Commit 83ac58ba authored by David S. Miller's avatar David S. Miller

Merge master.kernel.org:/pub/scm/linux/kernel/git/acme/net-2.6

parents b4ad86bf 2bbf29ac
...@@ -89,4 +89,37 @@ config IP_DCCP_CCID3_DEBUG ...@@ -89,4 +89,37 @@ config IP_DCCP_CCID3_DEBUG
parameter to 0 or 1. parameter to 0 or 1.
If in doubt, say N. If in doubt, say N.
config IP_DCCP_CCID3_RTO
int "Use higher bound for nofeedback timer"
default 100
depends on IP_DCCP_CCID3 && EXPERIMENTAL
---help---
Use higher lower bound for nofeedback timer expiration.
The TFRC nofeedback timer normally expires after the maximum of 4
RTTs and twice the current send interval (RFC 3448, 4.3). On LANs
with a small RTT this can mean a high processing load and reduced
performance, since then the nofeedback timer is triggered very
frequently.
This option enables to set a higher lower bound for the nofeedback
value. Values in units of milliseconds can be set here.
A value of 0 disables this feature by enforcing the value specified
in RFC 3448. The following values have been suggested as bounds for
experimental use:
* 16-20ms to match the typical multimedia inter-frame interval
* 100ms as a reasonable compromise [default]
* 1000ms corresponds to the lower TCP RTO bound (RFC 2988, 2.4)
The default of 100ms is a compromise between a large value for
efficient DCCP implementations, and a small value to avoid disrupting
the network in times of congestion.
The purpose of the nofeedback timer is to slow DCCP down when there
is serious network congestion: experimenting with larger values should
therefore not be performed on WANs.
endmenu endmenu
...@@ -121,12 +121,15 @@ static inline void ccid3_update_send_time(struct ccid3_hc_tx_sock *hctx) ...@@ -121,12 +121,15 @@ static inline void ccid3_update_send_time(struct ccid3_hc_tx_sock *hctx)
/* /*
* Update X by * Update X by
* If (p > 0) * If (p > 0)
* x_calc = calcX(s, R, p); * X_calc = calcX(s, R, p);
* X = max(min(X_calc, 2 * X_recv), s / t_mbi); * X = max(min(X_calc, 2 * X_recv), s / t_mbi);
* Else * Else
* If (now - tld >= R) * If (now - tld >= R)
* X = max(min(2 * X, 2 * X_recv), s / R); * X = max(min(2 * X, 2 * X_recv), s / R);
* tld = now; * tld = now;
*
* If X has changed, we also update the scheduled send time t_now,
* the inter-packet interval t_ipi, and the delta value.
*/ */
static void ccid3_hc_tx_update_x(struct sock *sk, struct timeval *now) static void ccid3_hc_tx_update_x(struct sock *sk, struct timeval *now)
...@@ -134,8 +137,7 @@ static void ccid3_hc_tx_update_x(struct sock *sk, struct timeval *now) ...@@ -134,8 +137,7 @@ static void ccid3_hc_tx_update_x(struct sock *sk, struct timeval *now)
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk); struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
const __u32 old_x = hctx->ccid3hctx_x; const __u32 old_x = hctx->ccid3hctx_x;
/* To avoid large error in calcX */ if (hctx->ccid3hctx_p > 0) {
if (hctx->ccid3hctx_p >= TFRC_SMALLEST_P) {
hctx->ccid3hctx_x_calc = tfrc_calc_x(hctx->ccid3hctx_s, hctx->ccid3hctx_x_calc = tfrc_calc_x(hctx->ccid3hctx_s,
hctx->ccid3hctx_rtt, hctx->ccid3hctx_rtt,
hctx->ccid3hctx_p); hctx->ccid3hctx_p);
...@@ -223,16 +225,14 @@ static void ccid3_hc_tx_no_feedback_timer(unsigned long data) ...@@ -223,16 +225,14 @@ static void ccid3_hc_tx_no_feedback_timer(unsigned long data)
ccid3_tx_state_name(hctx->ccid3hctx_state)); ccid3_tx_state_name(hctx->ccid3hctx_state));
/* Halve sending rate */ /* Halve sending rate */
/* If (X_calc > 2 * X_recv) /* If (p == 0 || X_calc > 2 * X_recv)
* X_recv = max(X_recv / 2, s / (2 * t_mbi)); * X_recv = max(X_recv / 2, s / (2 * t_mbi));
* Else * Else
* X_recv = X_calc / 4; * X_recv = X_calc / 4;
*/ */
BUG_ON(hctx->ccid3hctx_p >= TFRC_SMALLEST_P && BUG_ON(hctx->ccid3hctx_p && !hctx->ccid3hctx_x_calc);
hctx->ccid3hctx_x_calc == 0);
/* check also if p is zero -> x_calc is infinity? */ if (hctx->ccid3hctx_p == 0 ||
if (hctx->ccid3hctx_p < TFRC_SMALLEST_P ||
hctx->ccid3hctx_x_calc > 2 * hctx->ccid3hctx_x_recv) hctx->ccid3hctx_x_calc > 2 * hctx->ccid3hctx_x_recv)
hctx->ccid3hctx_x_recv = max_t(u32, hctx->ccid3hctx_x_recv / 2, hctx->ccid3hctx_x_recv = max_t(u32, hctx->ccid3hctx_x_recv / 2,
hctx->ccid3hctx_s / (2 * TFRC_T_MBI)); hctx->ccid3hctx_s / (2 * TFRC_T_MBI));
...@@ -245,9 +245,10 @@ static void ccid3_hc_tx_no_feedback_timer(unsigned long data) ...@@ -245,9 +245,10 @@ static void ccid3_hc_tx_no_feedback_timer(unsigned long data)
} }
/* /*
* Schedule no feedback timer to expire in * Schedule no feedback timer to expire in
* max(4 * R, 2 * s/X) = max(4 * R, 2 * t_ipi) * max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
* See comments in packet_recv() regarding the value of t_RTO.
*/ */
t_nfb = max(4 * hctx->ccid3hctx_rtt, 2 * hctx->ccid3hctx_t_ipi); t_nfb = max(hctx->ccid3hctx_t_rto, 2 * hctx->ccid3hctx_t_ipi);
break; break;
case TFRC_SSTATE_NO_SENT: case TFRC_SSTATE_NO_SENT:
DCCP_BUG("Illegal %s state NO_SENT, sk=%p", dccp_role(sk), sk); DCCP_BUG("Illegal %s state NO_SENT, sk=%p", dccp_role(sk), sk);
...@@ -338,7 +339,7 @@ static int ccid3_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb) ...@@ -338,7 +339,7 @@ static int ccid3_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb)
* else * else
* // send the packet in (t_nom - t_now) milliseconds. * // send the packet in (t_nom - t_now) milliseconds.
*/ */
if (delay >= hctx->ccid3hctx_delta) if (delay - (long)hctx->ccid3hctx_delta >= 0)
return delay / 1000L; return delay / 1000L;
break; break;
case TFRC_SSTATE_TERM: case TFRC_SSTATE_TERM:
...@@ -412,10 +413,8 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb) ...@@ -412,10 +413,8 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
struct dccp_tx_hist_entry *packet; struct dccp_tx_hist_entry *packet;
struct timeval now; struct timeval now;
unsigned long t_nfb; unsigned long t_nfb;
u32 t_elapsed;
u32 pinv; u32 pinv;
u32 x_recv; long r_sample, t_elapsed;
u32 r_sample;
BUG_ON(hctx == NULL); BUG_ON(hctx == NULL);
...@@ -426,31 +425,44 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb) ...@@ -426,31 +425,44 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
opt_recv = &hctx->ccid3hctx_options_received; opt_recv = &hctx->ccid3hctx_options_received;
t_elapsed = dp->dccps_options_received.dccpor_elapsed_time * 10;
x_recv = opt_recv->ccid3or_receive_rate;
pinv = opt_recv->ccid3or_loss_event_rate;
switch (hctx->ccid3hctx_state) { switch (hctx->ccid3hctx_state) {
case TFRC_SSTATE_NO_FBACK: case TFRC_SSTATE_NO_FBACK:
case TFRC_SSTATE_FBACK: case TFRC_SSTATE_FBACK:
/* Calculate new round trip sample by /* get packet from history to look up t_recvdata */
* R_sample = (now - t_recvdata) - t_delay */
/* get t_recvdata from history */
packet = dccp_tx_hist_find_entry(&hctx->ccid3hctx_hist, packet = dccp_tx_hist_find_entry(&hctx->ccid3hctx_hist,
DCCP_SKB_CB(skb)->dccpd_ack_seq); DCCP_SKB_CB(skb)->dccpd_ack_seq);
if (unlikely(packet == NULL)) { if (unlikely(packet == NULL)) {
DCCP_WARN("%s, sk=%p, seqno %llu(%s) does't exist " DCCP_WARN("%s(%p), seqno %llu(%s) doesn't exist "
"in history!\n", dccp_role(sk), sk, "in history!\n", dccp_role(sk), sk,
(unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq, (unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq,
dccp_packet_name(DCCP_SKB_CB(skb)->dccpd_type)); dccp_packet_name(DCCP_SKB_CB(skb)->dccpd_type));
return; return;
} }
/* Update RTT */ /* Update receive rate */
hctx->ccid3hctx_x_recv = opt_recv->ccid3or_receive_rate;
/* Update loss event rate */
pinv = opt_recv->ccid3or_loss_event_rate;
if (pinv == ~0U || pinv == 0)
hctx->ccid3hctx_p = 0;
else
hctx->ccid3hctx_p = 1000000 / pinv;
dccp_timestamp(sk, &now); dccp_timestamp(sk, &now);
/*
* Calculate new round trip sample as per [RFC 3448, 4.3] by
* R_sample = (now - t_recvdata) - t_elapsed
*/
r_sample = timeval_delta(&now, &packet->dccphtx_tstamp); r_sample = timeval_delta(&now, &packet->dccphtx_tstamp);
if (unlikely(r_sample <= t_elapsed)) t_elapsed = dp->dccps_options_received.dccpor_elapsed_time * 10;
DCCP_WARN("r_sample=%uus,t_elapsed=%uus\n",
if (unlikely(r_sample <= 0)) {
DCCP_WARN("WARNING: R_sample (%ld) <= 0!\n", r_sample);
r_sample = 0;
} else if (unlikely(r_sample <= t_elapsed))
DCCP_WARN("WARNING: r_sample=%ldus <= t_elapsed=%ldus\n",
r_sample, t_elapsed); r_sample, t_elapsed);
else else
r_sample -= t_elapsed; r_sample -= t_elapsed;
...@@ -473,31 +485,25 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb) ...@@ -473,31 +485,25 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
hctx->ccid3hctx_t_ld = now; hctx->ccid3hctx_t_ld = now;
ccid3_update_send_time(hctx); ccid3_update_send_time(hctx);
ccid3_hc_tx_set_state(sk, TFRC_SSTATE_FBACK);
} else {
hctx->ccid3hctx_rtt = (hctx->ccid3hctx_rtt * 9) / 10 +
r_sample / 10;
ccid3_hc_tx_update_x(sk, &now);
}
ccid3_pr_debug("%s, sk=%p, New RTT estimate=%uus, " ccid3_pr_debug("%s(%p), s=%u, w_init=%u, "
"r_sample=%us\n", dccp_role(sk), sk, "R_sample=%ldus, X=%u\n", dccp_role(sk),
hctx->ccid3hctx_rtt, r_sample); sk, hctx->ccid3hctx_s, w_init, r_sample,
hctx->ccid3hctx_x);
/* Update receive rate */ ccid3_hc_tx_set_state(sk, TFRC_SSTATE_FBACK);
hctx->ccid3hctx_x_recv = x_recv;/* X_recv in bytes per sec */ } else {
hctx->ccid3hctx_rtt = (9 * hctx->ccid3hctx_rtt +
(u32)r_sample ) / 10;
/* Update loss event rate */ ccid3_hc_tx_update_x(sk, &now);
if (pinv == ~0 || pinv == 0)
hctx->ccid3hctx_p = 0;
else {
hctx->ccid3hctx_p = 1000000 / pinv;
if (hctx->ccid3hctx_p < TFRC_SMALLEST_P) { ccid3_pr_debug("%s(%p), RTT=%uus (sample=%ldus), s=%u, "
hctx->ccid3hctx_p = TFRC_SMALLEST_P; "p=%u, X_calc=%u, X=%u\n", dccp_role(sk),
ccid3_pr_debug("%s, sk=%p, Smallest p used!\n", sk, hctx->ccid3hctx_rtt, r_sample,
dccp_role(sk), sk); hctx->ccid3hctx_s, hctx->ccid3hctx_p,
} hctx->ccid3hctx_x_calc,
hctx->ccid3hctx_x);
} }
/* unschedule no feedback timer */ /* unschedule no feedback timer */
...@@ -512,16 +518,20 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb) ...@@ -512,16 +518,20 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
*/ */
sk->sk_write_space(sk); sk->sk_write_space(sk);
/* Update timeout interval. We use the alternative variant of /*
* [RFC 3448, 3.1] which sets the upper bound of t_rto to one * Update timeout interval for the nofeedback timer.
* second, as it is suggested for TCP (see RFC 2988, 2.4). */ * We use a configuration option to increase the lower bound.
* This can help avoid triggering the nofeedback timer too often
* ('spinning') on LANs with small RTTs.
*/
hctx->ccid3hctx_t_rto = max_t(u32, 4 * hctx->ccid3hctx_rtt, hctx->ccid3hctx_t_rto = max_t(u32, 4 * hctx->ccid3hctx_rtt,
USEC_PER_SEC ); CONFIG_IP_DCCP_CCID3_RTO *
(USEC_PER_SEC/1000) );
/* /*
* Schedule no feedback timer to expire in * Schedule no feedback timer to expire in
* max(4 * R, 2 * s/X) = max(4 * R, 2 * t_ipi) * max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
*/ */
t_nfb = max(4 * hctx->ccid3hctx_rtt, 2 * hctx->ccid3hctx_t_ipi); t_nfb = max(hctx->ccid3hctx_t_rto, 2 * hctx->ccid3hctx_t_ipi);
ccid3_pr_debug("%s, sk=%p, Scheduled no feedback timer to " ccid3_pr_debug("%s, sk=%p, Scheduled no feedback timer to "
"expire in %lu jiffies (%luus)\n", "expire in %lu jiffies (%luus)\n",
...@@ -535,7 +545,8 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb) ...@@ -535,7 +545,8 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
hctx->ccid3hctx_idle = 1; hctx->ccid3hctx_idle = 1;
break; break;
case TFRC_SSTATE_NO_SENT: case TFRC_SSTATE_NO_SENT:
DCCP_WARN("Illegal ACK received - no packet has been sent\n"); if (dccp_sk(sk)->dccps_role == DCCP_ROLE_CLIENT)
DCCP_WARN("Illegal ACK received - no packet sent\n");
/* fall through */ /* fall through */
case TFRC_SSTATE_TERM: /* ignore feedback when closing */ case TFRC_SSTATE_TERM: /* ignore feedback when closing */
break; break;
......
...@@ -51,8 +51,6 @@ ...@@ -51,8 +51,6 @@
/* Parameter t_mbi from [RFC 3448, 4.3]: backoff interval in seconds */ /* Parameter t_mbi from [RFC 3448, 4.3]: backoff interval in seconds */
#define TFRC_T_MBI 64 #define TFRC_T_MBI 64
#define TFRC_SMALLEST_P 40
enum ccid3_options { enum ccid3_options {
TFRC_OPT_LOSS_EVENT_RATE = 192, TFRC_OPT_LOSS_EVENT_RATE = 192,
TFRC_OPT_LOSS_INTERVALS = 193, TFRC_OPT_LOSS_INTERVALS = 193,
......
...@@ -18,10 +18,79 @@ ...@@ -18,10 +18,79 @@
#include "tfrc.h" #include "tfrc.h"
#define TFRC_CALC_X_ARRSIZE 500 #define TFRC_CALC_X_ARRSIZE 500
#define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */
#define TFRC_SMALLEST_P (TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE)
#define TFRC_CALC_X_SPLIT 50000 /*
/* equivalent to 0.05 */ TFRC TCP Reno Throughput Equation Lookup Table for f(p)
The following two-column lookup table implements a part of the TCP throughput
equation from [RFC 3448, sec. 3.1]:
s
X_calc = --------------------------------------------------------------
R * sqrt(2*b*p/3) + (3 * t_RTO * sqrt(3*b*p/8) * (p + 32*p^3))
Where:
X is the transmit rate in bytes/second
s is the packet size in bytes
R is the round trip time in seconds
p is the loss event rate, between 0 and 1.0, of the number of loss
events as a fraction of the number of packets transmitted
t_RTO is the TCP retransmission timeout value in seconds
b is the number of packets acknowledged by a single TCP ACK
We can assume that b = 1 and t_RTO is 4 * R. The equation now becomes:
s
X_calc = -------------------------------------------------------
R * sqrt(p*2/3) + (12 * R * sqrt(p*3/8) * (p + 32*p^3))
which we can break down into:
s
X_calc = ---------
R * f(p)
where f(p) is given for 0 < p <= 1 by:
f(p) = sqrt(2*p/3) + 12 * sqrt(3*p/8) * (p + 32*p^3)
Since this is kernel code, floating-point arithmetic is avoided in favour of
integer arithmetic. This means that nearly all fractional parameters are
scaled by 1000000:
* the parameters p and R
* the return result f(p)
The lookup table therefore actually tabulates the following function g(q):
g(q) = 1000000 * f(q/1000000)
Hence, when p <= 1, q must be less than or equal to 1000000. To achieve finer
granularity for the practically more relevant case of small values of p (up to
5%), the second column is used; the first one ranges up to 100%. This split
corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also
determines the smallest resolution possible with this lookup table:
TFRC_SMALLEST_P = TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE
The entire table is generated by:
for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) {
lookup[i][0] = g((i+1) * 1000000/TFRC_CALC_X_ARRSIZE);
lookup[i][1] = g((i+1) * TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE);
}
With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1,
lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%)
lookup[M][0] = g(1000000) = 1000000 * f(100%)
lookup[0][1] = g(TFRC_SMALLEST_P) = 1000000 * f(0.01%)
lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%)
In summary, the two columns represent f(p) for the following ranges:
* The first column is for 0.002 <= p <= 1.0
* The second column is for 0.0001 <= p <= 0.05
Where the columns overlap, the second (finer-grained) is given preference,
i.e. the first column is used only for p >= 0.05.
*/
static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = { static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = {
{ 37172, 8172 }, { 37172, 8172 },
{ 53499, 11567 }, { 53499, 11567 },
...@@ -525,85 +594,69 @@ static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = { ...@@ -525,85 +594,69 @@ static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = {
{ 243315981, 271305 } { 243315981, 271305 }
}; };
/* Calculate the send rate as per section 3.1 of RFC3448 /* return largest index i such that fval <= lookup[i][small] */
static inline u32 tfrc_binsearch(u32 fval, u8 small)
Returns send rate in bytes per second {
u32 try, low = 0, high = TFRC_CALC_X_ARRSIZE - 1;
Integer maths and lookups are used as not allowed floating point in kernel
The function for Xcalc as per section 3.1 of RFC3448 is:
X = s
-------------------------------------------------------------
R*sqrt(2*b*p/3) + (t_RTO * (3*sqrt(3*b*p/8) * p * (1+32*p^2)))
where
X is the trasmit rate in bytes/second
s is the packet size in bytes
R is the round trip time in seconds
p is the loss event rate, between 0 and 1.0, of the number of loss events
as a fraction of the number of packets transmitted
t_RTO is the TCP retransmission timeout value in seconds
b is the number of packets acknowledged by a single TCP acknowledgement
we can assume that b = 1 and t_RTO is 4 * R. With this the equation becomes:
X = s
-----------------------------------------------------------------------
R * sqrt(2 * p / 3) + (12 * R * (sqrt(3 * p / 8) * p * (1 + 32 * p^2)))
which we can break down into:
X = s
--------
R * f(p)
where f(p) = sqrt(2 * p / 3) + (12 * sqrt(3 * p / 8) * p * (1 + 32 * p * p))
Function parameters:
s - bytes
R - RTT in usecs
p - loss rate (decimal fraction multiplied by 1,000,000)
Returns Xcalc in bytes per second
DON'T alter this code unless you run test cases against it as the code while (low < high) {
has been manipulated to stop underflow/overlow. try = (low + high) / 2;
if (fval <= tfrc_calc_x_lookup[try][small])
high = try;
else
low = try + 1;
}
return high;
}
*/ /**
* tfrc_calc_x - Calculate the send rate as per section 3.1 of RFC3448
*
* @s: packet size in bytes
* @R: RTT scaled by 1000000 (i.e., microseconds)
* @p: loss ratio estimate scaled by 1000000
* Returns X_calc in bytes per second (not scaled).
*
* Note: DO NOT alter this code unless you run test cases against it,
* as the code has been optimized to stop underflow/overflow.
*/
u32 tfrc_calc_x(u16 s, u32 R, u32 p) u32 tfrc_calc_x(u16 s, u32 R, u32 p)
{ {
int index; int index;
u32 f; u32 f;
u64 tmp1, tmp2; u64 tmp1, tmp2;
if (p < TFRC_CALC_X_SPLIT) /* check against invalid parameters and divide-by-zero */
index = (p / (TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE)) - 1; BUG_ON(p > 1000000); /* p must not exceed 100% */
else BUG_ON(p == 0); /* f(0) = 0, divide by zero */
index = (p / (1000000 / TFRC_CALC_X_ARRSIZE)) - 1; if (R == 0) { /* possible divide by zero */
DCCP_CRIT("WARNING: RTT is 0, returning maximum X_calc.");
return ~0U;
}
if (index < 0) if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */
/* p should be 0 unless there is a bug in my code */ if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */
DCCP_WARN("Value of p (%d) below resolution. "
"Substituting %d\n", p, TFRC_SMALLEST_P);
index = 0; index = 0;
} else /* 0.0001 <= p <= 0.05 */
index = p/TFRC_SMALLEST_P - 1;
if (R == 0) { f = tfrc_calc_x_lookup[index][1];
DCCP_WARN("RTT==0, setting to 1\n");
R = 1; /* RTT can't be zero or else divide by zero */
}
BUG_ON(index >= TFRC_CALC_X_ARRSIZE); } else { /* 0.05 < p <= 1.00 */
index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1;
if (p >= TFRC_CALC_X_SPLIT)
f = tfrc_calc_x_lookup[index][0]; f = tfrc_calc_x_lookup[index][0];
else }
f = tfrc_calc_x_lookup[index][1];
/* The following computes X = s/(R*f(p)) in bytes per second. Since f(p)
* and R are both scaled by 1000000, we need to multiply by 1000000^2.
* ==> DO NOT alter this unless you test against overflow on 32 bit */
tmp1 = ((u64)s * 100000000); tmp1 = ((u64)s * 100000000);
tmp2 = ((u64)R * (u64)f); tmp2 = ((u64)R * (u64)f);
do_div(tmp2, 10000); do_div(tmp2, 10000);
do_div(tmp1, tmp2); do_div(tmp1, tmp2);
/* Don't alter above math unless you test due to overflow on 32 bit */
return (u32)tmp1; return (u32)tmp1;
} }
...@@ -611,33 +664,36 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p) ...@@ -611,33 +664,36 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p)
EXPORT_SYMBOL_GPL(tfrc_calc_x); EXPORT_SYMBOL_GPL(tfrc_calc_x);
/* /*
* args: fvalue - function value to match * tfrc_calc_x_reverse_lookup - try to find p given f(p)
* returns: p closest to that value
* *
* both fvalue and p are multiplied by 1,000,000 to use ints * @fvalue: function value to match, scaled by 1000000
* Returns closest match for p, also scaled by 1000000
*/ */
u32 tfrc_calc_x_reverse_lookup(u32 fvalue) u32 tfrc_calc_x_reverse_lookup(u32 fvalue)
{ {
int ctr = 0; int index;
int small;
if (fvalue < tfrc_calc_x_lookup[0][1]) if (fvalue == 0) /* f(p) = 0 whenever p = 0 */
return 0; return 0;
if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) /* Error cases. */
small = 1; if (fvalue < tfrc_calc_x_lookup[0][1]) {
else if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0]) DCCP_WARN("fvalue %d smaller than resolution\n", fvalue);
return tfrc_calc_x_lookup[0][1];
}
if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0]) {
DCCP_WARN("fvalue %d exceeds bounds!\n", fvalue);
return 1000000; return 1000000;
else }
small = 0;
while (fvalue > tfrc_calc_x_lookup[ctr][small]) if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) {
ctr++; index = tfrc_binsearch(fvalue, 1);
return (index + 1) * TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE;
}
if (small) /* else ... it must be in the coarse-grained column */
return TFRC_CALC_X_SPLIT * ctr / TFRC_CALC_X_ARRSIZE; index = tfrc_binsearch(fvalue, 0);
else return (index + 1) * 1000000 / TFRC_CALC_X_ARRSIZE;
return 1000000 * ctr / TFRC_CALC_X_ARRSIZE;
} }
EXPORT_SYMBOL_GPL(tfrc_calc_x_reverse_lookup); EXPORT_SYMBOL_GPL(tfrc_calc_x_reverse_lookup);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment