Commit 7d9aed26 authored by Aron Griffis's avatar Aron Griffis Committed by Tony Luck

[IA64] Make efi.c mostly fit in 80 columns

This patch is purely whitespace changes to make the code fit in 80
columns, plus fix some inconsistent indentation.  The efi_guidcmp()
tests remain wider than 80-columns since that seems to be the most
clear.
Signed-off-by: default avatarAron Griffis <aron@hp.com>
Signed-off-by: default avatarTony Luck <tony.luck@intel.com>
parent cdef24c9
/*
* Extensible Firmware Interface
*
* Based on Extensible Firmware Interface Specification version 0.9 April 30, 1999
* Based on Extensible Firmware Interface Specification version 0.9
* April 30, 1999
*
* Copyright (C) 1999 VA Linux Systems
* Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
......@@ -48,145 +49,157 @@ static unsigned long mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
#define efi_call_virt(f, args...) (*(f))(args)
#define STUB_GET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_cap_t *atc = NULL; \
efi_status_t ret; \
\
if (tc) \
atc = adjust_arg(tc); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), adjust_arg(tm), atc); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_GET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_cap_t *atc = NULL; \
efi_status_t ret; \
\
if (tc) \
atc = adjust_arg(tc); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
adjust_arg(tm), atc); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_time (efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_SET_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_time (efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_t *atm = NULL; \
efi_status_t ret; \
\
if (tm) \
atm = adjust_arg(tm); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
enabled, atm); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
{ \
struct ia64_fpreg fr[6]; \
efi_time_t *atm = NULL; \
efi_status_t ret; \
\
if (tm) \
atm = adjust_arg(tm); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
enabled, atm); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
unsigned long *data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
u32 *aattr = NULL; \
efi_status_t ret; \
\
if (attr) \
aattr = adjust_arg(attr); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_variable_t *) __va(runtime->get_variable), \
adjust_arg(name), adjust_arg(vendor), aattr, \
adjust_arg(data_size), adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_GET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
unsigned long *data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
u32 *aattr = NULL; \
efi_status_t ret; \
\
if (attr) \
aattr = adjust_arg(attr); \
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_get_variable_t *) __va(runtime->get_variable), \
adjust_arg(name), adjust_arg(vendor), aattr, \
adjust_arg(data_size), adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, efi_guid_t *vendor) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_variable_t *) __va(runtime->get_next_variable), \
adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
efi_guid_t *vendor) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_get_next_variable_t *) __va(runtime->get_next_variable), \
adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_SET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, unsigned long attr, \
unsigned long data_size, void *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_set_variable_t *) __va(runtime->set_variable), \
adjust_arg(name), adjust_arg(vendor), attr, data_size, \
adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_SET_VARIABLE(prefix, adjust_arg) \
static efi_status_t \
prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
unsigned long attr, unsigned long data_size, \
void *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix( \
(efi_set_variable_t *) __va(runtime->set_variable), \
adjust_arg(name), adjust_arg(vendor), attr, data_size, \
adjust_arg(data)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_high_mono_count (u32 *count) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
__va(runtime->get_next_high_mono_count), adjust_arg(count)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
static efi_status_t \
prefix##_get_next_high_mono_count (u32 *count) \
{ \
struct ia64_fpreg fr[6]; \
efi_status_t ret; \
\
ia64_save_scratch_fpregs(fr); \
ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
__va(runtime->get_next_high_mono_count), \
adjust_arg(count)); \
ia64_load_scratch_fpregs(fr); \
return ret; \
}
#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
static void \
prefix##_reset_system (int reset_type, efi_status_t status, \
unsigned long data_size, efi_char16_t *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_char16_t *adata = NULL; \
\
if (data) \
adata = adjust_arg(data); \
\
ia64_save_scratch_fpregs(fr); \
efi_call_##prefix((efi_reset_system_t *) __va(runtime->reset_system), \
reset_type, status, data_size, adata); \
/* should not return, but just in case... */ \
ia64_load_scratch_fpregs(fr); \
#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
static void \
prefix##_reset_system (int reset_type, efi_status_t status, \
unsigned long data_size, efi_char16_t *data) \
{ \
struct ia64_fpreg fr[6]; \
efi_char16_t *adata = NULL; \
\
if (data) \
adata = adjust_arg(data); \
\
ia64_save_scratch_fpregs(fr); \
efi_call_##prefix( \
(efi_reset_system_t *) __va(runtime->reset_system), \
reset_type, status, data_size, adata); \
/* should not return, but just in case... */ \
ia64_load_scratch_fpregs(fr); \
}
#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
......@@ -223,7 +236,8 @@ efi_gettimeofday (struct timespec *ts)
return;
}
ts->tv_sec = mktime(tm.year, tm.month, tm.day, tm.hour, tm.minute, tm.second);
ts->tv_sec = mktime(tm.year, tm.month, tm.day,
tm.hour, tm.minute, tm.second);
ts->tv_nsec = tm.nanosecond;
}
......@@ -297,8 +311,8 @@ walk (efi_freemem_callback_t callback, void *arg, u64 attr)
}
/*
* Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
* has memory that is available for OS use.
* Walks the EFI memory map and calls CALLBACK once for each EFI memory
* descriptor that has memory that is available for OS use.
*/
void
efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
......@@ -307,8 +321,8 @@ efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
}
/*
* Walks the EFI memory map and calls CALLBACK once for each EFI memory descriptor that
* has memory that is available for uncached allocator.
* Walks the EFI memory map and calls CALLBACK once for each EFI memory
* descriptor that has memory that is available for uncached allocator.
*/
void
efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
......@@ -321,7 +335,6 @@ efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
* ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
* Abstraction Layer chapter 11 in ADAG
*/
void *
efi_get_pal_addr (void)
{
......@@ -341,32 +354,33 @@ efi_get_pal_addr (void)
continue;
if (++pal_code_count > 1) {
printk(KERN_ERR "Too many EFI Pal Code memory ranges, dropped @ %lx\n",
md->phys_addr);
printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
"dropped @ %lx\n", md->phys_addr);
continue;
}
/*
* The only ITLB entry in region 7 that is used is the one installed by
* __start(). That entry covers a 64MB range.
* The only ITLB entry in region 7 that is used is the one
* installed by __start(). That entry covers a 64MB range.
*/
mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
vaddr = PAGE_OFFSET + md->phys_addr;
/*
* We must check that the PAL mapping won't overlap with the kernel
* mapping.
* We must check that the PAL mapping won't overlap with the
* kernel mapping.
*
* PAL code is guaranteed to be aligned on a power of 2 between 4k and
* 256KB and that only one ITR is needed to map it. This implies that the
* PAL code is always aligned on its size, i.e., the closest matching page
* size supported by the TLB. Therefore PAL code is guaranteed never to
* cross a 64MB unless it is bigger than 64MB (very unlikely!). So for
* now the following test is enough to determine whether or not we need a
* dedicated ITR for the PAL code.
* PAL code is guaranteed to be aligned on a power of 2 between
* 4k and 256KB and that only one ITR is needed to map it. This
* implies that the PAL code is always aligned on its size,
* i.e., the closest matching page size supported by the TLB.
* Therefore PAL code is guaranteed never to cross a 64MB unless
* it is bigger than 64MB (very unlikely!). So for now the
* following test is enough to determine whether or not we need
* a dedicated ITR for the PAL code.
*/
if ((vaddr & mask) == (KERNEL_START & mask)) {
printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
__FUNCTION__);
printk(KERN_INFO "%s: no need to install ITR for "
"PAL code\n", __FUNCTION__);
continue;
}
......@@ -376,10 +390,11 @@ efi_get_pal_addr (void)
#if EFI_DEBUG
mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
printk(KERN_INFO "CPU %d: mapping PAL code [0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
smp_processor_id(), md->phys_addr,
md->phys_addr + efi_md_size(md),
vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
printk(KERN_INFO "CPU %d: mapping PAL code "
"[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
smp_processor_id(), md->phys_addr,
md->phys_addr + efi_md_size(md),
vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
#endif
return __va(md->phys_addr);
}
......@@ -401,7 +416,8 @@ efi_map_pal_code (void)
* Cannot write to CRx with PSR.ic=1
*/
psr = ia64_clear_ic();
ia64_itr(0x1, IA64_TR_PALCODE, GRANULEROUNDDOWN((unsigned long) pal_vaddr),
ia64_itr(0x1, IA64_TR_PALCODE,
GRANULEROUNDDOWN((unsigned long) pal_vaddr),
pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
IA64_GRANULE_SHIFT);
ia64_set_psr(psr); /* restore psr */
......@@ -418,7 +434,10 @@ efi_init (void)
char *cp, vendor[100] = "unknown";
int i;
/* it's too early to be able to use the standard kernel command line support... */
/*
* it's too early to be able to use the standard kernel command line
* support...
*/
for (cp = boot_command_line; *cp; ) {
if (memcmp(cp, "mem=", 4) == 0) {
mem_limit = memparse(cp + 4, &cp);
......@@ -434,9 +453,11 @@ efi_init (void)
}
}
if (min_addr != 0UL)
printk(KERN_INFO "Ignoring memory below %luMB\n", min_addr >> 20);
printk(KERN_INFO "Ignoring memory below %luMB\n",
min_addr >> 20);
if (max_addr != ~0UL)
printk(KERN_INFO "Ignoring memory above %luMB\n", max_addr >> 20);
printk(KERN_INFO "Ignoring memory above %luMB\n",
max_addr >> 20);
efi.systab = __va(ia64_boot_param->efi_systab);
......@@ -464,7 +485,8 @@ efi_init (void)
}
printk(KERN_INFO "EFI v%u.%.02u by %s:",
efi.systab->hdr.revision >> 16, efi.systab->hdr.revision & 0xffff, vendor);
efi.systab->hdr.revision >> 16,
efi.systab->hdr.revision & 0xffff, vendor);
efi.mps = EFI_INVALID_TABLE_ADDR;
efi.acpi = EFI_INVALID_TABLE_ADDR;
......@@ -519,9 +541,12 @@ efi_init (void)
efi_memory_desc_t *md;
void *p;
for (i = 0, p = efi_map_start; p < efi_map_end; ++i, p += efi_desc_size) {
for (i = 0, p = efi_map_start; p < efi_map_end;
++i, p += efi_desc_size)
{
md = p;
printk("mem%02u: type=%u, attr=0x%lx, range=[0x%016lx-0x%016lx) (%luMB)\n",
printk("mem%02u: type=%u, attr=0x%lx, "
"range=[0x%016lx-0x%016lx) (%luMB)\n",
i, md->type, md->attribute, md->phys_addr,
md->phys_addr + efi_md_size(md),
md->num_pages >> (20 - EFI_PAGE_SHIFT));
......@@ -549,8 +574,8 @@ efi_enter_virtual_mode (void)
md = p;
if (md->attribute & EFI_MEMORY_RUNTIME) {
/*
* Some descriptors have multiple bits set, so the order of
* the tests is relevant.
* Some descriptors have multiple bits set, so the
* order of the tests is relevant.
*/
if (md->attribute & EFI_MEMORY_WB) {
md->virt_addr = (u64) __va(md->phys_addr);
......@@ -558,21 +583,26 @@ efi_enter_virtual_mode (void)
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
} else if (md->attribute & EFI_MEMORY_WC) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
| _PAGE_D
| _PAGE_MA_WC
| _PAGE_PL_0
| _PAGE_AR_RW));
md->virt_addr = ia64_remap(md->phys_addr,
(_PAGE_A |
_PAGE_P |
_PAGE_D |
_PAGE_MA_WC |
_PAGE_PL_0 |
_PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
#endif
} else if (md->attribute & EFI_MEMORY_WT) {
#if 0
md->virt_addr = ia64_remap(md->phys_addr, (_PAGE_A | _PAGE_P
| _PAGE_D | _PAGE_MA_WT
| _PAGE_PL_0
| _PAGE_AR_RW));
md->virt_addr = ia64_remap(md->phys_addr,
(_PAGE_A |
_PAGE_P |
_PAGE_D |
_PAGE_MA_WT |
_PAGE_PL_0 |
_PAGE_AR_RW));
#else
printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
md->virt_addr = (u64) ioremap(md->phys_addr, 0);
......@@ -583,16 +613,18 @@ efi_enter_virtual_mode (void)
status = efi_call_phys(__va(runtime->set_virtual_address_map),
ia64_boot_param->efi_memmap_size,
efi_desc_size, ia64_boot_param->efi_memdesc_version,
efi_desc_size,
ia64_boot_param->efi_memdesc_version,
ia64_boot_param->efi_memmap);
if (status != EFI_SUCCESS) {
printk(KERN_WARNING "warning: unable to switch EFI into virtual mode "
"(status=%lu)\n", status);
printk(KERN_WARNING "warning: unable to switch EFI into "
"virtual mode (status=%lu)\n", status);
return;
}
/*
* Now that EFI is in virtual mode, we call the EFI functions more efficiently:
* Now that EFI is in virtual mode, we call the EFI functions more
* efficiently:
*/
efi.get_time = virt_get_time;
efi.set_time = virt_set_time;
......@@ -606,8 +638,8 @@ efi_enter_virtual_mode (void)
}
/*
* Walk the EFI memory map looking for the I/O port range. There can only be one entry of
* this type, other I/O port ranges should be described via ACPI.
* Walk the EFI memory map looking for the I/O port range. There can only be
* one entry of this type, other I/O port ranges should be described via ACPI.
*/
u64
efi_get_iobase (void)
......@@ -678,7 +710,6 @@ efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (md->phys_addr < end && efi_md_end(md) > phys_addr)
return 1;
}
......@@ -883,7 +914,7 @@ efi_uart_console_only(void)
return 1;
uart = 0;
}
hdr = (struct efi_generic_dev_path *) ((u8 *) hdr + hdr->length);
hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
}
printk(KERN_ERR "Malformed %s value\n", name);
return 0;
......@@ -921,10 +952,12 @@ find_memmap_space (void)
if (!efi_wb(md)) {
continue;
}
if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
if (pmd == NULL || !efi_wb(pmd) ||
efi_md_end(pmd) != md->phys_addr) {
contig_low = GRANULEROUNDUP(md->phys_addr);
contig_high = efi_md_end(md);
for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
for (q = p + efi_desc_size; q < efi_map_end;
q += efi_desc_size) {
check_md = q;
if (!efi_wb(check_md))
break;
......@@ -988,8 +1021,9 @@ efi_memmap_init(unsigned long *s, unsigned long *e)
for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
md = p;
if (!efi_wb(md)) {
if (efi_uc(md) && (md->type == EFI_CONVENTIONAL_MEMORY ||
md->type == EFI_BOOT_SERVICES_DATA)) {
if (efi_uc(md) &&
(md->type == EFI_CONVENTIONAL_MEMORY ||
md->type == EFI_BOOT_SERVICES_DATA)) {
k->attribute = EFI_MEMORY_UC;
k->start = md->phys_addr;
k->num_pages = md->num_pages;
......@@ -997,10 +1031,12 @@ efi_memmap_init(unsigned long *s, unsigned long *e)
}
continue;
}
if (pmd == NULL || !efi_wb(pmd) || efi_md_end(pmd) != md->phys_addr) {
if (pmd == NULL || !efi_wb(pmd) ||
efi_md_end(pmd) != md->phys_addr) {
contig_low = GRANULEROUNDUP(md->phys_addr);
contig_high = efi_md_end(md);
for (q = p + efi_desc_size; q < efi_map_end; q += efi_desc_size) {
for (q = p + efi_desc_size; q < efi_map_end;
q += efi_desc_size) {
check_md = q;
if (!efi_wb(check_md))
break;
......@@ -1025,13 +1061,17 @@ efi_memmap_init(unsigned long *s, unsigned long *e)
if (md->phys_addr < contig_low) {
lim = min(efi_md_end(md), contig_low);
if (efi_uc(md)) {
if (k > kern_memmap && (k-1)->attribute == EFI_MEMORY_UC &&
if (k > kern_memmap &&
(k-1)->attribute == EFI_MEMORY_UC &&
kmd_end(k-1) == md->phys_addr) {
(k-1)->num_pages += (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
(k-1)->num_pages +=
(lim - md->phys_addr)
>> EFI_PAGE_SHIFT;
} else {
k->attribute = EFI_MEMORY_UC;
k->start = md->phys_addr;
k->num_pages = (lim - md->phys_addr) >> EFI_PAGE_SHIFT;
k->num_pages = (lim - md->phys_addr)
>> EFI_PAGE_SHIFT;
k++;
}
}
......@@ -1049,7 +1089,8 @@ efi_memmap_init(unsigned long *s, unsigned long *e)
} else {
k->attribute = EFI_MEMORY_UC;
k->start = lim;
k->num_pages = (efi_md_end(md) - lim) >> EFI_PAGE_SHIFT;
k->num_pages = (efi_md_end(md) - lim)
>> EFI_PAGE_SHIFT;
k++;
}
}
......@@ -1151,8 +1192,10 @@ efi_initialize_iomem_resources(struct resource *code_resource,
break;
}
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
printk(KERN_ERR "failed to alocate resource for iomem\n");
if ((res = kzalloc(sizeof(struct resource),
GFP_KERNEL)) == NULL) {
printk(KERN_ERR
"failed to alocate resource for iomem\n");
return;
}
......@@ -1187,44 +1230,44 @@ efi_initialize_iomem_resources(struct resource *code_resource,
rsvd_regions are sorted
*/
unsigned long __init
kdump_find_rsvd_region (unsigned long size,
struct rsvd_region *r, int n)
kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
{
int i;
u64 start, end;
u64 alignment = 1UL << _PAGE_SIZE_64M;
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (!efi_wb(md))
continue;
start = ALIGN(md->phys_addr, alignment);
end = efi_md_end(md);
for (i = 0; i < n; i++) {
if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
if (__pa(r[i].start) > start + size)
return start;
start = ALIGN(__pa(r[i].end), alignment);
if (i < n-1 && __pa(r[i+1].start) < start + size)
continue;
else
break;
int i;
u64 start, end;
u64 alignment = 1UL << _PAGE_SIZE_64M;
void *efi_map_start, *efi_map_end, *p;
efi_memory_desc_t *md;
u64 efi_desc_size;
efi_map_start = __va(ia64_boot_param->efi_memmap);
efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
efi_desc_size = ia64_boot_param->efi_memdesc_size;
for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
md = p;
if (!efi_wb(md))
continue;
start = ALIGN(md->phys_addr, alignment);
end = efi_md_end(md);
for (i = 0; i < n; i++) {
if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
if (__pa(r[i].start) > start + size)
return start;
start = ALIGN(__pa(r[i].end), alignment);
if (i < n-1 &&
__pa(r[i+1].start) < start + size)
continue;
else
break;
}
}
}
if (end > start + size)
return start;
}
printk(KERN_WARNING "Cannot reserve 0x%lx byte of memory for crashdump\n",
size);
return ~0UL;
if (end > start + size)
return start;
}
printk(KERN_WARNING
"Cannot reserve 0x%lx byte of memory for crashdump\n", size);
return ~0UL;
}
#endif
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment