Commit 8b6591fd authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'x86_platform_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 platform updates from Borislav Petkov:

 - Cleanup different aspects of the UV code and start adding support for
   the new UV5 class of systems (Mike Travis)

 - Use a flexible array for a dynamically sized struct uv_rtc_timer_head
   (Gustavo A. R. Silva)

* tag 'x86_platform_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/platform/uv: Update Copyrights to conform to HPE standards
  x86/platform/uv: Update for UV5 NMI MMR changes
  x86/platform/uv: Update UV5 TSC checking
  x86/platform/uv: Update node present counting
  x86/platform/uv: Update UV5 MMR references in UV GRU
  x86/platform/uv: Adjust GAM MMR references affected by UV5 updates
  x86/platform/uv: Update MMIOH references based on new UV5 MMRs
  x86/platform/uv: Add and decode Arch Type in UVsystab
  x86/platform/uv: Add UV5 direct references
  x86/platform/uv: Update UV MMRs for UV5
  drivers/misc/sgi-xp: Adjust references in UV kernel modules
  x86/platform/uv: Remove SCIR MMR references for UV systems
  x86/platform/uv: Remove UV BAU TLB Shootdown Handler
  x86/uv/time: Use a flexible array in struct uv_rtc_timer_head
parents 92a0610b 7a6d94f0
...@@ -591,10 +591,6 @@ DECLARE_IDTENTRY_SYSVEC(CALL_FUNCTION_VECTOR, sysvec_call_function); ...@@ -591,10 +591,6 @@ DECLARE_IDTENTRY_SYSVEC(CALL_FUNCTION_VECTOR, sysvec_call_function);
#endif #endif
#ifdef CONFIG_X86_LOCAL_APIC #ifdef CONFIG_X86_LOCAL_APIC
# ifdef CONFIG_X86_UV
DECLARE_IDTENTRY_SYSVEC(UV_BAU_MESSAGE, sysvec_uv_bau_message);
# endif
# ifdef CONFIG_X86_MCE_THRESHOLD # ifdef CONFIG_X86_MCE_THRESHOLD
DECLARE_IDTENTRY_SYSVEC(THRESHOLD_APIC_VECTOR, sysvec_threshold); DECLARE_IDTENTRY_SYSVEC(THRESHOLD_APIC_VECTOR, sysvec_threshold);
# endif # endif
......
...@@ -5,7 +5,8 @@ ...@@ -5,7 +5,8 @@
/* /*
* UV BIOS layer definitions. * UV BIOS layer definitions.
* *
* Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved. * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
* Copyright (c) Russ Anderson <rja@sgi.com> * Copyright (c) Russ Anderson <rja@sgi.com>
*/ */
...@@ -71,6 +72,11 @@ struct uv_gam_range_entry { ...@@ -71,6 +72,11 @@ struct uv_gam_range_entry {
u32 limit; /* PA bits 56:26 (UV_GAM_RANGE_SHFT) */ u32 limit; /* PA bits 56:26 (UV_GAM_RANGE_SHFT) */
}; };
#define UV_AT_SIZE 8 /* 7 character arch type + NULL char */
struct uv_arch_type_entry {
char archtype[UV_AT_SIZE];
};
#define UV_SYSTAB_SIG "UVST" #define UV_SYSTAB_SIG "UVST"
#define UV_SYSTAB_VERSION_1 1 /* UV2/3 BIOS version */ #define UV_SYSTAB_VERSION_1 1 /* UV2/3 BIOS version */
#define UV_SYSTAB_VERSION_UV4 0x400 /* UV4 BIOS base version */ #define UV_SYSTAB_VERSION_UV4 0x400 /* UV4 BIOS base version */
...@@ -79,10 +85,14 @@ struct uv_gam_range_entry { ...@@ -79,10 +85,14 @@ struct uv_gam_range_entry {
#define UV_SYSTAB_VERSION_UV4_3 0x403 /* - GAM Range PXM Value */ #define UV_SYSTAB_VERSION_UV4_3 0x403 /* - GAM Range PXM Value */
#define UV_SYSTAB_VERSION_UV4_LATEST UV_SYSTAB_VERSION_UV4_3 #define UV_SYSTAB_VERSION_UV4_LATEST UV_SYSTAB_VERSION_UV4_3
#define UV_SYSTAB_VERSION_UV5 0x500 /* UV5 GAM base version */
#define UV_SYSTAB_VERSION_UV5_LATEST UV_SYSTAB_VERSION_UV5
#define UV_SYSTAB_TYPE_UNUSED 0 /* End of table (offset == 0) */ #define UV_SYSTAB_TYPE_UNUSED 0 /* End of table (offset == 0) */
#define UV_SYSTAB_TYPE_GAM_PARAMS 1 /* GAM PARAM conversions */ #define UV_SYSTAB_TYPE_GAM_PARAMS 1 /* GAM PARAM conversions */
#define UV_SYSTAB_TYPE_GAM_RNG_TBL 2 /* GAM entry table */ #define UV_SYSTAB_TYPE_GAM_RNG_TBL 2 /* GAM entry table */
#define UV_SYSTAB_TYPE_MAX 3 #define UV_SYSTAB_TYPE_ARCH_TYPE 3 /* UV arch type */
#define UV_SYSTAB_TYPE_MAX 4
/* /*
* The UV system table describes specific firmware * The UV system table describes specific firmware
...@@ -133,6 +143,7 @@ extern s64 uv_bios_reserved_page_pa(u64, u64 *, u64 *, u64 *); ...@@ -133,6 +143,7 @@ extern s64 uv_bios_reserved_page_pa(u64, u64 *, u64 *, u64 *);
extern int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus); extern int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus);
extern int uv_bios_init(void); extern int uv_bios_init(void);
extern unsigned long get_uv_systab_phys(bool msg);
extern unsigned long sn_rtc_cycles_per_second; extern unsigned long sn_rtc_cycles_per_second;
extern int uv_type; extern int uv_type;
......
...@@ -35,10 +35,8 @@ extern int is_uv_hubbed(int uvtype); ...@@ -35,10 +35,8 @@ extern int is_uv_hubbed(int uvtype);
extern void uv_cpu_init(void); extern void uv_cpu_init(void);
extern void uv_nmi_init(void); extern void uv_nmi_init(void);
extern void uv_system_init(void); extern void uv_system_init(void);
extern const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
const struct flush_tlb_info *info);
#else /* X86_UV */ #else /* !X86_UV */
static inline enum uv_system_type get_uv_system_type(void) { return UV_NONE; } static inline enum uv_system_type get_uv_system_type(void) { return UV_NONE; }
static inline bool is_early_uv_system(void) { return 0; } static inline bool is_early_uv_system(void) { return 0; }
......
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV Broadcast Assist Unit definitions
*
* Copyright (C) 2008-2011 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_X86_UV_UV_BAU_H
#define _ASM_X86_UV_UV_BAU_H
#include <linux/bitmap.h>
#include <asm/idtentry.h>
#define BITSPERBYTE 8
/*
* Broadcast Assist Unit messaging structures
*
* Selective Broadcast activations are induced by software action
* specifying a particular 8-descriptor "set" via a 6-bit index written
* to an MMR.
* Thus there are 64 unique 512-byte sets of SB descriptors - one set for
* each 6-bit index value. These descriptor sets are mapped in sequence
* starting with set 0 located at the address specified in the
* BAU_SB_DESCRIPTOR_BASE register, set 1 is located at BASE + 512,
* set 2 is at BASE + 2*512, set 3 at BASE + 3*512, and so on.
*
* We will use one set for sending BAU messages from each of the
* cpu's on the uvhub.
*
* TLB shootdown will use the first of the 8 descriptors of each set.
* Each of the descriptors is 64 bytes in size (8*64 = 512 bytes in a set).
*/
#define MAX_CPUS_PER_UVHUB 128
#define MAX_CPUS_PER_SOCKET 64
#define ADP_SZ 64 /* hardware-provided max. */
#define UV_CPUS_PER_AS 32 /* hardware-provided max. */
#define ITEMS_PER_DESC 8
/* the 'throttle' to prevent the hardware stay-busy bug */
#define MAX_BAU_CONCURRENT 3
#define UV_ACT_STATUS_MASK 0x3
#define UV_ACT_STATUS_SIZE 2
#define UV_DISTRIBUTION_SIZE 256
#define UV_SW_ACK_NPENDING 8
#define UV_NET_ENDPOINT_INTD 0x28
#define UV_PAYLOADQ_GNODE_SHIFT 49
#define UV_PTC_BASENAME "sgi_uv/ptc_statistics"
#define UV_BAU_BASENAME "sgi_uv/bau_tunables"
#define UV_BAU_TUNABLES_DIR "sgi_uv"
#define UV_BAU_TUNABLES_FILE "bau_tunables"
#define WHITESPACE " \t\n"
#define cpubit_isset(cpu, bau_local_cpumask) \
test_bit((cpu), (bau_local_cpumask).bits)
/* [19:16] SOFT_ACK timeout period 19: 1 is urgency 7 17:16 1 is multiplier */
/*
* UV2: Bit 19 selects between
* (0): 10 microsecond timebase and
* (1): 80 microseconds
* we're using 560us
*/
#define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD (15UL)
/* assuming UV3 is the same */
#define BAU_MISC_CONTROL_MULT_MASK 3
#define UVH_AGING_PRESCALE_SEL 0x000000b000UL
/* [30:28] URGENCY_7 an index into a table of times */
#define BAU_URGENCY_7_SHIFT 28
#define BAU_URGENCY_7_MASK 7
#define UVH_TRANSACTION_TIMEOUT 0x000000b200UL
/* [45:40] BAU - BAU transaction timeout select - a multiplier */
#define BAU_TRANS_SHIFT 40
#define BAU_TRANS_MASK 0x3f
/*
* shorten some awkward names
*/
#define AS_PUSH_SHIFT UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT
#define SOFTACK_MSHIFT UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT
#define SOFTACK_PSHIFT UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT
#define SOFTACK_TIMEOUT_PERIOD UV_INTD_SOFT_ACK_TIMEOUT_PERIOD
#define PREFETCH_HINT_SHFT UV3H_LB_BAU_MISC_CONTROL_ENABLE_INTD_PREFETCH_HINT_SHFT
#define SB_STATUS_SHFT UV3H_LB_BAU_MISC_CONTROL_ENABLE_EXTENDED_SB_STATUS_SHFT
#define write_gmmr uv_write_global_mmr64
#define write_lmmr uv_write_local_mmr
#define read_lmmr uv_read_local_mmr
#define read_gmmr uv_read_global_mmr64
/*
* bits in UVH_LB_BAU_SB_ACTIVATION_STATUS_0/1
*/
#define DS_IDLE 0
#define DS_ACTIVE 1
#define DS_DESTINATION_TIMEOUT 2
#define DS_SOURCE_TIMEOUT 3
/*
* bits put together from HRP_LB_BAU_SB_ACTIVATION_STATUS_0/1/2
* values 1 and 3 will not occur
* Decoded meaning ERROR BUSY AUX ERR
* ------------------------------- ---- ----- -------
* IDLE 0 0 0
* BUSY (active) 0 1 0
* SW Ack Timeout (destination) 1 0 0
* SW Ack INTD rejected (strong NACK) 1 0 1
* Source Side Time Out Detected 1 1 0
* Destination Side PUT Failed 1 1 1
*/
#define UV2H_DESC_IDLE 0
#define UV2H_DESC_BUSY 2
#define UV2H_DESC_DEST_TIMEOUT 4
#define UV2H_DESC_DEST_STRONG_NACK 5
#define UV2H_DESC_SOURCE_TIMEOUT 6
#define UV2H_DESC_DEST_PUT_ERR 7
/*
* delay for 'plugged' timeout retries, in microseconds
*/
#define PLUGGED_DELAY 10
/*
* threshholds at which to use IPI to free resources
*/
/* after this # consecutive 'plugged' timeouts, use IPI to release resources */
#define PLUGSB4RESET 100
/* after this many consecutive timeouts, use IPI to release resources */
#define TIMEOUTSB4RESET 1
/* at this number uses of IPI to release resources, giveup the request */
#define IPI_RESET_LIMIT 1
/* after this # consecutive successes, bump up the throttle if it was lowered */
#define COMPLETE_THRESHOLD 5
/* after this # of giveups (fall back to kernel IPI's) disable the use of
the BAU for a period of time */
#define GIVEUP_LIMIT 100
#define UV_LB_SUBNODEID 0x10
#define UV_SA_SHFT UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT
#define UV_SA_MASK UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_MASK
/* 4 bits of software ack period */
#define UV2_ACK_MASK 0x7UL
#define UV2_ACK_UNITS_SHFT 3
#define UV2_EXT_SHFT UV2H_LB_BAU_MISC_CONTROL_ENABLE_EXTENDED_SB_STATUS_SHFT
/*
* number of entries in the destination side payload queue
*/
#define DEST_Q_SIZE 20
/*
* number of destination side software ack resources
*/
#define DEST_NUM_RESOURCES 8
/*
* completion statuses for sending a TLB flush message
*/
#define FLUSH_RETRY_PLUGGED 1
#define FLUSH_RETRY_TIMEOUT 2
#define FLUSH_GIVEUP 3
#define FLUSH_COMPLETE 4
/*
* tuning the action when the numalink network is extremely delayed
*/
#define CONGESTED_RESPONSE_US 1000 /* 'long' response time, in
microseconds */
#define CONGESTED_REPS 10 /* long delays averaged over
this many broadcasts */
#define DISABLED_PERIOD 10 /* time for the bau to be
disabled, in seconds */
/* see msg_type: */
#define MSG_NOOP 0
#define MSG_REGULAR 1
#define MSG_RETRY 2
#define BAU_DESC_QUALIFIER 0x534749
enum uv_bau_version {
UV_BAU_V2 = 2,
UV_BAU_V3,
UV_BAU_V4,
};
/*
* Distribution: 32 bytes (256 bits) (bytes 0-0x1f of descriptor)
* If the 'multilevel' flag in the header portion of the descriptor
* has been set to 0, then endpoint multi-unicast mode is selected.
* The distribution specification (32 bytes) is interpreted as a 256-bit
* distribution vector. Adjacent bits correspond to consecutive even numbered
* nodeIDs. The result of adding the index of a given bit to the 15-bit
* 'base_dest_nasid' field of the header corresponds to the
* destination nodeID associated with that specified bit.
*/
struct pnmask {
unsigned long bits[BITS_TO_LONGS(UV_DISTRIBUTION_SIZE)];
};
/*
* mask of cpu's on a uvhub
* (during initialization we need to check that unsigned long has
* enough bits for max. cpu's per uvhub)
*/
struct bau_local_cpumask {
unsigned long bits;
};
/*
* Payload: 16 bytes (128 bits) (bytes 0x20-0x2f of descriptor)
* only 12 bytes (96 bits) of the payload area are usable.
* An additional 3 bytes (bits 27:4) of the header address are carried
* to the next bytes of the destination payload queue.
* And an additional 2 bytes of the header Suppl_A field are also
* carried to the destination payload queue.
* But the first byte of the Suppl_A becomes bits 127:120 (the 16th byte)
* of the destination payload queue, which is written by the hardware
* with the s/w ack resource bit vector.
* [ effective message contents (16 bytes (128 bits) maximum), not counting
* the s/w ack bit vector ]
*/
/**
* struct uv2_3_bau_msg_payload - defines payload for INTD transactions
* @address: Signifies a page or all TLB's of the cpu
* @sending_cpu: CPU from which the message originates
* @acknowledge_count: CPUs on the destination Hub that received the interrupt
*/
struct uv2_3_bau_msg_payload {
u64 address;
u16 sending_cpu;
u16 acknowledge_count;
};
/**
* struct uv4_bau_msg_payload - defines payload for INTD transactions
* @address: Signifies a page or all TLB's of the cpu
* @sending_cpu: CPU from which the message originates
* @acknowledge_count: CPUs on the destination Hub that received the interrupt
* @qualifier: Set by source to verify origin of INTD broadcast
*/
struct uv4_bau_msg_payload {
u64 address;
u16 sending_cpu;
u16 acknowledge_count;
u32 reserved:8;
u32 qualifier:24;
};
/*
* UV2 Message header: 16 bytes (128 bits) (bytes 0x30-0x3f of descriptor)
* see figure 9-2 of harp_sys.pdf
* assuming UV3 is the same
*/
struct uv2_3_bau_msg_header {
unsigned int base_dest_nasid:15; /* nasid of the first bit */
/* bits 14:0 */ /* in uvhub map */
unsigned int dest_subnodeid:5; /* must be 0x10, for the LB */
/* bits 19:15 */
unsigned int rsvd_1:1; /* must be zero */
/* bit 20 */
/* Address bits 59:21 */
/* bits 25:2 of address (44:21) are payload */
/* these next 24 bits become bytes 12-14 of msg */
/* bits 28:21 land in byte 12 */
unsigned int replied_to:1; /* sent as 0 by the source to
byte 12 */
/* bit 21 */
unsigned int msg_type:3; /* software type of the
message */
/* bits 24:22 */
unsigned int canceled:1; /* message canceled, resource
is to be freed*/
/* bit 25 */
unsigned int payload_1:3; /* not currently used */
/* bits 28:26 */
/* bits 36:29 land in byte 13 */
unsigned int payload_2a:3; /* not currently used */
unsigned int payload_2b:5; /* not currently used */
/* bits 36:29 */
/* bits 44:37 land in byte 14 */
unsigned int payload_3:8; /* not currently used */
/* bits 44:37 */
unsigned int rsvd_2:7; /* reserved */
/* bits 51:45 */
unsigned int swack_flag:1; /* software acknowledge flag */
/* bit 52 */
unsigned int rsvd_3a:3; /* must be zero */
unsigned int rsvd_3b:8; /* must be zero */
unsigned int rsvd_3c:8; /* must be zero */
unsigned int rsvd_3d:3; /* must be zero */
/* bits 74:53 */
unsigned int fairness:3; /* usually zero */
/* bits 77:75 */
unsigned int sequence:16; /* message sequence number */
/* bits 93:78 Suppl_A */
unsigned int chaining:1; /* next descriptor is part of
this activation*/
/* bit 94 */
unsigned int multilevel:1; /* multi-level multicast
format */
/* bit 95 */
unsigned int rsvd_4:24; /* ordered / source node /
source subnode / aging
must be zero */
/* bits 119:96 */
unsigned int command:8; /* message type */
/* bits 127:120 */
};
/*
* The activation descriptor:
* The format of the message to send, plus all accompanying control
* Should be 64 bytes
*/
struct bau_desc {
struct pnmask distribution;
/*
* message template, consisting of header and payload:
*/
union bau_msg_header {
struct uv2_3_bau_msg_header uv2_3_hdr;
} header;
union bau_payload_header {
struct uv2_3_bau_msg_payload uv2_3;
struct uv4_bau_msg_payload uv4;
} payload;
};
/* UV2:
* -payload-- ---------header------
* bytes 0-11 bits 70-78 bits 21-44
* A B (2) C (3)
*
* A/B/C are moved to:
* A C B
* bytes 0-11 bytes 12-14 bytes 16-17 (byte 15 filled in by hw as vector)
* ------------payload queue-----------
*/
/*
* The payload queue on the destination side is an array of these.
* With BAU_MISC_CONTROL set for software acknowledge mode, the messages
* are 32 bytes (2 micropackets) (256 bits) in length, but contain only 17
* bytes of usable data, including the sw ack vector in byte 15 (bits 127:120)
* (12 bytes come from bau_msg_payload, 3 from payload_1, 2 from
* swack_vec and payload_2)
* "Enabling Software Acknowledgment mode (see Section 4.3.3 Software
* Acknowledge Processing) also selects 32 byte (17 bytes usable) payload
* operation."
*/
struct bau_pq_entry {
unsigned long address; /* signifies a page or all TLB's
of the cpu */
/* 64 bits, bytes 0-7 */
unsigned short sending_cpu; /* cpu that sent the message */
/* 16 bits, bytes 8-9 */
unsigned short acknowledge_count; /* filled in by destination */
/* 16 bits, bytes 10-11 */
/* these next 3 bytes come from bits 58-81 of the message header */
unsigned short replied_to:1; /* sent as 0 by the source */
unsigned short msg_type:3; /* software message type */
unsigned short canceled:1; /* sent as 0 by the source */
unsigned short unused1:3; /* not currently using */
/* byte 12 */
unsigned char unused2a; /* not currently using */
/* byte 13 */
unsigned char unused2; /* not currently using */
/* byte 14 */
unsigned char swack_vec; /* filled in by the hardware */
/* byte 15 (bits 127:120) */
unsigned short sequence; /* message sequence number */
/* bytes 16-17 */
unsigned char unused4[2]; /* not currently using bytes 18-19 */
/* bytes 18-19 */
int number_of_cpus; /* filled in at destination */
/* 32 bits, bytes 20-23 (aligned) */
unsigned char unused5[8]; /* not using */
/* bytes 24-31 */
};
struct msg_desc {
struct bau_pq_entry *msg;
int msg_slot;
struct bau_pq_entry *queue_first;
struct bau_pq_entry *queue_last;
};
struct reset_args {
int sender;
};
/*
* This structure is allocated per_cpu for UV TLB shootdown statistics.
*/
struct ptc_stats {
/* sender statistics */
unsigned long s_giveup; /* number of fall backs to
IPI-style flushes */
unsigned long s_requestor; /* number of shootdown
requests */
unsigned long s_stimeout; /* source side timeouts */
unsigned long s_dtimeout; /* destination side timeouts */
unsigned long s_strongnacks; /* number of strong nack's */
unsigned long s_time; /* time spent in sending side */
unsigned long s_retriesok; /* successful retries */
unsigned long s_ntargcpu; /* total number of cpu's
targeted */
unsigned long s_ntargself; /* times the sending cpu was
targeted */
unsigned long s_ntarglocals; /* targets of cpus on the local
blade */
unsigned long s_ntargremotes; /* targets of cpus on remote
blades */
unsigned long s_ntarglocaluvhub; /* targets of the local hub */
unsigned long s_ntargremoteuvhub; /* remotes hubs targeted */
unsigned long s_ntarguvhub; /* total number of uvhubs
targeted */
unsigned long s_ntarguvhub16; /* number of times target
hubs >= 16*/
unsigned long s_ntarguvhub8; /* number of times target
hubs >= 8 */
unsigned long s_ntarguvhub4; /* number of times target
hubs >= 4 */
unsigned long s_ntarguvhub2; /* number of times target
hubs >= 2 */
unsigned long s_ntarguvhub1; /* number of times target
hubs == 1 */
unsigned long s_resets_plug; /* ipi-style resets from plug
state */
unsigned long s_resets_timeout; /* ipi-style resets from
timeouts */
unsigned long s_busy; /* status stayed busy past
s/w timer */
unsigned long s_throttles; /* waits in throttle */
unsigned long s_retry_messages; /* retry broadcasts */
unsigned long s_bau_reenabled; /* for bau enable/disable */
unsigned long s_bau_disabled; /* for bau enable/disable */
unsigned long s_uv2_wars; /* uv2 workaround, perm. busy */
unsigned long s_uv2_wars_hw; /* uv2 workaround, hiwater */
unsigned long s_uv2_war_waits; /* uv2 workaround, long waits */
unsigned long s_overipilimit; /* over the ipi reset limit */
unsigned long s_giveuplimit; /* disables, over giveup limit*/
unsigned long s_enters; /* entries to the driver */
unsigned long s_ipifordisabled; /* fall back to IPI; disabled */
unsigned long s_plugged; /* plugged by h/w bug*/
unsigned long s_congested; /* giveup on long wait */
/* destination statistics */
unsigned long d_alltlb; /* times all tlb's on this
cpu were flushed */
unsigned long d_onetlb; /* times just one tlb on this
cpu was flushed */
unsigned long d_multmsg; /* interrupts with multiple
messages */
unsigned long d_nomsg; /* interrupts with no message */
unsigned long d_time; /* time spent on destination
side */
unsigned long d_requestee; /* number of messages
processed */
unsigned long d_retries; /* number of retry messages
processed */
unsigned long d_canceled; /* number of messages canceled
by retries */
unsigned long d_nocanceled; /* retries that found nothing
to cancel */
unsigned long d_resets; /* number of ipi-style requests
processed */
unsigned long d_rcanceled; /* number of messages canceled
by resets */
};
struct tunables {
int *tunp;
int deflt;
};
struct hub_and_pnode {
short uvhub;
short pnode;
};
struct socket_desc {
short num_cpus;
short cpu_number[MAX_CPUS_PER_SOCKET];
};
struct uvhub_desc {
unsigned short socket_mask;
short num_cpus;
short uvhub;
short pnode;
struct socket_desc socket[2];
};
/**
* struct bau_control
* @status_mmr: location of status mmr, determined by uvhub_cpu
* @status_index: index of ERR|BUSY bits in status mmr, determined by uvhub_cpu
*
* Per-cpu control struct containing CPU topology information and BAU tuneables.
*/
struct bau_control {
struct bau_desc *descriptor_base;
struct bau_pq_entry *queue_first;
struct bau_pq_entry *queue_last;
struct bau_pq_entry *bau_msg_head;
struct bau_control *uvhub_master;
struct bau_control *socket_master;
struct ptc_stats *statp;
cpumask_t *cpumask;
unsigned long timeout_interval;
unsigned long set_bau_on_time;
atomic_t active_descriptor_count;
int plugged_tries;
int timeout_tries;
int ipi_attempts;
int conseccompletes;
u64 status_mmr;
int status_index;
bool nobau;
short baudisabled;
short cpu;
short osnode;
short uvhub_cpu;
short uvhub;
short uvhub_version;
short cpus_in_socket;
short cpus_in_uvhub;
short partition_base_pnode;
short busy; /* all were busy (war) */
unsigned short message_number;
unsigned short uvhub_quiesce;
short socket_acknowledge_count[DEST_Q_SIZE];
cycles_t send_message;
cycles_t period_end;
cycles_t period_time;
spinlock_t uvhub_lock;
spinlock_t queue_lock;
spinlock_t disable_lock;
/* tunables */
int max_concurr;
int max_concurr_const;
int plugged_delay;
int plugsb4reset;
int timeoutsb4reset;
int ipi_reset_limit;
int complete_threshold;
int cong_response_us;
int cong_reps;
cycles_t disabled_period;
int period_giveups;
int giveup_limit;
long period_requests;
struct hub_and_pnode *thp;
};
/* Abstracted BAU functions */
struct bau_operations {
unsigned long (*read_l_sw_ack)(void);
unsigned long (*read_g_sw_ack)(int pnode);
unsigned long (*bau_gpa_to_offset)(unsigned long vaddr);
void (*write_l_sw_ack)(unsigned long mmr);
void (*write_g_sw_ack)(int pnode, unsigned long mmr);
void (*write_payload_first)(int pnode, unsigned long mmr);
void (*write_payload_last)(int pnode, unsigned long mmr);
int (*wait_completion)(struct bau_desc*,
struct bau_control*, long try);
};
static inline void write_mmr_data_broadcast(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UVH_BAU_DATA_BROADCAST, mmr_image);
}
static inline void write_mmr_descriptor_base(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, mmr_image);
}
static inline void write_mmr_activation(unsigned long index)
{
write_lmmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
}
static inline void write_gmmr_activation(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL, mmr_image);
}
static inline void write_mmr_proc_payload_first(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UV4H_LB_PROC_INTD_QUEUE_FIRST, mmr_image);
}
static inline void write_mmr_proc_payload_last(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UV4H_LB_PROC_INTD_QUEUE_LAST, mmr_image);
}
static inline void write_mmr_payload_first(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST, mmr_image);
}
static inline void write_mmr_payload_tail(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL, mmr_image);
}
static inline void write_mmr_payload_last(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST, mmr_image);
}
static inline void write_mmr_misc_control(int pnode, unsigned long mmr_image)
{
write_gmmr(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
}
static inline unsigned long read_mmr_misc_control(int pnode)
{
return read_gmmr(pnode, UVH_LB_BAU_MISC_CONTROL);
}
static inline void write_mmr_sw_ack(unsigned long mr)
{
uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, mr);
}
static inline void write_gmmr_sw_ack(int pnode, unsigned long mr)
{
write_gmmr(pnode, UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, mr);
}
static inline unsigned long read_mmr_sw_ack(void)
{
return read_lmmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
}
static inline unsigned long read_gmmr_sw_ack(int pnode)
{
return read_gmmr(pnode, UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
}
static inline void write_mmr_proc_sw_ack(unsigned long mr)
{
uv_write_local_mmr(UV4H_LB_PROC_INTD_SOFT_ACK_CLEAR, mr);
}
static inline void write_gmmr_proc_sw_ack(int pnode, unsigned long mr)
{
write_gmmr(pnode, UV4H_LB_PROC_INTD_SOFT_ACK_CLEAR, mr);
}
static inline unsigned long read_mmr_proc_sw_ack(void)
{
return read_lmmr(UV4H_LB_PROC_INTD_SOFT_ACK_PENDING);
}
static inline unsigned long read_gmmr_proc_sw_ack(int pnode)
{
return read_gmmr(pnode, UV4H_LB_PROC_INTD_SOFT_ACK_PENDING);
}
static inline void write_mmr_data_config(int pnode, unsigned long mr)
{
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, mr);
}
static inline int bau_uvhub_isset(int uvhub, struct pnmask *dstp)
{
return constant_test_bit(uvhub, &dstp->bits[0]);
}
static inline void bau_uvhub_set(int pnode, struct pnmask *dstp)
{
__set_bit(pnode, &dstp->bits[0]);
}
static inline void bau_uvhubs_clear(struct pnmask *dstp,
int nbits)
{
bitmap_zero(&dstp->bits[0], nbits);
}
static inline int bau_uvhub_weight(struct pnmask *dstp)
{
return bitmap_weight((unsigned long *)&dstp->bits[0],
UV_DISTRIBUTION_SIZE);
}
static inline void bau_cpubits_clear(struct bau_local_cpumask *dstp, int nbits)
{
bitmap_zero(&dstp->bits, nbits);
}
struct atomic_short {
short counter;
};
/*
* atomic_read_short - read a short atomic variable
* @v: pointer of type atomic_short
*
* Atomically reads the value of @v.
*/
static inline int atomic_read_short(const struct atomic_short *v)
{
return v->counter;
}
/*
* atom_asr - add and return a short int
* @i: short value to add
* @v: pointer of type atomic_short
*
* Atomically adds @i to @v and returns @i + @v
*/
static inline int atom_asr(short i, struct atomic_short *v)
{
short __i = i;
asm volatile(LOCK_PREFIX "xaddw %0, %1"
: "+r" (i), "+m" (v->counter)
: : "memory");
return i + __i;
}
/*
* conditionally add 1 to *v, unless *v is >= u
* return 0 if we cannot add 1 to *v because it is >= u
* return 1 if we can add 1 to *v because it is < u
* the add is atomic
*
* This is close to atomic_add_unless(), but this allows the 'u' value
* to be lowered below the current 'v'. atomic_add_unless can only stop
* on equal.
*/
static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
{
spin_lock(lock);
if (atomic_read(v) >= u) {
spin_unlock(lock);
return 0;
}
atomic_inc(v);
spin_unlock(lock);
return 1;
}
void uv_bau_message_interrupt(struct pt_regs *regs);
#endif /* _ASM_X86_UV_UV_BAU_H */
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
* *
* SGI UV architectural definitions * SGI UV architectural definitions
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
*/ */
...@@ -129,17 +130,6 @@ ...@@ -129,17 +130,6 @@
*/ */
#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2) #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
/* System Controller Interface Reg info */
struct uv_scir_s {
struct timer_list timer;
unsigned long offset;
unsigned long last;
unsigned long idle_on;
unsigned long idle_off;
unsigned char state;
unsigned char enabled;
};
/* GAM (globally addressed memory) range table */ /* GAM (globally addressed memory) range table */
struct uv_gam_range_s { struct uv_gam_range_s {
u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */ u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */
...@@ -155,6 +145,8 @@ struct uv_gam_range_s { ...@@ -155,6 +145,8 @@ struct uv_gam_range_s {
* available in the L3 cache on the cpu socket for the node. * available in the L3 cache on the cpu socket for the node.
*/ */
struct uv_hub_info_s { struct uv_hub_info_s {
unsigned int hub_type;
unsigned char hub_revision;
unsigned long global_mmr_base; unsigned long global_mmr_base;
unsigned long global_mmr_shift; unsigned long global_mmr_shift;
unsigned long gpa_mask; unsigned long gpa_mask;
...@@ -167,9 +159,9 @@ struct uv_hub_info_s { ...@@ -167,9 +159,9 @@ struct uv_hub_info_s {
unsigned char m_val; unsigned char m_val;
unsigned char n_val; unsigned char n_val;
unsigned char gr_table_len; unsigned char gr_table_len;
unsigned char hub_revision;
unsigned char apic_pnode_shift; unsigned char apic_pnode_shift;
unsigned char gpa_shift; unsigned char gpa_shift;
unsigned char nasid_shift;
unsigned char m_shift; unsigned char m_shift;
unsigned char n_lshift; unsigned char n_lshift;
unsigned int gnode_extra; unsigned int gnode_extra;
...@@ -191,16 +183,13 @@ struct uv_hub_info_s { ...@@ -191,16 +183,13 @@ struct uv_hub_info_s {
struct uv_cpu_info_s { struct uv_cpu_info_s {
void *p_uv_hub_info; void *p_uv_hub_info;
unsigned char blade_cpu_id; unsigned char blade_cpu_id;
struct uv_scir_s scir; void *reserved;
}; };
DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info); DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info) #define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu)) #define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
#define uv_scir_info (&uv_cpu_info->scir)
#define uv_cpu_scir_info(cpu) (&uv_cpu_info_per(cpu)->scir)
/* Node specific hub common info struct */ /* Node specific hub common info struct */
extern void **__uv_hub_info_list; extern void **__uv_hub_info_list;
static inline struct uv_hub_info_s *uv_hub_info_list(int node) static inline struct uv_hub_info_s *uv_hub_info_list(int node)
...@@ -219,6 +208,17 @@ static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu) ...@@ -219,6 +208,17 @@ static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info; return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
} }
static inline int uv_hub_type(void)
{
return uv_hub_info->hub_type;
}
static inline __init void uv_hub_type_set(int uvmask)
{
uv_hub_info->hub_type = uvmask;
}
/* /*
* HUB revision ranges for each UV HUB architecture. * HUB revision ranges for each UV HUB architecture.
* This is a software convention - NOT the hardware revision numbers in * This is a software convention - NOT the hardware revision numbers in
...@@ -228,39 +228,31 @@ static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu) ...@@ -228,39 +228,31 @@ static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
#define UV3_HUB_REVISION_BASE 5 #define UV3_HUB_REVISION_BASE 5
#define UV4_HUB_REVISION_BASE 7 #define UV4_HUB_REVISION_BASE 7
#define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */ #define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */
#define UV5_HUB_REVISION_BASE 9
static inline int is_uv2_hub(void) static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
{ static inline int is_uv1_hub(void) { return 0; }
return is_uv_hubbed(uv(2)); static inline int is_uv2_hub(void) { return is_uv(UV2); }
} static inline int is_uv3_hub(void) { return is_uv(UV3); }
static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
static inline int is_uv3_hub(void) static inline int is_uv4_hub(void) { return is_uv(UV4); }
{ static inline int is_uv5_hub(void) { return is_uv(UV5); }
return is_uv_hubbed(uv(3));
}
/* First test "is UV4A", then "is UV4" */ /*
static inline int is_uv4a_hub(void) * UV4A is a revision of UV4. So on UV4A, both is_uv4_hub() and
{ * is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
if (is_uv_hubbed(uv(4))) * returns true. So to get true results, first test if is UV4A,
return (uv_hub_info->hub_revision == UV4A_HUB_REVISION_BASE); * then test if is UV4.
return 0; */
}
static inline int is_uv4_hub(void) /* UVX class: UV2,3,4 */
{ static inline int is_uvx_hub(void) { return is_uv(UVX); }
return is_uv_hubbed(uv(4));
}
static inline int is_uvx_hub(void) /* UVY class: UV5,..? */
{ static inline int is_uvy_hub(void) { return is_uv(UVY); }
return (is_uv_hubbed(-2) >= uv(2));
}
static inline int is_uv_hub(void) /* Any UV Hubbed System */
{ static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
return is_uvx_hub();
}
union uvh_apicid { union uvh_apicid {
unsigned long v; unsigned long v;
...@@ -282,9 +274,11 @@ union uvh_apicid { ...@@ -282,9 +274,11 @@ union uvh_apicid {
* g - GNODE (full 15-bit global nasid, right shifted 1) * g - GNODE (full 15-bit global nasid, right shifted 1)
* p - PNODE (local part of nsids, right shifted 1) * p - PNODE (local part of nsids, right shifted 1)
*/ */
#define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask) #define UV_NASID_TO_PNODE(n) \
(((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra) #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1) #define UV_PNODE_TO_NASID(p) \
(UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
#define UV2_LOCAL_MMR_BASE 0xfa000000UL #define UV2_LOCAL_MMR_BASE 0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
...@@ -297,29 +291,42 @@ union uvh_apicid { ...@@ -297,29 +291,42 @@ union uvh_apicid {
#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024) #define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
#define UV4_LOCAL_MMR_BASE 0xfa000000UL #define UV4_LOCAL_MMR_BASE 0xfa000000UL
#define UV4_GLOBAL_MMR32_BASE 0xfc000000UL #define UV4_GLOBAL_MMR32_BASE 0
#define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024) #define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV4_GLOBAL_MMR32_SIZE (16UL * 1024 * 1024) #define UV4_GLOBAL_MMR32_SIZE 0
#define UV5_LOCAL_MMR_BASE 0xfa000000UL
#define UV5_GLOBAL_MMR32_BASE 0
#define UV5_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV5_GLOBAL_MMR32_SIZE 0
#define UV_LOCAL_MMR_BASE ( \ #define UV_LOCAL_MMR_BASE ( \
is_uv2_hub() ? UV2_LOCAL_MMR_BASE : \ is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
is_uv3_hub() ? UV3_LOCAL_MMR_BASE : \ is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
/*is_uv4_hub*/ UV4_LOCAL_MMR_BASE) is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
0)
#define UV_GLOBAL_MMR32_BASE ( \ #define UV_GLOBAL_MMR32_BASE ( \
is_uv2_hub() ? UV2_GLOBAL_MMR32_BASE : \ is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
is_uv3_hub() ? UV3_GLOBAL_MMR32_BASE : \ is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
/*is_uv4_hub*/ UV4_GLOBAL_MMR32_BASE) is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
0)
#define UV_LOCAL_MMR_SIZE ( \ #define UV_LOCAL_MMR_SIZE ( \
is_uv2_hub() ? UV2_LOCAL_MMR_SIZE : \ is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
is_uv3_hub() ? UV3_LOCAL_MMR_SIZE : \ is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
/*is_uv4_hub*/ UV4_LOCAL_MMR_SIZE) is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
0)
#define UV_GLOBAL_MMR32_SIZE ( \ #define UV_GLOBAL_MMR32_SIZE ( \
is_uv2_hub() ? UV2_GLOBAL_MMR32_SIZE : \ is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
is_uv3_hub() ? UV3_GLOBAL_MMR32_SIZE : \ is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
/*is_uv4_hub*/ UV4_GLOBAL_MMR32_SIZE) is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
0)
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base) #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
...@@ -720,7 +727,7 @@ extern void uv_nmi_setup_hubless(void); ...@@ -720,7 +727,7 @@ extern void uv_nmi_setup_hubless(void);
#define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */ #define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */
#define UVH_TSC_SYNC_MASK 3 /* 0011 */ #define UVH_TSC_SYNC_MASK 3 /* 0011 */
#define UVH_TSC_SYNC_VALID 3 /* 0011 */ #define UVH_TSC_SYNC_VALID 3 /* 0011 */
#define UVH_TSC_SYNC_INVALID 2 /* 0010 */ #define UVH_TSC_SYNC_UNKNOWN 0 /* 0000 */
/* BMC sets a bit this MMR non-zero before sending an NMI */ /* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR #define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR
...@@ -728,19 +735,6 @@ extern void uv_nmi_setup_hubless(void); ...@@ -728,19 +735,6 @@ extern void uv_nmi_setup_hubless(void);
#define UVH_NMI_MMR_SHIFT 63 #define UVH_NMI_MMR_SHIFT 63
#define UVH_NMI_MMR_TYPE "SCRATCH5" #define UVH_NMI_MMR_TYPE "SCRATCH5"
/* Newer SMM NMI handler, not present in all systems */
#define UVH_NMI_MMRX UVH_EVENT_OCCURRED0
#define UVH_NMI_MMRX_CLEAR UVH_EVENT_OCCURRED0_ALIAS
#define UVH_NMI_MMRX_SHIFT UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT
#define UVH_NMI_MMRX_TYPE "EXTIO_INT0"
/* Non-zero indicates newer SMM NMI handler present */
#define UVH_NMI_MMRX_SUPPORTED UVH_EXTIO_INT0_BROADCAST
/* Indicates to BIOS that we want to use the newer SMM NMI handler */
#define UVH_NMI_MMRX_REQ UVH_BIOS_KERNEL_MMR_ALIAS_2
#define UVH_NMI_MMRX_REQ_SHIFT 62
struct uv_hub_nmi_s { struct uv_hub_nmi_s {
raw_spinlock_t nmi_lock; raw_spinlock_t nmi_lock;
atomic_t in_nmi; /* flag this node in UV NMI IRQ */ atomic_t in_nmi; /* flag this node in UV NMI IRQ */
...@@ -772,29 +766,6 @@ DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); ...@@ -772,29 +766,6 @@ DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
#define UV_NMI_STATE_DUMP 2 #define UV_NMI_STATE_DUMP 2
#define UV_NMI_STATE_DUMP_DONE 3 #define UV_NMI_STATE_DUMP_DONE 3
/* Update SCIR state */
static inline void uv_set_scir_bits(unsigned char value)
{
if (uv_scir_info->state != value) {
uv_scir_info->state = value;
uv_write_local_mmr8(uv_scir_info->offset, value);
}
}
static inline unsigned long uv_scir_offset(int apicid)
{
return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
}
static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
{
if (uv_cpu_scir_info(cpu)->state != value) {
uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
uv_cpu_scir_info(cpu)->offset, value);
uv_cpu_scir_info(cpu)->state = value;
}
}
/* /*
* Get the minimum revision number of the hub chips within the partition. * Get the minimum revision number of the hub chips within the partition.
* (See UVx_HUB_REVISION_BASE above for specific values.) * (See UVx_HUB_REVISION_BASE above for specific values.)
......
This source diff could not be displayed because it is too large. You can view the blob instead.
...@@ -5,6 +5,7 @@ ...@@ -5,6 +5,7 @@
* *
* SGI UV APIC functions (note: not an Intel compatible APIC) * SGI UV APIC functions (note: not an Intel compatible APIC)
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved. * Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
*/ */
#include <linux/crash_dump.h> #include <linux/crash_dump.h>
...@@ -29,19 +30,24 @@ static int uv_hubbed_system; ...@@ -29,19 +30,24 @@ static int uv_hubbed_system;
static int uv_hubless_system; static int uv_hubless_system;
static u64 gru_start_paddr, gru_end_paddr; static u64 gru_start_paddr, gru_end_paddr;
static union uvh_apicid uvh_apicid; static union uvh_apicid uvh_apicid;
static int uv_node_id;
/* Unpack OEM/TABLE ID's to be NULL terminated strings */ /* Unpack AT/OEM/TABLE ID's to be NULL terminated strings */
static u8 uv_archtype[UV_AT_SIZE];
static u8 oem_id[ACPI_OEM_ID_SIZE + 1]; static u8 oem_id[ACPI_OEM_ID_SIZE + 1];
static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; static u8 oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
/* Information derived from CPUID: */ /* Information derived from CPUID and some UV MMRs */
static struct { static struct {
unsigned int apicid_shift; unsigned int apicid_shift;
unsigned int apicid_mask; unsigned int apicid_mask;
unsigned int socketid_shift; /* aka pnode_shift for UV2/3 */ unsigned int socketid_shift; /* aka pnode_shift for UV2/3 */
unsigned int pnode_mask; unsigned int pnode_mask;
unsigned int nasid_shift;
unsigned int gpa_shift; unsigned int gpa_shift;
unsigned int gnode_shift; unsigned int gnode_shift;
unsigned int m_skt;
unsigned int n_skt;
} uv_cpuid; } uv_cpuid;
static int uv_min_hub_revision_id; static int uv_min_hub_revision_id;
...@@ -77,6 +83,9 @@ static unsigned long __init uv_early_read_mmr(unsigned long addr) ...@@ -77,6 +83,9 @@ static unsigned long __init uv_early_read_mmr(unsigned long addr)
static inline bool is_GRU_range(u64 start, u64 end) static inline bool is_GRU_range(u64 start, u64 end)
{ {
if (!gru_start_paddr)
return false;
return start >= gru_start_paddr && end <= gru_end_paddr; return start >= gru_start_paddr && end <= gru_end_paddr;
} }
...@@ -85,43 +94,102 @@ static bool uv_is_untracked_pat_range(u64 start, u64 end) ...@@ -85,43 +94,102 @@ static bool uv_is_untracked_pat_range(u64 start, u64 end)
return is_ISA_range(start, end) || is_GRU_range(start, end); return is_ISA_range(start, end) || is_GRU_range(start, end);
} }
static int __init early_get_pnodeid(void) static void __init early_get_pnodeid(void)
{ {
union uvh_node_id_u node_id;
union uvh_rh_gam_config_mmr_u m_n_config;
int pnode; int pnode;
/* Currently, all blades have same revision number */ uv_cpuid.m_skt = 0;
if (UVH_RH10_GAM_ADDR_MAP_CONFIG) {
union uvh_rh10_gam_addr_map_config_u m_n_config;
m_n_config.v = uv_early_read_mmr(UVH_RH10_GAM_ADDR_MAP_CONFIG);
uv_cpuid.n_skt = m_n_config.s.n_skt;
uv_cpuid.nasid_shift = 0;
} else if (UVH_RH_GAM_ADDR_MAP_CONFIG) {
union uvh_rh_gam_addr_map_config_u m_n_config;
m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_ADDR_MAP_CONFIG);
uv_cpuid.n_skt = m_n_config.s.n_skt;
if (is_uv(UV3))
uv_cpuid.m_skt = m_n_config.s3.m_skt;
if (is_uv(UV2))
uv_cpuid.m_skt = m_n_config.s2.m_skt;
uv_cpuid.nasid_shift = 1;
} else {
unsigned long GAM_ADDR_MAP_CONFIG = 0;
WARN(GAM_ADDR_MAP_CONFIG == 0,
"UV: WARN: GAM_ADDR_MAP_CONFIG is not available\n");
uv_cpuid.n_skt = 0;
uv_cpuid.nasid_shift = 0;
}
if (is_uv(UV4|UVY))
uv_cpuid.gnode_shift = 2; /* min partition is 4 sockets */
uv_cpuid.pnode_mask = (1 << uv_cpuid.n_skt) - 1;
pnode = (uv_node_id >> uv_cpuid.nasid_shift) & uv_cpuid.pnode_mask;
uv_cpuid.gpa_shift = 46; /* Default unless changed */
pr_info("UV: n_skt:%d pnmsk:%x pn:%x\n",
uv_cpuid.n_skt, uv_cpuid.pnode_mask, pnode);
}
/* Running on a UV Hubbed system, determine which UV Hub Type it is */
static int __init early_set_hub_type(void)
{
union uvh_node_id_u node_id;
/*
* The NODE_ID MMR is always at offset 0.
* Contains the chip part # + revision.
* Node_id field started with 15 bits,
* ... now 7 but upper 8 are masked to 0.
* All blades/nodes have the same part # and hub revision.
*/
node_id.v = uv_early_read_mmr(UVH_NODE_ID); node_id.v = uv_early_read_mmr(UVH_NODE_ID);
m_n_config.v = uv_early_read_mmr(UVH_RH_GAM_CONFIG_MMR); uv_node_id = node_id.sx.node_id;
uv_min_hub_revision_id = node_id.s.revision;
switch (node_id.s.part_number) { switch (node_id.s.part_number) {
case UV2_HUB_PART_NUMBER:
case UV2_HUB_PART_NUMBER_X: case UV5_HUB_PART_NUMBER:
uv_min_hub_revision_id += UV2_HUB_REVISION_BASE - 1; uv_min_hub_revision_id = node_id.s.revision
+ UV5_HUB_REVISION_BASE;
uv_hub_type_set(UV5);
break;
/* UV4/4A only have a revision difference */
case UV4_HUB_PART_NUMBER:
uv_min_hub_revision_id = node_id.s.revision
+ UV4_HUB_REVISION_BASE;
uv_hub_type_set(UV4);
if (uv_min_hub_revision_id == UV4A_HUB_REVISION_BASE)
uv_hub_type_set(UV4|UV4A);
break; break;
case UV3_HUB_PART_NUMBER: case UV3_HUB_PART_NUMBER:
case UV3_HUB_PART_NUMBER_X: case UV3_HUB_PART_NUMBER_X:
uv_min_hub_revision_id += UV3_HUB_REVISION_BASE; uv_min_hub_revision_id = node_id.s.revision
+ UV3_HUB_REVISION_BASE;
uv_hub_type_set(UV3);
break; break;
/* Update: UV4A has only a modified revision to indicate HUB fixes */ case UV2_HUB_PART_NUMBER:
case UV4_HUB_PART_NUMBER: case UV2_HUB_PART_NUMBER_X:
uv_min_hub_revision_id += UV4_HUB_REVISION_BASE - 1; uv_min_hub_revision_id = node_id.s.revision
uv_cpuid.gnode_shift = 2; /* min partition is 4 sockets */ + UV2_HUB_REVISION_BASE - 1;
uv_hub_type_set(UV2);
break; break;
default:
return 0;
} }
uv_hub_info->hub_revision = uv_min_hub_revision_id; pr_info("UV: part#:%x rev:%d rev_id:%d UVtype:0x%x\n",
uv_cpuid.pnode_mask = (1 << m_n_config.s.n_skt) - 1; node_id.s.part_number, node_id.s.revision,
pnode = (node_id.s.node_id >> 1) & uv_cpuid.pnode_mask; uv_min_hub_revision_id, is_uv(~0));
uv_cpuid.gpa_shift = 46; /* Default unless changed */
pr_info("UV: rev:%d part#:%x nodeid:%04x n_skt:%d pnmsk:%x pn:%x\n", return 1;
node_id.s.revision, node_id.s.part_number, node_id.s.node_id,
m_n_config.s.n_skt, uv_cpuid.pnode_mask, pnode);
return pnode;
} }
static void __init uv_tsc_check_sync(void) static void __init uv_tsc_check_sync(void)
...@@ -130,38 +198,41 @@ static void __init uv_tsc_check_sync(void) ...@@ -130,38 +198,41 @@ static void __init uv_tsc_check_sync(void)
int sync_state; int sync_state;
int mmr_shift; int mmr_shift;
char *state; char *state;
bool valid;
/* Accommodate different UV arch BIOSes */ /* Different returns from different UV BIOS versions */
mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR); mmr = uv_early_read_mmr(UVH_TSC_SYNC_MMR);
mmr_shift = mmr_shift =
is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT; is_uv2_hub() ? UVH_TSC_SYNC_SHIFT_UV2K : UVH_TSC_SYNC_SHIFT;
sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK; sync_state = (mmr >> mmr_shift) & UVH_TSC_SYNC_MASK;
/* Check if TSC is valid for all sockets */
switch (sync_state) { switch (sync_state) {
case UVH_TSC_SYNC_VALID: case UVH_TSC_SYNC_VALID:
state = "in sync"; state = "in sync";
valid = true; mark_tsc_async_resets("UV BIOS");
break; break;
case UVH_TSC_SYNC_INVALID: /* If BIOS state unknown, don't do anything */
state = "unstable"; case UVH_TSC_SYNC_UNKNOWN:
valid = false; state = "unknown";
break; break;
/* Otherwise, BIOS indicates problem with TSC */
default: default:
state = "unknown: assuming valid"; state = "unstable";
valid = true; mark_tsc_unstable("UV BIOS");
break; break;
} }
pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state); pr_info("UV: TSC sync state from BIOS:0%d(%s)\n", sync_state, state);
/* Mark flag that says TSC != 0 is valid for socket 0 */
if (valid)
mark_tsc_async_resets("UV BIOS");
else
mark_tsc_unstable("UV BIOS");
} }
/* Selector for (4|4A|5) structs */
#define uvxy_field(sname, field, undef) ( \
is_uv(UV4A) ? sname.s4a.field : \
is_uv(UV4) ? sname.s4.field : \
is_uv(UV3) ? sname.s3.field : \
undef)
/* [Copied from arch/x86/kernel/cpu/topology.c:detect_extended_topology()] */ /* [Copied from arch/x86/kernel/cpu/topology.c:detect_extended_topology()] */
#define SMT_LEVEL 0 /* Leaf 0xb SMT level */ #define SMT_LEVEL 0 /* Leaf 0xb SMT level */
...@@ -221,29 +292,110 @@ static void __init uv_stringify(int len, char *to, char *from) ...@@ -221,29 +292,110 @@ static void __init uv_stringify(int len, char *to, char *from)
strncpy(to, from, len-1); strncpy(to, from, len-1);
} }
static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id) /* Find UV arch type entry in UVsystab */
static unsigned long __init early_find_archtype(struct uv_systab *st)
{
int i;
for (i = 0; st->entry[i].type != UV_SYSTAB_TYPE_UNUSED; i++) {
unsigned long ptr = st->entry[i].offset;
if (!ptr)
continue;
ptr += (unsigned long)st;
if (st->entry[i].type == UV_SYSTAB_TYPE_ARCH_TYPE)
return ptr;
}
return 0;
}
/* Validate UV arch type field in UVsystab */
static int __init decode_arch_type(unsigned long ptr)
{ {
int pnodeid; struct uv_arch_type_entry *uv_ate = (struct uv_arch_type_entry *)ptr;
int uv_apic; int n = strlen(uv_ate->archtype);
if (n > 0 && n < sizeof(uv_ate->archtype)) {
pr_info("UV: UVarchtype received from BIOS\n");
uv_stringify(UV_AT_SIZE, uv_archtype, uv_ate->archtype);
return 1;
}
return 0;
}
/* Determine if UV arch type entry might exist in UVsystab */
static int __init early_get_arch_type(void)
{
unsigned long uvst_physaddr, uvst_size, ptr;
struct uv_systab *st;
u32 rev;
int ret;
uvst_physaddr = get_uv_systab_phys(0);
if (!uvst_physaddr)
return 0;
st = early_memremap_ro(uvst_physaddr, sizeof(struct uv_systab));
if (!st) {
pr_err("UV: Cannot access UVsystab, remap failed\n");
return 0;
}
rev = st->revision;
if (rev < UV_SYSTAB_VERSION_UV5) {
early_memunmap(st, sizeof(struct uv_systab));
return 0;
}
uvst_size = st->size;
early_memunmap(st, sizeof(struct uv_systab));
st = early_memremap_ro(uvst_physaddr, uvst_size);
if (!st) {
pr_err("UV: Cannot access UVarchtype, remap failed\n");
return 0;
}
ptr = early_find_archtype(st);
if (!ptr) {
early_memunmap(st, uvst_size);
return 0;
}
ret = decode_arch_type(ptr);
early_memunmap(st, uvst_size);
return ret;
}
static int __init uv_set_system_type(char *_oem_id)
{
/* Save OEM_ID passed from ACPI MADT */
uv_stringify(sizeof(oem_id), oem_id, _oem_id); uv_stringify(sizeof(oem_id), oem_id, _oem_id);
uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
if (strncmp(oem_id, "SGI", 3) != 0) { /* Check if BIOS sent us a UVarchtype */
if (strncmp(oem_id, "NSGI", 4) != 0) if (!early_get_arch_type())
/* If not use OEM ID for UVarchtype */
uv_stringify(UV_AT_SIZE, uv_archtype, _oem_id);
/* Check if not hubbed */
if (strncmp(uv_archtype, "SGI", 3) != 0) {
/* (Not hubbed), check if not hubless */
if (strncmp(uv_archtype, "NSGI", 4) != 0)
/* (Not hubless), not a UV */
return 0; return 0;
/* UV4 Hubless, CH, (0x11:UV4+Any) */ /* UV4 Hubless: CH */
if (strncmp(oem_id, "NSGI4", 5) == 0) if (strncmp(uv_archtype, "NSGI4", 5) == 0)
uv_hubless_system = 0x11; uv_hubless_system = 0x11;
/* UV3 Hubless, UV300/MC990X w/o hub (0x9:UV3+Any) */ /* UV3 Hubless: UV300/MC990X w/o hub */
else else
uv_hubless_system = 0x9; uv_hubless_system = 0x9;
pr_info("UV: OEM IDs %s/%s, HUBLESS(0x%x)\n", pr_info("UV: OEM IDs %s/%s, SystemType %d, HUBLESS ID %x\n",
oem_id, oem_table_id, uv_hubless_system); oem_id, oem_table_id, uv_system_type, uv_hubless_system);
return 0; return 0;
} }
...@@ -252,60 +404,83 @@ static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id) ...@@ -252,60 +404,83 @@ static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id)
return 0; return 0;
} }
/* Set up early hub type field in uv_hub_info for Node 0 */ /* Set hubbed type if true */
uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0; uv_hub_info->hub_revision =
!strncmp(uv_archtype, "SGI5", 4) ? UV5_HUB_REVISION_BASE :
!strncmp(uv_archtype, "SGI4", 4) ? UV4_HUB_REVISION_BASE :
!strncmp(uv_archtype, "SGI3", 4) ? UV3_HUB_REVISION_BASE :
!strcmp(uv_archtype, "SGI2") ? UV2_HUB_REVISION_BASE : 0;
/* switch (uv_hub_info->hub_revision) {
* Determine UV arch type. case UV5_HUB_REVISION_BASE:
* SGI2: UV2000/3000 uv_hubbed_system = 0x21;
* SGI3: UV300 (truncated to 4 chars because of different varieties) uv_hub_type_set(UV5);
* SGI4: UV400 (truncated to 4 chars because of different varieties) break;
*/
if (!strncmp(oem_id, "SGI4", 4)) { case UV4_HUB_REVISION_BASE:
uv_hub_info->hub_revision = UV4_HUB_REVISION_BASE;
uv_hubbed_system = 0x11; uv_hubbed_system = 0x11;
uv_hub_type_set(UV4);
break;
} else if (!strncmp(oem_id, "SGI3", 4)) { case UV3_HUB_REVISION_BASE:
uv_hub_info->hub_revision = UV3_HUB_REVISION_BASE;
uv_hubbed_system = 0x9; uv_hubbed_system = 0x9;
uv_hub_type_set(UV3);
break;
} else if (!strcmp(oem_id, "SGI2")) { case UV2_HUB_REVISION_BASE:
uv_hub_info->hub_revision = UV2_HUB_REVISION_BASE;
uv_hubbed_system = 0x5; uv_hubbed_system = 0x5;
uv_hub_type_set(UV2);
break;
} else { default:
uv_hub_info->hub_revision = 0; return 0;
goto badbios;
} }
pnodeid = early_get_pnodeid(); /* Get UV hub chip part number & revision */
early_get_apic_socketid_shift(); early_set_hub_type();
/* Other UV setup functions */
early_get_pnodeid();
early_get_apic_socketid_shift();
x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range; x86_platform.is_untracked_pat_range = uv_is_untracked_pat_range;
x86_platform.nmi_init = uv_nmi_init; x86_platform.nmi_init = uv_nmi_init;
uv_tsc_check_sync();
return 1;
}
/* Called early to probe for the correct APIC driver */
static int __init uv_acpi_madt_oem_check(char *_oem_id, char *_oem_table_id)
{
/* Set up early hub info fields for Node 0 */
uv_cpu_info->p_uv_hub_info = &uv_hub_info_node0;
/* If not UV, return. */
if (likely(uv_set_system_type(_oem_id) == 0))
return 0;
/* Save and Decode OEM Table ID */
uv_stringify(sizeof(oem_table_id), oem_table_id, _oem_table_id);
if (!strcmp(oem_table_id, "UVX")) { /* This is the most common hardware variant, x2apic mode */
/* This is the most common hardware variant: */ if (!strcmp(oem_table_id, "UVX"))
uv_system_type = UV_X2APIC; uv_system_type = UV_X2APIC;
uv_apic = 0;
} else if (!strcmp(oem_table_id, "UVL")) { /* Only used for very small systems, usually 1 chassis, legacy mode */
/* Only used for very small systems: */ else if (!strcmp(oem_table_id, "UVL"))
uv_system_type = UV_LEGACY_APIC; uv_system_type = UV_LEGACY_APIC;
uv_apic = 0;
} else { else
goto badbios; goto badbios;
}
pr_info("UV: OEM IDs %s/%s, System/HUB Types %d/%d, uv_apic %d\n", oem_id, oem_table_id, uv_system_type, uv_min_hub_revision_id, uv_apic); pr_info("UV: OEM IDs %s/%s, System/UVType %d/0x%x, HUB RevID %d\n",
uv_tsc_check_sync(); oem_id, oem_table_id, uv_system_type, is_uv(UV_ANY),
uv_min_hub_revision_id);
return uv_apic; return 0;
badbios: badbios:
pr_err("UV: OEM_ID:%s OEM_TABLE_ID:%s\n", oem_id, oem_table_id); pr_err("UV: UVarchtype:%s not supported\n", uv_archtype);
pr_err("Current UV Type or BIOS not supported\n");
BUG(); BUG();
} }
...@@ -673,12 +848,12 @@ static struct apic apic_x2apic_uv_x __ro_after_init = { ...@@ -673,12 +848,12 @@ static struct apic apic_x2apic_uv_x __ro_after_init = {
}; };
#define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3 #define UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH 3
#define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT #define DEST_SHIFT UVXH_RH_GAM_ALIAS_0_REDIRECT_CONFIG_DEST_BASE_SHFT
static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
{ {
union uvh_rh_gam_alias210_overlay_config_2_mmr_u alias; union uvh_rh_gam_alias_2_overlay_config_u alias;
union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect; union uvh_rh_gam_alias_2_redirect_config_u redirect;
unsigned long m_redirect; unsigned long m_redirect;
unsigned long m_overlay; unsigned long m_overlay;
int i; int i;
...@@ -686,16 +861,16 @@ static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) ...@@ -686,16 +861,16 @@ static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) { for (i = 0; i < UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_LENGTH; i++) {
switch (i) { switch (i) {
case 0: case 0:
m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR; m_redirect = UVH_RH_GAM_ALIAS_0_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_0_MMR; m_overlay = UVH_RH_GAM_ALIAS_0_OVERLAY_CONFIG;
break; break;
case 1: case 1:
m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR; m_redirect = UVH_RH_GAM_ALIAS_1_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_1_MMR; m_overlay = UVH_RH_GAM_ALIAS_1_OVERLAY_CONFIG;
break; break;
case 2: case 2:
m_redirect = UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR; m_redirect = UVH_RH_GAM_ALIAS_2_REDIRECT_CONFIG;
m_overlay = UVH_RH_GAM_ALIAS210_OVERLAY_CONFIG_2_MMR; m_overlay = UVH_RH_GAM_ALIAS_2_OVERLAY_CONFIG;
break; break;
} }
alias.v = uv_read_local_mmr(m_overlay); alias.v = uv_read_local_mmr(m_overlay);
...@@ -710,6 +885,7 @@ static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size) ...@@ -710,6 +885,7 @@ static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
} }
enum map_type {map_wb, map_uc}; enum map_type {map_wb, map_uc};
static const char * const mt[] = { "WB", "UC" };
static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type) static __init void map_high(char *id, unsigned long base, int pshift, int bshift, int max_pnode, enum map_type map_type)
{ {
...@@ -721,23 +897,36 @@ static __init void map_high(char *id, unsigned long base, int pshift, int bshift ...@@ -721,23 +897,36 @@ static __init void map_high(char *id, unsigned long base, int pshift, int bshift
pr_info("UV: Map %s_HI base address NULL\n", id); pr_info("UV: Map %s_HI base address NULL\n", id);
return; return;
} }
pr_debug("UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr, paddr + bytes);
if (map_type == map_uc) if (map_type == map_uc)
init_extra_mapping_uc(paddr, bytes); init_extra_mapping_uc(paddr, bytes);
else else
init_extra_mapping_wb(paddr, bytes); init_extra_mapping_wb(paddr, bytes);
pr_info("UV: Map %s_HI 0x%lx - 0x%lx %s (%d segments)\n",
id, paddr, paddr + bytes, mt[map_type], max_pnode + 1);
} }
static __init void map_gru_high(int max_pnode) static __init void map_gru_high(int max_pnode)
{ {
union uvh_rh_gam_gru_overlay_config_mmr_u gru; union uvh_rh_gam_gru_overlay_config_u gru;
int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT; unsigned long mask, base;
unsigned long mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_MASK; int shift;
unsigned long base;
if (UVH_RH_GAM_GRU_OVERLAY_CONFIG) {
gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG);
shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
mask = UVH_RH_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
} else if (UVH_RH10_GAM_GRU_OVERLAY_CONFIG) {
gru.v = uv_read_local_mmr(UVH_RH10_GAM_GRU_OVERLAY_CONFIG);
shift = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_SHFT;
mask = UVH_RH10_GAM_GRU_OVERLAY_CONFIG_BASE_MASK;
} else {
pr_err("UV: GRU unavailable (no MMR)\n");
return;
}
gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
if (!gru.s.enable) { if (!gru.s.enable) {
pr_info("UV: GRU disabled\n"); pr_info("UV: GRU disabled (by BIOS)\n");
return; return;
} }
...@@ -749,62 +938,104 @@ static __init void map_gru_high(int max_pnode) ...@@ -749,62 +938,104 @@ static __init void map_gru_high(int max_pnode)
static __init void map_mmr_high(int max_pnode) static __init void map_mmr_high(int max_pnode)
{ {
union uvh_rh_gam_mmr_overlay_config_mmr_u mmr; unsigned long base;
int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT; int shift;
bool enable;
if (UVH_RH10_GAM_MMR_OVERLAY_CONFIG) {
union uvh_rh10_gam_mmr_overlay_config_u mmr;
mmr.v = uv_read_local_mmr(UVH_RH10_GAM_MMR_OVERLAY_CONFIG);
enable = mmr.s.enable;
base = mmr.s.base;
shift = UVH_RH10_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
} else if (UVH_RH_GAM_MMR_OVERLAY_CONFIG) {
union uvh_rh_gam_mmr_overlay_config_u mmr;
mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG);
enable = mmr.s.enable;
base = mmr.s.base;
shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_BASE_SHFT;
} else {
pr_err("UV:%s:RH_GAM_MMR_OVERLAY_CONFIG MMR undefined?\n",
__func__);
return;
}
mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR); if (enable)
if (mmr.s.enable) map_high("MMR", base, shift, shift, max_pnode, map_uc);
map_high("MMR", mmr.s.base, shift, shift, max_pnode, map_uc);
else else
pr_info("UV: MMR disabled\n"); pr_info("UV: MMR disabled\n");
} }
/* UV3/4 have identical MMIOH overlay configs, UV4A is slightly different */ /* Arch specific ENUM cases */
static __init void map_mmioh_high_uv34(int index, int min_pnode, int max_pnode) enum mmioh_arch {
{ UV2_MMIOH = -1,
unsigned long overlay; UVY_MMIOH0, UVY_MMIOH1,
unsigned long mmr; UVX_MMIOH0, UVX_MMIOH1,
unsigned long base; };
unsigned long nasid_mask;
unsigned long m_overlay; /* Calculate and Map MMIOH Regions */
int i, n, shift, m_io, max_io; static void __init calc_mmioh_map(enum mmioh_arch index,
int nasid, lnasid, fi, li; int min_pnode, int max_pnode,
char *id; int shift, unsigned long base, int m_io, int n_io)
{
if (index == 0) { unsigned long mmr, nasid_mask;
id = "MMIOH0"; int nasid, min_nasid, max_nasid, lnasid, mapped;
m_overlay = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR; int i, fi, li, n, max_io;
overlay = uv_read_local_mmr(m_overlay); char id[8];
base = overlay & UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_BASE_MASK;
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR; /* One (UV2) mapping */
m_io = (overlay & UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_M_IO_MASK) if (index == UV2_MMIOH) {
>> UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_M_IO_SHFT; strncpy(id, "MMIOH", sizeof(id));
shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_M_IO_SHFT; max_io = max_pnode;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR_DEPTH; mapped = 0;
nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_MMR_NASID_MASK; goto map_exit;
} else { }
id = "MMIOH1";
m_overlay = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR; /* small and large MMIOH mappings */
overlay = uv_read_local_mmr(m_overlay); switch (index) {
base = overlay & UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR_BASE_MASK; case UVY_MMIOH0:
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_MMR; mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0;
m_io = (overlay & UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR_M_IO_MASK) nasid_mask = UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_MASK;
>> UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR_M_IO_SHFT; n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_MMR_M_IO_SHFT; min_nasid = min_pnode;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_MMR_DEPTH; max_nasid = max_pnode;
nasid_mask = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_MMR_NASID_MASK; mapped = 1;
} break;
pr_info("UV: %s overlay 0x%lx base:0x%lx m_io:%d\n", id, overlay, base, m_io); case UVY_MMIOH1:
if (!(overlay & UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_MMR_ENABLE_MASK)) { mmr = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1;
pr_info("UV: %s disabled\n", id); nasid_mask = UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_MASK;
n = UVH_RH10_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
min_nasid = min_pnode;
max_nasid = max_pnode;
mapped = 1;
break;
case UVX_MMIOH0:
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0;
nasid_mask = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_MASK;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG0_DEPTH;
min_nasid = min_pnode * 2;
max_nasid = max_pnode * 2;
mapped = 1;
break;
case UVX_MMIOH1:
mmr = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1;
nasid_mask = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_MASK;
n = UVH_RH_GAM_MMIOH_REDIRECT_CONFIG1_DEPTH;
min_nasid = min_pnode * 2;
max_nasid = max_pnode * 2;
mapped = 1;
break;
default:
pr_err("UV:%s:Invalid mapping type:%d\n", __func__, index);
return; return;
} }
/* Convert to NASID: */ /* enum values chosen so (index mod 2) is MMIOH 0/1 (low/high) */
min_pnode *= 2; snprintf(id, sizeof(id), "MMIOH%d", index%2);
max_pnode *= 2;
max_io = lnasid = fi = li = -1;
max_io = lnasid = fi = li = -1;
for (i = 0; i < n; i++) { for (i = 0; i < n; i++) {
unsigned long m_redirect = mmr + i * 8; unsigned long m_redirect = mmr + i * 8;
unsigned long redirect = uv_read_local_mmr(m_redirect); unsigned long redirect = uv_read_local_mmr(m_redirect);
...@@ -814,9 +1045,12 @@ static __init void map_mmioh_high_uv34(int index, int min_pnode, int max_pnode) ...@@ -814,9 +1045,12 @@ static __init void map_mmioh_high_uv34(int index, int min_pnode, int max_pnode)
pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n", pr_info("UV: %s redirect base 0x%lx(@0x%lx) 0x%04x\n",
id, redirect, m_redirect, nasid); id, redirect, m_redirect, nasid);
/* Invalid NASID: */ /* Invalid NASID check */
if (nasid < min_pnode || max_pnode < nasid) if (nasid < min_nasid || max_nasid < nasid) {
pr_err("UV:%s:Invalid NASID:%x (range:%x..%x)\n",
__func__, index, min_nasid, max_nasid);
nasid = -1; nasid = -1;
}
if (nasid == lnasid) { if (nasid == lnasid) {
li = i; li = i;
...@@ -839,7 +1073,8 @@ static __init void map_mmioh_high_uv34(int index, int min_pnode, int max_pnode) ...@@ -839,7 +1073,8 @@ static __init void map_mmioh_high_uv34(int index, int min_pnode, int max_pnode)
} }
addr1 = (base << shift) + f * (1ULL << m_io); addr1 = (base << shift) + f * (1ULL << m_io);
addr2 = (base << shift) + (l + 1) * (1ULL << m_io); addr2 = (base << shift) + (l + 1) * (1ULL << m_io);
pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n", id, fi, li, lnasid, addr1, addr2); pr_info("UV: %s[%03d..%03d] NASID 0x%04x ADDR 0x%016lx - 0x%016lx\n",
id, fi, li, lnasid, addr1, addr2);
if (max_io < l) if (max_io < l)
max_io = l; max_io = l;
} }
...@@ -847,48 +1082,92 @@ static __init void map_mmioh_high_uv34(int index, int min_pnode, int max_pnode) ...@@ -847,48 +1082,92 @@ static __init void map_mmioh_high_uv34(int index, int min_pnode, int max_pnode)
lnasid = nasid; lnasid = nasid;
} }
pr_info("UV: %s base:0x%lx shift:%d M_IO:%d MAX_IO:%d\n", id, base, shift, m_io, max_io); map_exit:
pr_info("UV: %s base:0x%lx shift:%d m_io:%d max_io:%d max_pnode:0x%x\n",
id, base, shift, m_io, max_io, max_pnode);
if (max_io >= 0) if (max_io >= 0 && !mapped)
map_high(id, base, shift, m_io, max_io, map_uc); map_high(id, base, shift, m_io, max_io, map_uc);
} }
static __init void map_mmioh_high(int min_pnode, int max_pnode) static __init void map_mmioh_high(int min_pnode, int max_pnode)
{ {
union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh; /* UVY flavor */
unsigned long mmr, base; if (UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0) {
int shift, enable, m_io, n_io; union uvh_rh10_gam_mmioh_overlay_config0_u mmioh0;
union uvh_rh10_gam_mmioh_overlay_config1_u mmioh1;
if (is_uv3_hub() || is_uv4_hub()) { mmioh0.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0);
/* Map both MMIOH regions: */ if (unlikely(mmioh0.s.enable == 0))
map_mmioh_high_uv34(0, min_pnode, max_pnode); pr_info("UV: MMIOH0 disabled\n");
map_mmioh_high_uv34(1, min_pnode, max_pnode); else
calc_mmioh_map(UVY_MMIOH0, min_pnode, max_pnode,
UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
mmioh0.s.base, mmioh0.s.m_io, mmioh0.s.n_io);
mmioh1.v = uv_read_local_mmr(UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1);
if (unlikely(mmioh1.s.enable == 0))
pr_info("UV: MMIOH1 disabled\n");
else
calc_mmioh_map(UVY_MMIOH1, min_pnode, max_pnode,
UVH_RH10_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
mmioh1.s.base, mmioh1.s.m_io, mmioh1.s.n_io);
return; return;
} }
/* UVX flavor */
if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0) {
union uvh_rh_gam_mmioh_overlay_config0_u mmioh0;
union uvh_rh_gam_mmioh_overlay_config1_u mmioh1;
if (is_uv2_hub()) { mmioh0.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0);
mmr = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR; if (unlikely(mmioh0.s.enable == 0))
shift = UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT; pr_info("UV: MMIOH0 disabled\n");
mmioh.v = uv_read_local_mmr(mmr); else {
enable = !!mmioh.s2.enable; unsigned long base = uvxy_field(mmioh0, base, 0);
base = mmioh.s2.base; int m_io = uvxy_field(mmioh0, m_io, 0);
m_io = mmioh.s2.m_io; int n_io = uvxy_field(mmioh0, n_io, 0);
n_io = mmioh.s2.n_io;
calc_mmioh_map(UVX_MMIOH0, min_pnode, max_pnode,
if (enable) { UVH_RH_GAM_MMIOH_OVERLAY_CONFIG0_BASE_SHFT,
max_pnode &= (1 << n_io) - 1; base, m_io, n_io);
pr_info("UV: base:0x%lx shift:%d N_IO:%d M_IO:%d max_pnode:0x%x\n", }
base, shift, m_io, n_io, max_pnode);
map_high("MMIOH", base, shift, m_io, max_pnode, map_uc); mmioh1.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1);
} else { if (unlikely(mmioh1.s.enable == 0))
pr_info("UV: MMIOH disabled\n"); pr_info("UV: MMIOH1 disabled\n");
else {
unsigned long base = uvxy_field(mmioh1, base, 0);
int m_io = uvxy_field(mmioh1, m_io, 0);
int n_io = uvxy_field(mmioh1, n_io, 0);
calc_mmioh_map(UVX_MMIOH1, min_pnode, max_pnode,
UVH_RH_GAM_MMIOH_OVERLAY_CONFIG1_BASE_SHFT,
base, m_io, n_io);
}
return;
} }
/* UV2 flavor */
if (UVH_RH_GAM_MMIOH_OVERLAY_CONFIG) {
union uvh_rh_gam_mmioh_overlay_config_u mmioh;
mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG);
if (unlikely(mmioh.s2.enable == 0))
pr_info("UV: MMIOH disabled\n");
else
calc_mmioh_map(UV2_MMIOH, min_pnode, max_pnode,
UV2H_RH_GAM_MMIOH_OVERLAY_CONFIG_BASE_SHFT,
mmioh.s2.base, mmioh.s2.m_io, mmioh.s2.n_io);
return;
} }
} }
static __init void map_low_mmrs(void) static __init void map_low_mmrs(void)
{ {
if (UV_GLOBAL_MMR32_BASE)
init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE); init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
if (UV_LOCAL_MMR_BASE)
init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE); init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
} }
...@@ -909,85 +1188,6 @@ static __init void uv_rtc_init(void) ...@@ -909,85 +1188,6 @@ static __init void uv_rtc_init(void)
} }
} }
/*
* percpu heartbeat timer
*/
static void uv_heartbeat(struct timer_list *timer)
{
unsigned char bits = uv_scir_info->state;
/* Flip heartbeat bit: */
bits ^= SCIR_CPU_HEARTBEAT;
/* Is this CPU idle? */
if (idle_cpu(raw_smp_processor_id()))
bits &= ~SCIR_CPU_ACTIVITY;
else
bits |= SCIR_CPU_ACTIVITY;
/* Update system controller interface reg: */
uv_set_scir_bits(bits);
/* Enable next timer period: */
mod_timer(timer, jiffies + SCIR_CPU_HB_INTERVAL);
}
static int uv_heartbeat_enable(unsigned int cpu)
{
while (!uv_cpu_scir_info(cpu)->enabled) {
struct timer_list *timer = &uv_cpu_scir_info(cpu)->timer;
uv_set_cpu_scir_bits(cpu, SCIR_CPU_HEARTBEAT|SCIR_CPU_ACTIVITY);
timer_setup(timer, uv_heartbeat, TIMER_PINNED);
timer->expires = jiffies + SCIR_CPU_HB_INTERVAL;
add_timer_on(timer, cpu);
uv_cpu_scir_info(cpu)->enabled = 1;
/* Also ensure that boot CPU is enabled: */
cpu = 0;
}
return 0;
}
#ifdef CONFIG_HOTPLUG_CPU
static int uv_heartbeat_disable(unsigned int cpu)
{
if (uv_cpu_scir_info(cpu)->enabled) {
uv_cpu_scir_info(cpu)->enabled = 0;
del_timer(&uv_cpu_scir_info(cpu)->timer);
}
uv_set_cpu_scir_bits(cpu, 0xff);
return 0;
}
static __init void uv_scir_register_cpu_notifier(void)
{
cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "x86/x2apic-uvx:online",
uv_heartbeat_enable, uv_heartbeat_disable);
}
#else /* !CONFIG_HOTPLUG_CPU */
static __init void uv_scir_register_cpu_notifier(void)
{
}
static __init int uv_init_heartbeat(void)
{
int cpu;
if (is_uv_system()) {
for_each_online_cpu(cpu)
uv_heartbeat_enable(cpu);
}
return 0;
}
late_initcall(uv_init_heartbeat);
#endif /* !CONFIG_HOTPLUG_CPU */
/* Direct Legacy VGA I/O traffic to designated IOH */ /* Direct Legacy VGA I/O traffic to designated IOH */
static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags) static int uv_set_vga_state(struct pci_dev *pdev, bool decode, unsigned int command_bits, u32 flags)
{ {
...@@ -1027,26 +1227,22 @@ struct mn { ...@@ -1027,26 +1227,22 @@ struct mn {
unsigned char n_lshift; unsigned char n_lshift;
}; };
/* Initialize caller's MN struct and fill in values */
static void get_mn(struct mn *mnp) static void get_mn(struct mn *mnp)
{ {
union uvh_rh_gam_config_mmr_u m_n_config;
union uv3h_gr0_gam_gr_config_u m_gr_config;
/* Make sure the whole structure is well initialized: */
memset(mnp, 0, sizeof(*mnp)); memset(mnp, 0, sizeof(*mnp));
mnp->n_val = uv_cpuid.n_skt;
m_n_config.v = uv_read_local_mmr(UVH_RH_GAM_CONFIG_MMR); if (is_uv(UV4|UVY)) {
mnp->n_val = m_n_config.s.n_skt;
if (is_uv4_hub()) {
mnp->m_val = 0; mnp->m_val = 0;
mnp->n_lshift = 0; mnp->n_lshift = 0;
} else if (is_uv3_hub()) { } else if (is_uv3_hub()) {
mnp->m_val = m_n_config.s3.m_skt; union uvyh_gr0_gam_gr_config_u m_gr_config;
m_gr_config.v = uv_read_local_mmr(UV3H_GR0_GAM_GR_CONFIG);
mnp->m_val = uv_cpuid.m_skt;
m_gr_config.v = uv_read_local_mmr(UVH_GR0_GAM_GR_CONFIG);
mnp->n_lshift = m_gr_config.s3.m_skt; mnp->n_lshift = m_gr_config.s3.m_skt;
} else if (is_uv2_hub()) { } else if (is_uv2_hub()) {
mnp->m_val = m_n_config.s2.m_skt; mnp->m_val = uv_cpuid.m_skt;
mnp->n_lshift = mnp->m_val == 40 ? 40 : 39; mnp->n_lshift = mnp->m_val == 40 ? 40 : 39;
} }
mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0; mnp->m_shift = mnp->m_val ? 64 - mnp->m_val : 0;
...@@ -1054,7 +1250,6 @@ static void get_mn(struct mn *mnp) ...@@ -1054,7 +1250,6 @@ static void get_mn(struct mn *mnp)
static void __init uv_init_hub_info(struct uv_hub_info_s *hi) static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
{ {
union uvh_node_id_u node_id;
struct mn mn; struct mn mn;
get_mn(&mn); get_mn(&mn);
...@@ -1067,7 +1262,9 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi) ...@@ -1067,7 +1262,9 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
hi->m_shift = mn.m_shift; hi->m_shift = mn.m_shift;
hi->n_lshift = mn.n_lshift ? mn.n_lshift : 0; hi->n_lshift = mn.n_lshift ? mn.n_lshift : 0;
hi->hub_revision = uv_hub_info->hub_revision; hi->hub_revision = uv_hub_info->hub_revision;
hi->hub_type = uv_hub_info->hub_type;
hi->pnode_mask = uv_cpuid.pnode_mask; hi->pnode_mask = uv_cpuid.pnode_mask;
hi->nasid_shift = uv_cpuid.nasid_shift;
hi->min_pnode = _min_pnode; hi->min_pnode = _min_pnode;
hi->min_socket = _min_socket; hi->min_socket = _min_socket;
hi->pnode_to_socket = _pnode_to_socket; hi->pnode_to_socket = _pnode_to_socket;
...@@ -1076,9 +1273,8 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi) ...@@ -1076,9 +1273,8 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
hi->gr_table_len = _gr_table_len; hi->gr_table_len = _gr_table_len;
hi->gr_table = _gr_table; hi->gr_table = _gr_table;
node_id.v = uv_read_local_mmr(UVH_NODE_ID);
uv_cpuid.gnode_shift = max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val); uv_cpuid.gnode_shift = max_t(unsigned int, uv_cpuid.gnode_shift, mn.n_val);
hi->gnode_extra = (node_id.s.node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1; hi->gnode_extra = (uv_node_id & ~((1 << uv_cpuid.gnode_shift) - 1)) >> 1;
if (mn.m_val) if (mn.m_val)
hi->gnode_upper = (u64)hi->gnode_extra << mn.m_val; hi->gnode_upper = (u64)hi->gnode_extra << mn.m_val;
...@@ -1090,7 +1286,9 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi) ...@@ -1090,7 +1286,9 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
hi->gpa_shift = uv_gp_table->gpa_shift; hi->gpa_shift = uv_gp_table->gpa_shift;
hi->gpa_mask = (1UL << hi->gpa_shift) - 1; hi->gpa_mask = (1UL << hi->gpa_shift) - 1;
} else { } else {
hi->global_mmr_base = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) & ~UV_MMR_ENABLE; hi->global_mmr_base =
uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG) &
~UV_MMR_ENABLE;
hi->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT; hi->global_mmr_shift = _UV_GLOBAL_MMR64_PNODE_SHIFT;
} }
...@@ -1101,7 +1299,11 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi) ...@@ -1101,7 +1299,11 @@ static void __init uv_init_hub_info(struct uv_hub_info_s *hi)
/* Show system specific info: */ /* Show system specific info: */
pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift); pr_info("UV: N:%d M:%d m_shift:%d n_lshift:%d\n", hi->n_val, hi->m_val, hi->m_shift, hi->n_lshift);
pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift); pr_info("UV: gpa_mask/shift:0x%lx/%d pnode_mask:0x%x apic_pns:%d\n", hi->gpa_mask, hi->gpa_shift, hi->pnode_mask, hi->apic_pnode_shift);
pr_info("UV: mmr_base/shift:0x%lx/%ld gru_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift, hi->global_gru_base, hi->global_gru_shift); pr_info("UV: mmr_base/shift:0x%lx/%ld\n", hi->global_mmr_base, hi->global_mmr_shift);
if (hi->global_gru_base)
pr_info("UV: gru_base/shift:0x%lx/%ld\n",
hi->global_gru_base, hi->global_gru_shift);
pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra); pr_info("UV: gnode_upper:0x%lx gnode_extra:0x%x\n", hi->gnode_upper, hi->gnode_extra);
} }
...@@ -1173,21 +1375,25 @@ static void __init decode_gam_rng_tbl(unsigned long ptr) ...@@ -1173,21 +1375,25 @@ static void __init decode_gam_rng_tbl(unsigned long ptr)
pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x) pnodes(min:%x,max:%x)\n", index, _min_socket, _max_socket, _min_pnode, _max_pnode); pr_info("UV: GRT: %d entries, sockets(min:%x,max:%x) pnodes(min:%x,max:%x)\n", index, _min_socket, _max_socket, _min_pnode, _max_pnode);
} }
/* Walk through UVsystab decoding the fields */
static int __init decode_uv_systab(void) static int __init decode_uv_systab(void)
{ {
struct uv_systab *st; struct uv_systab *st;
int i; int i;
/* If system is uv3 or lower, there is no extended UVsystab */ /* Get mapped UVsystab pointer */
if (is_uv_hubbed(0xfffffe) < uv(4) && is_uv_hubless(0xfffffe) < uv(4))
return 0; /* No extended UVsystab required */
st = uv_systab; st = uv_systab;
/* If UVsystab is version 1, there is no extended UVsystab */
if (st && st->revision == UV_SYSTAB_VERSION_1)
return 0;
if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) { if ((!st) || (st->revision < UV_SYSTAB_VERSION_UV4_LATEST)) {
int rev = st ? st->revision : 0; int rev = st ? st->revision : 0;
pr_err("UV: BIOS UVsystab version(%x) mismatch, expecting(%x)\n", rev, UV_SYSTAB_VERSION_UV4_LATEST); pr_err("UV: BIOS UVsystab mismatch, (%x < %x)\n",
pr_err("UV: Cannot support UV operations, switching to generic PC\n"); rev, UV_SYSTAB_VERSION_UV4_LATEST);
pr_err("UV: Does not support UV, switch to non-UV x86_64\n");
uv_system_type = UV_NONE; uv_system_type = UV_NONE;
return -EINVAL; return -EINVAL;
...@@ -1199,7 +1405,8 @@ static int __init decode_uv_systab(void) ...@@ -1199,7 +1405,8 @@ static int __init decode_uv_systab(void)
if (!ptr) if (!ptr)
continue; continue;
ptr = ptr + (unsigned long)st; /* point to payload */
ptr += (unsigned long)st;
switch (st->entry[i].type) { switch (st->entry[i].type) {
case UV_SYSTAB_TYPE_GAM_PARAMS: case UV_SYSTAB_TYPE_GAM_PARAMS:
...@@ -1209,32 +1416,49 @@ static int __init decode_uv_systab(void) ...@@ -1209,32 +1416,49 @@ static int __init decode_uv_systab(void)
case UV_SYSTAB_TYPE_GAM_RNG_TBL: case UV_SYSTAB_TYPE_GAM_RNG_TBL:
decode_gam_rng_tbl(ptr); decode_gam_rng_tbl(ptr);
break; break;
case UV_SYSTAB_TYPE_ARCH_TYPE:
/* already processed in early startup */
break;
default:
pr_err("UV:%s:Unrecognized UV_SYSTAB_TYPE:%d, skipped\n",
__func__, st->entry[i].type);
break;
} }
} }
return 0; return 0;
} }
/* /* Set up physical blade translations from UVH_NODE_PRESENT_TABLE */
* Set up physical blade translations from UVH_NODE_PRESENT_TABLE
* .. NB: UVH_NODE_PRESENT_TABLE is going away,
* .. being replaced by GAM Range Table
*/
static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info) static __init void boot_init_possible_blades(struct uv_hub_info_s *hub_info)
{ {
unsigned long np;
int i, uv_pb = 0; int i, uv_pb = 0;
pr_info("UV: NODE_PRESENT_DEPTH = %d\n", UVH_NODE_PRESENT_TABLE_DEPTH); if (UVH_NODE_PRESENT_TABLE) {
pr_info("UV: NODE_PRESENT_DEPTH = %d\n",
UVH_NODE_PRESENT_TABLE_DEPTH);
for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) { for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
unsigned long np;
np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8); np = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
if (np)
pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np); pr_info("UV: NODE_PRESENT(%d) = 0x%016lx\n", i, np);
uv_pb += hweight64(np);
}
}
if (UVH_NODE_PRESENT_0) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_0);
pr_info("UV: NODE_PRESENT_0 = 0x%016lx\n", np);
uv_pb += hweight64(np);
}
if (UVH_NODE_PRESENT_1) {
np = uv_read_local_mmr(UVH_NODE_PRESENT_1);
pr_info("UV: NODE_PRESENT_1 = 0x%016lx\n", np);
uv_pb += hweight64(np); uv_pb += hweight64(np);
} }
if (uv_possible_blades != uv_pb) if (uv_possible_blades != uv_pb)
uv_possible_blades = uv_pb; uv_possible_blades = uv_pb;
pr_info("UV: number nodes/possible blades %d\n", uv_pb);
} }
static void __init build_socket_tables(void) static void __init build_socket_tables(void)
...@@ -1253,7 +1477,7 @@ static void __init build_socket_tables(void) ...@@ -1253,7 +1477,7 @@ static void __init build_socket_tables(void)
pr_info("UV: No UVsystab socket table, ignoring\n"); pr_info("UV: No UVsystab socket table, ignoring\n");
return; return;
} }
pr_crit("UV: Error: UVsystab address translations not available!\n"); pr_err("UV: Error: UVsystab address translations not available!\n");
BUG(); BUG();
} }
...@@ -1379,9 +1603,9 @@ static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data) ...@@ -1379,9 +1603,9 @@ static int __maybe_unused proc_hubless_show(struct seq_file *file, void *data)
return 0; return 0;
} }
static int __maybe_unused proc_oemid_show(struct seq_file *file, void *data) static int __maybe_unused proc_archtype_show(struct seq_file *file, void *data)
{ {
seq_printf(file, "%s/%s\n", oem_id, oem_table_id); seq_printf(file, "%s/%s\n", uv_archtype, oem_table_id);
return 0; return 0;
} }
...@@ -1390,7 +1614,7 @@ static __init void uv_setup_proc_files(int hubless) ...@@ -1390,7 +1614,7 @@ static __init void uv_setup_proc_files(int hubless)
struct proc_dir_entry *pde; struct proc_dir_entry *pde;
pde = proc_mkdir(UV_PROC_NODE, NULL); pde = proc_mkdir(UV_PROC_NODE, NULL);
proc_create_single("oemid", 0, pde, proc_oemid_show); proc_create_single("archtype", 0, pde, proc_archtype_show);
if (hubless) if (hubless)
proc_create_single("hubless", 0, pde, proc_hubless_show); proc_create_single("hubless", 0, pde, proc_hubless_show);
else else
...@@ -1429,7 +1653,8 @@ static void __init uv_system_init_hub(void) ...@@ -1429,7 +1653,8 @@ static void __init uv_system_init_hub(void)
struct uv_hub_info_s hub_info = {0}; struct uv_hub_info_s hub_info = {0};
int bytes, cpu, nodeid; int bytes, cpu, nodeid;
unsigned short min_pnode = 9999, max_pnode = 0; unsigned short min_pnode = 9999, max_pnode = 0;
char *hub = is_uv4_hub() ? "UV400" : char *hub = is_uv5_hub() ? "UV500" :
is_uv4_hub() ? "UV400" :
is_uv3_hub() ? "UV300" : is_uv3_hub() ? "UV300" :
is_uv2_hub() ? "UV2000/3000" : NULL; is_uv2_hub() ? "UV2000/3000" : NULL;
...@@ -1441,12 +1666,14 @@ static void __init uv_system_init_hub(void) ...@@ -1441,12 +1666,14 @@ static void __init uv_system_init_hub(void)
map_low_mmrs(); map_low_mmrs();
/* Get uv_systab for decoding: */ /* Get uv_systab for decoding, setup UV BIOS calls */
uv_bios_init(); uv_bios_init();
/* If there's an UVsystab problem then abort UV init: */ /* If there's an UVsystab problem then abort UV init: */
if (decode_uv_systab() < 0) if (decode_uv_systab() < 0) {
pr_err("UV: Mangled UVsystab format\n");
return; return;
}
build_socket_tables(); build_socket_tables();
build_uv_gr_table(); build_uv_gr_table();
...@@ -1517,8 +1744,6 @@ static void __init uv_system_init_hub(void) ...@@ -1517,8 +1744,6 @@ static void __init uv_system_init_hub(void)
uv_hub_info_list(numa_node_id)->pnode = pnode; uv_hub_info_list(numa_node_id)->pnode = pnode;
else if (uv_cpu_hub_info(cpu)->pnode == 0xffff) else if (uv_cpu_hub_info(cpu)->pnode == 0xffff)
uv_cpu_hub_info(cpu)->pnode = pnode; uv_cpu_hub_info(cpu)->pnode = pnode;
uv_cpu_scir_info(cpu)->offset = uv_scir_offset(apicid);
} }
for_each_node(nodeid) { for_each_node(nodeid) {
...@@ -1547,7 +1772,6 @@ static void __init uv_system_init_hub(void) ...@@ -1547,7 +1772,6 @@ static void __init uv_system_init_hub(void)
uv_nmi_setup(); uv_nmi_setup();
uv_cpu_init(); uv_cpu_init();
uv_scir_register_cpu_notifier();
uv_setup_proc_files(0); uv_setup_proc_files(0);
/* Register Legacy VGA I/O redirection handler: */ /* Register Legacy VGA I/O redirection handler: */
......
...@@ -148,9 +148,6 @@ static const __initconst struct idt_data apic_idts[] = { ...@@ -148,9 +148,6 @@ static const __initconst struct idt_data apic_idts[] = {
# endif # endif
# ifdef CONFIG_IRQ_WORK # ifdef CONFIG_IRQ_WORK
INTG(IRQ_WORK_VECTOR, asm_sysvec_irq_work), INTG(IRQ_WORK_VECTOR, asm_sysvec_irq_work),
# endif
# ifdef CONFIG_X86_UV
INTG(UV_BAU_MESSAGE, asm_sysvec_uv_bau_message),
# endif # endif
INTG(SPURIOUS_APIC_VECTOR, asm_sysvec_spurious_apic_interrupt), INTG(SPURIOUS_APIC_VECTOR, asm_sysvec_spurious_apic_interrupt),
INTG(ERROR_APIC_VECTOR, asm_sysvec_error_interrupt), INTG(ERROR_APIC_VECTOR, asm_sysvec_error_interrupt),
......
...@@ -14,7 +14,6 @@ ...@@ -14,7 +14,6 @@
#include <asm/nospec-branch.h> #include <asm/nospec-branch.h>
#include <asm/cache.h> #include <asm/cache.h>
#include <asm/apic.h> #include <asm/apic.h>
#include <asm/uv/uv.h>
#include "mm_internal.h" #include "mm_internal.h"
...@@ -800,29 +799,6 @@ STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask, ...@@ -800,29 +799,6 @@ STATIC_NOPV void native_flush_tlb_others(const struct cpumask *cpumask,
trace_tlb_flush(TLB_REMOTE_SEND_IPI, trace_tlb_flush(TLB_REMOTE_SEND_IPI,
(info->end - info->start) >> PAGE_SHIFT); (info->end - info->start) >> PAGE_SHIFT);
if (is_uv_system()) {
/*
* This whole special case is confused. UV has a "Broadcast
* Assist Unit", which seems to be a fancy way to send IPIs.
* Back when x86 used an explicit TLB flush IPI, UV was
* optimized to use its own mechanism. These days, x86 uses
* smp_call_function_many(), but UV still uses a manual IPI,
* and that IPI's action is out of date -- it does a manual
* flush instead of calling flush_tlb_func_remote(). This
* means that the percpu tlb_gen variables won't be updated
* and we'll do pointless flushes on future context switches.
*
* Rather than hooking native_flush_tlb_others() here, I think
* that UV should be updated so that smp_call_function_many(),
* etc, are optimal on UV.
*/
cpumask = uv_flush_tlb_others(cpumask, info);
if (cpumask)
smp_call_function_many(cpumask, flush_tlb_func_remote,
(void *)info, 1);
return;
}
/* /*
* If no page tables were freed, we can skip sending IPIs to * If no page tables were freed, we can skip sending IPIs to
* CPUs in lazy TLB mode. They will flush the CPU themselves * CPUs in lazy TLB mode. They will flush the CPU themselves
......
# SPDX-License-Identifier: GPL-2.0-only # SPDX-License-Identifier: GPL-2.0-only
obj-$(CONFIG_X86_UV) += tlb_uv.o bios_uv.o uv_irq.o uv_sysfs.o uv_time.o uv_nmi.o obj-$(CONFIG_X86_UV) += bios_uv.o uv_irq.o uv_sysfs.o uv_time.o uv_nmi.o
...@@ -2,7 +2,8 @@ ...@@ -2,7 +2,8 @@
/* /*
* BIOS run time interface routines. * BIOS run time interface routines.
* *
* Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved. * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
* Copyright (c) Russ Anderson <rja@sgi.com> * Copyright (c) Russ Anderson <rja@sgi.com>
*/ */
...@@ -170,16 +171,27 @@ int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus) ...@@ -170,16 +171,27 @@ int uv_bios_set_legacy_vga_target(bool decode, int domain, int bus)
(u64)decode, (u64)domain, (u64)bus, 0, 0); (u64)decode, (u64)domain, (u64)bus, 0, 0);
} }
int uv_bios_init(void) unsigned long get_uv_systab_phys(bool msg)
{ {
uv_systab = NULL;
if ((uv_systab_phys == EFI_INVALID_TABLE_ADDR) || if ((uv_systab_phys == EFI_INVALID_TABLE_ADDR) ||
!uv_systab_phys || efi_runtime_disabled()) { !uv_systab_phys || efi_runtime_disabled()) {
if (msg)
pr_crit("UV: UVsystab: missing\n"); pr_crit("UV: UVsystab: missing\n");
return -EEXIST; return 0;
} }
return uv_systab_phys;
}
int uv_bios_init(void)
{
unsigned long uv_systab_phys_addr;
uv_systab = NULL;
uv_systab_phys_addr = get_uv_systab_phys(1);
if (!uv_systab_phys_addr)
return -EEXIST;
uv_systab = ioremap(uv_systab_phys, sizeof(struct uv_systab)); uv_systab = ioremap(uv_systab_phys_addr, sizeof(struct uv_systab));
if (!uv_systab || strncmp(uv_systab->signature, UV_SYSTAB_SIG, 4)) { if (!uv_systab || strncmp(uv_systab->signature, UV_SYSTAB_SIG, 4)) {
pr_err("UV: UVsystab: bad signature!\n"); pr_err("UV: UVsystab: bad signature!\n");
iounmap(uv_systab); iounmap(uv_systab);
...@@ -191,7 +203,7 @@ int uv_bios_init(void) ...@@ -191,7 +203,7 @@ int uv_bios_init(void)
int size = uv_systab->size; int size = uv_systab->size;
iounmap(uv_systab); iounmap(uv_systab);
uv_systab = ioremap(uv_systab_phys, size); uv_systab = ioremap(uv_systab_phys_addr, size);
if (!uv_systab) { if (!uv_systab) {
pr_err("UV: UVsystab: ioremap(%d) failed!\n", size); pr_err("UV: UVsystab: ioremap(%d) failed!\n", size);
return -EFAULT; return -EFAULT;
......
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* SGI UltraViolet TLB flush routines.
*
* (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
*/
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/debugfs.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <asm/mmu_context.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
#include <asm/uv/uv_bau.h>
#include <asm/apic.h>
#include <asm/tsc.h>
#include <asm/irq_vectors.h>
#include <asm/timer.h>
static struct bau_operations ops __ro_after_init;
static int timeout_us;
static bool nobau = true;
static int nobau_perm;
/* tunables: */
static int max_concurr = MAX_BAU_CONCURRENT;
static int max_concurr_const = MAX_BAU_CONCURRENT;
static int plugged_delay = PLUGGED_DELAY;
static int plugsb4reset = PLUGSB4RESET;
static int giveup_limit = GIVEUP_LIMIT;
static int timeoutsb4reset = TIMEOUTSB4RESET;
static int ipi_reset_limit = IPI_RESET_LIMIT;
static int complete_threshold = COMPLETE_THRESHOLD;
static int congested_respns_us = CONGESTED_RESPONSE_US;
static int congested_reps = CONGESTED_REPS;
static int disabled_period = DISABLED_PERIOD;
static struct tunables tunables[] = {
{&max_concurr, MAX_BAU_CONCURRENT}, /* must be [0] */
{&plugged_delay, PLUGGED_DELAY},
{&plugsb4reset, PLUGSB4RESET},
{&timeoutsb4reset, TIMEOUTSB4RESET},
{&ipi_reset_limit, IPI_RESET_LIMIT},
{&complete_threshold, COMPLETE_THRESHOLD},
{&congested_respns_us, CONGESTED_RESPONSE_US},
{&congested_reps, CONGESTED_REPS},
{&disabled_period, DISABLED_PERIOD},
{&giveup_limit, GIVEUP_LIMIT}
};
static struct dentry *tunables_dir;
/* these correspond to the statistics printed by ptc_seq_show() */
static char *stat_description[] = {
"sent: number of shootdown messages sent",
"stime: time spent sending messages",
"numuvhubs: number of hubs targeted with shootdown",
"numuvhubs16: number times 16 or more hubs targeted",
"numuvhubs8: number times 8 or more hubs targeted",
"numuvhubs4: number times 4 or more hubs targeted",
"numuvhubs2: number times 2 or more hubs targeted",
"numuvhubs1: number times 1 hub targeted",
"numcpus: number of cpus targeted with shootdown",
"dto: number of destination timeouts",
"retries: destination timeout retries sent",
"rok: : destination timeouts successfully retried",
"resetp: ipi-style resource resets for plugs",
"resett: ipi-style resource resets for timeouts",
"giveup: fall-backs to ipi-style shootdowns",
"sto: number of source timeouts",
"bz: number of stay-busy's",
"throt: number times spun in throttle",
"swack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
"recv: shootdown messages received",
"rtime: time spent processing messages",
"all: shootdown all-tlb messages",
"one: shootdown one-tlb messages",
"mult: interrupts that found multiple messages",
"none: interrupts that found no messages",
"retry: number of retry messages processed",
"canc: number messages canceled by retries",
"nocan: number retries that found nothing to cancel",
"reset: number of ipi-style reset requests processed",
"rcan: number messages canceled by reset requests",
"disable: number times use of the BAU was disabled",
"enable: number times use of the BAU was re-enabled"
};
static int __init setup_bau(char *arg)
{
int result;
if (!arg)
return -EINVAL;
result = strtobool(arg, &nobau);
if (result)
return result;
/* we need to flip the logic here, so that bau=y sets nobau to false */
nobau = !nobau;
if (!nobau)
pr_info("UV BAU Enabled\n");
else
pr_info("UV BAU Disabled\n");
return 0;
}
early_param("bau", setup_bau);
/* base pnode in this partition */
static int uv_base_pnode __read_mostly;
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
static void
set_bau_on(void)
{
int cpu;
struct bau_control *bcp;
if (nobau_perm) {
pr_info("BAU not initialized; cannot be turned on\n");
return;
}
nobau = false;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->nobau = false;
}
pr_info("BAU turned on\n");
return;
}
static void
set_bau_off(void)
{
int cpu;
struct bau_control *bcp;
nobau = true;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->nobau = true;
}
pr_info("BAU turned off\n");
return;
}
/*
* Determine the first node on a uvhub. 'Nodes' are used for kernel
* memory allocation.
*/
static int __init uvhub_to_first_node(int uvhub)
{
int node, b;
for_each_online_node(node) {
b = uv_node_to_blade_id(node);
if (uvhub == b)
return node;
}
return -1;
}
/*
* Determine the apicid of the first cpu on a uvhub.
*/
static int __init uvhub_to_first_apicid(int uvhub)
{
int cpu;
for_each_present_cpu(cpu)
if (uvhub == uv_cpu_to_blade_id(cpu))
return per_cpu(x86_cpu_to_apicid, cpu);
return -1;
}
/*
* Free a software acknowledge hardware resource by clearing its Pending
* bit. This will return a reply to the sender.
* If the message has timed out, a reply has already been sent by the
* hardware but the resource has not been released. In that case our
* clear of the Timeout bit (as well) will free the resource. No reply will
* be sent (the hardware will only do one reply per message).
*/
static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
int do_acknowledge)
{
unsigned long dw;
struct bau_pq_entry *msg;
msg = mdp->msg;
if (!msg->canceled && do_acknowledge) {
dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
ops.write_l_sw_ack(dw);
}
msg->replied_to = 1;
msg->swack_vec = 0;
}
/*
* Process the receipt of a RETRY message
*/
static void bau_process_retry_msg(struct msg_desc *mdp,
struct bau_control *bcp)
{
int i;
int cancel_count = 0;
unsigned long msg_res;
unsigned long mmr = 0;
struct bau_pq_entry *msg = mdp->msg;
struct bau_pq_entry *msg2;
struct ptc_stats *stat = bcp->statp;
stat->d_retries++;
/*
* cancel any message from msg+1 to the retry itself
*/
for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
if (msg2 > mdp->queue_last)
msg2 = mdp->queue_first;
if (msg2 == msg)
break;
/* same conditions for cancellation as do_reset */
if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
(msg2->swack_vec) && ((msg2->swack_vec &
msg->swack_vec) == 0) &&
(msg2->sending_cpu == msg->sending_cpu) &&
(msg2->msg_type != MSG_NOOP)) {
mmr = ops.read_l_sw_ack();
msg_res = msg2->swack_vec;
/*
* This is a message retry; clear the resources held
* by the previous message only if they timed out.
* If it has not timed out we have an unexpected
* situation to report.
*/
if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
unsigned long mr;
/*
* Is the resource timed out?
* Make everyone ignore the cancelled message.
*/
msg2->canceled = 1;
stat->d_canceled++;
cancel_count++;
mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
ops.write_l_sw_ack(mr);
}
}
}
if (!cancel_count)
stat->d_nocanceled++;
}
/*
* Do all the things a cpu should do for a TLB shootdown message.
* Other cpu's may come here at the same time for this message.
*/
static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
int do_acknowledge)
{
short socket_ack_count = 0;
short *sp;
struct atomic_short *asp;
struct ptc_stats *stat = bcp->statp;
struct bau_pq_entry *msg = mdp->msg;
struct bau_control *smaster = bcp->socket_master;
/*
* This must be a normal message, or retry of a normal message
*/
if (msg->address == TLB_FLUSH_ALL) {
flush_tlb_local();
stat->d_alltlb++;
} else {
flush_tlb_one_user(msg->address);
stat->d_onetlb++;
}
stat->d_requestee++;
/*
* One cpu on each uvhub has the additional job on a RETRY
* of releasing the resource held by the message that is
* being retried. That message is identified by sending
* cpu number.
*/
if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
bau_process_retry_msg(mdp, bcp);
/*
* This is a swack message, so we have to reply to it.
* Count each responding cpu on the socket. This avoids
* pinging the count's cache line back and forth between
* the sockets.
*/
sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
asp = (struct atomic_short *)sp;
socket_ack_count = atom_asr(1, asp);
if (socket_ack_count == bcp->cpus_in_socket) {
int msg_ack_count;
/*
* Both sockets dump their completed count total into
* the message's count.
*/
*sp = 0;
asp = (struct atomic_short *)&msg->acknowledge_count;
msg_ack_count = atom_asr(socket_ack_count, asp);
if (msg_ack_count == bcp->cpus_in_uvhub) {
/*
* All cpus in uvhub saw it; reply
* (unless we are in the UV2 workaround)
*/
reply_to_message(mdp, bcp, do_acknowledge);
}
}
return;
}
/*
* Determine the first cpu on a pnode.
*/
static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
{
int cpu;
struct hub_and_pnode *hpp;
for_each_present_cpu(cpu) {
hpp = &smaster->thp[cpu];
if (pnode == hpp->pnode)
return cpu;
}
return -1;
}
/*
* Last resort when we get a large number of destination timeouts is
* to clear resources held by a given cpu.
* Do this with IPI so that all messages in the BAU message queue
* can be identified by their nonzero swack_vec field.
*
* This is entered for a single cpu on the uvhub.
* The sender want's this uvhub to free a specific message's
* swack resources.
*/
static void do_reset(void *ptr)
{
int i;
struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
struct reset_args *rap = (struct reset_args *)ptr;
struct bau_pq_entry *msg;
struct ptc_stats *stat = bcp->statp;
stat->d_resets++;
/*
* We're looking for the given sender, and
* will free its swack resource.
* If all cpu's finally responded after the timeout, its
* message 'replied_to' was set.
*/
for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
unsigned long msg_res;
/* do_reset: same conditions for cancellation as
bau_process_retry_msg() */
if ((msg->replied_to == 0) &&
(msg->canceled == 0) &&
(msg->sending_cpu == rap->sender) &&
(msg->swack_vec) &&
(msg->msg_type != MSG_NOOP)) {
unsigned long mmr;
unsigned long mr;
/*
* make everyone else ignore this message
*/
msg->canceled = 1;
/*
* only reset the resource if it is still pending
*/
mmr = ops.read_l_sw_ack();
msg_res = msg->swack_vec;
mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
if (mmr & msg_res) {
stat->d_rcanceled++;
ops.write_l_sw_ack(mr);
}
}
}
return;
}
/*
* Use IPI to get all target uvhubs to release resources held by
* a given sending cpu number.
*/
static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
{
int pnode;
int apnode;
int maskbits;
int sender = bcp->cpu;
cpumask_t *mask = bcp->uvhub_master->cpumask;
struct bau_control *smaster = bcp->socket_master;
struct reset_args reset_args;
reset_args.sender = sender;
cpumask_clear(mask);
/* find a single cpu for each uvhub in this distribution mask */
maskbits = sizeof(struct pnmask) * BITSPERBYTE;
/* each bit is a pnode relative to the partition base pnode */
for (pnode = 0; pnode < maskbits; pnode++) {
int cpu;
if (!bau_uvhub_isset(pnode, distribution))
continue;
apnode = pnode + bcp->partition_base_pnode;
cpu = pnode_to_first_cpu(apnode, smaster);
cpumask_set_cpu(cpu, mask);
}
/* IPI all cpus; preemption is already disabled */
smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
return;
}
/*
* Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
* number, not an absolute. It converts a duration in cycles to a duration in
* ns.
*/
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
{
struct cyc2ns_data data;
unsigned long long ns;
cyc2ns_read_begin(&data);
ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
cyc2ns_read_end();
return ns;
}
/*
* The reverse of the above; converts a duration in ns to a duration in cycles.
*/
static inline unsigned long long ns_2_cycles(unsigned long long ns)
{
struct cyc2ns_data data;
unsigned long long cyc;
cyc2ns_read_begin(&data);
cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
cyc2ns_read_end();
return cyc;
}
static inline unsigned long cycles_2_us(unsigned long long cyc)
{
return cycles_2_ns(cyc) / NSEC_PER_USEC;
}
static inline cycles_t sec_2_cycles(unsigned long sec)
{
return ns_2_cycles(sec * NSEC_PER_SEC);
}
static inline unsigned long long usec_2_cycles(unsigned long usec)
{
return ns_2_cycles(usec * NSEC_PER_USEC);
}
/*
* wait for all cpus on this hub to finish their sends and go quiet
* leaves uvhub_quiesce set so that no new broadcasts are started by
* bau_flush_send_and_wait()
*/
static inline void quiesce_local_uvhub(struct bau_control *hmaster)
{
atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
}
/*
* mark this quiet-requestor as done
*/
static inline void end_uvhub_quiesce(struct bau_control *hmaster)
{
atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
}
/*
* UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
* But not currently used.
*/
static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
{
return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
}
/*
* Entered when a bau descriptor has gone into a permanent busy wait because
* of a hardware bug.
* Workaround the bug.
*/
static int handle_uv2_busy(struct bau_control *bcp)
{
struct ptc_stats *stat = bcp->statp;
stat->s_uv2_wars++;
bcp->busy = 1;
return FLUSH_GIVEUP;
}
static int uv2_3_wait_completion(struct bau_desc *bau_desc,
struct bau_control *bcp, long try)
{
unsigned long descriptor_stat;
cycles_t ttm;
u64 mmr_offset = bcp->status_mmr;
int right_shift = bcp->status_index;
int desc = bcp->uvhub_cpu;
long busy_reps = 0;
struct ptc_stats *stat = bcp->statp;
descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
/* spin on the status MMR, waiting for it to go idle */
while (descriptor_stat != UV2H_DESC_IDLE) {
if (descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) {
/*
* A h/w bug on the destination side may
* have prevented the message being marked
* pending, thus it doesn't get replied to
* and gets continually nacked until it times
* out with a SOURCE_TIMEOUT.
*/
stat->s_stimeout++;
return FLUSH_GIVEUP;
} else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
ttm = get_cycles();
/*
* Our retries may be blocked by all destination
* swack resources being consumed, and a timeout
* pending. In that case hardware returns the
* ERROR that looks like a destination timeout.
* Without using the extended status we have to
* deduce from the short time that this was a
* strong nack.
*/
if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
bcp->conseccompletes = 0;
stat->s_plugged++;
/* FLUSH_RETRY_PLUGGED causes hang on boot */
return FLUSH_GIVEUP;
}
stat->s_dtimeout++;
bcp->conseccompletes = 0;
/* FLUSH_RETRY_TIMEOUT causes hang on boot */
return FLUSH_GIVEUP;
} else {
busy_reps++;
if (busy_reps > 1000000) {
/* not to hammer on the clock */
busy_reps = 0;
ttm = get_cycles();
if ((ttm - bcp->send_message) > bcp->timeout_interval)
return handle_uv2_busy(bcp);
}
/*
* descriptor_stat is still BUSY
*/
cpu_relax();
}
descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
}
bcp->conseccompletes++;
return FLUSH_COMPLETE;
}
/*
* Returns the status of current BAU message for cpu desc as a bit field
* [Error][Busy][Aux]
*/
static u64 read_status(u64 status_mmr, int index, int desc)
{
u64 stat;
stat = ((read_lmmr(status_mmr) >> index) & UV_ACT_STATUS_MASK) << 1;
stat |= (read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_2) >> desc) & 0x1;
return stat;
}
static int uv4_wait_completion(struct bau_desc *bau_desc,
struct bau_control *bcp, long try)
{
struct ptc_stats *stat = bcp->statp;
u64 descriptor_stat;
u64 mmr = bcp->status_mmr;
int index = bcp->status_index;
int desc = bcp->uvhub_cpu;
descriptor_stat = read_status(mmr, index, desc);
/* spin on the status MMR, waiting for it to go idle */
while (descriptor_stat != UV2H_DESC_IDLE) {
switch (descriptor_stat) {
case UV2H_DESC_SOURCE_TIMEOUT:
stat->s_stimeout++;
return FLUSH_GIVEUP;
case UV2H_DESC_DEST_TIMEOUT:
stat->s_dtimeout++;
bcp->conseccompletes = 0;
return FLUSH_RETRY_TIMEOUT;
case UV2H_DESC_DEST_STRONG_NACK:
stat->s_plugged++;
bcp->conseccompletes = 0;
return FLUSH_RETRY_PLUGGED;
case UV2H_DESC_DEST_PUT_ERR:
bcp->conseccompletes = 0;
return FLUSH_GIVEUP;
default:
/* descriptor_stat is still BUSY */
cpu_relax();
}
descriptor_stat = read_status(mmr, index, desc);
}
bcp->conseccompletes++;
return FLUSH_COMPLETE;
}
/*
* Our retries are blocked by all destination sw ack resources being
* in use, and a timeout is pending. In that case hardware immediately
* returns the ERROR that looks like a destination timeout.
*/
static void destination_plugged(struct bau_desc *bau_desc,
struct bau_control *bcp,
struct bau_control *hmaster, struct ptc_stats *stat)
{
udelay(bcp->plugged_delay);
bcp->plugged_tries++;
if (bcp->plugged_tries >= bcp->plugsb4reset) {
bcp->plugged_tries = 0;
quiesce_local_uvhub(hmaster);
spin_lock(&hmaster->queue_lock);
reset_with_ipi(&bau_desc->distribution, bcp);
spin_unlock(&hmaster->queue_lock);
end_uvhub_quiesce(hmaster);
bcp->ipi_attempts++;
stat->s_resets_plug++;
}
}
static void destination_timeout(struct bau_desc *bau_desc,
struct bau_control *bcp, struct bau_control *hmaster,
struct ptc_stats *stat)
{
hmaster->max_concurr = 1;
bcp->timeout_tries++;
if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
bcp->timeout_tries = 0;
quiesce_local_uvhub(hmaster);
spin_lock(&hmaster->queue_lock);
reset_with_ipi(&bau_desc->distribution, bcp);
spin_unlock(&hmaster->queue_lock);
end_uvhub_quiesce(hmaster);
bcp->ipi_attempts++;
stat->s_resets_timeout++;
}
}
/*
* Stop all cpus on a uvhub from using the BAU for a period of time.
* This is reversed by check_enable.
*/
static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
{
int tcpu;
struct bau_control *tbcp;
struct bau_control *hmaster;
cycles_t tm1;
hmaster = bcp->uvhub_master;
spin_lock(&hmaster->disable_lock);
if (!bcp->baudisabled) {
stat->s_bau_disabled++;
tm1 = get_cycles();
for_each_present_cpu(tcpu) {
tbcp = &per_cpu(bau_control, tcpu);
if (tbcp->uvhub_master == hmaster) {
tbcp->baudisabled = 1;
tbcp->set_bau_on_time =
tm1 + bcp->disabled_period;
}
}
}
spin_unlock(&hmaster->disable_lock);
}
static void count_max_concurr(int stat, struct bau_control *bcp,
struct bau_control *hmaster)
{
bcp->plugged_tries = 0;
bcp->timeout_tries = 0;
if (stat != FLUSH_COMPLETE)
return;
if (bcp->conseccompletes <= bcp->complete_threshold)
return;
if (hmaster->max_concurr >= hmaster->max_concurr_const)
return;
hmaster->max_concurr++;
}
static void record_send_stats(cycles_t time1, cycles_t time2,
struct bau_control *bcp, struct ptc_stats *stat,
int completion_status, int try)
{
cycles_t elapsed;
if (time2 > time1) {
elapsed = time2 - time1;
stat->s_time += elapsed;
if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
bcp->period_requests++;
bcp->period_time += elapsed;
if ((elapsed > usec_2_cycles(bcp->cong_response_us)) &&
(bcp->period_requests > bcp->cong_reps) &&
((bcp->period_time / bcp->period_requests) >
usec_2_cycles(bcp->cong_response_us))) {
stat->s_congested++;
disable_for_period(bcp, stat);
}
}
} else
stat->s_requestor--;
if (completion_status == FLUSH_COMPLETE && try > 1)
stat->s_retriesok++;
else if (completion_status == FLUSH_GIVEUP) {
stat->s_giveup++;
if (get_cycles() > bcp->period_end)
bcp->period_giveups = 0;
bcp->period_giveups++;
if (bcp->period_giveups == 1)
bcp->period_end = get_cycles() + bcp->disabled_period;
if (bcp->period_giveups > bcp->giveup_limit) {
disable_for_period(bcp, stat);
stat->s_giveuplimit++;
}
}
}
/*
* Handle the completion status of a message send.
*/
static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
struct bau_control *bcp, struct bau_control *hmaster,
struct ptc_stats *stat)
{
if (completion_status == FLUSH_RETRY_PLUGGED)
destination_plugged(bau_desc, bcp, hmaster, stat);
else if (completion_status == FLUSH_RETRY_TIMEOUT)
destination_timeout(bau_desc, bcp, hmaster, stat);
}
/*
* Send a broadcast and wait for it to complete.
*
* The flush_mask contains the cpus the broadcast is to be sent to including
* cpus that are on the local uvhub.
*
* Returns 0 if all flushing represented in the mask was done.
* Returns 1 if it gives up entirely and the original cpu mask is to be
* returned to the kernel.
*/
static int uv_flush_send_and_wait(struct cpumask *flush_mask,
struct bau_control *bcp,
struct bau_desc *bau_desc)
{
int seq_number = 0;
int completion_stat = 0;
long try = 0;
unsigned long index;
cycles_t time1;
cycles_t time2;
struct ptc_stats *stat = bcp->statp;
struct bau_control *hmaster = bcp->uvhub_master;
struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
while (hmaster->uvhub_quiesce)
cpu_relax();
time1 = get_cycles();
uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
do {
if (try == 0) {
uv2_3_hdr->msg_type = MSG_REGULAR;
seq_number = bcp->message_number++;
} else {
uv2_3_hdr->msg_type = MSG_RETRY;
stat->s_retry_messages++;
}
uv2_3_hdr->sequence = seq_number;
index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
bcp->send_message = get_cycles();
write_mmr_activation(index);
try++;
completion_stat = ops.wait_completion(bau_desc, bcp, try);
handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
bcp->ipi_attempts = 0;
stat->s_overipilimit++;
completion_stat = FLUSH_GIVEUP;
break;
}
cpu_relax();
} while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
(completion_stat == FLUSH_RETRY_TIMEOUT));
time2 = get_cycles();
count_max_concurr(completion_stat, bcp, hmaster);
while (hmaster->uvhub_quiesce)
cpu_relax();
atomic_dec(&hmaster->active_descriptor_count);
record_send_stats(time1, time2, bcp, stat, completion_stat, try);
if (completion_stat == FLUSH_GIVEUP)
/* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
return 1;
return 0;
}
/*
* The BAU is disabled for this uvhub. When the disabled time period has
* expired re-enable it.
* Return 0 if it is re-enabled for all cpus on this uvhub.
*/
static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
{
int tcpu;
struct bau_control *tbcp;
struct bau_control *hmaster;
hmaster = bcp->uvhub_master;
spin_lock(&hmaster->disable_lock);
if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
stat->s_bau_reenabled++;
for_each_present_cpu(tcpu) {
tbcp = &per_cpu(bau_control, tcpu);
if (tbcp->uvhub_master == hmaster) {
tbcp->baudisabled = 0;
tbcp->period_requests = 0;
tbcp->period_time = 0;
tbcp->period_giveups = 0;
}
}
spin_unlock(&hmaster->disable_lock);
return 0;
}
spin_unlock(&hmaster->disable_lock);
return -1;
}
static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
int remotes, struct bau_desc *bau_desc)
{
stat->s_requestor++;
stat->s_ntargcpu += remotes + locals;
stat->s_ntargremotes += remotes;
stat->s_ntarglocals += locals;
/* uvhub statistics */
hubs = bau_uvhub_weight(&bau_desc->distribution);
if (locals) {
stat->s_ntarglocaluvhub++;
stat->s_ntargremoteuvhub += (hubs - 1);
} else
stat->s_ntargremoteuvhub += hubs;
stat->s_ntarguvhub += hubs;
if (hubs >= 16)
stat->s_ntarguvhub16++;
else if (hubs >= 8)
stat->s_ntarguvhub8++;
else if (hubs >= 4)
stat->s_ntarguvhub4++;
else if (hubs >= 2)
stat->s_ntarguvhub2++;
else
stat->s_ntarguvhub1++;
}
/*
* Translate a cpu mask to the uvhub distribution mask in the BAU
* activation descriptor.
*/
static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
struct bau_desc *bau_desc, int *localsp, int *remotesp)
{
int cpu;
int pnode;
int cnt = 0;
struct hub_and_pnode *hpp;
for_each_cpu(cpu, flush_mask) {
/*
* The distribution vector is a bit map of pnodes, relative
* to the partition base pnode (and the partition base nasid
* in the header).
* Translate cpu to pnode and hub using a local memory array.
*/
hpp = &bcp->socket_master->thp[cpu];
pnode = hpp->pnode - bcp->partition_base_pnode;
bau_uvhub_set(pnode, &bau_desc->distribution);
cnt++;
if (hpp->uvhub == bcp->uvhub)
(*localsp)++;
else
(*remotesp)++;
}
if (!cnt)
return 1;
return 0;
}
/*
* globally purge translation cache of a virtual address or all TLB's
* @cpumask: mask of all cpu's in which the address is to be removed
* @mm: mm_struct containing virtual address range
* @start: start virtual address to be removed from TLB
* @end: end virtual address to be remove from TLB
* @cpu: the current cpu
*
* This is the entry point for initiating any UV global TLB shootdown.
*
* Purges the translation caches of all specified processors of the given
* virtual address, or purges all TLB's on specified processors.
*
* The caller has derived the cpumask from the mm_struct. This function
* is called only if there are bits set in the mask. (e.g. flush_tlb_page())
*
* The cpumask is converted into a uvhubmask of the uvhubs containing
* those cpus.
*
* Note that this function should be called with preemption disabled.
*
* Returns NULL if all remote flushing was done.
* Returns pointer to cpumask if some remote flushing remains to be
* done. The returned pointer is valid till preemption is re-enabled.
*/
const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
const struct flush_tlb_info *info)
{
unsigned int cpu = smp_processor_id();
int locals = 0, remotes = 0, hubs = 0;
struct bau_desc *bau_desc;
struct cpumask *flush_mask;
struct ptc_stats *stat;
struct bau_control *bcp;
unsigned long descriptor_status, status, address;
bcp = &per_cpu(bau_control, cpu);
if (bcp->nobau)
return cpumask;
stat = bcp->statp;
stat->s_enters++;
if (bcp->busy) {
descriptor_status =
read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
status = ((descriptor_status >> (bcp->uvhub_cpu *
UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
if (status == UV2H_DESC_BUSY)
return cpumask;
bcp->busy = 0;
}
/* bau was disabled due to slow response */
if (bcp->baudisabled) {
if (check_enable(bcp, stat)) {
stat->s_ipifordisabled++;
return cpumask;
}
}
/*
* Each sending cpu has a per-cpu mask which it fills from the caller's
* cpu mask. All cpus are converted to uvhubs and copied to the
* activation descriptor.
*/
flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
/* don't actually do a shootdown of the local cpu */
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
if (cpumask_test_cpu(cpu, cpumask))
stat->s_ntargself++;
bau_desc = bcp->descriptor_base;
bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
return NULL;
record_send_statistics(stat, locals, hubs, remotes, bau_desc);
if (!info->end || (info->end - info->start) <= PAGE_SIZE)
address = info->start;
else
address = TLB_FLUSH_ALL;
switch (bcp->uvhub_version) {
case UV_BAU_V2:
case UV_BAU_V3:
bau_desc->payload.uv2_3.address = address;
bau_desc->payload.uv2_3.sending_cpu = cpu;
break;
case UV_BAU_V4:
bau_desc->payload.uv4.address = address;
bau_desc->payload.uv4.sending_cpu = cpu;
bau_desc->payload.uv4.qualifier = BAU_DESC_QUALIFIER;
break;
}
/*
* uv_flush_send_and_wait returns 0 if all cpu's were messaged,
* or 1 if it gave up and the original cpumask should be returned.
*/
if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
return NULL;
else
return cpumask;
}
/*
* Search the message queue for any 'other' unprocessed message with the
* same software acknowledge resource bit vector as the 'msg' message.
*/
static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
struct bau_control *bcp)
{
struct bau_pq_entry *msg_next = msg + 1;
unsigned char swack_vec = msg->swack_vec;
if (msg_next > bcp->queue_last)
msg_next = bcp->queue_first;
while (msg_next != msg) {
if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
(msg_next->swack_vec == swack_vec))
return msg_next;
msg_next++;
if (msg_next > bcp->queue_last)
msg_next = bcp->queue_first;
}
return NULL;
}
/*
* UV2 needs to work around a bug in which an arriving message has not
* set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
* Such a message must be ignored.
*/
static void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
{
unsigned long mmr_image;
unsigned char swack_vec;
struct bau_pq_entry *msg = mdp->msg;
struct bau_pq_entry *other_msg;
mmr_image = ops.read_l_sw_ack();
swack_vec = msg->swack_vec;
if ((swack_vec & mmr_image) == 0) {
/*
* This message was assigned a swack resource, but no
* reserved acknowlegment is pending.
* The bug has prevented this message from setting the MMR.
*/
/*
* Some message has set the MMR 'pending' bit; it might have
* been another message. Look for that message.
*/
other_msg = find_another_by_swack(msg, bcp);
if (other_msg) {
/*
* There is another. Process this one but do not
* ack it.
*/
bau_process_message(mdp, bcp, 0);
/*
* Let the natural processing of that other message
* acknowledge it. Don't get the processing of sw_ack's
* out of order.
*/
return;
}
}
/*
* Either the MMR shows this one pending a reply or there is no
* other message using this sw_ack, so it is safe to acknowledge it.
*/
bau_process_message(mdp, bcp, 1);
return;
}
/*
* The BAU message interrupt comes here. (registered by set_intr_gate)
* See entry_64.S
*
* We received a broadcast assist message.
*
* Interrupts are disabled; this interrupt could represent
* the receipt of several messages.
*
* All cores/threads on this hub get this interrupt.
* The last one to see it does the software ack.
* (the resource will not be freed until noninterruptable cpus see this
* interrupt; hardware may timeout the s/w ack and reply ERROR)
*/
DEFINE_IDTENTRY_SYSVEC(sysvec_uv_bau_message)
{
int count = 0;
cycles_t time_start;
struct bau_pq_entry *msg;
struct bau_control *bcp;
struct ptc_stats *stat;
struct msg_desc msgdesc;
ack_APIC_irq();
kvm_set_cpu_l1tf_flush_l1d();
time_start = get_cycles();
bcp = &per_cpu(bau_control, smp_processor_id());
stat = bcp->statp;
msgdesc.queue_first = bcp->queue_first;
msgdesc.queue_last = bcp->queue_last;
msg = bcp->bau_msg_head;
while (msg->swack_vec) {
count++;
msgdesc.msg_slot = msg - msgdesc.queue_first;
msgdesc.msg = msg;
if (bcp->uvhub_version == UV_BAU_V2)
process_uv2_message(&msgdesc, bcp);
else
/* no error workaround for uv3 */
bau_process_message(&msgdesc, bcp, 1);
msg++;
if (msg > msgdesc.queue_last)
msg = msgdesc.queue_first;
bcp->bau_msg_head = msg;
}
stat->d_time += (get_cycles() - time_start);
if (!count)
stat->d_nomsg++;
else if (count > 1)
stat->d_multmsg++;
}
/*
* Each target uvhub (i.e. a uvhub that has cpu's) needs to have
* shootdown message timeouts enabled. The timeout does not cause
* an interrupt, but causes an error message to be returned to
* the sender.
*/
static void __init enable_timeouts(void)
{
int uvhub;
int nuvhubs;
int pnode;
unsigned long mmr_image;
nuvhubs = uv_num_possible_blades();
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
if (!uv_blade_nr_possible_cpus(uvhub))
continue;
pnode = uv_blade_to_pnode(uvhub);
mmr_image = read_mmr_misc_control(pnode);
/*
* Set the timeout period and then lock it in, in three
* steps; captures and locks in the period.
*
* To program the period, the SOFT_ACK_MODE must be off.
*/
mmr_image &= ~(1L << SOFTACK_MSHIFT);
write_mmr_misc_control(pnode, mmr_image);
/*
* Set the 4-bit period.
*/
mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
write_mmr_misc_control(pnode, mmr_image);
mmr_image |= (1L << SOFTACK_MSHIFT);
if (is_uv2_hub()) {
/* do not touch the legacy mode bit */
/* hw bug workaround; do not use extended status */
mmr_image &= ~(1L << UV2_EXT_SHFT);
} else if (is_uv3_hub()) {
mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
mmr_image |= (1L << SB_STATUS_SHFT);
}
write_mmr_misc_control(pnode, mmr_image);
}
}
static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
{
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
{
(*offset)++;
if (*offset < num_possible_cpus())
return offset;
return NULL;
}
static void ptc_seq_stop(struct seq_file *file, void *data)
{
}
/*
* Display the statistics thru /proc/sgi_uv/ptc_statistics
* 'data' points to the cpu number
* Note: see the descriptions in stat_description[].
*/
static int ptc_seq_show(struct seq_file *file, void *data)
{
struct ptc_stats *stat;
struct bau_control *bcp;
int cpu;
cpu = *(loff_t *)data;
if (!cpu) {
seq_puts(file,
"# cpu bauoff sent stime self locals remotes ncpus localhub ");
seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
seq_puts(file,
"numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
seq_puts(file,
"rok resetp resett giveup sto bz throt disable ");
seq_puts(file,
"enable wars warshw warwaits enters ipidis plugged ");
seq_puts(file,
"ipiover glim cong swack recv rtime all one mult ");
seq_puts(file, "none retry canc nocan reset rcan\n");
}
if (cpu < num_possible_cpus() && cpu_online(cpu)) {
bcp = &per_cpu(bau_control, cpu);
if (bcp->nobau) {
seq_printf(file, "cpu %d bau disabled\n", cpu);
return 0;
}
stat = bcp->statp;
/* source side statistics */
seq_printf(file,
"cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
cpu, bcp->nobau, stat->s_requestor,
cycles_2_us(stat->s_time),
stat->s_ntargself, stat->s_ntarglocals,
stat->s_ntargremotes, stat->s_ntargcpu,
stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
stat->s_ntarguvhub, stat->s_ntarguvhub16);
seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
stat->s_ntarguvhub8, stat->s_ntarguvhub4,
stat->s_ntarguvhub2, stat->s_ntarguvhub1,
stat->s_dtimeout, stat->s_strongnacks);
seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
stat->s_retry_messages, stat->s_retriesok,
stat->s_resets_plug, stat->s_resets_timeout,
stat->s_giveup, stat->s_stimeout,
stat->s_busy, stat->s_throttles);
seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
stat->s_bau_disabled, stat->s_bau_reenabled,
stat->s_uv2_wars, stat->s_uv2_wars_hw,
stat->s_uv2_war_waits, stat->s_enters,
stat->s_ipifordisabled, stat->s_plugged,
stat->s_overipilimit, stat->s_giveuplimit,
stat->s_congested);
/* destination side statistics */
seq_printf(file,
"%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
stat->d_requestee, cycles_2_us(stat->d_time),
stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
stat->d_nomsg, stat->d_retries, stat->d_canceled,
stat->d_nocanceled, stat->d_resets,
stat->d_rcanceled);
}
return 0;
}
/*
* Display the tunables thru debugfs
*/
static ssize_t tunables_read(struct file *file, char __user *userbuf,
size_t count, loff_t *ppos)
{
char *buf;
int ret;
buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
"max_concur plugged_delay plugsb4reset timeoutsb4reset",
"ipi_reset_limit complete_threshold congested_response_us",
"congested_reps disabled_period giveup_limit",
max_concurr, plugged_delay, plugsb4reset,
timeoutsb4reset, ipi_reset_limit, complete_threshold,
congested_respns_us, congested_reps, disabled_period,
giveup_limit);
if (!buf)
return -ENOMEM;
ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
kfree(buf);
return ret;
}
/*
* handle a write to /proc/sgi_uv/ptc_statistics
* -1: reset the statistics
* 0: display meaning of the statistics
*/
static ssize_t ptc_proc_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
int cpu;
int i;
int elements;
long input_arg;
char optstr[64];
struct ptc_stats *stat;
if (count == 0 || count > sizeof(optstr))
return -EINVAL;
if (copy_from_user(optstr, user, count))
return -EFAULT;
optstr[count - 1] = '\0';
if (!strcmp(optstr, "on")) {
set_bau_on();
return count;
} else if (!strcmp(optstr, "off")) {
set_bau_off();
return count;
}
if (kstrtol(optstr, 10, &input_arg) < 0) {
pr_debug("%s is invalid\n", optstr);
return -EINVAL;
}
if (input_arg == 0) {
elements = ARRAY_SIZE(stat_description);
pr_debug("# cpu: cpu number\n");
pr_debug("Sender statistics:\n");
for (i = 0; i < elements; i++)
pr_debug("%s\n", stat_description[i]);
} else if (input_arg == -1) {
for_each_present_cpu(cpu) {
stat = &per_cpu(ptcstats, cpu);
memset(stat, 0, sizeof(struct ptc_stats));
}
}
return count;
}
static int local_atoi(const char *name)
{
int val = 0;
for (;; name++) {
switch (*name) {
case '0' ... '9':
val = 10*val+(*name-'0');
break;
default:
return val;
}
}
}
/*
* Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
* Zero values reset them to defaults.
*/
static int parse_tunables_write(struct bau_control *bcp, char *instr,
int count)
{
char *p;
char *q;
int cnt = 0;
int val;
int e = ARRAY_SIZE(tunables);
p = instr + strspn(instr, WHITESPACE);
q = p;
for (; *p; p = q + strspn(q, WHITESPACE)) {
q = p + strcspn(p, WHITESPACE);
cnt++;
if (q == p)
break;
}
if (cnt != e) {
pr_info("bau tunable error: should be %d values\n", e);
return -EINVAL;
}
p = instr + strspn(instr, WHITESPACE);
q = p;
for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
q = p + strcspn(p, WHITESPACE);
val = local_atoi(p);
switch (cnt) {
case 0:
if (val == 0) {
max_concurr = MAX_BAU_CONCURRENT;
max_concurr_const = MAX_BAU_CONCURRENT;
continue;
}
if (val < 1 || val > bcp->cpus_in_uvhub) {
pr_debug(
"Error: BAU max concurrent %d is invalid\n",
val);
return -EINVAL;
}
max_concurr = val;
max_concurr_const = val;
continue;
default:
if (val == 0)
*tunables[cnt].tunp = tunables[cnt].deflt;
else
*tunables[cnt].tunp = val;
continue;
}
}
return 0;
}
/*
* Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
*/
static ssize_t tunables_write(struct file *file, const char __user *user,
size_t count, loff_t *data)
{
int cpu;
int ret;
char instr[100];
struct bau_control *bcp;
if (count == 0 || count > sizeof(instr)-1)
return -EINVAL;
if (copy_from_user(instr, user, count))
return -EFAULT;
instr[count] = '\0';
cpu = get_cpu();
bcp = &per_cpu(bau_control, cpu);
ret = parse_tunables_write(bcp, instr, count);
put_cpu();
if (ret)
return ret;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->max_concurr = max_concurr;
bcp->max_concurr_const = max_concurr;
bcp->plugged_delay = plugged_delay;
bcp->plugsb4reset = plugsb4reset;
bcp->timeoutsb4reset = timeoutsb4reset;
bcp->ipi_reset_limit = ipi_reset_limit;
bcp->complete_threshold = complete_threshold;
bcp->cong_response_us = congested_respns_us;
bcp->cong_reps = congested_reps;
bcp->disabled_period = sec_2_cycles(disabled_period);
bcp->giveup_limit = giveup_limit;
}
return count;
}
static const struct seq_operations uv_ptc_seq_ops = {
.start = ptc_seq_start,
.next = ptc_seq_next,
.stop = ptc_seq_stop,
.show = ptc_seq_show
};
static int ptc_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &uv_ptc_seq_ops);
}
static int tunables_open(struct inode *inode, struct file *file)
{
return 0;
}
static const struct proc_ops uv_ptc_proc_ops = {
.proc_open = ptc_proc_open,
.proc_read = seq_read,
.proc_write = ptc_proc_write,
.proc_lseek = seq_lseek,
.proc_release = seq_release,
};
static const struct file_operations tunables_fops = {
.open = tunables_open,
.read = tunables_read,
.write = tunables_write,
.llseek = default_llseek,
};
static int __init uv_ptc_init(void)
{
struct proc_dir_entry *proc_uv_ptc;
if (!is_uv_system())
return 0;
proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
&uv_ptc_proc_ops);
if (!proc_uv_ptc) {
pr_err("unable to create %s proc entry\n",
UV_PTC_BASENAME);
return -EINVAL;
}
tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, tunables_dir, NULL,
&tunables_fops);
return 0;
}
/*
* Initialize the sending side's sending buffers.
*/
static void activation_descriptor_init(int node, int pnode, int base_pnode)
{
int i;
int cpu;
unsigned long gpa;
unsigned long m;
unsigned long n;
size_t dsize;
struct bau_desc *bau_desc;
struct bau_desc *bd2;
struct uv2_3_bau_msg_header *uv2_3_hdr;
struct bau_control *bcp;
/*
* each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
* per cpu; and one per cpu on the uvhub (ADP_SZ)
*/
dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
BUG_ON(!bau_desc);
gpa = uv_gpa(bau_desc);
n = uv_gpa_to_gnode(gpa);
m = ops.bau_gpa_to_offset(gpa);
/* the 14-bit pnode */
write_mmr_descriptor_base(pnode,
(n << UVH_LB_BAU_SB_DESCRIPTOR_BASE_NODE_ID_SHFT | m));
/*
* Initializing all 8 (ITEMS_PER_DESC) descriptors for each
* cpu even though we only use the first one; one descriptor can
* describe a broadcast to 256 uv hubs.
*/
for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
memset(bd2, 0, sizeof(struct bau_desc));
/*
* BIOS uses legacy mode, but uv2 and uv3 hardware always
* uses native mode for selective broadcasts.
*/
uv2_3_hdr = &bd2->header.uv2_3_hdr;
uv2_3_hdr->swack_flag = 1;
uv2_3_hdr->base_dest_nasid = UV_PNODE_TO_NASID(base_pnode);
uv2_3_hdr->dest_subnodeid = UV_LB_SUBNODEID;
uv2_3_hdr->command = UV_NET_ENDPOINT_INTD;
}
for_each_present_cpu(cpu) {
if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
continue;
bcp = &per_cpu(bau_control, cpu);
bcp->descriptor_base = bau_desc;
}
}
/*
* initialize the destination side's receiving buffers
* entered for each uvhub in the partition
* - node is first node (kernel memory notion) on the uvhub
* - pnode is the uvhub's physical identifier
*/
static void pq_init(int node, int pnode)
{
int cpu;
size_t plsize;
char *cp;
void *vp;
unsigned long gnode, first, last, tail;
struct bau_pq_entry *pqp;
struct bau_control *bcp;
plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
vp = kmalloc_node(plsize, GFP_KERNEL, node);
BUG_ON(!vp);
pqp = (struct bau_pq_entry *)vp;
cp = (char *)pqp + 31;
pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
for_each_present_cpu(cpu) {
if (pnode != uv_cpu_to_pnode(cpu))
continue;
/* for every cpu on this pnode: */
bcp = &per_cpu(bau_control, cpu);
bcp->queue_first = pqp;
bcp->bau_msg_head = pqp;
bcp->queue_last = pqp + (DEST_Q_SIZE - 1);
}
first = ops.bau_gpa_to_offset(uv_gpa(pqp));
last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
/*
* Pre UV4, the gnode is required to locate the payload queue
* and the payload queue tail must be maintained by the kernel.
*/
bcp = &per_cpu(bau_control, smp_processor_id());
if (bcp->uvhub_version <= UV_BAU_V3) {
tail = first;
gnode = uv_gpa_to_gnode(uv_gpa(pqp));
first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
write_mmr_payload_tail(pnode, tail);
}
ops.write_payload_first(pnode, first);
ops.write_payload_last(pnode, last);
/* in effect, all msg_type's are set to MSG_NOOP */
memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
}
/*
* Initialization of each UV hub's structures
*/
static void __init init_uvhub(int uvhub, int vector, int base_pnode)
{
int node;
int pnode;
unsigned long apicid;
node = uvhub_to_first_node(uvhub);
pnode = uv_blade_to_pnode(uvhub);
activation_descriptor_init(node, pnode, base_pnode);
pq_init(node, pnode);
/*
* The below initialization can't be in firmware because the
* messaging IRQ will be determined by the OS.
*/
apicid = uvhub_to_first_apicid(uvhub);
write_mmr_data_config(pnode, ((apicid << 32) | vector));
}
/*
* We will set BAU_MISC_CONTROL with a timeout period.
* But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
* So the destination timeout period has to be calculated from them.
*/
static int calculate_destination_timeout(void)
{
unsigned long mmr_image;
int mult1;
int base;
int ret;
/* same destination timeout for uv2 and uv3 */
/* 4 bits 0/1 for 10/80us base, 3 bits of multiplier */
mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
base = 80;
else
base = 10;
mult1 = mmr_image & UV2_ACK_MASK;
ret = mult1 * base;
return ret;
}
static void __init init_per_cpu_tunables(void)
{
int cpu;
struct bau_control *bcp;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
bcp->baudisabled = 0;
if (nobau)
bcp->nobau = true;
bcp->statp = &per_cpu(ptcstats, cpu);
/* time interval to catch a hardware stay-busy bug */
bcp->timeout_interval = usec_2_cycles(2*timeout_us);
bcp->max_concurr = max_concurr;
bcp->max_concurr_const = max_concurr;
bcp->plugged_delay = plugged_delay;
bcp->plugsb4reset = plugsb4reset;
bcp->timeoutsb4reset = timeoutsb4reset;
bcp->ipi_reset_limit = ipi_reset_limit;
bcp->complete_threshold = complete_threshold;
bcp->cong_response_us = congested_respns_us;
bcp->cong_reps = congested_reps;
bcp->disabled_period = sec_2_cycles(disabled_period);
bcp->giveup_limit = giveup_limit;
spin_lock_init(&bcp->queue_lock);
spin_lock_init(&bcp->uvhub_lock);
spin_lock_init(&bcp->disable_lock);
}
}
/*
* Scan all cpus to collect blade and socket summaries.
*/
static int __init get_cpu_topology(int base_pnode,
struct uvhub_desc *uvhub_descs,
unsigned char *uvhub_mask)
{
int cpu;
int pnode;
int uvhub;
int socket;
struct bau_control *bcp;
struct uvhub_desc *bdp;
struct socket_desc *sdp;
for_each_present_cpu(cpu) {
bcp = &per_cpu(bau_control, cpu);
memset(bcp, 0, sizeof(struct bau_control));
pnode = uv_cpu_hub_info(cpu)->pnode;
if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
pr_emerg(
"cpu %d pnode %d-%d beyond %d; BAU disabled\n",
cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
return 1;
}
bcp->osnode = cpu_to_node(cpu);
bcp->partition_base_pnode = base_pnode;
uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
*(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
bdp = &uvhub_descs[uvhub];
bdp->num_cpus++;
bdp->uvhub = uvhub;
bdp->pnode = pnode;
/* kludge: 'assuming' one node per socket, and assuming that
disabling a socket just leaves a gap in node numbers */
socket = bcp->osnode & 1;
bdp->socket_mask |= (1 << socket);
sdp = &bdp->socket[socket];
sdp->cpu_number[sdp->num_cpus] = cpu;
sdp->num_cpus++;
if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
pr_emerg("%d cpus per socket invalid\n",
sdp->num_cpus);
return 1;
}
}
return 0;
}
/*
* Each socket is to get a local array of pnodes/hubs.
*/
static void make_per_cpu_thp(struct bau_control *smaster)
{
int cpu;
size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
smaster->thp = kzalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
for_each_present_cpu(cpu) {
smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
}
}
/*
* Each uvhub is to get a local cpumask.
*/
static void make_per_hub_cpumask(struct bau_control *hmaster)
{
int sz = sizeof(cpumask_t);
hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
}
/*
* Initialize all the per_cpu information for the cpu's on a given socket,
* given what has been gathered into the socket_desc struct.
* And reports the chosen hub and socket masters back to the caller.
*/
static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
struct bau_control **smasterp,
struct bau_control **hmasterp)
{
int i, cpu, uvhub_cpu;
struct bau_control *bcp;
for (i = 0; i < sdp->num_cpus; i++) {
cpu = sdp->cpu_number[i];
bcp = &per_cpu(bau_control, cpu);
bcp->cpu = cpu;
if (i == 0) {
*smasterp = bcp;
if (!(*hmasterp))
*hmasterp = bcp;
}
bcp->cpus_in_uvhub = bdp->num_cpus;
bcp->cpus_in_socket = sdp->num_cpus;
bcp->socket_master = *smasterp;
bcp->uvhub = bdp->uvhub;
if (is_uv2_hub())
bcp->uvhub_version = UV_BAU_V2;
else if (is_uv3_hub())
bcp->uvhub_version = UV_BAU_V3;
else if (is_uv4_hub())
bcp->uvhub_version = UV_BAU_V4;
else {
pr_emerg("uvhub version not 1, 2, 3, or 4\n");
return 1;
}
bcp->uvhub_master = *hmasterp;
uvhub_cpu = uv_cpu_blade_processor_id(cpu);
bcp->uvhub_cpu = uvhub_cpu;
/*
* The ERROR and BUSY status registers are located pairwise over
* the STATUS_0 and STATUS_1 mmrs; each an array[32] of 2 bits.
*/
if (uvhub_cpu < UV_CPUS_PER_AS) {
bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
bcp->status_index = uvhub_cpu * UV_ACT_STATUS_SIZE;
} else {
bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
bcp->status_index = (uvhub_cpu - UV_CPUS_PER_AS)
* UV_ACT_STATUS_SIZE;
}
if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
pr_emerg("%d cpus per uvhub invalid\n",
bcp->uvhub_cpu);
return 1;
}
}
return 0;
}
/*
* Summarize the blade and socket topology into the per_cpu structures.
*/
static int __init summarize_uvhub_sockets(int nuvhubs,
struct uvhub_desc *uvhub_descs,
unsigned char *uvhub_mask)
{
int socket;
int uvhub;
unsigned short socket_mask;
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
struct uvhub_desc *bdp;
struct bau_control *smaster = NULL;
struct bau_control *hmaster = NULL;
if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
continue;
bdp = &uvhub_descs[uvhub];
socket_mask = bdp->socket_mask;
socket = 0;
while (socket_mask) {
struct socket_desc *sdp;
if ((socket_mask & 1)) {
sdp = &bdp->socket[socket];
if (scan_sock(sdp, bdp, &smaster, &hmaster))
return 1;
make_per_cpu_thp(smaster);
}
socket++;
socket_mask = (socket_mask >> 1);
}
make_per_hub_cpumask(hmaster);
}
return 0;
}
/*
* initialize the bau_control structure for each cpu
*/
static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
{
struct uvhub_desc *uvhub_descs;
unsigned char *uvhub_mask = NULL;
if (is_uv3_hub() || is_uv2_hub())
timeout_us = calculate_destination_timeout();
uvhub_descs = kcalloc(nuvhubs, sizeof(struct uvhub_desc), GFP_KERNEL);
if (!uvhub_descs)
goto fail;
uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
if (!uvhub_mask)
goto fail;
if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
goto fail;
if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
goto fail;
kfree(uvhub_descs);
kfree(uvhub_mask);
init_per_cpu_tunables();
return 0;
fail:
kfree(uvhub_descs);
kfree(uvhub_mask);
return 1;
}
static const struct bau_operations uv2_3_bau_ops __initconst = {
.bau_gpa_to_offset = uv_gpa_to_offset,
.read_l_sw_ack = read_mmr_sw_ack,
.read_g_sw_ack = read_gmmr_sw_ack,
.write_l_sw_ack = write_mmr_sw_ack,
.write_g_sw_ack = write_gmmr_sw_ack,
.write_payload_first = write_mmr_payload_first,
.write_payload_last = write_mmr_payload_last,
.wait_completion = uv2_3_wait_completion,
};
static const struct bau_operations uv4_bau_ops __initconst = {
.bau_gpa_to_offset = uv_gpa_to_soc_phys_ram,
.read_l_sw_ack = read_mmr_proc_sw_ack,
.read_g_sw_ack = read_gmmr_proc_sw_ack,
.write_l_sw_ack = write_mmr_proc_sw_ack,
.write_g_sw_ack = write_gmmr_proc_sw_ack,
.write_payload_first = write_mmr_proc_payload_first,
.write_payload_last = write_mmr_proc_payload_last,
.wait_completion = uv4_wait_completion,
};
/*
* Initialization of BAU-related structures
*/
static int __init uv_bau_init(void)
{
int uvhub;
int pnode;
int nuvhubs;
int cur_cpu;
int cpus;
int vector;
cpumask_var_t *mask;
if (!is_uv_system())
return 0;
if (is_uv4_hub())
ops = uv4_bau_ops;
else if (is_uv3_hub())
ops = uv2_3_bau_ops;
else if (is_uv2_hub())
ops = uv2_3_bau_ops;
nuvhubs = uv_num_possible_blades();
if (nuvhubs < 2) {
pr_crit("UV: BAU disabled - insufficient hub count\n");
goto err_bau_disable;
}
for_each_possible_cpu(cur_cpu) {
mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
}
uv_base_pnode = 0x7fffffff;
for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
cpus = uv_blade_nr_possible_cpus(uvhub);
if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
uv_base_pnode = uv_blade_to_pnode(uvhub);
}
/* software timeouts are not supported on UV4 */
if (is_uv3_hub() || is_uv2_hub())
enable_timeouts();
if (init_per_cpu(nuvhubs, uv_base_pnode)) {
pr_crit("UV: BAU disabled - per CPU init failed\n");
goto err_bau_disable;
}
vector = UV_BAU_MESSAGE;
for_each_possible_blade(uvhub) {
if (uv_blade_nr_possible_cpus(uvhub))
init_uvhub(uvhub, vector, uv_base_pnode);
}
for_each_possible_blade(uvhub) {
if (uv_blade_nr_possible_cpus(uvhub)) {
unsigned long val;
unsigned long mmr;
pnode = uv_blade_to_pnode(uvhub);
/* INIT the bau */
val = 1L << 63;
write_gmmr_activation(pnode, val);
mmr = 1; /* should be 1 to broadcast to both sockets */
write_mmr_data_broadcast(pnode, mmr);
}
}
return 0;
err_bau_disable:
for_each_possible_cpu(cur_cpu)
free_cpumask_var(per_cpu(uv_flush_tlb_mask, cur_cpu));
set_bau_off();
nobau_perm = 1;
return -EINVAL;
}
core_initcall(uv_bau_init);
fs_initcall(uv_ptc_init);
...@@ -2,7 +2,8 @@ ...@@ -2,7 +2,8 @@
/* /*
* SGI NMI support routines * SGI NMI support routines
* *
* Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved. * (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2007-2017 Silicon Graphics, Inc. All rights reserved.
* Copyright (c) Mike Travis * Copyright (c) Mike Travis
*/ */
...@@ -54,6 +55,20 @@ static struct uv_hub_nmi_s **uv_hub_nmi_list; ...@@ -54,6 +55,20 @@ static struct uv_hub_nmi_s **uv_hub_nmi_list;
DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi); DEFINE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
/* Newer SMM NMI handler, not present in all systems */
static unsigned long uvh_nmi_mmrx; /* UVH_EVENT_OCCURRED0/1 */
static unsigned long uvh_nmi_mmrx_clear; /* UVH_EVENT_OCCURRED0/1_ALIAS */
static int uvh_nmi_mmrx_shift; /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_SHFT */
static int uvh_nmi_mmrx_mask; /* UVH_EVENT_OCCURRED0/1_EXTIO_INT0_MASK */
static char *uvh_nmi_mmrx_type; /* "EXTIO_INT0" */
/* Non-zero indicates newer SMM NMI handler present */
static unsigned long uvh_nmi_mmrx_supported; /* UVH_EXTIO_INT0_BROADCAST */
/* Indicates to BIOS that we want to use the newer SMM NMI handler */
static unsigned long uvh_nmi_mmrx_req; /* UVH_BIOS_KERNEL_MMR_ALIAS_2 */
static int uvh_nmi_mmrx_req_shift; /* 62 */
/* UV hubless values */ /* UV hubless values */
#define NMI_CONTROL_PORT 0x70 #define NMI_CONTROL_PORT 0x70
#define NMI_DUMMY_PORT 0x71 #define NMI_DUMMY_PORT 0x71
...@@ -227,13 +242,43 @@ static inline bool uv_nmi_action_is(const char *action) ...@@ -227,13 +242,43 @@ static inline bool uv_nmi_action_is(const char *action)
/* Setup which NMI support is present in system */ /* Setup which NMI support is present in system */
static void uv_nmi_setup_mmrs(void) static void uv_nmi_setup_mmrs(void)
{ {
if (uv_read_local_mmr(UVH_NMI_MMRX_SUPPORTED)) { /* First determine arch specific MMRs to handshake with BIOS */
uv_write_local_mmr(UVH_NMI_MMRX_REQ, if (UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK) {
1UL << UVH_NMI_MMRX_REQ_SHIFT); uvh_nmi_mmrx = UVH_EVENT_OCCURRED0;
nmi_mmr = UVH_NMI_MMRX; uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED0_ALIAS;
nmi_mmr_clear = UVH_NMI_MMRX_CLEAR; uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED0_EXTIO_INT0_SHFT;
nmi_mmr_pending = 1UL << UVH_NMI_MMRX_SHIFT; uvh_nmi_mmrx_mask = UVH_EVENT_OCCURRED0_EXTIO_INT0_MASK;
pr_info("UV: SMI NMI support: %s\n", UVH_NMI_MMRX_TYPE); uvh_nmi_mmrx_type = "OCRD0-EXTIO_INT0";
uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
uvh_nmi_mmrx_req_shift = 62;
} else if (UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK) {
uvh_nmi_mmrx = UVH_EVENT_OCCURRED1;
uvh_nmi_mmrx_clear = UVH_EVENT_OCCURRED1_ALIAS;
uvh_nmi_mmrx_shift = UVH_EVENT_OCCURRED1_EXTIO_INT0_SHFT;
uvh_nmi_mmrx_mask = UVH_EVENT_OCCURRED1_EXTIO_INT0_MASK;
uvh_nmi_mmrx_type = "OCRD1-EXTIO_INT0";
uvh_nmi_mmrx_supported = UVH_EXTIO_INT0_BROADCAST;
uvh_nmi_mmrx_req = UVH_BIOS_KERNEL_MMR_ALIAS_2;
uvh_nmi_mmrx_req_shift = 62;
} else {
pr_err("UV:%s:cannot find EVENT_OCCURRED*_EXTIO_INT0\n",
__func__);
return;
}
/* Then find out if new NMI is supported */
if (likely(uv_read_local_mmr(uvh_nmi_mmrx_supported))) {
uv_write_local_mmr(uvh_nmi_mmrx_req,
1UL << uvh_nmi_mmrx_req_shift);
nmi_mmr = uvh_nmi_mmrx;
nmi_mmr_clear = uvh_nmi_mmrx_clear;
nmi_mmr_pending = 1UL << uvh_nmi_mmrx_shift;
pr_info("UV: SMI NMI support: %s\n", uvh_nmi_mmrx_type);
} else { } else {
nmi_mmr = UVH_NMI_MMR; nmi_mmr = UVH_NMI_MMR;
nmi_mmr_clear = UVH_NMI_MMR_CLEAR; nmi_mmr_clear = UVH_NMI_MMR_CLEAR;
...@@ -1049,5 +1094,5 @@ void __init uv_nmi_setup_hubless(void) ...@@ -1049,5 +1094,5 @@ void __init uv_nmi_setup_hubless(void)
/* Ensure NMI enabled in Processor Interface Reg: */ /* Ensure NMI enabled in Processor Interface Reg: */
uv_reassert_nmi(); uv_reassert_nmi();
uv_register_nmi_notifier(); uv_register_nmi_notifier();
pr_info("UV: Hubless NMI enabled\n"); pr_info("UV: PCH NMI enabled\n");
} }
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
/* /*
* SGI RTC clock/timer routines. * SGI RTC clock/timer routines.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2009-2013 Silicon Graphics, Inc. All Rights Reserved.
* Copyright (c) Dimitri Sivanich * Copyright (c) Dimitri Sivanich
*/ */
...@@ -52,7 +53,7 @@ struct uv_rtc_timer_head { ...@@ -52,7 +53,7 @@ struct uv_rtc_timer_head {
struct { struct {
int lcpu; /* systemwide logical cpu number */ int lcpu; /* systemwide logical cpu number */
u64 expires; /* next timer expiration for this cpu */ u64 expires; /* next timer expiration for this cpu */
} cpu[1]; } cpu[];
}; };
/* /*
...@@ -84,10 +85,8 @@ static void uv_rtc_send_IPI(int cpu) ...@@ -84,10 +85,8 @@ static void uv_rtc_send_IPI(int cpu)
/* Check for an RTC interrupt pending */ /* Check for an RTC interrupt pending */
static int uv_intr_pending(int pnode) static int uv_intr_pending(int pnode)
{ {
if (is_uvx_hub()) return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED2) &
return uv_read_global_mmr64(pnode, UVXH_EVENT_OCCURRED2) & UVH_EVENT_OCCURRED2_RTC_1_MASK;
UVXH_EVENT_OCCURRED2_RTC_1_MASK;
return 0;
} }
/* Setup interrupt and return non-zero if early expiration occurred. */ /* Setup interrupt and return non-zero if early expiration occurred. */
...@@ -101,8 +100,8 @@ static int uv_setup_intr(int cpu, u64 expires) ...@@ -101,8 +100,8 @@ static int uv_setup_intr(int cpu, u64 expires)
UVH_RTC1_INT_CONFIG_M_MASK); UVH_RTC1_INT_CONFIG_M_MASK);
uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L); uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
uv_write_global_mmr64(pnode, UVXH_EVENT_OCCURRED2_ALIAS, uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED2_ALIAS,
UVXH_EVENT_OCCURRED2_RTC_1_MASK); UVH_EVENT_OCCURRED2_RTC_1_MASK);
val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) | val = (X86_PLATFORM_IPI_VECTOR << UVH_RTC1_INT_CONFIG_VECTOR_SHFT) |
((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT); ((u64)apicid << UVH_RTC1_INT_CONFIG_APIC_ID_SHFT);
...@@ -148,9 +147,8 @@ static __init int uv_rtc_allocate_timers(void) ...@@ -148,9 +147,8 @@ static __init int uv_rtc_allocate_timers(void)
struct uv_rtc_timer_head *head = blade_info[bid]; struct uv_rtc_timer_head *head = blade_info[bid];
if (!head) { if (!head) {
head = kmalloc_node(sizeof(struct uv_rtc_timer_head) + head = kmalloc_node(struct_size(head, cpu,
(uv_blade_nr_possible_cpus(bid) * uv_blade_nr_possible_cpus(bid)),
2 * sizeof(u64)),
GFP_KERNEL, nid); GFP_KERNEL, nid);
if (!head) { if (!head) {
uv_rtc_deallocate_timers(); uv_rtc_deallocate_timers();
......
...@@ -7,6 +7,7 @@ ...@@ -7,6 +7,7 @@
* This file supports the user system call for file open, close, mmap, etc. * This file supports the user system call for file open, close, mmap, etc.
* This also incudes the driver initialization code. * This also incudes the driver initialization code.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (c) 2008-2014 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2008-2014 Silicon Graphics, Inc. All Rights Reserved.
*/ */
...@@ -516,7 +517,7 @@ static int __init gru_init(void) ...@@ -516,7 +517,7 @@ static int __init gru_init(void)
#if defined CONFIG_IA64 #if defined CONFIG_IA64
gru_start_paddr = 0xd000000000UL; /* ZZZZZZZZZZZZZZZZZZZ fixme */ gru_start_paddr = 0xd000000000UL; /* ZZZZZZZZZZZZZZZZZZZ fixme */
#else #else
gru_start_paddr = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR) & gru_start_paddr = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG) &
0x7fffffffffffUL; 0x7fffffffffffUL;
#endif #endif
gru_start_vaddr = __va(gru_start_paddr); gru_start_vaddr = __va(gru_start_paddr);
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive * License. See the file "COPYING" in the main directory of this archive
* for more details. * for more details.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2004-2008 Silicon Graphics, Inc. All rights reserved. * Copyright (C) 2004-2008 Silicon Graphics, Inc. All rights reserved.
*/ */
...@@ -17,11 +18,6 @@ ...@@ -17,11 +18,6 @@
#if defined CONFIG_X86_UV || defined CONFIG_IA64_SGI_UV #if defined CONFIG_X86_UV || defined CONFIG_IA64_SGI_UV
#include <asm/uv/uv.h> #include <asm/uv/uv.h>
#define is_uv() is_uv_system()
#endif
#ifndef is_uv
#define is_uv() 0
#endif #endif
#ifdef USE_DBUG_ON #ifdef USE_DBUG_ON
...@@ -79,7 +75,7 @@ ...@@ -79,7 +75,7 @@
#define XPC_MSG_SIZE(_payload_size) \ #define XPC_MSG_SIZE(_payload_size) \
ALIGN(XPC_MSG_HDR_MAX_SIZE + (_payload_size), \ ALIGN(XPC_MSG_HDR_MAX_SIZE + (_payload_size), \
is_uv() ? 64 : 128) is_uv_system() ? 64 : 128)
/* /*
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive * License. See the file "COPYING" in the main directory of this archive
* for more details. * for more details.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved.
*/ */
...@@ -233,7 +234,7 @@ xp_init(void) ...@@ -233,7 +234,7 @@ xp_init(void)
for (ch_number = 0; ch_number < XPC_MAX_NCHANNELS; ch_number++) for (ch_number = 0; ch_number < XPC_MAX_NCHANNELS; ch_number++)
mutex_init(&xpc_registrations[ch_number].mutex); mutex_init(&xpc_registrations[ch_number].mutex);
if (is_uv()) if (is_uv_system())
ret = xp_init_uv(); ret = xp_init_uv();
else else
ret = 0; ret = 0;
...@@ -249,7 +250,7 @@ module_init(xp_init); ...@@ -249,7 +250,7 @@ module_init(xp_init);
static void __exit static void __exit
xp_exit(void) xp_exit(void)
{ {
if (is_uv()) if (is_uv_system())
xp_exit_uv(); xp_exit_uv();
} }
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive * License. See the file "COPYING" in the main directory of this archive
* for more details. * for more details.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
*/ */
...@@ -148,7 +149,9 @@ xp_restrict_memprotect_uv(unsigned long phys_addr, unsigned long size) ...@@ -148,7 +149,9 @@ xp_restrict_memprotect_uv(unsigned long phys_addr, unsigned long size)
enum xp_retval enum xp_retval
xp_init_uv(void) xp_init_uv(void)
{ {
BUG_ON(!is_uv()); WARN_ON(!is_uv_system());
if (!is_uv_system())
return xpUnsupported;
xp_max_npartitions = XP_MAX_NPARTITIONS_UV; xp_max_npartitions = XP_MAX_NPARTITIONS_UV;
#ifdef CONFIG_X86 #ifdef CONFIG_X86
...@@ -168,5 +171,5 @@ xp_init_uv(void) ...@@ -168,5 +171,5 @@ xp_init_uv(void)
void void
xp_exit_uv(void) xp_exit_uv(void)
{ {
BUG_ON(!is_uv()); WARN_ON(!is_uv_system());
} }
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive * License. See the file "COPYING" in the main directory of this archive
* for more details. * for more details.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2004-2009 Silicon Graphics, Inc. All Rights Reserved.
*/ */
...@@ -1043,7 +1044,7 @@ xpc_do_exit(enum xp_retval reason) ...@@ -1043,7 +1044,7 @@ xpc_do_exit(enum xp_retval reason)
xpc_teardown_partitions(); xpc_teardown_partitions();
if (is_uv()) if (is_uv_system())
xpc_exit_uv(); xpc_exit_uv();
} }
...@@ -1226,7 +1227,7 @@ xpc_init(void) ...@@ -1226,7 +1227,7 @@ xpc_init(void)
dev_set_name(xpc_part, "part"); dev_set_name(xpc_part, "part");
dev_set_name(xpc_chan, "chan"); dev_set_name(xpc_chan, "chan");
if (is_uv()) { if (is_uv_system()) {
ret = xpc_init_uv(); ret = xpc_init_uv();
} else { } else {
...@@ -1312,7 +1313,7 @@ xpc_init(void) ...@@ -1312,7 +1313,7 @@ xpc_init(void)
xpc_teardown_partitions(); xpc_teardown_partitions();
out_1: out_1:
if (is_uv()) if (is_uv_system())
xpc_exit_uv(); xpc_exit_uv();
return ret; return ret;
} }
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive * License. See the file "COPYING" in the main directory of this archive
* for more details. * for more details.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved.
*/ */
...@@ -433,7 +434,7 @@ xpc_discovery(void) ...@@ -433,7 +434,7 @@ xpc_discovery(void)
*/ */
region_size = xp_region_size; region_size = xp_region_size;
if (is_uv()) if (is_uv_system())
max_regions = 256; max_regions = 256;
else { else {
max_regions = 64; max_regions = 64;
......
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
* License. See the file "COPYING" in the main directory of this archive * License. See the file "COPYING" in the main directory of this archive
* for more details. * for more details.
* *
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 1999-2009 Silicon Graphics, Inc. All rights reserved. * Copyright (C) 1999-2009 Silicon Graphics, Inc. All rights reserved.
*/ */
...@@ -515,7 +516,7 @@ xpnet_init(void) ...@@ -515,7 +516,7 @@ xpnet_init(void)
{ {
int result; int result;
if (!is_uv()) if (!is_uv_system())
return -ENODEV; return -ENODEV;
dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME); dev_info(xpnet, "registering network device %s\n", XPNET_DEVICE_NAME);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment