Commit 70d9d825 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik/netdev-2.6

parents 537a95d9 f896424c
S2IO Technologies XFrame 10 Gig adapter. Release notes for Neterion's (Formerly S2io) Xframe I/II PCI-X 10GbE driver.
-------------------------------------------
Contents
I. Module loadable parameters. =======
When loaded as a module, the driver provides a host of Module loadable - 1. Introduction
parameters, so the device can be tuned as per the users needs. - 2. Identifying the adapter/interface
A list of the Module params is given below. - 3. Features supported
(i) ring_num: This can be used to program the number of - 4. Command line parameters
receive rings used in the driver. - 5. Performance suggestions
(ii) ring_len: This defines the number of descriptors each ring - 6. Available Downloads
can have. There can be a maximum of 8 rings.
(iii) frame_len: This is an array of size 8. Using this we can
set the maximum size of the received frame that can 1. Introduction:
be steered into the corrsponding receive ring. This Linux driver supports Neterion's Xframe I PCI-X 1.0 and
(iv) fifo_num: This defines the number of Tx FIFOs thats used in Xframe II PCI-X 2.0 adapters. It supports several features
the driver. such as jumbo frames, MSI/MSI-X, checksum offloads, TSO, UFO and so on.
(v) fifo_len: Each element defines the number of See below for complete list of features.
Tx descriptors that can be associated with each All features are supported for both IPv4 and IPv6.
corresponding FIFO. There are a maximum of 8 FIFOs.
(vi) tx_prio: This is a bool, if module is loaded with a non-zero 2. Identifying the adapter/interface:
value for tx_prio multi FIFO scheme is activated. a. Insert the adapter(s) in your system.
(vii) rx_prio: This is a bool, if module is loaded with a non-zero b. Build and load driver
value for tx_prio multi RING scheme is activated. # insmod s2io.ko
(viii) latency_timer: The value given against this param will be c. View log messages
loaded into the latency timer register in PCI Config # dmesg | tail -40
space, else the register is left with its reset value. You will see messages similar to:
eth3: Neterion Xframe I 10GbE adapter (rev 3), Version 2.0.9.1, Intr type INTA
II. Performance tuning. eth4: Neterion Xframe II 10GbE adapter (rev 2), Version 2.0.9.1, Intr type INTA
By changing a few sysctl parameters. eth4: Device is on 64 bit 133MHz PCIX(M1) bus
Copy the following lines into a file and run the following command,
"sysctl -p <file_name>" The above messages identify the adapter type(Xframe I/II), adapter revision,
### IPV4 specific settings driver version, interface name(eth3, eth4), Interrupt type(INTA, MSI, MSI-X).
net.ipv4.tcp_timestamps = 0 # turns TCP timestamp support off, default 1, reduces CPU use In case of Xframe II, the PCI/PCI-X bus width and frequency are displayed
net.ipv4.tcp_sack = 0 # turn SACK support off, default on as well.
# on systems with a VERY fast bus -> memory interface this is the big gainer
net.ipv4.tcp_rmem = 10000000 10000000 10000000 # sets min/default/max TCP read buffer, default 4096 87380 174760 To associate an interface with a physical adapter use "ethtool -p <ethX>".
net.ipv4.tcp_wmem = 10000000 10000000 10000000 # sets min/pressure/max TCP write buffer, default 4096 16384 131072 The corresponding adapter's LED will blink multiple times.
net.ipv4.tcp_mem = 10000000 10000000 10000000 # sets min/pressure/max TCP buffer space, default 31744 32256 32768
3. Features supported:
### CORE settings (mostly for socket and UDP effect) a. Jumbo frames. Xframe I/II supports MTU upto 9600 bytes,
net.core.rmem_max = 524287 # maximum receive socket buffer size, default 131071 modifiable using ifconfig command.
net.core.wmem_max = 524287 # maximum send socket buffer size, default 131071
net.core.rmem_default = 524287 # default receive socket buffer size, default 65535 b. Offloads. Supports checksum offload(TCP/UDP/IP) on transmit
net.core.wmem_default = 524287 # default send socket buffer size, default 65535 and receive, TSO.
net.core.optmem_max = 524287 # maximum amount of option memory buffers, default 10240
net.core.netdev_max_backlog = 300000 # number of unprocessed input packets before kernel starts dropping them, default 300 c. Multi-buffer receive mode. Scattering of packet across multiple
---End of performance tuning file--- buffers. Currently driver supports 2-buffer mode which yields
significant performance improvement on certain platforms(SGI Altix,
IBM xSeries).
d. MSI/MSI-X. Can be enabled on platforms which support this feature
(IA64, Xeon) resulting in noticeable performance improvement(upto 7%
on certain platforms).
e. NAPI. Compile-time option(CONFIG_S2IO_NAPI) for better Rx interrupt
moderation.
f. Statistics. Comprehensive MAC-level and software statistics displayed
using "ethtool -S" option.
g. Multi-FIFO/Ring. Supports up to 8 transmit queues and receive rings,
with multiple steering options.
4. Command line parameters
a. tx_fifo_num
Number of transmit queues
Valid range: 1-8
Default: 1
b. rx_ring_num
Number of receive rings
Valid range: 1-8
Default: 1
c. tx_fifo_len
Size of each transmit queue
Valid range: Total length of all queues should not exceed 8192
Default: 4096
d. rx_ring_sz
Size of each receive ring(in 4K blocks)
Valid range: Limited by memory on system
Default: 30
e. intr_type
Specifies interrupt type. Possible values 1(INTA), 2(MSI), 3(MSI-X)
Valid range: 1-3
Default: 1
5. Performance suggestions
General:
a. Set MTU to maximum(9000 for switch setup, 9600 in back-to-back configuration)
b. Set TCP windows size to optimal value.
For instance, for MTU=1500 a value of 210K has been observed to result in
good performance.
# sysctl -w net.ipv4.tcp_rmem="210000 210000 210000"
# sysctl -w net.ipv4.tcp_wmem="210000 210000 210000"
For MTU=9000, TCP window size of 10 MB is recommended.
# sysctl -w net.ipv4.tcp_rmem="10000000 10000000 10000000"
# sysctl -w net.ipv4.tcp_wmem="10000000 10000000 10000000"
Transmit performance:
a. By default, the driver respects BIOS settings for PCI bus parameters.
However, you may want to experiment with PCI bus parameters
max-split-transactions(MOST) and MMRBC (use setpci command).
A MOST value of 2 has been found optimal for Opterons and 3 for Itanium.
It could be different for your hardware.
Set MMRBC to 4K**.
For example you can set
For opteron
#setpci -d 17d5:* 62=1d
For Itanium
#setpci -d 17d5:* 62=3d
For detailed description of the PCI registers, please see Xframe User Guide.
b. Ensure Transmit Checksum offload is enabled. Use ethtool to set/verify this
parameter.
c. Turn on TSO(using "ethtool -K")
# ethtool -K <ethX> tso on
Receive performance:
a. By default, the driver respects BIOS settings for PCI bus parameters.
However, you may want to set PCI latency timer to 248.
#setpci -d 17d5:* LATENCY_TIMER=f8
For detailed description of the PCI registers, please see Xframe User Guide.
b. Use 2-buffer mode. This results in large performance boost on
on certain platforms(eg. SGI Altix, IBM xSeries).
c. Ensure Receive Checksum offload is enabled. Use "ethtool -K ethX" command to
set/verify this option.
d. Enable NAPI feature(in kernel configuration Device Drivers ---> Network
device support ---> Ethernet (10000 Mbit) ---> S2IO 10Gbe Xframe NIC) to
bring down CPU utilization.
** For AMD opteron platforms with 8131 chipset, MMRBC=1 and MOST=1 are
recommended as safe parameters.
For more information, please review the AMD8131 errata at
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26310.pdf
6. Available Downloads
Neterion "s2io" driver in Red Hat and Suse 2.6-based distributions is kept up
to date, also the latest "s2io" code (including support for 2.4 kernels) is
available via "Support" link on the Neterion site: http://www.neterion.com.
For Xframe User Guide (Programming manual), visit ftp site ns1.s2io.com,
user: linuxdocs password: HALdocs
7. Support
For further support please contact either your 10GbE Xframe NIC vendor (IBM,
HP, SGI etc.) or click on the "Support" link on the Neterion site:
http://www.neterion.com.
...@@ -910,6 +910,15 @@ L: linux-fbdev-devel@lists.sourceforge.net ...@@ -910,6 +910,15 @@ L: linux-fbdev-devel@lists.sourceforge.net
W: http://linux-fbdev.sourceforge.net/ W: http://linux-fbdev.sourceforge.net/
S: Maintained S: Maintained
FREESCALE SOC FS_ENET DRIVER
P: Pantelis Antoniou
M: pantelis.antoniou@gmail.com
P: Vitaly Bordug
M: vbordug@ru.mvista.com
L: linuxppc-embedded@ozlabs.org
L: netdev@vger.kernel.org
S: Maintained
FILE LOCKING (flock() and fcntl()/lockf()) FILE LOCKING (flock() and fcntl()/lockf())
P: Matthew Wilcox P: Matthew Wilcox
M: matthew@wil.cx M: matthew@wil.cx
......
...@@ -1203,7 +1203,7 @@ config IBM_EMAC_RX_SKB_HEADROOM ...@@ -1203,7 +1203,7 @@ config IBM_EMAC_RX_SKB_HEADROOM
config IBM_EMAC_PHY_RX_CLK_FIX config IBM_EMAC_PHY_RX_CLK_FIX
bool "PHY Rx clock workaround" bool "PHY Rx clock workaround"
depends on IBM_EMAC && (405EP || 440GX || 440EP) depends on IBM_EMAC && (405EP || 440GX || 440EP || 440GR)
help help
Enable this if EMAC attached to a PHY which doesn't generate Enable this if EMAC attached to a PHY which doesn't generate
RX clock if there is no link, if this is the case, you will RX clock if there is no link, if this is the case, you will
...@@ -2258,17 +2258,6 @@ config S2IO_NAPI ...@@ -2258,17 +2258,6 @@ config S2IO_NAPI
If in doubt, say N. If in doubt, say N.
config 2BUFF_MODE
bool "Use 2 Buffer Mode on Rx side."
depends on S2IO
---help---
On enabling the 2 buffer mode, the received frame will be
split into 2 parts before being DMA'ed to the hosts memory.
The parts are the ethernet header and ethernet payload.
This is useful on systems where DMA'ing to to unaligned
physical memory loactions comes with a heavy price.
If not sure please say N.
endmenu endmenu
if !UML if !UML
......
config FEC_8XX config FEC_8XX
tristate "Motorola 8xx FEC driver" tristate "Motorola 8xx FEC driver"
depends on NET_ETHERNET && 8xx && (NETTA || NETPHONE) depends on NET_ETHERNET
select MII select MII
config FEC_8XX_GENERIC_PHY config FEC_8XX_GENERIC_PHY
...@@ -12,3 +12,9 @@ config FEC_8XX_DM9161_PHY ...@@ -12,3 +12,9 @@ config FEC_8XX_DM9161_PHY
bool "Support DM9161 PHY" bool "Support DM9161 PHY"
depends on FEC_8XX depends on FEC_8XX
default n default n
config FEC_8XX_LXT971_PHY
bool "Support LXT971/LXT972 PHY"
depends on FEC_8XX
default n
...@@ -203,6 +203,39 @@ static void dm9161_shutdown(struct net_device *dev) ...@@ -203,6 +203,39 @@ static void dm9161_shutdown(struct net_device *dev)
#endif #endif
#ifdef CONFIG_FEC_8XX_LXT971_PHY
/* Support for LXT971/972 PHY */
#define MII_LXT971_PCR 16 /* Port Control Register */
#define MII_LXT971_SR2 17 /* Status Register 2 */
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
#define MII_LXT971_LCR 20 /* LED Control Register */
#define MII_LXT971_TCR 30 /* Transmit Control Register */
static void lxt971_startup(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_mii_write(dev, fep->mii_if.phy_id, MII_LXT971_IER, 0x00F2);
}
static void lxt971_ack_int(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_mii_read(dev, fep->mii_if.phy_id, MII_LXT971_ISR);
}
static void lxt971_shutdown(struct net_device *dev)
{
struct fec_enet_private *fep = netdev_priv(dev);
fec_mii_write(dev, fep->mii_if.phy_id, MII_LXT971_IER, 0x0000);
}
#endif
/**********************************************************************************/ /**********************************************************************************/
static const struct phy_info phy_info[] = { static const struct phy_info phy_info[] = {
...@@ -215,6 +248,15 @@ static const struct phy_info phy_info[] = { ...@@ -215,6 +248,15 @@ static const struct phy_info phy_info[] = {
.shutdown = dm9161_shutdown, .shutdown = dm9161_shutdown,
}, },
#endif #endif
#ifdef CONFIG_FEC_8XX_LXT971_PHY
{
.id = 0x0001378e,
.name = "LXT971/972",
.startup = lxt971_startup,
.ack_int = lxt971_ack_int,
.shutdown = lxt971_shutdown,
},
#endif
#ifdef CONFIG_FEC_8XX_GENERIC_PHY #ifdef CONFIG_FEC_8XX_GENERIC_PHY
{ {
.id = 0, .id = 0,
......
...@@ -130,7 +130,7 @@ static int fs_enet_rx_napi(struct net_device *dev, int *budget) ...@@ -130,7 +130,7 @@ static int fs_enet_rx_napi(struct net_device *dev, int *budget)
skb = fep->rx_skbuff[curidx]; skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data, dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
...@@ -144,7 +144,7 @@ static int fs_enet_rx_napi(struct net_device *dev, int *budget) ...@@ -144,7 +144,7 @@ static int fs_enet_rx_napi(struct net_device *dev, int *budget)
skb = fep->rx_skbuff[curidx]; skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data, dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
...@@ -268,7 +268,7 @@ static int fs_enet_rx_non_napi(struct net_device *dev) ...@@ -268,7 +268,7 @@ static int fs_enet_rx_non_napi(struct net_device *dev)
skb = fep->rx_skbuff[curidx]; skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data, dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
...@@ -278,7 +278,7 @@ static int fs_enet_rx_non_napi(struct net_device *dev) ...@@ -278,7 +278,7 @@ static int fs_enet_rx_non_napi(struct net_device *dev)
skb = fep->rx_skbuff[curidx]; skb = fep->rx_skbuff[curidx];
dma_unmap_single(fep->dev, skb->data, dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
...@@ -399,7 +399,8 @@ static void fs_enet_tx(struct net_device *dev) ...@@ -399,7 +399,8 @@ static void fs_enet_tx(struct net_device *dev)
fep->stats.collisions++; fep->stats.collisions++;
/* unmap */ /* unmap */
dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE); dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
skb->len, DMA_TO_DEVICE);
/* /*
* Free the sk buffer associated with this last transmit. * Free the sk buffer associated with this last transmit.
...@@ -547,17 +548,19 @@ void fs_cleanup_bds(struct net_device *dev) ...@@ -547,17 +548,19 @@ void fs_cleanup_bds(struct net_device *dev)
{ {
struct fs_enet_private *fep = netdev_priv(dev); struct fs_enet_private *fep = netdev_priv(dev);
struct sk_buff *skb; struct sk_buff *skb;
cbd_t *bdp;
int i; int i;
/* /*
* Reset SKB transmit buffers. * Reset SKB transmit buffers.
*/ */
for (i = 0; i < fep->tx_ring; i++) { for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
if ((skb = fep->tx_skbuff[i]) == NULL) if ((skb = fep->tx_skbuff[i]) == NULL)
continue; continue;
/* unmap */ /* unmap */
dma_unmap_single(fep->dev, skb->data, skb->len, DMA_TO_DEVICE); dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
skb->len, DMA_TO_DEVICE);
fep->tx_skbuff[i] = NULL; fep->tx_skbuff[i] = NULL;
dev_kfree_skb(skb); dev_kfree_skb(skb);
...@@ -566,12 +569,12 @@ void fs_cleanup_bds(struct net_device *dev) ...@@ -566,12 +569,12 @@ void fs_cleanup_bds(struct net_device *dev)
/* /*
* Reset SKB receive buffers * Reset SKB receive buffers
*/ */
for (i = 0; i < fep->rx_ring; i++) { for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
if ((skb = fep->rx_skbuff[i]) == NULL) if ((skb = fep->rx_skbuff[i]) == NULL)
continue; continue;
/* unmap */ /* unmap */
dma_unmap_single(fep->dev, skb->data, dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
L1_CACHE_ALIGN(PKT_MAXBUF_SIZE), L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
......
...@@ -26,7 +26,8 @@ ...@@ -26,7 +26,8 @@
/* This is a simple check to prevent use of this driver on non-tested SoCs */ /* This is a simple check to prevent use of this driver on non-tested SoCs */
#if !defined(CONFIG_405GP) && !defined(CONFIG_405GPR) && !defined(CONFIG_405EP) && \ #if !defined(CONFIG_405GP) && !defined(CONFIG_405GPR) && !defined(CONFIG_405EP) && \
!defined(CONFIG_440GP) && !defined(CONFIG_440GX) && !defined(CONFIG_440SP) && \ !defined(CONFIG_440GP) && !defined(CONFIG_440GX) && !defined(CONFIG_440SP) && \
!defined(CONFIG_440EP) && !defined(CONFIG_NP405H) !defined(CONFIG_440EP) && !defined(CONFIG_NP405H) && !defined(CONFIG_440SPE) && \
!defined(CONFIG_440GR)
#error "Unknown SoC. Please, check chip user manual and make sure EMAC defines are OK" #error "Unknown SoC. Please, check chip user manual and make sure EMAC defines are OK"
#endif #endif
...@@ -246,6 +247,25 @@ struct emac_regs { ...@@ -246,6 +247,25 @@ struct emac_regs {
#define EMAC_STACR_PCDA_SHIFT 5 #define EMAC_STACR_PCDA_SHIFT 5
#define EMAC_STACR_PRA_MASK 0x1f #define EMAC_STACR_PRA_MASK 0x1f
/*
* For the 440SPe, AMCC inexplicably changed the polarity of
* the "operation complete" bit in the MII control register.
*/
#if defined(CONFIG_440SPE)
static inline int emac_phy_done(u32 stacr)
{
return !(stacr & EMAC_STACR_OC);
};
#define EMAC_STACR_START EMAC_STACR_OC
#else /* CONFIG_440SPE */
static inline int emac_phy_done(u32 stacr)
{
return stacr & EMAC_STACR_OC;
};
#define EMAC_STACR_START 0
#endif /* !CONFIG_440SPE */
/* EMACx_TRTR */ /* EMACx_TRTR */
#if !defined(CONFIG_IBM_EMAC4) #if !defined(CONFIG_IBM_EMAC4)
#define EMAC_TRTR_SHIFT 27 #define EMAC_TRTR_SHIFT 27
......
...@@ -87,10 +87,11 @@ MODULE_LICENSE("GPL"); ...@@ -87,10 +87,11 @@ MODULE_LICENSE("GPL");
*/ */
static u32 busy_phy_map; static u32 busy_phy_map;
#if defined(CONFIG_IBM_EMAC_PHY_RX_CLK_FIX) && (defined(CONFIG_405EP) || defined(CONFIG_440EP)) #if defined(CONFIG_IBM_EMAC_PHY_RX_CLK_FIX) && \
(defined(CONFIG_405EP) || defined(CONFIG_440EP) || defined(CONFIG_440GR))
/* 405EP has "EMAC to PHY Control Register" (CPC0_EPCTL) which can help us /* 405EP has "EMAC to PHY Control Register" (CPC0_EPCTL) which can help us
* with PHY RX clock problem. * with PHY RX clock problem.
* 440EP has more sane SDR0_MFR register implementation than 440GX, which * 440EP/440GR has more sane SDR0_MFR register implementation than 440GX, which
* also allows controlling each EMAC clock * also allows controlling each EMAC clock
*/ */
static inline void EMAC_RX_CLK_TX(int idx) static inline void EMAC_RX_CLK_TX(int idx)
...@@ -100,7 +101,7 @@ static inline void EMAC_RX_CLK_TX(int idx) ...@@ -100,7 +101,7 @@ static inline void EMAC_RX_CLK_TX(int idx)
#if defined(CONFIG_405EP) #if defined(CONFIG_405EP)
mtdcr(0xf3, mfdcr(0xf3) | (1 << idx)); mtdcr(0xf3, mfdcr(0xf3) | (1 << idx));
#else /* CONFIG_440EP */ #else /* CONFIG_440EP || CONFIG_440GR */
SDR_WRITE(DCRN_SDR_MFR, SDR_READ(DCRN_SDR_MFR) | (0x08000000 >> idx)); SDR_WRITE(DCRN_SDR_MFR, SDR_READ(DCRN_SDR_MFR) | (0x08000000 >> idx));
#endif #endif
...@@ -546,7 +547,7 @@ static int __emac_mdio_read(struct ocp_enet_private *dev, u8 id, u8 reg) ...@@ -546,7 +547,7 @@ static int __emac_mdio_read(struct ocp_enet_private *dev, u8 id, u8 reg)
/* Wait for management interface to become idle */ /* Wait for management interface to become idle */
n = 10; n = 10;
while (!(in_be32(&p->stacr) & EMAC_STACR_OC)) { while (!emac_phy_done(in_be32(&p->stacr))) {
udelay(1); udelay(1);
if (!--n) if (!--n)
goto to; goto to;
...@@ -556,11 +557,12 @@ static int __emac_mdio_read(struct ocp_enet_private *dev, u8 id, u8 reg) ...@@ -556,11 +557,12 @@ static int __emac_mdio_read(struct ocp_enet_private *dev, u8 id, u8 reg)
out_be32(&p->stacr, out_be32(&p->stacr,
EMAC_STACR_BASE(emac_opb_mhz()) | EMAC_STACR_STAC_READ | EMAC_STACR_BASE(emac_opb_mhz()) | EMAC_STACR_STAC_READ |
(reg & EMAC_STACR_PRA_MASK) (reg & EMAC_STACR_PRA_MASK)
| ((id & EMAC_STACR_PCDA_MASK) << EMAC_STACR_PCDA_SHIFT)); | ((id & EMAC_STACR_PCDA_MASK) << EMAC_STACR_PCDA_SHIFT)
| EMAC_STACR_START);
/* Wait for read to complete */ /* Wait for read to complete */
n = 100; n = 100;
while (!((r = in_be32(&p->stacr)) & EMAC_STACR_OC)) { while (!emac_phy_done(r = in_be32(&p->stacr))) {
udelay(1); udelay(1);
if (!--n) if (!--n)
goto to; goto to;
...@@ -594,7 +596,7 @@ static void __emac_mdio_write(struct ocp_enet_private *dev, u8 id, u8 reg, ...@@ -594,7 +596,7 @@ static void __emac_mdio_write(struct ocp_enet_private *dev, u8 id, u8 reg,
/* Wait for management interface to be idle */ /* Wait for management interface to be idle */
n = 10; n = 10;
while (!(in_be32(&p->stacr) & EMAC_STACR_OC)) { while (!emac_phy_done(in_be32(&p->stacr))) {
udelay(1); udelay(1);
if (!--n) if (!--n)
goto to; goto to;
...@@ -605,11 +607,11 @@ static void __emac_mdio_write(struct ocp_enet_private *dev, u8 id, u8 reg, ...@@ -605,11 +607,11 @@ static void __emac_mdio_write(struct ocp_enet_private *dev, u8 id, u8 reg,
EMAC_STACR_BASE(emac_opb_mhz()) | EMAC_STACR_STAC_WRITE | EMAC_STACR_BASE(emac_opb_mhz()) | EMAC_STACR_STAC_WRITE |
(reg & EMAC_STACR_PRA_MASK) | (reg & EMAC_STACR_PRA_MASK) |
((id & EMAC_STACR_PCDA_MASK) << EMAC_STACR_PCDA_SHIFT) | ((id & EMAC_STACR_PCDA_MASK) << EMAC_STACR_PCDA_SHIFT) |
(val << EMAC_STACR_PHYD_SHIFT)); (val << EMAC_STACR_PHYD_SHIFT) | EMAC_STACR_START);
/* Wait for write to complete */ /* Wait for write to complete */
n = 100; n = 100;
while (!(in_be32(&p->stacr) & EMAC_STACR_OC)) { while (!emac_phy_done(in_be32(&p->stacr))) {
udelay(1); udelay(1);
if (!--n) if (!--n)
goto to; goto to;
......
...@@ -32,9 +32,10 @@ ...@@ -32,9 +32,10 @@
* reflect the fact that 40x and 44x have slightly different MALs. --ebs * reflect the fact that 40x and 44x have slightly different MALs. --ebs
*/ */
#if defined(CONFIG_405GP) || defined(CONFIG_405GPR) || defined(CONFIG_405EP) || \ #if defined(CONFIG_405GP) || defined(CONFIG_405GPR) || defined(CONFIG_405EP) || \
defined(CONFIG_440EP) || defined(CONFIG_NP405H) defined(CONFIG_440EP) || defined(CONFIG_440GR) || defined(CONFIG_NP405H)
#define MAL_VERSION 1 #define MAL_VERSION 1
#elif defined(CONFIG_440GP) || defined(CONFIG_440GX) || defined(CONFIG_440SP) #elif defined(CONFIG_440GP) || defined(CONFIG_440GX) || defined(CONFIG_440SP) || \
defined(CONFIG_440SPE)
#define MAL_VERSION 2 #define MAL_VERSION 2
#else #else
#error "Unknown SoC, please check chip manual and choose MAL 'version'" #error "Unknown SoC, please check chip manual and choose MAL 'version'"
......
...@@ -236,12 +236,16 @@ static struct mii_phy_def genmii_phy_def = { ...@@ -236,12 +236,16 @@ static struct mii_phy_def genmii_phy_def = {
}; };
/* CIS8201 */ /* CIS8201 */
#define MII_CIS8201_10BTCSR 0x16
#define TENBTCSR_ECHO_DISABLE 0x2000
#define MII_CIS8201_EPCR 0x17 #define MII_CIS8201_EPCR 0x17
#define EPCR_MODE_MASK 0x3000 #define EPCR_MODE_MASK 0x3000
#define EPCR_GMII_MODE 0x0000 #define EPCR_GMII_MODE 0x0000
#define EPCR_RGMII_MODE 0x1000 #define EPCR_RGMII_MODE 0x1000
#define EPCR_TBI_MODE 0x2000 #define EPCR_TBI_MODE 0x2000
#define EPCR_RTBI_MODE 0x3000 #define EPCR_RTBI_MODE 0x3000
#define MII_CIS8201_ACSR 0x1c
#define ACSR_PIN_PRIO_SELECT 0x0004
static int cis8201_init(struct mii_phy *phy) static int cis8201_init(struct mii_phy *phy)
{ {
...@@ -270,6 +274,14 @@ static int cis8201_init(struct mii_phy *phy) ...@@ -270,6 +274,14 @@ static int cis8201_init(struct mii_phy *phy)
phy_write(phy, MII_CIS8201_EPCR, epcr); phy_write(phy, MII_CIS8201_EPCR, epcr);
/* MII regs override strap pins */
phy_write(phy, MII_CIS8201_ACSR,
phy_read(phy, MII_CIS8201_ACSR) | ACSR_PIN_PRIO_SELECT);
/* Disable TX_EN -> CRS echo mode, otherwise 10/HDX doesn't work */
phy_write(phy, MII_CIS8201_10BTCSR,
phy_read(phy, MII_CIS8201_10BTCSR) | TENBTCSR_ECHO_DISABLE);
return 0; return 0;
} }
......
...@@ -22,8 +22,8 @@ ...@@ -22,8 +22,8 @@
*************************************************************************/ *************************************************************************/
#define DRV_NAME "pcnet32" #define DRV_NAME "pcnet32"
#define DRV_VERSION "1.31a" #define DRV_VERSION "1.31c"
#define DRV_RELDATE "12.Sep.2005" #define DRV_RELDATE "01.Nov.2005"
#define PFX DRV_NAME ": " #define PFX DRV_NAME ": "
static const char *version = static const char *version =
...@@ -260,6 +260,11 @@ static int homepna[MAX_UNITS]; ...@@ -260,6 +260,11 @@ static int homepna[MAX_UNITS];
* v1.31 02 Sep 2005 Hubert WS Lin <wslin@tw.ibm.c0m> added set_ringparam(). * v1.31 02 Sep 2005 Hubert WS Lin <wslin@tw.ibm.c0m> added set_ringparam().
* v1.31a 12 Sep 2005 Hubert WS Lin <wslin@tw.ibm.c0m> set min ring size to 4 * v1.31a 12 Sep 2005 Hubert WS Lin <wslin@tw.ibm.c0m> set min ring size to 4
* to allow loopback test to work unchanged. * to allow loopback test to work unchanged.
* v1.31b 06 Oct 2005 Don Fry changed alloc_ring to show name of device
* if allocation fails
* v1.31c 01 Nov 2005 Don Fry Allied Telesyn 2700/2701 FX are 100Mbit only.
* Force 100Mbit FD if Auto (ASEL) is selected.
* See Bugzilla 2669 and 4551.
*/ */
...@@ -408,7 +413,7 @@ static int pcnet32_get_regs_len(struct net_device *dev); ...@@ -408,7 +413,7 @@ static int pcnet32_get_regs_len(struct net_device *dev);
static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs, static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
void *ptr); void *ptr);
static void pcnet32_purge_tx_ring(struct net_device *dev); static void pcnet32_purge_tx_ring(struct net_device *dev);
static int pcnet32_alloc_ring(struct net_device *dev); static int pcnet32_alloc_ring(struct net_device *dev, char *name);
static void pcnet32_free_ring(struct net_device *dev); static void pcnet32_free_ring(struct net_device *dev);
...@@ -669,15 +674,17 @@ static int pcnet32_set_ringparam(struct net_device *dev, struct ethtool_ringpara ...@@ -669,15 +674,17 @@ static int pcnet32_set_ringparam(struct net_device *dev, struct ethtool_ringpara
lp->rx_mod_mask = lp->rx_ring_size - 1; lp->rx_mod_mask = lp->rx_ring_size - 1;
lp->rx_len_bits = (i << 4); lp->rx_len_bits = (i << 4);
if (pcnet32_alloc_ring(dev)) { if (pcnet32_alloc_ring(dev, dev->name)) {
pcnet32_free_ring(dev); pcnet32_free_ring(dev);
spin_unlock_irqrestore(&lp->lock, flags);
return -ENOMEM; return -ENOMEM;
} }
spin_unlock_irqrestore(&lp->lock, flags); spin_unlock_irqrestore(&lp->lock, flags);
if (pcnet32_debug & NETIF_MSG_DRV) if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_INFO PFX "Ring Param Settings: RX: %d, TX: %d\n", lp->rx_ring_size, lp->tx_ring_size); printk(KERN_INFO PFX "%s: Ring Param Settings: RX: %d, TX: %d\n",
dev->name, lp->rx_ring_size, lp->tx_ring_size);
if (netif_running(dev)) if (netif_running(dev))
pcnet32_open(dev); pcnet32_open(dev);
...@@ -981,7 +988,11 @@ static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs, ...@@ -981,7 +988,11 @@ static void pcnet32_get_regs(struct net_device *dev, struct ethtool_regs *regs,
*buff++ = a->read_csr(ioaddr, 114); *buff++ = a->read_csr(ioaddr, 114);
/* read bus configuration registers */ /* read bus configuration registers */
for (i=0; i<36; i++) { for (i=0; i<30; i++) {
*buff++ = a->read_bcr(ioaddr, i);
}
*buff++ = 0; /* skip bcr30 so as not to hang 79C976 */
for (i=31; i<36; i++) {
*buff++ = a->read_bcr(ioaddr, i); *buff++ = a->read_bcr(ioaddr, i);
} }
...@@ -1340,7 +1351,8 @@ pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev) ...@@ -1340,7 +1351,8 @@ pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev)
} }
lp->a = *a; lp->a = *a;
if (pcnet32_alloc_ring(dev)) { /* prior to register_netdev, dev->name is not yet correct */
if (pcnet32_alloc_ring(dev, pci_name(lp->pci_dev))) {
ret = -ENOMEM; ret = -ENOMEM;
goto err_free_ring; goto err_free_ring;
} }
...@@ -1448,48 +1460,63 @@ pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev) ...@@ -1448,48 +1460,63 @@ pcnet32_probe1(unsigned long ioaddr, int shared, struct pci_dev *pdev)
} }
static int pcnet32_alloc_ring(struct net_device *dev) /* if any allocation fails, caller must also call pcnet32_free_ring */
static int pcnet32_alloc_ring(struct net_device *dev, char *name)
{ {
struct pcnet32_private *lp = dev->priv; struct pcnet32_private *lp = dev->priv;
if ((lp->tx_ring = pci_alloc_consistent(lp->pci_dev, sizeof(struct pcnet32_tx_head) * lp->tx_ring_size, lp->tx_ring = pci_alloc_consistent(lp->pci_dev,
&lp->tx_ring_dma_addr)) == NULL) { sizeof(struct pcnet32_tx_head) * lp->tx_ring_size,
&lp->tx_ring_dma_addr);
if (lp->tx_ring == NULL) {
if (pcnet32_debug & NETIF_MSG_DRV) if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR PFX "Consistent memory allocation failed.\n"); printk("\n" KERN_ERR PFX "%s: Consistent memory allocation failed.\n",
name);
return -ENOMEM; return -ENOMEM;
} }
if ((lp->rx_ring = pci_alloc_consistent(lp->pci_dev, sizeof(struct pcnet32_rx_head) * lp->rx_ring_size, lp->rx_ring = pci_alloc_consistent(lp->pci_dev,
&lp->rx_ring_dma_addr)) == NULL) { sizeof(struct pcnet32_rx_head) * lp->rx_ring_size,
&lp->rx_ring_dma_addr);
if (lp->rx_ring == NULL) {
if (pcnet32_debug & NETIF_MSG_DRV) if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR PFX "Consistent memory allocation failed.\n"); printk("\n" KERN_ERR PFX "%s: Consistent memory allocation failed.\n",
name);
return -ENOMEM; return -ENOMEM;
} }
if (!(lp->tx_dma_addr = kmalloc(sizeof(dma_addr_t) * lp->tx_ring_size, GFP_ATOMIC))) { lp->tx_dma_addr = kmalloc(sizeof(dma_addr_t) * lp->tx_ring_size,
GFP_ATOMIC);
if (!lp->tx_dma_addr) {
if (pcnet32_debug & NETIF_MSG_DRV) if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR PFX "Memory allocation failed.\n"); printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name);
return -ENOMEM; return -ENOMEM;
} }
memset(lp->tx_dma_addr, 0, sizeof(dma_addr_t) * lp->tx_ring_size); memset(lp->tx_dma_addr, 0, sizeof(dma_addr_t) * lp->tx_ring_size);
if (!(lp->rx_dma_addr = kmalloc(sizeof(dma_addr_t) * lp->rx_ring_size, GFP_ATOMIC))) { lp->rx_dma_addr = kmalloc(sizeof(dma_addr_t) * lp->rx_ring_size,
GFP_ATOMIC);
if (!lp->rx_dma_addr) {
if (pcnet32_debug & NETIF_MSG_DRV) if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR PFX "Memory allocation failed.\n"); printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name);
return -ENOMEM; return -ENOMEM;
} }
memset(lp->rx_dma_addr, 0, sizeof(dma_addr_t) * lp->rx_ring_size); memset(lp->rx_dma_addr, 0, sizeof(dma_addr_t) * lp->rx_ring_size);
if (!(lp->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * lp->tx_ring_size, GFP_ATOMIC))) { lp->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * lp->tx_ring_size,
GFP_ATOMIC);
if (!lp->tx_skbuff) {
if (pcnet32_debug & NETIF_MSG_DRV) if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR PFX "Memory allocation failed.\n"); printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name);
return -ENOMEM; return -ENOMEM;
} }
memset(lp->tx_skbuff, 0, sizeof(struct sk_buff *) * lp->tx_ring_size); memset(lp->tx_skbuff, 0, sizeof(struct sk_buff *) * lp->tx_ring_size);
if (!(lp->rx_skbuff = kmalloc(sizeof(struct sk_buff *) * lp->rx_ring_size, GFP_ATOMIC))) { lp->rx_skbuff = kmalloc(sizeof(struct sk_buff *) * lp->rx_ring_size,
GFP_ATOMIC);
if (!lp->rx_skbuff) {
if (pcnet32_debug & NETIF_MSG_DRV) if (pcnet32_debug & NETIF_MSG_DRV)
printk(KERN_ERR PFX "Memory allocation failed.\n"); printk("\n" KERN_ERR PFX "%s: Memory allocation failed.\n", name);
return -ENOMEM; return -ENOMEM;
} }
memset(lp->rx_skbuff, 0, sizeof(struct sk_buff *) * lp->rx_ring_size); memset(lp->rx_skbuff, 0, sizeof(struct sk_buff *) * lp->rx_ring_size);
...@@ -1592,12 +1619,18 @@ pcnet32_open(struct net_device *dev) ...@@ -1592,12 +1619,18 @@ pcnet32_open(struct net_device *dev)
val |= 0x10; val |= 0x10;
lp->a.write_csr (ioaddr, 124, val); lp->a.write_csr (ioaddr, 124, val);
/* Allied Telesyn AT 2700/2701 FX looses the link, so skip that */ /* Allied Telesyn AT 2700/2701 FX are 100Mbit only and do not negotiate */
if (lp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_AT && if (lp->pci_dev->subsystem_vendor == PCI_VENDOR_ID_AT &&
(lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2700FX || (lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2700FX ||
lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2701FX)) { lp->pci_dev->subsystem_device == PCI_SUBDEVICE_ID_AT_2701FX)) {
printk(KERN_DEBUG "%s: Skipping PHY selection.\n", dev->name); if (lp->options & PCNET32_PORT_ASEL) {
} else { lp->options = PCNET32_PORT_FD | PCNET32_PORT_100;
if (netif_msg_link(lp))
printk(KERN_DEBUG "%s: Setting 100Mb-Full Duplex.\n",
dev->name);
}
}
{
/* /*
* 24 Jun 2004 according AMD, in order to change the PHY, * 24 Jun 2004 according AMD, in order to change the PHY,
* DANAS (or DISPM for 79C976) must be set; then select the speed, * DANAS (or DISPM for 79C976) must be set; then select the speed,
......
...@@ -61,6 +61,9 @@ int mdiobus_register(struct mii_bus *bus) ...@@ -61,6 +61,9 @@ int mdiobus_register(struct mii_bus *bus)
for (i = 0; i < PHY_MAX_ADDR; i++) { for (i = 0; i < PHY_MAX_ADDR; i++) {
struct phy_device *phydev; struct phy_device *phydev;
if (bus->phy_mask & (1 << i))
continue;
phydev = get_phy_device(bus, i); phydev = get_phy_device(bus, i);
if (IS_ERR(phydev)) if (IS_ERR(phydev))
......
...@@ -30,6 +30,8 @@ ...@@ -30,6 +30,8 @@
* in the driver. * in the driver.
* rx_ring_sz: This defines the number of descriptors each ring can have. This * rx_ring_sz: This defines the number of descriptors each ring can have. This
* is also an array of size 8. * is also an array of size 8.
* rx_ring_mode: This defines the operation mode of all 8 rings. The valid
* values are 1, 2 and 3.
* tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
* tx_fifo_len: This too is an array of 8. Each element defines the number of * tx_fifo_len: This too is an array of 8. Each element defines the number of
* Tx descriptors that can be associated with each corresponding FIFO. * Tx descriptors that can be associated with each corresponding FIFO.
...@@ -65,12 +67,15 @@ ...@@ -65,12 +67,15 @@
#include "s2io.h" #include "s2io.h"
#include "s2io-regs.h" #include "s2io-regs.h"
#define DRV_VERSION "Version 2.0.9.1" #define DRV_VERSION "Version 2.0.9.3"
/* S2io Driver name & version. */ /* S2io Driver name & version. */
static char s2io_driver_name[] = "Neterion"; static char s2io_driver_name[] = "Neterion";
static char s2io_driver_version[] = DRV_VERSION; static char s2io_driver_version[] = DRV_VERSION;
int rxd_size[4] = {32,48,48,64};
int rxd_count[4] = {127,85,85,63};
static inline int RXD_IS_UP2DT(RxD_t *rxdp) static inline int RXD_IS_UP2DT(RxD_t *rxdp)
{ {
int ret; int ret;
...@@ -104,7 +109,7 @@ static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) ...@@ -104,7 +109,7 @@ static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring)
mac_control = &sp->mac_control; mac_control = &sp->mac_control;
if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) { if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16) {
level = LOW; level = LOW;
if (rxb_size <= MAX_RXDS_PER_BLOCK) { if (rxb_size <= rxd_count[sp->rxd_mode]) {
level = PANIC; level = PANIC;
} }
} }
...@@ -296,6 +301,7 @@ static unsigned int rx_ring_sz[MAX_RX_RINGS] = ...@@ -296,6 +301,7 @@ static unsigned int rx_ring_sz[MAX_RX_RINGS] =
{[0 ...(MAX_RX_RINGS - 1)] = 0 }; {[0 ...(MAX_RX_RINGS - 1)] = 0 };
static unsigned int rts_frm_len[MAX_RX_RINGS] = static unsigned int rts_frm_len[MAX_RX_RINGS] =
{[0 ...(MAX_RX_RINGS - 1)] = 0 }; {[0 ...(MAX_RX_RINGS - 1)] = 0 };
static unsigned int rx_ring_mode = 1;
static unsigned int use_continuous_tx_intrs = 1; static unsigned int use_continuous_tx_intrs = 1;
static unsigned int rmac_pause_time = 65535; static unsigned int rmac_pause_time = 65535;
static unsigned int mc_pause_threshold_q0q3 = 187; static unsigned int mc_pause_threshold_q0q3 = 187;
...@@ -304,6 +310,7 @@ static unsigned int shared_splits; ...@@ -304,6 +310,7 @@ static unsigned int shared_splits;
static unsigned int tmac_util_period = 5; static unsigned int tmac_util_period = 5;
static unsigned int rmac_util_period = 5; static unsigned int rmac_util_period = 5;
static unsigned int bimodal = 0; static unsigned int bimodal = 0;
static unsigned int l3l4hdr_size = 128;
#ifndef CONFIG_S2IO_NAPI #ifndef CONFIG_S2IO_NAPI
static unsigned int indicate_max_pkts; static unsigned int indicate_max_pkts;
#endif #endif
...@@ -357,10 +364,8 @@ static int init_shared_mem(struct s2io_nic *nic) ...@@ -357,10 +364,8 @@ static int init_shared_mem(struct s2io_nic *nic)
int i, j, blk_cnt, rx_sz, tx_sz; int i, j, blk_cnt, rx_sz, tx_sz;
int lst_size, lst_per_page; int lst_size, lst_per_page;
struct net_device *dev = nic->dev; struct net_device *dev = nic->dev;
#ifdef CONFIG_2BUFF_MODE
unsigned long tmp; unsigned long tmp;
buffAdd_t *ba; buffAdd_t *ba;
#endif
mac_info_t *mac_control; mac_info_t *mac_control;
struct config_param *config; struct config_param *config;
...@@ -458,7 +463,8 @@ static int init_shared_mem(struct s2io_nic *nic) ...@@ -458,7 +463,8 @@ static int init_shared_mem(struct s2io_nic *nic)
/* Allocation and initialization of RXDs in Rings */ /* Allocation and initialization of RXDs in Rings */
size = 0; size = 0;
for (i = 0; i < config->rx_ring_num; i++) { for (i = 0; i < config->rx_ring_num; i++) {
if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { if (config->rx_cfg[i].num_rxd %
(rxd_count[nic->rxd_mode] + 1)) {
DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
i); i);
...@@ -467,11 +473,15 @@ static int init_shared_mem(struct s2io_nic *nic) ...@@ -467,11 +473,15 @@ static int init_shared_mem(struct s2io_nic *nic)
} }
size += config->rx_cfg[i].num_rxd; size += config->rx_cfg[i].num_rxd;
mac_control->rings[i].block_count = mac_control->rings[i].block_count =
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); config->rx_cfg[i].num_rxd /
mac_control->rings[i].pkt_cnt = (rxd_count[nic->rxd_mode] + 1 );
config->rx_cfg[i].num_rxd - mac_control->rings[i].block_count; mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
mac_control->rings[i].block_count;
} }
size = (size * (sizeof(RxD_t))); if (nic->rxd_mode == RXD_MODE_1)
size = (size * (sizeof(RxD1_t)));
else
size = (size * (sizeof(RxD3_t)));
rx_sz = size; rx_sz = size;
for (i = 0; i < config->rx_ring_num; i++) { for (i = 0; i < config->rx_ring_num; i++) {
...@@ -486,15 +496,15 @@ static int init_shared_mem(struct s2io_nic *nic) ...@@ -486,15 +496,15 @@ static int init_shared_mem(struct s2io_nic *nic)
mac_control->rings[i].nic = nic; mac_control->rings[i].nic = nic;
mac_control->rings[i].ring_no = i; mac_control->rings[i].ring_no = i;
blk_cnt = blk_cnt = config->rx_cfg[i].num_rxd /
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); (rxd_count[nic->rxd_mode] + 1);
/* Allocating all the Rx blocks */ /* Allocating all the Rx blocks */
for (j = 0; j < blk_cnt; j++) { for (j = 0; j < blk_cnt; j++) {
#ifndef CONFIG_2BUFF_MODE rx_block_info_t *rx_blocks;
size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); int l;
#else
size = SIZE_OF_BLOCK; rx_blocks = &mac_control->rings[i].rx_blocks[j];
#endif size = SIZE_OF_BLOCK; //size is always page size
tmp_v_addr = pci_alloc_consistent(nic->pdev, size, tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
&tmp_p_addr); &tmp_p_addr);
if (tmp_v_addr == NULL) { if (tmp_v_addr == NULL) {
...@@ -504,11 +514,24 @@ static int init_shared_mem(struct s2io_nic *nic) ...@@ -504,11 +514,24 @@ static int init_shared_mem(struct s2io_nic *nic)
* memory that was alloced till the * memory that was alloced till the
* failure happened. * failure happened.
*/ */
mac_control->rings[i].rx_blocks[j].block_virt_addr = rx_blocks->block_virt_addr = tmp_v_addr;
tmp_v_addr;
return -ENOMEM; return -ENOMEM;
} }
memset(tmp_v_addr, 0, size); memset(tmp_v_addr, 0, size);
rx_blocks->block_virt_addr = tmp_v_addr;
rx_blocks->block_dma_addr = tmp_p_addr;
rx_blocks->rxds = kmalloc(sizeof(rxd_info_t)*
rxd_count[nic->rxd_mode],
GFP_KERNEL);
for (l=0; l<rxd_count[nic->rxd_mode];l++) {
rx_blocks->rxds[l].virt_addr =
rx_blocks->block_virt_addr +
(rxd_size[nic->rxd_mode] * l);
rx_blocks->rxds[l].dma_addr =
rx_blocks->block_dma_addr +
(rxd_size[nic->rxd_mode] * l);
}
mac_control->rings[i].rx_blocks[j].block_virt_addr = mac_control->rings[i].rx_blocks[j].block_virt_addr =
tmp_v_addr; tmp_v_addr;
mac_control->rings[i].rx_blocks[j].block_dma_addr = mac_control->rings[i].rx_blocks[j].block_dma_addr =
...@@ -528,45 +551,41 @@ static int init_shared_mem(struct s2io_nic *nic) ...@@ -528,45 +551,41 @@ static int init_shared_mem(struct s2io_nic *nic)
blk_cnt].block_dma_addr; blk_cnt].block_dma_addr;
pre_rxd_blk = (RxD_block_t *) tmp_v_addr; pre_rxd_blk = (RxD_block_t *) tmp_v_addr;
pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD
* marker.
*/
#ifndef CONFIG_2BUFF_MODE
pre_rxd_blk->reserved_2_pNext_RxD_block = pre_rxd_blk->reserved_2_pNext_RxD_block =
(unsigned long) tmp_v_addr_next; (unsigned long) tmp_v_addr_next;
#endif
pre_rxd_blk->pNext_RxD_Blk_physical = pre_rxd_blk->pNext_RxD_Blk_physical =
(u64) tmp_p_addr_next; (u64) tmp_p_addr_next;
} }
} }
if (nic->rxd_mode >= RXD_MODE_3A) {
#ifdef CONFIG_2BUFF_MODE
/* /*
* Allocation of Storages for buffer addresses in 2BUFF mode * Allocation of Storages for buffer addresses in 2BUFF mode
* and the buffers as well. * and the buffers as well.
*/ */
for (i = 0; i < config->rx_ring_num; i++) { for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = blk_cnt = config->rx_cfg[i].num_rxd /
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); (rxd_count[nic->rxd_mode]+ 1);
mac_control->rings[i].ba = kmalloc((sizeof(buffAdd_t *) * blk_cnt), mac_control->rings[i].ba =
kmalloc((sizeof(buffAdd_t *) * blk_cnt),
GFP_KERNEL); GFP_KERNEL);
if (!mac_control->rings[i].ba) if (!mac_control->rings[i].ba)
return -ENOMEM; return -ENOMEM;
for (j = 0; j < blk_cnt; j++) { for (j = 0; j < blk_cnt; j++) {
int k = 0; int k = 0;
mac_control->rings[i].ba[j] = kmalloc((sizeof(buffAdd_t) * mac_control->rings[i].ba[j] =
(MAX_RXDS_PER_BLOCK + 1)), kmalloc((sizeof(buffAdd_t) *
(rxd_count[nic->rxd_mode] + 1)),
GFP_KERNEL); GFP_KERNEL);
if (!mac_control->rings[i].ba[j]) if (!mac_control->rings[i].ba[j])
return -ENOMEM; return -ENOMEM;
while (k != MAX_RXDS_PER_BLOCK) { while (k != rxd_count[nic->rxd_mode]) {
ba = &mac_control->rings[i].ba[j][k]; ba = &mac_control->rings[i].ba[j][k];
ba->ba_0_org = (void *) kmalloc ba->ba_0_org = (void *) kmalloc
(BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
if (!ba->ba_0_org) if (!ba->ba_0_org)
return -ENOMEM; return -ENOMEM;
tmp = (unsigned long) ba->ba_0_org; tmp = (unsigned long)ba->ba_0_org;
tmp += ALIGN_SIZE; tmp += ALIGN_SIZE;
tmp &= ~((unsigned long) ALIGN_SIZE); tmp &= ~((unsigned long) ALIGN_SIZE);
ba->ba_0 = (void *) tmp; ba->ba_0 = (void *) tmp;
...@@ -583,7 +602,7 @@ static int init_shared_mem(struct s2io_nic *nic) ...@@ -583,7 +602,7 @@ static int init_shared_mem(struct s2io_nic *nic)
} }
} }
} }
#endif }
/* Allocation and initialization of Statistics block */ /* Allocation and initialization of Statistics block */
size = sizeof(StatInfo_t); size = sizeof(StatInfo_t);
...@@ -669,11 +688,7 @@ static void free_shared_mem(struct s2io_nic *nic) ...@@ -669,11 +688,7 @@ static void free_shared_mem(struct s2io_nic *nic)
kfree(mac_control->fifos[i].list_info); kfree(mac_control->fifos[i].list_info);
} }
#ifndef CONFIG_2BUFF_MODE
size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t));
#else
size = SIZE_OF_BLOCK; size = SIZE_OF_BLOCK;
#endif
for (i = 0; i < config->rx_ring_num; i++) { for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = mac_control->rings[i].block_count; blk_cnt = mac_control->rings[i].block_count;
for (j = 0; j < blk_cnt; j++) { for (j = 0; j < blk_cnt; j++) {
...@@ -685,20 +700,22 @@ static void free_shared_mem(struct s2io_nic *nic) ...@@ -685,20 +700,22 @@ static void free_shared_mem(struct s2io_nic *nic)
break; break;
pci_free_consistent(nic->pdev, size, pci_free_consistent(nic->pdev, size,
tmp_v_addr, tmp_p_addr); tmp_v_addr, tmp_p_addr);
kfree(mac_control->rings[i].rx_blocks[j].rxds);
} }
} }
#ifdef CONFIG_2BUFF_MODE if (nic->rxd_mode >= RXD_MODE_3A) {
/* Freeing buffer storage addresses in 2BUFF mode. */ /* Freeing buffer storage addresses in 2BUFF mode. */
for (i = 0; i < config->rx_ring_num; i++) { for (i = 0; i < config->rx_ring_num; i++) {
blk_cnt = blk_cnt = config->rx_cfg[i].num_rxd /
config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); (rxd_count[nic->rxd_mode] + 1);
for (j = 0; j < blk_cnt; j++) { for (j = 0; j < blk_cnt; j++) {
int k = 0; int k = 0;
if (!mac_control->rings[i].ba[j]) if (!mac_control->rings[i].ba[j])
continue; continue;
while (k != MAX_RXDS_PER_BLOCK) { while (k != rxd_count[nic->rxd_mode]) {
buffAdd_t *ba = &mac_control->rings[i].ba[j][k]; buffAdd_t *ba =
&mac_control->rings[i].ba[j][k];
kfree(ba->ba_0_org); kfree(ba->ba_0_org);
kfree(ba->ba_1_org); kfree(ba->ba_1_org);
k++; k++;
...@@ -707,7 +724,7 @@ static void free_shared_mem(struct s2io_nic *nic) ...@@ -707,7 +724,7 @@ static void free_shared_mem(struct s2io_nic *nic)
} }
kfree(mac_control->rings[i].ba); kfree(mac_control->rings[i].ba);
} }
#endif }
if (mac_control->stats_mem) { if (mac_control->stats_mem) {
pci_free_consistent(nic->pdev, pci_free_consistent(nic->pdev,
...@@ -1894,20 +1911,19 @@ static int start_nic(struct s2io_nic *nic) ...@@ -1894,20 +1911,19 @@ static int start_nic(struct s2io_nic *nic)
val64 = readq(&bar0->prc_ctrl_n[i]); val64 = readq(&bar0->prc_ctrl_n[i]);
if (nic->config.bimodal) if (nic->config.bimodal)
val64 |= PRC_CTRL_BIMODAL_INTERRUPT; val64 |= PRC_CTRL_BIMODAL_INTERRUPT;
#ifndef CONFIG_2BUFF_MODE if (nic->rxd_mode == RXD_MODE_1)
val64 |= PRC_CTRL_RC_ENABLED; val64 |= PRC_CTRL_RC_ENABLED;
#else else
val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
#endif
writeq(val64, &bar0->prc_ctrl_n[i]); writeq(val64, &bar0->prc_ctrl_n[i]);
} }
#ifdef CONFIG_2BUFF_MODE if (nic->rxd_mode == RXD_MODE_3B) {
/* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
val64 = readq(&bar0->rx_pa_cfg); val64 = readq(&bar0->rx_pa_cfg);
val64 |= RX_PA_CFG_IGNORE_L2_ERR; val64 |= RX_PA_CFG_IGNORE_L2_ERR;
writeq(val64, &bar0->rx_pa_cfg); writeq(val64, &bar0->rx_pa_cfg);
#endif }
/* /*
* Enabling MC-RLDRAM. After enabling the device, we timeout * Enabling MC-RLDRAM. After enabling the device, we timeout
...@@ -2090,6 +2106,41 @@ static void stop_nic(struct s2io_nic *nic) ...@@ -2090,6 +2106,41 @@ static void stop_nic(struct s2io_nic *nic)
} }
} }
int fill_rxd_3buf(nic_t *nic, RxD_t *rxdp, struct sk_buff *skb)
{
struct net_device *dev = nic->dev;
struct sk_buff *frag_list;
u64 tmp;
/* Buffer-1 receives L3/L4 headers */
((RxD3_t*)rxdp)->Buffer1_ptr = pci_map_single
(nic->pdev, skb->data, l3l4hdr_size + 4,
PCI_DMA_FROMDEVICE);
/* skb_shinfo(skb)->frag_list will have L4 data payload */
skb_shinfo(skb)->frag_list = dev_alloc_skb(dev->mtu + ALIGN_SIZE);
if (skb_shinfo(skb)->frag_list == NULL) {
DBG_PRINT(ERR_DBG, "%s: dev_alloc_skb failed\n ", dev->name);
return -ENOMEM ;
}
frag_list = skb_shinfo(skb)->frag_list;
frag_list->next = NULL;
tmp = (u64) frag_list->data;
tmp += ALIGN_SIZE;
tmp &= ~ALIGN_SIZE;
frag_list->data = (void *) tmp;
frag_list->tail = (void *) tmp;
/* Buffer-2 receives L4 data payload */
((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single(nic->pdev,
frag_list->data, dev->mtu,
PCI_DMA_FROMDEVICE);
rxdp->Control_2 |= SET_BUFFER1_SIZE_3(l3l4hdr_size + 4);
rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu);
return SUCCESS;
}
/** /**
* fill_rx_buffers - Allocates the Rx side skbs * fill_rx_buffers - Allocates the Rx side skbs
* @nic: device private variable * @nic: device private variable
...@@ -2117,18 +2168,12 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no) ...@@ -2117,18 +2168,12 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
struct sk_buff *skb; struct sk_buff *skb;
RxD_t *rxdp; RxD_t *rxdp;
int off, off1, size, block_no, block_no1; int off, off1, size, block_no, block_no1;
int offset, offset1;
u32 alloc_tab = 0; u32 alloc_tab = 0;
u32 alloc_cnt; u32 alloc_cnt;
mac_info_t *mac_control; mac_info_t *mac_control;
struct config_param *config; struct config_param *config;
#ifdef CONFIG_2BUFF_MODE
RxD_t *rxdpnext;
int nextblk;
u64 tmp; u64 tmp;
buffAdd_t *ba; buffAdd_t *ba;
dma_addr_t rxdpphys;
#endif
#ifndef CONFIG_S2IO_NAPI #ifndef CONFIG_S2IO_NAPI
unsigned long flags; unsigned long flags;
#endif #endif
...@@ -2138,8 +2183,6 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no) ...@@ -2138,8 +2183,6 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
config = &nic->config; config = &nic->config;
alloc_cnt = mac_control->rings[ring_no].pkt_cnt - alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
atomic_read(&nic->rx_bufs_left[ring_no]); atomic_read(&nic->rx_bufs_left[ring_no]);
size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
while (alloc_tab < alloc_cnt) { while (alloc_tab < alloc_cnt) {
block_no = mac_control->rings[ring_no].rx_curr_put_info. block_no = mac_control->rings[ring_no].rx_curr_put_info.
...@@ -2148,159 +2191,145 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no) ...@@ -2148,159 +2191,145 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
block_index; block_index;
off = mac_control->rings[ring_no].rx_curr_put_info.offset; off = mac_control->rings[ring_no].rx_curr_put_info.offset;
off1 = mac_control->rings[ring_no].rx_curr_get_info.offset; off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
#ifndef CONFIG_2BUFF_MODE
offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off;
offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1;
#else
offset = block_no * (MAX_RXDS_PER_BLOCK) + off;
offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1;
#endif
rxdp = mac_control->rings[ring_no].rx_blocks[block_no]. rxdp = mac_control->rings[ring_no].
block_virt_addr + off; rx_blocks[block_no].rxds[off].virt_addr;
if ((offset == offset1) && (rxdp->Host_Control)) {
DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); if ((block_no == block_no1) && (off == off1) &&
(rxdp->Host_Control)) {
DBG_PRINT(INTR_DBG, "%s: Get and Put",
dev->name);
DBG_PRINT(INTR_DBG, " info equated\n"); DBG_PRINT(INTR_DBG, " info equated\n");
goto end; goto end;
} }
#ifndef CONFIG_2BUFF_MODE if (off && (off == rxd_count[nic->rxd_mode])) {
if (rxdp->Control_1 == END_OF_BLOCK) {
mac_control->rings[ring_no].rx_curr_put_info. mac_control->rings[ring_no].rx_curr_put_info.
block_index++; block_index++;
if (mac_control->rings[ring_no].rx_curr_put_info.
block_index == mac_control->rings[ring_no].
block_count)
mac_control->rings[ring_no].rx_curr_put_info. mac_control->rings[ring_no].rx_curr_put_info.
block_index %= mac_control->rings[ring_no].block_count; block_index = 0;
block_no = mac_control->rings[ring_no].rx_curr_put_info. block_no = mac_control->rings[ring_no].
block_index; rx_curr_put_info.block_index;
off++; if (off == rxd_count[nic->rxd_mode])
off %= (MAX_RXDS_PER_BLOCK + 1); off = 0;
mac_control->rings[ring_no].rx_curr_put_info.offset = mac_control->rings[ring_no].rx_curr_put_info.
off; offset = off;
rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); rxdp = mac_control->rings[ring_no].
rx_blocks[block_no].block_virt_addr;
DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
dev->name, rxdp); dev->name, rxdp);
} }
#ifndef CONFIG_S2IO_NAPI #ifndef CONFIG_S2IO_NAPI
spin_lock_irqsave(&nic->put_lock, flags); spin_lock_irqsave(&nic->put_lock, flags);
mac_control->rings[ring_no].put_pos = mac_control->rings[ring_no].put_pos =
(block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
spin_unlock_irqrestore(&nic->put_lock, flags);
#endif
#else
if (rxdp->Host_Control == END_OF_BLOCK) {
mac_control->rings[ring_no].rx_curr_put_info.
block_index++;
mac_control->rings[ring_no].rx_curr_put_info.block_index
%= mac_control->rings[ring_no].block_count;
block_no = mac_control->rings[ring_no].rx_curr_put_info
.block_index;
off = 0;
DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n",
dev->name, block_no,
(unsigned long long) rxdp->Control_1);
mac_control->rings[ring_no].rx_curr_put_info.offset =
off;
rxdp = mac_control->rings[ring_no].rx_blocks[block_no].
block_virt_addr;
}
#ifndef CONFIG_S2IO_NAPI
spin_lock_irqsave(&nic->put_lock, flags);
mac_control->rings[ring_no].put_pos = (block_no *
(MAX_RXDS_PER_BLOCK + 1)) + off;
spin_unlock_irqrestore(&nic->put_lock, flags); spin_unlock_irqrestore(&nic->put_lock, flags);
#endif #endif
#endif if ((rxdp->Control_1 & RXD_OWN_XENA) &&
((nic->rxd_mode >= RXD_MODE_3A) &&
#ifndef CONFIG_2BUFF_MODE (rxdp->Control_2 & BIT(0)))) {
if (rxdp->Control_1 & RXD_OWN_XENA)
#else
if (rxdp->Control_2 & BIT(0))
#endif
{
mac_control->rings[ring_no].rx_curr_put_info. mac_control->rings[ring_no].rx_curr_put_info.
offset = off; offset = off;
goto end; goto end;
} }
#ifdef CONFIG_2BUFF_MODE /* calculate size of skb based on ring mode */
/* size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
* RxDs Spanning cache lines will be replenished only HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
* if the succeeding RxD is also owned by Host. It if (nic->rxd_mode == RXD_MODE_1)
* will always be the ((8*i)+3) and ((8*i)+6) size += NET_IP_ALIGN;
* descriptors for the 48 byte descriptor. The offending else if (nic->rxd_mode == RXD_MODE_3B)
* decsriptor is of-course the 3rd descriptor. size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
*/ else
rxdpphys = mac_control->rings[ring_no].rx_blocks[block_no]. size = l3l4hdr_size + ALIGN_SIZE + BUF0_LEN + 4;
block_dma_addr + (off * sizeof(RxD_t));
if (((u64) (rxdpphys)) % 128 > 80) {
rxdpnext = mac_control->rings[ring_no].rx_blocks[block_no].
block_virt_addr + (off + 1);
if (rxdpnext->Host_Control == END_OF_BLOCK) {
nextblk = (block_no + 1) %
(mac_control->rings[ring_no].block_count);
rxdpnext = mac_control->rings[ring_no].rx_blocks
[nextblk].block_virt_addr;
}
if (rxdpnext->Control_2 & BIT(0))
goto end;
}
#endif
#ifndef CONFIG_2BUFF_MODE /* allocate skb */
skb = dev_alloc_skb(size + NET_IP_ALIGN); skb = dev_alloc_skb(size);
#else if(!skb) {
skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4);
#endif
if (!skb) {
DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name);
DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n");
if (first_rxdp) { if (first_rxdp) {
wmb(); wmb();
first_rxdp->Control_1 |= RXD_OWN_XENA; first_rxdp->Control_1 |= RXD_OWN_XENA;
} }
return -ENOMEM; return -ENOMEM ;
} }
#ifndef CONFIG_2BUFF_MODE if (nic->rxd_mode == RXD_MODE_1) {
/* 1 buffer mode - normal operation mode */
memset(rxdp, 0, sizeof(RxD1_t));
skb_reserve(skb, NET_IP_ALIGN); skb_reserve(skb, NET_IP_ALIGN);
memset(rxdp, 0, sizeof(RxD_t)); ((RxD1_t*)rxdp)->Buffer0_ptr = pci_map_single
rxdp->Buffer0_ptr = pci_map_single
(nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE);
rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); rxdp->Control_2 &= (~MASK_BUFFER0_SIZE_1);
rxdp->Control_2 |= SET_BUFFER0_SIZE(size); rxdp->Control_2 |= SET_BUFFER0_SIZE_1(size);
rxdp->Host_Control = (unsigned long) (skb);
if (alloc_tab & ((1 << rxsync_frequency) - 1)) } else if (nic->rxd_mode >= RXD_MODE_3A) {
rxdp->Control_1 |= RXD_OWN_XENA; /*
off++; * 2 or 3 buffer mode -
off %= (MAX_RXDS_PER_BLOCK + 1); * Both 2 buffer mode and 3 buffer mode provides 128
mac_control->rings[ring_no].rx_curr_put_info.offset = off; * byte aligned receive buffers.
#else *
* 3 buffer mode provides header separation where in
* skb->data will have L3/L4 headers where as
* skb_shinfo(skb)->frag_list will have the L4 data
* payload
*/
memset(rxdp, 0, sizeof(RxD3_t));
ba = &mac_control->rings[ring_no].ba[block_no][off]; ba = &mac_control->rings[ring_no].ba[block_no][off];
skb_reserve(skb, BUF0_LEN); skb_reserve(skb, BUF0_LEN);
tmp = ((unsigned long) skb->data & ALIGN_SIZE); tmp = (u64)(unsigned long) skb->data;
if (tmp) tmp += ALIGN_SIZE;
skb_reserve(skb, (ALIGN_SIZE + 1) - tmp); tmp &= ~ALIGN_SIZE;
skb->data = (void *) (unsigned long)tmp;
skb->tail = (void *) (unsigned long)tmp;
memset(rxdp, 0, sizeof(RxD_t)); ((RxD3_t*)rxdp)->Buffer0_ptr =
rxdp->Buffer2_ptr = pci_map_single
(nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4,
PCI_DMA_FROMDEVICE);
rxdp->Buffer0_ptr =
pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
rxdp->Buffer1_ptr = rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, if (nic->rxd_mode == RXD_MODE_3B) {
/* Two buffer mode */
/*
* Buffer2 will have L3/L4 header plus
* L4 payload
*/
((RxD3_t*)rxdp)->Buffer2_ptr = pci_map_single
(nic->pdev, skb->data, dev->mtu + 4,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); /* Buffer-1 will be dummy buffer not used */
rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); ((RxD3_t*)rxdp)->Buffer1_ptr =
rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */ pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN,
rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */ PCI_DMA_FROMDEVICE);
rxdp->Host_Control = (u64) ((unsigned long) (skb)); rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
rxdp->Control_2 |= SET_BUFFER2_SIZE_3
(dev->mtu + 4);
} else {
/* 3 buffer mode */
if (fill_rxd_3buf(nic, rxdp, skb) == -ENOMEM) {
dev_kfree_skb_irq(skb);
if (first_rxdp) {
wmb();
first_rxdp->Control_1 |=
RXD_OWN_XENA;
}
return -ENOMEM ;
}
}
rxdp->Control_2 |= BIT(0);
}
rxdp->Host_Control = (unsigned long) (skb);
if (alloc_tab & ((1 << rxsync_frequency) - 1)) if (alloc_tab & ((1 << rxsync_frequency) - 1))
rxdp->Control_1 |= RXD_OWN_XENA; rxdp->Control_1 |= RXD_OWN_XENA;
off++; off++;
if (off == (rxd_count[nic->rxd_mode] + 1))
off = 0;
mac_control->rings[ring_no].rx_curr_put_info.offset = off; mac_control->rings[ring_no].rx_curr_put_info.offset = off;
#endif
rxdp->Control_2 |= SET_RXD_MARKER;
rxdp->Control_2 |= SET_RXD_MARKER;
if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
if (first_rxdp) { if (first_rxdp) {
wmb(); wmb();
...@@ -2325,89 +2354,90 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no) ...@@ -2325,89 +2354,90 @@ int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
return SUCCESS; return SUCCESS;
} }
/** static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
* free_rx_buffers - Frees all Rx buffers
* @sp: device private variable.
* Description:
* This function will free all Rx buffers allocated by host.
* Return Value:
* NONE.
*/
static void free_rx_buffers(struct s2io_nic *sp)
{ {
struct net_device *dev = sp->dev; struct net_device *dev = sp->dev;
int i, j, blk = 0, off, buf_cnt = 0; int j;
RxD_t *rxdp;
struct sk_buff *skb; struct sk_buff *skb;
RxD_t *rxdp;
mac_info_t *mac_control; mac_info_t *mac_control;
struct config_param *config;
#ifdef CONFIG_2BUFF_MODE
buffAdd_t *ba; buffAdd_t *ba;
#endif
mac_control = &sp->mac_control; mac_control = &sp->mac_control;
config = &sp->config; for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
rxdp = mac_control->rings[ring_no].
for (i = 0; i < config->rx_ring_num; i++) { rx_blocks[blk].rxds[j].virt_addr;
for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { skb = (struct sk_buff *)
off = j % (MAX_RXDS_PER_BLOCK + 1); ((unsigned long) rxdp->Host_Control);
rxdp = mac_control->rings[i].rx_blocks[blk]. if (!skb) {
block_virt_addr + off;
#ifndef CONFIG_2BUFF_MODE
if (rxdp->Control_1 == END_OF_BLOCK) {
rxdp =
(RxD_t *) ((unsigned long) rxdp->
Control_2);
j++;
blk++;
}
#else
if (rxdp->Host_Control == END_OF_BLOCK) {
blk++;
continue;
}
#endif
if (!(rxdp->Control_1 & RXD_OWN_XENA)) {
memset(rxdp, 0, sizeof(RxD_t));
continue; continue;
} }
if (sp->rxd_mode == RXD_MODE_1) {
skb =
(struct sk_buff *) ((unsigned long) rxdp->
Host_Control);
if (skb) {
#ifndef CONFIG_2BUFF_MODE
pci_unmap_single(sp->pdev, (dma_addr_t) pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer0_ptr, ((RxD1_t*)rxdp)->Buffer0_ptr,
dev->mtu + dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE HEADER_ETHERNET_II_802_3_SIZE
+ HEADER_802_2_SIZE + + HEADER_802_2_SIZE +
HEADER_SNAP_SIZE, HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
#else memset(rxdp, 0, sizeof(RxD1_t));
ba = &mac_control->rings[i].ba[blk][off]; } else if(sp->rxd_mode == RXD_MODE_3B) {
ba = &mac_control->rings[ring_no].
ba[blk][j];
pci_unmap_single(sp->pdev, (dma_addr_t) pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer0_ptr, ((RxD3_t*)rxdp)->Buffer0_ptr,
BUF0_LEN, BUF0_LEN,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t) pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer1_ptr, ((RxD3_t*)rxdp)->Buffer1_ptr,
BUF1_LEN, BUF1_LEN,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t) pci_unmap_single(sp->pdev, (dma_addr_t)
rxdp->Buffer2_ptr, ((RxD3_t*)rxdp)->Buffer2_ptr,
dev->mtu + BUF0_LEN + 4, dev->mtu + 4,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
#endif memset(rxdp, 0, sizeof(RxD3_t));
dev_kfree_skb(skb); } else {
atomic_dec(&sp->rx_bufs_left[i]); pci_unmap_single(sp->pdev, (dma_addr_t)
buf_cnt++; ((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer1_ptr,
l3l4hdr_size + 4,
PCI_DMA_FROMDEVICE);
pci_unmap_single(sp->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer2_ptr, dev->mtu,
PCI_DMA_FROMDEVICE);
memset(rxdp, 0, sizeof(RxD3_t));
} }
memset(rxdp, 0, sizeof(RxD_t)); dev_kfree_skb(skb);
atomic_dec(&sp->rx_bufs_left[ring_no]);
} }
}
/**
* free_rx_buffers - Frees all Rx buffers
* @sp: device private variable.
* Description:
* This function will free all Rx buffers allocated by host.
* Return Value:
* NONE.
*/
static void free_rx_buffers(struct s2io_nic *sp)
{
struct net_device *dev = sp->dev;
int i, blk = 0, buf_cnt = 0;
mac_info_t *mac_control;
struct config_param *config;
mac_control = &sp->mac_control;
config = &sp->config;
for (i = 0; i < config->rx_ring_num; i++) {
for (blk = 0; blk < rx_ring_sz[i]; blk++)
free_rxd_blk(sp,i,blk);
mac_control->rings[i].rx_curr_put_info.block_index = 0; mac_control->rings[i].rx_curr_put_info.block_index = 0;
mac_control->rings[i].rx_curr_get_info.block_index = 0; mac_control->rings[i].rx_curr_get_info.block_index = 0;
mac_control->rings[i].rx_curr_put_info.offset = 0; mac_control->rings[i].rx_curr_put_info.offset = 0;
...@@ -2513,7 +2543,7 @@ static void rx_intr_handler(ring_info_t *ring_data) ...@@ -2513,7 +2543,7 @@ static void rx_intr_handler(ring_info_t *ring_data)
{ {
nic_t *nic = ring_data->nic; nic_t *nic = ring_data->nic;
struct net_device *dev = (struct net_device *) nic->dev; struct net_device *dev = (struct net_device *) nic->dev;
int get_block, get_offset, put_block, put_offset, ring_bufs; int get_block, put_block, put_offset;
rx_curr_get_info_t get_info, put_info; rx_curr_get_info_t get_info, put_info;
RxD_t *rxdp; RxD_t *rxdp;
struct sk_buff *skb; struct sk_buff *skb;
...@@ -2532,21 +2562,22 @@ static void rx_intr_handler(ring_info_t *ring_data) ...@@ -2532,21 +2562,22 @@ static void rx_intr_handler(ring_info_t *ring_data)
get_block = get_info.block_index; get_block = get_info.block_index;
put_info = ring_data->rx_curr_put_info; put_info = ring_data->rx_curr_put_info;
put_block = put_info.block_index; put_block = put_info.block_index;
ring_bufs = get_info.ring_len+1; rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
rxdp = ring_data->rx_blocks[get_block].block_virt_addr +
get_info.offset;
get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
#ifndef CONFIG_S2IO_NAPI #ifndef CONFIG_S2IO_NAPI
spin_lock(&nic->put_lock); spin_lock(&nic->put_lock);
put_offset = ring_data->put_pos; put_offset = ring_data->put_pos;
spin_unlock(&nic->put_lock); spin_unlock(&nic->put_lock);
#else #else
put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + put_offset = (put_block * (rxd_count[nic->rxd_mode] + 1)) +
put_info.offset; put_info.offset;
#endif #endif
while (RXD_IS_UP2DT(rxdp) && while (RXD_IS_UP2DT(rxdp)) {
(((get_offset + 1) % ring_bufs) != put_offset)) { /* If your are next to put index then it's FIFO full condition */
if ((get_block == put_block) &&
(get_info.offset + 1) == put_info.offset) {
DBG_PRINT(ERR_DBG, "%s: Ring Full\n",dev->name);
break;
}
skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control); skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
if (skb == NULL) { if (skb == NULL) {
DBG_PRINT(ERR_DBG, "%s: The skb is ", DBG_PRINT(ERR_DBG, "%s: The skb is ",
...@@ -2555,46 +2586,52 @@ static void rx_intr_handler(ring_info_t *ring_data) ...@@ -2555,46 +2586,52 @@ static void rx_intr_handler(ring_info_t *ring_data)
spin_unlock(&nic->rx_lock); spin_unlock(&nic->rx_lock);
return; return;
} }
#ifndef CONFIG_2BUFF_MODE if (nic->rxd_mode == RXD_MODE_1) {
pci_unmap_single(nic->pdev, (dma_addr_t) pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr, ((RxD1_t*)rxdp)->Buffer0_ptr,
dev->mtu + dev->mtu +
HEADER_ETHERNET_II_802_3_SIZE + HEADER_ETHERNET_II_802_3_SIZE +
HEADER_802_2_SIZE + HEADER_802_2_SIZE +
HEADER_SNAP_SIZE, HEADER_SNAP_SIZE,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
#else } else if (nic->rxd_mode == RXD_MODE_3B) {
pci_unmap_single(nic->pdev, (dma_addr_t) pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer0_ptr, ((RxD3_t*)rxdp)->Buffer0_ptr,
BUF0_LEN, PCI_DMA_FROMDEVICE); BUF0_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t) pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer1_ptr, ((RxD3_t*)rxdp)->Buffer1_ptr,
BUF1_LEN, PCI_DMA_FROMDEVICE); BUF1_LEN, PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t) pci_unmap_single(nic->pdev, (dma_addr_t)
rxdp->Buffer2_ptr, ((RxD3_t*)rxdp)->Buffer2_ptr,
dev->mtu + BUF0_LEN + 4, dev->mtu + 4,
PCI_DMA_FROMDEVICE); PCI_DMA_FROMDEVICE);
#endif } else {
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer0_ptr, BUF0_LEN,
PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer1_ptr,
l3l4hdr_size + 4,
PCI_DMA_FROMDEVICE);
pci_unmap_single(nic->pdev, (dma_addr_t)
((RxD3_t*)rxdp)->Buffer2_ptr,
dev->mtu, PCI_DMA_FROMDEVICE);
}
rx_osm_handler(ring_data, rxdp); rx_osm_handler(ring_data, rxdp);
get_info.offset++; get_info.offset++;
ring_data->rx_curr_get_info.offset = ring_data->rx_curr_get_info.offset = get_info.offset;
get_info.offset; rxdp = ring_data->rx_blocks[get_block].
rxdp = ring_data->rx_blocks[get_block].block_virt_addr + rxds[get_info.offset].virt_addr;
get_info.offset; if (get_info.offset == rxd_count[nic->rxd_mode]) {
if (get_info.offset &&
(!(get_info.offset % MAX_RXDS_PER_BLOCK))) {
get_info.offset = 0; get_info.offset = 0;
ring_data->rx_curr_get_info.offset ring_data->rx_curr_get_info.offset = get_info.offset;
= get_info.offset;
get_block++; get_block++;
get_block %= ring_data->block_count; if (get_block == ring_data->block_count)
ring_data->rx_curr_get_info.block_index get_block = 0;
= get_block; ring_data->rx_curr_get_info.block_index = get_block;
rxdp = ring_data->rx_blocks[get_block].block_virt_addr; rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
} }
get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) +
get_info.offset;
#ifdef CONFIG_S2IO_NAPI #ifdef CONFIG_S2IO_NAPI
nic->pkts_to_process -= 1; nic->pkts_to_process -= 1;
if (!nic->pkts_to_process) if (!nic->pkts_to_process)
...@@ -3044,7 +3081,7 @@ int s2io_set_swapper(nic_t * sp) ...@@ -3044,7 +3081,7 @@ int s2io_set_swapper(nic_t * sp)
int wait_for_msix_trans(nic_t *nic, int i) int wait_for_msix_trans(nic_t *nic, int i)
{ {
XENA_dev_config_t __iomem *bar0 = nic->bar0; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
u64 val64; u64 val64;
int ret = 0, cnt = 0; int ret = 0, cnt = 0;
...@@ -3065,7 +3102,7 @@ int wait_for_msix_trans(nic_t *nic, int i) ...@@ -3065,7 +3102,7 @@ int wait_for_msix_trans(nic_t *nic, int i)
void restore_xmsi_data(nic_t *nic) void restore_xmsi_data(nic_t *nic)
{ {
XENA_dev_config_t __iomem *bar0 = nic->bar0; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
u64 val64; u64 val64;
int i; int i;
...@@ -3083,7 +3120,7 @@ void restore_xmsi_data(nic_t *nic) ...@@ -3083,7 +3120,7 @@ void restore_xmsi_data(nic_t *nic)
void store_xmsi_data(nic_t *nic) void store_xmsi_data(nic_t *nic)
{ {
XENA_dev_config_t __iomem *bar0 = nic->bar0; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
u64 val64, addr, data; u64 val64, addr, data;
int i; int i;
...@@ -3106,7 +3143,7 @@ void store_xmsi_data(nic_t *nic) ...@@ -3106,7 +3143,7 @@ void store_xmsi_data(nic_t *nic)
int s2io_enable_msi(nic_t *nic) int s2io_enable_msi(nic_t *nic)
{ {
XENA_dev_config_t __iomem *bar0 = nic->bar0; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
u16 msi_ctrl, msg_val; u16 msi_ctrl, msg_val;
struct config_param *config = &nic->config; struct config_param *config = &nic->config;
struct net_device *dev = nic->dev; struct net_device *dev = nic->dev;
...@@ -3156,7 +3193,7 @@ int s2io_enable_msi(nic_t *nic) ...@@ -3156,7 +3193,7 @@ int s2io_enable_msi(nic_t *nic)
int s2io_enable_msi_x(nic_t *nic) int s2io_enable_msi_x(nic_t *nic)
{ {
XENA_dev_config_t __iomem *bar0 = nic->bar0; XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0;
u64 tx_mat, rx_mat; u64 tx_mat, rx_mat;
u16 msi_control; /* Temp variable */ u16 msi_control; /* Temp variable */
int ret, i, j, msix_indx = 1; int ret, i, j, msix_indx = 1;
...@@ -5537,16 +5574,7 @@ static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp) ...@@ -5537,16 +5574,7 @@ static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
((unsigned long) rxdp->Host_Control); ((unsigned long) rxdp->Host_Control);
int ring_no = ring_data->ring_no; int ring_no = ring_data->ring_no;
u16 l3_csum, l4_csum; u16 l3_csum, l4_csum;
#ifdef CONFIG_2BUFF_MODE
int buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2);
int buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2);
int get_block = ring_data->rx_curr_get_info.block_index;
int get_off = ring_data->rx_curr_get_info.offset;
buffAdd_t *ba = &ring_data->ba[get_block][get_off];
unsigned char *buff;
#else
u16 len = (u16) ((RXD_GET_BUFFER0_SIZE(rxdp->Control_2)) >> 48);;
#endif
skb->dev = dev; skb->dev = dev;
if (rxdp->Control_1 & RXD_T_CODE) { if (rxdp->Control_1 & RXD_T_CODE) {
unsigned long long err = rxdp->Control_1 & RXD_T_CODE; unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
...@@ -5563,19 +5591,36 @@ static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp) ...@@ -5563,19 +5591,36 @@ static int rx_osm_handler(ring_info_t *ring_data, RxD_t * rxdp)
rxdp->Host_Control = 0; rxdp->Host_Control = 0;
sp->rx_pkt_count++; sp->rx_pkt_count++;
sp->stats.rx_packets++; sp->stats.rx_packets++;
#ifndef CONFIG_2BUFF_MODE if (sp->rxd_mode == RXD_MODE_1) {
sp->stats.rx_bytes += len; int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
#else
sp->stats.rx_bytes += buf0_len + buf2_len;
#endif
#ifndef CONFIG_2BUFF_MODE sp->stats.rx_bytes += len;
skb_put(skb, len); skb_put(skb, len);
#else
buff = skb_push(skb, buf0_len); } else if (sp->rxd_mode >= RXD_MODE_3A) {
int get_block = ring_data->rx_curr_get_info.block_index;
int get_off = ring_data->rx_curr_get_info.offset;
int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
unsigned char *buff = skb_push(skb, buf0_len);
buffAdd_t *ba = &ring_data->ba[get_block][get_off];
sp->stats.rx_bytes += buf0_len + buf2_len;
memcpy(buff, ba->ba_0, buf0_len); memcpy(buff, ba->ba_0, buf0_len);
if (sp->rxd_mode == RXD_MODE_3A) {
int buf1_len = RXD_GET_BUFFER1_SIZE_3(rxdp->Control_2);
skb_put(skb, buf1_len);
skb->len += buf2_len;
skb->data_len += buf2_len;
skb->truesize += buf2_len;
skb_put(skb_shinfo(skb)->frag_list, buf2_len);
sp->stats.rx_bytes += buf1_len;
} else
skb_put(skb, buf2_len); skb_put(skb, buf2_len);
#endif }
if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) &&
(sp->rx_csum)) { (sp->rx_csum)) {
...@@ -5711,6 +5756,7 @@ MODULE_VERSION(DRV_VERSION); ...@@ -5711,6 +5756,7 @@ MODULE_VERSION(DRV_VERSION);
module_param(tx_fifo_num, int, 0); module_param(tx_fifo_num, int, 0);
module_param(rx_ring_num, int, 0); module_param(rx_ring_num, int, 0);
module_param(rx_ring_mode, int, 0);
module_param_array(tx_fifo_len, uint, NULL, 0); module_param_array(tx_fifo_len, uint, NULL, 0);
module_param_array(rx_ring_sz, uint, NULL, 0); module_param_array(rx_ring_sz, uint, NULL, 0);
module_param_array(rts_frm_len, uint, NULL, 0); module_param_array(rts_frm_len, uint, NULL, 0);
...@@ -5722,6 +5768,7 @@ module_param(shared_splits, int, 0); ...@@ -5722,6 +5768,7 @@ module_param(shared_splits, int, 0);
module_param(tmac_util_period, int, 0); module_param(tmac_util_period, int, 0);
module_param(rmac_util_period, int, 0); module_param(rmac_util_period, int, 0);
module_param(bimodal, bool, 0); module_param(bimodal, bool, 0);
module_param(l3l4hdr_size, int , 0);
#ifndef CONFIG_S2IO_NAPI #ifndef CONFIG_S2IO_NAPI
module_param(indicate_max_pkts, int, 0); module_param(indicate_max_pkts, int, 0);
#endif #endif
...@@ -5843,6 +5890,13 @@ Defaulting to INTA\n"); ...@@ -5843,6 +5890,13 @@ Defaulting to INTA\n");
sp->pdev = pdev; sp->pdev = pdev;
sp->high_dma_flag = dma_flag; sp->high_dma_flag = dma_flag;
sp->device_enabled_once = FALSE; sp->device_enabled_once = FALSE;
if (rx_ring_mode == 1)
sp->rxd_mode = RXD_MODE_1;
if (rx_ring_mode == 2)
sp->rxd_mode = RXD_MODE_3B;
if (rx_ring_mode == 3)
sp->rxd_mode = RXD_MODE_3A;
sp->intr_type = dev_intr_type; sp->intr_type = dev_intr_type;
if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
...@@ -5895,7 +5949,7 @@ Defaulting to INTA\n"); ...@@ -5895,7 +5949,7 @@ Defaulting to INTA\n");
config->rx_ring_num = rx_ring_num; config->rx_ring_num = rx_ring_num;
for (i = 0; i < MAX_RX_RINGS; i++) { for (i = 0; i < MAX_RX_RINGS; i++) {
config->rx_cfg[i].num_rxd = rx_ring_sz[i] * config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
(MAX_RXDS_PER_BLOCK + 1); (rxd_count[sp->rxd_mode] + 1);
config->rx_cfg[i].ring_priority = i; config->rx_cfg[i].ring_priority = i;
} }
...@@ -6090,9 +6144,6 @@ Defaulting to INTA\n"); ...@@ -6090,9 +6144,6 @@ Defaulting to INTA\n");
DBG_PRINT(ERR_DBG, "(rev %d), Version %s", DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
get_xena_rev_id(sp->pdev), get_xena_rev_id(sp->pdev),
s2io_driver_version); s2io_driver_version);
#ifdef CONFIG_2BUFF_MODE
DBG_PRINT(ERR_DBG, ", Buffer mode %d",2);
#endif
switch(sp->intr_type) { switch(sp->intr_type) {
case INTA: case INTA:
DBG_PRINT(ERR_DBG, ", Intr type INTA"); DBG_PRINT(ERR_DBG, ", Intr type INTA");
...@@ -6125,9 +6176,6 @@ Defaulting to INTA\n"); ...@@ -6125,9 +6176,6 @@ Defaulting to INTA\n");
DBG_PRINT(ERR_DBG, "(rev %d), Version %s", DBG_PRINT(ERR_DBG, "(rev %d), Version %s",
get_xena_rev_id(sp->pdev), get_xena_rev_id(sp->pdev),
s2io_driver_version); s2io_driver_version);
#ifdef CONFIG_2BUFF_MODE
DBG_PRINT(ERR_DBG, ", Buffer mode %d",2);
#endif
switch(sp->intr_type) { switch(sp->intr_type) {
case INTA: case INTA:
DBG_PRINT(ERR_DBG, ", Intr type INTA"); DBG_PRINT(ERR_DBG, ", Intr type INTA");
...@@ -6148,6 +6196,12 @@ Defaulting to INTA\n"); ...@@ -6148,6 +6196,12 @@ Defaulting to INTA\n");
sp->def_mac_addr[0].mac_addr[4], sp->def_mac_addr[0].mac_addr[4],
sp->def_mac_addr[0].mac_addr[5]); sp->def_mac_addr[0].mac_addr[5]);
} }
if (sp->rxd_mode == RXD_MODE_3B)
DBG_PRINT(ERR_DBG, "%s: 2-Buffer mode support has been "
"enabled\n",dev->name);
if (sp->rxd_mode == RXD_MODE_3A)
DBG_PRINT(ERR_DBG, "%s: 3-Buffer mode support has been "
"enabled\n",dev->name);
/* Initialize device name */ /* Initialize device name */
strcpy(sp->name, dev->name); strcpy(sp->name, dev->name);
......
...@@ -418,7 +418,7 @@ typedef struct list_info_hold { ...@@ -418,7 +418,7 @@ typedef struct list_info_hold {
void *list_virt_addr; void *list_virt_addr;
} list_info_hold_t; } list_info_hold_t;
/* Rx descriptor structure */ /* Rx descriptor structure for 1 buffer mode */
typedef struct _RxD_t { typedef struct _RxD_t {
u64 Host_Control; /* reserved for host */ u64 Host_Control; /* reserved for host */
u64 Control_1; u64 Control_1;
...@@ -439,49 +439,54 @@ typedef struct _RxD_t { ...@@ -439,49 +439,54 @@ typedef struct _RxD_t {
#define SET_RXD_MARKER vBIT(THE_RXD_MARK, 0, 2) #define SET_RXD_MARKER vBIT(THE_RXD_MARK, 0, 2)
#define GET_RXD_MARKER(ctrl) ((ctrl & SET_RXD_MARKER) >> 62) #define GET_RXD_MARKER(ctrl) ((ctrl & SET_RXD_MARKER) >> 62)
#ifndef CONFIG_2BUFF_MODE
#define MASK_BUFFER0_SIZE vBIT(0x3FFF,2,14)
#define SET_BUFFER0_SIZE(val) vBIT(val,2,14)
#else
#define MASK_BUFFER0_SIZE vBIT(0xFF,2,14)
#define MASK_BUFFER1_SIZE vBIT(0xFFFF,16,16)
#define MASK_BUFFER2_SIZE vBIT(0xFFFF,32,16)
#define SET_BUFFER0_SIZE(val) vBIT(val,8,8)
#define SET_BUFFER1_SIZE(val) vBIT(val,16,16)
#define SET_BUFFER2_SIZE(val) vBIT(val,32,16)
#endif
#define MASK_VLAN_TAG vBIT(0xFFFF,48,16) #define MASK_VLAN_TAG vBIT(0xFFFF,48,16)
#define SET_VLAN_TAG(val) vBIT(val,48,16) #define SET_VLAN_TAG(val) vBIT(val,48,16)
#define SET_NUM_TAG(val) vBIT(val,16,32) #define SET_NUM_TAG(val) vBIT(val,16,32)
#ifndef CONFIG_2BUFF_MODE
#define RXD_GET_BUFFER0_SIZE(Control_2) (u64)((Control_2 & vBIT(0x3FFF,2,14))) } RxD_t;
#else /* Rx descriptor structure for 1 buffer mode */
#define RXD_GET_BUFFER0_SIZE(Control_2) (u8)((Control_2 & MASK_BUFFER0_SIZE) \ typedef struct _RxD1_t {
>> 48) struct _RxD_t h;
#define RXD_GET_BUFFER1_SIZE(Control_2) (u16)((Control_2 & MASK_BUFFER1_SIZE) \
>> 32) #define MASK_BUFFER0_SIZE_1 vBIT(0x3FFF,2,14)
#define RXD_GET_BUFFER2_SIZE(Control_2) (u16)((Control_2 & MASK_BUFFER2_SIZE) \ #define SET_BUFFER0_SIZE_1(val) vBIT(val,2,14)
>> 16) #define RXD_GET_BUFFER0_SIZE_1(_Control_2) \
(u16)((_Control_2 & MASK_BUFFER0_SIZE_1) >> 48)
u64 Buffer0_ptr;
} RxD1_t;
/* Rx descriptor structure for 3 or 2 buffer mode */
typedef struct _RxD3_t {
struct _RxD_t h;
#define MASK_BUFFER0_SIZE_3 vBIT(0xFF,2,14)
#define MASK_BUFFER1_SIZE_3 vBIT(0xFFFF,16,16)
#define MASK_BUFFER2_SIZE_3 vBIT(0xFFFF,32,16)
#define SET_BUFFER0_SIZE_3(val) vBIT(val,8,8)
#define SET_BUFFER1_SIZE_3(val) vBIT(val,16,16)
#define SET_BUFFER2_SIZE_3(val) vBIT(val,32,16)
#define RXD_GET_BUFFER0_SIZE_3(Control_2) \
(u8)((Control_2 & MASK_BUFFER0_SIZE_3) >> 48)
#define RXD_GET_BUFFER1_SIZE_3(Control_2) \
(u16)((Control_2 & MASK_BUFFER1_SIZE_3) >> 32)
#define RXD_GET_BUFFER2_SIZE_3(Control_2) \
(u16)((Control_2 & MASK_BUFFER2_SIZE_3) >> 16)
#define BUF0_LEN 40 #define BUF0_LEN 40
#define BUF1_LEN 1 #define BUF1_LEN 1
#endif
u64 Buffer0_ptr; u64 Buffer0_ptr;
#ifdef CONFIG_2BUFF_MODE
u64 Buffer1_ptr; u64 Buffer1_ptr;
u64 Buffer2_ptr; u64 Buffer2_ptr;
#endif } RxD3_t;
} RxD_t;
/* Structure that represents the Rx descriptor block which contains /* Structure that represents the Rx descriptor block which contains
* 128 Rx descriptors. * 128 Rx descriptors.
*/ */
#ifndef CONFIG_2BUFF_MODE
typedef struct _RxD_block { typedef struct _RxD_block {
#define MAX_RXDS_PER_BLOCK 127 #define MAX_RXDS_PER_BLOCK_1 127
RxD_t rxd[MAX_RXDS_PER_BLOCK]; RxD1_t rxd[MAX_RXDS_PER_BLOCK_1];
u64 reserved_0; u64 reserved_0;
#define END_OF_BLOCK 0xFEFFFFFFFFFFFFFFULL #define END_OF_BLOCK 0xFEFFFFFFFFFFFFFFULL
...@@ -492,18 +497,13 @@ typedef struct _RxD_block { ...@@ -492,18 +497,13 @@ typedef struct _RxD_block {
* the upper 32 bits should * the upper 32 bits should
* be 0 */ * be 0 */
} RxD_block_t; } RxD_block_t;
#else
typedef struct _RxD_block {
#define MAX_RXDS_PER_BLOCK 85
RxD_t rxd[MAX_RXDS_PER_BLOCK];
#define END_OF_BLOCK 0xFEFFFFFFFFFFFFFFULL
u64 reserved_1; /* 0xFEFFFFFFFFFFFFFF to mark last Rxd
* in this blk */
u64 pNext_RxD_Blk_physical; /* Phy ponter to next blk. */
} RxD_block_t;
#define SIZE_OF_BLOCK 4096 #define SIZE_OF_BLOCK 4096
#define RXD_MODE_1 0
#define RXD_MODE_3A 1
#define RXD_MODE_3B 2
/* Structure to hold virtual addresses of Buf0 and Buf1 in /* Structure to hold virtual addresses of Buf0 and Buf1 in
* 2buf mode. */ * 2buf mode. */
typedef struct bufAdd { typedef struct bufAdd {
...@@ -512,7 +512,6 @@ typedef struct bufAdd { ...@@ -512,7 +512,6 @@ typedef struct bufAdd {
void *ba_0; void *ba_0;
void *ba_1; void *ba_1;
} buffAdd_t; } buffAdd_t;
#endif
/* Structure which stores all the MAC control parameters */ /* Structure which stores all the MAC control parameters */
...@@ -539,10 +538,17 @@ typedef struct { ...@@ -539,10 +538,17 @@ typedef struct {
typedef tx_curr_get_info_t tx_curr_put_info_t; typedef tx_curr_get_info_t tx_curr_put_info_t;
typedef struct rxd_info {
void *virt_addr;
dma_addr_t dma_addr;
}rxd_info_t;
/* Structure that holds the Phy and virt addresses of the Blocks */ /* Structure that holds the Phy and virt addresses of the Blocks */
typedef struct rx_block_info { typedef struct rx_block_info {
RxD_t *block_virt_addr; void *block_virt_addr;
dma_addr_t block_dma_addr; dma_addr_t block_dma_addr;
rxd_info_t *rxds;
} rx_block_info_t; } rx_block_info_t;
/* pre declaration of the nic structure */ /* pre declaration of the nic structure */
...@@ -578,10 +584,8 @@ typedef struct ring_info { ...@@ -578,10 +584,8 @@ typedef struct ring_info {
int put_pos; int put_pos;
#endif #endif
#ifdef CONFIG_2BUFF_MODE
/* Buffer Address store. */ /* Buffer Address store. */
buffAdd_t **ba; buffAdd_t **ba;
#endif
nic_t *nic; nic_t *nic;
} ring_info_t; } ring_info_t;
...@@ -647,8 +651,6 @@ typedef struct { ...@@ -647,8 +651,6 @@ typedef struct {
/* Default Tunable parameters of the NIC. */ /* Default Tunable parameters of the NIC. */
#define DEFAULT_FIFO_LEN 4096 #define DEFAULT_FIFO_LEN 4096
#define SMALL_RXD_CNT 30 * (MAX_RXDS_PER_BLOCK+1)
#define LARGE_RXD_CNT 100 * (MAX_RXDS_PER_BLOCK+1)
#define SMALL_BLK_CNT 30 #define SMALL_BLK_CNT 30
#define LARGE_BLK_CNT 100 #define LARGE_BLK_CNT 100
...@@ -678,6 +680,7 @@ struct msix_info_st { ...@@ -678,6 +680,7 @@ struct msix_info_st {
/* Structure representing one instance of the NIC */ /* Structure representing one instance of the NIC */
struct s2io_nic { struct s2io_nic {
int rxd_mode;
#ifdef CONFIG_S2IO_NAPI #ifdef CONFIG_S2IO_NAPI
/* /*
* Count of packets to be processed in a given iteration, it will be indicated * Count of packets to be processed in a given iteration, it will be indicated
......
...@@ -2040,7 +2040,7 @@ static int mpi_send_packet (struct net_device *dev) ...@@ -2040,7 +2040,7 @@ static int mpi_send_packet (struct net_device *dev)
return 1; return 1;
} }
static void get_tx_error(struct airo_info *ai, u32 fid) static void get_tx_error(struct airo_info *ai, s32 fid)
{ {
u16 status; u16 status;
......
...@@ -72,6 +72,9 @@ struct mii_bus { ...@@ -72,6 +72,9 @@ struct mii_bus {
/* list of all PHYs on bus */ /* list of all PHYs on bus */
struct phy_device *phy_map[PHY_MAX_ADDR]; struct phy_device *phy_map[PHY_MAX_ADDR];
/* Phy addresses to be ignored when probing */
u32 phy_mask;
/* Pointer to an array of interrupts, each PHY's /* Pointer to an array of interrupts, each PHY's
* interrupt at the index matching its address */ * interrupt at the index matching its address */
int *irq; int *irq;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment