Commit 713d54a8 authored by Olivier Grenie's avatar Olivier Grenie Committed by Mauro Carvalho Chehab

[media] DiB7090: add support for the dib7090 based

This patch adds support for the SoC DiB7090 DVB-T demodulator and its
melt-in UHF/VHF RF tuner.
Signed-off-by: default avatarOlivier Grenie <olivier.grenie@dibcom.fr>
Signed-off-by: default avatarPatrick Boettcher <patrick.boettcher@dibcom.fr>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@redhat.com>
parent dd316c6b
...@@ -26,24 +26,29 @@ MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (defau ...@@ -26,24 +26,29 @@ MODULE_PARM_DESC(buggy_sfn_workaround, "Enable work-around for buggy SFNs (defau
#define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0) #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P: "); printk(args); printk("\n"); } } while (0)
struct i2c_device {
struct i2c_adapter *i2c_adap;
u8 i2c_addr;
};
struct dib7000p_state { struct dib7000p_state {
struct dvb_frontend demod; struct dvb_frontend demod;
struct dib7000p_config cfg; struct dib7000p_config cfg;
u8 i2c_addr; u8 i2c_addr;
struct i2c_adapter *i2c_adap; struct i2c_adapter *i2c_adap;
struct dibx000_i2c_master i2c_master; struct dibx000_i2c_master i2c_master;
u16 wbd_ref; u16 wbd_ref;
u8 current_band; u8 current_band;
u32 current_bandwidth; u32 current_bandwidth;
struct dibx000_agc_config *current_agc; struct dibx000_agc_config *current_agc;
u32 timf; u32 timf;
u8 div_force_off : 1; u8 div_force_off:1;
u8 div_state : 1; u8 div_state:1;
u16 div_sync_wait; u16 div_sync_wait;
u8 agc_state; u8 agc_state;
...@@ -51,7 +56,13 @@ struct dib7000p_state { ...@@ -51,7 +56,13 @@ struct dib7000p_state {
u16 gpio_dir; u16 gpio_dir;
u16 gpio_val; u16 gpio_val;
u8 sfn_workaround_active :1; u8 sfn_workaround_active:1;
#define SOC7090 0x7090
u16 version;
u16 tuner_enable;
struct i2c_adapter dib7090_tuner_adap;
}; };
enum dib7000p_power_mode { enum dib7000p_power_mode {
...@@ -60,17 +71,20 @@ enum dib7000p_power_mode { ...@@ -60,17 +71,20 @@ enum dib7000p_power_mode {
DIB7000P_POWER_INTERFACE_ONLY, DIB7000P_POWER_INTERFACE_ONLY,
}; };
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode);
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff);
static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg)
{ {
u8 wb[2] = { reg >> 8, reg & 0xff }; u8 wb[2] = { reg >> 8, reg & 0xff };
u8 rb[2]; u8 rb[2];
struct i2c_msg msg[2] = { struct i2c_msg msg[2] = {
{ .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, {.addr = state->i2c_addr >> 1,.flags = 0,.buf = wb,.len = 2},
{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, {.addr = state->i2c_addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
}; };
if (i2c_transfer(state->i2c_adap, msg, 2) != 2) if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
dprintk("i2c read error on %d",reg); dprintk("i2c read error on %d", reg);
return (rb[0] << 8) | rb[1]; return (rb[0] << 8) | rb[1];
} }
...@@ -82,11 +96,12 @@ static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) ...@@ -82,11 +96,12 @@ static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val)
(val >> 8) & 0xff, val & 0xff, (val >> 8) & 0xff, val & 0xff,
}; };
struct i2c_msg msg = { struct i2c_msg msg = {
.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 .addr = state->i2c_addr >> 1,.flags = 0,.buf = b,.len = 4
}; };
return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
} }
static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf)
static void dib7000p_write_tab(struct dib7000p_state *state, u16 * buf)
{ {
u16 l = 0, r, *n; u16 l = 0, r, *n;
n = buf; n = buf;
...@@ -104,54 +119,54 @@ static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf) ...@@ -104,54 +119,54 @@ static void dib7000p_write_tab(struct dib7000p_state *state, u16 *buf)
static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode)
{ {
int ret = 0; int ret = 0;
u16 outreg, fifo_threshold, smo_mode; u16 outreg, fifo_threshold, smo_mode;
outreg = 0; outreg = 0;
fifo_threshold = 1792; fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1); smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
dprintk( "setting output mode for demod %p to %d", dprintk("setting output mode for demod %p to %d", &state->demod, mode);
&state->demod, mode);
switch (mode) { switch (mode) {
case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
outreg = (1 << 10); /* 0x0400 */ outreg = (1 << 10); /* 0x0400 */
break; break;
case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
outreg = (1 << 10) | (1 << 6); /* 0x0440 */ outreg = (1 << 10) | (1 << 6); /* 0x0440 */
break; break;
case OUTMODE_MPEG2_SERIAL: // STBs with serial input case OUTMODE_MPEG2_SERIAL: // STBs with serial input
outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */
break; break;
case OUTMODE_DIVERSITY: case OUTMODE_DIVERSITY:
if (state->cfg.hostbus_diversity) if (state->cfg.hostbus_diversity)
outreg = (1 << 10) | (4 << 6); /* 0x0500 */ outreg = (1 << 10) | (4 << 6); /* 0x0500 */
else else
outreg = (1 << 11); outreg = (1 << 11);
break; break;
case OUTMODE_MPEG2_FIFO: // e.g. USB feeding case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
smo_mode |= (3 << 1); smo_mode |= (3 << 1);
fifo_threshold = 512; fifo_threshold = 512;
outreg = (1 << 10) | (5 << 6); outreg = (1 << 10) | (5 << 6);
break; break;
case OUTMODE_ANALOG_ADC: case OUTMODE_ANALOG_ADC:
outreg = (1 << 10) | (3 << 6); outreg = (1 << 10) | (3 << 6);
break; break;
case OUTMODE_HIGH_Z: // disable case OUTMODE_HIGH_Z: // disable
outreg = 0; outreg = 0;
break; break;
default: default:
dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod); dprintk("Unhandled output_mode passed to be set for demod %p", &state->demod);
break; break;
} }
if (state->cfg.output_mpeg2_in_188_bytes) if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5) ; smo_mode |= (1 << 5);
ret |= dib7000p_write_word(state, 235, smo_mode); ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ if (state->version != SOC7090)
ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */
return ret; return ret;
} }
...@@ -161,13 +176,13 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) ...@@ -161,13 +176,13 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
if (state->div_force_off) { if (state->div_force_off) {
dprintk( "diversity combination deactivated - forced by COFDM parameters"); dprintk("diversity combination deactivated - forced by COFDM parameters");
onoff = 0; onoff = 0;
dib7000p_write_word(state, 207, 0); dib7000p_write_word(state, 207, 0);
} else } else
dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0)); dib7000p_write_word(state, 207, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
state->div_state = (u8)onoff; state->div_state = (u8) onoff;
if (onoff) { if (onoff) {
dib7000p_write_word(state, 204, 6); dib7000p_write_word(state, 204, 6);
...@@ -184,37 +199,48 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff) ...@@ -184,37 +199,48 @@ static int dib7000p_set_diversity_in(struct dvb_frontend *demod, int onoff)
static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode)
{ {
/* by default everything is powered off */ /* by default everything is powered off */
u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff);
/* now, depending on the requested mode, we power on */ /* now, depending on the requested mode, we power on */
switch (mode) { switch (mode) {
/* power up everything in the demod */ /* power up everything in the demod */
case DIB7000P_POWER_ALL: case DIB7000P_POWER_ALL:
reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff; reg_774 = 0x0000;
break; reg_775 = 0x0000;
reg_776 = 0x0;
case DIB7000P_POWER_ANALOG_ADC: reg_899 = 0x0;
/* dem, cfg, iqc, sad, agc */ if (state->version == SOC7090)
reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9)); reg_1280 &= 0x001f;
/* nud */ else
reg_776 &= ~((1 << 0)); reg_1280 &= 0x01ff;
/* Dout */ break;
case DIB7000P_POWER_ANALOG_ADC:
/* dem, cfg, iqc, sad, agc */
reg_774 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10) | (1 << 9));
/* nud */
reg_776 &= ~((1 << 0));
/* Dout */
if (state->version != SOC7090)
reg_1280 &= ~((1 << 11)); reg_1280 &= ~((1 << 11));
/* fall through wanted to enable the interfaces */ reg_1280 &= ~(1 << 6);
/* fall through wanted to enable the interfaces */
/* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */
case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */
if (state->version == SOC7090)
reg_1280 &= ~((1 << 7) | (1 << 5));
else
reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10));
break; break;
/* TODO following stuff is just converted from the dib7000-driver - check when is used what */ /* TODO following stuff is just converted from the dib7000-driver - check when is used what */
} }
dib7000p_write_word(state, 774, reg_774); dib7000p_write_word(state, 774, reg_774);
dib7000p_write_word(state, 775, reg_775); dib7000p_write_word(state, 775, reg_775);
dib7000p_write_word(state, 776, reg_776); dib7000p_write_word(state, 776, reg_776);
dib7000p_write_word(state, 899, reg_899); dib7000p_write_word(state, 899, reg_899);
dib7000p_write_word(state, 1280, reg_1280); dib7000p_write_word(state, 1280, reg_1280);
return 0; return 0;
...@@ -222,40 +248,57 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p ...@@ -222,40 +248,57 @@ static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_p
static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no)
{ {
u16 reg_908 = dib7000p_read_word(state, 908), u16 reg_908 = dib7000p_read_word(state, 908), reg_909 = dib7000p_read_word(state, 909);
reg_909 = dib7000p_read_word(state, 909); u16 reg;
switch (no) { switch (no) {
case DIBX000_SLOW_ADC_ON: case DIBX000_SLOW_ADC_ON:
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 1925);
dib7000p_write_word(state, 1925, reg | (1 << 4) | (1 << 2)); /* en_slowAdc = 1 & reset_sladc = 1 */
reg = dib7000p_read_word(state, 1925); /* read acces to make it works... strange ... */
msleep(200);
dib7000p_write_word(state, 1925, reg & ~(1 << 4)); /* en_slowAdc = 1 & reset_sladc = 0 */
reg = dib7000p_read_word(state, 72) & ~((0x3 << 14) | (0x3 << 12));
dib7000p_write_word(state, 72, reg | (1 << 14) | (3 << 12) | 524); /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ; (Vin2 = Vcm) */
} else {
reg_909 |= (1 << 1) | (1 << 0); reg_909 |= (1 << 1) | (1 << 0);
dib7000p_write_word(state, 909, reg_909); dib7000p_write_word(state, 909, reg_909);
reg_909 &= ~(1 << 1); reg_909 &= ~(1 << 1);
break; }
break;
case DIBX000_SLOW_ADC_OFF: case DIBX000_SLOW_ADC_OFF:
reg_909 |= (1 << 1) | (1 << 0); if (state->version == SOC7090) {
break; reg = dib7000p_read_word(state, 1925);
dib7000p_write_word(state, 1925, (reg & ~(1 << 2)) | (1 << 4)); /* reset_sladc = 1 en_slowAdc = 0 */
} else
reg_909 |= (1 << 1) | (1 << 0);
break;
case DIBX000_ADC_ON: case DIBX000_ADC_ON:
reg_908 &= 0x0fff; reg_908 &= 0x0fff;
reg_909 &= 0x0003; reg_909 &= 0x0003;
break; break;
case DIBX000_ADC_OFF: // leave the VBG voltage on case DIBX000_ADC_OFF: // leave the VBG voltage on
reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); reg_908 |= (1 << 14) | (1 << 13) | (1 << 12);
reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
break; break;
case DIBX000_VBG_ENABLE: case DIBX000_VBG_ENABLE:
reg_908 &= ~(1 << 15); reg_908 &= ~(1 << 15);
break; break;
case DIBX000_VBG_DISABLE: case DIBX000_VBG_DISABLE:
reg_908 |= (1 << 15); reg_908 |= (1 << 15);
break; break;
default: default:
break; break;
} }
// dprintk( "908: %x, 909: %x\n", reg_908, reg_909); // dprintk( "908: %x, 909: %x\n", reg_908, reg_909);
...@@ -275,17 +318,17 @@ static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw) ...@@ -275,17 +318,17 @@ static int dib7000p_set_bandwidth(struct dib7000p_state *state, u32 bw)
state->current_bandwidth = bw; state->current_bandwidth = bw;
if (state->timf == 0) { if (state->timf == 0) {
dprintk( "using default timf"); dprintk("using default timf");
timf = state->cfg.bw->timf; timf = state->cfg.bw->timf;
} else { } else {
dprintk( "using updated timf"); dprintk("using updated timf");
timf = state->timf; timf = state->timf;
} }
timf = timf * (bw / 50) / 160; timf = timf * (bw / 50) / 160;
dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff)); dib7000p_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
dib7000p_write_word(state, 24, (u16) ((timf ) & 0xffff)); dib7000p_write_word(state, 24, (u16) ((timf) & 0xffff));
return 0; return 0;
} }
...@@ -295,7 +338,11 @@ static int dib7000p_sad_calib(struct dib7000p_state *state) ...@@ -295,7 +338,11 @@ static int dib7000p_sad_calib(struct dib7000p_state *state)
/* internal */ /* internal */
// dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth // dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); dib7000p_write_word(state, 73, (0 << 1) | (0 << 0));
dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096
if (state->version == SOC7090)
dib7000p_write_word(state, 74, 2048); // P_sad_calib_value = (0.9/1.8)*4096
else
dib7000p_write_word(state, 74, 776); // P_sad_calib_value = 0.625*3.3 / 4096
/* do the calibration */ /* do the calibration */
dib7000p_write_word(state, 73, (1 << 0)); dib7000p_write_word(state, 73, (1 << 0));
...@@ -314,37 +361,92 @@ int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value) ...@@ -314,37 +361,92 @@ int dib7000p_set_wbd_ref(struct dvb_frontend *demod, u16 value)
state->wbd_ref = value; state->wbd_ref = value;
return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value); return dib7000p_write_word(state, 105, (dib7000p_read_word(state, 105) & 0xf000) | value);
} }
EXPORT_SYMBOL(dib7000p_set_wbd_ref); EXPORT_SYMBOL(dib7000p_set_wbd_ref);
static void dib7000p_reset_pll(struct dib7000p_state *state) static void dib7000p_reset_pll(struct dib7000p_state *state)
{ {
struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; struct dibx000_bandwidth_config *bw = &state->cfg.bw[0];
u16 clk_cfg0; u16 clk_cfg0;
/* force PLL bypass */ if (state->version == SOC7090) {
clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) | dib7000p_write_word(state, 1856, (!bw->pll_reset << 13) | (bw->pll_range << 12) | (bw->pll_ratio << 6) | (bw->pll_prediv));
(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) |
(bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
dib7000p_write_word(state, 900, clk_cfg0); while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
}
dib7000p_write_word(state, 1857, dib7000p_read_word(state, 1857) | (!bw->pll_bypass << 15));
} else {
/* force PLL bypass */
clk_cfg0 = (1 << 15) | ((bw->pll_ratio & 0x3f) << 9) |
(bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0);
/* P_pll_cfg */ dib7000p_write_word(state, 900, clk_cfg0);
dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff); /* P_pll_cfg */
dib7000p_write_word(state, 900, clk_cfg0); dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset);
clk_cfg0 = (bw->pll_bypass << 15) | (clk_cfg0 & 0x7fff);
dib7000p_write_word(state, 900, clk_cfg0);
}
dib7000p_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff)); dib7000p_write_word(state, 18, (u16) (((bw->internal * 1000) >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) ( (bw->internal*1000 ) & 0xffff)); dib7000p_write_word(state, 19, (u16) ((bw->internal * 1000) & 0xffff));
dib7000p_write_word(state, 21, (u16) ( (bw->ifreq >> 16) & 0xffff)); dib7000p_write_word(state, 21, (u16) ((bw->ifreq >> 16) & 0xffff));
dib7000p_write_word(state, 22, (u16) ( (bw->ifreq ) & 0xffff)); dib7000p_write_word(state, 22, (u16) ((bw->ifreq) & 0xffff));
dib7000p_write_word(state, 72, bw->sad_cfg); dib7000p_write_word(state, 72, bw->sad_cfg);
} }
static u32 dib7000p_get_internal_freq(struct dib7000p_state *state)
{
u32 internal = (u32) dib7000p_read_word(state, 18) << 16;
internal |= (u32) dib7000p_read_word(state, 19);
internal /= 1000;
return internal;
}
int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg_1857, reg_1856 = dib7000p_read_word(state, 1856);
u8 loopdiv, prediv;
u32 internal, xtal;
/* get back old values */
prediv = reg_1856 & 0x3f;
loopdiv = (reg_1856 >> 6) & 0x3f;
if ((bw != NULL) && (bw->pll_prediv != prediv || bw->pll_ratio != loopdiv)) {
dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, bw->pll_prediv, loopdiv, bw->pll_ratio);
reg_1856 &= 0xf000;
reg_1857 = dib7000p_read_word(state, 1857);
dib7000p_write_word(state, 1857, reg_1857 & ~(1 << 15)); // desable pll
dib7000p_write_word(state, 1856, reg_1856 | ((bw->pll_ratio & 0x3f) << 6) | (bw->pll_prediv & 0x3f));
/* write new system clk into P_sec_len */
internal = dib7000p_get_internal_freq(state);
xtal = (internal / loopdiv) * prediv;
internal = 1000 * (xtal / bw->pll_prediv) * bw->pll_ratio; /* new internal */
dib7000p_write_word(state, 18, (u16) ((internal >> 16) & 0xffff));
dib7000p_write_word(state, 19, (u16) (internal & 0xffff));
dib7000p_write_word(state, 1857, reg_1857 | (1 << 15)); // enable pll
while (((dib7000p_read_word(state, 1856) >> 15) & 0x1) != 1) {
dprintk("Waiting for PLL to lock");
}
return 0;
}
return -EIO;
}
EXPORT_SYMBOL(dib7000p_update_pll);
static int dib7000p_reset_gpio(struct dib7000p_state *st) static int dib7000p_reset_gpio(struct dib7000p_state *st)
{ {
/* reset the GPIOs */ /* reset the GPIOs */
dprintk( "gpio dir: %x: val: %x, pwm_pos: %x",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos); dprintk("gpio dir: %x: val: %x, pwm_pos: %x", st->gpio_dir, st->gpio_val, st->cfg.gpio_pwm_pos);
dib7000p_write_word(st, 1029, st->gpio_dir); dib7000p_write_word(st, 1029, st->gpio_dir);
dib7000p_write_word(st, 1030, st->gpio_val); dib7000p_write_word(st, 1030, st->gpio_val);
...@@ -360,13 +462,13 @@ static int dib7000p_reset_gpio(struct dib7000p_state *st) ...@@ -360,13 +462,13 @@ static int dib7000p_reset_gpio(struct dib7000p_state *st)
static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val) static int dib7000p_cfg_gpio(struct dib7000p_state *st, u8 num, u8 dir, u8 val)
{ {
st->gpio_dir = dib7000p_read_word(st, 1029); st->gpio_dir = dib7000p_read_word(st, 1029);
st->gpio_dir &= ~(1 << num); /* reset the direction bit */ st->gpio_dir &= ~(1 << num); /* reset the direction bit */
st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */ st->gpio_dir |= (dir & 0x1) << num; /* set the new direction */
dib7000p_write_word(st, 1029, st->gpio_dir); dib7000p_write_word(st, 1029, st->gpio_dir);
st->gpio_val = dib7000p_read_word(st, 1030); st->gpio_val = dib7000p_read_word(st, 1030);
st->gpio_val &= ~(1 << num); /* reset the direction bit */ st->gpio_val &= ~(1 << num); /* reset the direction bit */
st->gpio_val |= (val & 0x01) << num; /* set the new value */ st->gpio_val |= (val & 0x01) << num; /* set the new value */
dib7000p_write_word(st, 1030, st->gpio_val); dib7000p_write_word(st, 1030, st->gpio_val);
return 0; return 0;
...@@ -377,96 +479,97 @@ int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val) ...@@ -377,96 +479,97 @@ int dib7000p_set_gpio(struct dvb_frontend *demod, u8 num, u8 dir, u8 val)
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
return dib7000p_cfg_gpio(state, num, dir, val); return dib7000p_cfg_gpio(state, num, dir, val);
} }
EXPORT_SYMBOL(dib7000p_set_gpio); EXPORT_SYMBOL(dib7000p_set_gpio);
static u16 dib7000p_defaults[] =
{ static u16 dib7000p_defaults[] = {
// auto search configuration // auto search configuration
3, 2, 3, 2,
0x0004, 0x0004,
0x1000, 0x1000,
0x0814, /* Equal Lock */ 0x0814, /* Equal Lock */
12, 6, 12, 6,
0x001b, 0x001b,
0x7740, 0x7740,
0x005b, 0x005b,
0x8d80, 0x8d80,
0x01c9, 0x01c9,
0xc380, 0xc380,
0x0000, 0x0000,
0x0080, 0x0080,
0x0000, 0x0000,
0x0090, 0x0090,
0x0001, 0x0001,
0xd4c0, 0xd4c0,
1, 26, 1, 26,
0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26 0x6680, // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26
/* set ADC level to -16 */ /* set ADC level to -16 */
11, 79, 11, 79,
(1 << 13) - 825 - 117, (1 << 13) - 825 - 117,
(1 << 13) - 837 - 117, (1 << 13) - 837 - 117,
(1 << 13) - 811 - 117, (1 << 13) - 811 - 117,
(1 << 13) - 766 - 117, (1 << 13) - 766 - 117,
(1 << 13) - 737 - 117, (1 << 13) - 737 - 117,
(1 << 13) - 693 - 117, (1 << 13) - 693 - 117,
(1 << 13) - 648 - 117, (1 << 13) - 648 - 117,
(1 << 13) - 619 - 117, (1 << 13) - 619 - 117,
(1 << 13) - 575 - 117, (1 << 13) - 575 - 117,
(1 << 13) - 531 - 117, (1 << 13) - 531 - 117,
(1 << 13) - 501 - 117, (1 << 13) - 501 - 117,
1, 142, 1, 142,
0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16 0x0410, // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16
/* disable power smoothing */ /* disable power smoothing */
8, 145, 8, 145,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
1, 154, 1, 154,
1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0 1 << 13, // P_fft_freq_dir=1, P_fft_nb_to_cut=0
1, 168, 1, 168,
0x0ccd, // P_pha3_thres, default 0x3000 0x0ccd, // P_pha3_thres, default 0x3000
// 1, 169, // 1, 169,
// 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010 // 0x0010, // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010
1, 183, 1, 183,
0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005 0x200f, // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005
1, 212,
0x169, // P_vit_ksi_dwn = 5 P_vit_ksi_up = 5 0x1e1, // P_vit_ksi_dwn = 4 P_vit_ksi_up = 7
5, 187, 5, 187,
0x023d, // P_adp_regul_cnt=573, default: 410 0x023d, // P_adp_regul_cnt=573, default: 410
0x00a4, // P_adp_noise_cnt= 0x00a4, // P_adp_noise_cnt=
0x00a4, // P_adp_regul_ext 0x00a4, // P_adp_regul_ext
0x7ff0, // P_adp_noise_ext 0x7ff0, // P_adp_noise_ext
0x3ccc, // P_adp_fil 0x3ccc, // P_adp_fil
1, 198, 1, 198,
0x800, // P_equal_thres_wgn 0x800, // P_equal_thres_wgn
1, 222, 1, 222,
0x0010, // P_fec_ber_rs_len=2 0x0010, // P_fec_ber_rs_len=2
1, 235, 1, 235,
0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
2, 901, 2, 901,
0x0006, // P_clk_cfg1 0x0006, // P_clk_cfg1
(3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1 (3 << 10) | (1 << 6), // P_divclksel=3 P_divbitsel=1
1, 905, 1, 905,
0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive 0x2c8e, // Tuner IO bank: max drive (14mA) + divout pads max drive
0, 0,
}; };
...@@ -475,51 +578,65 @@ static int dib7000p_demod_reset(struct dib7000p_state *state) ...@@ -475,51 +578,65 @@ static int dib7000p_demod_reset(struct dib7000p_state *state)
{ {
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090)
dibx000_reset_i2c_master(&state->i2c_master);
dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE);
/* restart all parts */ /* restart all parts */
dib7000p_write_word(state, 770, 0xffff); dib7000p_write_word(state, 770, 0xffff);
dib7000p_write_word(state, 771, 0xffff); dib7000p_write_word(state, 771, 0xffff);
dib7000p_write_word(state, 772, 0x001f); dib7000p_write_word(state, 772, 0x001f);
dib7000p_write_word(state, 898, 0x0003); dib7000p_write_word(state, 898, 0x0003);
/* except i2c, sdio, gpio - control interfaces */ dib7000p_write_word(state, 1280, 0x001f - ((1 << 4) | (1 << 3)));
dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) );
dib7000p_write_word(state, 770, 0);
dib7000p_write_word(state, 770, 0); dib7000p_write_word(state, 771, 0);
dib7000p_write_word(state, 771, 0); dib7000p_write_word(state, 772, 0);
dib7000p_write_word(state, 772, 0); dib7000p_write_word(state, 898, 0);
dib7000p_write_word(state, 898, 0);
dib7000p_write_word(state, 1280, 0); dib7000p_write_word(state, 1280, 0);
/* default */ /* default */
dib7000p_reset_pll(state); dib7000p_reset_pll(state);
if (dib7000p_reset_gpio(state) != 0) if (dib7000p_reset_gpio(state) != 0)
dprintk( "GPIO reset was not successful."); dprintk("GPIO reset was not successful.");
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) if (state->version == SOC7090) {
dprintk( "OUTPUT_MODE could not be reset."); dib7000p_write_word(state, 899, 0);
/* unforce divstr regardless whether i2c enumeration was done or not */ /* impulse noise */
dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) ); dib7000p_write_word(state, 42, (1<<5) | 3); /* P_iqc_thsat_ipc = 1 ; P_iqc_win2 = 3 */
dib7000p_write_word(state, 43, 0x2d4); /*-300 fag P_iqc_dect_min = -280 */
dib7000p_set_bandwidth(state, 8000); dib7000p_write_word(state, 44, 300); /* 300 fag P_iqc_dect_min = +280 */
//dib7000p_write_word(state, 273, (1<<6) | 10); /* P_vit_inoise_sel = 1, P_vit_inoise_gain = 10*/
dib7000p_write_word(state, 273, (1<<6) | 30); //26/* P_vit_inoise_sel = 1, P_vit_inoise_gain = 26*/// FAG
}
if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
dprintk("OUTPUT_MODE could not be reset.");
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
dib7000p_sad_calib(state); dib7000p_sad_calib(state);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
// P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ... /* unforce divstr regardless whether i2c enumeration was done or not */
if(state->cfg.tuner_is_baseband) dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1));
dib7000p_write_word(state, 36,0x0755);
else dib7000p_set_bandwidth(state, 8000);
dib7000p_write_word(state, 36,0x1f55);
if(state->version == SOC7090) {
dib7000p_write_word(state, 36, 0x5755);/* P_iqc_impnc_on =1 & P_iqc_corr_inh = 1 for impulsive noise */
} else { // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ...
if (state->cfg.tuner_is_baseband)
dib7000p_write_word(state, 36, 0x0755);
else
dib7000p_write_word(state, 36, 0x1f55);
}
dib7000p_write_tab(state, dib7000p_defaults); dib7000p_write_tab(state, dib7000p_defaults);
dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return 0; return 0;
} }
...@@ -527,9 +644,9 @@ static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) ...@@ -527,9 +644,9 @@ static void dib7000p_pll_clk_cfg(struct dib7000p_state *state)
{ {
u16 tmp = 0; u16 tmp = 0;
tmp = dib7000p_read_word(state, 903); tmp = dib7000p_read_word(state, 903);
dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll
tmp = dib7000p_read_word(state, 900); tmp = dib7000p_read_word(state, 900);
dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock
} }
static void dib7000p_restart_agc(struct dib7000p_state *state) static void dib7000p_restart_agc(struct dib7000p_state *state)
...@@ -547,7 +664,7 @@ static int dib7000p_update_lna(struct dib7000p_state *state) ...@@ -547,7 +664,7 @@ static int dib7000p_update_lna(struct dib7000p_state *state)
if (state->cfg.update_lna) { if (state->cfg.update_lna) {
// read dyn_gain here (because it is demod-dependent and not fe) // read dyn_gain here (because it is demod-dependent and not fe)
dyn_gain = dib7000p_read_word(state, 394); dyn_gain = dib7000p_read_word(state, 394);
if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed if (state->cfg.update_lna(&state->demod, dyn_gain)) { // LNA has changed
dib7000p_restart_agc(state); dib7000p_restart_agc(state);
return 1; return 1;
} }
...@@ -571,24 +688,24 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) ...@@ -571,24 +688,24 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
} }
if (agc == NULL) { if (agc == NULL) {
dprintk( "no valid AGC configuration found for band 0x%02x",band); dprintk("no valid AGC configuration found for band 0x%02x", band);
return -EINVAL; return -EINVAL;
} }
state->current_agc = agc; state->current_agc = agc;
/* AGC */ /* AGC */
dib7000p_write_word(state, 75 , agc->setup ); dib7000p_write_word(state, 75, agc->setup);
dib7000p_write_word(state, 76 , agc->inv_gain ); dib7000p_write_word(state, 76, agc->inv_gain);
dib7000p_write_word(state, 77 , agc->time_stabiliz ); dib7000p_write_word(state, 77, agc->time_stabiliz);
dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock);
// Demod AGC loop configuration // Demod AGC loop configuration
dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp);
dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp);
/* AGC continued */ /* AGC continued */
dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d", dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
if (state->wbd_ref != 0) if (state->wbd_ref != 0)
...@@ -598,101 +715,139 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band) ...@@ -598,101 +715,139 @@ static int dib7000p_set_agc_config(struct dib7000p_state *state, u8 band)
dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8)); dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
dib7000p_write_word(state, 107, agc->agc1_max); dib7000p_write_word(state, 107, agc->agc1_max);
dib7000p_write_word(state, 108, agc->agc1_min); dib7000p_write_word(state, 108, agc->agc1_min);
dib7000p_write_word(state, 109, agc->agc2_max); dib7000p_write_word(state, 109, agc->agc2_max);
dib7000p_write_word(state, 110, agc->agc2_min); dib7000p_write_word(state, 110, agc->agc2_min);
dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2); dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
dib7000p_write_word(state, 112, agc->agc1_pt3); dib7000p_write_word(state, 112, agc->agc1_pt3);
dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
return 0; return 0;
} }
static void dib7000p_set_dds(struct dib7000p_state *state, s32 offset_khz)
{
u32 internal = dib7000p_get_internal_freq(state);
s32 unit_khz_dds_val = 67108864 / (internal); /* 2**26 / Fsampling is the unit 1KHz offset */
u32 abs_offset_khz = ABS(offset_khz);
u32 dds = state->cfg.bw->ifreq & 0x1ffffff;
u8 invert = !!(state->cfg.bw->ifreq & (1 << 25));
dprintk("setting a frequency offset of %dkHz internal freq = %d invert = %d", offset_khz, internal, invert);
if (offset_khz < 0)
unit_khz_dds_val *= -1;
/* IF tuner */
if (invert)
dds -= (abs_offset_khz * unit_khz_dds_val); /* /100 because of /100 on the unit_khz_dds_val line calc for better accuracy */
else
dds += (abs_offset_khz * unit_khz_dds_val);
if (abs_offset_khz <= (internal / 2)) { /* Max dds offset is the half of the demod freq */
dib7000p_write_word(state, 21, (u16) (((dds >> 16) & 0x1ff) | (0 << 10) | (invert << 9)));
dib7000p_write_word(state, 22, (u16) (dds & 0xffff));
}
}
static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) static int dib7000p_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
{ {
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
int ret = -1; int ret = -1;
u8 *agc_state = &state->agc_state; u8 *agc_state = &state->agc_state;
u8 agc_split; u8 agc_split;
u16 reg;
u32 upd_demod_gain_period = 0x1000;
switch (state->agc_state) { switch (state->agc_state) {
case 0: case 0:
// set power-up level: interf+analog+AGC // set power-up level: interf+analog+AGC
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
if (state->version == SOC7090) {
reg = dib7000p_read_word(state, 0x79b) & 0xff00;
dib7000p_write_word(state, 0x79a, upd_demod_gain_period & 0xFFFF); /* lsb */
dib7000p_write_word(state, 0x79b, reg | (1 << 14) | ((upd_demod_gain_period >> 16) & 0xFF)); // bit 14 = enDemodGain
/* enable adc i & q */
reg = dib7000p_read_word(state, 0x780);
dib7000p_write_word(state, 0x780, (reg | (0x3)) & (~(1 << 7)));
} else {
dib7000p_set_adc_state(state, DIBX000_ADC_ON); dib7000p_set_adc_state(state, DIBX000_ADC_ON);
dib7000p_pll_clk_cfg(state); dib7000p_pll_clk_cfg(state);
}
if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0) if (dib7000p_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency / 1000)) != 0)
return -1; return -1;
ret = 7;
(*agc_state)++;
break;
case 1: dib7000p_set_dds(state, 0);
// AGC initialization ret = 7;
if (state->cfg.agc_control) (*agc_state)++;
state->cfg.agc_control(&state->demod, 1); break;
dib7000p_write_word(state, 78, 32768);
if (!state->current_agc->perform_agc_softsplit) {
/* we are using the wbd - so slow AGC startup */
/* force 0 split on WBD and restart AGC */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
(*agc_state)++;
ret = 5;
} else {
/* default AGC startup */
(*agc_state) = 4;
/* wait AGC rough lock time */
ret = 7;
}
dib7000p_restart_agc(state); case 1:
break; // AGC initialization
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 1);
case 2: /* fast split search path after 5sec */ dib7000p_write_word(state, 78, 32768);
dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */ if (!state->current_agc->perform_agc_softsplit) {
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */ /* we are using the wbd - so slow AGC startup */
/* force 0 split on WBD and restart AGC */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | (1 << 8));
(*agc_state)++; (*agc_state)++;
ret = 14; ret = 5;
break; } else {
/* default AGC startup */
(*agc_state) = 4;
/* wait AGC rough lock time */
ret = 7;
}
case 3: /* split search ended */ dib7000p_restart_agc(state);
agc_split = (u8)dib7000p_read_word(state, 396); /* store the split value for the next time */ break;
dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */
dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */ case 2: /* fast split search path after 5sec */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */ dib7000p_write_word(state, 75, state->current_agc->setup | (1 << 4)); /* freeze AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (2 << 9) | (0 << 8)); /* fast split search 0.25kHz */
(*agc_state)++;
ret = 14;
break;
dib7000p_restart_agc(state); case 3: /* split search ended */
agc_split = (u8) dib7000p_read_word(state, 396); /* store the split value for the next time */
dib7000p_write_word(state, 78, dib7000p_read_word(state, 394)); /* set AGC gain start value */
dprintk( "SPLIT %p: %hd", demod, agc_split); dib7000p_write_word(state, 75, state->current_agc->setup); /* std AGC loop */
dib7000p_write_word(state, 106, (state->current_agc->wbd_sel << 13) | (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
(*agc_state)++; dib7000p_restart_agc(state);
ret = 5;
break;
case 4: /* LNA startup */ dprintk("SPLIT %p: %hd", demod, agc_split);
// wait AGC accurate lock time
ret = 7;
if (dib7000p_update_lna(state)) (*agc_state)++;
// wait only AGC rough lock time ret = 5;
ret = 5; break;
else // nothing was done, go to the next state
(*agc_state)++;
break;
case 5: case 4: /* LNA startup */
if (state->cfg.agc_control) // wait AGC accurate lock time
state->cfg.agc_control(&state->demod, 0); ret = 7;
if (dib7000p_update_lna(state))
// wait only AGC rough lock time
ret = 5;
else // nothing was done, go to the next state
(*agc_state)++; (*agc_state)++;
break; break;
default:
break; case 5:
if (state->cfg.agc_control)
state->cfg.agc_control(&state->demod, 0);
(*agc_state)++;
break;
default:
break;
} }
return ret; return ret;
} }
...@@ -703,45 +858,89 @@ static void dib7000p_update_timf(struct dib7000p_state *state) ...@@ -703,45 +858,89 @@ static void dib7000p_update_timf(struct dib7000p_state *state)
state->timf = timf * 160 / (state->current_bandwidth / 50); state->timf = timf * 160 / (state->current_bandwidth / 50);
dib7000p_write_word(state, 23, (u16) (timf >> 16)); dib7000p_write_word(state, 23, (u16) (timf >> 16));
dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); dib7000p_write_word(state, 24, (u16) (timf & 0xffff));
dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->cfg.bw->timf); dprintk("updated timf_frequency: %d (default: %d)", state->timf, state->cfg.bw->timf);
}
u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
struct dib7000p_state *state = fe->demodulator_priv;
switch (op) {
case DEMOD_TIMF_SET:
state->timf = timf;
break;
case DEMOD_TIMF_UPDATE:
dib7000p_update_timf(state);
break;
case DEMOD_TIMF_GET:
break;
}
dib7000p_set_bandwidth(state, state->current_bandwidth);
return state->timf;
} }
EXPORT_SYMBOL(dib7000p_ctrl_timf);
static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq) static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_frontend_parameters *ch, u8 seq)
{ {
u16 value, est[4]; u16 value, est[4];
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
/* nfft, guard, qam, alpha */ /* nfft, guard, qam, alpha */
value = 0; value = 0;
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: value |= (0 << 7); break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: value |= (2 << 7); break; value |= (0 << 7);
default: break;
case TRANSMISSION_MODE_8K: value |= (1 << 7); break; case TRANSMISSION_MODE_4K:
value |= (2 << 7);
break;
default:
case TRANSMISSION_MODE_8K:
value |= (1 << 7);
break;
} }
switch (ch->u.ofdm.guard_interval) { switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_32: value |= (0 << 5); break; case GUARD_INTERVAL_1_32:
case GUARD_INTERVAL_1_16: value |= (1 << 5); break; value |= (0 << 5);
case GUARD_INTERVAL_1_4: value |= (3 << 5); break; break;
default: case GUARD_INTERVAL_1_16:
case GUARD_INTERVAL_1_8: value |= (2 << 5); break; value |= (1 << 5);
break;
case GUARD_INTERVAL_1_4:
value |= (3 << 5);
break;
default:
case GUARD_INTERVAL_1_8:
value |= (2 << 5);
break;
} }
switch (ch->u.ofdm.constellation) { switch (ch->u.ofdm.constellation) {
case QPSK: value |= (0 << 3); break; case QPSK:
case QAM_16: value |= (1 << 3); break; value |= (0 << 3);
default: break;
case QAM_64: value |= (2 << 3); break; case QAM_16:
value |= (1 << 3);
break;
default:
case QAM_64:
value |= (2 << 3);
break;
} }
switch (HIERARCHY_1) { switch (HIERARCHY_1) {
case HIERARCHY_2: value |= 2; break; case HIERARCHY_2:
case HIERARCHY_4: value |= 4; break; value |= 2;
default: break;
case HIERARCHY_1: value |= 1; break; case HIERARCHY_4:
value |= 4;
break;
default:
case HIERARCHY_1:
value |= 1;
break;
} }
dib7000p_write_word(state, 0, value); dib7000p_write_word(state, 0, value);
dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */
/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */ /* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
value = 0; value = 0;
...@@ -752,39 +951,63 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte ...@@ -752,39 +951,63 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte
if (1 == 1) if (1 == 1)
value |= 1; value |= 1;
switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) { switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
case FEC_2_3: value |= (2 << 1); break; case FEC_2_3:
case FEC_3_4: value |= (3 << 1); break; value |= (2 << 1);
case FEC_5_6: value |= (5 << 1); break; break;
case FEC_7_8: value |= (7 << 1); break; case FEC_3_4:
default: value |= (3 << 1);
case FEC_1_2: value |= (1 << 1); break; break;
case FEC_5_6:
value |= (5 << 1);
break;
case FEC_7_8:
value |= (7 << 1);
break;
default:
case FEC_1_2:
value |= (1 << 1);
break;
} }
dib7000p_write_word(state, 208, value); dib7000p_write_word(state, 208, value);
/* offset loop parameters */ /* offset loop parameters */
dib7000p_write_word(state, 26, 0x6680); // timf(6xxx) dib7000p_write_word(state, 26, 0x6680); // timf(6xxx)
dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3) dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3)
dib7000p_write_word(state, 29, 0x1273); // isi dib7000p_write_word(state, 29, 0x1273); // isi
dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5) dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5)
/* P_dvsy_sync_wait */ /* P_dvsy_sync_wait */
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_8K: value = 256; break; case TRANSMISSION_MODE_8K:
case TRANSMISSION_MODE_4K: value = 128; break; value = 256;
case TRANSMISSION_MODE_2K: break;
default: value = 64; break; case TRANSMISSION_MODE_4K:
value = 128;
break;
case TRANSMISSION_MODE_2K:
default:
value = 64;
break;
} }
switch (ch->u.ofdm.guard_interval) { switch (ch->u.ofdm.guard_interval) {
case GUARD_INTERVAL_1_16: value *= 2; break; case GUARD_INTERVAL_1_16:
case GUARD_INTERVAL_1_8: value *= 4; break; value *= 2;
case GUARD_INTERVAL_1_4: value *= 8; break; break;
default: case GUARD_INTERVAL_1_8:
case GUARD_INTERVAL_1_32: value *= 1; break; value *= 4;
break;
case GUARD_INTERVAL_1_4:
value *= 8;
break;
default:
case GUARD_INTERVAL_1_32:
value *= 1;
break;
} }
if (state->cfg.diversity_delay == 0) if (state->cfg.diversity_delay == 0)
state->div_sync_wait = (value * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo state->div_sync_wait = (value * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
else else
state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for one DVSY-fifo state->div_sync_wait = (value * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for one DVSY-fifo
/* deactive the possibility of diversity reception if extended interleaver */ /* deactive the possibility of diversity reception if extended interleaver */
state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K; state->div_force_off = !1 && ch->u.ofdm.transmission_mode != TRANSMISSION_MODE_8K;
...@@ -792,24 +1015,24 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte ...@@ -792,24 +1015,24 @@ static void dib7000p_set_channel(struct dib7000p_state *state, struct dvb_fronte
/* channel estimation fine configuration */ /* channel estimation fine configuration */
switch (ch->u.ofdm.constellation) { switch (ch->u.ofdm.constellation) {
case QAM_64: case QAM_64:
est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
break; break;
case QAM_16: case QAM_16:
est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
break; break;
default: default:
est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ est[2] = 0x0333; /* P_adp_regul_ext 0.1 */
est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
break; break;
} }
for (value = 0; value < 4; value++) for (value = 0; value < 4; value++)
dib7000p_write_word(state, 187 + value, est[value]); dib7000p_write_word(state, 187 + value, est[value]);
...@@ -820,14 +1043,15 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron ...@@ -820,14 +1043,15 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
struct dvb_frontend_parameters schan; struct dvb_frontend_parameters schan;
u32 value, factor; u32 value, factor;
u32 internal = dib7000p_get_internal_freq(state);
schan = *ch; schan = *ch;
schan.u.ofdm.constellation = QAM_64; schan.u.ofdm.constellation = QAM_64;
schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32; schan.u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; schan.u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
schan.u.ofdm.code_rate_HP = FEC_2_3; schan.u.ofdm.code_rate_HP = FEC_2_3;
schan.u.ofdm.code_rate_LP = FEC_3_4; schan.u.ofdm.code_rate_LP = FEC_3_4;
schan.u.ofdm.hierarchy_information = 0; schan.u.ofdm.hierarchy_information = 0;
dib7000p_set_channel(state, &schan, 7); dib7000p_set_channel(state, &schan, 7);
...@@ -838,15 +1062,15 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron ...@@ -838,15 +1062,15 @@ static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dvb_fron
factor = 6; factor = 6;
// always use the setting for 8MHz here lock_time for 7,6 MHz are longer // always use the setting for 8MHz here lock_time for 7,6 MHz are longer
value = 30 * state->cfg.bw->internal * factor; value = 30 * internal * factor;
dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time
value = 100 * state->cfg.bw->internal * factor; value = 100 * internal * factor;
dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time
value = 500 * state->cfg.bw->internal * factor; value = 500 * internal * factor;
dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time
value = dib7000p_read_word(state, 0); value = dib7000p_read_word(state, 0);
dib7000p_write_word(state, 0, (u16) ((1 << 9) | value)); dib7000p_write_word(state, 0, (u16) ((1 << 9) | value));
...@@ -861,101 +1085,101 @@ static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) ...@@ -861,101 +1085,101 @@ static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod)
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
u16 irq_pending = dib7000p_read_word(state, 1284); u16 irq_pending = dib7000p_read_word(state, 1284);
if (irq_pending & 0x1) // failed if (irq_pending & 0x1) // failed
return 1; return 1;
if (irq_pending & 0x2) // succeeded if (irq_pending & 0x2) // succeeded
return 2; return 2;
return 0; // still pending return 0; // still pending
} }
static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw) static void dib7000p_spur_protect(struct dib7000p_state *state, u32 rf_khz, u32 bw)
{ {
static s16 notch[]={16143, 14402, 12238, 9713, 6902, 3888, 759, -2392}; static s16 notch[] = { 16143, 14402, 12238, 9713, 6902, 3888, 759, -2392 };
static u8 sine [] ={0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22, static u8 sine[] = { 0, 2, 3, 5, 6, 8, 9, 11, 13, 14, 16, 17, 19, 20, 22,
24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 24, 25, 27, 28, 30, 31, 33, 34, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51,
53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80,
82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 99, 101, 102, 104, 105,
107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126, 107, 108, 109, 111, 112, 114, 115, 117, 118, 119, 121, 122, 123, 125, 126,
128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146, 128, 129, 130, 132, 133, 134, 136, 137, 138, 140, 141, 142, 144, 145, 146,
147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165, 147, 149, 150, 151, 152, 154, 155, 156, 157, 159, 160, 161, 162, 164, 165,
166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182, 166, 167, 168, 170, 171, 172, 173, 174, 175, 177, 178, 179, 180, 181, 182,
183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 183, 184, 185, 186, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198,
199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212, 199, 200, 201, 202, 203, 204, 205, 206, 207, 207, 208, 209, 210, 211, 212,
213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224, 213, 214, 215, 215, 216, 217, 218, 219, 220, 220, 221, 222, 223, 224, 224,
225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235, 225, 226, 227, 227, 228, 229, 229, 230, 231, 231, 232, 233, 233, 234, 235,
235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243, 235, 236, 237, 237, 238, 238, 239, 239, 240, 241, 241, 242, 242, 243, 243,
244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 244, 244, 245, 245, 245, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249,
250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254, 250, 250, 250, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 254,
254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 255, 255, 255}; 255, 255, 255, 255, 255, 255
};
u32 xtal = state->cfg.bw->xtal_hz / 1000; u32 xtal = state->cfg.bw->xtal_hz / 1000;
int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz; int f_rel = DIV_ROUND_CLOSEST(rf_khz, xtal) * xtal - rf_khz;
int k; int k;
int coef_re[8],coef_im[8]; int coef_re[8], coef_im[8];
int bw_khz = bw; int bw_khz = bw;
u32 pha; u32 pha;
dprintk( "relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal); dprintk("relative position of the Spur: %dk (RF: %dk, XTAL: %dk)", f_rel, rf_khz, xtal);
if (f_rel < -bw_khz / 2 || f_rel > bw_khz / 2)
if (f_rel < -bw_khz/2 || f_rel > bw_khz/2)
return; return;
bw_khz /= 100; bw_khz /= 100;
dib7000p_write_word(state, 142 ,0x0610); dib7000p_write_word(state, 142, 0x0610);
for (k = 0; k < 8; k++) { for (k = 0; k < 8; k++) {
pha = ((f_rel * (k+1) * 112 * 80/bw_khz) /1000) & 0x3ff; pha = ((f_rel * (k + 1) * 112 * 80 / bw_khz) / 1000) & 0x3ff;
if (pha==0) { if (pha == 0) {
coef_re[k] = 256; coef_re[k] = 256;
coef_im[k] = 0; coef_im[k] = 0;
} else if(pha < 256) { } else if (pha < 256) {
coef_re[k] = sine[256-(pha&0xff)]; coef_re[k] = sine[256 - (pha & 0xff)];
coef_im[k] = sine[pha&0xff]; coef_im[k] = sine[pha & 0xff];
} else if (pha == 256) { } else if (pha == 256) {
coef_re[k] = 0; coef_re[k] = 0;
coef_im[k] = 256; coef_im[k] = 256;
} else if (pha < 512) { } else if (pha < 512) {
coef_re[k] = -sine[pha&0xff]; coef_re[k] = -sine[pha & 0xff];
coef_im[k] = sine[256 - (pha&0xff)]; coef_im[k] = sine[256 - (pha & 0xff)];
} else if (pha == 512) { } else if (pha == 512) {
coef_re[k] = -256; coef_re[k] = -256;
coef_im[k] = 0; coef_im[k] = 0;
} else if (pha < 768) { } else if (pha < 768) {
coef_re[k] = -sine[256-(pha&0xff)]; coef_re[k] = -sine[256 - (pha & 0xff)];
coef_im[k] = -sine[pha&0xff]; coef_im[k] = -sine[pha & 0xff];
} else if (pha == 768) { } else if (pha == 768) {
coef_re[k] = 0; coef_re[k] = 0;
coef_im[k] = -256; coef_im[k] = -256;
} else { } else {
coef_re[k] = sine[pha&0xff]; coef_re[k] = sine[pha & 0xff];
coef_im[k] = -sine[256 - (pha&0xff)]; coef_im[k] = -sine[256 - (pha & 0xff)];
} }
coef_re[k] *= notch[k]; coef_re[k] *= notch[k];
coef_re[k] += (1<<14); coef_re[k] += (1 << 14);
if (coef_re[k] >= (1<<24)) if (coef_re[k] >= (1 << 24))
coef_re[k] = (1<<24) - 1; coef_re[k] = (1 << 24) - 1;
coef_re[k] /= (1<<15); coef_re[k] /= (1 << 15);
coef_im[k] *= notch[k]; coef_im[k] *= notch[k];
coef_im[k] += (1<<14); coef_im[k] += (1 << 14);
if (coef_im[k] >= (1<<24)) if (coef_im[k] >= (1 << 24))
coef_im[k] = (1<<24)-1; coef_im[k] = (1 << 24) - 1;
coef_im[k] /= (1<<15); coef_im[k] /= (1 << 15);
dprintk( "PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]); dprintk("PALF COEF: %d re: %d im: %d", k, coef_re[k], coef_im[k]);
dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); dib7000p_write_word(state, 143, (0 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
dib7000p_write_word(state, 144, coef_im[k] & 0x3ff); dib7000p_write_word(state, 144, coef_im[k] & 0x3ff);
dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff)); dib7000p_write_word(state, 143, (1 << 14) | (k << 10) | (coef_re[k] & 0x3ff));
} }
dib7000p_write_word(state,143 ,0); dib7000p_write_word(state, 143, 0);
} }
static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch) static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
...@@ -976,11 +1200,11 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet ...@@ -976,11 +1200,11 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet
/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3); tmp = (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3);
if (state->sfn_workaround_active) { if (state->sfn_workaround_active) {
dprintk( "SFN workaround is active"); dprintk("SFN workaround is active");
tmp |= (1 << 9); tmp |= (1 << 9);
dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift dib7000p_write_word(state, 166, 0x4000); // P_pha3_force_pha_shift
} else { } else {
dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift dib7000p_write_word(state, 166, 0x0000); // P_pha3_force_pha_shift
} }
dib7000p_write_word(state, 29, tmp); dib7000p_write_word(state, 29, tmp);
...@@ -993,51 +1217,72 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet ...@@ -993,51 +1217,72 @@ static int dib7000p_tune(struct dvb_frontend *demod, struct dvb_frontend_paramet
/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
tmp = (6 << 8) | 0x80; tmp = (6 << 8) | 0x80;
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= (7 << 12); break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: tmp |= (8 << 12); break; tmp |= (2 << 12);
default: break;
case TRANSMISSION_MODE_8K: tmp |= (9 << 12); break; case TRANSMISSION_MODE_4K:
tmp |= (3 << 12);
break;
default:
case TRANSMISSION_MODE_8K:
tmp |= (4 << 12);
break;
} }
dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */
/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
tmp = (0 << 4); tmp = (0 << 4);
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: tmp |= 0x7; break; tmp |= 0x6;
default: break;
case TRANSMISSION_MODE_8K: tmp |= 0x8; break; case TRANSMISSION_MODE_4K:
tmp |= 0x7;
break;
default:
case TRANSMISSION_MODE_8K:
tmp |= 0x8;
break;
} }
dib7000p_write_word(state, 32, tmp); dib7000p_write_word(state, 32, tmp);
/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
tmp = (0 << 4); tmp = (0 << 4);
switch (ch->u.ofdm.transmission_mode) { switch (ch->u.ofdm.transmission_mode) {
case TRANSMISSION_MODE_2K: tmp |= 0x6; break; case TRANSMISSION_MODE_2K:
case TRANSMISSION_MODE_4K: tmp |= 0x7; break; tmp |= 0x6;
default: break;
case TRANSMISSION_MODE_8K: tmp |= 0x8; break; case TRANSMISSION_MODE_4K:
tmp |= 0x7;
break;
default:
case TRANSMISSION_MODE_8K:
tmp |= 0x8;
break;
} }
dib7000p_write_word(state, 33, tmp); dib7000p_write_word(state, 33, tmp);
tmp = dib7000p_read_word(state,509); tmp = dib7000p_read_word(state, 509);
if (!((tmp >> 6) & 0x1)) { if (!((tmp >> 6) & 0x1)) {
/* restart the fec */ /* restart the fec */
tmp = dib7000p_read_word(state,771); tmp = dib7000p_read_word(state, 771);
dib7000p_write_word(state, 771, tmp | (1 << 1)); dib7000p_write_word(state, 771, tmp | (1 << 1));
dib7000p_write_word(state, 771, tmp); dib7000p_write_word(state, 771, tmp);
msleep(10); msleep(40);
tmp = dib7000p_read_word(state,509); tmp = dib7000p_read_word(state, 509);
} }
// we achieved a lock - it's time to update the osc freq // we achieved a lock - it's time to update the osc freq
if ((tmp >> 6) & 0x1) if ((tmp >> 6) & 0x1) {
dib7000p_update_timf(state); dib7000p_update_timf(state);
/* P_timf_alpha += 2 */
tmp = dib7000p_read_word(state, 26);
dib7000p_write_word(state, 26, (tmp & ~(0xf << 12)) | ((((tmp >> 12) & 0xf) + 5) << 12));
}
if (state->cfg.spur_protect) if (state->cfg.spur_protect)
dib7000p_spur_protect(state, ch->frequency/1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); dib7000p_spur_protect(state, ch->frequency / 1000, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth)); dib7000p_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
return 0; return 0;
} }
...@@ -1046,63 +1291,82 @@ static int dib7000p_wakeup(struct dvb_frontend *demod) ...@@ -1046,63 +1291,82 @@ static int dib7000p_wakeup(struct dvb_frontend *demod)
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_power_mode(state, DIB7000P_POWER_ALL);
dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON);
if (state->version == SOC7090)
dib7000p_sad_calib(state);
return 0; return 0;
} }
static int dib7000p_sleep(struct dvb_frontend *demod) static int dib7000p_sleep(struct dvb_frontend *demod)
{ {
struct dib7000p_state *state = demod->demodulator_priv; struct dib7000p_state *state = demod->demodulator_priv;
if (state->version == SOC7090)
return dib7090_set_output_mode(demod, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY);
} }
static int dib7000p_identify(struct dib7000p_state *st) static int dib7000p_identify(struct dib7000p_state *st)
{ {
u16 value; u16 value;
dprintk( "checking demod on I2C address: %d (%x)", dprintk("checking demod on I2C address: %d (%x)", st->i2c_addr, st->i2c_addr);
st->i2c_addr, st->i2c_addr);
if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { if ((value = dib7000p_read_word(st, 768)) != 0x01b3) {
dprintk( "wrong Vendor ID (read=0x%x)",value); dprintk("wrong Vendor ID (read=0x%x)", value);
return -EREMOTEIO; return -EREMOTEIO;
} }
if ((value = dib7000p_read_word(st, 769)) != 0x4000) { if ((value = dib7000p_read_word(st, 769)) != 0x4000) {
dprintk( "wrong Device ID (%x)",value); dprintk("wrong Device ID (%x)", value);
return -EREMOTEIO; return -EREMOTEIO;
} }
return 0; return 0;
} }
static int dib7000p_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
static int dib7000p_get_frontend(struct dvb_frontend* fe,
struct dvb_frontend_parameters *fep)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 tps = dib7000p_read_word(state,463); u16 tps = dib7000p_read_word(state, 463);
fep->inversion = INVERSION_AUTO; fep->inversion = INVERSION_AUTO;
fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth); fep->u.ofdm.bandwidth = BANDWIDTH_TO_INDEX(state->current_bandwidth);
switch ((tps >> 8) & 0x3) { switch ((tps >> 8) & 0x3) {
case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; case 0:
case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K;
break;
case 1:
fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K;
break;
/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
} }
switch (tps & 0x3) { switch (tps & 0x3) {
case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 0:
case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32;
case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; break;
case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; case 1:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16;
break;
case 2:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8;
break;
case 3:
fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4;
break;
} }
switch ((tps >> 14) & 0x3) { switch ((tps >> 14) & 0x3) {
case 0: fep->u.ofdm.constellation = QPSK; break; case 0:
case 1: fep->u.ofdm.constellation = QAM_16; break; fep->u.ofdm.constellation = QPSK;
case 2: break;
default: fep->u.ofdm.constellation = QAM_64; break; case 1:
fep->u.ofdm.constellation = QAM_16;
break;
case 2:
default:
fep->u.ofdm.constellation = QAM_64;
break;
} }
/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
...@@ -1110,22 +1374,42 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe, ...@@ -1110,22 +1374,42 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe,
fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
switch ((tps >> 5) & 0x7) { switch ((tps >> 5) & 0x7) {
case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; case 1:
case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; fep->u.ofdm.code_rate_HP = FEC_1_2;
case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; break;
case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; case 2:
case 7: fep->u.ofdm.code_rate_HP = FEC_2_3;
default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; break;
case 3:
fep->u.ofdm.code_rate_HP = FEC_3_4;
break;
case 5:
fep->u.ofdm.code_rate_HP = FEC_5_6;
break;
case 7:
default:
fep->u.ofdm.code_rate_HP = FEC_7_8;
break;
} }
switch ((tps >> 2) & 0x7) { switch ((tps >> 2) & 0x7) {
case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; case 1:
case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; fep->u.ofdm.code_rate_LP = FEC_1_2;
case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; break;
case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; case 2:
case 7: fep->u.ofdm.code_rate_LP = FEC_2_3;
default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; break;
case 3:
fep->u.ofdm.code_rate_LP = FEC_3_4;
break;
case 5:
fep->u.ofdm.code_rate_LP = FEC_5_6;
break;
case 7:
default:
fep->u.ofdm.code_rate_LP = FEC_7_8;
break;
} }
/* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */
...@@ -1133,15 +1417,19 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe, ...@@ -1133,15 +1417,19 @@ static int dib7000p_get_frontend(struct dvb_frontend* fe,
return 0; return 0;
} }
static int dib7000p_set_frontend(struct dvb_frontend* fe, static int dib7000p_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
struct dvb_frontend_parameters *fep)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
int time, ret; int time, ret;
dib7000p_set_output_mode(state, OUTMODE_HIGH_Z); if (state->version == SOC7090) {
dib7090_set_diversity_in(fe, 0);
dib7090_set_output_mode(fe, OUTMODE_HIGH_Z);
}
else
dib7000p_set_output_mode(state, OUTMODE_HIGH_Z);
/* maybe the parameter has been changed */ /* maybe the parameter has been changed */
state->sfn_workaround_active = buggy_sfn_workaround; state->sfn_workaround_active = buggy_sfn_workaround;
if (fe->ops.tuner_ops.set_params) if (fe->ops.tuner_ops.set_params)
...@@ -1156,9 +1444,7 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe, ...@@ -1156,9 +1444,7 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe,
} while (time != -1); } while (time != -1);
if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) {
fep->u.ofdm.constellation == QAM_AUTO ||
fep->u.ofdm.code_rate_HP == FEC_AUTO) {
int i = 800, found; int i = 800, found;
dib7000p_autosearch_start(fe, fep); dib7000p_autosearch_start(fe, fep);
...@@ -1167,9 +1453,9 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe, ...@@ -1167,9 +1453,9 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe,
found = dib7000p_autosearch_is_irq(fe); found = dib7000p_autosearch_is_irq(fe);
} while (found == 0 && i--); } while (found == 0 && i--);
dprintk("autosearch returns: %d",found); dprintk("autosearch returns: %d", found);
if (found == 0 || found == 1) if (found == 0 || found == 1)
return 0; // no channel found return 0; // no channel found
dib7000p_get_frontend(fe, fep); dib7000p_get_frontend(fe, fep);
} }
...@@ -1177,11 +1463,15 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe, ...@@ -1177,11 +1463,15 @@ static int dib7000p_set_frontend(struct dvb_frontend* fe,
ret = dib7000p_tune(fe, fep); ret = dib7000p_tune(fe, fep);
/* make this a config parameter */ /* make this a config parameter */
dib7000p_set_output_mode(state, state->cfg.output_mode); if (state->version == SOC7090)
return ret; dib7090_set_output_mode(fe, state->cfg.output_mode);
else
dib7000p_set_output_mode(state, state->cfg.output_mode);
return ret;
} }
static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t * stat)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 lock = dib7000p_read_word(state, 509); u16 lock = dib7000p_read_word(state, 509);
...@@ -1196,27 +1486,27 @@ static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) ...@@ -1196,27 +1486,27 @@ static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat)
*stat |= FE_HAS_VITERBI; *stat |= FE_HAS_VITERBI;
if (lock & 0x0010) if (lock & 0x0010)
*stat |= FE_HAS_SYNC; *stat |= FE_HAS_SYNC;
if ((lock & 0x0038) == 0x38) if ((lock & 0x0038) == 0x38)
*stat |= FE_HAS_LOCK; *stat |= FE_HAS_LOCK;
return 0; return 0;
} }
static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber) static int dib7000p_read_ber(struct dvb_frontend *fe, u32 * ber)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
*ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501);
return 0; return 0;
} }
static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
*unc = dib7000p_read_word(state, 506); *unc = dib7000p_read_word(state, 506);
return 0; return 0;
} }
static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 val = dib7000p_read_word(state, 394); u16 val = dib7000p_read_word(state, 394);
...@@ -1224,7 +1514,7 @@ static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) ...@@ -1224,7 +1514,7 @@ static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
return 0; return 0;
} }
static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) static int dib7000p_read_snr(struct dvb_frontend *fe, u16 * snr)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 val; u16 val;
...@@ -1240,19 +1530,17 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) ...@@ -1240,19 +1530,17 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr)
noise_exp -= 0x40; noise_exp -= 0x40;
signal_mant = (val >> 6) & 0xFF; signal_mant = (val >> 6) & 0xFF;
signal_exp = (val & 0x3F); signal_exp = (val & 0x3F);
if ((signal_exp & 0x20) != 0) if ((signal_exp & 0x20) != 0)
signal_exp -= 0x40; signal_exp -= 0x40;
if (signal_mant != 0) if (signal_mant != 0)
result = intlog10(2) * 10 * signal_exp + 10 * result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
intlog10(signal_mant);
else else
result = intlog10(2) * 10 * signal_exp - 100; result = intlog10(2) * 10 * signal_exp - 100;
if (noise_mant != 0) if (noise_mant != 0)
result -= intlog10(2) * 10 * noise_exp + 10 * result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
intlog10(noise_mant);
else else
result -= intlog10(2) * 10 * noise_exp - 100; result -= intlog10(2) * 10 * noise_exp - 100;
...@@ -1260,7 +1548,7 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) ...@@ -1260,7 +1548,7 @@ static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr)
return 0; return 0;
} }
static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) static int dib7000p_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
{ {
tune->min_delay_ms = 1000; tune->min_delay_ms = 1000;
return 0; return 0;
...@@ -1270,6 +1558,7 @@ static void dib7000p_release(struct dvb_frontend *demod) ...@@ -1270,6 +1558,7 @@ static void dib7000p_release(struct dvb_frontend *demod)
{ {
struct dib7000p_state *st = demod->demodulator_priv; struct dib7000p_state *st = demod->demodulator_priv;
dibx000_exit_i2c_master(&st->i2c_master); dibx000_exit_i2c_master(&st->i2c_master);
i2c_del_adapter(&st->dib7090_tuner_adap);
kfree(st); kfree(st);
} }
...@@ -1277,8 +1566,8 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -1277,8 +1566,8 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap)
{ {
u8 tx[2], rx[2]; u8 tx[2], rx[2];
struct i2c_msg msg[2] = { struct i2c_msg msg[2] = {
{ .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 }, {.addr = 18 >> 1,.flags = 0,.buf = tx,.len = 2},
{ .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 }, {.addr = 18 >> 1,.flags = I2C_M_RD,.buf = rx,.len = 2},
}; };
tx[0] = 0x03; tx[0] = 0x03;
...@@ -1303,7 +1592,7 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -1303,7 +1592,7 @@ int dib7000pc_detection(struct i2c_adapter *i2c_adap)
} }
EXPORT_SYMBOL(dib7000pc_detection); EXPORT_SYMBOL(dib7000pc_detection);
struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
{ {
struct dib7000p_state *st = demod->demodulator_priv; struct dib7000p_state *st = demod->demodulator_priv;
return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
...@@ -1312,19 +1601,19 @@ EXPORT_SYMBOL(dib7000p_get_i2c_master); ...@@ -1312,19 +1601,19 @@ EXPORT_SYMBOL(dib7000p_get_i2c_master);
int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff) int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
u16 val = dib7000p_read_word(state, 235) & 0xffef; u16 val = dib7000p_read_word(state, 235) & 0xffef;
val |= (onoff & 0x1) << 4; val |= (onoff & 0x1) << 4;
dprintk("PID filter enabled %d", onoff); dprintk("PID filter enabled %d", onoff);
return dib7000p_write_word(state, 235, val); return dib7000p_write_word(state, 235, val);
} }
EXPORT_SYMBOL(dib7000p_pid_filter_ctrl); EXPORT_SYMBOL(dib7000p_pid_filter_ctrl);
int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{ {
struct dib7000p_state *state = fe->demodulator_priv; struct dib7000p_state *state = fe->demodulator_priv;
dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff); dprintk("PID filter: index %x, PID %d, OnOff %d", id, pid, onoff);
return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0); return dib7000p_write_word(state, 241 + id, onoff ? (1 << 13) | pid : 0);
} }
EXPORT_SYMBOL(dib7000p_pid_filter); EXPORT_SYMBOL(dib7000p_pid_filter);
...@@ -1340,16 +1629,19 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1340,16 +1629,19 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
dpst->i2c_adap = i2c; dpst->i2c_adap = i2c;
for (k = no_of_demods-1; k >= 0; k--) { for (k = no_of_demods - 1; k >= 0; k--) {
dpst->cfg = cfg[k]; dpst->cfg = cfg[k];
/* designated i2c address */ /* designated i2c address */
new_addr = (0x40 + k) << 1; if (cfg[k].default_i2c_addr != 0)
new_addr = cfg[k].default_i2c_addr + (k << 1);
else
new_addr = (0x40 + k) << 1;
dpst->i2c_addr = new_addr; dpst->i2c_addr = new_addr;
dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */
if (dib7000p_identify(dpst) != 0) { if (dib7000p_identify(dpst) != 0) {
dpst->i2c_addr = default_addr; dpst->i2c_addr = default_addr;
dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */ dib7000p_write_word(dpst, 1287, 0x0003); /* sram lead in, rdy */
if (dib7000p_identify(dpst) != 0) { if (dib7000p_identify(dpst) != 0) {
dprintk("DiB7000P #%d: not identified\n", k); dprintk("DiB7000P #%d: not identified\n", k);
kfree(dpst); kfree(dpst);
...@@ -1368,7 +1660,10 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1368,7 +1660,10 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
for (k = 0; k < no_of_demods; k++) { for (k = 0; k < no_of_demods; k++) {
dpst->cfg = cfg[k]; dpst->cfg = cfg[k];
dpst->i2c_addr = (0x40 + k) << 1; if (cfg[k].default_i2c_addr != 0)
dpst->i2c_addr = (cfg[k].default_i2c_addr + k) << 1;
else
dpst->i2c_addr = (0x40 + k) << 1;
// unforce divstr // unforce divstr
dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2); dib7000p_write_word(dpst, 1285, dpst->i2c_addr << 2);
...@@ -1382,8 +1677,616 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau ...@@ -1382,8 +1677,616 @@ int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 defau
} }
EXPORT_SYMBOL(dib7000p_i2c_enumeration); EXPORT_SYMBOL(dib7000p_i2c_enumeration);
static const s32 lut_1000ln_mant[] = {
6908, 6956, 7003, 7047, 7090, 7131, 7170, 7208, 7244, 7279, 7313, 7346, 7377, 7408, 7438, 7467, 7495, 7523, 7549, 7575, 7600
};
static s32 dib7000p_get_adc_power(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u32 tmp_val = 0, exp = 0, mant = 0;
s32 pow_i;
u16 buf[2];
u8 ix = 0;
buf[0] = dib7000p_read_word(state, 0x184);
buf[1] = dib7000p_read_word(state, 0x185);
pow_i = (buf[0] << 16) | buf[1];
dprintk("raw pow_i = %d", pow_i);
tmp_val = pow_i;
while (tmp_val >>= 1)
exp++;
mant = (pow_i * 1000 / (1 << exp));
dprintk(" mant = %d exp = %d", mant / 1000, exp);
ix = (u8) ((mant - 1000) / 100); /* index of the LUT */
dprintk(" ix = %d", ix);
pow_i = (lut_1000ln_mant[ix] + 693 * (exp - 20) - 6908);
pow_i = (pow_i << 8) / 1000;
dprintk(" pow_i = %d", pow_i);
return pow_i;
}
static int map_addr_to_serpar_number(struct i2c_msg *msg)
{
if ((msg->buf[0] <= 15))
msg->buf[0] -= 1;
else if (msg->buf[0] == 17)
msg->buf[0] = 15;
else if (msg->buf[0] == 16)
msg->buf[0] = 17;
else if (msg->buf[0] == 19)
msg->buf[0] = 16;
else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
msg->buf[0] -= 3;
else if (msg->buf[0] == 28)
msg->buf[0] = 23;
else {
return -EINVAL;
}
return 0;
}
static int w7090p_tuner_write_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
while (n_overflow == 1 && i) {
n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("Tuner ITF: write busy (overflow)");
}
dib7000p_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
dib7000p_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
return num;
}
static int w7090p_tuner_read_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u8 n_overflow = 1, n_empty = 1;
u16 i = 1000;
u16 serpar_num = msg[0].buf[0];
u16 read_word;
while (n_overflow == 1 && i) {
n_overflow = (dib7000p_read_word(state, 1984) >> 1) & 0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (overflow)");
}
dib7000p_write_word(state, 1985, (0 << 6) | (serpar_num & 0x3f));
i = 1000;
while (n_empty == 1 && i) {
n_empty = dib7000p_read_word(state, 1984) & 0x1;
i--;
if (i == 0)
dprintk("TunerITF: read busy (empty)");
}
read_word = dib7000p_read_word(state, 1987);
msg[1].buf[0] = (read_word >> 8) & 0xff;
msg[1].buf[1] = (read_word) & 0xff;
return num;
}
static int w7090p_tuner_rw_serpar(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
if (map_addr_to_serpar_number(&msg[0]) == 0) { /* else = Tuner regs to ignore : DIG_CFG, CTRL_RF_LT, PLL_CFG, PWM1_REG, ADCCLK, DIG_CFG_3; SLEEP_EN... */
if (num == 1) { /* write */
return w7090p_tuner_write_serpar(i2c_adap, msg, 1);
} else { /* read */
return w7090p_tuner_read_serpar(i2c_adap, msg, 2);
}
}
return num;
}
int dib7090p_rw_on_apb(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num, u16 apb_address)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u16 word;
if (num == 1) { /* write */
dib7000p_write_word(state, apb_address, ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
} else {
word = dib7000p_read_word(state, apb_address);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
}
return num;
}
static int dib7090_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
{
struct dib7000p_state *state = i2c_get_adapdata(i2c_adap);
u16 apb_address = 0, word;
int i = 0;
switch (msg[0].buf[0]) {
case 0x12:
apb_address = 1920;
break;
case 0x14:
apb_address = 1921;
break;
case 0x24:
apb_address = 1922;
break;
case 0x1a:
apb_address = 1923;
break;
case 0x22:
apb_address = 1924;
break;
case 0x33:
apb_address = 1926;
break;
case 0x34:
apb_address = 1927;
break;
case 0x35:
apb_address = 1928;
break;
case 0x36:
apb_address = 1929;
break;
case 0x37:
apb_address = 1930;
break;
case 0x38:
apb_address = 1931;
break;
case 0x39:
apb_address = 1932;
break;
case 0x2a:
apb_address = 1935;
break;
case 0x2b:
apb_address = 1936;
break;
case 0x2c:
apb_address = 1937;
break;
case 0x2d:
apb_address = 1938;
break;
case 0x2e:
apb_address = 1939;
break;
case 0x2f:
apb_address = 1940;
break;
case 0x30:
apb_address = 1941;
break;
case 0x31:
apb_address = 1942;
break;
case 0x32:
apb_address = 1943;
break;
case 0x3e:
apb_address = 1944;
break;
case 0x3f:
apb_address = 1945;
break;
case 0x40:
apb_address = 1948;
break;
case 0x25:
apb_address = 914;
break;
case 0x26:
apb_address = 915;
break;
case 0x27:
apb_address = 916;
break;
case 0x28:
apb_address = 917;
break;
case 0x1d:
i = ((dib7000p_read_word(state, 72) >> 12) & 0x3);
word = dib7000p_read_word(state, 384 + i);
msg[1].buf[0] = (word >> 8) & 0xff;
msg[1].buf[1] = (word) & 0xff;
return num;
case 0x1f:
if (num == 1) { /* write */
word = (u16) ((msg[0].buf[1] << 8) | msg[0].buf[2]);
word &= 0x3;
word = (dib7000p_read_word(state, 72) & ~(3 << 12)) | (word << 12); //Mask bit 12,13
dib7000p_write_word(state, 72, word); /* Set the proper input */
return num;
}
}
if (apb_address != 0) /* R/W acces via APB */
return dib7090p_rw_on_apb(i2c_adap, msg, num, apb_address);
else /* R/W access via SERPAR */
return w7090p_tuner_rw_serpar(i2c_adap, msg, num);
return 0;
}
static u32 dib7000p_i2c_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C;
}
static struct i2c_algorithm dib7090_tuner_xfer_algo = {
.master_xfer = dib7090_tuner_xfer,
.functionality = dib7000p_i2c_func,
};
struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
struct dib7000p_state *st = fe->demodulator_priv;
return &st->dib7090_tuner_adap;
}
EXPORT_SYMBOL(dib7090_get_i2c_tuner);
static int dib7090_host_bus_drive(struct dib7000p_state *state, u8 drive)
{
u16 reg;
/* drive host bus 2, 3, 4 */
reg = dib7000p_read_word(state, 1798) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1798, reg);
/* drive host bus 5,6 */
reg = dib7000p_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive << 8) | (drive << 2);
dib7000p_write_word(state, 1799, reg);
/* drive host bus 7, 8, 9 */
reg = dib7000p_read_word(state, 1800) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1800, reg);
/* drive host bus 10, 11 */
reg = dib7000p_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
reg |= (drive << 8) | (drive << 2);
dib7000p_write_word(state, 1801, reg);
/* drive host bus 12, 13, 14 */
reg = dib7000p_read_word(state, 1802) & ~((0x7) | (0x7 << 6) | (0x7 << 12));
reg |= (drive << 12) | (drive << 6) | drive;
dib7000p_write_word(state, 1802, reg);
return 0;
}
static u32 dib7090_calcSyncFreq(u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 syncSize)
{
u32 quantif = 3;
u32 nom = (insertExtSynchro * P_Kin + syncSize);
u32 denom = P_Kout;
u32 syncFreq = ((nom << quantif) / denom);
if ((syncFreq & ((1 << quantif) - 1)) != 0)
syncFreq = (syncFreq >> quantif) + 1;
else
syncFreq = (syncFreq >> quantif);
if (syncFreq != 0)
syncFreq = syncFreq - 1;
return syncFreq;
}
static int dib7090_cfg_DibTx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 insertExtSynchro, u32 synchroMode, u32 syncWord, u32 syncSize)
{
u8 index_buf;
u16 rx_copy_buf[22];
dprintk("Configure DibStream Tx");
for (index_buf = 0; index_buf<22; index_buf++)
rx_copy_buf[index_buf] = dib7000p_read_word(state, 1536+index_buf);
dib7000p_write_word(state, 1615, 1);
dib7000p_write_word(state, 1603, P_Kin);
dib7000p_write_word(state, 1605, P_Kout);
dib7000p_write_word(state, 1606, insertExtSynchro);
dib7000p_write_word(state, 1608, synchroMode);
dib7000p_write_word(state, 1609, (syncWord >> 16) & 0xffff);
dib7000p_write_word(state, 1610, syncWord & 0xffff);
dib7000p_write_word(state, 1612, syncSize);
dib7000p_write_word(state, 1615, 0);
for (index_buf = 0; index_buf<22; index_buf++)
dib7000p_write_word(state, 1536+index_buf, rx_copy_buf[index_buf]);
return 0;
}
static int dib7090_cfg_DibRx(struct dib7000p_state *state, u32 P_Kin, u32 P_Kout, u32 synchroMode, u32 insertExtSynchro, u32 syncWord, u32 syncSize,
u32 dataOutRate)
{
u32 syncFreq;
dprintk("Configure DibStream Rx");
if ((P_Kin != 0) && (P_Kout != 0))
{
syncFreq = dib7090_calcSyncFreq(P_Kin, P_Kout, insertExtSynchro, syncSize);
dib7000p_write_word(state, 1542, syncFreq);
}
dib7000p_write_word(state, 1554, 1);
dib7000p_write_word(state, 1536, P_Kin);
dib7000p_write_word(state, 1537, P_Kout);
dib7000p_write_word(state, 1539, synchroMode);
dib7000p_write_word(state, 1540, (syncWord >> 16) & 0xffff);
dib7000p_write_word(state, 1541, syncWord & 0xffff);
dib7000p_write_word(state, 1543, syncSize);
dib7000p_write_word(state, 1544, dataOutRate);
dib7000p_write_word(state, 1554, 0);
return 0;
}
static int dib7090_enDivOnHostBus(struct dib7000p_state *state)
{
u16 reg;
dprintk("Enable Diversity on host bus");
reg = (1 << 8) | (1 << 5); // P_enDivOutOnDibTx = 1 ; P_enDibTxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
}
static int dib7090_enAdcOnHostBus(struct dib7000p_state *state)
{
u16 reg;
dprintk("Enable ADC on host bus");
reg = (1 << 7) | (1 << 5); //P_enAdcOnDibTx = 1 ; P_enDibTxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
}
static int dib7090_enMpegOnHostBus(struct dib7000p_state *state)
{
u16 reg;
dprintk("Enable Mpeg on host bus");
reg = (1 << 9) | (1 << 5); //P_enMpegOnDibTx = 1 ; P_enDibTxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return dib7090_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
}
static int dib7090_enMpegInput(struct dib7000p_state *state)
{
dprintk("Enable Mpeg input");
return dib7090_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0); /*outputRate = 8 */
}
static int dib7090_enMpegMux(struct dib7000p_state *state, u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
{
u16 reg = (1 << 7) | ((pulseWidth & 0x1f) << 2) | ((enSerialMode & 0x1) << 1) | (enSerialClkDiv2 & 0x1);
dprintk("Enable Mpeg mux");
dib7000p_write_word(state, 1287, reg);
reg &= ~(1 << 7); // P_restart_mpegMux = 0
dib7000p_write_word(state, 1287, reg);
reg = (1 << 4); //P_enMpegMuxOnHostBus = 1
dib7000p_write_word(state, 1288, reg);
return 0;
}
static int dib7090_disableMpegMux(struct dib7000p_state *state)
{
u16 reg;
dprintk("Disable Mpeg mux");
dib7000p_write_word(state, 1288, 0); //P_enMpegMuxOnHostBus = 0
reg = dib7000p_read_word(state, 1287);
reg &= ~(1 << 7); // P_restart_mpegMux = 0
dib7000p_write_word(state, 1287, reg);
return 0;
}
static int dib7090_set_input_mode(struct dvb_frontend *fe, int mode)
{
struct dib7000p_state *state = fe->demodulator_priv;
switch(mode) {
case INPUT_MODE_DIVERSITY:
dprintk("Enable diversity INPUT");
dib7090_cfg_DibRx(state, 5,5,0,0,0,0,0);
break;
case INPUT_MODE_MPEG:
dprintk("Enable Mpeg INPUT");
dib7090_cfg_DibRx(state, 8,5,0,0,0,8,0); /*outputRate = 8 */
break;
case INPUT_MODE_OFF:
default:
dprintk("Disable INPUT");
dib7090_cfg_DibRx(state, 0,0,0,0,0,0,0);
break;
}
return 0;
}
static int dib7090_set_diversity_in(struct dvb_frontend *fe, int onoff)
{
switch (onoff) {
case 0: /* only use the internal way - not the diversity input */
dib7090_set_input_mode(fe, INPUT_MODE_MPEG);
break;
case 1: /* both ways */
case 2: /* only the diversity input */
dib7090_set_input_mode(fe, INPUT_MODE_DIVERSITY);
break;
}
return 0;
}
static int dib7090_set_output_mode(struct dvb_frontend *fe, int mode)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 outreg, smo_mode, fifo_threshold;
u8 prefer_mpeg_mux_use = 1;
int ret = 0;
dib7090_host_bus_drive(state, 1);
fifo_threshold = 1792;
smo_mode = (dib7000p_read_word(state, 235) & 0x0050) | (1 << 1);
outreg = dib7000p_read_word(state, 1286) & ~((1 << 10) | (0x7 << 6) | (1 << 1));
switch (mode) {
case OUTMODE_HIGH_Z:
outreg = 0;
break;
case OUTMODE_MPEG2_SERIAL:
if (prefer_mpeg_mux_use) {
dprintk("Sip 7090P setting output mode TS_SERIAL using Mpeg Mux");
dib7090_enMpegOnHostBus(state);
dib7090_enMpegInput(state);
if (state->cfg.enMpegOutput == 1)
dib7090_enMpegMux(state, 3, 1, 1);
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_SERIAL using Smooth bloc");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (2 << 6) | (0 << 1);
}
break;
case OUTMODE_MPEG2_PAR_GATED_CLK:
if (prefer_mpeg_mux_use) {
dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Mpeg Mux");
dib7090_enMpegOnHostBus(state);
dib7090_enMpegInput(state);
if (state->cfg.enMpegOutput == 1)
dib7090_enMpegMux(state, 2, 0, 0);
} else { /* Use Smooth block */
dprintk("Sip 7090P setting output mode TS_PARALLEL_GATED using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (0 << 6);
}
break;
case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
dprintk("Sip 7090P setting output mode TS_PARALLEL_CONT using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (1 << 6);
break;
case OUTMODE_MPEG2_FIFO: /* Using Smooth block because not supported by new Mpeg Mux bloc */
dprintk("Sip 7090P setting output mode TS_FIFO using Smooth block");
dib7090_disableMpegMux(state);
dib7000p_write_word(state, 1288, (1 << 6)); //P_enDemOutInterfOnHostBus = 1
outreg |= (5 << 6);
smo_mode |= (3 << 1);
fifo_threshold = 512;
break;
case OUTMODE_DIVERSITY:
dprintk("Sip 7090P setting output mode MODE_DIVERSITY");
dib7090_disableMpegMux(state);
dib7090_enDivOnHostBus(state);
break;
case OUTMODE_ANALOG_ADC:
dprintk("Sip 7090P setting output mode MODE_ANALOG_ADC");
dib7090_enAdcOnHostBus(state);
break;
}
if (state->cfg.output_mpeg2_in_188_bytes)
smo_mode |= (1 << 5);
ret |= dib7000p_write_word(state, 235, smo_mode);
ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */
ret |= dib7000p_write_word(state, 1286, outreg | (1 << 10)); /* allways set Dout active = 1 !!! */
return ret;
}
int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 en_cur_state;
dprintk("sleep dib7090: %d", onoff);
en_cur_state = dib7000p_read_word(state, 1922);
if (en_cur_state > 0xff) { //LNAs and MIX are ON and therefore it is a valid configuration
state->tuner_enable = en_cur_state;
}
if (onoff)
en_cur_state &= 0x00ff; //Mask to be applied
else {
if (state->tuner_enable != 0)
en_cur_state = state->tuner_enable;
}
dib7000p_write_word(state, 1922, en_cur_state);
return 0;
}
EXPORT_SYMBOL(dib7090_tuner_sleep);
int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart)
{
dprintk("AGC restart callback: %d", restart);
return 0;
}
EXPORT_SYMBOL(dib7090_agc_restart);
int dib7090_get_adc_power(struct dvb_frontend *fe)
{
return dib7000p_get_adc_power(fe);
}
EXPORT_SYMBOL(dib7090_get_adc_power);
int dib7090_slave_reset(struct dvb_frontend *fe)
{
struct dib7000p_state *state = fe->demodulator_priv;
u16 reg;
reg = dib7000p_read_word(state, 1794);
dib7000p_write_word(state, 1794, reg | (4 << 12));
dib7000p_write_word(state, 1032, 0xffff);
return 0;
}
EXPORT_SYMBOL(dib7090_slave_reset);
static struct dvb_frontend_ops dib7000p_ops; static struct dvb_frontend_ops dib7000p_ops;
struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
{ {
struct dvb_frontend *demod; struct dvb_frontend *demod;
struct dib7000p_state *st; struct dib7000p_state *st;
...@@ -1400,31 +2303,44 @@ struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, ...@@ -1400,31 +2303,44 @@ struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr,
/* Ensure the output mode remains at the previous default if it's /* Ensure the output mode remains at the previous default if it's
* not specifically set by the caller. * not specifically set by the caller.
*/ */
if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && if ((st->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
(st->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
st->cfg.output_mode = OUTMODE_MPEG2_FIFO; st->cfg.output_mode = OUTMODE_MPEG2_FIFO;
demod = &st->demod; demod = &st->demod;
demod->demodulator_priv = st; demod->demodulator_priv = st;
memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops));
dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */ dib7000p_write_word(st, 1287, 0x0003); /* sram lead in, rdy */
if (dib7000p_identify(st) != 0) if (dib7000p_identify(st) != 0)
goto error; goto error;
st->version = dib7000p_read_word(st, 897);
/* FIXME: make sure the dev.parent field is initialized, or else /* FIXME: make sure the dev.parent field is initialized, or else
request_firmware() will hit an OOPS (this should be moved somewhere request_firmware() will hit an OOPS (this should be moved somewhere
more common) */ more common) */
st->i2c_master.gated_tuner_i2c_adap.dev.parent = i2c_adap->dev.parent;
dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr);
/* init 7090 tuner adapter */
strncpy(st->dib7090_tuner_adap.name, "DiB7090 tuner interface", sizeof(st->dib7090_tuner_adap.name));
st->dib7090_tuner_adap.algo = &dib7090_tuner_xfer_algo;
st->dib7090_tuner_adap.algo_data = NULL;
st->dib7090_tuner_adap.dev.parent = st->i2c_adap->dev.parent;
i2c_set_adapdata(&st->dib7090_tuner_adap, st);
i2c_add_adapter(&st->dib7090_tuner_adap);
dib7000p_demod_reset(st); dib7000p_demod_reset(st);
if (st->version == SOC7090) {
dib7090_set_output_mode(demod, st->cfg.output_mode);
dib7090_set_diversity_in(demod, 0);
}
return demod; return demod;
error: error:
kfree(st); kfree(st);
return NULL; return NULL;
} }
...@@ -1432,37 +2348,35 @@ EXPORT_SYMBOL(dib7000p_attach); ...@@ -1432,37 +2348,35 @@ EXPORT_SYMBOL(dib7000p_attach);
static struct dvb_frontend_ops dib7000p_ops = { static struct dvb_frontend_ops dib7000p_ops = {
.info = { .info = {
.name = "DiBcom 7000PC", .name = "DiBcom 7000PC",
.type = FE_OFDM, .type = FE_OFDM,
.frequency_min = 44250000, .frequency_min = 44250000,
.frequency_max = 867250000, .frequency_max = 867250000,
.frequency_stepsize = 62500, .frequency_stepsize = 62500,
.caps = FE_CAN_INVERSION_AUTO | .caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
FE_CAN_GUARD_INTERVAL_AUTO | },
FE_CAN_RECOVER |
FE_CAN_HIERARCHY_AUTO, .release = dib7000p_release,
},
.init = dib7000p_wakeup,
.release = dib7000p_release, .sleep = dib7000p_sleep,
.init = dib7000p_wakeup, .set_frontend = dib7000p_set_frontend,
.sleep = dib7000p_sleep, .get_tune_settings = dib7000p_fe_get_tune_settings,
.get_frontend = dib7000p_get_frontend,
.set_frontend = dib7000p_set_frontend,
.get_tune_settings = dib7000p_fe_get_tune_settings, .read_status = dib7000p_read_status,
.get_frontend = dib7000p_get_frontend, .read_ber = dib7000p_read_ber,
.read_status = dib7000p_read_status,
.read_ber = dib7000p_read_ber,
.read_signal_strength = dib7000p_read_signal_strength, .read_signal_strength = dib7000p_read_signal_strength,
.read_snr = dib7000p_read_snr, .read_snr = dib7000p_read_snr,
.read_ucblocks = dib7000p_read_unc_blocks, .read_ucblocks = dib7000p_read_unc_blocks,
}; };
MODULE_AUTHOR("Olivier Grenie <ogrenie@dibcom.fr>");
MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
...@@ -33,59 +33,54 @@ struct dib7000p_config { ...@@ -33,59 +33,54 @@ struct dib7000p_config {
int (*agc_control) (struct dvb_frontend *, u8 before); int (*agc_control) (struct dvb_frontend *, u8 before);
u8 output_mode; u8 output_mode;
u8 disable_sample_and_hold : 1; u8 disable_sample_and_hold:1;
u8 enable_current_mirror : 1; u8 enable_current_mirror:1;
u8 diversity_delay; u16 diversity_delay;
u8 default_i2c_addr;
u8 enMpegOutput : 1;
}; };
#define DEFAULT_DIB7000P_I2C_ADDRESS 18 #define DEFAULT_DIB7000P_I2C_ADDRESS 18
#if defined(CONFIG_DVB_DIB7000P) || (defined(CONFIG_DVB_DIB7000P_MODULE) && \ #if defined(CONFIG_DVB_DIB7000P) || (defined(CONFIG_DVB_DIB7000P_MODULE) && \
defined(MODULE)) defined(MODULE))
extern struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, extern struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg);
u8 i2c_addr, extern struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *, enum dibx000_i2c_interface, int);
struct dib7000p_config *cfg); extern int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]);
extern struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *,
enum dibx000_i2c_interface,
int);
extern int dib7000p_i2c_enumeration(struct i2c_adapter *i2c,
int no_of_demods, u8 default_addr,
struct dib7000p_config cfg[]);
extern int dib7000p_set_gpio(struct dvb_frontend *, u8 num, u8 dir, u8 val); extern int dib7000p_set_gpio(struct dvb_frontend *, u8 num, u8 dir, u8 val);
extern int dib7000p_set_wbd_ref(struct dvb_frontend *, u16 value); extern int dib7000p_set_wbd_ref(struct dvb_frontend *, u16 value);
extern int dib7000pc_detection(struct i2c_adapter *i2c_adap); extern int dib7000pc_detection(struct i2c_adapter *i2c_adap);
extern int dib7000p_pid_filter(struct dvb_frontend *, u8 id, u16 pid, u8 onoff); extern int dib7000p_pid_filter(struct dvb_frontend *, u8 id, u16 pid, u8 onoff);
extern int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff); extern int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff);
extern int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw);
extern u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf);
extern int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart);
extern int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff);
extern int dib7090_get_adc_power(struct dvb_frontend *fe);
extern struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe);
extern int dib7090_slave_reset(struct dvb_frontend *fe);
#else #else
static inline static inline struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg)
struct dvb_frontend *dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr,
struct dib7000p_config *cfg)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL; return NULL;
} }
static inline static inline struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface i, int x)
struct i2c_adapter *dib7000p_get_i2c_master(struct dvb_frontend *fe,
enum dibx000_i2c_interface i,
int x)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL; return NULL;
} }
static inline int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, static inline int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[])
int no_of_demods, u8 default_addr,
struct dib7000p_config cfg[])
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
} }
static inline int dib7000p_set_gpio(struct dvb_frontend *fe, static inline int dib7000p_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
u8 num, u8 dir, u8 val)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
...@@ -102,16 +97,59 @@ static inline int dib7000pc_detection(struct i2c_adapter *i2c_adap) ...@@ -102,16 +97,59 @@ static inline int dib7000pc_detection(struct i2c_adapter *i2c_adap)
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
} }
static inline int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff) static inline int dib7000p_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
} }
static inline int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, uint8_t onoff) static inline int dib7000p_pid_filter_ctrl(struct dvb_frontend *fe, uint8_t onoff)
{ {
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__); printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV; return -ENODEV;
}
static inline int dib7000p_update_pll(struct dvb_frontend *fe, struct dibx000_bandwidth_config *bw)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline u32 dib7000p_ctrl_timf(struct dvb_frontend *fe, u8 op, u32 timf)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return 0;
}
static inline int dib7090_agc_restart(struct dvb_frontend *fe, u8 restart)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline int dib7090_tuner_sleep(struct dvb_frontend *fe, int onoff)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline int dib7090_get_adc_power(struct dvb_frontend *fe)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
}
static inline struct i2c_adapter *dib7090_get_i2c_tuner(struct dvb_frontend *fe)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return NULL;
}
static inline int dib7090_slave_reset(struct dvb_frontend *fe)
{
printk(KERN_WARNING "%s: driver disabled by Kconfig\n", __func__);
return -ENODEV;
} }
#endif #endif
......
...@@ -141,8 +141,8 @@ enum dibx000_adc_states { ...@@ -141,8 +141,8 @@ enum dibx000_adc_states {
}; };
#define BANDWIDTH_TO_KHZ(v) ( (v) == BANDWIDTH_8_MHZ ? 8000 : \ #define BANDWIDTH_TO_KHZ(v) ( (v) == BANDWIDTH_8_MHZ ? 8000 : \
(v) == BANDWIDTH_7_MHZ ? 7000 : \ (v) == BANDWIDTH_7_MHZ ? 7000 : \
(v) == BANDWIDTH_6_MHZ ? 6000 : 8000 ) (v) == BANDWIDTH_6_MHZ ? 6000 : 8000 )
#define BANDWIDTH_TO_INDEX(v) ( \ #define BANDWIDTH_TO_INDEX(v) ( \
(v) == 8000 ? BANDWIDTH_8_MHZ : \ (v) == 8000 ? BANDWIDTH_8_MHZ : \
...@@ -158,53 +158,57 @@ enum dibx000_adc_states { ...@@ -158,53 +158,57 @@ enum dibx000_adc_states {
#define OUTMODE_MPEG2_FIFO 5 #define OUTMODE_MPEG2_FIFO 5
#define OUTMODE_ANALOG_ADC 6 #define OUTMODE_ANALOG_ADC 6
#define INPUT_MODE_OFF 0x11
#define INPUT_MODE_DIVERSITY 0x12
#define INPUT_MODE_MPEG 0x13
enum frontend_tune_state { enum frontend_tune_state {
CT_TUNER_START = 10, CT_TUNER_START = 10,
CT_TUNER_STEP_0, CT_TUNER_STEP_0,
CT_TUNER_STEP_1, CT_TUNER_STEP_1,
CT_TUNER_STEP_2, CT_TUNER_STEP_2,
CT_TUNER_STEP_3, CT_TUNER_STEP_3,
CT_TUNER_STEP_4, CT_TUNER_STEP_4,
CT_TUNER_STEP_5, CT_TUNER_STEP_5,
CT_TUNER_STEP_6, CT_TUNER_STEP_6,
CT_TUNER_STEP_7, CT_TUNER_STEP_7,
CT_TUNER_STOP, CT_TUNER_STOP,
CT_AGC_START = 20, CT_AGC_START = 20,
CT_AGC_STEP_0, CT_AGC_STEP_0,
CT_AGC_STEP_1, CT_AGC_STEP_1,
CT_AGC_STEP_2, CT_AGC_STEP_2,
CT_AGC_STEP_3, CT_AGC_STEP_3,
CT_AGC_STEP_4, CT_AGC_STEP_4,
CT_AGC_STOP, CT_AGC_STOP,
CT_DEMOD_START = 30, CT_DEMOD_START = 30,
CT_DEMOD_STEP_1, CT_DEMOD_STEP_1,
CT_DEMOD_STEP_2, CT_DEMOD_STEP_2,
CT_DEMOD_STEP_3, CT_DEMOD_STEP_3,
CT_DEMOD_STEP_4, CT_DEMOD_STEP_4,
CT_DEMOD_STEP_5, CT_DEMOD_STEP_5,
CT_DEMOD_STEP_6, CT_DEMOD_STEP_6,
CT_DEMOD_STEP_7, CT_DEMOD_STEP_7,
CT_DEMOD_STEP_8, CT_DEMOD_STEP_8,
CT_DEMOD_STEP_9, CT_DEMOD_STEP_9,
CT_DEMOD_STEP_10, CT_DEMOD_STEP_10,
CT_DEMOD_SEARCH_NEXT = 41, CT_DEMOD_SEARCH_NEXT = 41,
CT_DEMOD_STEP_LOCKED, CT_DEMOD_STEP_LOCKED,
CT_DEMOD_STOP, CT_DEMOD_STOP,
CT_DONE = 100, CT_DONE = 100,
CT_SHUTDOWN, CT_SHUTDOWN,
}; };
struct dvb_frontend_parametersContext { struct dvb_frontend_parametersContext {
#define CHANNEL_STATUS_PARAMETERS_UNKNOWN 0x01 #define CHANNEL_STATUS_PARAMETERS_UNKNOWN 0x01
#define CHANNEL_STATUS_PARAMETERS_SET 0x02 #define CHANNEL_STATUS_PARAMETERS_SET 0x02
u8 status; u8 status;
u32 tune_time_estimation[2]; u32 tune_time_estimation[2];
s32 tps_available; s32 tps_available;
u16 tps[9]; u16 tps[9];
}; };
#define FE_STATUS_TUNE_FAILED 0 #define FE_STATUS_TUNE_FAILED 0
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment