Commit 85adbcd5 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'spi-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi

Pull spi updates from Mark Brown:
 "This release is mainly a collection of driver specific updates,
  including a few nice cleanups to make drivers use more core features.

   - automatically use the parent device to allocate DMA buffers if
     there wasn't an explicitly configured device.

   - fixes for leaks on allocation.

   - a small piece of the start of SPI slave support, a feature that's
     been on the cards for over a decade!"

* tag 'spi-v4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/spi: (55 commits)
  spi: spi-ti-qspi: Fix error handling
  spi: spi-ti-qspi: Fix error handling
  spi: lantiq-ssc: activate under COMPILE_TEST
  spi: armada-3700: Remove spi_master_put in a3700_spi_remove()
  spi: ti-qspi: revise ti_qspi_probe() failure flow
  spi: spi-ep93xx: simplify GPIO chip selects
  spi: rspi: Replaces "n" by "len" in qspi_transfer_*()
  spi: rspi: Fixes bogus received byte in qspi_transfer_in()
  spi: bcm-qspi: Remove unnecessary platform_set_drvdata()
  spi: bcm-qspi: Fix bcm_qspi_bspi_read() performance
  spi: lantiq-ssc: add support for Lantiq SSC SPI controller
  spi: s3c64xx: fix inconsistency between binding and driver
  spi: armada-3700: Remove .owner field for driver
  spi: bcm-qspi: Added mspi read fallback in bcm_qspi_flash_read()
  spi: fix device-node leaks
  spi: mediatek: Only do dma for 4-byte aligned buffers
  spi: When no dma_chan map buffers with spi_master's parent
  spi: pca2xx-pci: Allow MSI
  spi: pxa2xx: Prepare for edge-triggered interrupts
  spi: pxa2xx: Add support for Intel Gemini Lake
  ...
parents f790bd9c 57f22cd2
Lantiq Synchronous Serial Controller (SSC) SPI master driver
Required properties:
- compatible: "lantiq,ase-spi", "lantiq,falcon-spi", "lantiq,xrx100-spi"
- #address-cells: see spi-bus.txt
- #size-cells: see spi-bus.txt
- reg: address and length of the spi master registers
- interrupts: should contain the "spi_rx", "spi_tx" and "spi_err" interrupt.
Optional properties:
- clocks: spi clock phandle
- num-cs: see spi-bus.txt, set to 8 if unset
- base-cs: the number of the first chip select, set to 1 if unset.
Example:
spi: spi@E100800 {
compatible = "lantiq,xrx200-spi", "lantiq,xrx100-spi";
reg = <0xE100800 0x100>;
interrupt-parent = <&icu0>;
interrupts = <22 23 24>;
interrupt-names = "spi_rx", "spi_tx", "spi_err";
#address-cells = <1>;
#size-cells = <1>;
num-cs = <6>;
base-cs = <1>;
};
......@@ -31,6 +31,10 @@ Optional Properties:
- rx-sample-delay-ns: nanoseconds to delay after the SCLK edge before sampling
Rx data (may need to be fine tuned for high capacitance lines).
No delay (0) by default.
- pinctrl-names: Names for the pin configuration(s); may be "default" or
"sleep", where the "sleep" configuration may describe the state
the pins should be in during system suspend. See also
pinctrl/pinctrl-bindings.txt.
Example:
......@@ -46,4 +50,7 @@ Example:
interrupts = <GIC_SPI 44 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&cru SCLK_SPI0>, <&cru PCLK_SPI0>;
clock-names = "spiclk", "apb_pclk";
pinctrl-0 = <&spi1_pins>;
pinctrl-1 = <&spi1_sleep>;
pinctrl-names = "default", "sleep";
};
Cirrus EP93xx SPI controller driver HOWTO
=========================================
ep93xx_spi driver brings SPI master support for EP93xx SPI controller. Chip
selects are implemented with GPIO lines.
NOTE: If possible, don't use SFRMOUT (SFRM1) signal as a chip select. It will
not work correctly (it cannot be controlled by software). Use GPIO lines
instead.
Sample configuration
====================
Typically driver configuration is done in platform board files (the files under
arch/arm/mach-ep93xx/*.c). In this example we configure MMC over SPI through
this driver on TS-7260 board. You can adapt the code to suit your needs.
This example uses EGPIO9 as SD/MMC card chip select (this is wired in DIO1
header on the board).
You need to select CONFIG_MMC_SPI to use mmc_spi driver.
arch/arm/mach-ep93xx/ts72xx.c:
...
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/platform_data/spi-ep93xx.h>
/* this is our GPIO line used for chip select */
#define MMC_CHIP_SELECT_GPIO EP93XX_GPIO_LINE_EGPIO9
static int ts72xx_mmc_spi_setup(struct spi_device *spi)
{
int err;
err = gpio_request(MMC_CHIP_SELECT_GPIO, spi->modalias);
if (err)
return err;
gpio_direction_output(MMC_CHIP_SELECT_GPIO, 1);
return 0;
}
static void ts72xx_mmc_spi_cleanup(struct spi_device *spi)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, 1);
gpio_direction_input(MMC_CHIP_SELECT_GPIO);
gpio_free(MMC_CHIP_SELECT_GPIO);
}
static void ts72xx_mmc_spi_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, value);
}
static struct ep93xx_spi_chip_ops ts72xx_mmc_spi_ops = {
.setup = ts72xx_mmc_spi_setup,
.cleanup = ts72xx_mmc_spi_cleanup,
.cs_control = ts72xx_mmc_spi_cs_control,
};
static struct spi_board_info ts72xx_spi_devices[] __initdata = {
{
.modalias = "mmc_spi",
.controller_data = &ts72xx_mmc_spi_ops,
/*
* We use 10 MHz even though the maximum is 7.4 MHz. The driver
* will limit it automatically to max. frequency.
*/
.max_speed_hz = 10 * 1000 * 1000,
.bus_num = 0,
.chip_select = 0,
.mode = SPI_MODE_0,
},
};
static struct ep93xx_spi_info ts72xx_spi_info = {
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
};
static void __init ts72xx_init_machine(void)
{
...
ep93xx_register_spi(&ts72xx_spi_info, ts72xx_spi_devices,
ARRAY_SIZE(ts72xx_spi_devices));
}
The driver can use DMA for the transfers also. In this case ts72xx_spi_info
becomes:
static struct ep93xx_spi_info ts72xx_spi_info = {
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
.use_dma = true;
};
Note that CONFIG_EP93XX_DMA should be enabled as well.
Thanks to
=========
Martin Guy, H. Hartley Sweeten and others who helped me during development of
the driver. Simplemachines.it donated me a Sim.One board which I used testing
the driver on EP9307.
......@@ -27,7 +27,6 @@
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/i2c-gpio.h>
#include <linux/spi/spi.h>
......@@ -106,33 +105,10 @@ static struct cs4271_platform_data edb93xx_cs4271_data = {
.gpio_nreset = -EINVAL, /* filled in later */
};
static int edb93xx_cs4271_hw_setup(struct spi_device *spi)
{
return gpio_request_one(EP93XX_GPIO_LINE_EGPIO6,
GPIOF_OUT_INIT_HIGH, spi->modalias);
}
static void edb93xx_cs4271_hw_cleanup(struct spi_device *spi)
{
gpio_free(EP93XX_GPIO_LINE_EGPIO6);
}
static void edb93xx_cs4271_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(EP93XX_GPIO_LINE_EGPIO6, value);
}
static struct ep93xx_spi_chip_ops edb93xx_cs4271_hw = {
.setup = edb93xx_cs4271_hw_setup,
.cleanup = edb93xx_cs4271_hw_cleanup,
.cs_control = edb93xx_cs4271_hw_cs_control,
};
static struct spi_board_info edb93xx_spi_board_info[] __initdata = {
{
.modalias = "cs4271",
.platform_data = &edb93xx_cs4271_data,
.controller_data = &edb93xx_cs4271_hw,
.max_speed_hz = 6000000,
.bus_num = 0,
.chip_select = 0,
......@@ -140,8 +116,13 @@ static struct spi_board_info edb93xx_spi_board_info[] __initdata = {
},
};
static int edb93xx_spi_chipselects[] __initdata = {
EP93XX_GPIO_LINE_EGPIO6,
};
static struct ep93xx_spi_info edb93xx_spi_info __initdata = {
.num_chipselect = ARRAY_SIZE(edb93xx_spi_board_info),
.chipselect = edb93xx_spi_chipselects,
.num_chipselect = ARRAY_SIZE(edb93xx_spi_chipselects),
};
static void __init edb93xx_register_spi(void)
......
......@@ -48,56 +48,6 @@ static struct ep93xxfb_mach_info __initdata simone_fb_info = {
*/
#define MMC_CARD_DETECT_GPIO EP93XX_GPIO_LINE_EGPIO0
/*
* Up to v1.3, the Sim.One used SFRMOUT as SD card chip select, but this goes
* low between multi-message command blocks. From v1.4, it uses a GPIO instead.
* v1.3 parts will still work, since the signal on SFRMOUT is automatic.
*/
#define MMC_CHIP_SELECT_GPIO EP93XX_GPIO_LINE_EGPIO1
/*
* MMC SPI chip select GPIO handling. If you are using SFRMOUT (SFRM1) signal,
* you can leave these empty and pass NULL as .controller_data.
*/
static int simone_mmc_spi_setup(struct spi_device *spi)
{
unsigned int gpio = MMC_CHIP_SELECT_GPIO;
int err;
err = gpio_request(gpio, spi->modalias);
if (err)
return err;
err = gpio_direction_output(gpio, 1);
if (err) {
gpio_free(gpio);
return err;
}
return 0;
}
static void simone_mmc_spi_cleanup(struct spi_device *spi)
{
unsigned int gpio = MMC_CHIP_SELECT_GPIO;
gpio_set_value(gpio, 1);
gpio_direction_input(gpio);
gpio_free(gpio);
}
static void simone_mmc_spi_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(MMC_CHIP_SELECT_GPIO, value);
}
static struct ep93xx_spi_chip_ops simone_mmc_spi_ops = {
.setup = simone_mmc_spi_setup,
.cleanup = simone_mmc_spi_cleanup,
.cs_control = simone_mmc_spi_cs_control,
};
/*
* MMC card detection GPIO setup.
*/
......@@ -152,7 +102,6 @@ static struct mmc_spi_platform_data simone_mmc_spi_data = {
static struct spi_board_info simone_spi_devices[] __initdata = {
{
.modalias = "mmc_spi",
.controller_data = &simone_mmc_spi_ops,
.platform_data = &simone_mmc_spi_data,
/*
* We use 10 MHz even though the maximum is 3.7 MHz. The driver
......@@ -165,8 +114,18 @@ static struct spi_board_info simone_spi_devices[] __initdata = {
},
};
/*
* Up to v1.3, the Sim.One used SFRMOUT as SD card chip select, but this goes
* low between multi-message command blocks. From v1.4, it uses a GPIO instead.
* v1.3 parts will still work, since the signal on SFRMOUT is automatic.
*/
static int simone_spi_chipselects[] __initdata = {
EP93XX_GPIO_LINE_EGPIO1,
};
static struct ep93xx_spi_info simone_spi_info __initdata = {
.num_chipselect = ARRAY_SIZE(simone_spi_devices),
.chipselect = simone_spi_chipselects,
.num_chipselect = ARRAY_SIZE(simone_spi_chipselects),
.use_dma = 1,
};
......
......@@ -175,33 +175,9 @@ static struct cs4271_platform_data vision_cs4271_data = {
.gpio_nreset = EP93XX_GPIO_LINE_H(2),
};
static int vision_cs4271_hw_setup(struct spi_device *spi)
{
return gpio_request_one(EP93XX_GPIO_LINE_EGPIO6,
GPIOF_OUT_INIT_HIGH, spi->modalias);
}
static void vision_cs4271_hw_cleanup(struct spi_device *spi)
{
gpio_free(EP93XX_GPIO_LINE_EGPIO6);
}
static void vision_cs4271_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(EP93XX_GPIO_LINE_EGPIO6, value);
}
static struct ep93xx_spi_chip_ops vision_cs4271_hw = {
.setup = vision_cs4271_hw_setup,
.cleanup = vision_cs4271_hw_cleanup,
.cs_control = vision_cs4271_hw_cs_control,
};
/*************************************************************************
* SPI Flash
*************************************************************************/
#define VISION_SPI_FLASH_CS EP93XX_GPIO_LINE_EGPIO7
static struct mtd_partition vision_spi_flash_partitions[] = {
{
.name = "SPI bootstrap",
......@@ -224,68 +200,20 @@ static struct flash_platform_data vision_spi_flash_data = {
.nr_parts = ARRAY_SIZE(vision_spi_flash_partitions),
};
static int vision_spi_flash_hw_setup(struct spi_device *spi)
{
return gpio_request_one(VISION_SPI_FLASH_CS, GPIOF_INIT_HIGH,
spi->modalias);
}
static void vision_spi_flash_hw_cleanup(struct spi_device *spi)
{
gpio_free(VISION_SPI_FLASH_CS);
}
static void vision_spi_flash_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(VISION_SPI_FLASH_CS, value);
}
static struct ep93xx_spi_chip_ops vision_spi_flash_hw = {
.setup = vision_spi_flash_hw_setup,
.cleanup = vision_spi_flash_hw_cleanup,
.cs_control = vision_spi_flash_hw_cs_control,
};
/*************************************************************************
* SPI SD/MMC host
*************************************************************************/
#define VISION_SPI_MMC_CS EP93XX_GPIO_LINE_G(2)
#define VISION_SPI_MMC_WP EP93XX_GPIO_LINE_F(0)
#define VISION_SPI_MMC_CD EP93XX_GPIO_LINE_EGPIO15
static struct mmc_spi_platform_data vision_spi_mmc_data = {
.detect_delay = 100,
.powerup_msecs = 100,
.ocr_mask = MMC_VDD_32_33 | MMC_VDD_33_34,
.flags = MMC_SPI_USE_CD_GPIO | MMC_SPI_USE_RO_GPIO,
.cd_gpio = VISION_SPI_MMC_CD,
.cd_gpio = EP93XX_GPIO_LINE_EGPIO15,
.cd_debounce = 1,
.ro_gpio = VISION_SPI_MMC_WP,
.ro_gpio = EP93XX_GPIO_LINE_F(0),
.caps2 = MMC_CAP2_RO_ACTIVE_HIGH,
};
static int vision_spi_mmc_hw_setup(struct spi_device *spi)
{
return gpio_request_one(VISION_SPI_MMC_CS, GPIOF_INIT_HIGH,
spi->modalias);
}
static void vision_spi_mmc_hw_cleanup(struct spi_device *spi)
{
gpio_free(VISION_SPI_MMC_CS);
}
static void vision_spi_mmc_hw_cs_control(struct spi_device *spi, int value)
{
gpio_set_value(VISION_SPI_MMC_CS, value);
}
static struct ep93xx_spi_chip_ops vision_spi_mmc_hw = {
.setup = vision_spi_mmc_hw_setup,
.cleanup = vision_spi_mmc_hw_cleanup,
.cs_control = vision_spi_mmc_hw_cs_control,
};
/*************************************************************************
* SPI Bus
*************************************************************************/
......@@ -293,7 +221,6 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
{
.modalias = "cs4271",
.platform_data = &vision_cs4271_data,
.controller_data = &vision_cs4271_hw,
.max_speed_hz = 6000000,
.bus_num = 0,
.chip_select = 0,
......@@ -301,7 +228,6 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
}, {
.modalias = "sst25l",
.platform_data = &vision_spi_flash_data,
.controller_data = &vision_spi_flash_hw,
.max_speed_hz = 20000000,
.bus_num = 0,
.chip_select = 1,
......@@ -309,7 +235,6 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
}, {
.modalias = "mmc_spi",
.platform_data = &vision_spi_mmc_data,
.controller_data = &vision_spi_mmc_hw,
.max_speed_hz = 20000000,
.bus_num = 0,
.chip_select = 2,
......@@ -317,8 +242,15 @@ static struct spi_board_info vision_spi_board_info[] __initdata = {
},
};
static int vision_spi_chipselects[] __initdata = {
EP93XX_GPIO_LINE_EGPIO6,
EP93XX_GPIO_LINE_EGPIO7,
EP93XX_GPIO_LINE_G(2),
};
static struct ep93xx_spi_info vision_spi_master __initdata = {
.num_chipselect = ARRAY_SIZE(vision_spi_board_info),
.chipselect = vision_spi_chipselects,
.num_chipselect = ARRAY_SIZE(vision_spi_chipselects),
.use_dma = 1,
};
......
......@@ -162,7 +162,8 @@ config SPI_BCM63XX_HSSPI
config SPI_BCM_QSPI
tristate "Broadcom BSPI and MSPI controller support"
depends on ARCH_BRCMSTB || ARCH_BCM || ARCH_BCM_IPROC || COMPILE_TEST
depends on ARCH_BRCMSTB || ARCH_BCM || ARCH_BCM_IPROC || \
BMIPS_GENERIC || COMPILE_TEST
default ARCH_BCM_IPROC
help
Enables support for the Broadcom SPI flash and MSPI controller.
......@@ -263,7 +264,7 @@ config SPI_EP93XX
mode.
config SPI_FALCON
tristate "Falcon SPI controller support"
bool "Falcon SPI controller support"
depends on SOC_FALCON
help
The external bus unit (EBU) found on the FALC-ON SoC has SPI
......@@ -416,6 +417,14 @@ config SPI_NUC900
help
SPI driver for Nuvoton NUC900 series ARM SoCs
config SPI_LANTIQ_SSC
tristate "Lantiq SSC SPI controller"
depends on LANTIQ || COMPILE_TEST
help
This driver supports the Lantiq SSC SPI controller in master
mode. This controller is found on Intel (former Lantiq) SoCs like
the Danube, Falcon, xRX200, xRX300.
config SPI_OC_TINY
tristate "OpenCores tiny SPI"
depends on GPIOLIB || COMPILE_TEST
......
......@@ -49,6 +49,7 @@ obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o
obj-$(CONFIG_SPI_GPIO) += spi-gpio.o
obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o
obj-$(CONFIG_SPI_IMX) += spi-imx.o
obj-$(CONFIG_SPI_LANTIQ_SSC) += spi-lantiq-ssc.o
obj-$(CONFIG_SPI_JCORE) += spi-jcore.o
obj-$(CONFIG_SPI_LM70_LLP) += spi-lm70llp.o
obj-$(CONFIG_SPI_LP8841_RTC) += spi-lp8841-rtc.o
......
......@@ -170,12 +170,12 @@ static int a3700_spi_pin_mode_set(struct a3700_spi *a3700_spi,
val &= ~(A3700_SPI_DATA_PIN0 | A3700_SPI_DATA_PIN1);
switch (pin_mode) {
case 1:
case SPI_NBITS_SINGLE:
break;
case 2:
case SPI_NBITS_DUAL:
val |= A3700_SPI_DATA_PIN0;
break;
case 4:
case SPI_NBITS_QUAD:
val |= A3700_SPI_DATA_PIN1;
break;
default:
......@@ -340,8 +340,7 @@ static irqreturn_t a3700_spi_interrupt(int irq, void *dev_id)
spireg_write(a3700_spi, A3700_SPI_INT_STAT_REG, cause);
/* Wake up the transfer */
if (a3700_spi->wait_mask & cause)
complete(&a3700_spi->done);
complete(&a3700_spi->done);
return IRQ_HANDLED;
}
......@@ -421,7 +420,7 @@ static void a3700_spi_fifo_thres_set(struct a3700_spi *a3700_spi,
}
static void a3700_spi_transfer_setup(struct spi_device *spi,
struct spi_transfer *xfer)
struct spi_transfer *xfer)
{
struct a3700_spi *a3700_spi;
unsigned int byte_len;
......@@ -562,6 +561,7 @@ static int a3700_spi_fifo_read(struct a3700_spi *a3700_spi)
val = spireg_read(a3700_spi, A3700_SPI_DATA_IN_REG);
if (a3700_spi->buf_len >= 4) {
u32 data = le32_to_cpu(val);
memcpy(a3700_spi->rx_buf, &data, 4);
a3700_spi->buf_len -= 4;
......@@ -901,7 +901,6 @@ static int a3700_spi_remove(struct platform_device *pdev)
struct a3700_spi *spi = spi_master_get_devdata(master);
clk_unprepare(spi->clk);
spi_master_put(master);
return 0;
}
......@@ -909,7 +908,6 @@ static int a3700_spi_remove(struct platform_device *pdev)
static struct platform_driver a3700_spi_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(a3700_spi_dt_ids),
},
.probe = a3700_spi_probe,
......
......@@ -78,14 +78,16 @@ static void ath79_spi_chipselect(struct spi_device *spi, int is_active)
ath79_spi_wr(sp, AR71XX_SPI_REG_IOC, sp->ioc_base);
}
if (spi->chip_select) {
if (gpio_is_valid(spi->cs_gpio)) {
/* SPI is normally active-low */
gpio_set_value(spi->cs_gpio, cs_high);
gpio_set_value_cansleep(spi->cs_gpio, cs_high);
} else {
u32 cs_bit = AR71XX_SPI_IOC_CS(spi->chip_select);
if (cs_high)
sp->ioc_base |= AR71XX_SPI_IOC_CS0;
sp->ioc_base |= cs_bit;
else
sp->ioc_base &= ~AR71XX_SPI_IOC_CS0;
sp->ioc_base &= ~cs_bit;
ath79_spi_wr(sp, AR71XX_SPI_REG_IOC, sp->ioc_base);
}
......@@ -118,11 +120,8 @@ static int ath79_spi_setup_cs(struct spi_device *spi)
struct ath79_spi *sp = ath79_spidev_to_sp(spi);
int status;
if (spi->chip_select && !gpio_is_valid(spi->cs_gpio))
return -EINVAL;
status = 0;
if (spi->chip_select) {
if (gpio_is_valid(spi->cs_gpio)) {
unsigned long flags;
flags = GPIOF_DIR_OUT;
......@@ -134,10 +133,12 @@ static int ath79_spi_setup_cs(struct spi_device *spi)
status = gpio_request_one(spi->cs_gpio, flags,
dev_name(&spi->dev));
} else {
u32 cs_bit = AR71XX_SPI_IOC_CS(spi->chip_select);
if (spi->mode & SPI_CS_HIGH)
sp->ioc_base &= ~AR71XX_SPI_IOC_CS0;
sp->ioc_base &= ~cs_bit;
else
sp->ioc_base |= AR71XX_SPI_IOC_CS0;
sp->ioc_base |= cs_bit;
ath79_spi_wr(sp, AR71XX_SPI_REG_IOC, sp->ioc_base);
}
......@@ -147,7 +148,7 @@ static int ath79_spi_setup_cs(struct spi_device *spi)
static void ath79_spi_cleanup_cs(struct spi_device *spi)
{
if (spi->chip_select) {
if (gpio_is_valid(spi->cs_gpio)) {
gpio_free(spi->cs_gpio);
}
}
......
......@@ -89,7 +89,7 @@
#define BSPI_BPP_MODE_SELECT_MASK BIT(8)
#define BSPI_BPP_ADDR_SELECT_MASK BIT(16)
#define BSPI_READ_LENGTH 256
#define BSPI_READ_LENGTH 512
/* MSPI register offsets */
#define MSPI_SPCR0_LSB 0x000
......@@ -192,9 +192,11 @@ struct bcm_qspi_dev_id {
void *dev;
};
struct qspi_trans {
struct spi_transfer *trans;
int byte;
bool mspi_last_trans;
};
struct bcm_qspi {
......@@ -616,6 +618,16 @@ static int bcm_qspi_setup(struct spi_device *spi)
return 0;
}
static bool bcm_qspi_mspi_transfer_is_last(struct bcm_qspi *qspi,
struct qspi_trans *qt)
{
if (qt->mspi_last_trans &&
spi_transfer_is_last(qspi->master, qt->trans))
return true;
else
return false;
}
static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
struct qspi_trans *qt, int flags)
{
......@@ -629,7 +641,6 @@ static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
if (qt->byte >= qt->trans->len) {
/* we're at the end of the spi_transfer */
/* in TX mode, need to pause for a delay or CS change */
if (qt->trans->delay_usecs &&
(flags & TRANS_STATUS_BREAK_DELAY))
......@@ -641,7 +652,7 @@ static int update_qspi_trans_byte_count(struct bcm_qspi *qspi,
goto done;
dev_dbg(&qspi->pdev->dev, "advance msg exit\n");
if (spi_transfer_is_last(qspi->master, qt->trans))
if (bcm_qspi_mspi_transfer_is_last(qspi, qt))
ret = TRANS_STATUS_BREAK_EOM;
else
ret = TRANS_STATUS_BREAK_NO_BYTES;
......@@ -813,7 +824,7 @@ static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
struct spi_flash_read_message *msg)
{
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
u32 addr = 0, len, len_words;
u32 addr = 0, len, rdlen, len_words;
int ret = 0;
unsigned long timeo = msecs_to_jiffies(100);
struct bcm_qspi_soc_intc *soc_intc = qspi->soc_intc;
......@@ -826,7 +837,7 @@ static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
bcm_qspi_write(qspi, MSPI, MSPI_WRITE_LOCK, 0);
/*
* when using flex mode mode we need to send
* when using flex mode we need to send
* the upper address byte to bspi
*/
if (bcm_qspi_bspi_ver_three(qspi) == false) {
......@@ -840,48 +851,127 @@ static int bcm_qspi_bspi_flash_read(struct spi_device *spi,
else
addr = msg->from & 0x00ffffff;
/* set BSPI RAF buffer max read length */
len = msg->len;
if (len > BSPI_READ_LENGTH)
len = BSPI_READ_LENGTH;
if (bcm_qspi_bspi_ver_three(qspi) == true)
addr = (addr + 0xc00000) & 0xffffff;
reinit_completion(&qspi->bspi_done);
bcm_qspi_enable_bspi(qspi);
len_words = (len + 3) >> 2;
qspi->bspi_rf_msg = msg;
qspi->bspi_rf_msg_status = 0;
/*
* read into the entire buffer by breaking the reads
* into RAF buffer read lengths
*/
len = msg->len;
qspi->bspi_rf_msg_idx = 0;
qspi->bspi_rf_msg_len = len;
dev_dbg(&qspi->pdev->dev, "bspi xfr addr 0x%x len 0x%x", addr, len);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
do {
if (len > BSPI_READ_LENGTH)
rdlen = BSPI_READ_LENGTH;
else
rdlen = len;
reinit_completion(&qspi->bspi_done);
bcm_qspi_enable_bspi(qspi);
len_words = (rdlen + 3) >> 2;
qspi->bspi_rf_msg = msg;
qspi->bspi_rf_msg_status = 0;
qspi->bspi_rf_msg_len = rdlen;
dev_dbg(&qspi->pdev->dev,
"bspi xfr addr 0x%x len 0x%x", addr, rdlen);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_START_ADDR, addr);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_NUM_WORDS, len_words);
bcm_qspi_write(qspi, BSPI, BSPI_RAF_WATERMARK, 0);
if (qspi->soc_intc) {
/*
* clear soc MSPI and BSPI interrupts and enable
* BSPI interrupts.
*/
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
}
if (qspi->soc_intc) {
/*
* clear soc MSPI and BSPI interrupts and enable
* BSPI interrupts.
*/
soc_intc->bcm_qspi_int_ack(soc_intc, MSPI_BSPI_DONE);
soc_intc->bcm_qspi_int_set(soc_intc, BSPI_DONE, true);
/* Must flush previous writes before starting BSPI operation */
mb();
bcm_qspi_bspi_lr_start(qspi);
if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
ret = -ETIMEDOUT;
break;
}
/* set msg return length */
msg->retlen += rdlen;
addr += rdlen;
len -= rdlen;
} while (len);
return ret;
}
static int bcm_qspi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi *qspi = spi_master_get_devdata(master);
int slots;
unsigned long timeo = msecs_to_jiffies(100);
bcm_qspi_chip_select(qspi, spi->chip_select);
qspi->trans_pos.trans = trans;
qspi->trans_pos.byte = 0;
while (qspi->trans_pos.byte < trans->len) {
reinit_completion(&qspi->mspi_done);
slots = write_to_hw(qspi, spi);
if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
return -ETIMEDOUT;
}
read_from_hw(qspi, slots);
}
/* Must flush previous writes before starting BSPI operation */
mb();
return 0;
}
bcm_qspi_bspi_lr_start(qspi);
if (!wait_for_completion_timeout(&qspi->bspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for BSPI\n");
ret = -ETIMEDOUT;
} else {
/* set the return length for the caller */
msg->retlen = len;
static int bcm_qspi_mspi_flash_read(struct spi_device *spi,
struct spi_flash_read_message *msg)
{
struct bcm_qspi *qspi = spi_master_get_devdata(spi->master);
struct spi_transfer t[2];
u8 cmd[6];
int ret;
memset(cmd, 0, sizeof(cmd));
memset(t, 0, sizeof(t));
/* tx */
/* opcode is in cmd[0] */
cmd[0] = msg->read_opcode;
cmd[1] = msg->from >> (msg->addr_width * 8 - 8);
cmd[2] = msg->from >> (msg->addr_width * 8 - 16);
cmd[3] = msg->from >> (msg->addr_width * 8 - 24);
cmd[4] = msg->from >> (msg->addr_width * 8 - 32);
t[0].tx_buf = cmd;
t[0].len = msg->addr_width + msg->dummy_bytes + 1;
t[0].bits_per_word = spi->bits_per_word;
t[0].tx_nbits = msg->opcode_nbits;
/* lets mspi know that this is not last transfer */
qspi->trans_pos.mspi_last_trans = false;
ret = bcm_qspi_transfer_one(spi->master, spi, &t[0]);
/* rx */
qspi->trans_pos.mspi_last_trans = true;
if (!ret) {
/* rx */
t[1].rx_buf = msg->buf;
t[1].len = msg->len;
t[1].rx_nbits = msg->data_nbits;
t[1].bits_per_word = spi->bits_per_word;
ret = bcm_qspi_transfer_one(spi->master, spi, &t[1]);
}
if (!ret)
msg->retlen = msg->len;
return ret;
}
......@@ -918,8 +1008,7 @@ static int bcm_qspi_flash_read(struct spi_device *spi,
mspi_read = true;
if (mspi_read)
/* this will make the m25p80 read to fallback to mspi read */
return -EAGAIN;
return bcm_qspi_mspi_flash_read(spi, msg);
io_width = msg->data_nbits ? msg->data_nbits : SPI_NBITS_SINGLE;
addrlen = msg->addr_width;
......@@ -931,33 +1020,6 @@ static int bcm_qspi_flash_read(struct spi_device *spi,
return ret;
}
static int bcm_qspi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *trans)
{
struct bcm_qspi *qspi = spi_master_get_devdata(master);
int slots;
unsigned long timeo = msecs_to_jiffies(100);
bcm_qspi_chip_select(qspi, spi->chip_select);
qspi->trans_pos.trans = trans;
qspi->trans_pos.byte = 0;
while (qspi->trans_pos.byte < trans->len) {
reinit_completion(&qspi->mspi_done);
slots = write_to_hw(qspi, spi);
if (!wait_for_completion_timeout(&qspi->mspi_done, timeo)) {
dev_err(&qspi->pdev->dev, "timeout waiting for MSPI\n");
return -ETIMEDOUT;
}
read_from_hw(qspi, slots);
}
return 0;
}
static void bcm_qspi_cleanup(struct spi_device *spi)
{
struct bcm_qspi_parms *xp = spi_get_ctldata(spi);
......@@ -1187,6 +1249,7 @@ int bcm_qspi_probe(struct platform_device *pdev,
qspi->pdev = pdev;
qspi->trans_pos.trans = NULL;
qspi->trans_pos.byte = 0;
qspi->trans_pos.mspi_last_trans = true;
qspi->master = master;
master->bus_num = -1;
......@@ -1345,7 +1408,6 @@ int bcm_qspi_remove(struct platform_device *pdev)
{
struct bcm_qspi *qspi = platform_get_drvdata(pdev);
platform_set_drvdata(pdev, NULL);
bcm_qspi_hw_uninit(qspi);
clk_disable_unprepare(qspi->clk);
kfree(qspi->dev_ids);
......
/*
* Copyright (C) 2014-2016 Rafał Miłecki <rafal@milecki.pl>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
......@@ -275,10 +283,6 @@ static int bcm53xxspi_flash_read(struct spi_device *spi,
* BCMA
**************************************************/
static struct spi_board_info bcm53xx_info = {
.modalias = "bcm53xxspiflash",
};
static const struct bcma_device_id bcm53xxspi_bcma_tbl[] = {
BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_NS_QSPI, BCMA_ANY_REV, BCMA_ANY_CLASS),
{},
......@@ -311,6 +315,7 @@ static int bcm53xxspi_bcma_probe(struct bcma_device *core)
b53spi->bspi = true;
bcm53xxspi_disable_bspi(b53spi);
master->dev.of_node = dev->of_node;
master->transfer_one = bcm53xxspi_transfer_one;
if (b53spi->mmio_base)
master->spi_flash_read = bcm53xxspi_flash_read;
......@@ -324,9 +329,6 @@ static int bcm53xxspi_bcma_probe(struct bcma_device *core)
return err;
}
/* Broadcom SoCs (at least with the CC rev 42) use SPI for flash only */
spi_new_device(master, &bcm53xx_info);
return 0;
}
......@@ -361,4 +363,4 @@ module_exit(bcm53xxspi_module_exit);
MODULE_DESCRIPTION("Broadcom BCM53xx SPI Controller driver");
MODULE_AUTHOR("Rafał Miłecki <zajec5@gmail.com>");
MODULE_LICENSE("GPL");
MODULE_LICENSE("GPL v2");
......@@ -107,9 +107,9 @@ static const struct file_operations dw_spi_regs_ops = {
static int dw_spi_debugfs_init(struct dw_spi *dws)
{
char name[128];
char name[32];
snprintf(name, 128, "dw_spi-%s", dev_name(&dws->master->dev));
snprintf(name, 32, "dw_spi%d", dws->master->bus_num);
dws->debugfs = debugfs_create_dir(name, NULL);
if (!dws->debugfs)
return -ENOMEM;
......@@ -486,9 +486,9 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
dws->type = SSI_MOTO_SPI;
dws->dma_inited = 0;
dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
snprintf(dws->name, sizeof(dws->name), "dw_spi%d", dws->bus_num);
ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dws->name, master);
ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
master);
if (ret < 0) {
dev_err(dev, "can not get IRQ\n");
goto err_free_master;
......
......@@ -101,7 +101,6 @@ struct dw_spi_dma_ops {
struct dw_spi {
struct spi_master *master;
enum dw_ssi_type type;
char name[16];
void __iomem *regs;
unsigned long paddr;
......
......@@ -28,6 +28,7 @@
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/scatterlist.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/platform_data/dma-ep93xx.h>
......@@ -107,16 +108,6 @@ struct ep93xx_spi {
void *zeropage;
};
/**
* struct ep93xx_spi_chip - SPI device hardware settings
* @spi: back pointer to the SPI device
* @ops: private chip operations
*/
struct ep93xx_spi_chip {
const struct spi_device *spi;
struct ep93xx_spi_chip_ops *ops;
};
/* converts bits per word to CR0.DSS value */
#define bits_per_word_to_dss(bpw) ((bpw) - 1)
......@@ -229,104 +220,36 @@ static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
return -EINVAL;
}
static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
{
struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
if (chip->ops && chip->ops->cs_control)
chip->ops->cs_control(spi, value);
}
/**
* ep93xx_spi_setup() - setup an SPI device
* @spi: SPI device to setup
*
* This function sets up SPI device mode, speed etc. Can be called multiple
* times for a single device. Returns %0 in case of success, negative error in
* case of failure. When this function returns success, the device is
* deselected.
*/
static int ep93xx_spi_setup(struct spi_device *spi)
static void ep93xx_spi_cs_control(struct spi_device *spi, bool enable)
{
struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
struct ep93xx_spi_chip *chip;
if (spi->mode & SPI_CS_HIGH)
enable = !enable;
chip = spi_get_ctldata(spi);
if (!chip) {
dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
spi->modalias);
chip = kzalloc(sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->spi = spi;
chip->ops = spi->controller_data;
if (chip->ops && chip->ops->setup) {
int ret = chip->ops->setup(spi);
if (ret) {
kfree(chip);
return ret;
}
}
spi_set_ctldata(spi, chip);
}
ep93xx_spi_cs_control(spi, false);
return 0;
if (gpio_is_valid(spi->cs_gpio))
gpio_set_value(spi->cs_gpio, !enable);
}
/**
* ep93xx_spi_cleanup() - cleans up master controller specific state
* @spi: SPI device to cleanup
*
* This function releases master controller specific state for given @spi
* device.
*/
static void ep93xx_spi_cleanup(struct spi_device *spi)
{
struct ep93xx_spi_chip *chip;
chip = spi_get_ctldata(spi);
if (chip) {
if (chip->ops && chip->ops->cleanup)
chip->ops->cleanup(spi);
spi_set_ctldata(spi, NULL);
kfree(chip);
}
}
/**
* ep93xx_spi_chip_setup() - configures hardware according to given @chip
* @espi: ep93xx SPI controller struct
* @chip: chip specific settings
* @speed_hz: transfer speed
* @bits_per_word: transfer bits_per_word
*/
static int ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
const struct ep93xx_spi_chip *chip,
u32 speed_hz, u8 bits_per_word)
struct spi_device *spi,
struct spi_transfer *xfer)
{
u8 dss = bits_per_word_to_dss(bits_per_word);
u8 dss = bits_per_word_to_dss(xfer->bits_per_word);
u8 div_cpsr = 0;
u8 div_scr = 0;
u16 cr0;
int err;
err = ep93xx_spi_calc_divisors(espi, speed_hz, &div_cpsr, &div_scr);
err = ep93xx_spi_calc_divisors(espi, xfer->speed_hz,
&div_cpsr, &div_scr);
if (err)
return err;
cr0 = div_scr << SSPCR0_SCR_SHIFT;
cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
cr0 |= (spi->mode & (SPI_CPHA | SPI_CPOL)) << SSPCR0_MODE_SHIFT;
cr0 |= dss;
dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
chip->spi->mode, div_cpsr, div_scr, dss);
spi->mode, div_cpsr, div_scr, dss);
dev_dbg(&espi->pdev->dev, "setup: cr0 %#x\n", cr0);
ep93xx_spi_write_u8(espi, SSPCPSR, div_cpsr);
......@@ -603,12 +526,11 @@ static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
struct spi_message *msg,
struct spi_transfer *t)
{
struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
int err;
msg->state = t;
err = ep93xx_spi_chip_setup(espi, chip, t->speed_hz, t->bits_per_word);
err = ep93xx_spi_chip_setup(espi, msg->spi, t);
if (err) {
dev_err(&espi->pdev->dev,
"failed to setup chip for transfer\n");
......@@ -863,8 +785,13 @@ static int ep93xx_spi_probe(struct platform_device *pdev)
struct resource *res;
int irq;
int error;
int i;
info = dev_get_platdata(&pdev->dev);
if (!info) {
dev_err(&pdev->dev, "missing platform data\n");
return -EINVAL;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
......@@ -882,14 +809,36 @@ static int ep93xx_spi_probe(struct platform_device *pdev)
if (!master)
return -ENOMEM;
master->setup = ep93xx_spi_setup;
master->transfer_one_message = ep93xx_spi_transfer_one_message;
master->cleanup = ep93xx_spi_cleanup;
master->bus_num = pdev->id;
master->num_chipselect = info->num_chipselect;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
master->num_chipselect = info->num_chipselect;
master->cs_gpios = devm_kzalloc(&master->dev,
sizeof(int) * master->num_chipselect,
GFP_KERNEL);
if (!master->cs_gpios) {
error = -ENOMEM;
goto fail_release_master;
}
for (i = 0; i < master->num_chipselect; i++) {
master->cs_gpios[i] = info->chipselect[i];
if (!gpio_is_valid(master->cs_gpios[i]))
continue;
error = devm_gpio_request_one(&pdev->dev, master->cs_gpios[i],
GPIOF_OUT_INIT_HIGH,
"ep93xx-spi");
if (error) {
dev_err(&pdev->dev, "could not request cs gpio %d\n",
master->cs_gpios[i]);
goto fail_release_master;
}
}
platform_set_drvdata(pdev, master);
espi = spi_master_get_devdata(master);
......
......@@ -366,7 +366,7 @@ static int fsl_lpspi_transfer_one_msg(struct spi_master *master,
struct spi_transfer *xfer;
bool is_first_xfer = true;
u32 temp;
int ret;
int ret = 0;
msg->status = 0;
msg->actual_length = 0;
......@@ -512,9 +512,9 @@ static int fsl_lpspi_remove(struct platform_device *pdev)
static struct platform_driver fsl_lpspi_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = fsl_lpspi_dt_ids,
},
.name = DRIVER_NAME,
.of_match_table = fsl_lpspi_dt_ids,
},
.probe = fsl_lpspi_probe,
.remove = fsl_lpspi_remove,
};
......
......@@ -267,10 +267,9 @@ static int fsl_spi_setup_transfer(struct spi_device *spi,
if ((mpc8xxx_spi->spibrg / hz) > 64) {
cs->hw_mode |= SPMODE_DIV16;
pm = (mpc8xxx_spi->spibrg - 1) / (hz * 64) + 1;
WARN_ONCE(pm > 16, "%s: Requested speed is too low: %d Hz. "
"Will use %d Hz instead.\n", dev_name(&spi->dev),
hz, mpc8xxx_spi->spibrg / 1024);
WARN_ONCE(pm > 16,
"%s: Requested speed is too low: %d Hz. Will use %d Hz instead.\n",
dev_name(&spi->dev), hz, mpc8xxx_spi->spibrg / 1024);
if (pm > 16)
pm = 16;
} else {
......@@ -727,12 +726,13 @@ static int of_fsl_spi_get_chipselects(struct device *dev)
return 0;
}
pinfo->gpios = kmalloc(ngpios * sizeof(*pinfo->gpios), GFP_KERNEL);
pinfo->gpios = kmalloc_array(ngpios, sizeof(*pinfo->gpios),
GFP_KERNEL);
if (!pinfo->gpios)
return -ENOMEM;
memset(pinfo->gpios, -1, ngpios * sizeof(*pinfo->gpios));
pinfo->alow_flags = kzalloc(ngpios * sizeof(*pinfo->alow_flags),
pinfo->alow_flags = kcalloc(ngpios, sizeof(*pinfo->alow_flags),
GFP_KERNEL);
if (!pinfo->alow_flags) {
ret = -ENOMEM;
......@@ -762,8 +762,9 @@ static int of_fsl_spi_get_chipselects(struct device *dev)
ret = gpio_direction_output(pinfo->gpios[i],
pinfo->alow_flags[i]);
if (ret) {
dev_err(dev, "can't set output direction for gpio "
"#%d: %d\n", i, ret);
dev_err(dev,
"can't set output direction for gpio #%d: %d\n",
i, ret);
goto err_loop;
}
}
......
......@@ -211,7 +211,7 @@ static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
struct spi_transfer *transfer)
{
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
unsigned int bpw;
unsigned int bpw, i;
if (!master->dma_rx)
return false;
......@@ -228,12 +228,16 @@ static bool spi_imx_can_dma(struct spi_master *master, struct spi_device *spi,
if (bpw != 1 && bpw != 2 && bpw != 4)
return false;
if (transfer->len < spi_imx->wml * bpw)
return false;
for (i = spi_imx_get_fifosize(spi_imx) / 2; i > 0; i--) {
if (!(transfer->len % (i * bpw)))
break;
}
if (transfer->len % (spi_imx->wml * bpw))
if (i == 0)
return false;
spi_imx->wml = i;
return true;
}
......@@ -837,10 +841,6 @@ static int spi_imx_dma_configure(struct spi_master *master,
struct dma_slave_config rx = {}, tx = {};
struct spi_imx_data *spi_imx = spi_master_get_devdata(master);
if (bytes_per_word == spi_imx->bytes_per_word)
/* Same as last time */
return 0;
switch (bytes_per_word) {
case 4:
buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;
......
/*
* Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
* Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
*
* This program is free software; you can distribute it and/or modify it
* under the terms of the GNU General Public License (Version 2) as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/sched.h>
#include <linux/completion.h>
#include <linux/spinlock.h>
#include <linux/err.h>
#include <linux/gpio.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#ifdef CONFIG_LANTIQ
#include <lantiq_soc.h>
#endif
#define SPI_RX_IRQ_NAME "spi_rx"
#define SPI_TX_IRQ_NAME "spi_tx"
#define SPI_ERR_IRQ_NAME "spi_err"
#define SPI_FRM_IRQ_NAME "spi_frm"
#define SPI_CLC 0x00
#define SPI_PISEL 0x04
#define SPI_ID 0x08
#define SPI_CON 0x10
#define SPI_STAT 0x14
#define SPI_WHBSTATE 0x18
#define SPI_TB 0x20
#define SPI_RB 0x24
#define SPI_RXFCON 0x30
#define SPI_TXFCON 0x34
#define SPI_FSTAT 0x38
#define SPI_BRT 0x40
#define SPI_BRSTAT 0x44
#define SPI_SFCON 0x60
#define SPI_SFSTAT 0x64
#define SPI_GPOCON 0x70
#define SPI_GPOSTAT 0x74
#define SPI_FPGO 0x78
#define SPI_RXREQ 0x80
#define SPI_RXCNT 0x84
#define SPI_DMACON 0xec
#define SPI_IRNEN 0xf4
#define SPI_IRNICR 0xf8
#define SPI_IRNCR 0xfc
#define SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
#define SPI_CLC_SMC_M (0xFF << SPI_CLC_SMC_S)
#define SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
#define SPI_CLC_RMC_M (0xFF << SPI_CLC_RMC_S)
#define SPI_CLC_DISS BIT(1) /* Disable status bit */
#define SPI_CLC_DISR BIT(0) /* Disable request bit */
#define SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
#define SPI_ID_TXFS_M (0x3F << SPI_ID_TXFS_S)
#define SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
#define SPI_ID_RXFS_M (0x3F << SPI_ID_RXFS_S)
#define SPI_ID_MOD_S 8 /* Module ID */
#define SPI_ID_MOD_M (0xff << SPI_ID_MOD_S)
#define SPI_ID_CFG_S 5 /* DMA interface support */
#define SPI_ID_CFG_M (1 << SPI_ID_CFG_S)
#define SPI_ID_REV_M 0x1F /* Hardware revision number */
#define SPI_CON_BM_S 16 /* Data width selection */
#define SPI_CON_BM_M (0x1F << SPI_CON_BM_S)
#define SPI_CON_EM BIT(24) /* Echo mode */
#define SPI_CON_IDLE BIT(23) /* Idle bit value */
#define SPI_CON_ENBV BIT(22) /* Enable byte valid control */
#define SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
#define SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
#define SPI_CON_AEN BIT(10) /* Abort error enable */
#define SPI_CON_REN BIT(9) /* Receive overflow error enable */
#define SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
#define SPI_CON_LB BIT(7) /* Loopback control */
#define SPI_CON_PO BIT(6) /* Clock polarity control */
#define SPI_CON_PH BIT(5) /* Clock phase control */
#define SPI_CON_HB BIT(4) /* Heading control */
#define SPI_CON_RXOFF BIT(1) /* Switch receiver off */
#define SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
#define SPI_STAT_RXBV_S 28
#define SPI_STAT_RXBV_M (0x7 << SPI_STAT_RXBV_S)
#define SPI_STAT_BSY BIT(13) /* Busy flag */
#define SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
#define SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
#define SPI_STAT_AE BIT(10) /* Abort error flag */
#define SPI_STAT_RE BIT(9) /* Receive error flag */
#define SPI_STAT_TE BIT(8) /* Transmit error flag */
#define SPI_STAT_ME BIT(7) /* Mode error flag */
#define SPI_STAT_MS BIT(1) /* Master/slave select bit */
#define SPI_STAT_EN BIT(0) /* Enable bit */
#define SPI_STAT_ERRORS (SPI_STAT_ME | SPI_STAT_TE | SPI_STAT_RE | \
SPI_STAT_AE | SPI_STAT_TUE | SPI_STAT_RUE)
#define SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
#define SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
#define SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
#define SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
#define SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
#define SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
#define SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
#define SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
#define SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
#define SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
#define SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
#define SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
#define SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
#define SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
#define SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
#define SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
#define SPI_WHBSTATE_CLR_ERRORS (SPI_WHBSTATE_CLRRUE | SPI_WHBSTATE_CLRME | \
SPI_WHBSTATE_CLRTE | SPI_WHBSTATE_CLRRE | \
SPI_WHBSTATE_CLRAE | SPI_WHBSTATE_CLRTUE)
#define SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
#define SPI_RXFCON_RXFITL_M (0x3F << SPI_RXFCON_RXFITL_S)
#define SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
#define SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
#define SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
#define SPI_TXFCON_TXFITL_M (0x3F << SPI_TXFCON_TXFITL_S)
#define SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
#define SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
#define SPI_FSTAT_RXFFL_S 0
#define SPI_FSTAT_RXFFL_M (0x3f << SPI_FSTAT_RXFFL_S)
#define SPI_FSTAT_TXFFL_S 8
#define SPI_FSTAT_TXFFL_M (0x3f << SPI_FSTAT_TXFFL_S)
#define SPI_GPOCON_ISCSBN_S 8
#define SPI_GPOCON_INVOUTN_S 0
#define SPI_FGPO_SETOUTN_S 8
#define SPI_FGPO_CLROUTN_S 0
#define SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
#define SPI_RXCNT_TODO_M 0xFFFF /* Recevie to-do value */
#define SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
#define SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
#define SPI_IRNEN_E BIT(2) /* Error end interrupt request */
#define SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
#define SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
#define SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
#define SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
#define SPI_IRNEN_ALL 0x1F
struct lantiq_ssc_hwcfg {
unsigned int irnen_r;
unsigned int irnen_t;
};
struct lantiq_ssc_spi {
struct spi_master *master;
struct device *dev;
void __iomem *regbase;
struct clk *spi_clk;
struct clk *fpi_clk;
const struct lantiq_ssc_hwcfg *hwcfg;
spinlock_t lock;
struct workqueue_struct *wq;
struct work_struct work;
const u8 *tx;
u8 *rx;
unsigned int tx_todo;
unsigned int rx_todo;
unsigned int bits_per_word;
unsigned int speed_hz;
unsigned int tx_fifo_size;
unsigned int rx_fifo_size;
unsigned int base_cs;
};
static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
{
return __raw_readl(spi->regbase + reg);
}
static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
u32 reg)
{
__raw_writel(val, spi->regbase + reg);
}
static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
u32 set, u32 reg)
{
u32 val = __raw_readl(spi->regbase + reg);
val &= ~clr;
val |= set;
__raw_writel(val, spi->regbase + reg);
}
static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
{
u32 fstat = lantiq_ssc_readl(spi, SPI_FSTAT);
return (fstat & SPI_FSTAT_TXFFL_M) >> SPI_FSTAT_TXFFL_S;
}
static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
{
u32 fstat = lantiq_ssc_readl(spi, SPI_FSTAT);
return fstat & SPI_FSTAT_RXFFL_M;
}
static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
{
return spi->tx_fifo_size - tx_fifo_level(spi);
}
static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
u32 val = spi->rx_fifo_size << SPI_RXFCON_RXFITL_S;
val |= SPI_RXFCON_RXFEN | SPI_RXFCON_RXFLU;
lantiq_ssc_writel(spi, val, SPI_RXFCON);
}
static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
{
u32 val = 1 << SPI_TXFCON_TXFITL_S;
val |= SPI_TXFCON_TXFEN | SPI_TXFCON_TXFLU;
lantiq_ssc_writel(spi, val, SPI_TXFCON);
}
static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_maskl(spi, 0, SPI_RXFCON_RXFLU, SPI_RXFCON);
}
static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_maskl(spi, 0, SPI_TXFCON_TXFLU, SPI_TXFCON);
}
static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_writel(spi, SPI_WHBSTATE_CLREN, SPI_WHBSTATE);
}
static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
{
lantiq_ssc_writel(spi, SPI_WHBSTATE_SETEN, SPI_WHBSTATE);
}
static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
unsigned int max_speed_hz)
{
u32 spi_clk, brt;
/*
* SPI module clock is derived from FPI bus clock dependent on
* divider value in CLC.RMS which is always set to 1.
*
* f_SPI
* baudrate = --------------
* 2 * (BR + 1)
*/
spi_clk = clk_get_rate(spi->fpi_clk) / 2;
if (max_speed_hz > spi_clk)
brt = 0;
else
brt = spi_clk / max_speed_hz - 1;
if (brt > 0xFFFF)
brt = 0xFFFF;
dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
spi_clk, max_speed_hz, brt);
lantiq_ssc_writel(spi, brt, SPI_BRT);
}
static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
unsigned int bits_per_word)
{
u32 bm;
/* CON.BM value = bits_per_word - 1 */
bm = (bits_per_word - 1) << SPI_CON_BM_S;
lantiq_ssc_maskl(spi, SPI_CON_BM_M, bm, SPI_CON);
}
static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
unsigned int mode)
{
u32 con_set = 0, con_clr = 0;
/*
* SPI mode mapping in CON register:
* Mode CPOL CPHA CON.PO CON.PH
* 0 0 0 0 1
* 1 0 1 0 0
* 2 1 0 1 1
* 3 1 1 1 0
*/
if (mode & SPI_CPHA)
con_clr |= SPI_CON_PH;
else
con_set |= SPI_CON_PH;
if (mode & SPI_CPOL)
con_set |= SPI_CON_PO | SPI_CON_IDLE;
else
con_clr |= SPI_CON_PO | SPI_CON_IDLE;
/* Set heading control */
if (mode & SPI_LSB_FIRST)
con_clr |= SPI_CON_HB;
else
con_set |= SPI_CON_HB;
/* Set loopback mode */
if (mode & SPI_LOOP)
con_set |= SPI_CON_LB;
else
con_clr |= SPI_CON_LB;
lantiq_ssc_maskl(spi, con_clr, con_set, SPI_CON);
}
static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
{
const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
/*
* Set clock divider for run mode to 1 to
* run at same frequency as FPI bus
*/
lantiq_ssc_writel(spi, 1 << SPI_CLC_RMC_S, SPI_CLC);
/* Put controller into config mode */
hw_enter_config_mode(spi);
/* Clear error flags */
lantiq_ssc_maskl(spi, 0, SPI_WHBSTATE_CLR_ERRORS, SPI_WHBSTATE);
/* Enable error checking, disable TX/RX */
lantiq_ssc_writel(spi, SPI_CON_RUEN | SPI_CON_AEN | SPI_CON_TEN |
SPI_CON_REN | SPI_CON_TXOFF | SPI_CON_RXOFF, SPI_CON);
/* Setup default SPI mode */
hw_setup_bits_per_word(spi, spi->bits_per_word);
hw_setup_clock_mode(spi, SPI_MODE_0);
/* Enable master mode and clear error flags */
lantiq_ssc_writel(spi, SPI_WHBSTATE_SETMS | SPI_WHBSTATE_CLR_ERRORS,
SPI_WHBSTATE);
/* Reset GPIO/CS registers */
lantiq_ssc_writel(spi, 0, SPI_GPOCON);
lantiq_ssc_writel(spi, 0xFF00, SPI_FPGO);
/* Enable and flush FIFOs */
rx_fifo_reset(spi);
tx_fifo_reset(spi);
/* Enable interrupts */
lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r | SPI_IRNEN_E,
SPI_IRNEN);
}
static int lantiq_ssc_setup(struct spi_device *spidev)
{
struct spi_master *master = spidev->master;
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
unsigned int cs = spidev->chip_select;
u32 gpocon;
/* GPIOs are used for CS */
if (gpio_is_valid(spidev->cs_gpio))
return 0;
dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
if (cs < spi->base_cs) {
dev_err(spi->dev,
"chipselect %i too small (min %i)\n", cs, spi->base_cs);
return -EINVAL;
}
/* set GPO pin to CS mode */
gpocon = 1 << ((cs - spi->base_cs) + SPI_GPOCON_ISCSBN_S);
/* invert GPO pin */
if (spidev->mode & SPI_CS_HIGH)
gpocon |= 1 << (cs - spi->base_cs);
lantiq_ssc_maskl(spi, 0, gpocon, SPI_GPOCON);
return 0;
}
static int lantiq_ssc_prepare_message(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
hw_enter_config_mode(spi);
hw_setup_clock_mode(spi, message->spi->mode);
hw_enter_active_mode(spi);
return 0;
}
static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
struct spi_device *spidev, struct spi_transfer *t)
{
unsigned int speed_hz = t->speed_hz;
unsigned int bits_per_word = t->bits_per_word;
u32 con;
if (bits_per_word != spi->bits_per_word ||
speed_hz != spi->speed_hz) {
hw_enter_config_mode(spi);
hw_setup_speed_hz(spi, speed_hz);
hw_setup_bits_per_word(spi, bits_per_word);
hw_enter_active_mode(spi);
spi->speed_hz = speed_hz;
spi->bits_per_word = bits_per_word;
}
/* Configure transmitter and receiver */
con = lantiq_ssc_readl(spi, SPI_CON);
if (t->tx_buf)
con &= ~SPI_CON_TXOFF;
else
con |= SPI_CON_TXOFF;
if (t->rx_buf)
con &= ~SPI_CON_RXOFF;
else
con |= SPI_CON_RXOFF;
lantiq_ssc_writel(spi, con, SPI_CON);
}
static int lantiq_ssc_unprepare_message(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
flush_workqueue(spi->wq);
/* Disable transmitter and receiver while idle */
lantiq_ssc_maskl(spi, 0, SPI_CON_TXOFF | SPI_CON_RXOFF, SPI_CON);
return 0;
}
static void tx_fifo_write(struct lantiq_ssc_spi *spi)
{
const u8 *tx8;
const u16 *tx16;
const u32 *tx32;
u32 data;
unsigned int tx_free = tx_fifo_free(spi);
while (spi->tx_todo && tx_free) {
switch (spi->bits_per_word) {
case 2 ... 8:
tx8 = spi->tx;
data = *tx8;
spi->tx_todo--;
spi->tx++;
break;
case 16:
tx16 = (u16 *) spi->tx;
data = *tx16;
spi->tx_todo -= 2;
spi->tx += 2;
break;
case 32:
tx32 = (u32 *) spi->tx;
data = *tx32;
spi->tx_todo -= 4;
spi->tx += 4;
break;
default:
WARN_ON(1);
data = 0;
break;
}
lantiq_ssc_writel(spi, data, SPI_TB);
tx_free--;
}
}
static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
{
u8 *rx8;
u16 *rx16;
u32 *rx32;
u32 data;
unsigned int rx_fill = rx_fifo_level(spi);
while (rx_fill) {
data = lantiq_ssc_readl(spi, SPI_RB);
switch (spi->bits_per_word) {
case 2 ... 8:
rx8 = spi->rx;
*rx8 = data;
spi->rx_todo--;
spi->rx++;
break;
case 16:
rx16 = (u16 *) spi->rx;
*rx16 = data;
spi->rx_todo -= 2;
spi->rx += 2;
break;
case 32:
rx32 = (u32 *) spi->rx;
*rx32 = data;
spi->rx_todo -= 4;
spi->rx += 4;
break;
default:
WARN_ON(1);
break;
}
rx_fill--;
}
}
static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
{
u32 data, *rx32;
u8 *rx8;
unsigned int rxbv, shift;
unsigned int rx_fill = rx_fifo_level(spi);
/*
* In RX-only mode the bits per word value is ignored by HW. A value
* of 32 is used instead. Thus all 4 bytes per FIFO must be read.
* If remaining RX bytes are less than 4, the FIFO must be read
* differently. The amount of received and valid bytes is indicated
* by STAT.RXBV register value.
*/
while (rx_fill) {
if (spi->rx_todo < 4) {
rxbv = (lantiq_ssc_readl(spi, SPI_STAT) &
SPI_STAT_RXBV_M) >> SPI_STAT_RXBV_S;
data = lantiq_ssc_readl(spi, SPI_RB);
shift = (rxbv - 1) * 8;
rx8 = spi->rx;
while (rxbv) {
*rx8++ = (data >> shift) & 0xFF;
rxbv--;
shift -= 8;
spi->rx_todo--;
spi->rx++;
}
} else {
data = lantiq_ssc_readl(spi, SPI_RB);
rx32 = (u32 *) spi->rx;
*rx32++ = data;
spi->rx_todo -= 4;
spi->rx += 4;
}
rx_fill--;
}
}
static void rx_request(struct lantiq_ssc_spi *spi)
{
unsigned int rxreq, rxreq_max;
/*
* To avoid receive overflows at high clocks it is better to request
* only the amount of bytes that fits into all FIFOs. This value
* depends on the FIFO size implemented in hardware.
*/
rxreq = spi->rx_todo;
rxreq_max = spi->rx_fifo_size * 4;
if (rxreq > rxreq_max)
rxreq = rxreq_max;
lantiq_ssc_writel(spi, rxreq, SPI_RXREQ);
}
static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
if (spi->tx) {
if (spi->rx && spi->rx_todo)
rx_fifo_read_full_duplex(spi);
if (spi->tx_todo)
tx_fifo_write(spi);
else if (!tx_fifo_level(spi))
goto completed;
} else if (spi->rx) {
if (spi->rx_todo) {
rx_fifo_read_half_duplex(spi);
if (spi->rx_todo)
rx_request(spi);
else
goto completed;
} else {
goto completed;
}
}
return IRQ_HANDLED;
completed:
queue_work(spi->wq, &spi->work);
return IRQ_HANDLED;
}
static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
{
struct lantiq_ssc_spi *spi = data;
u32 stat = lantiq_ssc_readl(spi, SPI_STAT);
if (!(stat & SPI_STAT_ERRORS))
return IRQ_NONE;
if (stat & SPI_STAT_RUE)
dev_err(spi->dev, "receive underflow error\n");
if (stat & SPI_STAT_TUE)
dev_err(spi->dev, "transmit underflow error\n");
if (stat & SPI_STAT_AE)
dev_err(spi->dev, "abort error\n");
if (stat & SPI_STAT_RE)
dev_err(spi->dev, "receive overflow error\n");
if (stat & SPI_STAT_TE)
dev_err(spi->dev, "transmit overflow error\n");
if (stat & SPI_STAT_ME)
dev_err(spi->dev, "mode error\n");
/* Clear error flags */
lantiq_ssc_maskl(spi, 0, SPI_WHBSTATE_CLR_ERRORS, SPI_WHBSTATE);
/* set bad status so it can be retried */
if (spi->master->cur_msg)
spi->master->cur_msg->status = -EIO;
queue_work(spi->wq, &spi->work);
return IRQ_HANDLED;
}
static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
struct spi_transfer *t)
{
unsigned long flags;
spin_lock_irqsave(&spi->lock, flags);
spi->tx = t->tx_buf;
spi->rx = t->rx_buf;
if (t->tx_buf) {
spi->tx_todo = t->len;
/* initially fill TX FIFO */
tx_fifo_write(spi);
}
if (spi->rx) {
spi->rx_todo = t->len;
/* start shift clock in RX-only mode */
if (!spi->tx)
rx_request(spi);
}
spin_unlock_irqrestore(&spi->lock, flags);
return t->len;
}
/*
* The driver only gets an interrupt when the FIFO is empty, but there
* is an additional shift register from which the data is written to
* the wire. We get the last interrupt when the controller starts to
* write the last word to the wire, not when it is finished. Do busy
* waiting till it finishes.
*/
static void lantiq_ssc_bussy_work(struct work_struct *work)
{
struct lantiq_ssc_spi *spi;
unsigned long long timeout = 8LL * 1000LL;
unsigned long end;
spi = container_of(work, typeof(*spi), work);
do_div(timeout, spi->speed_hz);
timeout += timeout + 100; /* some tolerance */
end = jiffies + msecs_to_jiffies(timeout);
do {
u32 stat = lantiq_ssc_readl(spi, SPI_STAT);
if (!(stat & SPI_STAT_BSY)) {
spi_finalize_current_transfer(spi->master);
return;
}
cond_resched();
} while (!time_after_eq(jiffies, end));
if (spi->master->cur_msg)
spi->master->cur_msg->status = -EIO;
spi_finalize_current_transfer(spi->master);
}
static void lantiq_ssc_handle_err(struct spi_master *master,
struct spi_message *message)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
/* flush FIFOs on timeout */
rx_fifo_flush(spi);
tx_fifo_flush(spi);
}
static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
unsigned int cs = spidev->chip_select;
u32 fgpo;
if (!!(spidev->mode & SPI_CS_HIGH) == enable)
fgpo = (1 << (cs - spi->base_cs));
else
fgpo = (1 << (cs - spi->base_cs + SPI_FGPO_SETOUTN_S));
lantiq_ssc_writel(spi, fgpo, SPI_FPGO);
}
static int lantiq_ssc_transfer_one(struct spi_master *master,
struct spi_device *spidev,
struct spi_transfer *t)
{
struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
hw_setup_transfer(spi, spidev, t);
return transfer_start(spi, spidev, t);
}
static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
.irnen_r = SPI_IRNEN_R_XWAY,
.irnen_t = SPI_IRNEN_T_XWAY,
};
static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
.irnen_r = SPI_IRNEN_R_XRX,
.irnen_t = SPI_IRNEN_T_XRX,
};
static const struct of_device_id lantiq_ssc_match[] = {
{ .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
{ .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
{ .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
{},
};
MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
static int lantiq_ssc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_master *master;
struct resource *res;
struct lantiq_ssc_spi *spi;
const struct lantiq_ssc_hwcfg *hwcfg;
const struct of_device_id *match;
int err, rx_irq, tx_irq, err_irq;
u32 id, supports_dma, revision;
unsigned int num_cs;
match = of_match_device(lantiq_ssc_match, dev);
if (!match) {
dev_err(dev, "no device match\n");
return -EINVAL;
}
hwcfg = match->data;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "failed to get resources\n");
return -ENXIO;
}
rx_irq = platform_get_irq_byname(pdev, SPI_RX_IRQ_NAME);
if (rx_irq < 0) {
dev_err(dev, "failed to get %s\n", SPI_RX_IRQ_NAME);
return -ENXIO;
}
tx_irq = platform_get_irq_byname(pdev, SPI_TX_IRQ_NAME);
if (tx_irq < 0) {
dev_err(dev, "failed to get %s\n", SPI_TX_IRQ_NAME);
return -ENXIO;
}
err_irq = platform_get_irq_byname(pdev, SPI_ERR_IRQ_NAME);
if (err_irq < 0) {
dev_err(dev, "failed to get %s\n", SPI_ERR_IRQ_NAME);
return -ENXIO;
}
master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
if (!master)
return -ENOMEM;
spi = spi_master_get_devdata(master);
spi->master = master;
spi->dev = dev;
spi->hwcfg = hwcfg;
platform_set_drvdata(pdev, spi);
spi->regbase = devm_ioremap_resource(dev, res);
if (IS_ERR(spi->regbase)) {
err = PTR_ERR(spi->regbase);
goto err_master_put;
}
err = devm_request_irq(dev, rx_irq, lantiq_ssc_xmit_interrupt,
0, SPI_RX_IRQ_NAME, spi);
if (err)
goto err_master_put;
err = devm_request_irq(dev, tx_irq, lantiq_ssc_xmit_interrupt,
0, SPI_TX_IRQ_NAME, spi);
if (err)
goto err_master_put;
err = devm_request_irq(dev, err_irq, lantiq_ssc_err_interrupt,
0, SPI_ERR_IRQ_NAME, spi);
if (err)
goto err_master_put;
spi->spi_clk = devm_clk_get(dev, "gate");
if (IS_ERR(spi->spi_clk)) {
err = PTR_ERR(spi->spi_clk);
goto err_master_put;
}
err = clk_prepare_enable(spi->spi_clk);
if (err)
goto err_master_put;
/*
* Use the old clk_get_fpi() function on Lantiq platform, till it
* supports common clk.
*/
#if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
spi->fpi_clk = clk_get_fpi();
#else
spi->fpi_clk = clk_get(dev, "freq");
#endif
if (IS_ERR(spi->fpi_clk)) {
err = PTR_ERR(spi->fpi_clk);
goto err_clk_disable;
}
num_cs = 8;
of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
spi->base_cs = 1;
of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
spin_lock_init(&spi->lock);
spi->bits_per_word = 8;
spi->speed_hz = 0;
master->dev.of_node = pdev->dev.of_node;
master->num_chipselect = num_cs;
master->setup = lantiq_ssc_setup;
master->set_cs = lantiq_ssc_set_cs;
master->handle_err = lantiq_ssc_handle_err;
master->prepare_message = lantiq_ssc_prepare_message;
master->unprepare_message = lantiq_ssc_unprepare_message;
master->transfer_one = lantiq_ssc_transfer_one;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
SPI_LOOP;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
spi->wq = alloc_ordered_workqueue(dev_name(dev), 0);
if (!spi->wq) {
err = -ENOMEM;
goto err_clk_put;
}
INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
id = lantiq_ssc_readl(spi, SPI_ID);
spi->tx_fifo_size = (id & SPI_ID_TXFS_M) >> SPI_ID_TXFS_S;
spi->rx_fifo_size = (id & SPI_ID_RXFS_M) >> SPI_ID_RXFS_S;
supports_dma = (id & SPI_ID_CFG_M) >> SPI_ID_CFG_S;
revision = id & SPI_ID_REV_M;
lantiq_ssc_hw_init(spi);
dev_info(dev,
"Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
err = devm_spi_register_master(dev, master);
if (err) {
dev_err(dev, "failed to register spi_master\n");
goto err_wq_destroy;
}
return 0;
err_wq_destroy:
destroy_workqueue(spi->wq);
err_clk_put:
clk_put(spi->fpi_clk);
err_clk_disable:
clk_disable_unprepare(spi->spi_clk);
err_master_put:
spi_master_put(master);
return err;
}
static int lantiq_ssc_remove(struct platform_device *pdev)
{
struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
lantiq_ssc_writel(spi, 0, SPI_IRNEN);
lantiq_ssc_writel(spi, 0, SPI_CLC);
rx_fifo_flush(spi);
tx_fifo_flush(spi);
hw_enter_config_mode(spi);
destroy_workqueue(spi->wq);
clk_disable_unprepare(spi->spi_clk);
clk_put(spi->fpi_clk);
return 0;
}
static struct platform_driver lantiq_ssc_driver = {
.probe = lantiq_ssc_probe,
.remove = lantiq_ssc_remove,
.driver = {
.name = "spi-lantiq-ssc",
.owner = THIS_MODULE,
.of_match_table = lantiq_ssc_match,
},
};
module_platform_driver(lantiq_ssc_driver);
MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:spi-lantiq-ssc");
......@@ -437,8 +437,9 @@ static int mpc52xx_spi_probe(struct platform_device *op)
ms->gpio_cs_count = of_gpio_count(op->dev.of_node);
if (ms->gpio_cs_count > 0) {
master->num_chipselect = ms->gpio_cs_count;
ms->gpio_cs = kmalloc(ms->gpio_cs_count * sizeof(unsigned int),
GFP_KERNEL);
ms->gpio_cs = kmalloc_array(ms->gpio_cs_count,
sizeof(*ms->gpio_cs),
GFP_KERNEL);
if (!ms->gpio_cs) {
rc = -ENOMEM;
goto err_alloc_gpio;
......@@ -448,8 +449,7 @@ static int mpc52xx_spi_probe(struct platform_device *op)
gpio_cs = of_get_gpio(op->dev.of_node, i);
if (gpio_cs < 0) {
dev_err(&op->dev,
"could not parse the gpio field "
"in oftree\n");
"could not parse the gpio field in oftree\n");
rc = -ENODEV;
goto err_gpio;
}
......@@ -457,8 +457,8 @@ static int mpc52xx_spi_probe(struct platform_device *op)
rc = gpio_request(gpio_cs, dev_name(&op->dev));
if (rc) {
dev_err(&op->dev,
"can't request spi cs gpio #%d "
"on gpio line %d\n", i, gpio_cs);
"can't request spi cs gpio #%d on gpio line %d\n",
i, gpio_cs);
goto err_gpio;
}
......
......@@ -73,7 +73,7 @@
#define MTK_SPI_IDLE 0
#define MTK_SPI_PAUSED 1
#define MTK_SPI_MAX_FIFO_SIZE 32
#define MTK_SPI_MAX_FIFO_SIZE 32U
#define MTK_SPI_PACKET_SIZE 1024
struct mtk_spi_compatible {
......@@ -333,7 +333,7 @@ static int mtk_spi_fifo_transfer(struct spi_master *master,
struct mtk_spi *mdata = spi_master_get_devdata(master);
mdata->cur_transfer = xfer;
mdata->xfer_len = xfer->len;
mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, xfer->len);
mtk_spi_prepare_transfer(master, xfer);
mtk_spi_setup_packet(master);
......@@ -410,7 +410,10 @@ static bool mtk_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
return xfer->len > MTK_SPI_MAX_FIFO_SIZE;
/* Buffers for DMA transactions must be 4-byte aligned */
return (xfer->len > MTK_SPI_MAX_FIFO_SIZE &&
(unsigned long)xfer->tx_buf % 4 == 0 &&
(unsigned long)xfer->rx_buf % 4 == 0);
}
static int mtk_spi_setup(struct spi_device *spi)
......@@ -451,7 +454,33 @@ static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
&reg_val, remainder);
}
}
spi_finalize_current_transfer(master);
trans->len -= mdata->xfer_len;
if (!trans->len) {
spi_finalize_current_transfer(master);
return IRQ_HANDLED;
}
if (trans->tx_buf)
trans->tx_buf += mdata->xfer_len;
if (trans->rx_buf)
trans->rx_buf += mdata->xfer_len;
mdata->xfer_len = min(MTK_SPI_MAX_FIFO_SIZE, trans->len);
mtk_spi_setup_packet(master);
cnt = trans->len / 4;
iowrite32_rep(mdata->base + SPI_TX_DATA_REG, trans->tx_buf, cnt);
remainder = trans->len % 4;
if (remainder > 0) {
reg_val = 0;
memcpy(&reg_val, trans->tx_buf + (cnt * 4), remainder);
writel(reg_val, mdata->base + SPI_TX_DATA_REG);
}
mtk_spi_enable_transfer(master);
return IRQ_HANDLED;
}
......
......@@ -411,7 +411,7 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
if (num_gpios > 0) {
int i;
hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
hw->gpios = kcalloc(num_gpios, sizeof(*hw->gpios), GFP_KERNEL);
if (!hw->gpios) {
ret = -ENOMEM;
goto free_master;
......@@ -428,8 +428,9 @@ static int spi_ppc4xx_of_probe(struct platform_device *op)
/* Real CS - set the initial state. */
ret = gpio_request(gpio, np->name);
if (ret < 0) {
dev_err(dev, "can't request gpio "
"#%d: %d\n", i, ret);
dev_err(dev,
"can't request gpio #%d: %d\n",
i, ret);
goto free_gpios;
}
......
......@@ -41,6 +41,13 @@ struct pxa_spi_info {
static struct dw_dma_slave byt_tx_param = { .dst_id = 0 };
static struct dw_dma_slave byt_rx_param = { .src_id = 1 };
static struct dw_dma_slave mrfld3_tx_param = { .dst_id = 15 };
static struct dw_dma_slave mrfld3_rx_param = { .src_id = 14 };
static struct dw_dma_slave mrfld5_tx_param = { .dst_id = 13 };
static struct dw_dma_slave mrfld5_rx_param = { .src_id = 12 };
static struct dw_dma_slave mrfld6_tx_param = { .dst_id = 11 };
static struct dw_dma_slave mrfld6_rx_param = { .src_id = 10 };
static struct dw_dma_slave bsw0_tx_param = { .dst_id = 0 };
static struct dw_dma_slave bsw0_rx_param = { .src_id = 1 };
static struct dw_dma_slave bsw1_tx_param = { .dst_id = 6 };
......@@ -93,22 +100,39 @@ static int lpss_spi_setup(struct pci_dev *dev, struct pxa_spi_info *c)
static int mrfld_spi_setup(struct pci_dev *dev, struct pxa_spi_info *c)
{
struct pci_dev *dma_dev = pci_get_slot(dev->bus, PCI_DEVFN(21, 0));
struct dw_dma_slave *tx, *rx;
switch (PCI_FUNC(dev->devfn)) {
case 0:
c->port_id = 3;
c->num_chipselect = 1;
c->tx_param = &mrfld3_tx_param;
c->rx_param = &mrfld3_rx_param;
break;
case 1:
c->port_id = 5;
c->num_chipselect = 4;
c->tx_param = &mrfld5_tx_param;
c->rx_param = &mrfld5_rx_param;
break;
case 2:
c->port_id = 6;
c->num_chipselect = 1;
c->tx_param = &mrfld6_tx_param;
c->rx_param = &mrfld6_rx_param;
break;
default:
return -ENODEV;
}
tx = c->tx_param;
tx->dma_dev = &dma_dev->dev;
rx = c->rx_param;
rx->dma_dev = &dma_dev->dev;
c->dma_filter = lpss_dma_filter;
return 0;
}
......@@ -203,10 +227,16 @@ static int pxa2xx_spi_pci_probe(struct pci_dev *dev,
ssp = &spi_pdata.ssp;
ssp->phys_base = pci_resource_start(dev, 0);
ssp->mmio_base = pcim_iomap_table(dev)[0];
ssp->irq = dev->irq;
ssp->port_id = (c->port_id >= 0) ? c->port_id : dev->devfn;
ssp->type = c->type;
pci_set_master(dev);
ret = pci_alloc_irq_vectors(dev, 1, 1, PCI_IRQ_ALL_TYPES);
if (ret < 0)
return ret;
ssp->irq = pci_irq_vector(dev, 0);
snprintf(buf, sizeof(buf), "pxa2xx-spi.%d", ssp->port_id);
ssp->clk = clk_register_fixed_rate(&dev->dev, buf , NULL, 0,
c->max_clk_rate);
......
......@@ -732,6 +732,20 @@ static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
return IRQ_HANDLED;
}
static void handle_bad_msg(struct driver_data *drv_data)
{
pxa2xx_spi_write(drv_data, SSCR0,
pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
pxa2xx_spi_write(drv_data, SSCR1,
pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
if (!pxa25x_ssp_comp(drv_data))
pxa2xx_spi_write(drv_data, SSTO, 0);
write_SSSR_CS(drv_data, drv_data->clear_sr);
dev_err(&drv_data->pdev->dev,
"bad message state in interrupt handler\n");
}
static irqreturn_t ssp_int(int irq, void *dev_id)
{
struct driver_data *drv_data = dev_id;
......@@ -771,21 +785,11 @@ static irqreturn_t ssp_int(int irq, void *dev_id)
if (!(status & mask))
return IRQ_NONE;
if (!drv_data->master->cur_msg) {
pxa2xx_spi_write(drv_data, SSCR0,
pxa2xx_spi_read(drv_data, SSCR0)
& ~SSCR0_SSE);
pxa2xx_spi_write(drv_data, SSCR1,
pxa2xx_spi_read(drv_data, SSCR1)
& ~drv_data->int_cr1);
if (!pxa25x_ssp_comp(drv_data))
pxa2xx_spi_write(drv_data, SSTO, 0);
write_SSSR_CS(drv_data, drv_data->clear_sr);
dev_err(&drv_data->pdev->dev,
"bad message state in interrupt handler\n");
pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
if (!drv_data->master->cur_msg) {
handle_bad_msg(drv_data);
/* Never fail */
return IRQ_HANDLED;
}
......@@ -1458,6 +1462,10 @@ static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
/* GLK */
{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
/* APL */
{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
......
......@@ -17,6 +17,7 @@
#include <linux/dmaengine.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/pm_runtime.h>
......@@ -843,6 +844,8 @@ static int rockchip_spi_suspend(struct device *dev)
clk_disable_unprepare(rs->apb_pclk);
}
pinctrl_pm_select_sleep_state(dev);
return ret;
}
......@@ -852,6 +855,8 @@ static int rockchip_spi_resume(struct device *dev)
struct spi_master *master = dev_get_drvdata(dev);
struct rockchip_spi *rs = spi_master_get_devdata(master);
pinctrl_pm_select_default_state(dev);
if (!pm_runtime_suspended(dev)) {
ret = clk_prepare_enable(rs->apb_pclk);
if (ret < 0)
......
......@@ -808,7 +808,7 @@ static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
for (i = 0; i < len; i++)
rspi_write_data(rspi, *tx++);
} else {
ret = rspi_pio_transfer(rspi, tx, NULL, n);
ret = rspi_pio_transfer(rspi, tx, NULL, len);
if (ret < 0)
return ret;
}
......@@ -845,10 +845,9 @@ static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
for (i = 0; i < len; i++)
*rx++ = rspi_read_data(rspi);
} else {
ret = rspi_pio_transfer(rspi, NULL, rx, n);
ret = rspi_pio_transfer(rspi, NULL, rx, len);
if (ret < 0)
return ret;
*rx++ = ret;
}
n -= len;
}
......@@ -1227,10 +1226,8 @@ static int rspi_probe(struct platform_device *pdev)
const struct spi_ops *ops;
master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
if (master == NULL) {
dev_err(&pdev->dev, "spi_alloc_master error.\n");
if (master == NULL)
return -ENOMEM;
}
of_id = of_match_device(rspi_of_match, &pdev->dev);
if (of_id) {
......
......@@ -341,43 +341,16 @@ static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
struct device *dev = &sdd->pdev->dev;
if (is_polling(sdd))
return 0;
/* Acquire DMA channels */
sdd->rx_dma.ch = dma_request_slave_channel(dev, "rx");
if (!sdd->rx_dma.ch) {
dev_err(dev, "Failed to get RX DMA channel\n");
return -EBUSY;
}
spi->dma_rx = sdd->rx_dma.ch;
sdd->tx_dma.ch = dma_request_slave_channel(dev, "tx");
if (!sdd->tx_dma.ch) {
dev_err(dev, "Failed to get TX DMA channel\n");
dma_release_channel(sdd->rx_dma.ch);
return -EBUSY;
}
spi->dma_tx = sdd->tx_dma.ch;
return 0;
}
static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
{
struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
/* Free DMA channels */
if (!is_polling(sdd)) {
dma_release_channel(sdd->rx_dma.ch);
dma_release_channel(sdd->tx_dma.ch);
}
return 0;
}
static bool s3c64xx_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
......@@ -996,7 +969,7 @@ static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
sci->num_cs = temp;
}
sci->no_cs = of_property_read_bool(dev->of_node, "broken-cs");
sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback");
return sci;
}
......@@ -1094,7 +1067,6 @@ static int s3c64xx_spi_probe(struct platform_device *pdev)
master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
master->prepare_message = s3c64xx_spi_prepare_message;
master->transfer_one = s3c64xx_spi_transfer_one;
master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
master->num_chipselect = sci->num_cs;
master->dma_alignment = 8;
master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
......@@ -1161,6 +1133,24 @@ static int s3c64xx_spi_probe(struct platform_device *pdev)
}
}
if (!is_polling(sdd)) {
/* Acquire DMA channels */
sdd->rx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
"rx");
if (IS_ERR(sdd->rx_dma.ch)) {
dev_err(&pdev->dev, "Failed to get RX DMA channel\n");
ret = PTR_ERR(sdd->rx_dma.ch);
goto err_disable_io_clk;
}
sdd->tx_dma.ch = dma_request_slave_channel_reason(&pdev->dev,
"tx");
if (IS_ERR(sdd->tx_dma.ch)) {
dev_err(&pdev->dev, "Failed to get TX DMA channel\n");
ret = PTR_ERR(sdd->tx_dma.ch);
goto err_release_rx_dma;
}
}
pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
......@@ -1206,6 +1196,12 @@ static int s3c64xx_spi_probe(struct platform_device *pdev)
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
if (!is_polling(sdd))
dma_release_channel(sdd->tx_dma.ch);
err_release_rx_dma:
if (!is_polling(sdd))
dma_release_channel(sdd->rx_dma.ch);
err_disable_io_clk:
clk_disable_unprepare(sdd->ioclk);
err_disable_src_clk:
clk_disable_unprepare(sdd->src_clk);
......@@ -1226,6 +1222,11 @@ static int s3c64xx_spi_remove(struct platform_device *pdev)
writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
if (!is_polling(sdd)) {
dma_release_channel(sdd->rx_dma.ch);
dma_release_channel(sdd->tx_dma.ch);
}
clk_disable_unprepare(sdd->ioclk);
clk_disable_unprepare(sdd->src_clk);
......
......@@ -1164,10 +1164,8 @@ static int sh_msiof_spi_probe(struct platform_device *pdev)
int ret;
master = spi_alloc_master(&pdev->dev, sizeof(struct sh_msiof_spi_priv));
if (master == NULL) {
dev_err(&pdev->dev, "failed to allocate spi master\n");
if (master == NULL)
return -ENOMEM;
}
p = spi_master_get_devdata(master);
......
......@@ -652,7 +652,8 @@ static int ti_qspi_probe(struct platform_device *pdev)
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
dev_err(&pdev->dev, "missing platform data\n");
return -ENODEV;
ret = -ENODEV;
goto free_master;
}
}
......@@ -669,7 +670,8 @@ static int ti_qspi_probe(struct platform_device *pdev)
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "no irq resource?\n");
return irq;
ret = irq;
goto free_master;
}
mutex_init(&qspi->list_lock);
......@@ -685,15 +687,17 @@ static int ti_qspi_probe(struct platform_device *pdev)
qspi->ctrl_base =
syscon_regmap_lookup_by_phandle(np,
"syscon-chipselects");
if (IS_ERR(qspi->ctrl_base))
return PTR_ERR(qspi->ctrl_base);
if (IS_ERR(qspi->ctrl_base)) {
ret = PTR_ERR(qspi->ctrl_base);
goto free_master;
}
ret = of_property_read_u32_index(np,
"syscon-chipselects",
1, &qspi->ctrl_reg);
if (ret) {
dev_err(&pdev->dev,
"couldn't get ctrl_mod reg index\n");
return ret;
goto free_master;
}
}
......@@ -714,9 +718,10 @@ static int ti_qspi_probe(struct platform_device *pdev)
dma_cap_set(DMA_MEMCPY, mask);
qspi->rx_chan = dma_request_chan_by_mask(&mask);
if (!qspi->rx_chan) {
if (IS_ERR(qspi->rx_chan)) {
dev_err(qspi->dev,
"No Rx DMA available, trying mmap mode\n");
qspi->rx_chan = NULL;
ret = 0;
goto no_dma;
}
......@@ -742,6 +747,7 @@ static int ti_qspi_probe(struct platform_device *pdev)
if (!ret)
return 0;
pm_runtime_disable(&pdev->dev);
free_master:
spi_master_put(master);
return ret;
......
......@@ -591,7 +591,6 @@ static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
if (!data->pkt_rx_buff) {
/* flush queue and set status of all transfers to -ENOMEM */
dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
pmsg->status = -ENOMEM;
......@@ -622,8 +621,9 @@ static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
if (n_writes > PCH_MAX_FIFO_DEPTH)
n_writes = PCH_MAX_FIFO_DEPTH;
dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
"0x2 to SSNXCR\n", __func__);
dev_dbg(&data->master->dev,
"\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
__func__);
pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
for (j = 0; j < n_writes; j++)
......@@ -915,7 +915,6 @@ static void pch_spi_release_dma(struct pch_spi_data *data)
dma_release_channel(dma->chan_rx);
dma->chan_rx = NULL;
}
return;
}
static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
......@@ -1008,7 +1007,7 @@ static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
spin_unlock_irqrestore(&data->lock, flags);
/* RX */
dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
/* offset, length setting */
sg = dma->sg_rx_p;
......@@ -1068,7 +1067,7 @@ static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
head = 0;
}
dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
/* offset, length setting */
sg = dma->sg_tx_p;
......@@ -1181,14 +1180,16 @@ static void pch_spi_process_messages(struct work_struct *pwork)
data->cur_trans =
list_entry(data->current_msg->transfers.next,
struct spi_transfer, transfer_list);
dev_dbg(&data->master->dev, "%s "
":Getting 1st transfer message\n", __func__);
dev_dbg(&data->master->dev,
"%s :Getting 1st transfer message\n",
__func__);
} else {
data->cur_trans =
list_entry(data->cur_trans->transfer_list.next,
struct spi_transfer, transfer_list);
dev_dbg(&data->master->dev, "%s "
":Getting next transfer message\n", __func__);
dev_dbg(&data->master->dev,
"%s :Getting next transfer message\n",
__func__);
}
spin_unlock(&data->lock);
......@@ -1233,9 +1234,8 @@ static void pch_spi_process_messages(struct work_struct *pwork)
/* check for delay */
if (data->cur_trans->delay_usecs) {
dev_dbg(&data->master->dev, "%s:"
"delay in usec=%d\n", __func__,
data->cur_trans->delay_usecs);
dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
__func__, data->cur_trans->delay_usecs);
udelay(data->cur_trans->delay_usecs);
}
......@@ -1292,7 +1292,6 @@ static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
if (dma->rx_buf_dma)
dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
dma->rx_buf_virt, dma->rx_buf_dma);
return;
}
static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
......@@ -1541,11 +1540,11 @@ static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
int i;
struct pch_pd_dev_save *pd_dev_save;
pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
if (!pd_dev_save)
return -ENOMEM;
board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
if (!board_dat) {
retval = -ENOMEM;
goto err_no_mem;
......
......@@ -621,8 +621,10 @@ void spi_unregister_device(struct spi_device *spi)
if (!spi)
return;
if (spi->dev.of_node)
if (spi->dev.of_node) {
of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
of_node_put(spi->dev.of_node);
}
if (ACPI_COMPANION(&spi->dev))
acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
device_unregister(&spi->dev);
......@@ -672,7 +674,7 @@ int spi_register_board_info(struct spi_board_info const *info, unsigned n)
if (!n)
return -EINVAL;
bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
if (!bi)
return -ENOMEM;
......@@ -805,12 +807,12 @@ static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
if (master->dma_tx)
tx_dev = master->dma_tx->device->dev;
else
tx_dev = &master->dev;
tx_dev = master->dev.parent;
if (master->dma_rx)
rx_dev = master->dma_rx->device->dev;
else
rx_dev = &master->dev;
rx_dev = master->dev.parent;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
if (!master->can_dma(master, msg->spi, xfer))
......@@ -852,12 +854,12 @@ static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
if (master->dma_tx)
tx_dev = master->dma_tx->device->dev;
else
tx_dev = &master->dev;
tx_dev = master->dev.parent;
if (master->dma_rx)
rx_dev = master->dma_rx->device->dev;
else
rx_dev = &master->dev;
rx_dev = master->dev.parent;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
if (!master->can_dma(master, msg->spi, xfer))
......@@ -1502,37 +1504,18 @@ static int spi_master_initialize_queue(struct spi_master *master)
/*-------------------------------------------------------------------------*/
#if defined(CONFIG_OF)
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
static int of_spi_parse_dt(struct spi_master *master, struct spi_device *spi,
struct device_node *nc)
{
struct spi_device *spi;
int rc;
u32 value;
/* Alloc an spi_device */
spi = spi_alloc_device(master);
if (!spi) {
dev_err(&master->dev, "spi_device alloc error for %s\n",
nc->full_name);
rc = -ENOMEM;
goto err_out;
}
/* Select device driver */
rc = of_modalias_node(nc, spi->modalias,
sizeof(spi->modalias));
if (rc < 0) {
dev_err(&master->dev, "cannot find modalias for %s\n",
nc->full_name);
goto err_out;
}
int rc;
/* Device address */
rc = of_property_read_u32(nc, "reg", &value);
if (rc) {
dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
nc->full_name, rc);
goto err_out;
return rc;
}
spi->chip_select = value;
......@@ -1590,10 +1573,41 @@ of_register_spi_device(struct spi_master *master, struct device_node *nc)
if (rc) {
dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
nc->full_name, rc);
goto err_out;
return rc;
}
spi->max_speed_hz = value;
return 0;
}
static struct spi_device *
of_register_spi_device(struct spi_master *master, struct device_node *nc)
{
struct spi_device *spi;
int rc;
/* Alloc an spi_device */
spi = spi_alloc_device(master);
if (!spi) {
dev_err(&master->dev, "spi_device alloc error for %s\n",
nc->full_name);
rc = -ENOMEM;
goto err_out;
}
/* Select device driver */
rc = of_modalias_node(nc, spi->modalias,
sizeof(spi->modalias));
if (rc < 0) {
dev_err(&master->dev, "cannot find modalias for %s\n",
nc->full_name);
goto err_out;
}
rc = of_spi_parse_dt(master, spi, nc);
if (rc)
goto err_out;
/* Store a pointer to the node in the device structure */
of_node_get(nc);
spi->dev.of_node = nc;
......@@ -1603,11 +1617,13 @@ of_register_spi_device(struct spi_master *master, struct device_node *nc)
if (rc) {
dev_err(&master->dev, "spi_device register error %s\n",
nc->full_name);
goto err_out;
goto err_of_node_put;
}
return spi;
err_of_node_put:
of_node_put(nc);
err_out:
spi_dev_put(spi);
return ERR_PTR(rc);
......
......@@ -5,25 +5,14 @@ struct spi_device;
/**
* struct ep93xx_spi_info - EP93xx specific SPI descriptor
* @num_chipselect: number of chip selects on this board, must be
* at least one
* @chipselect: array of gpio numbers to use as chip selects
* @num_chipselect: ARRAY_SIZE(chipselect)
* @use_dma: use DMA for the transfers
*/
struct ep93xx_spi_info {
int *chipselect;
int num_chipselect;
bool use_dma;
};
/**
* struct ep93xx_spi_chip_ops - operation callbacks for SPI slave device
* @setup: setup the chip select mechanism
* @cleanup: cleanup the chip select mechanism
* @cs_control: control the device chip select
*/
struct ep93xx_spi_chip_ops {
int (*setup)(struct spi_device *spi);
void (*cleanup)(struct spi_device *spi);
void (*cs_control)(struct spi_device *spi, int value);
};
#endif /* __ASM_MACH_EP93XX_SPI_H */
......@@ -90,9 +90,9 @@
#define SSSR_RFL_MASK (0xf << 12) /* Receive FIFO Level mask */
#define SSCR1_TFT (0x000003c0) /* Transmit FIFO Threshold (mask) */
#define SSCR1_TxTresh(x) (((x) - 1) << 6) /* level [1..16] */
#define SSCR1_TxTresh(x) (((x) - 1) << 6) /* level [1..16] */
#define SSCR1_RFT (0x00003c00) /* Receive FIFO Threshold (mask) */
#define SSCR1_RxTresh(x) (((x) - 1) << 10) /* level [1..16] */
#define SSCR1_RxTresh(x) (((x) - 1) << 10) /* level [1..16] */
#define RX_THRESH_CE4100_DFLT 2
#define TX_THRESH_CE4100_DFLT 2
......@@ -106,9 +106,9 @@
#define CE4100_SSCR1_RxTresh(x) (((x) - 1) << 10) /* level [1..4] */
/* QUARK_X1000 SSCR0 bit definition */
#define QUARK_X1000_SSCR0_DSS (0x1F) /* Data Size Select (mask) */
#define QUARK_X1000_SSCR0_DataSize(x) ((x) - 1) /* Data Size Select [4..32] */
#define QUARK_X1000_SSCR0_FRF (0x3 << 5) /* FRame Format (mask) */
#define QUARK_X1000_SSCR0_DSS (0x1F << 0) /* Data Size Select (mask) */
#define QUARK_X1000_SSCR0_DataSize(x) ((x) - 1) /* Data Size Select [4..32] */
#define QUARK_X1000_SSCR0_FRF (0x3 << 5) /* FRame Format (mask) */
#define QUARK_X1000_SSCR0_Motorola (0x0 << 5) /* Motorola's Serial Peripheral Interface (SPI) */
#define RX_THRESH_QUARK_X1000_DFLT 1
......@@ -121,8 +121,8 @@
#define QUARK_X1000_SSCR1_TxTresh(x) (((x) - 1) << 6) /* level [1..32] */
#define QUARK_X1000_SSCR1_RFT (0x1F << 11) /* Receive FIFO Threshold (mask) */
#define QUARK_X1000_SSCR1_RxTresh(x) (((x) - 1) << 11) /* level [1..32] */
#define QUARK_X1000_SSCR1_STRF (1 << 17) /* Select FIFO or EFWR */
#define QUARK_X1000_SSCR1_EFWR (1 << 16) /* Enable FIFO Write/Read */
#define QUARK_X1000_SSCR1_STRF (1 << 17) /* Select FIFO or EFWR */
#define QUARK_X1000_SSCR1_EFWR (1 << 16) /* Enable FIFO Write/Read */
/* extra bits in PXA255, PXA26x and PXA27x SSP ports */
#define SSCR0_TISSP (1 << 4) /* TI Sync Serial Protocol */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment