Commit 80037662 authored by Rusty Russell's avatar Rusty Russell Committed by Linus Torvalds

[PATCH] stop_machine_run: Move Bogolock Code Out of module.c

The "bogolock" code was introduced in module.c, as a way of freezing
the machine when we wanted to remove a module.  This patch moves it
out to stop_machine.c and stop_machine.h.

Since the code changes affinity and proirity, it's impolite to hijack
the current context, so we use a kthread.  This means we have to pass
the function rather than implement "stop_machine()" and
"restart_machine()".
parent 23d54a89
#ifndef _LINUX_STOP_MACHINE
#define _LINUX_STOP_MACHINE
/* "Bogolock": stop the entire machine, disable interrupts. This is a
very heavy lock, which is equivalent to grabbing every spinlock
(and more). So the "read" side to such a lock is anything which
diables preeempt. */
#include <linux/config.h>
#include <linux/cpu.h>
#include <asm/system.h>
#ifdef CONFIG_SMP
/**
* stop_machine_run: freeze the machine on all CPUs and run this function
* @fn: the function to run
* @data: the data ptr for the @fn()
* @cpu: the cpu to run @fn() on (or any, if @cpu == NR_CPUS.
*
* Description: This causes a thread to be scheduled on every other cpu,
* each of which disables interrupts, and finally interrupts are disabled
* on the current CPU. The result is that noone is holding a spinlock
* or inside any other preempt-disabled region when @fn() runs.
*
* This can be thought of as a very heavy write lock, equivalent to
* grabbing every spinlock in the kernel. */
int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu);
/**
* __stop_machine_run: freeze the machine on all CPUs and run this function
* @fn: the function to run
* @data: the data ptr for the @fn
* @cpu: the cpu to run @fn on (or any, if @cpu == NR_CPUS.
*
* Description: This is a special version of the above, which returns the
* thread which has run @fn(): kthread_stop will return the return value
* of @fn(). Used by hotplug cpu.
*/
struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
unsigned int cpu);
#else
static inline int stop_machine_run(int (*fn)(void *), void *data,
unsigned int cpu)
{
int ret;
local_irq_disable();
ret = fn(data);
local_irq_enable();
return ret;
}
#endif /* CONFIG_SMP */
#endif /* _LINUX_STOP_MACHINE */
......@@ -304,4 +304,10 @@ config KMOD
runs modprobe with the appropriate arguments, thereby
loading the module if it is available. If unsure, say Y.
config STOP_MACHINE
bool
default y
depends on (SMP && MODULE_UNLOAD) || HOTPLUG_CPU
help
Need stop_machine() primitive.
endmenu
......@@ -20,6 +20,7 @@ obj-$(CONFIG_BSD_PROCESS_ACCT) += acct.o
obj-$(CONFIG_COMPAT) += compat.o
obj-$(CONFIG_IKCONFIG) += configs.o
obj-$(CONFIG_IKCONFIG_PROC) += configs.o
obj-$(CONFIG_STOP_MACHINE) += stop_machine.o
ifneq ($(CONFIG_IA64),y)
# According to Alan Modra <alan@linuxcare.com.au>, the -fno-omit-frame-pointer is
......
#include <linux/stop_machine.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/cpu.h>
#include <linux/err.h>
#include <asm/atomic.h>
#include <asm/semaphore.h>
/* Since we effect priority and affinity (both of which are visible
* to, and settable by outside processes) we do indirection via a
* kthread. */
/* Thread to stop each CPU in user context. */
enum stopmachine_state {
STOPMACHINE_WAIT,
STOPMACHINE_PREPARE,
STOPMACHINE_DISABLE_IRQ,
STOPMACHINE_EXIT,
};
static enum stopmachine_state stopmachine_state;
static unsigned int stopmachine_num_threads;
static atomic_t stopmachine_thread_ack;
static DECLARE_MUTEX(stopmachine_mutex);
static int stopmachine(void *cpu)
{
int irqs_disabled = 0;
int prepared = 0;
set_cpus_allowed(current, cpumask_of_cpu((int)(long)cpu));
/* Ack: we are alive */
mb(); /* Theoretically the ack = 0 might not be on this CPU yet. */
atomic_inc(&stopmachine_thread_ack);
/* Simple state machine */
while (stopmachine_state != STOPMACHINE_EXIT) {
if (stopmachine_state == STOPMACHINE_DISABLE_IRQ
&& !irqs_disabled) {
local_irq_disable();
irqs_disabled = 1;
/* Ack: irqs disabled. */
mb(); /* Must read state first. */
atomic_inc(&stopmachine_thread_ack);
} else if (stopmachine_state == STOPMACHINE_PREPARE
&& !prepared) {
/* Everyone is in place, hold CPU. */
preempt_disable();
prepared = 1;
mb(); /* Must read state first. */
atomic_inc(&stopmachine_thread_ack);
}
cpu_relax();
}
/* Ack: we are exiting. */
mb(); /* Must read state first. */
atomic_inc(&stopmachine_thread_ack);
if (irqs_disabled)
local_irq_enable();
if (prepared)
preempt_enable();
return 0;
}
/* Change the thread state */
static void stopmachine_set_state(enum stopmachine_state state)
{
atomic_set(&stopmachine_thread_ack, 0);
wmb();
stopmachine_state = state;
while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
cpu_relax();
}
static int stop_machine(void)
{
int i, ret = 0;
struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
/* One high-prio thread per cpu. We'll do this one. */
sys_sched_setscheduler(current->pid, SCHED_FIFO, &param);
atomic_set(&stopmachine_thread_ack, 0);
stopmachine_num_threads = 0;
stopmachine_state = STOPMACHINE_WAIT;
for_each_online_cpu(i) {
if (i == smp_processor_id())
continue;
ret = kernel_thread(stopmachine, (void *)(long)i,CLONE_KERNEL);
if (ret < 0)
break;
stopmachine_num_threads++;
}
/* Wait for them all to come to life. */
while (atomic_read(&stopmachine_thread_ack) != stopmachine_num_threads)
yield();
/* If some failed, kill them all. */
if (ret < 0) {
stopmachine_set_state(STOPMACHINE_EXIT);
up(&stopmachine_mutex);
return ret;
}
/* Don't schedule us away at this point, please. */
local_irq_disable();
/* Now they are all started, make them hold the CPUs, ready. */
stopmachine_set_state(STOPMACHINE_PREPARE);
/* Make them disable irqs. */
stopmachine_set_state(STOPMACHINE_DISABLE_IRQ);
return 0;
}
static void restart_machine(void)
{
stopmachine_set_state(STOPMACHINE_EXIT);
local_irq_enable();
}
struct stop_machine_data
{
int (*fn)(void *);
void *data;
struct completion done;
};
static int do_stop(void *_smdata)
{
struct stop_machine_data *smdata = _smdata;
int ret;
ret = stop_machine();
if (ret == 0) {
ret = smdata->fn(smdata->data);
restart_machine();
}
/* We're done: you can kthread_stop us now */
complete(&smdata->done);
/* Wait for kthread_stop */
while (!kthread_should_stop()) {
__set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
return ret;
}
struct task_struct *__stop_machine_run(int (*fn)(void *), void *data,
unsigned int cpu)
{
struct stop_machine_data smdata;
struct task_struct *p;
smdata.fn = fn;
smdata.data = data;
init_completion(&smdata.done);
down(&stopmachine_mutex);
/* If they don't care which CPU fn runs on, bind to any online one. */
if (cpu == NR_CPUS)
cpu = smp_processor_id();
p = kthread_create(do_stop, &smdata, "kstopmachine");
if (!IS_ERR(p)) {
kthread_bind(p, cpu);
wake_up_process(p);
wait_for_completion(&smdata.done);
}
up(&stopmachine_mutex);
return p;
}
int stop_machine_run(int (*fn)(void *), void *data, unsigned int cpu)
{
struct task_struct *p;
int ret;
/* No CPUs can come up or down during this. */
lock_cpu_hotplug();
p = __stop_machine_run(fn, data, cpu);
if (!IS_ERR(p))
ret = kthread_stop(p);
else
ret = PTR_ERR(p);
unlock_cpu_hotplug();
return ret;
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment