mode_sel get_dscl_mode(const struct scaler_data *data)
{
const long long one = dal_fixed31_32_one.value;
bool ycbcr = false;
bool format420 = false;
if (data->format == PIXEL_FORMAT_FP16)
return DSCL_MODE_DSCL_BYPASS;
if (data->format >= PIXEL_FORMAT_VIDEO_BEGIN
&& data->format <= PIXEL_FORMAT_VIDEO_END)
ycbcr = true;
if (data->format == PIXEL_FORMAT_420BPP12 ||
data->format == PIXEL_FORMAT_420BPP15)
format420 = true;
if (data->ratios.horz.value == one
&& data->ratios.vert.value == one
&& data->ratios.horz_c.value == one
&& data->ratios.vert_c.value == one)
return DSCL_MODE_SCALING_444_BYPASS;
if (!format420) {
if (ycbcr)
return DSCL_MODE_SCALING_444_YCBCR_ENABLE;
else
return DSCL_MODE_SCALING_444_RGB_ENABLE;
}
if (data->ratios.horz.value == one && data->ratios.vert.value == one)
return DSCL_MODE_SCALING_420_LUMA_BYPASS;
if (data->ratios.horz_c.value == one && data->ratios.vert_c.value == one)
return DSCL_MODE_SCALING_420_CHROMA_BYPASS;
return DSCL_MODE_SCALING_420_YCBCR_ENABLE;
}
static int get_pixel_depth_val(enum lb_pixel_depth depth)
{
if (depth == LB_PIXEL_DEPTH_30BPP)
return 0; /* 10 bpc */
else if (depth == LB_PIXEL_DEPTH_24BPP)
return 1; /* 8 bpc */
else if (depth == LB_PIXEL_DEPTH_18BPP)
return 2; /* 6 bpc */
else if (depth == LB_PIXEL_DEPTH_36BPP)
return 3; /* 12 bpc */
else {
ASSERT(0);
return -1; /* Unsupported */
}
}
static void transform_set_lb(
struct dcn10_transform *xfm,
const struct line_buffer_params *lb_params,
enum lb_memory_config mem_size_config)
{
uint32_t pixel_depth = get_pixel_depth_val(lb_params->depth);
uint32_t dyn_pix_depth = lb_params->dynamic_pixel_depth;
REG_SET_7(LB_DATA_FORMAT, 0,
PIXEL_DEPTH, pixel_depth, /* Pixel depth stored in LB */
PIXEL_EXPAN_MODE, lb_params->pixel_expan_mode, /* Pixel expansion mode */
PIXEL_REDUCE_MODE, 1, /* Pixel reduction mode: Rounding */
DYNAMIC_PIXEL_DEPTH, dyn_pix_depth, /* Dynamic expansion pixel depth */
DITHER_EN, 0, /* Dithering enable: Disabled */
INTERLEAVE_EN, lb_params->interleave_en, /* Interleave source enable */
ALPHA_EN, lb_params->alpha_en); /* Alpha enable */
REG_SET_2(LB_MEMORY_CTRL, 0,
MEMORY_CONFIG, mem_size_config,
LB_MAX_PARTITIONS, 63);
}
static void transform_set_scaler_filter(
struct dcn10_transform *xfm,
uint32_t taps,
enum dcn10_coef_filter_type_sel filter_type,
const uint16_t *filter)
{
const int tap_pairs = (taps + 1) / 2;
int phase;
int pair;
uint16_t odd_coef, even_coef;
REG_SET_3(SCL_COEF_RAM_TAP_SELECT, 0,
SCL_COEF_RAM_TAP_PAIR_IDX, 0,
SCL_COEF_RAM_PHASE, 0,
SCL_COEF_RAM_FILTER_TYPE, filter_type);
for (phase = 0; phase < (NUM_PHASES / 2 + 1); phase++) {
for (pair = 0; pair < tap_pairs; pair++) {
even_coef = filter[phase * taps + 2 * pair];
if ((pair * 2 + 1) < taps)
odd_coef = filter[phase * taps + 2 * pair + 1];
else
odd_coef = 0;
REG_SET_4(SCL_COEF_RAM_TAP_DATA, 0,
/* Even tap coefficient (bits 1:0 fixed to 0) */
SCL_COEF_RAM_EVEN_TAP_COEF, even_coef,
/* Write/read control for even coefficient */
SCL_COEF_RAM_EVEN_TAP_COEF_EN, 1,
/* Odd tap coefficient (bits 1:0 fixed to 0) */
SCL_COEF_RAM_ODD_TAP_COEF, odd_coef,
/* Write/read control for odd coefficient */
SCL_COEF_RAM_ODD_TAP_COEF_EN, 1);
}
}
}
#if 0
bool transform_set_pixel_storage_depth(
struct transform *xfm,
enum lb_pixel_depth depth,
const struct bit_depth_reduction_params *bit_depth_params)
{
struct dcn10_transform *xfm110 = TO_DCN10_TRANSFORM(xfm);
bool ret = true;
uint32_t value;
enum dc_color_depth color_depth;
value = dm_read_reg(xfm->ctx, LB_REG(mmLB_DATA_FORMAT));
switch (depth) {
case LB_PIXEL_DEPTH_18BPP:
color_depth = COLOR_DEPTH_666;
set_reg_field_value(value, 2, LB_DATA_FORMAT, PIXEL_DEPTH);
set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
break;
case LB_PIXEL_DEPTH_24BPP:
color_depth = COLOR_DEPTH_888;
set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_DEPTH);
set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
break;
case LB_PIXEL_DEPTH_30BPP:
color_depth = COLOR_DEPTH_101010;
set_reg_field_value(value, 0, LB_DATA_FORMAT, PIXEL_DEPTH);
set_reg_field_value(value, 1, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
break;
case LB_PIXEL_DEPTH_36BPP:
color_depth = COLOR_DEPTH_121212;
set_reg_field_value(value, 3, LB_DATA_FORMAT, PIXEL_DEPTH);
set_reg_field_value(value, 0, LB_DATA_FORMAT, PIXEL_EXPAN_MODE);
break;
default:
ret = false;
break;
}
if (ret == true) {
set_denormalization(xfm110, color_depth);
ret = program_bit_depth_reduction(xfm110, color_depth,
bit_depth_params);
set_reg_field_value(value, 0, LB_DATA_FORMAT, ALPHA_EN);
dm_write_reg(xfm->ctx, LB_REG(mmLB_DATA_FORMAT), value);
if (!(xfm110->lb_pixel_depth_supported & depth)) {
/* We should use unsupported capabilities
* unless it is required by w/a
*/
dm_logger_write(xfm->ctx->logger, LOG_WARNING,
"%s: Capability not supported",
__func__);
}
}
return ret;
}
#endif
static const uint16_t *get_filter_coeffs_64p(int taps, struct fixed31_32 ratio)
{
if (taps == 8)
return get_filter_8tap_64p(ratio);
else if (taps == 7)
return get_filter_7tap_64p(ratio);
else if (taps == 6)
return get_filter_6tap_64p(ratio);
else if (taps == 5)
return get_filter_5tap_64p(ratio);
else if (taps == 4)
return get_filter_4tap_64p(ratio);
else if (taps == 3)
return get_filter_3tap_64p(ratio);
else if (taps == 2)
return filter_2tap_64p;
else if (taps == 1)
return NULL;
else {
/* should never happen, bug */
BREAK_TO_DEBUGGER();
return NULL;
}
}
static void transform_set_scl_filter(
struct dcn10_transform *xfm,
const struct scaler_data *scl_data,
bool chroma_coef_mode)
{
bool h_2tap_hardcode_coef_en = false;
bool v_2tap_hardcode_coef_en = false;
bool h_2tap_sharp_en = false;
bool v_2tap_sharp_en = false;
uint32_t h_2tap_sharp_factor = scl_data->sharpness.horz;
uint32_t v_2tap_sharp_factor = scl_data->sharpness.vert;
bool coef_ram_current;
const uint16_t *filter_h = NULL;
const uint16_t *filter_v = NULL;
const uint16_t *filter_h_c = NULL;
const uint16_t *filter_v_c = NULL;
h_2tap_hardcode_coef_en = scl_data->taps.h_taps < 3
&& scl_data->taps.h_taps_c < 3
&& (scl_data->taps.h_taps > 1 || scl_data->taps.h_taps_c > 1);
v_2tap_hardcode_coef_en = scl_data->taps.v_taps < 3
&& scl_data->taps.v_taps_c < 3
&& (scl_data->taps.v_taps > 1 || scl_data->taps.v_taps_c > 1);
h_2tap_sharp_en = h_2tap_hardcode_coef_en && h_2tap_sharp_factor != 0;
v_2tap_sharp_en = v_2tap_hardcode_coef_en && v_2tap_sharp_factor != 0;
REG_UPDATE_6(DSCL_2TAP_CONTROL,
SCL_H_2TAP_HARDCODE_COEF_EN, h_2tap_hardcode_coef_en,
SCL_H_2TAP_SHARP_EN, h_2tap_sharp_en,
SCL_H_2TAP_SHARP_FACTOR, h_2tap_sharp_factor,
SCL_V_2TAP_HARDCODE_COEF_EN, v_2tap_hardcode_coef_en,
SCL_V_2TAP_SHARP_EN, v_2tap_sharp_en,
SCL_V_2TAP_SHARP_FACTOR, v_2tap_sharp_factor);
if (!v_2tap_hardcode_coef_en || !h_2tap_hardcode_coef_en) {
bool filter_updated = false;
filter_h = get_filter_coeffs_64p(
scl_data->taps.h_taps, scl_data->ratios.horz);
filter_v = get_filter_coeffs_64p(
scl_data->taps.v_taps, scl_data->ratios.vert);
filter_updated = (filter_h && (filter_h != xfm->filter_h))
|| (filter_v && (filter_v != xfm->filter_v));
if (chroma_coef_mode) {
filter_h_c = get_filter_coeffs_64p(
scl_data->taps.h_taps_c, scl_data->ratios.horz_c);
filter_v_c = get_filter_coeffs_64p(
scl_data->taps.v_taps_c, scl_data->ratios.vert_c);
filter_updated = filter_updated || (filter_h_c && (filter_h_c != xfm->filter_h_c))
|| (filter_v_c && (filter_v_c != xfm->filter_v_c));
}
if (filter_updated) {
uint32_t scl_mode = REG_READ(SCL_MODE);
if (!h_2tap_hardcode_coef_en && filter_h) {
transform_set_scaler_filter(
xfm, scl_data->taps.h_taps,
SCL_COEF_LUMA_HORZ_FILTER, filter_h);
}
xfm->filter_h = filter_h;
if (!v_2tap_hardcode_coef_en && filter_v) {
transform_set_scaler_filter(
xfm, scl_data->taps.v_taps,
SCL_COEF_LUMA_VERT_FILTER, filter_v);
}
xfm->filter_v = filter_v;
if (chroma_coef_mode) {
if (!h_2tap_hardcode_coef_en && filter_h_c) {
transform_set_scaler_filter(
xfm, scl_data->taps.h_taps_c,
SCL_COEF_CHROMA_HORZ_FILTER, filter_h_c);
}
if (!v_2tap_hardcode_coef_en && filter_v_c) {
transform_set_scaler_filter(
xfm, scl_data->taps.v_taps_c,
SCL_COEF_CHROMA_VERT_FILTER, filter_v_c);
}
}
xfm->filter_h_c = filter_h_c;
xfm->filter_v_c = filter_v_c;
coef_ram_current = get_reg_field_value_ex(
scl_mode, xfm->tf_mask->SCL_COEF_RAM_SELECT_CURRENT,
xfm->tf_shift->SCL_COEF_RAM_SELECT_CURRENT);
/* Swap coefficient RAM and set chroma coefficient mode */
REG_SET_2(SCL_MODE, scl_mode,
SCL_COEF_RAM_SELECT, !coef_ram_current,
SCL_CHROMA_COEF_MODE, chroma_coef_mode);
}
}
}
static void transform_set_viewport(
struct dcn10_transform *xfm,
const struct rect *viewport,
const struct rect *viewport_c)
{
REG_SET_2(DCSURF_PRI_VIEWPORT_DIMENSION, 0,
PRI_VIEWPORT_WIDTH, viewport->width,
PRI_VIEWPORT_HEIGHT, viewport->height);
REG_SET_2(DCSURF_PRI_VIEWPORT_START, 0,
PRI_VIEWPORT_X_START, viewport->x,
PRI_VIEWPORT_Y_START, viewport->y);
/*for stereo*/
REG_SET_2(DCSURF_SEC_VIEWPORT_DIMENSION, 0,
SEC_VIEWPORT_WIDTH, viewport->width,
SEC_VIEWPORT_HEIGHT, viewport->height);
REG_SET_2(DCSURF_SEC_VIEWPORT_START, 0,
SEC_VIEWPORT_X_START, viewport->x,
SEC_VIEWPORT_Y_START, viewport->y);
/* DC supports NV12 only at the moment */
REG_SET_2(DCSURF_PRI_VIEWPORT_DIMENSION_C, 0,
PRI_VIEWPORT_WIDTH_C, viewport_c->width,
PRI_VIEWPORT_HEIGHT_C, viewport_c->height);
REG_SET_2(DCSURF_PRI_VIEWPORT_START_C, 0,
PRI_VIEWPORT_X_START_C, viewport_c->x,
PRI_VIEWPORT_Y_START_C, viewport_c->y);
}
static int get_lb_depth_bpc(enum lb_pixel_depth depth)
{
if (depth == LB_PIXEL_DEPTH_30BPP)
return 10;
else if (depth == LB_PIXEL_DEPTH_24BPP)
return 8;
else if (depth == LB_PIXEL_DEPTH_18BPP)
return 6;
else if (depth == LB_PIXEL_DEPTH_36BPP)
return 12;
else {
BREAK_TO_DEBUGGER();
return -1; /* Unsupported */
}
}
static void calc_lb_num_partitions(
const struct scaler_data *scl_data,
enum lb_memory_config lb_config,
int *num_part_y,
int *num_part_c)
{
int line_size = scl_data->viewport.width < scl_data->recout.width ?
scl_data->viewport.width : scl_data->recout.width;
int line_size_c = scl_data->viewport_c.width < scl_data->recout.width ?
scl_data->viewport_c.width : scl_data->recout.width;
int lb_bpc = get_lb_depth_bpc(scl_data->lb_params.depth);
int memory_line_size_y = (line_size * lb_bpc + 71) / 72; /* +71 to ceil */
int memory_line_size_c = (line_size_c * lb_bpc + 71) / 72; /* +71 to ceil */
int memory_line_size_a = (line_size + 5) / 6; /* +5 to ceil */
int lb_memory_size, lb_memory_size_c, lb_memory_size_a, num_partitions_a;
if (lb_config == LB_MEMORY_CONFIG_1) {
lb_memory_size = 816;
lb_memory_size_c = 816;
lb_memory_size_a = 984;
} else if (lb_config == LB_MEMORY_CONFIG_2) {
lb_memory_size = 1088;
lb_memory_size_c = 1088;
lb_memory_size_a = 1312;
} else if (lb_config == LB_MEMORY_CONFIG_3) {
lb_memory_size = 816 + 1088 + 848 + 848 + 848;
lb_memory_size_c = 816 + 1088;
lb_memory_size_a = 984 + 1312 + 456;
} else {
lb_memory_size = 816 + 1088 + 848;
lb_memory_size_c = 816 + 1088 + 848;
lb_memory_size_a = 984 + 1312 + 456;
}
*num_part_y = lb_memory_size / memory_line_size_y;
*num_part_c = lb_memory_size_c / memory_line_size_c;
num_partitions_a = lb_memory_size_a / memory_line_size_a;
if (scl_data->lb_params.alpha_en
&& (num_partitions_a < *num_part_y))
*num_part_y = num_partitions_a;
if (*num_part_y > 64)
*num_part_y = 64;
if (*num_part_c > 64)
*num_part_c = 64;
}
static bool is_lb_conf_valid(int ceil_vratio, int num_partitions, int vtaps)
{
if (ceil_vratio > 2)
return vtaps <= (num_partitions - ceil_vratio + 2);
else
return vtaps <= num_partitions;
}
/*find first match configuration which meets the min required lb size*/
static enum lb_memory_config find_lb_memory_config(const struct scaler_data *scl_data)
{
int num_part_y, num_part_c;
int vtaps = scl_data->taps.v_taps;
int vtaps_c = scl_data->taps.v_taps_c;
int ceil_vratio = dal_fixed31_32_ceil(scl_data->ratios.vert);
int ceil_vratio_c = dal_fixed31_32_ceil(scl_data->ratios.vert_c);
calc_lb_num_partitions(
scl_data, LB_MEMORY_CONFIG_1, &num_part_y, &num_part_c);
if (is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
&& is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
return LB_MEMORY_CONFIG_1;
calc_lb_num_partitions(
scl_data, LB_MEMORY_CONFIG_2, &num_part_y, &num_part_c);
if (is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
&& is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
return LB_MEMORY_CONFIG_2;
if (scl_data->format == PIXEL_FORMAT_420BPP12
|| scl_data->format == PIXEL_FORMAT_420BPP15) {
calc_lb_num_partitions(
scl_data, LB_MEMORY_CONFIG_3, &num_part_y, &num_part_c);
if (is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
&& is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c))
return LB_MEMORY_CONFIG_3;
}
calc_lb_num_partitions(
scl_data, LB_MEMORY_CONFIG_0, &num_part_y, &num_part_c);
/*Ensure we can support the requested number of vtaps*/
ASSERT(is_lb_conf_valid(ceil_vratio, num_part_y, vtaps)
&& is_lb_conf_valid(ceil_vratio_c, num_part_c, vtaps_c));
return LB_MEMORY_CONFIG_0;
}
void transform_set_scaler_auto_scale(
struct transform *xfm_base,
const struct scaler_data *scl_data)
{
enum lb_memory_config lb_config;
struct dcn10_transform *xfm = TO_DCN10_TRANSFORM(xfm_base);
enum dscl_mode_sel dscl_mode = get_dscl_mode(scl_data);
bool ycbcr = scl_data->format >= PIXEL_FORMAT_VIDEO_BEGIN
&& scl_data->format <= PIXEL_FORMAT_VIDEO_END;
transform_set_overscan(xfm, scl_data);
transform_set_otg_blank(xfm, scl_data);
REG_UPDATE(SCL_MODE, DSCL_MODE, get_dscl_mode(scl_data));
transform_set_viewport(xfm, &scl_data->viewport, &scl_data->viewport_c);
if (dscl_mode == DSCL_MODE_DSCL_BYPASS)
return;
lb_config = find_lb_memory_config(scl_data);
transform_set_lb(xfm, &scl_data->lb_params, lb_config);
if (dscl_mode == DSCL_MODE_SCALING_444_BYPASS)
return;
/* TODO: v_min */
REG_SET_3(DSCL_AUTOCAL, 0,
AUTOCAL_MODE, AUTOCAL_MODE_AUTOSCALE,
AUTOCAL_NUM_PIPE, 0,
AUTOCAL_PIPE_ID, 0);
/* Black offsets */
if (ycbcr)
REG_SET_2(SCL_BLACK_OFFSET, 0,
SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_CBCR);
else
REG_SET_2(SCL_BLACK_OFFSET, 0,
SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_RGB_Y);
REG_SET_4(SCL_TAP_CONTROL, 0,
SCL_V_NUM_TAPS, scl_data->taps.v_taps - 1,
SCL_H_NUM_TAPS, scl_data->taps.h_taps - 1,
SCL_V_NUM_TAPS_C, scl_data->taps.v_taps_c - 1,
SCL_H_NUM_TAPS_C, scl_data->taps.h_taps_c - 1);
transform_set_scl_filter(xfm, scl_data, ycbcr);
}
/* Program gamut remap in bypass mode */
void transform_set_gamut_remap_bypass(struct dcn10_transform *xfm)
{
REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, 0);
/* Gamut remap in bypass */
}
static void transform_set_recout(
struct dcn10_transform *xfm, const struct rect *recout)
{
REG_SET_2(RECOUT_START, 0,
/* First pixel of RECOUT */
RECOUT_START_X, recout->x,
/* First line of RECOUT */
RECOUT_START_Y, recout->y);
REG_SET_2(RECOUT_SIZE, 0,
/* Number of RECOUT horizontal pixels */
RECOUT_WIDTH, recout->width,
/* Number of RECOUT vertical lines */
RECOUT_HEIGHT, recout->height
- xfm->base.ctx->dc->debug.surface_visual_confirm * 2);
}
static void transform_set_manual_ratio_init(
struct dcn10_transform *xfm, const struct scaler_data *data)
{
uint32_t init_frac = 0;
uint32_t init_int = 0;
REG_SET(SCL_HORZ_FILTER_SCALE_RATIO, 0,
SCL_H_SCALE_RATIO, dal_fixed31_32_u2d19(data->ratios.horz) << 5);
REG_SET(SCL_VERT_FILTER_SCALE_RATIO, 0,
SCL_V_SCALE_RATIO, dal_fixed31_32_u2d19(data->ratios.vert) << 5);
REG_SET(SCL_HORZ_FILTER_SCALE_RATIO_C, 0,
SCL_H_SCALE_RATIO_C, dal_fixed31_32_u2d19(data->ratios.horz_c) << 5);
REG_SET(SCL_VERT_FILTER_SCALE_RATIO_C, 0,
SCL_V_SCALE_RATIO_C, dal_fixed31_32_u2d19(data->ratios.vert_c) << 5);
/*
* 0.24 format for fraction, first five bits zeroed
*/
init_frac = dal_fixed31_32_u0d19(data->inits.h) << 5;
init_int = dal_fixed31_32_floor(data->inits.h);
REG_SET_2(SCL_HORZ_FILTER_INIT, 0,
SCL_H_INIT_FRAC, init_frac,
SCL_H_INIT_INT, init_int);
init_frac = dal_fixed31_32_u0d19(data->inits.h_c) << 5;
init_int = dal_fixed31_32_floor(data->inits.h_c);
REG_SET_2(SCL_HORZ_FILTER_INIT_C, 0,
SCL_H_INIT_FRAC_C, init_frac,
SCL_H_INIT_INT_C, init_int);
init_frac = dal_fixed31_32_u0d19(data->inits.v) << 5;
init_int = dal_fixed31_32_floor(data->inits.v);
REG_SET_2(SCL_VERT_FILTER_INIT, 0,
SCL_V_INIT_FRAC, init_frac,
SCL_V_INIT_INT, init_int);
init_frac = dal_fixed31_32_u0d19(data->inits.v_bot) << 5;
init_int = dal_fixed31_32_floor(data->inits.v_bot);
REG_SET_2(SCL_VERT_FILTER_INIT_BOT, 0,
SCL_V_INIT_FRAC_BOT, init_frac,
SCL_V_INIT_INT_BOT, init_int);
init_frac = dal_fixed31_32_u0d19(data->inits.v_c) << 5;
init_int = dal_fixed31_32_floor(data->inits.v_c);
REG_SET_2(SCL_VERT_FILTER_INIT_C, 0,
SCL_V_INIT_FRAC_C, init_frac,
SCL_V_INIT_INT_C, init_int);
init_frac = dal_fixed31_32_u0d19(data->inits.v_c_bot) << 5;
init_int = dal_fixed31_32_floor(data->inits.v_c_bot);
REG_SET_2(SCL_VERT_FILTER_INIT_BOT_C, 0,
SCL_V_INIT_FRAC_BOT_C, init_frac,
SCL_V_INIT_INT_BOT_C, init_int);
}
/* Main function to program scaler and line buffer in manual scaling mode */
static void transform_set_scaler_manual_scale(
struct transform *xfm_base,
const struct scaler_data *scl_data)
{
enum lb_memory_config lb_config;
struct dcn10_transform *xfm = TO_DCN10_TRANSFORM(xfm_base);
enum dscl_mode_sel dscl_mode = get_dscl_mode(scl_data);
bool ycbcr = scl_data->format >= PIXEL_FORMAT_VIDEO_BEGIN
&& scl_data->format <= PIXEL_FORMAT_VIDEO_END;
/* Recout */
transform_set_recout(xfm, &scl_data->recout);
/* MPC Size */
REG_SET_2(MPC_SIZE, 0,
/* Number of horizontal pixels of MPC */
MPC_WIDTH, scl_data->h_active,
/* Number of vertical lines of MPC */
MPC_HEIGHT, scl_data->v_active);
/* SCL mode */
REG_UPDATE(SCL_MODE, DSCL_MODE, dscl_mode);
/* Viewport */
transform_set_viewport(xfm, &scl_data->viewport, &scl_data->viewport_c);
if (dscl_mode == DSCL_MODE_DSCL_BYPASS)
return;
/* LB */
lb_config = find_lb_memory_config(scl_data);
transform_set_lb(xfm, &scl_data->lb_params, lb_config);
if (dscl_mode == DSCL_MODE_SCALING_444_BYPASS)
return;
/* Autocal off */
REG_SET_3(DSCL_AUTOCAL, 0,
AUTOCAL_MODE, AUTOCAL_MODE_OFF,
AUTOCAL_NUM_PIPE, 0,
AUTOCAL_PIPE_ID, 0);
/* Black offsets */
if (ycbcr)
REG_SET_2(SCL_BLACK_OFFSET, 0,
SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_CBCR);
else
REG_SET_2(SCL_BLACK_OFFSET, 0,
SCL_BLACK_OFFSET_RGB_Y, BLACK_OFFSET_RGB_Y,
SCL_BLACK_OFFSET_CBCR, BLACK_OFFSET_RGB_Y);
/* Manually calculate scale ratio and init values */
transform_set_manual_ratio_init(xfm, scl_data);
/* HTaps/VTaps */
REG_SET_4(SCL_TAP_CONTROL, 0,
SCL_V_NUM_TAPS, scl_data->taps.v_taps - 1,
SCL_H_NUM_TAPS, scl_data->taps.h_taps - 1,
SCL_V_NUM_TAPS_C, scl_data->taps.v_taps_c - 1,
SCL_H_NUM_TAPS_C, scl_data->taps.h_taps_c - 1);
transform_set_scl_filter(xfm, scl_data, ycbcr);
}
#define IDENTITY_RATIO(ratio) (dal_fixed31_32_u2d19(ratio) == (1 << 19))
static bool transform_get_optimal_number_of_taps(
struct transform *xfm,
struct scaler_data *scl_data,
const struct scaling_taps *in_taps)
{
uint32_t pixel_width;
if (scl_data->viewport.width > scl_data->recout.width)
pixel_width = scl_data->recout.width;
else
pixel_width = scl_data->viewport.width;
/* TODO: add lb check */
/* No support for programming ratio of 4, drop to 3.99999.. */
if (scl_data->ratios.horz.value == (4ll << 32))
scl_data->ratios.horz.value--;
if (scl_data->ratios.vert.value == (4ll << 32))
scl_data->ratios.vert.value--;
if (scl_data->ratios.horz_c.value == (4ll << 32))
scl_data->ratios.horz_c.value--;
if (scl_data->ratios.vert_c.value == (4ll << 32))
scl_data->ratios.vert_c.value--;
/* Set default taps if none are provided */
if (in_taps->h_taps == 0)
scl_data->taps.h_taps = 4;
else
scl_data->taps.h_taps = in_taps->h_taps;
if (in_taps->v_taps == 0)
scl_data->taps.v_taps = 4;
else
scl_data->taps.v_taps = in_taps->v_taps;
if (in_taps->v_taps_c == 0)
scl_data->taps.v_taps_c = 2;
else
scl_data->taps.v_taps_c = in_taps->v_taps_c;
if (in_taps->h_taps_c == 0)
scl_data->taps.h_taps_c = 2;
/* Only 1 and even h_taps_c are supported by hw */
else if ((in_taps->h_taps_c % 2) != 0 && in_taps->h_taps_c != 1)
scl_data->taps.h_taps_c = in_taps->h_taps_c - 1;
else
scl_data->taps.h_taps_c = in_taps->h_taps_c;
if (IDENTITY_RATIO(scl_data->ratios.horz))
scl_data->taps.h_taps = 1;
if (IDENTITY_RATIO(scl_data->ratios.vert))
scl_data->taps.v_taps = 1;
if (IDENTITY_RATIO(scl_data->ratios.horz_c))
scl_data->taps.h_taps_c = 1;
if (IDENTITY_RATIO(scl_data->ratios.vert_c))
scl_data->taps.v_taps_c = 1;
return true;
}
static void transform_reset(struct transform *xfm_base)
{
struct dcn10_transform *xfm = TO_DCN10_TRANSFORM(xfm_base);
xfm->filter_h_c = NULL;
xfm->filter_v_c = NULL;
xfm->filter_h = NULL;
xfm->filter_v = NULL;
/* set boundary mode to 0 */
REG_SET(DSCL_CONTROL, 0, SCL_BOUNDARY_MODE, 0);
}
static void program_gamut_remap(
struct dcn10_transform *xfm,
const uint16_t *regval,
enum gamut_remap_select select)
{
uint16_t selection = 0;
if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, 0);
return;
}
switch (select) {
case GAMUT_REMAP_COEFF:
selection = 1;
break;
case GAMUT_REMAP_COMA_COEFF:
selection = 2;
break;
case GAMUT_REMAP_COMB_COEFF:
selection = 3;
break;
default:
break;
}
if (select == GAMUT_REMAP_COEFF) {
REG_SET_2(CM_GAMUT_REMAP_C11_C12, 0,
CM_GAMUT_REMAP_C11, regval[0],
CM_GAMUT_REMAP_C12, regval[1]);
regval += 2;
REG_SET_2(CM_GAMUT_REMAP_C13_C14, 0,
CM_GAMUT_REMAP_C13, regval[0],
CM_GAMUT_REMAP_C14, regval[1]);
regval += 2;
REG_SET_2(CM_GAMUT_REMAP_C21_C22, 0,
CM_GAMUT_REMAP_C21, regval[0],
CM_GAMUT_REMAP_C22, regval[1]);
regval += 2;
REG_SET_2(CM_GAMUT_REMAP_C23_C24, 0,
CM_GAMUT_REMAP_C23, regval[0],
CM_GAMUT_REMAP_C24, regval[1]);
regval += 2;
REG_SET_2(CM_GAMUT_REMAP_C31_C32, 0,
CM_GAMUT_REMAP_C31, regval[0],
CM_GAMUT_REMAP_C32, regval[1]);
regval += 2;
REG_SET_2(CM_GAMUT_REMAP_C33_C34, 0,
CM_GAMUT_REMAP_C33, regval[0],
CM_GAMUT_REMAP_C34, regval[1]);
} else if (select == GAMUT_REMAP_COMA_COEFF) {
REG_SET_2(CM_COMA_C11_C12, 0,
CM_COMA_C11, regval[0],
CM_COMA_C12, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C13_C14, 0,
CM_COMA_C13, regval[0],
CM_COMA_C14, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C21_C22, 0,
CM_COMA_C21, regval[0],
CM_COMA_C22, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C23_C24, 0,
CM_COMA_C23, regval[0],
CM_COMA_C24, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C31_C32, 0,
CM_COMA_C31, regval[0],
CM_COMA_C32, regval[1]);
regval += 2;
REG_SET_2(CM_COMA_C33_C34, 0,
CM_COMA_C33, regval[0],
CM_COMA_C34, regval[1]);
} else {
REG_SET_2(CM_COMB_C11_C12, 0,
CM_COMB_C11, regval[0],
CM_COMB_C12, regval[1]);
regval += 2;
REG_SET_2(CM_COMB_C13_C14, 0,
CM_COMB_C13, regval[0],
CM_COMB_C14, regval[1]);
regval += 2;
REG_SET_2(CM_COMB_C21_C22, 0,
CM_COMB_C21, regval[0],
CM_COMB_C22, regval[1]);
regval += 2;
REG_SET_2(CM_COMB_C23_C24, 0,
CM_COMB_C23, regval[0],
CM_COMB_C24, regval[1]);
regval += 2;
REG_SET_2(CM_COMB_C31_C32, 0,
CM_COMB_C31, regval[0],
CM_COMB_C32, regval[1]);
regval += 2;
REG_SET_2(CM_COMB_C33_C34, 0,
CM_COMB_C33, regval[0],
CM_COMB_C34, regval[1]);
}
REG_SET(
CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, selection);
}
static void dcn_transform_set_gamut_remap(
struct transform *xfm,
const struct xfm_grph_csc_adjustment *adjust)
{
struct dcn10_transform *dcn_xfm = TO_DCN10_TRANSFORM(xfm);
if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
/* Bypass if type is bypass or hw */
program_gamut_remap(dcn_xfm, NULL, GAMUT_REMAP_BYPASS);
else {
struct fixed31_32 arr_matrix[12];
uint16_t arr_reg_val[12];
arr_matrix[0] = adjust->temperature_matrix[0];
arr_matrix[1] = adjust->temperature_matrix[1];
arr_matrix[2] = adjust->temperature_matrix[2];
arr_matrix[3] = dal_fixed31_32_zero;
arr_matrix[4] = adjust->temperature_matrix[3];
arr_matrix[5] = adjust->temperature_matrix[4];
arr_matrix[6] = adjust->temperature_matrix[5];
arr_matrix[7] = dal_fixed31_32_zero;
arr_matrix[8] = adjust->temperature_matrix[6];
arr_matrix[9] = adjust->temperature_matrix[7];
arr_matrix[10] = adjust->temperature_matrix[8];
arr_matrix[11] = dal_fixed31_32_zero;
convert_float_matrix(
arr_reg_val, arr_matrix, 12);
program_gamut_remap(dcn_xfm, arr_reg_val, GAMUT_REMAP_COEFF);
}
}
static struct transform_funcs dcn10_transform_funcs = {
.transform_reset = transform_reset,
.transform_set_scaler = transform_set_scaler_manual_scale,
.transform_get_optimal_number_of_taps =
transform_get_optimal_number_of_taps,
.transform_set_gamut_remap = dcn_transform_set_gamut_remap
};
/*****************************************/
/* Constructor, Destructor */
/*****************************************/
bool dcn10_transform_construct(
struct dcn10_transform *xfm,
struct dc_context *ctx,
const struct dcn_transform_registers *tf_regs,
const struct dcn_transform_shift *tf_shift,
const struct dcn_transform_mask *tf_mask)
{
xfm->base.ctx = ctx;
xfm->base.funcs = &dcn10_transform_funcs;
xfm->tf_regs = tf_regs;
xfm->tf_shift = tf_shift;
xfm->tf_mask = tf_mask;
xfm->lb_pixel_depth_supported =
LB_PIXEL_DEPTH_18BPP |
LB_PIXEL_DEPTH_24BPP |
LB_PIXEL_DEPTH_30BPP;
xfm->lb_bits_per_entry = LB_BITS_PER_ENTRY;
xfm->lb_memory_size = LB_TOTAL_NUMBER_OF_ENTRIES; /*0x1404*/
return true;
}
/* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#ifndef __DAL_TRANSFORM_DCN10_H__
#define __DAL_TRANSFORM_DCN10_H__
#include "transform.h"
#define TO_DCN10_TRANSFORM(transform)\
container_of(transform, struct dcn10_transform, base)
/* TODO: Use correct number of taps. Using polaris values for now */
#define LB_TOTAL_NUMBER_OF_ENTRIES 5124
#define LB_BITS_PER_ENTRY 144
#define TF_SF(reg_name, field_name, post_fix)\
.field_name = reg_name ## __ ## field_name ## post_fix
#define TF_REG_LIST_DCN(id) \
SRI(DSCL_EXT_OVERSCAN_LEFT_RIGHT, DSCL, id), \
SRI(DSCL_EXT_OVERSCAN_TOP_BOTTOM, DSCL, id), \
SRI(OTG_H_BLANK, DSCL, id), \
SRI(OTG_V_BLANK, DSCL, id), \
SRI(SCL_MODE, DSCL, id), \
SRI(LB_DATA_FORMAT, DSCL, id), \
SRI(LB_MEMORY_CTRL, DSCL, id), \
SRI(DSCL_AUTOCAL, DSCL, id), \
SRI(SCL_BLACK_OFFSET, DSCL, id), \
SRI(DSCL_CONTROL, DSCL, id), \
SRI(SCL_TAP_CONTROL, DSCL, id), \
SRI(SCL_COEF_RAM_TAP_SELECT, DSCL, id), \
SRI(SCL_COEF_RAM_TAP_DATA, DSCL, id), \
SRI(DSCL_2TAP_CONTROL, DSCL, id), \
SRI(DCSURF_PRI_VIEWPORT_DIMENSION, HUBP, id), \
SRI(DCSURF_PRI_VIEWPORT_START, HUBP, id), \
SRI(DCSURF_SEC_VIEWPORT_DIMENSION, HUBP, id), \
SRI(DCSURF_SEC_VIEWPORT_START, HUBP, id), \
SRI(DCSURF_PRI_VIEWPORT_DIMENSION_C, HUBP, id), \
SRI(DCSURF_PRI_VIEWPORT_START_C, HUBP, id), \
SRI(CM_GAMUT_REMAP_CONTROL, CM, id), \
SRI(MPC_SIZE, DSCL, id), \
SRI(SCL_HORZ_FILTER_SCALE_RATIO, DSCL, id), \
SRI(SCL_VERT_FILTER_SCALE_RATIO, DSCL, id), \
SRI(SCL_HORZ_FILTER_SCALE_RATIO_C, DSCL, id), \
SRI(SCL_VERT_FILTER_SCALE_RATIO_C, DSCL, id), \
SRI(SCL_HORZ_FILTER_INIT, DSCL, id), \
SRI(SCL_HORZ_FILTER_INIT_C, DSCL, id), \
SRI(SCL_VERT_FILTER_INIT, DSCL, id), \
SRI(SCL_VERT_FILTER_INIT_BOT, DSCL, id), \
SRI(SCL_VERT_FILTER_INIT_C, DSCL, id), \
SRI(SCL_VERT_FILTER_INIT_BOT_C, DSCL, id), \
SRI(RECOUT_START, DSCL, id), \
SRI(RECOUT_SIZE, DSCL, id), \
SRI(CM_GAMUT_REMAP_CONTROL, CM, id),\
SRI(CM_GAMUT_REMAP_C11_C12, CM, id),\
SRI(CM_GAMUT_REMAP_C13_C14, CM, id),\
SRI(CM_GAMUT_REMAP_C21_C22, CM, id),\
SRI(CM_GAMUT_REMAP_C23_C24, CM, id),\
SRI(CM_GAMUT_REMAP_C31_C32, CM, id),\
SRI(CM_GAMUT_REMAP_C33_C34, CM, id),\
SRI(CM_COMA_C11_C12, CM, id),\
SRI(CM_COMA_C13_C14, CM, id),\
SRI(CM_COMA_C21_C22, CM, id),\
SRI(CM_COMA_C23_C24, CM, id),\
SRI(CM_COMA_C31_C32, CM, id),\
SRI(CM_COMA_C33_C34, CM, id),\
SRI(CM_COMB_C11_C12, CM, id),\
SRI(CM_COMB_C13_C14, CM, id),\
SRI(CM_COMB_C21_C22, CM, id),\
SRI(CM_COMB_C23_C24, CM, id),\
SRI(CM_COMB_C31_C32, CM, id),\
SRI(CM_COMB_C33_C34, CM, id)
#define TF_REG_LIST_SH_MASK_DCN(mask_sh)\
TF_SF(DSCL0_DSCL_EXT_OVERSCAN_LEFT_RIGHT, EXT_OVERSCAN_LEFT, mask_sh),\
TF_SF(DSCL0_DSCL_EXT_OVERSCAN_LEFT_RIGHT, EXT_OVERSCAN_RIGHT, mask_sh),\
TF_SF(DSCL0_DSCL_EXT_OVERSCAN_TOP_BOTTOM, EXT_OVERSCAN_BOTTOM, mask_sh),\
TF_SF(DSCL0_DSCL_EXT_OVERSCAN_TOP_BOTTOM, EXT_OVERSCAN_TOP, mask_sh),\
TF_SF(DSCL0_OTG_H_BLANK, OTG_H_BLANK_START, mask_sh),\
TF_SF(DSCL0_OTG_H_BLANK, OTG_H_BLANK_END, mask_sh),\
TF_SF(DSCL0_OTG_V_BLANK, OTG_V_BLANK_START, mask_sh),\
TF_SF(DSCL0_OTG_V_BLANK, OTG_V_BLANK_END, mask_sh),\
TF_SF(DSCL0_LB_DATA_FORMAT, PIXEL_DEPTH, mask_sh),\
TF_SF(DSCL0_LB_DATA_FORMAT, PIXEL_EXPAN_MODE, mask_sh),\
TF_SF(DSCL0_LB_DATA_FORMAT, PIXEL_REDUCE_MODE, mask_sh),\
TF_SF(DSCL0_LB_DATA_FORMAT, DYNAMIC_PIXEL_DEPTH, mask_sh),\
TF_SF(DSCL0_LB_DATA_FORMAT, DITHER_EN, mask_sh),\
TF_SF(DSCL0_LB_DATA_FORMAT, INTERLEAVE_EN, mask_sh),\
TF_SF(DSCL0_LB_DATA_FORMAT, ALPHA_EN, mask_sh),\
TF_SF(DSCL0_LB_MEMORY_CTRL, MEMORY_CONFIG, mask_sh),\
TF_SF(DSCL0_LB_MEMORY_CTRL, LB_MAX_PARTITIONS, mask_sh),\
TF_SF(DSCL0_DSCL_AUTOCAL, AUTOCAL_MODE, mask_sh),\
TF_SF(DSCL0_DSCL_AUTOCAL, AUTOCAL_NUM_PIPE, mask_sh),\
TF_SF(DSCL0_DSCL_AUTOCAL, AUTOCAL_PIPE_ID, mask_sh),\
TF_SF(DSCL0_SCL_BLACK_OFFSET, SCL_BLACK_OFFSET_RGB_Y, mask_sh),\
TF_SF(DSCL0_SCL_BLACK_OFFSET, SCL_BLACK_OFFSET_CBCR, mask_sh),\
TF_SF(DSCL0_DSCL_CONTROL, SCL_BOUNDARY_MODE, mask_sh),\
TF_SF(DSCL0_SCL_TAP_CONTROL, SCL_V_NUM_TAPS, mask_sh),\
TF_SF(DSCL0_SCL_TAP_CONTROL, SCL_H_NUM_TAPS, mask_sh),\
TF_SF(DSCL0_SCL_TAP_CONTROL, SCL_V_NUM_TAPS_C, mask_sh),\
TF_SF(DSCL0_SCL_TAP_CONTROL, SCL_H_NUM_TAPS_C, mask_sh),\
TF_SF(DSCL0_SCL_COEF_RAM_TAP_SELECT, SCL_COEF_RAM_TAP_PAIR_IDX, mask_sh),\
TF_SF(DSCL0_SCL_COEF_RAM_TAP_SELECT, SCL_COEF_RAM_PHASE, mask_sh),\
TF_SF(DSCL0_SCL_COEF_RAM_TAP_SELECT, SCL_COEF_RAM_FILTER_TYPE, mask_sh),\
TF_SF(DSCL0_SCL_COEF_RAM_TAP_DATA, SCL_COEF_RAM_EVEN_TAP_COEF, mask_sh),\
TF_SF(DSCL0_SCL_COEF_RAM_TAP_DATA, SCL_COEF_RAM_EVEN_TAP_COEF_EN, mask_sh),\
TF_SF(DSCL0_SCL_COEF_RAM_TAP_DATA, SCL_COEF_RAM_ODD_TAP_COEF, mask_sh),\
TF_SF(DSCL0_SCL_COEF_RAM_TAP_DATA, SCL_COEF_RAM_ODD_TAP_COEF_EN, mask_sh),\
TF_SF(DSCL0_DSCL_2TAP_CONTROL, SCL_H_2TAP_HARDCODE_COEF_EN, mask_sh),\
TF_SF(DSCL0_DSCL_2TAP_CONTROL, SCL_H_2TAP_SHARP_EN, mask_sh),\
TF_SF(DSCL0_DSCL_2TAP_CONTROL, SCL_H_2TAP_SHARP_FACTOR, mask_sh),\
TF_SF(DSCL0_DSCL_2TAP_CONTROL, SCL_V_2TAP_HARDCODE_COEF_EN, mask_sh),\
TF_SF(DSCL0_DSCL_2TAP_CONTROL, SCL_V_2TAP_SHARP_EN, mask_sh),\
TF_SF(DSCL0_DSCL_2TAP_CONTROL, SCL_V_2TAP_SHARP_FACTOR, mask_sh),\
TF_SF(DSCL0_SCL_MODE, SCL_COEF_RAM_SELECT, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_WIDTH, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION, PRI_VIEWPORT_HEIGHT, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_START, PRI_VIEWPORT_X_START, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_START, PRI_VIEWPORT_Y_START, mask_sh),\
TF_SF(HUBP0_DCSURF_SEC_VIEWPORT_DIMENSION, SEC_VIEWPORT_WIDTH, mask_sh),\
TF_SF(HUBP0_DCSURF_SEC_VIEWPORT_DIMENSION, SEC_VIEWPORT_HEIGHT, mask_sh),\
TF_SF(HUBP0_DCSURF_SEC_VIEWPORT_START, SEC_VIEWPORT_X_START, mask_sh),\
TF_SF(HUBP0_DCSURF_SEC_VIEWPORT_START, SEC_VIEWPORT_Y_START, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION_C, PRI_VIEWPORT_WIDTH_C, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_DIMENSION_C, PRI_VIEWPORT_HEIGHT_C, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_START_C, PRI_VIEWPORT_X_START_C, mask_sh),\
TF_SF(HUBP0_DCSURF_PRI_VIEWPORT_START_C, PRI_VIEWPORT_Y_START_C, mask_sh),\
TF_SF(DSCL0_SCL_MODE, DSCL_MODE, mask_sh),\
TF_SF(DSCL0_RECOUT_START, RECOUT_START_X, mask_sh),\
TF_SF(DSCL0_RECOUT_START, RECOUT_START_Y, mask_sh),\
TF_SF(DSCL0_RECOUT_SIZE, RECOUT_WIDTH, mask_sh),\
TF_SF(DSCL0_RECOUT_SIZE, RECOUT_HEIGHT, mask_sh),\
TF_SF(DSCL0_MPC_SIZE, MPC_WIDTH, mask_sh),\
TF_SF(DSCL0_MPC_SIZE, MPC_HEIGHT, mask_sh),\
TF_SF(DSCL0_SCL_HORZ_FILTER_SCALE_RATIO, SCL_H_SCALE_RATIO, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_SCALE_RATIO, SCL_V_SCALE_RATIO, mask_sh),\
TF_SF(DSCL0_SCL_HORZ_FILTER_SCALE_RATIO_C, SCL_H_SCALE_RATIO_C, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_SCALE_RATIO_C, SCL_V_SCALE_RATIO_C, mask_sh),\
TF_SF(DSCL0_SCL_HORZ_FILTER_INIT, SCL_H_INIT_FRAC, mask_sh),\
TF_SF(DSCL0_SCL_HORZ_FILTER_INIT, SCL_H_INIT_INT, mask_sh),\
TF_SF(DSCL0_SCL_HORZ_FILTER_INIT_C, SCL_H_INIT_FRAC_C, mask_sh),\
TF_SF(DSCL0_SCL_HORZ_FILTER_INIT_C, SCL_H_INIT_INT_C, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT, SCL_V_INIT_FRAC, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT, SCL_V_INIT_INT, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT_BOT, SCL_V_INIT_FRAC_BOT, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT_BOT, SCL_V_INIT_INT_BOT, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT_C, SCL_V_INIT_FRAC_C, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT_C, SCL_V_INIT_INT_C, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT_BOT_C, SCL_V_INIT_FRAC_BOT_C, mask_sh),\
TF_SF(DSCL0_SCL_VERT_FILTER_INIT_BOT_C, SCL_V_INIT_INT_BOT_C, mask_sh),\
TF_SF(DSCL0_SCL_MODE, SCL_CHROMA_COEF_MODE, mask_sh),\
TF_SF(DSCL0_SCL_MODE, SCL_COEF_RAM_SELECT_CURRENT, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_CONTROL, CM_GAMUT_REMAP_MODE, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C11_C12, CM_GAMUT_REMAP_C11, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C11_C12, CM_GAMUT_REMAP_C12, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C13_C14, CM_GAMUT_REMAP_C13, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C13_C14, CM_GAMUT_REMAP_C14, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C21_C22, CM_GAMUT_REMAP_C21, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C21_C22, CM_GAMUT_REMAP_C22, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C23_C24, CM_GAMUT_REMAP_C23, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C23_C24, CM_GAMUT_REMAP_C24, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C31_C32, CM_GAMUT_REMAP_C31, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C31_C32, CM_GAMUT_REMAP_C32, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C33_C34, CM_GAMUT_REMAP_C33, mask_sh),\
TF_SF(CM0_CM_GAMUT_REMAP_C33_C34, CM_GAMUT_REMAP_C34, mask_sh),\
TF_SF(CM0_CM_COMA_C11_C12, CM_COMA_C11, mask_sh),\
TF_SF(CM0_CM_COMA_C11_C12, CM_COMA_C12, mask_sh),\
TF_SF(CM0_CM_COMA_C13_C14, CM_COMA_C13, mask_sh),\
TF_SF(CM0_CM_COMA_C13_C14, CM_COMA_C14, mask_sh),\
TF_SF(CM0_CM_COMA_C21_C22, CM_COMA_C21, mask_sh),\
TF_SF(CM0_CM_COMA_C21_C22, CM_COMA_C22, mask_sh),\
TF_SF(CM0_CM_COMA_C23_C24, CM_COMA_C23, mask_sh),\
TF_SF(CM0_CM_COMA_C23_C24, CM_COMA_C24, mask_sh),\
TF_SF(CM0_CM_COMA_C31_C32, CM_COMA_C31, mask_sh),\
TF_SF(CM0_CM_COMA_C31_C32, CM_COMA_C32, mask_sh),\
TF_SF(CM0_CM_COMA_C33_C34, CM_COMA_C33, mask_sh),\
TF_SF(CM0_CM_COMA_C33_C34, CM_COMA_C34, mask_sh),\
TF_SF(CM0_CM_COMB_C11_C12, CM_COMB_C11, mask_sh),\
TF_SF(CM0_CM_COMB_C11_C12, CM_COMB_C12, mask_sh),\
TF_SF(CM0_CM_COMB_C13_C14, CM_COMB_C13, mask_sh),\
TF_SF(CM0_CM_COMB_C13_C14, CM_COMB_C14, mask_sh),\
TF_SF(CM0_CM_COMB_C21_C22, CM_COMB_C21, mask_sh),\
TF_SF(CM0_CM_COMB_C21_C22, CM_COMB_C22, mask_sh),\
TF_SF(CM0_CM_COMB_C23_C24, CM_COMB_C23, mask_sh),\
TF_SF(CM0_CM_COMB_C23_C24, CM_COMB_C24, mask_sh),\
TF_SF(CM0_CM_COMB_C31_C32, CM_COMB_C31, mask_sh),\
TF_SF(CM0_CM_COMB_C33_C34, CM_COMB_C33, mask_sh),\
TF_SF(CM0_CM_COMB_C31_C32, CM_COMB_C32, mask_sh),\
TF_SF(CM0_CM_COMB_C33_C34, CM_COMB_C34, mask_sh)
#define TF_REG_FIELD_LIST(type) \
type EXT_OVERSCAN_LEFT; \
type EXT_OVERSCAN_RIGHT; \
type EXT_OVERSCAN_BOTTOM; \
type EXT_OVERSCAN_TOP; \
type OTG_H_BLANK_START; \
type OTG_H_BLANK_END; \
type OTG_V_BLANK_START; \
type OTG_V_BLANK_END; \
type PIXEL_DEPTH; \
type PIXEL_EXPAN_MODE; \
type PIXEL_REDUCE_MODE; \
type DYNAMIC_PIXEL_DEPTH; \
type DITHER_EN; \
type INTERLEAVE_EN; \
type ALPHA_EN; \
type MEMORY_CONFIG; \
type LB_MAX_PARTITIONS; \
type AUTOCAL_MODE; \
type AUTOCAL_NUM_PIPE; \
type AUTOCAL_PIPE_ID; \
type SCL_BLACK_OFFSET_RGB_Y; \
type SCL_BLACK_OFFSET_CBCR; \
type SCL_BOUNDARY_MODE; \
type SCL_V_NUM_TAPS; \
type SCL_H_NUM_TAPS; \
type SCL_V_NUM_TAPS_C; \
type SCL_H_NUM_TAPS_C; \
type SCL_COEF_RAM_TAP_PAIR_IDX; \
type SCL_COEF_RAM_PHASE; \
type SCL_COEF_RAM_FILTER_TYPE; \
type SCL_COEF_RAM_EVEN_TAP_COEF; \
type SCL_COEF_RAM_EVEN_TAP_COEF_EN; \
type SCL_COEF_RAM_ODD_TAP_COEF; \
type SCL_COEF_RAM_ODD_TAP_COEF_EN; \
type SCL_H_2TAP_HARDCODE_COEF_EN; \
type SCL_H_2TAP_SHARP_EN; \
type SCL_H_2TAP_SHARP_FACTOR; \
type SCL_V_2TAP_HARDCODE_COEF_EN; \
type SCL_V_2TAP_SHARP_EN; \
type SCL_V_2TAP_SHARP_FACTOR; \
type SCL_COEF_RAM_SELECT; \
type PRI_VIEWPORT_WIDTH; \
type PRI_VIEWPORT_HEIGHT; \
type PRI_VIEWPORT_X_START; \
type PRI_VIEWPORT_Y_START; \
type SEC_VIEWPORT_WIDTH; \
type SEC_VIEWPORT_HEIGHT; \
type SEC_VIEWPORT_X_START; \
type SEC_VIEWPORT_Y_START; \
type PRI_VIEWPORT_WIDTH_C; \
type PRI_VIEWPORT_HEIGHT_C; \
type PRI_VIEWPORT_X_START_C; \
type PRI_VIEWPORT_Y_START_C; \
type DSCL_MODE; \
type RECOUT_START_X; \
type RECOUT_START_Y; \
type RECOUT_WIDTH; \
type RECOUT_HEIGHT; \
type MPC_WIDTH; \
type MPC_HEIGHT; \
type SCL_H_SCALE_RATIO; \
type SCL_V_SCALE_RATIO; \
type SCL_H_SCALE_RATIO_C; \
type SCL_V_SCALE_RATIO_C; \
type SCL_H_INIT_FRAC; \
type SCL_H_INIT_INT; \
type SCL_H_INIT_FRAC_C; \
type SCL_H_INIT_INT_C; \
type SCL_V_INIT_FRAC; \
type SCL_V_INIT_INT; \
type SCL_V_INIT_FRAC_BOT; \
type SCL_V_INIT_INT_BOT; \
type SCL_V_INIT_FRAC_C; \
type SCL_V_INIT_INT_C; \
type SCL_V_INIT_FRAC_BOT_C; \
type SCL_V_INIT_INT_BOT_C; \
type SCL_CHROMA_COEF_MODE; \
type SCL_COEF_RAM_SELECT_CURRENT; \
type CM_GAMUT_REMAP_MODE; \
type CM_GAMUT_REMAP_C11; \
type CM_GAMUT_REMAP_C12; \
type CM_GAMUT_REMAP_C13; \
type CM_GAMUT_REMAP_C14; \
type CM_GAMUT_REMAP_C21; \
type CM_GAMUT_REMAP_C22; \
type CM_GAMUT_REMAP_C23; \
type CM_GAMUT_REMAP_C24; \
type CM_GAMUT_REMAP_C31; \
type CM_GAMUT_REMAP_C32; \
type CM_GAMUT_REMAP_C33; \
type CM_GAMUT_REMAP_C34; \
type CM_COMA_C11; \
type CM_COMA_C12; \
type CM_COMA_C13; \
type CM_COMA_C14; \
type CM_COMA_C21; \
type CM_COMA_C22; \
type CM_COMA_C23; \
type CM_COMA_C24; \
type CM_COMA_C31; \
type CM_COMA_C32; \
type CM_COMA_C33; \
type CM_COMA_C34; \
type CM_COMB_C11; \
type CM_COMB_C12; \
type CM_COMB_C13; \
type CM_COMB_C14; \
type CM_COMB_C21; \
type CM_COMB_C22; \
type CM_COMB_C23; \
type CM_COMB_C24; \
type CM_COMB_C31; \
type CM_COMB_C32; \
type CM_COMB_C33; \
type CM_COMB_C34
struct dcn_transform_shift {
TF_REG_FIELD_LIST(uint8_t);
};
struct dcn_transform_mask {
TF_REG_FIELD_LIST(uint32_t);
};
struct dcn_transform_registers {
uint32_t DSCL_EXT_OVERSCAN_LEFT_RIGHT;
uint32_t DSCL_EXT_OVERSCAN_TOP_BOTTOM;
uint32_t OTG_H_BLANK;
uint32_t OTG_V_BLANK;
uint32_t SCL_MODE;
uint32_t LB_DATA_FORMAT;
uint32_t LB_MEMORY_CTRL;
uint32_t DSCL_AUTOCAL;
uint32_t SCL_BLACK_OFFSET;
uint32_t DSCL_CONTROL;
uint32_t SCL_TAP_CONTROL;
uint32_t SCL_COEF_RAM_TAP_SELECT;
uint32_t SCL_COEF_RAM_TAP_DATA;
uint32_t DSCL_2TAP_CONTROL;
uint32_t DCSURF_PRI_VIEWPORT_DIMENSION;
uint32_t DCSURF_PRI_VIEWPORT_START;
uint32_t DCSURF_SEC_VIEWPORT_DIMENSION;
uint32_t DCSURF_SEC_VIEWPORT_START;
uint32_t DCSURF_PRI_VIEWPORT_DIMENSION_C;
uint32_t DCSURF_PRI_VIEWPORT_START_C;
uint32_t MPC_SIZE;
uint32_t SCL_HORZ_FILTER_SCALE_RATIO;
uint32_t SCL_VERT_FILTER_SCALE_RATIO;
uint32_t SCL_HORZ_FILTER_SCALE_RATIO_C;
uint32_t SCL_VERT_FILTER_SCALE_RATIO_C;
uint32_t SCL_HORZ_FILTER_INIT;
uint32_t SCL_HORZ_FILTER_INIT_C;
uint32_t SCL_VERT_FILTER_INIT;
uint32_t SCL_VERT_FILTER_INIT_BOT;
uint32_t SCL_VERT_FILTER_INIT_C;
uint32_t SCL_VERT_FILTER_INIT_BOT_C;
uint32_t RECOUT_START;
uint32_t RECOUT_SIZE;
uint32_t CM_GAMUT_REMAP_CONTROL;
uint32_t CM_GAMUT_REMAP_C11_C12;
uint32_t CM_GAMUT_REMAP_C13_C14;
uint32_t CM_GAMUT_REMAP_C21_C22;
uint32_t CM_GAMUT_REMAP_C23_C24;
uint32_t CM_GAMUT_REMAP_C31_C32;
uint32_t CM_GAMUT_REMAP_C33_C34;
uint32_t CM_COMA_C11_C12;
uint32_t CM_COMA_C13_C14;
uint32_t CM_COMA_C21_C22;
uint32_t CM_COMA_C23_C24;
uint32_t CM_COMA_C31_C32;
uint32_t CM_COMA_C33_C34;
uint32_t CM_COMB_C11_C12;
uint32_t CM_COMB_C13_C14;
uint32_t CM_COMB_C21_C22;
uint32_t CM_COMB_C23_C24;
uint32_t CM_COMB_C31_C32;
uint32_t CM_COMB_C33_C34;
};
struct dcn10_transform {
struct transform base;
const struct dcn_transform_registers *tf_regs;
const struct dcn_transform_shift *tf_shift;
const struct dcn_transform_mask *tf_mask;
const uint16_t *filter_v;
const uint16_t *filter_h;
const uint16_t *filter_v_c;
const uint16_t *filter_h_c;
int lb_pixel_depth_supported;
int lb_memory_size;
int lb_bits_per_entry;
};
bool dcn10_transform_construct(struct dcn10_transform *xfm110,
struct dc_context *ctx,
const struct dcn_transform_registers *tf_regs,
const struct dcn_transform_shift *tf_shift,
const struct dcn_transform_mask *tf_mask);
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment