Commit 8ff7b956 authored by Paolo Bonzini's avatar Paolo Bonzini

Merge tag 'kvm-s390-next-4.8-2' of...

Merge tag 'kvm-s390-next-4.8-2' of git://git.kernel.org/pub/scm/linux/kernel/git/kvms390/linux into HEAD

KVM: s390: vSIE (nested virtualization) feature for 4.8 (kvm/next)

With an updated QEMU this allows to create nested KVM guests
(KVM under KVM) on s390.

s390 memory management changes from Martin Schwidefsky or
acked by Martin. One common code memory management change (pageref)
acked by Andrew Morton.

The feature has to be enabled with the nested medule parameter.
parents 64672c95 a411edf1
...@@ -10,14 +10,25 @@ ...@@ -10,14 +10,25 @@
/** /**
* struct gmap_struct - guest address space * struct gmap_struct - guest address space
* @list: list head for the mm->context gmap list
* @crst_list: list of all crst tables used in the guest address space * @crst_list: list of all crst tables used in the guest address space
* @mm: pointer to the parent mm_struct * @mm: pointer to the parent mm_struct
* @guest_to_host: radix tree with guest to host address translation * @guest_to_host: radix tree with guest to host address translation
* @host_to_guest: radix tree with pointer to segment table entries * @host_to_guest: radix tree with pointer to segment table entries
* @guest_table_lock: spinlock to protect all entries in the guest page table * @guest_table_lock: spinlock to protect all entries in the guest page table
* @ref_count: reference counter for the gmap structure
* @table: pointer to the page directory * @table: pointer to the page directory
* @asce: address space control element for gmap page table * @asce: address space control element for gmap page table
* @pfault_enabled: defines if pfaults are applicable for the guest * @pfault_enabled: defines if pfaults are applicable for the guest
* @host_to_rmap: radix tree with gmap_rmap lists
* @children: list of shadow gmap structures
* @pt_list: list of all page tables used in the shadow guest address space
* @shadow_lock: spinlock to protect the shadow gmap list
* @parent: pointer to the parent gmap for shadow guest address spaces
* @orig_asce: ASCE for which the shadow page table has been created
* @edat_level: edat level to be used for the shadow translation
* @removed: flag to indicate if a shadow guest address space has been removed
* @initialized: flag to indicate if a shadow guest address space can be used
*/ */
struct gmap { struct gmap {
struct list_head list; struct list_head list;
...@@ -26,26 +37,64 @@ struct gmap { ...@@ -26,26 +37,64 @@ struct gmap {
struct radix_tree_root guest_to_host; struct radix_tree_root guest_to_host;
struct radix_tree_root host_to_guest; struct radix_tree_root host_to_guest;
spinlock_t guest_table_lock; spinlock_t guest_table_lock;
atomic_t ref_count;
unsigned long *table; unsigned long *table;
unsigned long asce; unsigned long asce;
unsigned long asce_end; unsigned long asce_end;
void *private; void *private;
bool pfault_enabled; bool pfault_enabled;
/* Additional data for shadow guest address spaces */
struct radix_tree_root host_to_rmap;
struct list_head children;
struct list_head pt_list;
spinlock_t shadow_lock;
struct gmap *parent;
unsigned long orig_asce;
int edat_level;
bool removed;
bool initialized;
}; };
/**
* struct gmap_rmap - reverse mapping for shadow page table entries
* @next: pointer to next rmap in the list
* @raddr: virtual rmap address in the shadow guest address space
*/
struct gmap_rmap {
struct gmap_rmap *next;
unsigned long raddr;
};
#define gmap_for_each_rmap(pos, head) \
for (pos = (head); pos; pos = pos->next)
#define gmap_for_each_rmap_safe(pos, n, head) \
for (pos = (head); n = pos ? pos->next : NULL, pos; pos = n)
/** /**
* struct gmap_notifier - notify function block for page invalidation * struct gmap_notifier - notify function block for page invalidation
* @notifier_call: address of callback function * @notifier_call: address of callback function
*/ */
struct gmap_notifier { struct gmap_notifier {
struct list_head list; struct list_head list;
void (*notifier_call)(struct gmap *gmap, unsigned long gaddr); struct rcu_head rcu;
void (*notifier_call)(struct gmap *gmap, unsigned long start,
unsigned long end);
}; };
struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit); static inline int gmap_is_shadow(struct gmap *gmap)
void gmap_free(struct gmap *gmap); {
return !!gmap->parent;
}
struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit);
void gmap_remove(struct gmap *gmap);
struct gmap *gmap_get(struct gmap *gmap);
void gmap_put(struct gmap *gmap);
void gmap_enable(struct gmap *gmap); void gmap_enable(struct gmap *gmap);
void gmap_disable(struct gmap *gmap); void gmap_disable(struct gmap *gmap);
struct gmap *gmap_get_enabled(void);
int gmap_map_segment(struct gmap *gmap, unsigned long from, int gmap_map_segment(struct gmap *gmap, unsigned long from,
unsigned long to, unsigned long len); unsigned long to, unsigned long len);
int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len); int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
...@@ -57,8 +106,29 @@ void gmap_discard(struct gmap *, unsigned long from, unsigned long to); ...@@ -57,8 +106,29 @@ void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
void __gmap_zap(struct gmap *, unsigned long gaddr); void __gmap_zap(struct gmap *, unsigned long gaddr);
void gmap_unlink(struct mm_struct *, unsigned long *table, unsigned long vmaddr); void gmap_unlink(struct mm_struct *, unsigned long *table, unsigned long vmaddr);
void gmap_register_ipte_notifier(struct gmap_notifier *); int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val);
void gmap_unregister_ipte_notifier(struct gmap_notifier *);
int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len); struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
int edat_level);
int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level);
int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
int fake);
int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
int fake);
int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
int fake);
int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
int fake);
int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
unsigned long *pgt, int *dat_protection, int *fake);
int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte);
void gmap_register_pte_notifier(struct gmap_notifier *);
void gmap_unregister_pte_notifier(struct gmap_notifier *);
void gmap_pte_notify(struct mm_struct *, unsigned long addr, pte_t *,
unsigned long bits);
int gmap_mprotect_notify(struct gmap *, unsigned long start,
unsigned long len, int prot);
#endif /* _ASM_S390_GMAP_H */ #endif /* _ASM_S390_GMAP_H */
...@@ -145,7 +145,7 @@ struct kvm_s390_sie_block { ...@@ -145,7 +145,7 @@ struct kvm_s390_sie_block {
__u64 cputm; /* 0x0028 */ __u64 cputm; /* 0x0028 */
__u64 ckc; /* 0x0030 */ __u64 ckc; /* 0x0030 */
__u64 epoch; /* 0x0038 */ __u64 epoch; /* 0x0038 */
__u8 reserved40[4]; /* 0x0040 */ __u32 svcc; /* 0x0040 */
#define LCTL_CR0 0x8000 #define LCTL_CR0 0x8000
#define LCTL_CR6 0x0200 #define LCTL_CR6 0x0200
#define LCTL_CR9 0x0040 #define LCTL_CR9 0x0040
...@@ -167,6 +167,9 @@ struct kvm_s390_sie_block { ...@@ -167,6 +167,9 @@ struct kvm_s390_sie_block {
#define ICPT_INST 0x04 #define ICPT_INST 0x04
#define ICPT_PROGI 0x08 #define ICPT_PROGI 0x08
#define ICPT_INSTPROGI 0x0C #define ICPT_INSTPROGI 0x0C
#define ICPT_EXTINT 0x14
#define ICPT_VALIDITY 0x20
#define ICPT_STOP 0x28
#define ICPT_OPEREXC 0x2C #define ICPT_OPEREXC 0x2C
#define ICPT_PARTEXEC 0x38 #define ICPT_PARTEXEC 0x38
#define ICPT_IOINST 0x40 #define ICPT_IOINST 0x40
...@@ -226,7 +229,7 @@ struct kvm_s390_sie_block { ...@@ -226,7 +229,7 @@ struct kvm_s390_sie_block {
__u8 reserved1e6[2]; /* 0x01e6 */ __u8 reserved1e6[2]; /* 0x01e6 */
__u64 itdba; /* 0x01e8 */ __u64 itdba; /* 0x01e8 */
__u64 riccbd; /* 0x01f0 */ __u64 riccbd; /* 0x01f0 */
__u8 reserved1f8[8]; /* 0x01f8 */ __u64 gvrd; /* 0x01f8 */
} __attribute__((packed)); } __attribute__((packed));
struct kvm_s390_itdb { struct kvm_s390_itdb {
...@@ -281,6 +284,7 @@ struct kvm_vcpu_stat { ...@@ -281,6 +284,7 @@ struct kvm_vcpu_stat {
u32 instruction_stsi; u32 instruction_stsi;
u32 instruction_stfl; u32 instruction_stfl;
u32 instruction_tprot; u32 instruction_tprot;
u32 instruction_sie;
u32 instruction_essa; u32 instruction_essa;
u32 instruction_sthyi; u32 instruction_sthyi;
u32 instruction_sigp_sense; u32 instruction_sigp_sense;
...@@ -545,12 +549,16 @@ struct kvm_guestdbg_info_arch { ...@@ -545,12 +549,16 @@ struct kvm_guestdbg_info_arch {
struct kvm_vcpu_arch { struct kvm_vcpu_arch {
struct kvm_s390_sie_block *sie_block; struct kvm_s390_sie_block *sie_block;
/* if vsie is active, currently executed shadow sie control block */
struct kvm_s390_sie_block *vsie_block;
unsigned int host_acrs[NUM_ACRS]; unsigned int host_acrs[NUM_ACRS];
struct fpu host_fpregs; struct fpu host_fpregs;
struct kvm_s390_local_interrupt local_int; struct kvm_s390_local_interrupt local_int;
struct hrtimer ckc_timer; struct hrtimer ckc_timer;
struct kvm_s390_pgm_info pgm; struct kvm_s390_pgm_info pgm;
struct gmap *gmap; struct gmap *gmap;
/* backup location for the currently enabled gmap when scheduled out */
struct gmap *enabled_gmap;
struct kvm_guestdbg_info_arch guestdbg; struct kvm_guestdbg_info_arch guestdbg;
unsigned long pfault_token; unsigned long pfault_token;
unsigned long pfault_select; unsigned long pfault_select;
...@@ -635,6 +643,14 @@ struct sie_page2 { ...@@ -635,6 +643,14 @@ struct sie_page2 {
u8 reserved900[0x1000 - 0x900]; /* 0x0900 */ u8 reserved900[0x1000 - 0x900]; /* 0x0900 */
} __packed; } __packed;
struct kvm_s390_vsie {
struct mutex mutex;
struct radix_tree_root addr_to_page;
int page_count;
int next;
struct page *pages[KVM_MAX_VCPUS];
};
struct kvm_arch{ struct kvm_arch{
void *sca; void *sca;
int use_esca; int use_esca;
...@@ -659,6 +675,7 @@ struct kvm_arch{ ...@@ -659,6 +675,7 @@ struct kvm_arch{
struct sie_page2 *sie_page2; struct sie_page2 *sie_page2;
struct kvm_s390_cpu_model model; struct kvm_s390_cpu_model model;
struct kvm_s390_crypto crypto; struct kvm_s390_crypto crypto;
struct kvm_s390_vsie vsie;
u64 epoch; u64 epoch;
/* subset of available cpu features enabled by user space */ /* subset of available cpu features enabled by user space */
DECLARE_BITMAP(cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS); DECLARE_BITMAP(cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
......
...@@ -8,8 +8,9 @@ typedef struct { ...@@ -8,8 +8,9 @@ typedef struct {
cpumask_t cpu_attach_mask; cpumask_t cpu_attach_mask;
atomic_t attach_count; atomic_t attach_count;
unsigned int flush_mm; unsigned int flush_mm;
spinlock_t list_lock; spinlock_t pgtable_lock;
struct list_head pgtable_list; struct list_head pgtable_list;
spinlock_t gmap_lock;
struct list_head gmap_list; struct list_head gmap_list;
unsigned long asce; unsigned long asce;
unsigned long asce_limit; unsigned long asce_limit;
...@@ -22,9 +23,11 @@ typedef struct { ...@@ -22,9 +23,11 @@ typedef struct {
unsigned int use_skey:1; unsigned int use_skey:1;
} mm_context_t; } mm_context_t;
#define INIT_MM_CONTEXT(name) \ #define INIT_MM_CONTEXT(name) \
.context.list_lock = __SPIN_LOCK_UNLOCKED(name.context.list_lock), \ .context.pgtable_lock = \
.context.pgtable_list = LIST_HEAD_INIT(name.context.pgtable_list), \ __SPIN_LOCK_UNLOCKED(name.context.pgtable_lock), \
.context.pgtable_list = LIST_HEAD_INIT(name.context.pgtable_list), \
.context.gmap_lock = __SPIN_LOCK_UNLOCKED(name.context.gmap_lock), \
.context.gmap_list = LIST_HEAD_INIT(name.context.gmap_list), .context.gmap_list = LIST_HEAD_INIT(name.context.gmap_list),
static inline int tprot(unsigned long addr) static inline int tprot(unsigned long addr)
......
...@@ -15,8 +15,9 @@ ...@@ -15,8 +15,9 @@
static inline int init_new_context(struct task_struct *tsk, static inline int init_new_context(struct task_struct *tsk,
struct mm_struct *mm) struct mm_struct *mm)
{ {
spin_lock_init(&mm->context.list_lock); spin_lock_init(&mm->context.pgtable_lock);
INIT_LIST_HEAD(&mm->context.pgtable_list); INIT_LIST_HEAD(&mm->context.pgtable_list);
spin_lock_init(&mm->context.gmap_lock);
INIT_LIST_HEAD(&mm->context.gmap_list); INIT_LIST_HEAD(&mm->context.gmap_list);
cpumask_clear(&mm->context.cpu_attach_mask); cpumask_clear(&mm->context.cpu_attach_mask);
atomic_set(&mm->context.attach_count, 0); atomic_set(&mm->context.attach_count, 0);
......
...@@ -147,6 +147,8 @@ static inline int devmem_is_allowed(unsigned long pfn) ...@@ -147,6 +147,8 @@ static inline int devmem_is_allowed(unsigned long pfn)
#define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT) #define virt_to_page(kaddr) pfn_to_page(__pa(kaddr) >> PAGE_SHIFT)
#define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT) #define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT)
#define virt_addr_valid(kaddr) pfn_valid(__pa(kaddr) >> PAGE_SHIFT) #define virt_addr_valid(kaddr) pfn_valid(__pa(kaddr) >> PAGE_SHIFT)
#define pfn_to_virt(pfn) __va((pfn) << PAGE_SHIFT)
#define page_to_virt(page) pfn_to_virt(page_to_pfn(page))
#define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | \ #define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
......
...@@ -19,8 +19,10 @@ unsigned long *crst_table_alloc(struct mm_struct *); ...@@ -19,8 +19,10 @@ unsigned long *crst_table_alloc(struct mm_struct *);
void crst_table_free(struct mm_struct *, unsigned long *); void crst_table_free(struct mm_struct *, unsigned long *);
unsigned long *page_table_alloc(struct mm_struct *); unsigned long *page_table_alloc(struct mm_struct *);
struct page *page_table_alloc_pgste(struct mm_struct *mm);
void page_table_free(struct mm_struct *, unsigned long *); void page_table_free(struct mm_struct *, unsigned long *);
void page_table_free_rcu(struct mmu_gather *, unsigned long *, unsigned long); void page_table_free_rcu(struct mmu_gather *, unsigned long *, unsigned long);
void page_table_free_pgste(struct page *page);
extern int page_table_allocate_pgste; extern int page_table_allocate_pgste;
static inline void clear_table(unsigned long *s, unsigned long val, size_t n) static inline void clear_table(unsigned long *s, unsigned long val, size_t n)
......
...@@ -256,6 +256,7 @@ static inline int is_module_addr(void *addr) ...@@ -256,6 +256,7 @@ static inline int is_module_addr(void *addr)
/* Bits in the region table entry */ /* Bits in the region table entry */
#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */ #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
...@@ -327,6 +328,7 @@ static inline int is_module_addr(void *addr) ...@@ -327,6 +328,7 @@ static inline int is_module_addr(void *addr)
#define PGSTE_GC_BIT 0x0002000000000000UL #define PGSTE_GC_BIT 0x0002000000000000UL
#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
/* Guest Page State used for virtualization */ /* Guest Page State used for virtualization */
#define _PGSTE_GPS_ZERO 0x0000000080000000UL #define _PGSTE_GPS_ZERO 0x0000000080000000UL
...@@ -885,10 +887,16 @@ static inline int ptep_set_access_flags(struct vm_area_struct *vma, ...@@ -885,10 +887,16 @@ static inline int ptep_set_access_flags(struct vm_area_struct *vma,
void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, pte_t entry); pte_t *ptep, pte_t entry);
void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
void ptep_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); void ptep_notify(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, unsigned long bits);
int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
pte_t *ptep, int prot, unsigned long bit);
void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
pte_t *ptep , int reset); pte_t *ptep , int reset);
void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
pte_t *sptep, pte_t *tptep, pte_t pte);
void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address); bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
......
...@@ -109,6 +109,8 @@ struct thread_struct { ...@@ -109,6 +109,8 @@ struct thread_struct {
unsigned long ksp; /* kernel stack pointer */ unsigned long ksp; /* kernel stack pointer */
mm_segment_t mm_segment; mm_segment_t mm_segment;
unsigned long gmap_addr; /* address of last gmap fault. */ unsigned long gmap_addr; /* address of last gmap fault. */
unsigned int gmap_write_flag; /* gmap fault write indication */
unsigned int gmap_int_code; /* int code of last gmap fault */
unsigned int gmap_pfault; /* signal of a pending guest pfault */ unsigned int gmap_pfault; /* signal of a pending guest pfault */
struct per_regs per_user; /* User specified PER registers */ struct per_regs per_user; /* User specified PER registers */
struct per_event per_event; /* Cause of the last PER trap */ struct per_event per_event; /* Cause of the last PER trap */
......
...@@ -98,6 +98,18 @@ struct kvm_s390_vm_cpu_machine { ...@@ -98,6 +98,18 @@ struct kvm_s390_vm_cpu_machine {
#define KVM_S390_VM_CPU_FEAT_NR_BITS 1024 #define KVM_S390_VM_CPU_FEAT_NR_BITS 1024
#define KVM_S390_VM_CPU_FEAT_ESOP 0 #define KVM_S390_VM_CPU_FEAT_ESOP 0
#define KVM_S390_VM_CPU_FEAT_SIEF2 1
#define KVM_S390_VM_CPU_FEAT_64BSCAO 2
#define KVM_S390_VM_CPU_FEAT_SIIF 3
#define KVM_S390_VM_CPU_FEAT_GPERE 4
#define KVM_S390_VM_CPU_FEAT_GSLS 5
#define KVM_S390_VM_CPU_FEAT_IB 6
#define KVM_S390_VM_CPU_FEAT_CEI 7
#define KVM_S390_VM_CPU_FEAT_IBS 8
#define KVM_S390_VM_CPU_FEAT_SKEY 9
#define KVM_S390_VM_CPU_FEAT_CMMA 10
#define KVM_S390_VM_CPU_FEAT_PFMFI 11
#define KVM_S390_VM_CPU_FEAT_SIGPIF 12
struct kvm_s390_vm_cpu_feat { struct kvm_s390_vm_cpu_feat {
__u64 feat[16]; __u64 feat[16];
}; };
......
...@@ -12,6 +12,6 @@ common-objs = $(KVM)/kvm_main.o $(KVM)/eventfd.o $(KVM)/async_pf.o $(KVM)/irqch ...@@ -12,6 +12,6 @@ common-objs = $(KVM)/kvm_main.o $(KVM)/eventfd.o $(KVM)/async_pf.o $(KVM)/irqch
ccflags-y := -Ivirt/kvm -Iarch/s390/kvm ccflags-y := -Ivirt/kvm -Iarch/s390/kvm
kvm-objs := $(common-objs) kvm-s390.o intercept.o interrupt.o priv.o sigp.o kvm-objs := $(common-objs) kvm-s390.o intercept.o interrupt.o priv.o sigp.o
kvm-objs += diag.o gaccess.o guestdbg.o sthyi.o kvm-objs += diag.o gaccess.o guestdbg.o sthyi.o vsie.o
obj-$(CONFIG_KVM) += kvm.o obj-$(CONFIG_KVM) += kvm.o
...@@ -8,6 +8,7 @@ ...@@ -8,6 +8,7 @@
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/err.h> #include <linux/err.h>
#include <asm/pgtable.h> #include <asm/pgtable.h>
#include <asm/gmap.h>
#include "kvm-s390.h" #include "kvm-s390.h"
#include "gaccess.h" #include "gaccess.h"
#include <asm/switch_to.h> #include <asm/switch_to.h>
...@@ -946,3 +947,241 @@ int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra) ...@@ -946,3 +947,241 @@ int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
return 0; return 0;
return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA); return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
} }
/**
* kvm_s390_shadow_tables - walk the guest page table and create shadow tables
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @pgt: pointer to the page table address result
* @fake: pgt references contiguous guest memory block, not a pgtable
*/
static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
unsigned long *pgt, int *dat_protection,
int *fake)
{
struct gmap *parent;
union asce asce;
union vaddress vaddr;
unsigned long ptr;
int rc;
*fake = 0;
*dat_protection = 0;
parent = sg->parent;
vaddr.addr = saddr;
asce.val = sg->orig_asce;
ptr = asce.origin * 4096;
if (asce.r) {
*fake = 1;
asce.dt = ASCE_TYPE_REGION1;
}
switch (asce.dt) {
case ASCE_TYPE_REGION1:
if (vaddr.rfx01 > asce.tl && !asce.r)
return PGM_REGION_FIRST_TRANS;
break;
case ASCE_TYPE_REGION2:
if (vaddr.rfx)
return PGM_ASCE_TYPE;
if (vaddr.rsx01 > asce.tl)
return PGM_REGION_SECOND_TRANS;
break;
case ASCE_TYPE_REGION3:
if (vaddr.rfx || vaddr.rsx)
return PGM_ASCE_TYPE;
if (vaddr.rtx01 > asce.tl)
return PGM_REGION_THIRD_TRANS;
break;
case ASCE_TYPE_SEGMENT:
if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
return PGM_ASCE_TYPE;
if (vaddr.sx01 > asce.tl)
return PGM_SEGMENT_TRANSLATION;
break;
}
switch (asce.dt) {
case ASCE_TYPE_REGION1: {
union region1_table_entry rfte;
if (*fake) {
/* offset in 16EB guest memory block */
ptr = ptr + ((unsigned long) vaddr.rsx << 53UL);
rfte.val = ptr;
goto shadow_r2t;
}
rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
if (rc)
return rc;
if (rfte.i)
return PGM_REGION_FIRST_TRANS;
if (rfte.tt != TABLE_TYPE_REGION1)
return PGM_TRANSLATION_SPEC;
if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
return PGM_REGION_SECOND_TRANS;
if (sg->edat_level >= 1)
*dat_protection |= rfte.p;
ptr = rfte.rto << 12UL;
shadow_r2t:
rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
if (rc)
return rc;
/* fallthrough */
}
case ASCE_TYPE_REGION2: {
union region2_table_entry rste;
if (*fake) {
/* offset in 8PB guest memory block */
ptr = ptr + ((unsigned long) vaddr.rtx << 42UL);
rste.val = ptr;
goto shadow_r3t;
}
rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
if (rc)
return rc;
if (rste.i)
return PGM_REGION_SECOND_TRANS;
if (rste.tt != TABLE_TYPE_REGION2)
return PGM_TRANSLATION_SPEC;
if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
return PGM_REGION_THIRD_TRANS;
if (sg->edat_level >= 1)
*dat_protection |= rste.p;
ptr = rste.rto << 12UL;
shadow_r3t:
rste.p |= *dat_protection;
rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
if (rc)
return rc;
/* fallthrough */
}
case ASCE_TYPE_REGION3: {
union region3_table_entry rtte;
if (*fake) {
/* offset in 4TB guest memory block */
ptr = ptr + ((unsigned long) vaddr.sx << 31UL);
rtte.val = ptr;
goto shadow_sgt;
}
rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
if (rc)
return rc;
if (rtte.i)
return PGM_REGION_THIRD_TRANS;
if (rtte.tt != TABLE_TYPE_REGION3)
return PGM_TRANSLATION_SPEC;
if (rtte.cr && asce.p && sg->edat_level >= 2)
return PGM_TRANSLATION_SPEC;
if (rtte.fc && sg->edat_level >= 2) {
*dat_protection |= rtte.fc0.p;
*fake = 1;
ptr = rtte.fc1.rfaa << 31UL;
rtte.val = ptr;
goto shadow_sgt;
}
if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
return PGM_SEGMENT_TRANSLATION;
if (sg->edat_level >= 1)
*dat_protection |= rtte.fc0.p;
ptr = rtte.fc0.sto << 12UL;
shadow_sgt:
rtte.fc0.p |= *dat_protection;
rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
if (rc)
return rc;
/* fallthrough */
}
case ASCE_TYPE_SEGMENT: {
union segment_table_entry ste;
if (*fake) {
/* offset in 2G guest memory block */
ptr = ptr + ((unsigned long) vaddr.sx << 20UL);
ste.val = ptr;
goto shadow_pgt;
}
rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
if (rc)
return rc;
if (ste.i)
return PGM_SEGMENT_TRANSLATION;
if (ste.tt != TABLE_TYPE_SEGMENT)
return PGM_TRANSLATION_SPEC;
if (ste.cs && asce.p)
return PGM_TRANSLATION_SPEC;
*dat_protection |= ste.fc0.p;
if (ste.fc && sg->edat_level >= 1) {
*fake = 1;
ptr = ste.fc1.sfaa << 20UL;
ste.val = ptr;
goto shadow_pgt;
}
ptr = ste.fc0.pto << 11UL;
shadow_pgt:
ste.fc0.p |= *dat_protection;
rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
if (rc)
return rc;
}
}
/* Return the parent address of the page table */
*pgt = ptr;
return 0;
}
/**
* kvm_s390_shadow_fault - handle fault on a shadow page table
* @vcpu: virtual cpu
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
*
* Returns: - 0 if the shadow fault was successfully resolved
* - > 0 (pgm exception code) on exceptions while faulting
* - -EAGAIN if the caller can retry immediately
* - -EFAULT when accessing invalid guest addresses
* - -ENOMEM if out of memory
*/
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
unsigned long saddr)
{
union vaddress vaddr;
union page_table_entry pte;
unsigned long pgt;
int dat_protection, fake;
int rc;
down_read(&sg->mm->mmap_sem);
/*
* We don't want any guest-2 tables to change - so the parent
* tables/pointers we read stay valid - unshadowing is however
* always possible - only guest_table_lock protects us.
*/
ipte_lock(vcpu);
rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
if (rc)
rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
&fake);
vaddr.addr = saddr;
if (fake) {
/* offset in 1MB guest memory block */
pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
goto shadow_page;
}
if (!rc)
rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
if (!rc && pte.i)
rc = PGM_PAGE_TRANSLATION;
if (!rc && (pte.z || (pte.co && sg->edat_level < 1)))
rc = PGM_TRANSLATION_SPEC;
shadow_page:
pte.p |= dat_protection;
if (!rc)
rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
ipte_unlock(vcpu);
up_read(&sg->mm->mmap_sem);
return rc;
}
...@@ -361,4 +361,7 @@ void ipte_unlock(struct kvm_vcpu *vcpu); ...@@ -361,4 +361,7 @@ void ipte_unlock(struct kvm_vcpu *vcpu);
int ipte_lock_held(struct kvm_vcpu *vcpu); int ipte_lock_held(struct kvm_vcpu *vcpu);
int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra); int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra);
int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *shadow,
unsigned long saddr);
#endif /* __KVM_S390_GACCESS_H */ #endif /* __KVM_S390_GACCESS_H */
...@@ -995,6 +995,11 @@ void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu) ...@@ -995,6 +995,11 @@ void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
swake_up(&vcpu->wq); swake_up(&vcpu->wq);
vcpu->stat.halt_wakeup++; vcpu->stat.halt_wakeup++;
} }
/*
* The VCPU might not be sleeping but is executing the VSIE. Let's
* kick it, so it leaves the SIE to process the request.
*/
kvm_s390_vsie_kick(vcpu);
} }
enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer) enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
......
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/kvm.h> #include <linux/kvm.h>
#include <linux/kvm_host.h> #include <linux/kvm_host.h>
#include <linux/mman.h>
#include <linux/module.h> #include <linux/module.h>
#include <linux/random.h> #include <linux/random.h>
#include <linux/slab.h> #include <linux/slab.h>
...@@ -98,6 +99,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = { ...@@ -98,6 +99,7 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "instruction_stfl", VCPU_STAT(instruction_stfl) }, { "instruction_stfl", VCPU_STAT(instruction_stfl) },
{ "instruction_tprot", VCPU_STAT(instruction_tprot) }, { "instruction_tprot", VCPU_STAT(instruction_tprot) },
{ "instruction_sthyi", VCPU_STAT(instruction_sthyi) }, { "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
{ "instruction_sie", VCPU_STAT(instruction_sie) },
{ "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) }, { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
{ "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) }, { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
{ "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) }, { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
...@@ -123,6 +125,11 @@ struct kvm_stats_debugfs_item debugfs_entries[] = { ...@@ -123,6 +125,11 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
{ NULL } { NULL }
}; };
/* allow nested virtualization in KVM (if enabled by user space) */
static int nested;
module_param(nested, int, S_IRUGO);
MODULE_PARM_DESC(nested, "Nested virtualization support");
/* upper facilities limit for kvm */ /* upper facilities limit for kvm */
unsigned long kvm_s390_fac_list_mask[16] = { unsigned long kvm_s390_fac_list_mask[16] = {
0xffe6000000000000UL, 0xffe6000000000000UL,
...@@ -141,6 +148,7 @@ static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS) ...@@ -141,6 +148,7 @@ static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS)
static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc; static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
static struct gmap_notifier gmap_notifier; static struct gmap_notifier gmap_notifier;
static struct gmap_notifier vsie_gmap_notifier;
debug_info_t *kvm_s390_dbf; debug_info_t *kvm_s390_dbf;
/* Section: not file related */ /* Section: not file related */
...@@ -150,7 +158,8 @@ int kvm_arch_hardware_enable(void) ...@@ -150,7 +158,8 @@ int kvm_arch_hardware_enable(void)
return 0; return 0;
} }
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address); static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
unsigned long end);
/* /*
* This callback is executed during stop_machine(). All CPUs are therefore * This callback is executed during stop_machine(). All CPUs are therefore
...@@ -172,6 +181,8 @@ static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val, ...@@ -172,6 +181,8 @@ static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
vcpu->arch.sie_block->epoch -= *delta; vcpu->arch.sie_block->epoch -= *delta;
if (vcpu->arch.cputm_enabled) if (vcpu->arch.cputm_enabled)
vcpu->arch.cputm_start += *delta; vcpu->arch.cputm_start += *delta;
if (vcpu->arch.vsie_block)
vcpu->arch.vsie_block->epoch -= *delta;
} }
} }
return NOTIFY_OK; return NOTIFY_OK;
...@@ -184,7 +195,9 @@ static struct notifier_block kvm_clock_notifier = { ...@@ -184,7 +195,9 @@ static struct notifier_block kvm_clock_notifier = {
int kvm_arch_hardware_setup(void) int kvm_arch_hardware_setup(void)
{ {
gmap_notifier.notifier_call = kvm_gmap_notifier; gmap_notifier.notifier_call = kvm_gmap_notifier;
gmap_register_ipte_notifier(&gmap_notifier); gmap_register_pte_notifier(&gmap_notifier);
vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
gmap_register_pte_notifier(&vsie_gmap_notifier);
atomic_notifier_chain_register(&s390_epoch_delta_notifier, atomic_notifier_chain_register(&s390_epoch_delta_notifier,
&kvm_clock_notifier); &kvm_clock_notifier);
return 0; return 0;
...@@ -192,7 +205,8 @@ int kvm_arch_hardware_setup(void) ...@@ -192,7 +205,8 @@ int kvm_arch_hardware_setup(void)
void kvm_arch_hardware_unsetup(void) void kvm_arch_hardware_unsetup(void)
{ {
gmap_unregister_ipte_notifier(&gmap_notifier); gmap_unregister_pte_notifier(&gmap_notifier);
gmap_unregister_pte_notifier(&vsie_gmap_notifier);
atomic_notifier_chain_unregister(&s390_epoch_delta_notifier, atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
&kvm_clock_notifier); &kvm_clock_notifier);
} }
...@@ -250,6 +264,46 @@ static void kvm_s390_cpu_feat_init(void) ...@@ -250,6 +264,46 @@ static void kvm_s390_cpu_feat_init(void)
if (MACHINE_HAS_ESOP) if (MACHINE_HAS_ESOP)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP); allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
/*
* We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
* 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
*/
if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
!test_facility(3) || !nested)
return;
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
if (sclp.has_64bscao)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
if (sclp.has_siif)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
if (sclp.has_gpere)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
if (sclp.has_gsls)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
if (sclp.has_ib)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
if (sclp.has_cei)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
if (sclp.has_ibs)
allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
/*
* KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
* all skey handling functions read/set the skey from the PGSTE
* instead of the real storage key.
*
* KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
* pages being detected as preserved although they are resident.
*
* KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
* have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
*
* For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
* KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
* correctly shadowed. We can do that for the PGSTE but not for PTE.I.
*
* KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
* cannot easily shadow the SCA because of the ipte lock.
*/
} }
int kvm_arch_init(void *opaque) int kvm_arch_init(void *opaque)
...@@ -530,20 +584,20 @@ static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *att ...@@ -530,20 +584,20 @@ static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *att
if (!new_limit) if (!new_limit)
return -EINVAL; return -EINVAL;
/* gmap_alloc takes last usable address */ /* gmap_create takes last usable address */
if (new_limit != KVM_S390_NO_MEM_LIMIT) if (new_limit != KVM_S390_NO_MEM_LIMIT)
new_limit -= 1; new_limit -= 1;
ret = -EBUSY; ret = -EBUSY;
mutex_lock(&kvm->lock); mutex_lock(&kvm->lock);
if (!kvm->created_vcpus) { if (!kvm->created_vcpus) {
/* gmap_alloc will round the limit up */ /* gmap_create will round the limit up */
struct gmap *new = gmap_alloc(current->mm, new_limit); struct gmap *new = gmap_create(current->mm, new_limit);
if (!new) { if (!new) {
ret = -ENOMEM; ret = -ENOMEM;
} else { } else {
gmap_free(kvm->arch.gmap); gmap_remove(kvm->arch.gmap);
new->private = kvm; new->private = kvm;
kvm->arch.gmap = new; kvm->arch.gmap = new;
ret = 0; ret = 0;
...@@ -1392,7 +1446,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) ...@@ -1392,7 +1446,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
else else
kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE, kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
sclp.hamax + 1); sclp.hamax + 1);
kvm->arch.gmap = gmap_alloc(current->mm, kvm->arch.mem_limit - 1); kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
if (!kvm->arch.gmap) if (!kvm->arch.gmap)
goto out_err; goto out_err;
kvm->arch.gmap->private = kvm; kvm->arch.gmap->private = kvm;
...@@ -1404,6 +1458,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) ...@@ -1404,6 +1458,7 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
kvm->arch.epoch = 0; kvm->arch.epoch = 0;
spin_lock_init(&kvm->arch.start_stop_lock); spin_lock_init(&kvm->arch.start_stop_lock);
kvm_s390_vsie_init(kvm);
KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid); KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
return 0; return 0;
...@@ -1425,7 +1480,7 @@ void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) ...@@ -1425,7 +1480,7 @@ void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
sca_del_vcpu(vcpu); sca_del_vcpu(vcpu);
if (kvm_is_ucontrol(vcpu->kvm)) if (kvm_is_ucontrol(vcpu->kvm))
gmap_free(vcpu->arch.gmap); gmap_remove(vcpu->arch.gmap);
if (vcpu->kvm->arch.use_cmma) if (vcpu->kvm->arch.use_cmma)
kvm_s390_vcpu_unsetup_cmma(vcpu); kvm_s390_vcpu_unsetup_cmma(vcpu);
...@@ -1458,16 +1513,17 @@ void kvm_arch_destroy_vm(struct kvm *kvm) ...@@ -1458,16 +1513,17 @@ void kvm_arch_destroy_vm(struct kvm *kvm)
debug_unregister(kvm->arch.dbf); debug_unregister(kvm->arch.dbf);
free_page((unsigned long)kvm->arch.sie_page2); free_page((unsigned long)kvm->arch.sie_page2);
if (!kvm_is_ucontrol(kvm)) if (!kvm_is_ucontrol(kvm))
gmap_free(kvm->arch.gmap); gmap_remove(kvm->arch.gmap);
kvm_s390_destroy_adapters(kvm); kvm_s390_destroy_adapters(kvm);
kvm_s390_clear_float_irqs(kvm); kvm_s390_clear_float_irqs(kvm);
kvm_s390_vsie_destroy(kvm);
KVM_EVENT(3, "vm 0x%pK destroyed", kvm); KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
} }
/* Section: vcpu related */ /* Section: vcpu related */
static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu) static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
{ {
vcpu->arch.gmap = gmap_alloc(current->mm, -1UL); vcpu->arch.gmap = gmap_create(current->mm, -1UL);
if (!vcpu->arch.gmap) if (!vcpu->arch.gmap)
return -ENOMEM; return -ENOMEM;
vcpu->arch.gmap->private = vcpu->kvm; vcpu->arch.gmap->private = vcpu->kvm;
...@@ -1717,7 +1773,7 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) ...@@ -1717,7 +1773,7 @@ void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
save_access_regs(vcpu->arch.host_acrs); save_access_regs(vcpu->arch.host_acrs);
restore_access_regs(vcpu->run->s.regs.acrs); restore_access_regs(vcpu->run->s.regs.acrs);
gmap_enable(vcpu->arch.gmap); gmap_enable(vcpu->arch.enabled_gmap);
atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
__start_cpu_timer_accounting(vcpu); __start_cpu_timer_accounting(vcpu);
...@@ -1730,7 +1786,8 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) ...@@ -1730,7 +1786,8 @@ void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu)) if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
__stop_cpu_timer_accounting(vcpu); __stop_cpu_timer_accounting(vcpu);
atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags); atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
gmap_disable(vcpu->arch.gmap); vcpu->arch.enabled_gmap = gmap_get_enabled();
gmap_disable(vcpu->arch.enabled_gmap);
/* Save guest register state */ /* Save guest register state */
save_fpu_regs(); save_fpu_regs();
...@@ -1779,7 +1836,8 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) ...@@ -1779,7 +1836,8 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
vcpu->arch.gmap = vcpu->kvm->arch.gmap; vcpu->arch.gmap = vcpu->kvm->arch.gmap;
sca_add_vcpu(vcpu); sca_add_vcpu(vcpu);
} }
/* make vcpu_load load the right gmap on the first trigger */
vcpu->arch.enabled_gmap = vcpu->arch.gmap;
} }
static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu) static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
...@@ -1976,16 +2034,25 @@ void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu) ...@@ -1976,16 +2034,25 @@ void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
kvm_s390_vcpu_request(vcpu); kvm_s390_vcpu_request(vcpu);
} }
static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address) static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
unsigned long end)
{ {
int i;
struct kvm *kvm = gmap->private; struct kvm *kvm = gmap->private;
struct kvm_vcpu *vcpu; struct kvm_vcpu *vcpu;
unsigned long prefix;
int i;
if (gmap_is_shadow(gmap))
return;
if (start >= 1UL << 31)
/* We are only interested in prefix pages */
return;
kvm_for_each_vcpu(i, vcpu, kvm) { kvm_for_each_vcpu(i, vcpu, kvm) {
/* match against both prefix pages */ /* match against both prefix pages */
if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) { prefix = kvm_s390_get_prefix(vcpu);
VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address); if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
start, end);
kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu); kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
} }
} }
...@@ -2264,16 +2331,16 @@ static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu) ...@@ -2264,16 +2331,16 @@ static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
return 0; return 0;
/* /*
* We use MMU_RELOAD just to re-arm the ipte notifier for the * We use MMU_RELOAD just to re-arm the ipte notifier for the
* guest prefix page. gmap_ipte_notify will wait on the ptl lock. * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
* This ensures that the ipte instruction for this request has * This ensures that the ipte instruction for this request has
* already finished. We might race against a second unmapper that * already finished. We might race against a second unmapper that
* wants to set the blocking bit. Lets just retry the request loop. * wants to set the blocking bit. Lets just retry the request loop.
*/ */
if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) { if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
int rc; int rc;
rc = gmap_ipte_notify(vcpu->arch.gmap, rc = gmap_mprotect_notify(vcpu->arch.gmap,
kvm_s390_get_prefix(vcpu), kvm_s390_get_prefix(vcpu),
PAGE_SIZE * 2); PAGE_SIZE * 2, PROT_WRITE);
if (rc) if (rc)
return rc; return rc;
goto retry; goto retry;
......
...@@ -56,7 +56,7 @@ static inline int is_vcpu_stopped(struct kvm_vcpu *vcpu) ...@@ -56,7 +56,7 @@ static inline int is_vcpu_stopped(struct kvm_vcpu *vcpu)
static inline int is_vcpu_idle(struct kvm_vcpu *vcpu) static inline int is_vcpu_idle(struct kvm_vcpu *vcpu)
{ {
return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_WAIT; return test_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
} }
static inline int kvm_is_ucontrol(struct kvm *kvm) static inline int kvm_is_ucontrol(struct kvm *kvm)
...@@ -252,6 +252,14 @@ int kvm_s390_handle_stctl(struct kvm_vcpu *vcpu); ...@@ -252,6 +252,14 @@ int kvm_s390_handle_stctl(struct kvm_vcpu *vcpu);
int kvm_s390_handle_lctl(struct kvm_vcpu *vcpu); int kvm_s390_handle_lctl(struct kvm_vcpu *vcpu);
int kvm_s390_handle_eb(struct kvm_vcpu *vcpu); int kvm_s390_handle_eb(struct kvm_vcpu *vcpu);
/* implemented in vsie.c */
int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu);
void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu);
void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
unsigned long end);
void kvm_s390_vsie_init(struct kvm *kvm);
void kvm_s390_vsie_destroy(struct kvm *kvm);
/* implemented in sigp.c */ /* implemented in sigp.c */
int kvm_s390_handle_sigp(struct kvm_vcpu *vcpu); int kvm_s390_handle_sigp(struct kvm_vcpu *vcpu);
int kvm_s390_handle_sigp_pei(struct kvm_vcpu *vcpu); int kvm_s390_handle_sigp_pei(struct kvm_vcpu *vcpu);
......
...@@ -719,6 +719,7 @@ static const intercept_handler_t b2_handlers[256] = { ...@@ -719,6 +719,7 @@ static const intercept_handler_t b2_handlers[256] = {
[0x10] = handle_set_prefix, [0x10] = handle_set_prefix,
[0x11] = handle_store_prefix, [0x11] = handle_store_prefix,
[0x12] = handle_store_cpu_address, [0x12] = handle_store_cpu_address,
[0x14] = kvm_s390_handle_vsie,
[0x21] = handle_ipte_interlock, [0x21] = handle_ipte_interlock,
[0x29] = handle_iske, [0x29] = handle_iske,
[0x2a] = handle_rrbe, [0x2a] = handle_rrbe,
......
...@@ -77,18 +77,18 @@ static int __sigp_conditional_emergency(struct kvm_vcpu *vcpu, ...@@ -77,18 +77,18 @@ static int __sigp_conditional_emergency(struct kvm_vcpu *vcpu,
const u64 psw_int_mask = PSW_MASK_IO | PSW_MASK_EXT; const u64 psw_int_mask = PSW_MASK_IO | PSW_MASK_EXT;
u16 p_asn, s_asn; u16 p_asn, s_asn;
psw_t *psw; psw_t *psw;
u32 flags; bool idle;
flags = atomic_read(&dst_vcpu->arch.sie_block->cpuflags); idle = is_vcpu_idle(vcpu);
psw = &dst_vcpu->arch.sie_block->gpsw; psw = &dst_vcpu->arch.sie_block->gpsw;
p_asn = dst_vcpu->arch.sie_block->gcr[4] & 0xffff; /* Primary ASN */ p_asn = dst_vcpu->arch.sie_block->gcr[4] & 0xffff; /* Primary ASN */
s_asn = dst_vcpu->arch.sie_block->gcr[3] & 0xffff; /* Secondary ASN */ s_asn = dst_vcpu->arch.sie_block->gcr[3] & 0xffff; /* Secondary ASN */
/* Inject the emergency signal? */ /* Inject the emergency signal? */
if (!(flags & CPUSTAT_STOPPED) if (!is_vcpu_stopped(vcpu)
|| (psw->mask & psw_int_mask) != psw_int_mask || (psw->mask & psw_int_mask) != psw_int_mask
|| ((flags & CPUSTAT_WAIT) && psw->addr != 0) || (idle && psw->addr != 0)
|| (!(flags & CPUSTAT_WAIT) && (asn == p_asn || asn == s_asn))) { || (!idle && (asn == p_asn || asn == s_asn))) {
return __inject_sigp_emergency(vcpu, dst_vcpu); return __inject_sigp_emergency(vcpu, dst_vcpu);
} else { } else {
*reg &= 0xffffffff00000000UL; *reg &= 0xffffffff00000000UL;
......
/*
* kvm nested virtualization support for s390x
*
* Copyright IBM Corp. 2016
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License (version 2 only)
* as published by the Free Software Foundation.
*
* Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com>
*/
#include <linux/vmalloc.h>
#include <linux/kvm_host.h>
#include <linux/bug.h>
#include <linux/list.h>
#include <linux/bitmap.h>
#include <asm/gmap.h>
#include <asm/mmu_context.h>
#include <asm/sclp.h>
#include <asm/nmi.h>
#include <asm/dis.h>
#include "kvm-s390.h"
#include "gaccess.h"
struct vsie_page {
struct kvm_s390_sie_block scb_s; /* 0x0000 */
/* the pinned originial scb */
struct kvm_s390_sie_block *scb_o; /* 0x0200 */
/* the shadow gmap in use by the vsie_page */
struct gmap *gmap; /* 0x0208 */
/* address of the last reported fault to guest2 */
unsigned long fault_addr; /* 0x0210 */
__u8 reserved[0x0700 - 0x0218]; /* 0x0218 */
struct kvm_s390_crypto_cb crycb; /* 0x0700 */
__u8 fac[S390_ARCH_FAC_LIST_SIZE_BYTE]; /* 0x0800 */
} __packed;
/* trigger a validity icpt for the given scb */
static int set_validity_icpt(struct kvm_s390_sie_block *scb,
__u16 reason_code)
{
scb->ipa = 0x1000;
scb->ipb = ((__u32) reason_code) << 16;
scb->icptcode = ICPT_VALIDITY;
return 1;
}
/* mark the prefix as unmapped, this will block the VSIE */
static void prefix_unmapped(struct vsie_page *vsie_page)
{
atomic_or(PROG_REQUEST, &vsie_page->scb_s.prog20);
}
/* mark the prefix as unmapped and wait until the VSIE has been left */
static void prefix_unmapped_sync(struct vsie_page *vsie_page)
{
prefix_unmapped(vsie_page);
if (vsie_page->scb_s.prog0c & PROG_IN_SIE)
atomic_or(CPUSTAT_STOP_INT, &vsie_page->scb_s.cpuflags);
while (vsie_page->scb_s.prog0c & PROG_IN_SIE)
cpu_relax();
}
/* mark the prefix as mapped, this will allow the VSIE to run */
static void prefix_mapped(struct vsie_page *vsie_page)
{
atomic_andnot(PROG_REQUEST, &vsie_page->scb_s.prog20);
}
/* test if the prefix is mapped into the gmap shadow */
static int prefix_is_mapped(struct vsie_page *vsie_page)
{
return !(atomic_read(&vsie_page->scb_s.prog20) & PROG_REQUEST);
}
/* copy the updated intervention request bits into the shadow scb */
static void update_intervention_requests(struct vsie_page *vsie_page)
{
const int bits = CPUSTAT_STOP_INT | CPUSTAT_IO_INT | CPUSTAT_EXT_INT;
int cpuflags;
cpuflags = atomic_read(&vsie_page->scb_o->cpuflags);
atomic_andnot(bits, &vsie_page->scb_s.cpuflags);
atomic_or(cpuflags & bits, &vsie_page->scb_s.cpuflags);
}
/* shadow (filter and validate) the cpuflags */
static int prepare_cpuflags(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
int newflags, cpuflags = atomic_read(&scb_o->cpuflags);
/* we don't allow ESA/390 guests */
if (!(cpuflags & CPUSTAT_ZARCH))
return set_validity_icpt(scb_s, 0x0001U);
if (cpuflags & (CPUSTAT_RRF | CPUSTAT_MCDS))
return set_validity_icpt(scb_s, 0x0001U);
else if (cpuflags & (CPUSTAT_SLSV | CPUSTAT_SLSR))
return set_validity_icpt(scb_s, 0x0007U);
/* intervention requests will be set later */
newflags = CPUSTAT_ZARCH;
if (cpuflags & CPUSTAT_GED && test_kvm_facility(vcpu->kvm, 8))
newflags |= CPUSTAT_GED;
if (cpuflags & CPUSTAT_GED2 && test_kvm_facility(vcpu->kvm, 78)) {
if (cpuflags & CPUSTAT_GED)
return set_validity_icpt(scb_s, 0x0001U);
newflags |= CPUSTAT_GED2;
}
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GPERE))
newflags |= cpuflags & CPUSTAT_P;
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_GSLS))
newflags |= cpuflags & CPUSTAT_SM;
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IBS))
newflags |= cpuflags & CPUSTAT_IBS;
atomic_set(&scb_s->cpuflags, newflags);
return 0;
}
/*
* Create a shadow copy of the crycb block and setup key wrapping, if
* requested for guest 3 and enabled for guest 2.
*
* We only accept format-1 (no AP in g2), but convert it into format-2
* There is nothing to do for format-0.
*
* Returns: - 0 if shadowed or nothing to do
* - > 0 if control has to be given to guest 2
*/
static int shadow_crycb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
u32 crycb_addr = scb_o->crycbd & 0x7ffffff8U;
unsigned long *b1, *b2;
u8 ecb3_flags;
scb_s->crycbd = 0;
if (!(scb_o->crycbd & vcpu->arch.sie_block->crycbd & CRYCB_FORMAT1))
return 0;
/* format-1 is supported with message-security-assist extension 3 */
if (!test_kvm_facility(vcpu->kvm, 76))
return 0;
/* we may only allow it if enabled for guest 2 */
ecb3_flags = scb_o->ecb3 & vcpu->arch.sie_block->ecb3 &
(ECB3_AES | ECB3_DEA);
if (!ecb3_flags)
return 0;
if ((crycb_addr & PAGE_MASK) != ((crycb_addr + 128) & PAGE_MASK))
return set_validity_icpt(scb_s, 0x003CU);
else if (!crycb_addr)
return set_validity_icpt(scb_s, 0x0039U);
/* copy only the wrapping keys */
if (read_guest_real(vcpu, crycb_addr + 72, &vsie_page->crycb, 56))
return set_validity_icpt(scb_s, 0x0035U);
scb_s->ecb3 |= ecb3_flags;
scb_s->crycbd = ((__u32)(__u64) &vsie_page->crycb) | CRYCB_FORMAT1 |
CRYCB_FORMAT2;
/* xor both blocks in one run */
b1 = (unsigned long *) vsie_page->crycb.dea_wrapping_key_mask;
b2 = (unsigned long *)
vcpu->kvm->arch.crypto.crycb->dea_wrapping_key_mask;
/* as 56%8 == 0, bitmap_xor won't overwrite any data */
bitmap_xor(b1, b1, b2, BITS_PER_BYTE * 56);
return 0;
}
/* shadow (round up/down) the ibc to avoid validity icpt */
static void prepare_ibc(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
__u64 min_ibc = (sclp.ibc >> 16) & 0x0fffU;
scb_s->ibc = 0;
/* ibc installed in g2 and requested for g3 */
if (vcpu->kvm->arch.model.ibc && (scb_o->ibc & 0x0fffU)) {
scb_s->ibc = scb_o->ibc & 0x0fffU;
/* takte care of the minimum ibc level of the machine */
if (scb_s->ibc < min_ibc)
scb_s->ibc = min_ibc;
/* take care of the maximum ibc level set for the guest */
if (scb_s->ibc > vcpu->kvm->arch.model.ibc)
scb_s->ibc = vcpu->kvm->arch.model.ibc;
}
}
/* unshadow the scb, copying parameters back to the real scb */
static void unshadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
/* interception */
scb_o->icptcode = scb_s->icptcode;
scb_o->icptstatus = scb_s->icptstatus;
scb_o->ipa = scb_s->ipa;
scb_o->ipb = scb_s->ipb;
scb_o->gbea = scb_s->gbea;
/* timer */
scb_o->cputm = scb_s->cputm;
scb_o->ckc = scb_s->ckc;
scb_o->todpr = scb_s->todpr;
/* guest state */
scb_o->gpsw = scb_s->gpsw;
scb_o->gg14 = scb_s->gg14;
scb_o->gg15 = scb_s->gg15;
memcpy(scb_o->gcr, scb_s->gcr, 128);
scb_o->pp = scb_s->pp;
/* interrupt intercept */
switch (scb_s->icptcode) {
case ICPT_PROGI:
case ICPT_INSTPROGI:
case ICPT_EXTINT:
memcpy((void *)((u64)scb_o + 0xc0),
(void *)((u64)scb_s + 0xc0), 0xf0 - 0xc0);
break;
case ICPT_PARTEXEC:
/* MVPG only */
memcpy((void *)((u64)scb_o + 0xc0),
(void *)((u64)scb_s + 0xc0), 0xd0 - 0xc0);
break;
}
if (scb_s->ihcpu != 0xffffU)
scb_o->ihcpu = scb_s->ihcpu;
}
/*
* Setup the shadow scb by copying and checking the relevant parts of the g2
* provided scb.
*
* Returns: - 0 if the scb has been shadowed
* - > 0 if control has to be given to guest 2
*/
static int shadow_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
bool had_tx = scb_s->ecb & 0x10U;
unsigned long new_mso = 0;
int rc;
/* make sure we don't have any leftovers when reusing the scb */
scb_s->icptcode = 0;
scb_s->eca = 0;
scb_s->ecb = 0;
scb_s->ecb2 = 0;
scb_s->ecb3 = 0;
scb_s->ecd = 0;
scb_s->fac = 0;
rc = prepare_cpuflags(vcpu, vsie_page);
if (rc)
goto out;
/* timer */
scb_s->cputm = scb_o->cputm;
scb_s->ckc = scb_o->ckc;
scb_s->todpr = scb_o->todpr;
scb_s->epoch = scb_o->epoch;
/* guest state */
scb_s->gpsw = scb_o->gpsw;
scb_s->gg14 = scb_o->gg14;
scb_s->gg15 = scb_o->gg15;
memcpy(scb_s->gcr, scb_o->gcr, 128);
scb_s->pp = scb_o->pp;
/* interception / execution handling */
scb_s->gbea = scb_o->gbea;
scb_s->lctl = scb_o->lctl;
scb_s->svcc = scb_o->svcc;
scb_s->ictl = scb_o->ictl;
/*
* SKEY handling functions can't deal with false setting of PTE invalid
* bits. Therefore we cannot provide interpretation and would later
* have to provide own emulation handlers.
*/
scb_s->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
scb_s->icpua = scb_o->icpua;
if (!(atomic_read(&scb_s->cpuflags) & CPUSTAT_SM))
new_mso = scb_o->mso & 0xfffffffffff00000UL;
/* if the hva of the prefix changes, we have to remap the prefix */
if (scb_s->mso != new_mso || scb_s->prefix != scb_o->prefix)
prefix_unmapped(vsie_page);
/* SIE will do mso/msl validity and exception checks for us */
scb_s->msl = scb_o->msl & 0xfffffffffff00000UL;
scb_s->mso = new_mso;
scb_s->prefix = scb_o->prefix;
/* We have to definetly flush the tlb if this scb never ran */
if (scb_s->ihcpu != 0xffffU)
scb_s->ihcpu = scb_o->ihcpu;
/* MVPG and Protection Exception Interpretation are always available */
scb_s->eca |= scb_o->eca & 0x01002000U;
/* Host-protection-interruption introduced with ESOP */
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_ESOP))
scb_s->ecb |= scb_o->ecb & 0x02U;
/* transactional execution */
if (test_kvm_facility(vcpu->kvm, 73)) {
/* remap the prefix is tx is toggled on */
if ((scb_o->ecb & 0x10U) && !had_tx)
prefix_unmapped(vsie_page);
scb_s->ecb |= scb_o->ecb & 0x10U;
}
/* SIMD */
if (test_kvm_facility(vcpu->kvm, 129)) {
scb_s->eca |= scb_o->eca & 0x00020000U;
scb_s->ecd |= scb_o->ecd & 0x20000000U;
}
/* Run-time-Instrumentation */
if (test_kvm_facility(vcpu->kvm, 64))
scb_s->ecb3 |= scb_o->ecb3 & 0x01U;
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIIF))
scb_s->eca |= scb_o->eca & 0x00000001U;
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_IB))
scb_s->eca |= scb_o->eca & 0x40000000U;
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_CEI))
scb_s->eca |= scb_o->eca & 0x80000000U;
prepare_ibc(vcpu, vsie_page);
rc = shadow_crycb(vcpu, vsie_page);
out:
if (rc)
unshadow_scb(vcpu, vsie_page);
return rc;
}
void kvm_s390_vsie_gmap_notifier(struct gmap *gmap, unsigned long start,
unsigned long end)
{
struct kvm *kvm = gmap->private;
struct vsie_page *cur;
unsigned long prefix;
struct page *page;
int i;
if (!gmap_is_shadow(gmap))
return;
if (start >= 1UL << 31)
/* We are only interested in prefix pages */
return;
/*
* Only new shadow blocks are added to the list during runtime,
* therefore we can safely reference them all the time.
*/
for (i = 0; i < kvm->arch.vsie.page_count; i++) {
page = READ_ONCE(kvm->arch.vsie.pages[i]);
if (!page)
continue;
cur = page_to_virt(page);
if (READ_ONCE(cur->gmap) != gmap)
continue;
prefix = cur->scb_s.prefix << GUEST_PREFIX_SHIFT;
/* with mso/msl, the prefix lies at an offset */
prefix += cur->scb_s.mso;
if (prefix <= end && start <= prefix + 2 * PAGE_SIZE - 1)
prefix_unmapped_sync(cur);
}
}
/*
* Map the first prefix page and if tx is enabled also the second prefix page.
*
* The prefix will be protected, a gmap notifier will inform about unmaps.
* The shadow scb must not be executed until the prefix is remapped, this is
* guaranteed by properly handling PROG_REQUEST.
*
* Returns: - 0 on if successfully mapped or already mapped
* - > 0 if control has to be given to guest 2
* - -EAGAIN if the caller can retry immediately
* - -ENOMEM if out of memory
*/
static int map_prefix(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
u64 prefix = scb_s->prefix << GUEST_PREFIX_SHIFT;
int rc;
if (prefix_is_mapped(vsie_page))
return 0;
/* mark it as mapped so we can catch any concurrent unmappers */
prefix_mapped(vsie_page);
/* with mso/msl, the prefix lies at offset *mso* */
prefix += scb_s->mso;
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap, prefix);
if (!rc && (scb_s->ecb & 0x10U))
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
prefix + PAGE_SIZE);
/*
* We don't have to mprotect, we will be called for all unshadows.
* SIE will detect if protection applies and trigger a validity.
*/
if (rc)
prefix_unmapped(vsie_page);
if (rc > 0 || rc == -EFAULT)
rc = set_validity_icpt(scb_s, 0x0037U);
return rc;
}
/*
* Pin the guest page given by gpa and set hpa to the pinned host address.
* Will always be pinned writable.
*
* Returns: - 0 on success
* - -EINVAL if the gpa is not valid guest storage
* - -ENOMEM if out of memory
*/
static int pin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t *hpa)
{
struct page *page;
hva_t hva;
int rc;
hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
if (kvm_is_error_hva(hva))
return -EINVAL;
rc = get_user_pages_fast(hva, 1, 1, &page);
if (rc < 0)
return rc;
else if (rc != 1)
return -ENOMEM;
*hpa = (hpa_t) page_to_virt(page) + (gpa & ~PAGE_MASK);
return 0;
}
/* Unpins a page previously pinned via pin_guest_page, marking it as dirty. */
static void unpin_guest_page(struct kvm *kvm, gpa_t gpa, hpa_t hpa)
{
struct page *page;
page = virt_to_page(hpa);
set_page_dirty_lock(page);
put_page(page);
/* mark the page always as dirty for migration */
mark_page_dirty(kvm, gpa_to_gfn(gpa));
}
/* unpin all blocks previously pinned by pin_blocks(), marking them dirty */
static void unpin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
hpa_t hpa;
gpa_t gpa;
hpa = (u64) scb_s->scaoh << 32 | scb_s->scaol;
if (hpa) {
gpa = scb_o->scaol & ~0xfUL;
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
gpa |= (u64) scb_o->scaoh << 32;
unpin_guest_page(vcpu->kvm, gpa, hpa);
scb_s->scaol = 0;
scb_s->scaoh = 0;
}
hpa = scb_s->itdba;
if (hpa) {
gpa = scb_o->itdba & ~0xffUL;
unpin_guest_page(vcpu->kvm, gpa, hpa);
scb_s->itdba = 0;
}
hpa = scb_s->gvrd;
if (hpa) {
gpa = scb_o->gvrd & ~0x1ffUL;
unpin_guest_page(vcpu->kvm, gpa, hpa);
scb_s->gvrd = 0;
}
hpa = scb_s->riccbd;
if (hpa) {
gpa = scb_o->riccbd & ~0x3fUL;
unpin_guest_page(vcpu->kvm, gpa, hpa);
scb_s->riccbd = 0;
}
}
/*
* Instead of shadowing some blocks, we can simply forward them because the
* addresses in the scb are 64 bit long.
*
* This works as long as the data lies in one page. If blocks ever exceed one
* page, we have to fall back to shadowing.
*
* As we reuse the sca, the vcpu pointers contained in it are invalid. We must
* therefore not enable any facilities that access these pointers (e.g. SIGPIF).
*
* Returns: - 0 if all blocks were pinned.
* - > 0 if control has to be given to guest 2
* - -ENOMEM if out of memory
*/
static int pin_blocks(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
hpa_t hpa;
gpa_t gpa;
int rc = 0;
gpa = scb_o->scaol & ~0xfUL;
if (test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_64BSCAO))
gpa |= (u64) scb_o->scaoh << 32;
if (gpa) {
if (!(gpa & ~0x1fffUL))
rc = set_validity_icpt(scb_s, 0x0038U);
else if ((gpa & ~0x1fffUL) == kvm_s390_get_prefix(vcpu))
rc = set_validity_icpt(scb_s, 0x0011U);
else if ((gpa & PAGE_MASK) !=
((gpa + sizeof(struct bsca_block) - 1) & PAGE_MASK))
rc = set_validity_icpt(scb_s, 0x003bU);
if (!rc) {
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
if (rc == -EINVAL)
rc = set_validity_icpt(scb_s, 0x0034U);
}
if (rc)
goto unpin;
scb_s->scaoh = (u32)((u64)hpa >> 32);
scb_s->scaol = (u32)(u64)hpa;
}
gpa = scb_o->itdba & ~0xffUL;
if (gpa && (scb_s->ecb & 0x10U)) {
if (!(gpa & ~0x1fffU)) {
rc = set_validity_icpt(scb_s, 0x0080U);
goto unpin;
}
/* 256 bytes cannot cross page boundaries */
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
if (rc == -EINVAL)
rc = set_validity_icpt(scb_s, 0x0080U);
if (rc)
goto unpin;
scb_s->itdba = hpa;
}
gpa = scb_o->gvrd & ~0x1ffUL;
if (gpa && (scb_s->eca & 0x00020000U) &&
!(scb_s->ecd & 0x20000000U)) {
if (!(gpa & ~0x1fffUL)) {
rc = set_validity_icpt(scb_s, 0x1310U);
goto unpin;
}
/*
* 512 bytes vector registers cannot cross page boundaries
* if this block gets bigger, we have to shadow it.
*/
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
if (rc == -EINVAL)
rc = set_validity_icpt(scb_s, 0x1310U);
if (rc)
goto unpin;
scb_s->gvrd = hpa;
}
gpa = scb_o->riccbd & ~0x3fUL;
if (gpa && (scb_s->ecb3 & 0x01U)) {
if (!(gpa & ~0x1fffUL)) {
rc = set_validity_icpt(scb_s, 0x0043U);
goto unpin;
}
/* 64 bytes cannot cross page boundaries */
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
if (rc == -EINVAL)
rc = set_validity_icpt(scb_s, 0x0043U);
/* Validity 0x0044 will be checked by SIE */
if (rc)
goto unpin;
scb_s->gvrd = hpa;
}
return 0;
unpin:
unpin_blocks(vcpu, vsie_page);
return rc;
}
/* unpin the scb provided by guest 2, marking it as dirty */
static void unpin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
gpa_t gpa)
{
hpa_t hpa = (hpa_t) vsie_page->scb_o;
if (hpa)
unpin_guest_page(vcpu->kvm, gpa, hpa);
vsie_page->scb_o = NULL;
}
/*
* Pin the scb at gpa provided by guest 2 at vsie_page->scb_o.
*
* Returns: - 0 if the scb was pinned.
* - > 0 if control has to be given to guest 2
* - -ENOMEM if out of memory
*/
static int pin_scb(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page,
gpa_t gpa)
{
hpa_t hpa;
int rc;
rc = pin_guest_page(vcpu->kvm, gpa, &hpa);
if (rc == -EINVAL) {
rc = kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
if (!rc)
rc = 1;
}
if (!rc)
vsie_page->scb_o = (struct kvm_s390_sie_block *) hpa;
return rc;
}
/*
* Inject a fault into guest 2.
*
* Returns: - > 0 if control has to be given to guest 2
* < 0 if an error occurred during injection.
*/
static int inject_fault(struct kvm_vcpu *vcpu, __u16 code, __u64 vaddr,
bool write_flag)
{
struct kvm_s390_pgm_info pgm = {
.code = code,
.trans_exc_code =
/* 0-51: virtual address */
(vaddr & 0xfffffffffffff000UL) |
/* 52-53: store / fetch */
(((unsigned int) !write_flag) + 1) << 10,
/* 62-63: asce id (alway primary == 0) */
.exc_access_id = 0, /* always primary */
.op_access_id = 0, /* not MVPG */
};
int rc;
if (code == PGM_PROTECTION)
pgm.trans_exc_code |= 0x4UL;
rc = kvm_s390_inject_prog_irq(vcpu, &pgm);
return rc ? rc : 1;
}
/*
* Handle a fault during vsie execution on a gmap shadow.
*
* Returns: - 0 if the fault was resolved
* - > 0 if control has to be given to guest 2
* - < 0 if an error occurred
*/
static int handle_fault(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
int rc;
if (current->thread.gmap_int_code == PGM_PROTECTION)
/* we can directly forward all protection exceptions */
return inject_fault(vcpu, PGM_PROTECTION,
current->thread.gmap_addr, 1);
rc = kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
current->thread.gmap_addr);
if (rc > 0) {
rc = inject_fault(vcpu, rc,
current->thread.gmap_addr,
current->thread.gmap_write_flag);
if (rc >= 0)
vsie_page->fault_addr = current->thread.gmap_addr;
}
return rc;
}
/*
* Retry the previous fault that required guest 2 intervention. This avoids
* one superfluous SIE re-entry and direct exit.
*
* Will ignore any errors. The next SIE fault will do proper fault handling.
*/
static void handle_last_fault(struct kvm_vcpu *vcpu,
struct vsie_page *vsie_page)
{
if (vsie_page->fault_addr)
kvm_s390_shadow_fault(vcpu, vsie_page->gmap,
vsie_page->fault_addr);
vsie_page->fault_addr = 0;
}
static inline void clear_vsie_icpt(struct vsie_page *vsie_page)
{
vsie_page->scb_s.icptcode = 0;
}
/* rewind the psw and clear the vsie icpt, so we can retry execution */
static void retry_vsie_icpt(struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
int ilen = insn_length(scb_s->ipa >> 8);
/* take care of EXECUTE instructions */
if (scb_s->icptstatus & 1) {
ilen = (scb_s->icptstatus >> 4) & 0x6;
if (!ilen)
ilen = 4;
}
scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, ilen);
clear_vsie_icpt(vsie_page);
}
/*
* Try to shadow + enable the guest 2 provided facility list.
* Retry instruction execution if enabled for and provided by guest 2.
*
* Returns: - 0 if handled (retry or guest 2 icpt)
* - > 0 if control has to be given to guest 2
*/
static int handle_stfle(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
__u32 fac = vsie_page->scb_o->fac & 0x7ffffff8U;
if (fac && test_kvm_facility(vcpu->kvm, 7)) {
retry_vsie_icpt(vsie_page);
if (read_guest_real(vcpu, fac, &vsie_page->fac,
sizeof(vsie_page->fac)))
return set_validity_icpt(scb_s, 0x1090U);
scb_s->fac = (__u32)(__u64) &vsie_page->fac;
}
return 0;
}
/*
* Run the vsie on a shadow scb and a shadow gmap, without any further
* sanity checks, handling SIE faults.
*
* Returns: - 0 everything went fine
* - > 0 if control has to be given to guest 2
* - < 0 if an error occurred
*/
static int do_vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
struct kvm_s390_sie_block *scb_o = vsie_page->scb_o;
int rc;
handle_last_fault(vcpu, vsie_page);
if (need_resched())
schedule();
if (test_cpu_flag(CIF_MCCK_PENDING))
s390_handle_mcck();
srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
local_irq_disable();
kvm_guest_enter();
local_irq_enable();
rc = sie64a(scb_s, vcpu->run->s.regs.gprs);
local_irq_disable();
kvm_guest_exit();
local_irq_enable();
vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
if (rc > 0)
rc = 0; /* we could still have an icpt */
else if (rc == -EFAULT)
return handle_fault(vcpu, vsie_page);
switch (scb_s->icptcode) {
case ICPT_INST:
if (scb_s->ipa == 0xb2b0)
rc = handle_stfle(vcpu, vsie_page);
break;
case ICPT_STOP:
/* stop not requested by g2 - must have been a kick */
if (!(atomic_read(&scb_o->cpuflags) & CPUSTAT_STOP_INT))
clear_vsie_icpt(vsie_page);
break;
case ICPT_VALIDITY:
if ((scb_s->ipa & 0xf000) != 0xf000)
scb_s->ipa += 0x1000;
break;
}
return rc;
}
static void release_gmap_shadow(struct vsie_page *vsie_page)
{
if (vsie_page->gmap)
gmap_put(vsie_page->gmap);
WRITE_ONCE(vsie_page->gmap, NULL);
prefix_unmapped(vsie_page);
}
static int acquire_gmap_shadow(struct kvm_vcpu *vcpu,
struct vsie_page *vsie_page)
{
unsigned long asce;
union ctlreg0 cr0;
struct gmap *gmap;
int edat;
asce = vcpu->arch.sie_block->gcr[1];
cr0.val = vcpu->arch.sie_block->gcr[0];
edat = cr0.edat && test_kvm_facility(vcpu->kvm, 8);
edat += edat && test_kvm_facility(vcpu->kvm, 78);
/*
* ASCE or EDAT could have changed since last icpt, or the gmap
* we're holding has been unshadowed. If the gmap is still valid,
* we can safely reuse it.
*/
if (vsie_page->gmap && gmap_shadow_valid(vsie_page->gmap, asce, edat))
return 0;
/* release the old shadow - if any, and mark the prefix as unmapped */
release_gmap_shadow(vsie_page);
gmap = gmap_shadow(vcpu->arch.gmap, asce, edat);
if (IS_ERR(gmap))
return PTR_ERR(gmap);
gmap->private = vcpu->kvm;
WRITE_ONCE(vsie_page->gmap, gmap);
return 0;
}
/*
* Register the shadow scb at the VCPU, e.g. for kicking out of vsie.
*/
static void register_shadow_scb(struct kvm_vcpu *vcpu,
struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
WRITE_ONCE(vcpu->arch.vsie_block, &vsie_page->scb_s);
/*
* External calls have to lead to a kick of the vcpu and
* therefore the vsie -> Simulate Wait state.
*/
atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
/*
* We have to adjust the g3 epoch by the g2 epoch. The epoch will
* automatically be adjusted on tod clock changes via kvm_sync_clock.
*/
preempt_disable();
scb_s->epoch += vcpu->kvm->arch.epoch;
preempt_enable();
}
/*
* Unregister a shadow scb from a VCPU.
*/
static void unregister_shadow_scb(struct kvm_vcpu *vcpu)
{
atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
WRITE_ONCE(vcpu->arch.vsie_block, NULL);
}
/*
* Run the vsie on a shadowed scb, managing the gmap shadow, handling
* prefix pages and faults.
*
* Returns: - 0 if no errors occurred
* - > 0 if control has to be given to guest 2
* - -ENOMEM if out of memory
*/
static int vsie_run(struct kvm_vcpu *vcpu, struct vsie_page *vsie_page)
{
struct kvm_s390_sie_block *scb_s = &vsie_page->scb_s;
int rc = 0;
while (1) {
rc = acquire_gmap_shadow(vcpu, vsie_page);
if (!rc)
rc = map_prefix(vcpu, vsie_page);
if (!rc) {
gmap_enable(vsie_page->gmap);
update_intervention_requests(vsie_page);
rc = do_vsie_run(vcpu, vsie_page);
gmap_enable(vcpu->arch.gmap);
}
atomic_andnot(PROG_BLOCK_SIE, &scb_s->prog20);
if (rc == -EAGAIN)
rc = 0;
if (rc || scb_s->icptcode || signal_pending(current) ||
kvm_s390_vcpu_has_irq(vcpu, 0))
break;
};
if (rc == -EFAULT) {
/*
* Addressing exceptions are always presentes as intercepts.
* As addressing exceptions are suppressing and our guest 3 PSW
* points at the responsible instruction, we have to
* forward the PSW and set the ilc. If we can't read guest 3
* instruction, we can use an arbitrary ilc. Let's always use
* ilen = 4 for now, so we can avoid reading in guest 3 virtual
* memory. (we could also fake the shadow so the hardware
* handles it).
*/
scb_s->icptcode = ICPT_PROGI;
scb_s->iprcc = PGM_ADDRESSING;
scb_s->pgmilc = 4;
scb_s->gpsw.addr = __rewind_psw(scb_s->gpsw, 4);
}
return rc;
}
/*
* Get or create a vsie page for a scb address.
*
* Returns: - address of a vsie page (cached or new one)
* - NULL if the same scb address is already used by another VCPU
* - ERR_PTR(-ENOMEM) if out of memory
*/
static struct vsie_page *get_vsie_page(struct kvm *kvm, unsigned long addr)
{
struct vsie_page *vsie_page;
struct page *page;
int nr_vcpus;
rcu_read_lock();
page = radix_tree_lookup(&kvm->arch.vsie.addr_to_page, addr >> 9);
rcu_read_unlock();
if (page) {
if (page_ref_inc_return(page) == 2)
return page_to_virt(page);
page_ref_dec(page);
}
/*
* We want at least #online_vcpus shadows, so every VCPU can execute
* the VSIE in parallel.
*/
nr_vcpus = atomic_read(&kvm->online_vcpus);
mutex_lock(&kvm->arch.vsie.mutex);
if (kvm->arch.vsie.page_count < nr_vcpus) {
page = alloc_page(GFP_KERNEL | __GFP_ZERO | GFP_DMA);
if (!page) {
mutex_unlock(&kvm->arch.vsie.mutex);
return ERR_PTR(-ENOMEM);
}
page_ref_inc(page);
kvm->arch.vsie.pages[kvm->arch.vsie.page_count] = page;
kvm->arch.vsie.page_count++;
} else {
/* reuse an existing entry that belongs to nobody */
while (true) {
page = kvm->arch.vsie.pages[kvm->arch.vsie.next];
if (page_ref_inc_return(page) == 2)
break;
page_ref_dec(page);
kvm->arch.vsie.next++;
kvm->arch.vsie.next %= nr_vcpus;
}
radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
}
page->index = addr;
/* double use of the same address */
if (radix_tree_insert(&kvm->arch.vsie.addr_to_page, addr >> 9, page)) {
page_ref_dec(page);
mutex_unlock(&kvm->arch.vsie.mutex);
return NULL;
}
mutex_unlock(&kvm->arch.vsie.mutex);
vsie_page = page_to_virt(page);
memset(&vsie_page->scb_s, 0, sizeof(struct kvm_s390_sie_block));
release_gmap_shadow(vsie_page);
vsie_page->fault_addr = 0;
vsie_page->scb_s.ihcpu = 0xffffU;
return vsie_page;
}
/* put a vsie page acquired via get_vsie_page */
static void put_vsie_page(struct kvm *kvm, struct vsie_page *vsie_page)
{
struct page *page = pfn_to_page(__pa(vsie_page) >> PAGE_SHIFT);
page_ref_dec(page);
}
int kvm_s390_handle_vsie(struct kvm_vcpu *vcpu)
{
struct vsie_page *vsie_page;
unsigned long scb_addr;
int rc;
vcpu->stat.instruction_sie++;
if (!test_kvm_cpu_feat(vcpu->kvm, KVM_S390_VM_CPU_FEAT_SIEF2))
return -EOPNOTSUPP;
if (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE)
return kvm_s390_inject_program_int(vcpu, PGM_PRIVILEGED_OP);
BUILD_BUG_ON(sizeof(struct vsie_page) != 4096);
scb_addr = kvm_s390_get_base_disp_s(vcpu, NULL);
/* 512 byte alignment */
if (unlikely(scb_addr & 0x1ffUL))
return kvm_s390_inject_program_int(vcpu, PGM_SPECIFICATION);
if (signal_pending(current) || kvm_s390_vcpu_has_irq(vcpu, 0))
return 0;
vsie_page = get_vsie_page(vcpu->kvm, scb_addr);
if (IS_ERR(vsie_page))
return PTR_ERR(vsie_page);
else if (!vsie_page)
/* double use of sie control block - simply do nothing */
return 0;
rc = pin_scb(vcpu, vsie_page, scb_addr);
if (rc)
goto out_put;
rc = shadow_scb(vcpu, vsie_page);
if (rc)
goto out_unpin_scb;
rc = pin_blocks(vcpu, vsie_page);
if (rc)
goto out_unshadow;
register_shadow_scb(vcpu, vsie_page);
rc = vsie_run(vcpu, vsie_page);
unregister_shadow_scb(vcpu);
unpin_blocks(vcpu, vsie_page);
out_unshadow:
unshadow_scb(vcpu, vsie_page);
out_unpin_scb:
unpin_scb(vcpu, vsie_page, scb_addr);
out_put:
put_vsie_page(vcpu->kvm, vsie_page);
return rc < 0 ? rc : 0;
}
/* Init the vsie data structures. To be called when a vm is initialized. */
void kvm_s390_vsie_init(struct kvm *kvm)
{
mutex_init(&kvm->arch.vsie.mutex);
INIT_RADIX_TREE(&kvm->arch.vsie.addr_to_page, GFP_KERNEL);
}
/* Destroy the vsie data structures. To be called when a vm is destroyed. */
void kvm_s390_vsie_destroy(struct kvm *kvm)
{
struct vsie_page *vsie_page;
struct page *page;
int i;
mutex_lock(&kvm->arch.vsie.mutex);
for (i = 0; i < kvm->arch.vsie.page_count; i++) {
page = kvm->arch.vsie.pages[i];
kvm->arch.vsie.pages[i] = NULL;
vsie_page = page_to_virt(page);
release_gmap_shadow(vsie_page);
/* free the radix tree entry */
radix_tree_delete(&kvm->arch.vsie.addr_to_page, page->index >> 9);
__free_page(page);
}
kvm->arch.vsie.page_count = 0;
mutex_unlock(&kvm->arch.vsie.mutex);
}
void kvm_s390_vsie_kick(struct kvm_vcpu *vcpu)
{
struct kvm_s390_sie_block *scb = READ_ONCE(vcpu->arch.vsie_block);
/*
* Even if the VCPU lets go of the shadow sie block reference, it is
* still valid in the cache. So we can safely kick it.
*/
if (scb) {
atomic_or(PROG_BLOCK_SIE, &scb->prog20);
if (scb->prog0c & PROG_IN_SIE)
atomic_or(CPUSTAT_STOP_INT, &scb->cpuflags);
}
}
...@@ -418,6 +418,8 @@ static inline int do_exception(struct pt_regs *regs, int access) ...@@ -418,6 +418,8 @@ static inline int do_exception(struct pt_regs *regs, int access)
(struct gmap *) S390_lowcore.gmap : NULL; (struct gmap *) S390_lowcore.gmap : NULL;
if (gmap) { if (gmap) {
current->thread.gmap_addr = address; current->thread.gmap_addr = address;
current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
current->thread.gmap_int_code = regs->int_code & 0xffff;
address = __gmap_translate(gmap, address); address = __gmap_translate(gmap, address);
if (address == -EFAULT) { if (address == -EFAULT) {
fault = VM_FAULT_BADMAP; fault = VM_FAULT_BADMAP;
......
...@@ -20,14 +20,16 @@ ...@@ -20,14 +20,16 @@
#include <asm/gmap.h> #include <asm/gmap.h>
#include <asm/tlb.h> #include <asm/tlb.h>
#define GMAP_SHADOW_FAKE_TABLE 1ULL
/** /**
* gmap_alloc - allocate a guest address space * gmap_alloc - allocate and initialize a guest address space
* @mm: pointer to the parent mm_struct * @mm: pointer to the parent mm_struct
* @limit: maximum address of the gmap address space * @limit: maximum address of the gmap address space
* *
* Returns a guest address space structure. * Returns a guest address space structure.
*/ */
struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit) static struct gmap *gmap_alloc(unsigned long limit)
{ {
struct gmap *gmap; struct gmap *gmap;
struct page *page; struct page *page;
...@@ -55,10 +57,14 @@ struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit) ...@@ -55,10 +57,14 @@ struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
if (!gmap) if (!gmap)
goto out; goto out;
INIT_LIST_HEAD(&gmap->crst_list); INIT_LIST_HEAD(&gmap->crst_list);
INIT_LIST_HEAD(&gmap->children);
INIT_LIST_HEAD(&gmap->pt_list);
INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL); INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC); INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
INIT_RADIX_TREE(&gmap->host_to_rmap, GFP_ATOMIC);
spin_lock_init(&gmap->guest_table_lock); spin_lock_init(&gmap->guest_table_lock);
gmap->mm = mm; spin_lock_init(&gmap->shadow_lock);
atomic_set(&gmap->ref_count, 1);
page = alloc_pages(GFP_KERNEL, 2); page = alloc_pages(GFP_KERNEL, 2);
if (!page) if (!page)
goto out_free; goto out_free;
...@@ -70,9 +76,6 @@ struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit) ...@@ -70,9 +76,6 @@ struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
gmap->asce = atype | _ASCE_TABLE_LENGTH | gmap->asce = atype | _ASCE_TABLE_LENGTH |
_ASCE_USER_BITS | __pa(table); _ASCE_USER_BITS | __pa(table);
gmap->asce_end = limit; gmap->asce_end = limit;
down_write(&mm->mmap_sem);
list_add(&gmap->list, &mm->context.gmap_list);
up_write(&mm->mmap_sem);
return gmap; return gmap;
out_free: out_free:
...@@ -80,7 +83,28 @@ struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit) ...@@ -80,7 +83,28 @@ struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
out: out:
return NULL; return NULL;
} }
EXPORT_SYMBOL_GPL(gmap_alloc);
/**
* gmap_create - create a guest address space
* @mm: pointer to the parent mm_struct
* @limit: maximum size of the gmap address space
*
* Returns a guest address space structure.
*/
struct gmap *gmap_create(struct mm_struct *mm, unsigned long limit)
{
struct gmap *gmap;
gmap = gmap_alloc(limit);
if (!gmap)
return NULL;
gmap->mm = mm;
spin_lock(&mm->context.gmap_lock);
list_add_rcu(&gmap->list, &mm->context.gmap_list);
spin_unlock(&mm->context.gmap_lock);
return gmap;
}
EXPORT_SYMBOL_GPL(gmap_create);
static void gmap_flush_tlb(struct gmap *gmap) static void gmap_flush_tlb(struct gmap *gmap)
{ {
...@@ -114,31 +138,117 @@ static void gmap_radix_tree_free(struct radix_tree_root *root) ...@@ -114,31 +138,117 @@ static void gmap_radix_tree_free(struct radix_tree_root *root)
} while (nr > 0); } while (nr > 0);
} }
static void gmap_rmap_radix_tree_free(struct radix_tree_root *root)
{
struct gmap_rmap *rmap, *rnext, *head;
struct radix_tree_iter iter;
unsigned long indices[16];
unsigned long index;
void **slot;
int i, nr;
/* A radix tree is freed by deleting all of its entries */
index = 0;
do {
nr = 0;
radix_tree_for_each_slot(slot, root, &iter, index) {
indices[nr] = iter.index;
if (++nr == 16)
break;
}
for (i = 0; i < nr; i++) {
index = indices[i];
head = radix_tree_delete(root, index);
gmap_for_each_rmap_safe(rmap, rnext, head)
kfree(rmap);
}
} while (nr > 0);
}
/** /**
* gmap_free - free a guest address space * gmap_free - free a guest address space
* @gmap: pointer to the guest address space structure * @gmap: pointer to the guest address space structure
*
* No locks required. There are no references to this gmap anymore.
*/ */
void gmap_free(struct gmap *gmap) static void gmap_free(struct gmap *gmap)
{ {
struct page *page, *next; struct page *page, *next;
/* Flush tlb. */ /* Flush tlb of all gmaps (if not already done for shadows) */
if (MACHINE_HAS_IDTE) if (!(gmap_is_shadow(gmap) && gmap->removed))
__tlb_flush_asce(gmap->mm, gmap->asce); gmap_flush_tlb(gmap);
else
__tlb_flush_global();
/* Free all segment & region tables. */ /* Free all segment & region tables. */
list_for_each_entry_safe(page, next, &gmap->crst_list, lru) list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
__free_pages(page, 2); __free_pages(page, 2);
gmap_radix_tree_free(&gmap->guest_to_host); gmap_radix_tree_free(&gmap->guest_to_host);
gmap_radix_tree_free(&gmap->host_to_guest); gmap_radix_tree_free(&gmap->host_to_guest);
down_write(&gmap->mm->mmap_sem);
list_del(&gmap->list); /* Free additional data for a shadow gmap */
up_write(&gmap->mm->mmap_sem); if (gmap_is_shadow(gmap)) {
/* Free all page tables. */
list_for_each_entry_safe(page, next, &gmap->pt_list, lru)
page_table_free_pgste(page);
gmap_rmap_radix_tree_free(&gmap->host_to_rmap);
/* Release reference to the parent */
gmap_put(gmap->parent);
}
kfree(gmap); kfree(gmap);
} }
EXPORT_SYMBOL_GPL(gmap_free);
/**
* gmap_get - increase reference counter for guest address space
* @gmap: pointer to the guest address space structure
*
* Returns the gmap pointer
*/
struct gmap *gmap_get(struct gmap *gmap)
{
atomic_inc(&gmap->ref_count);
return gmap;
}
EXPORT_SYMBOL_GPL(gmap_get);
/**
* gmap_put - decrease reference counter for guest address space
* @gmap: pointer to the guest address space structure
*
* If the reference counter reaches zero the guest address space is freed.
*/
void gmap_put(struct gmap *gmap)
{
if (atomic_dec_return(&gmap->ref_count) == 0)
gmap_free(gmap);
}
EXPORT_SYMBOL_GPL(gmap_put);
/**
* gmap_remove - remove a guest address space but do not free it yet
* @gmap: pointer to the guest address space structure
*/
void gmap_remove(struct gmap *gmap)
{
struct gmap *sg, *next;
/* Remove all shadow gmaps linked to this gmap */
if (!list_empty(&gmap->children)) {
spin_lock(&gmap->shadow_lock);
list_for_each_entry_safe(sg, next, &gmap->children, list) {
list_del(&sg->list);
gmap_put(sg);
}
spin_unlock(&gmap->shadow_lock);
}
/* Remove gmap from the pre-mm list */
spin_lock(&gmap->mm->context.gmap_lock);
list_del_rcu(&gmap->list);
spin_unlock(&gmap->mm->context.gmap_lock);
synchronize_rcu();
/* Put reference */
gmap_put(gmap);
}
EXPORT_SYMBOL_GPL(gmap_remove);
/** /**
* gmap_enable - switch primary space to the guest address space * gmap_enable - switch primary space to the guest address space
...@@ -160,6 +270,17 @@ void gmap_disable(struct gmap *gmap) ...@@ -160,6 +270,17 @@ void gmap_disable(struct gmap *gmap)
} }
EXPORT_SYMBOL_GPL(gmap_disable); EXPORT_SYMBOL_GPL(gmap_disable);
/**
* gmap_get_enabled - get a pointer to the currently enabled gmap
*
* Returns a pointer to the currently enabled gmap. 0 if none is enabled.
*/
struct gmap *gmap_get_enabled(void)
{
return (struct gmap *) S390_lowcore.gmap;
}
EXPORT_SYMBOL_GPL(gmap_get_enabled);
/* /*
* gmap_alloc_table is assumed to be called with mmap_sem held * gmap_alloc_table is assumed to be called with mmap_sem held
*/ */
...@@ -175,7 +296,7 @@ static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, ...@@ -175,7 +296,7 @@ static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
return -ENOMEM; return -ENOMEM;
new = (unsigned long *) page_to_phys(page); new = (unsigned long *) page_to_phys(page);
crst_table_init(new, init); crst_table_init(new, init);
spin_lock(&gmap->mm->page_table_lock); spin_lock(&gmap->guest_table_lock);
if (*table & _REGION_ENTRY_INVALID) { if (*table & _REGION_ENTRY_INVALID) {
list_add(&page->lru, &gmap->crst_list); list_add(&page->lru, &gmap->crst_list);
*table = (unsigned long) new | _REGION_ENTRY_LENGTH | *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
...@@ -183,7 +304,7 @@ static int gmap_alloc_table(struct gmap *gmap, unsigned long *table, ...@@ -183,7 +304,7 @@ static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
page->index = gaddr; page->index = gaddr;
page = NULL; page = NULL;
} }
spin_unlock(&gmap->mm->page_table_lock); spin_unlock(&gmap->guest_table_lock);
if (page) if (page)
__free_pages(page, 2); __free_pages(page, 2);
return 0; return 0;
...@@ -219,6 +340,7 @@ static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr) ...@@ -219,6 +340,7 @@ static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
unsigned long *entry; unsigned long *entry;
int flush = 0; int flush = 0;
BUG_ON(gmap_is_shadow(gmap));
spin_lock(&gmap->guest_table_lock); spin_lock(&gmap->guest_table_lock);
entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT); entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
if (entry) { if (entry) {
...@@ -258,6 +380,7 @@ int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len) ...@@ -258,6 +380,7 @@ int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
unsigned long off; unsigned long off;
int flush; int flush;
BUG_ON(gmap_is_shadow(gmap));
if ((to | len) & (PMD_SIZE - 1)) if ((to | len) & (PMD_SIZE - 1))
return -EINVAL; return -EINVAL;
if (len == 0 || to + len < to) if (len == 0 || to + len < to)
...@@ -289,6 +412,7 @@ int gmap_map_segment(struct gmap *gmap, unsigned long from, ...@@ -289,6 +412,7 @@ int gmap_map_segment(struct gmap *gmap, unsigned long from,
unsigned long off; unsigned long off;
int flush; int flush;
BUG_ON(gmap_is_shadow(gmap));
if ((from | to | len) & (PMD_SIZE - 1)) if ((from | to | len) & (PMD_SIZE - 1))
return -EINVAL; return -EINVAL;
if (len == 0 || from + len < from || to + len < to || if (len == 0 || from + len < from || to + len < to ||
...@@ -326,6 +450,8 @@ EXPORT_SYMBOL_GPL(gmap_map_segment); ...@@ -326,6 +450,8 @@ EXPORT_SYMBOL_GPL(gmap_map_segment);
* This function does not establish potentially missing page table entries. * This function does not establish potentially missing page table entries.
* The mmap_sem of the mm that belongs to the address space must be held * The mmap_sem of the mm that belongs to the address space must be held
* when this function gets called. * when this function gets called.
*
* Note: Can also be called for shadow gmaps.
*/ */
unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
{ {
...@@ -333,6 +459,7 @@ unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr) ...@@ -333,6 +459,7 @@ unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
vmaddr = (unsigned long) vmaddr = (unsigned long)
radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT); radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
/* Note: guest_to_host is empty for a shadow gmap */
return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT; return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
} }
EXPORT_SYMBOL_GPL(__gmap_translate); EXPORT_SYMBOL_GPL(__gmap_translate);
...@@ -369,11 +496,13 @@ void gmap_unlink(struct mm_struct *mm, unsigned long *table, ...@@ -369,11 +496,13 @@ void gmap_unlink(struct mm_struct *mm, unsigned long *table,
struct gmap *gmap; struct gmap *gmap;
int flush; int flush;
list_for_each_entry(gmap, &mm->context.gmap_list, list) { rcu_read_lock();
list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
flush = __gmap_unlink_by_vmaddr(gmap, vmaddr); flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
if (flush) if (flush)
gmap_flush_tlb(gmap); gmap_flush_tlb(gmap);
} }
rcu_read_unlock();
} }
/** /**
...@@ -397,6 +526,7 @@ int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr) ...@@ -397,6 +526,7 @@ int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
pmd_t *pmd; pmd_t *pmd;
int rc; int rc;
BUG_ON(gmap_is_shadow(gmap));
/* Create higher level tables in the gmap page table */ /* Create higher level tables in the gmap page table */
table = gmap->table; table = gmap->table;
if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) { if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
...@@ -549,116 +679,1412 @@ static LIST_HEAD(gmap_notifier_list); ...@@ -549,116 +679,1412 @@ static LIST_HEAD(gmap_notifier_list);
static DEFINE_SPINLOCK(gmap_notifier_lock); static DEFINE_SPINLOCK(gmap_notifier_lock);
/** /**
* gmap_register_ipte_notifier - register a pte invalidation callback * gmap_register_pte_notifier - register a pte invalidation callback
* @nb: pointer to the gmap notifier block * @nb: pointer to the gmap notifier block
*/ */
void gmap_register_ipte_notifier(struct gmap_notifier *nb) void gmap_register_pte_notifier(struct gmap_notifier *nb)
{ {
spin_lock(&gmap_notifier_lock); spin_lock(&gmap_notifier_lock);
list_add(&nb->list, &gmap_notifier_list); list_add_rcu(&nb->list, &gmap_notifier_list);
spin_unlock(&gmap_notifier_lock); spin_unlock(&gmap_notifier_lock);
} }
EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier); EXPORT_SYMBOL_GPL(gmap_register_pte_notifier);
/** /**
* gmap_unregister_ipte_notifier - remove a pte invalidation callback * gmap_unregister_pte_notifier - remove a pte invalidation callback
* @nb: pointer to the gmap notifier block * @nb: pointer to the gmap notifier block
*/ */
void gmap_unregister_ipte_notifier(struct gmap_notifier *nb) void gmap_unregister_pte_notifier(struct gmap_notifier *nb)
{ {
spin_lock(&gmap_notifier_lock); spin_lock(&gmap_notifier_lock);
list_del_init(&nb->list); list_del_rcu(&nb->list);
spin_unlock(&gmap_notifier_lock); spin_unlock(&gmap_notifier_lock);
synchronize_rcu();
}
EXPORT_SYMBOL_GPL(gmap_unregister_pte_notifier);
/**
* gmap_call_notifier - call all registered invalidation callbacks
* @gmap: pointer to guest mapping meta data structure
* @start: start virtual address in the guest address space
* @end: end virtual address in the guest address space
*/
static void gmap_call_notifier(struct gmap *gmap, unsigned long start,
unsigned long end)
{
struct gmap_notifier *nb;
list_for_each_entry(nb, &gmap_notifier_list, list)
nb->notifier_call(gmap, start, end);
}
/**
* gmap_table_walk - walk the gmap page tables
* @gmap: pointer to guest mapping meta data structure
* @gaddr: virtual address in the guest address space
* @level: page table level to stop at
*
* Returns a table entry pointer for the given guest address and @level
* @level=0 : returns a pointer to a page table table entry (or NULL)
* @level=1 : returns a pointer to a segment table entry (or NULL)
* @level=2 : returns a pointer to a region-3 table entry (or NULL)
* @level=3 : returns a pointer to a region-2 table entry (or NULL)
* @level=4 : returns a pointer to a region-1 table entry (or NULL)
*
* Returns NULL if the gmap page tables could not be walked to the
* requested level.
*
* Note: Can also be called for shadow gmaps.
*/
static inline unsigned long *gmap_table_walk(struct gmap *gmap,
unsigned long gaddr, int level)
{
unsigned long *table;
if ((gmap->asce & _ASCE_TYPE_MASK) + 4 < (level * 4))
return NULL;
if (gmap_is_shadow(gmap) && gmap->removed)
return NULL;
if (gaddr & (-1UL << (31 + ((gmap->asce & _ASCE_TYPE_MASK) >> 2)*11)))
return NULL;
table = gmap->table;
switch (gmap->asce & _ASCE_TYPE_MASK) {
case _ASCE_TYPE_REGION1:
table += (gaddr >> 53) & 0x7ff;
if (level == 4)
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
/* Fallthrough */
case _ASCE_TYPE_REGION2:
table += (gaddr >> 42) & 0x7ff;
if (level == 3)
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
/* Fallthrough */
case _ASCE_TYPE_REGION3:
table += (gaddr >> 31) & 0x7ff;
if (level == 2)
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
/* Fallthrough */
case _ASCE_TYPE_SEGMENT:
table += (gaddr >> 20) & 0x7ff;
if (level == 1)
break;
if (*table & _REGION_ENTRY_INVALID)
return NULL;
table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
table += (gaddr >> 12) & 0xff;
}
return table;
}
/**
* gmap_pte_op_walk - walk the gmap page table, get the page table lock
* and return the pte pointer
* @gmap: pointer to guest mapping meta data structure
* @gaddr: virtual address in the guest address space
* @ptl: pointer to the spinlock pointer
*
* Returns a pointer to the locked pte for a guest address, or NULL
*
* Note: Can also be called for shadow gmaps.
*/
static pte_t *gmap_pte_op_walk(struct gmap *gmap, unsigned long gaddr,
spinlock_t **ptl)
{
unsigned long *table;
if (gmap_is_shadow(gmap))
spin_lock(&gmap->guest_table_lock);
/* Walk the gmap page table, lock and get pte pointer */
table = gmap_table_walk(gmap, gaddr, 1); /* get segment pointer */
if (!table || *table & _SEGMENT_ENTRY_INVALID) {
if (gmap_is_shadow(gmap))
spin_unlock(&gmap->guest_table_lock);
return NULL;
}
if (gmap_is_shadow(gmap)) {
*ptl = &gmap->guest_table_lock;
return pte_offset_map((pmd_t *) table, gaddr);
}
return pte_alloc_map_lock(gmap->mm, (pmd_t *) table, gaddr, ptl);
}
/**
* gmap_pte_op_fixup - force a page in and connect the gmap page table
* @gmap: pointer to guest mapping meta data structure
* @gaddr: virtual address in the guest address space
* @vmaddr: address in the host process address space
* @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
*
* Returns 0 if the caller can retry __gmap_translate (might fail again),
* -ENOMEM if out of memory and -EFAULT if anything goes wrong while fixing
* up or connecting the gmap page table.
*/
static int gmap_pte_op_fixup(struct gmap *gmap, unsigned long gaddr,
unsigned long vmaddr, int prot)
{
struct mm_struct *mm = gmap->mm;
unsigned int fault_flags;
bool unlocked = false;
BUG_ON(gmap_is_shadow(gmap));
fault_flags = (prot == PROT_WRITE) ? FAULT_FLAG_WRITE : 0;
if (fixup_user_fault(current, mm, vmaddr, fault_flags, &unlocked))
return -EFAULT;
if (unlocked)
/* lost mmap_sem, caller has to retry __gmap_translate */
return 0;
/* Connect the page tables */
return __gmap_link(gmap, gaddr, vmaddr);
} }
EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
/** /**
* gmap_ipte_notify - mark a range of ptes for invalidation notification * gmap_pte_op_end - release the page table lock
* @ptl: pointer to the spinlock pointer
*/
static void gmap_pte_op_end(spinlock_t *ptl)
{
spin_unlock(ptl);
}
/*
* gmap_protect_range - remove access rights to memory and set pgste bits
* @gmap: pointer to guest mapping meta data structure * @gmap: pointer to guest mapping meta data structure
* @gaddr: virtual address in the guest address space * @gaddr: virtual address in the guest address space
* @len: size of area * @len: size of area
* @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
* @bits: pgste notification bits to set
* *
* Returns 0 if for each page in the given range a gmap mapping exists and * Returns 0 if successfully protected, -ENOMEM if out of memory and
* the invalidation notification could be set. If the gmap mapping is missing * -EFAULT if gaddr is invalid (or mapping for shadows is missing).
* for one or more pages -EFAULT is returned. If no memory could be allocated *
* -ENOMEM is returned. This function establishes missing page table entries. * Called with sg->mm->mmap_sem in read.
*
* Note: Can also be called for shadow gmaps.
*/ */
int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len) static int gmap_protect_range(struct gmap *gmap, unsigned long gaddr,
unsigned long len, int prot, unsigned long bits)
{ {
unsigned long addr; unsigned long vmaddr;
spinlock_t *ptl; spinlock_t *ptl;
pte_t *ptep; pte_t *ptep;
bool unlocked; int rc;
int rc = 0;
while (len) {
rc = -EAGAIN;
ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
if (ptep) {
rc = ptep_force_prot(gmap->mm, gaddr, ptep, prot, bits);
gmap_pte_op_end(ptl);
}
if (rc) {
vmaddr = __gmap_translate(gmap, gaddr);
if (IS_ERR_VALUE(vmaddr))
return vmaddr;
rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, prot);
if (rc)
return rc;
continue;
}
gaddr += PAGE_SIZE;
len -= PAGE_SIZE;
}
return 0;
}
/**
* gmap_mprotect_notify - change access rights for a range of ptes and
* call the notifier if any pte changes again
* @gmap: pointer to guest mapping meta data structure
* @gaddr: virtual address in the guest address space
* @len: size of area
* @prot: indicates access rights: PROT_NONE, PROT_READ or PROT_WRITE
*
* Returns 0 if for each page in the given range a gmap mapping exists,
* the new access rights could be set and the notifier could be armed.
* If the gmap mapping is missing for one or more pages -EFAULT is
* returned. If no memory could be allocated -ENOMEM is returned.
* This function establishes missing page table entries.
*/
int gmap_mprotect_notify(struct gmap *gmap, unsigned long gaddr,
unsigned long len, int prot)
{
int rc;
if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK)) if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK) || gmap_is_shadow(gmap))
return -EINVAL;
if (!MACHINE_HAS_ESOP && prot == PROT_READ)
return -EINVAL; return -EINVAL;
down_read(&gmap->mm->mmap_sem); down_read(&gmap->mm->mmap_sem);
while (len) { rc = gmap_protect_range(gmap, gaddr, len, prot, PGSTE_IN_BIT);
unlocked = false; up_read(&gmap->mm->mmap_sem);
/* Convert gmap address and connect the page tables */ return rc;
addr = __gmap_translate(gmap, gaddr); }
if (IS_ERR_VALUE(addr)) { EXPORT_SYMBOL_GPL(gmap_mprotect_notify);
rc = addr;
break; /**
* gmap_read_table - get an unsigned long value from a guest page table using
* absolute addressing, without marking the page referenced.
* @gmap: pointer to guest mapping meta data structure
* @gaddr: virtual address in the guest address space
* @val: pointer to the unsigned long value to return
*
* Returns 0 if the value was read, -ENOMEM if out of memory and -EFAULT
* if reading using the virtual address failed.
*
* Called with gmap->mm->mmap_sem in read.
*/
int gmap_read_table(struct gmap *gmap, unsigned long gaddr, unsigned long *val)
{
unsigned long address, vmaddr;
spinlock_t *ptl;
pte_t *ptep, pte;
int rc;
while (1) {
rc = -EAGAIN;
ptep = gmap_pte_op_walk(gmap, gaddr, &ptl);
if (ptep) {
pte = *ptep;
if (pte_present(pte) && (pte_val(pte) & _PAGE_READ)) {
address = pte_val(pte) & PAGE_MASK;
address += gaddr & ~PAGE_MASK;
*val = *(unsigned long *) address;
pte_val(*ptep) |= _PAGE_YOUNG;
/* Do *NOT* clear the _PAGE_INVALID bit! */
rc = 0;
}
gmap_pte_op_end(ptl);
} }
/* Get the page mapped */ if (!rc)
if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE, break;
&unlocked)) { vmaddr = __gmap_translate(gmap, gaddr);
rc = -EFAULT; if (IS_ERR_VALUE(vmaddr)) {
rc = vmaddr;
break; break;
} }
/* While trying to map mmap_sem got unlocked. Let us retry */ rc = gmap_pte_op_fixup(gmap, gaddr, vmaddr, PROT_READ);
if (unlocked)
continue;
rc = __gmap_link(gmap, gaddr, addr);
if (rc) if (rc)
break; break;
/* Walk the process page table, lock and get pte pointer */
ptep = get_locked_pte(gmap->mm, addr, &ptl);
VM_BUG_ON(!ptep);
/* Set notification bit in the pgste of the pte */
if ((pte_val(*ptep) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
ptep_set_notify(gmap->mm, addr, ptep);
gaddr += PAGE_SIZE;
len -= PAGE_SIZE;
}
pte_unmap_unlock(ptep, ptl);
} }
up_read(&gmap->mm->mmap_sem);
return rc; return rc;
} }
EXPORT_SYMBOL_GPL(gmap_ipte_notify); EXPORT_SYMBOL_GPL(gmap_read_table);
/** /**
* ptep_notify - call all invalidation callbacks for a specific pte. * gmap_insert_rmap - add a rmap to the host_to_rmap radix tree
* @mm: pointer to the process mm_struct * @sg: pointer to the shadow guest address space structure
* @addr: virtual address in the process address space * @vmaddr: vm address associated with the rmap
* @pte: pointer to the page table entry * @rmap: pointer to the rmap structure
* *
* This function is assumed to be called with the page table lock held * Called with the sg->guest_table_lock
* for the pte to notify.
*/ */
void ptep_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte) static inline void gmap_insert_rmap(struct gmap *sg, unsigned long vmaddr,
struct gmap_rmap *rmap)
{ {
unsigned long offset, gaddr; void **slot;
unsigned long *table;
struct gmap_notifier *nb;
struct gmap *gmap;
offset = ((unsigned long) pte) & (255 * sizeof(pte_t)); BUG_ON(!gmap_is_shadow(sg));
offset = offset * (4096 / sizeof(pte_t)); slot = radix_tree_lookup_slot(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT);
spin_lock(&gmap_notifier_lock); if (slot) {
list_for_each_entry(gmap, &mm->context.gmap_list, list) { rmap->next = radix_tree_deref_slot_protected(slot,
table = radix_tree_lookup(&gmap->host_to_guest, &sg->guest_table_lock);
vmaddr >> PMD_SHIFT); radix_tree_replace_slot(slot, rmap);
if (!table) } else {
rmap->next = NULL;
radix_tree_insert(&sg->host_to_rmap, vmaddr >> PAGE_SHIFT,
rmap);
}
}
/**
* gmap_protect_rmap - modify access rights to memory and create an rmap
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow gmap
* @paddr: address in the parent guest address space
* @len: length of the memory area to protect
* @prot: indicates access rights: none, read-only or read-write
*
* Returns 0 if successfully protected and the rmap was created, -ENOMEM
* if out of memory and -EFAULT if paddr is invalid.
*/
static int gmap_protect_rmap(struct gmap *sg, unsigned long raddr,
unsigned long paddr, unsigned long len, int prot)
{
struct gmap *parent;
struct gmap_rmap *rmap;
unsigned long vmaddr;
spinlock_t *ptl;
pte_t *ptep;
int rc;
BUG_ON(!gmap_is_shadow(sg));
parent = sg->parent;
while (len) {
vmaddr = __gmap_translate(parent, paddr);
if (IS_ERR_VALUE(vmaddr))
return vmaddr;
rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
if (!rmap)
return -ENOMEM;
rmap->raddr = raddr;
rc = radix_tree_preload(GFP_KERNEL);
if (rc) {
kfree(rmap);
return rc;
}
rc = -EAGAIN;
ptep = gmap_pte_op_walk(parent, paddr, &ptl);
if (ptep) {
spin_lock(&sg->guest_table_lock);
rc = ptep_force_prot(parent->mm, paddr, ptep, prot,
PGSTE_VSIE_BIT);
if (!rc)
gmap_insert_rmap(sg, vmaddr, rmap);
spin_unlock(&sg->guest_table_lock);
gmap_pte_op_end(ptl);
}
radix_tree_preload_end();
if (rc) {
kfree(rmap);
rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
if (rc)
return rc;
continue; continue;
gaddr = __gmap_segment_gaddr(table) + offset; }
list_for_each_entry(nb, &gmap_notifier_list, list) paddr += PAGE_SIZE;
nb->notifier_call(gmap, gaddr); len -= PAGE_SIZE;
} }
spin_unlock(&gmap_notifier_lock); return 0;
}
#define _SHADOW_RMAP_MASK 0x7
#define _SHADOW_RMAP_REGION1 0x5
#define _SHADOW_RMAP_REGION2 0x4
#define _SHADOW_RMAP_REGION3 0x3
#define _SHADOW_RMAP_SEGMENT 0x2
#define _SHADOW_RMAP_PGTABLE 0x1
/**
* gmap_idte_one - invalidate a single region or segment table entry
* @asce: region or segment table *origin* + table-type bits
* @vaddr: virtual address to identify the table entry to flush
*
* The invalid bit of a single region or segment table entry is set
* and the associated TLB entries depending on the entry are flushed.
* The table-type of the @asce identifies the portion of the @vaddr
* that is used as the invalidation index.
*/
static inline void gmap_idte_one(unsigned long asce, unsigned long vaddr)
{
asm volatile(
" .insn rrf,0xb98e0000,%0,%1,0,0"
: : "a" (asce), "a" (vaddr) : "cc", "memory");
}
/**
* gmap_unshadow_page - remove a page from a shadow page table
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
*
* Called with the sg->guest_table_lock
*/
static void gmap_unshadow_page(struct gmap *sg, unsigned long raddr)
{
unsigned long *table;
BUG_ON(!gmap_is_shadow(sg));
table = gmap_table_walk(sg, raddr, 0); /* get page table pointer */
if (!table || *table & _PAGE_INVALID)
return;
gmap_call_notifier(sg, raddr, raddr + (1UL << 12) - 1);
ptep_unshadow_pte(sg->mm, raddr, (pte_t *) table);
}
/**
* __gmap_unshadow_pgt - remove all entries from a shadow page table
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
* @pgt: pointer to the start of a shadow page table
*
* Called with the sg->guest_table_lock
*/
static void __gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr,
unsigned long *pgt)
{
int i;
BUG_ON(!gmap_is_shadow(sg));
for (i = 0; i < 256; i++, raddr += 1UL << 12)
pgt[i] = _PAGE_INVALID;
}
/**
* gmap_unshadow_pgt - remove a shadow page table from a segment entry
* @sg: pointer to the shadow guest address space structure
* @raddr: address in the shadow guest address space
*
* Called with the sg->guest_table_lock
*/
static void gmap_unshadow_pgt(struct gmap *sg, unsigned long raddr)
{
unsigned long sto, *ste, *pgt;
struct page *page;
BUG_ON(!gmap_is_shadow(sg));
ste = gmap_table_walk(sg, raddr, 1); /* get segment pointer */
if (!ste || !(*ste & _SEGMENT_ENTRY_ORIGIN))
return;
gmap_call_notifier(sg, raddr, raddr + (1UL << 20) - 1);
sto = (unsigned long) (ste - ((raddr >> 20) & 0x7ff));
gmap_idte_one(sto | _ASCE_TYPE_SEGMENT, raddr);
pgt = (unsigned long *)(*ste & _SEGMENT_ENTRY_ORIGIN);
*ste = _SEGMENT_ENTRY_EMPTY;
__gmap_unshadow_pgt(sg, raddr, pgt);
/* Free page table */
page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
list_del(&page->lru);
page_table_free_pgste(page);
}
/**
* __gmap_unshadow_sgt - remove all entries from a shadow segment table
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
* @sgt: pointer to the start of a shadow segment table
*
* Called with the sg->guest_table_lock
*/
static void __gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr,
unsigned long *sgt)
{
unsigned long asce, *pgt;
struct page *page;
int i;
BUG_ON(!gmap_is_shadow(sg));
asce = (unsigned long) sgt | _ASCE_TYPE_SEGMENT;
for (i = 0; i < 2048; i++, raddr += 1UL << 20) {
if (!(sgt[i] & _SEGMENT_ENTRY_ORIGIN))
continue;
pgt = (unsigned long *)(sgt[i] & _REGION_ENTRY_ORIGIN);
sgt[i] = _SEGMENT_ENTRY_EMPTY;
__gmap_unshadow_pgt(sg, raddr, pgt);
/* Free page table */
page = pfn_to_page(__pa(pgt) >> PAGE_SHIFT);
list_del(&page->lru);
page_table_free_pgste(page);
}
}
/**
* gmap_unshadow_sgt - remove a shadow segment table from a region-3 entry
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
*
* Called with the shadow->guest_table_lock
*/
static void gmap_unshadow_sgt(struct gmap *sg, unsigned long raddr)
{
unsigned long r3o, *r3e, *sgt;
struct page *page;
BUG_ON(!gmap_is_shadow(sg));
r3e = gmap_table_walk(sg, raddr, 2); /* get region-3 pointer */
if (!r3e || !(*r3e & _REGION_ENTRY_ORIGIN))
return;
gmap_call_notifier(sg, raddr, raddr + (1UL << 31) - 1);
r3o = (unsigned long) (r3e - ((raddr >> 31) & 0x7ff));
gmap_idte_one(r3o | _ASCE_TYPE_REGION3, raddr);
sgt = (unsigned long *)(*r3e & _REGION_ENTRY_ORIGIN);
*r3e = _REGION3_ENTRY_EMPTY;
__gmap_unshadow_sgt(sg, raddr, sgt);
/* Free segment table */
page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
list_del(&page->lru);
__free_pages(page, 2);
}
/**
* __gmap_unshadow_r3t - remove all entries from a shadow region-3 table
* @sg: pointer to the shadow guest address space structure
* @raddr: address in the shadow guest address space
* @r3t: pointer to the start of a shadow region-3 table
*
* Called with the sg->guest_table_lock
*/
static void __gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr,
unsigned long *r3t)
{
unsigned long asce, *sgt;
struct page *page;
int i;
BUG_ON(!gmap_is_shadow(sg));
asce = (unsigned long) r3t | _ASCE_TYPE_REGION3;
for (i = 0; i < 2048; i++, raddr += 1UL << 31) {
if (!(r3t[i] & _REGION_ENTRY_ORIGIN))
continue;
sgt = (unsigned long *)(r3t[i] & _REGION_ENTRY_ORIGIN);
r3t[i] = _REGION3_ENTRY_EMPTY;
__gmap_unshadow_sgt(sg, raddr, sgt);
/* Free segment table */
page = pfn_to_page(__pa(sgt) >> PAGE_SHIFT);
list_del(&page->lru);
__free_pages(page, 2);
}
}
/**
* gmap_unshadow_r3t - remove a shadow region-3 table from a region-2 entry
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
*
* Called with the sg->guest_table_lock
*/
static void gmap_unshadow_r3t(struct gmap *sg, unsigned long raddr)
{
unsigned long r2o, *r2e, *r3t;
struct page *page;
BUG_ON(!gmap_is_shadow(sg));
r2e = gmap_table_walk(sg, raddr, 3); /* get region-2 pointer */
if (!r2e || !(*r2e & _REGION_ENTRY_ORIGIN))
return;
gmap_call_notifier(sg, raddr, raddr + (1UL << 42) - 1);
r2o = (unsigned long) (r2e - ((raddr >> 42) & 0x7ff));
gmap_idte_one(r2o | _ASCE_TYPE_REGION2, raddr);
r3t = (unsigned long *)(*r2e & _REGION_ENTRY_ORIGIN);
*r2e = _REGION2_ENTRY_EMPTY;
__gmap_unshadow_r3t(sg, raddr, r3t);
/* Free region 3 table */
page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
list_del(&page->lru);
__free_pages(page, 2);
}
/**
* __gmap_unshadow_r2t - remove all entries from a shadow region-2 table
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
* @r2t: pointer to the start of a shadow region-2 table
*
* Called with the sg->guest_table_lock
*/
static void __gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr,
unsigned long *r2t)
{
unsigned long asce, *r3t;
struct page *page;
int i;
BUG_ON(!gmap_is_shadow(sg));
asce = (unsigned long) r2t | _ASCE_TYPE_REGION2;
for (i = 0; i < 2048; i++, raddr += 1UL << 42) {
if (!(r2t[i] & _REGION_ENTRY_ORIGIN))
continue;
r3t = (unsigned long *)(r2t[i] & _REGION_ENTRY_ORIGIN);
r2t[i] = _REGION2_ENTRY_EMPTY;
__gmap_unshadow_r3t(sg, raddr, r3t);
/* Free region 3 table */
page = pfn_to_page(__pa(r3t) >> PAGE_SHIFT);
list_del(&page->lru);
__free_pages(page, 2);
}
}
/**
* gmap_unshadow_r2t - remove a shadow region-2 table from a region-1 entry
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
*
* Called with the sg->guest_table_lock
*/
static void gmap_unshadow_r2t(struct gmap *sg, unsigned long raddr)
{
unsigned long r1o, *r1e, *r2t;
struct page *page;
BUG_ON(!gmap_is_shadow(sg));
r1e = gmap_table_walk(sg, raddr, 4); /* get region-1 pointer */
if (!r1e || !(*r1e & _REGION_ENTRY_ORIGIN))
return;
gmap_call_notifier(sg, raddr, raddr + (1UL << 53) - 1);
r1o = (unsigned long) (r1e - ((raddr >> 53) & 0x7ff));
gmap_idte_one(r1o | _ASCE_TYPE_REGION1, raddr);
r2t = (unsigned long *)(*r1e & _REGION_ENTRY_ORIGIN);
*r1e = _REGION1_ENTRY_EMPTY;
__gmap_unshadow_r2t(sg, raddr, r2t);
/* Free region 2 table */
page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
list_del(&page->lru);
__free_pages(page, 2);
}
/**
* __gmap_unshadow_r1t - remove all entries from a shadow region-1 table
* @sg: pointer to the shadow guest address space structure
* @raddr: rmap address in the shadow guest address space
* @r1t: pointer to the start of a shadow region-1 table
*
* Called with the shadow->guest_table_lock
*/
static void __gmap_unshadow_r1t(struct gmap *sg, unsigned long raddr,
unsigned long *r1t)
{
unsigned long asce, *r2t;
struct page *page;
int i;
BUG_ON(!gmap_is_shadow(sg));
asce = (unsigned long) r1t | _ASCE_TYPE_REGION1;
for (i = 0; i < 2048; i++, raddr += 1UL << 53) {
if (!(r1t[i] & _REGION_ENTRY_ORIGIN))
continue;
r2t = (unsigned long *)(r1t[i] & _REGION_ENTRY_ORIGIN);
__gmap_unshadow_r2t(sg, raddr, r2t);
/* Clear entry and flush translation r1t -> r2t */
gmap_idte_one(asce, raddr);
r1t[i] = _REGION1_ENTRY_EMPTY;
/* Free region 2 table */
page = pfn_to_page(__pa(r2t) >> PAGE_SHIFT);
list_del(&page->lru);
__free_pages(page, 2);
}
}
/**
* gmap_unshadow - remove a shadow page table completely
* @sg: pointer to the shadow guest address space structure
*
* Called with sg->guest_table_lock
*/
static void gmap_unshadow(struct gmap *sg)
{
unsigned long *table;
BUG_ON(!gmap_is_shadow(sg));
if (sg->removed)
return;
sg->removed = 1;
gmap_call_notifier(sg, 0, -1UL);
gmap_flush_tlb(sg);
table = (unsigned long *)(sg->asce & _ASCE_ORIGIN);
switch (sg->asce & _ASCE_TYPE_MASK) {
case _ASCE_TYPE_REGION1:
__gmap_unshadow_r1t(sg, 0, table);
break;
case _ASCE_TYPE_REGION2:
__gmap_unshadow_r2t(sg, 0, table);
break;
case _ASCE_TYPE_REGION3:
__gmap_unshadow_r3t(sg, 0, table);
break;
case _ASCE_TYPE_SEGMENT:
__gmap_unshadow_sgt(sg, 0, table);
break;
}
}
/**
* gmap_find_shadow - find a specific asce in the list of shadow tables
* @parent: pointer to the parent gmap
* @asce: ASCE for which the shadow table is created
* @edat_level: edat level to be used for the shadow translation
*
* Returns the pointer to a gmap if a shadow table with the given asce is
* already available, ERR_PTR(-EAGAIN) if another one is just being created,
* otherwise NULL
*/
static struct gmap *gmap_find_shadow(struct gmap *parent, unsigned long asce,
int edat_level)
{
struct gmap *sg;
list_for_each_entry(sg, &parent->children, list) {
if (sg->orig_asce != asce || sg->edat_level != edat_level ||
sg->removed)
continue;
if (!sg->initialized)
return ERR_PTR(-EAGAIN);
atomic_inc(&sg->ref_count);
return sg;
}
return NULL;
}
/**
* gmap_shadow_valid - check if a shadow guest address space matches the
* given properties and is still valid
* @sg: pointer to the shadow guest address space structure
* @asce: ASCE for which the shadow table is requested
* @edat_level: edat level to be used for the shadow translation
*
* Returns 1 if the gmap shadow is still valid and matches the given
* properties, the caller can continue using it. Returns 0 otherwise, the
* caller has to request a new shadow gmap in this case.
*
*/
int gmap_shadow_valid(struct gmap *sg, unsigned long asce, int edat_level)
{
if (sg->removed)
return 0;
return sg->orig_asce == asce && sg->edat_level == edat_level;
}
EXPORT_SYMBOL_GPL(gmap_shadow_valid);
/**
* gmap_shadow - create/find a shadow guest address space
* @parent: pointer to the parent gmap
* @asce: ASCE for which the shadow table is created
* @edat_level: edat level to be used for the shadow translation
*
* The pages of the top level page table referred by the asce parameter
* will be set to read-only and marked in the PGSTEs of the kvm process.
* The shadow table will be removed automatically on any change to the
* PTE mapping for the source table.
*
* Returns a guest address space structure, ERR_PTR(-ENOMEM) if out of memory,
* ERR_PTR(-EAGAIN) if the caller has to retry and ERR_PTR(-EFAULT) if the
* parent gmap table could not be protected.
*/
struct gmap *gmap_shadow(struct gmap *parent, unsigned long asce,
int edat_level)
{
struct gmap *sg, *new;
unsigned long limit;
int rc;
BUG_ON(gmap_is_shadow(parent));
spin_lock(&parent->shadow_lock);
sg = gmap_find_shadow(parent, asce, edat_level);
spin_unlock(&parent->shadow_lock);
if (sg)
return sg;
/* Create a new shadow gmap */
limit = -1UL >> (33 - (((asce & _ASCE_TYPE_MASK) >> 2) * 11));
if (asce & _ASCE_REAL_SPACE)
limit = -1UL;
new = gmap_alloc(limit);
if (!new)
return ERR_PTR(-ENOMEM);
new->mm = parent->mm;
new->parent = gmap_get(parent);
new->orig_asce = asce;
new->edat_level = edat_level;
new->initialized = false;
spin_lock(&parent->shadow_lock);
/* Recheck if another CPU created the same shadow */
sg = gmap_find_shadow(parent, asce, edat_level);
if (sg) {
spin_unlock(&parent->shadow_lock);
gmap_free(new);
return sg;
}
if (asce & _ASCE_REAL_SPACE) {
/* only allow one real-space gmap shadow */
list_for_each_entry(sg, &parent->children, list) {
if (sg->orig_asce & _ASCE_REAL_SPACE) {
spin_lock(&sg->guest_table_lock);
gmap_unshadow(sg);
spin_unlock(&sg->guest_table_lock);
list_del(&sg->list);
gmap_put(sg);
break;
}
}
}
atomic_set(&new->ref_count, 2);
list_add(&new->list, &parent->children);
if (asce & _ASCE_REAL_SPACE) {
/* nothing to protect, return right away */
new->initialized = true;
spin_unlock(&parent->shadow_lock);
return new;
}
spin_unlock(&parent->shadow_lock);
/* protect after insertion, so it will get properly invalidated */
down_read(&parent->mm->mmap_sem);
rc = gmap_protect_range(parent, asce & _ASCE_ORIGIN,
((asce & _ASCE_TABLE_LENGTH) + 1) * 4096,
PROT_READ, PGSTE_VSIE_BIT);
up_read(&parent->mm->mmap_sem);
spin_lock(&parent->shadow_lock);
new->initialized = true;
if (rc) {
list_del(&new->list);
gmap_free(new);
new = ERR_PTR(rc);
}
spin_unlock(&parent->shadow_lock);
return new;
}
EXPORT_SYMBOL_GPL(gmap_shadow);
/**
* gmap_shadow_r2t - create an empty shadow region 2 table
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @r2t: parent gmap address of the region 2 table to get shadowed
* @fake: r2t references contiguous guest memory block, not a r2t
*
* The r2t parameter specifies the address of the source table. The
* four pages of the source table are made read-only in the parent gmap
* address space. A write to the source table area @r2t will automatically
* remove the shadow r2 table and all of its decendents.
*
* Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
* shadow table structure is incomplete, -ENOMEM if out of memory and
* -EFAULT if an address in the parent gmap could not be resolved.
*
* Called with sg->mm->mmap_sem in read.
*/
int gmap_shadow_r2t(struct gmap *sg, unsigned long saddr, unsigned long r2t,
int fake)
{
unsigned long raddr, origin, offset, len;
unsigned long *s_r2t, *table;
struct page *page;
int rc;
BUG_ON(!gmap_is_shadow(sg));
/* Allocate a shadow region second table */
page = alloc_pages(GFP_KERNEL, 2);
if (!page)
return -ENOMEM;
page->index = r2t & _REGION_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_r2t = (unsigned long *) page_to_phys(page);
/* Install shadow region second table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 4); /* get region-1 pointer */
if (!table) {
rc = -EAGAIN; /* Race with unshadow */
goto out_free;
}
if (!(*table & _REGION_ENTRY_INVALID)) {
rc = 0; /* Already established */
goto out_free;
} else if (*table & _REGION_ENTRY_ORIGIN) {
rc = -EAGAIN; /* Race with shadow */
goto out_free;
}
crst_table_init(s_r2t, _REGION2_ENTRY_EMPTY);
/* mark as invalid as long as the parent table is not protected */
*table = (unsigned long) s_r2t | _REGION_ENTRY_LENGTH |
_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID;
if (sg->edat_level >= 1)
*table |= (r2t & _REGION_ENTRY_PROTECT);
list_add(&page->lru, &sg->crst_list);
if (fake) {
/* nothing to protect for fake tables */
*table &= ~_REGION_ENTRY_INVALID;
spin_unlock(&sg->guest_table_lock);
return 0;
}
spin_unlock(&sg->guest_table_lock);
/* Make r2t read-only in parent gmap page table */
raddr = (saddr & 0xffe0000000000000UL) | _SHADOW_RMAP_REGION1;
origin = r2t & _REGION_ENTRY_ORIGIN;
offset = ((r2t & _REGION_ENTRY_OFFSET) >> 6) * 4096;
len = ((r2t & _REGION_ENTRY_LENGTH) + 1) * 4096 - offset;
rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 4);
if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
(unsigned long) s_r2t)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_REGION_ENTRY_INVALID;
} else {
gmap_unshadow_r2t(sg, raddr);
}
spin_unlock(&sg->guest_table_lock);
return rc;
out_free:
spin_unlock(&sg->guest_table_lock);
__free_pages(page, 2);
return rc;
}
EXPORT_SYMBOL_GPL(gmap_shadow_r2t);
/**
* gmap_shadow_r3t - create a shadow region 3 table
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @r3t: parent gmap address of the region 3 table to get shadowed
* @fake: r3t references contiguous guest memory block, not a r3t
*
* Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
* shadow table structure is incomplete, -ENOMEM if out of memory and
* -EFAULT if an address in the parent gmap could not be resolved.
*
* Called with sg->mm->mmap_sem in read.
*/
int gmap_shadow_r3t(struct gmap *sg, unsigned long saddr, unsigned long r3t,
int fake)
{
unsigned long raddr, origin, offset, len;
unsigned long *s_r3t, *table;
struct page *page;
int rc;
BUG_ON(!gmap_is_shadow(sg));
/* Allocate a shadow region second table */
page = alloc_pages(GFP_KERNEL, 2);
if (!page)
return -ENOMEM;
page->index = r3t & _REGION_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_r3t = (unsigned long *) page_to_phys(page);
/* Install shadow region second table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 3); /* get region-2 pointer */
if (!table) {
rc = -EAGAIN; /* Race with unshadow */
goto out_free;
}
if (!(*table & _REGION_ENTRY_INVALID)) {
rc = 0; /* Already established */
goto out_free;
} else if (*table & _REGION_ENTRY_ORIGIN) {
rc = -EAGAIN; /* Race with shadow */
}
crst_table_init(s_r3t, _REGION3_ENTRY_EMPTY);
/* mark as invalid as long as the parent table is not protected */
*table = (unsigned long) s_r3t | _REGION_ENTRY_LENGTH |
_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID;
if (sg->edat_level >= 1)
*table |= (r3t & _REGION_ENTRY_PROTECT);
list_add(&page->lru, &sg->crst_list);
if (fake) {
/* nothing to protect for fake tables */
*table &= ~_REGION_ENTRY_INVALID;
spin_unlock(&sg->guest_table_lock);
return 0;
}
spin_unlock(&sg->guest_table_lock);
/* Make r3t read-only in parent gmap page table */
raddr = (saddr & 0xfffffc0000000000UL) | _SHADOW_RMAP_REGION2;
origin = r3t & _REGION_ENTRY_ORIGIN;
offset = ((r3t & _REGION_ENTRY_OFFSET) >> 6) * 4096;
len = ((r3t & _REGION_ENTRY_LENGTH) + 1) * 4096 - offset;
rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 3);
if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
(unsigned long) s_r3t)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_REGION_ENTRY_INVALID;
} else {
gmap_unshadow_r3t(sg, raddr);
}
spin_unlock(&sg->guest_table_lock);
return rc;
out_free:
spin_unlock(&sg->guest_table_lock);
__free_pages(page, 2);
return rc;
}
EXPORT_SYMBOL_GPL(gmap_shadow_r3t);
/**
* gmap_shadow_sgt - create a shadow segment table
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @sgt: parent gmap address of the segment table to get shadowed
* @fake: sgt references contiguous guest memory block, not a sgt
*
* Returns: 0 if successfully shadowed or already shadowed, -EAGAIN if the
* shadow table structure is incomplete, -ENOMEM if out of memory and
* -EFAULT if an address in the parent gmap could not be resolved.
*
* Called with sg->mm->mmap_sem in read.
*/
int gmap_shadow_sgt(struct gmap *sg, unsigned long saddr, unsigned long sgt,
int fake)
{
unsigned long raddr, origin, offset, len;
unsigned long *s_sgt, *table;
struct page *page;
int rc;
BUG_ON(!gmap_is_shadow(sg) || (sgt & _REGION3_ENTRY_LARGE));
/* Allocate a shadow segment table */
page = alloc_pages(GFP_KERNEL, 2);
if (!page)
return -ENOMEM;
page->index = sgt & _REGION_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_sgt = (unsigned long *) page_to_phys(page);
/* Install shadow region second table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 2); /* get region-3 pointer */
if (!table) {
rc = -EAGAIN; /* Race with unshadow */
goto out_free;
}
if (!(*table & _REGION_ENTRY_INVALID)) {
rc = 0; /* Already established */
goto out_free;
} else if (*table & _REGION_ENTRY_ORIGIN) {
rc = -EAGAIN; /* Race with shadow */
goto out_free;
}
crst_table_init(s_sgt, _SEGMENT_ENTRY_EMPTY);
/* mark as invalid as long as the parent table is not protected */
*table = (unsigned long) s_sgt | _REGION_ENTRY_LENGTH |
_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID;
if (sg->edat_level >= 1)
*table |= sgt & _REGION_ENTRY_PROTECT;
list_add(&page->lru, &sg->crst_list);
if (fake) {
/* nothing to protect for fake tables */
*table &= ~_REGION_ENTRY_INVALID;
spin_unlock(&sg->guest_table_lock);
return 0;
}
spin_unlock(&sg->guest_table_lock);
/* Make sgt read-only in parent gmap page table */
raddr = (saddr & 0xffffffff80000000UL) | _SHADOW_RMAP_REGION3;
origin = sgt & _REGION_ENTRY_ORIGIN;
offset = ((sgt & _REGION_ENTRY_OFFSET) >> 6) * 4096;
len = ((sgt & _REGION_ENTRY_LENGTH) + 1) * 4096 - offset;
rc = gmap_protect_rmap(sg, raddr, origin + offset, len, PROT_READ);
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 2);
if (!table || (*table & _REGION_ENTRY_ORIGIN) !=
(unsigned long) s_sgt)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_REGION_ENTRY_INVALID;
} else {
gmap_unshadow_sgt(sg, raddr);
}
spin_unlock(&sg->guest_table_lock);
return rc;
out_free:
spin_unlock(&sg->guest_table_lock);
__free_pages(page, 2);
return rc;
}
EXPORT_SYMBOL_GPL(gmap_shadow_sgt);
/**
* gmap_shadow_lookup_pgtable - find a shadow page table
* @sg: pointer to the shadow guest address space structure
* @saddr: the address in the shadow aguest address space
* @pgt: parent gmap address of the page table to get shadowed
* @dat_protection: if the pgtable is marked as protected by dat
* @fake: pgt references contiguous guest memory block, not a pgtable
*
* Returns 0 if the shadow page table was found and -EAGAIN if the page
* table was not found.
*
* Called with sg->mm->mmap_sem in read.
*/
int gmap_shadow_pgt_lookup(struct gmap *sg, unsigned long saddr,
unsigned long *pgt, int *dat_protection,
int *fake)
{
unsigned long *table;
struct page *page;
int rc;
BUG_ON(!gmap_is_shadow(sg));
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
if (table && !(*table & _SEGMENT_ENTRY_INVALID)) {
/* Shadow page tables are full pages (pte+pgste) */
page = pfn_to_page(*table >> PAGE_SHIFT);
*pgt = page->index & ~GMAP_SHADOW_FAKE_TABLE;
*dat_protection = !!(*table & _SEGMENT_ENTRY_PROTECT);
*fake = !!(page->index & GMAP_SHADOW_FAKE_TABLE);
rc = 0;
} else {
rc = -EAGAIN;
}
spin_unlock(&sg->guest_table_lock);
return rc;
}
EXPORT_SYMBOL_GPL(gmap_shadow_pgt_lookup);
/**
* gmap_shadow_pgt - instantiate a shadow page table
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @pgt: parent gmap address of the page table to get shadowed
* @fake: pgt references contiguous guest memory block, not a pgtable
*
* Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
* shadow table structure is incomplete, -ENOMEM if out of memory,
* -EFAULT if an address in the parent gmap could not be resolved and
*
* Called with gmap->mm->mmap_sem in read
*/
int gmap_shadow_pgt(struct gmap *sg, unsigned long saddr, unsigned long pgt,
int fake)
{
unsigned long raddr, origin;
unsigned long *s_pgt, *table;
struct page *page;
int rc;
BUG_ON(!gmap_is_shadow(sg) || (pgt & _SEGMENT_ENTRY_LARGE));
/* Allocate a shadow page table */
page = page_table_alloc_pgste(sg->mm);
if (!page)
return -ENOMEM;
page->index = pgt & _SEGMENT_ENTRY_ORIGIN;
if (fake)
page->index |= GMAP_SHADOW_FAKE_TABLE;
s_pgt = (unsigned long *) page_to_phys(page);
/* Install shadow page table */
spin_lock(&sg->guest_table_lock);
table = gmap_table_walk(sg, saddr, 1); /* get segment pointer */
if (!table) {
rc = -EAGAIN; /* Race with unshadow */
goto out_free;
}
if (!(*table & _SEGMENT_ENTRY_INVALID)) {
rc = 0; /* Already established */
goto out_free;
} else if (*table & _SEGMENT_ENTRY_ORIGIN) {
rc = -EAGAIN; /* Race with shadow */
goto out_free;
}
/* mark as invalid as long as the parent table is not protected */
*table = (unsigned long) s_pgt | _SEGMENT_ENTRY |
(pgt & _SEGMENT_ENTRY_PROTECT) | _SEGMENT_ENTRY_INVALID;
list_add(&page->lru, &sg->pt_list);
if (fake) {
/* nothing to protect for fake tables */
*table &= ~_SEGMENT_ENTRY_INVALID;
spin_unlock(&sg->guest_table_lock);
return 0;
}
spin_unlock(&sg->guest_table_lock);
/* Make pgt read-only in parent gmap page table (not the pgste) */
raddr = (saddr & 0xfffffffffff00000UL) | _SHADOW_RMAP_SEGMENT;
origin = pgt & _SEGMENT_ENTRY_ORIGIN & PAGE_MASK;
rc = gmap_protect_rmap(sg, raddr, origin, PAGE_SIZE, PROT_READ);
spin_lock(&sg->guest_table_lock);
if (!rc) {
table = gmap_table_walk(sg, saddr, 1);
if (!table || (*table & _SEGMENT_ENTRY_ORIGIN) !=
(unsigned long) s_pgt)
rc = -EAGAIN; /* Race with unshadow */
else
*table &= ~_SEGMENT_ENTRY_INVALID;
} else {
gmap_unshadow_pgt(sg, raddr);
}
spin_unlock(&sg->guest_table_lock);
return rc;
out_free:
spin_unlock(&sg->guest_table_lock);
page_table_free_pgste(page);
return rc;
}
EXPORT_SYMBOL_GPL(gmap_shadow_pgt);
/**
* gmap_shadow_page - create a shadow page mapping
* @sg: pointer to the shadow guest address space structure
* @saddr: faulting address in the shadow gmap
* @pte: pte in parent gmap address space to get shadowed
*
* Returns 0 if successfully shadowed or already shadowed, -EAGAIN if the
* shadow table structure is incomplete, -ENOMEM if out of memory and
* -EFAULT if an address in the parent gmap could not be resolved.
*
* Called with sg->mm->mmap_sem in read.
*/
int gmap_shadow_page(struct gmap *sg, unsigned long saddr, pte_t pte)
{
struct gmap *parent;
struct gmap_rmap *rmap;
unsigned long vmaddr, paddr;
spinlock_t *ptl;
pte_t *sptep, *tptep;
int prot;
int rc;
BUG_ON(!gmap_is_shadow(sg));
parent = sg->parent;
prot = (pte_val(pte) & _PAGE_PROTECT) ? PROT_READ : PROT_WRITE;
rmap = kzalloc(sizeof(*rmap), GFP_KERNEL);
if (!rmap)
return -ENOMEM;
rmap->raddr = (saddr & PAGE_MASK) | _SHADOW_RMAP_PGTABLE;
while (1) {
paddr = pte_val(pte) & PAGE_MASK;
vmaddr = __gmap_translate(parent, paddr);
if (IS_ERR_VALUE(vmaddr)) {
rc = vmaddr;
break;
}
rc = radix_tree_preload(GFP_KERNEL);
if (rc)
break;
rc = -EAGAIN;
sptep = gmap_pte_op_walk(parent, paddr, &ptl);
if (sptep) {
spin_lock(&sg->guest_table_lock);
/* Get page table pointer */
tptep = (pte_t *) gmap_table_walk(sg, saddr, 0);
if (!tptep) {
spin_unlock(&sg->guest_table_lock);
gmap_pte_op_end(ptl);
radix_tree_preload_end();
break;
}
rc = ptep_shadow_pte(sg->mm, saddr, sptep, tptep, pte);
if (rc > 0) {
/* Success and a new mapping */
gmap_insert_rmap(sg, vmaddr, rmap);
rmap = NULL;
rc = 0;
}
gmap_pte_op_end(ptl);
spin_unlock(&sg->guest_table_lock);
}
radix_tree_preload_end();
if (!rc)
break;
rc = gmap_pte_op_fixup(parent, paddr, vmaddr, prot);
if (rc)
break;
}
kfree(rmap);
return rc;
}
EXPORT_SYMBOL_GPL(gmap_shadow_page);
/**
* gmap_shadow_notify - handle notifications for shadow gmap
*
* Called with sg->parent->shadow_lock.
*/
static void gmap_shadow_notify(struct gmap *sg, unsigned long vmaddr,
unsigned long offset, pte_t *pte)
{
struct gmap_rmap *rmap, *rnext, *head;
unsigned long gaddr, start, end, bits, raddr;
unsigned long *table;
BUG_ON(!gmap_is_shadow(sg));
spin_lock(&sg->parent->guest_table_lock);
table = radix_tree_lookup(&sg->parent->host_to_guest,
vmaddr >> PMD_SHIFT);
gaddr = table ? __gmap_segment_gaddr(table) + offset : 0;
spin_unlock(&sg->parent->guest_table_lock);
if (!table)
return;
spin_lock(&sg->guest_table_lock);
if (sg->removed) {
spin_unlock(&sg->guest_table_lock);
return;
}
/* Check for top level table */
start = sg->orig_asce & _ASCE_ORIGIN;
end = start + ((sg->orig_asce & _ASCE_TABLE_LENGTH) + 1) * 4096;
if (!(sg->orig_asce & _ASCE_REAL_SPACE) && gaddr >= start &&
gaddr < end) {
/* The complete shadow table has to go */
gmap_unshadow(sg);
spin_unlock(&sg->guest_table_lock);
list_del(&sg->list);
gmap_put(sg);
return;
}
/* Remove the page table tree from on specific entry */
head = radix_tree_delete(&sg->host_to_rmap, vmaddr >> 12);
gmap_for_each_rmap_safe(rmap, rnext, head) {
bits = rmap->raddr & _SHADOW_RMAP_MASK;
raddr = rmap->raddr ^ bits;
switch (bits) {
case _SHADOW_RMAP_REGION1:
gmap_unshadow_r2t(sg, raddr);
break;
case _SHADOW_RMAP_REGION2:
gmap_unshadow_r3t(sg, raddr);
break;
case _SHADOW_RMAP_REGION3:
gmap_unshadow_sgt(sg, raddr);
break;
case _SHADOW_RMAP_SEGMENT:
gmap_unshadow_pgt(sg, raddr);
break;
case _SHADOW_RMAP_PGTABLE:
gmap_unshadow_page(sg, raddr);
break;
}
kfree(rmap);
}
spin_unlock(&sg->guest_table_lock);
}
/**
* ptep_notify - call all invalidation callbacks for a specific pte.
* @mm: pointer to the process mm_struct
* @addr: virtual address in the process address space
* @pte: pointer to the page table entry
* @bits: bits from the pgste that caused the notify call
*
* This function is assumed to be called with the page table lock held
* for the pte to notify.
*/
void ptep_notify(struct mm_struct *mm, unsigned long vmaddr,
pte_t *pte, unsigned long bits)
{
unsigned long offset, gaddr;
unsigned long *table;
struct gmap *gmap, *sg, *next;
offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
offset = offset * (4096 / sizeof(pte_t));
rcu_read_lock();
list_for_each_entry_rcu(gmap, &mm->context.gmap_list, list) {
if (!list_empty(&gmap->children) && (bits & PGSTE_VSIE_BIT)) {
spin_lock(&gmap->shadow_lock);
list_for_each_entry_safe(sg, next,
&gmap->children, list)
gmap_shadow_notify(sg, vmaddr, offset, pte);
spin_unlock(&gmap->shadow_lock);
}
if (!(bits & PGSTE_IN_BIT))
continue;
spin_lock(&gmap->guest_table_lock);
table = radix_tree_lookup(&gmap->host_to_guest,
vmaddr >> PMD_SHIFT);
if (table)
gaddr = __gmap_segment_gaddr(table) + offset;
spin_unlock(&gmap->guest_table_lock);
if (table)
gmap_call_notifier(gmap, gaddr, gaddr + PAGE_SIZE - 1);
}
rcu_read_unlock();
} }
EXPORT_SYMBOL_GPL(ptep_notify); EXPORT_SYMBOL_GPL(ptep_notify);
......
...@@ -137,6 +137,29 @@ static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits) ...@@ -137,6 +137,29 @@ static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
return new; return new;
} }
#ifdef CONFIG_PGSTE
struct page *page_table_alloc_pgste(struct mm_struct *mm)
{
struct page *page;
unsigned long *table;
page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
if (page) {
table = (unsigned long *) page_to_phys(page);
clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
}
return page;
}
void page_table_free_pgste(struct page *page)
{
__free_page(page);
}
#endif /* CONFIG_PGSTE */
/* /*
* page table entry allocation/free routines. * page table entry allocation/free routines.
*/ */
...@@ -149,7 +172,7 @@ unsigned long *page_table_alloc(struct mm_struct *mm) ...@@ -149,7 +172,7 @@ unsigned long *page_table_alloc(struct mm_struct *mm)
/* Try to get a fragment of a 4K page as a 2K page table */ /* Try to get a fragment of a 4K page as a 2K page table */
if (!mm_alloc_pgste(mm)) { if (!mm_alloc_pgste(mm)) {
table = NULL; table = NULL;
spin_lock_bh(&mm->context.list_lock); spin_lock_bh(&mm->context.pgtable_lock);
if (!list_empty(&mm->context.pgtable_list)) { if (!list_empty(&mm->context.pgtable_list)) {
page = list_first_entry(&mm->context.pgtable_list, page = list_first_entry(&mm->context.pgtable_list,
struct page, lru); struct page, lru);
...@@ -164,7 +187,7 @@ unsigned long *page_table_alloc(struct mm_struct *mm) ...@@ -164,7 +187,7 @@ unsigned long *page_table_alloc(struct mm_struct *mm)
list_del(&page->lru); list_del(&page->lru);
} }
} }
spin_unlock_bh(&mm->context.list_lock); spin_unlock_bh(&mm->context.pgtable_lock);
if (table) if (table)
return table; return table;
} }
...@@ -187,9 +210,9 @@ unsigned long *page_table_alloc(struct mm_struct *mm) ...@@ -187,9 +210,9 @@ unsigned long *page_table_alloc(struct mm_struct *mm)
/* Return the first 2K fragment of the page */ /* Return the first 2K fragment of the page */
atomic_set(&page->_mapcount, 1); atomic_set(&page->_mapcount, 1);
clear_table(table, _PAGE_INVALID, PAGE_SIZE); clear_table(table, _PAGE_INVALID, PAGE_SIZE);
spin_lock_bh(&mm->context.list_lock); spin_lock_bh(&mm->context.pgtable_lock);
list_add(&page->lru, &mm->context.pgtable_list); list_add(&page->lru, &mm->context.pgtable_list);
spin_unlock_bh(&mm->context.list_lock); spin_unlock_bh(&mm->context.pgtable_lock);
} }
return table; return table;
} }
...@@ -203,13 +226,13 @@ void page_table_free(struct mm_struct *mm, unsigned long *table) ...@@ -203,13 +226,13 @@ void page_table_free(struct mm_struct *mm, unsigned long *table)
if (!mm_alloc_pgste(mm)) { if (!mm_alloc_pgste(mm)) {
/* Free 2K page table fragment of a 4K page */ /* Free 2K page table fragment of a 4K page */
bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)); bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
spin_lock_bh(&mm->context.list_lock); spin_lock_bh(&mm->context.pgtable_lock);
mask = atomic_xor_bits(&page->_mapcount, 1U << bit); mask = atomic_xor_bits(&page->_mapcount, 1U << bit);
if (mask & 3) if (mask & 3)
list_add(&page->lru, &mm->context.pgtable_list); list_add(&page->lru, &mm->context.pgtable_list);
else else
list_del(&page->lru); list_del(&page->lru);
spin_unlock_bh(&mm->context.list_lock); spin_unlock_bh(&mm->context.pgtable_lock);
if (mask != 0) if (mask != 0)
return; return;
} }
...@@ -235,13 +258,13 @@ void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table, ...@@ -235,13 +258,13 @@ void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
return; return;
} }
bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)); bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
spin_lock_bh(&mm->context.list_lock); spin_lock_bh(&mm->context.pgtable_lock);
mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit); mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit);
if (mask & 3) if (mask & 3)
list_add_tail(&page->lru, &mm->context.pgtable_list); list_add_tail(&page->lru, &mm->context.pgtable_list);
else else
list_del(&page->lru); list_del(&page->lru);
spin_unlock_bh(&mm->context.list_lock); spin_unlock_bh(&mm->context.pgtable_lock);
table = (unsigned long *) (__pa(table) | (1U << bit)); table = (unsigned long *) (__pa(table) | (1U << bit));
tlb_remove_table(tlb, table); tlb_remove_table(tlb, table);
} }
......
...@@ -179,14 +179,17 @@ static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry) ...@@ -179,14 +179,17 @@ static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
return pgste; return pgste;
} }
static inline pgste_t pgste_ipte_notify(struct mm_struct *mm, static inline pgste_t pgste_pte_notify(struct mm_struct *mm,
unsigned long addr, unsigned long addr,
pte_t *ptep, pgste_t pgste) pte_t *ptep, pgste_t pgste)
{ {
#ifdef CONFIG_PGSTE #ifdef CONFIG_PGSTE
if (pgste_val(pgste) & PGSTE_IN_BIT) { unsigned long bits;
pgste_val(pgste) &= ~PGSTE_IN_BIT;
ptep_notify(mm, addr, ptep); bits = pgste_val(pgste) & (PGSTE_IN_BIT | PGSTE_VSIE_BIT);
if (bits) {
pgste_val(pgste) ^= bits;
ptep_notify(mm, addr, ptep, bits);
} }
#endif #endif
return pgste; return pgste;
...@@ -199,7 +202,7 @@ static inline pgste_t ptep_xchg_start(struct mm_struct *mm, ...@@ -199,7 +202,7 @@ static inline pgste_t ptep_xchg_start(struct mm_struct *mm,
if (mm_has_pgste(mm)) { if (mm_has_pgste(mm)) {
pgste = pgste_get_lock(ptep); pgste = pgste_get_lock(ptep);
pgste = pgste_ipte_notify(mm, addr, ptep, pgste); pgste = pgste_pte_notify(mm, addr, ptep, pgste);
} }
return pgste; return pgste;
} }
...@@ -414,6 +417,90 @@ void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep) ...@@ -414,6 +417,90 @@ void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
pgste_set_unlock(ptep, pgste); pgste_set_unlock(ptep, pgste);
} }
/**
* ptep_force_prot - change access rights of a locked pte
* @mm: pointer to the process mm_struct
* @addr: virtual address in the guest address space
* @ptep: pointer to the page table entry
* @prot: indicates guest access rights: PROT_NONE, PROT_READ or PROT_WRITE
* @bit: pgste bit to set (e.g. for notification)
*
* Returns 0 if the access rights were changed and -EAGAIN if the current
* and requested access rights are incompatible.
*/
int ptep_force_prot(struct mm_struct *mm, unsigned long addr,
pte_t *ptep, int prot, unsigned long bit)
{
pte_t entry;
pgste_t pgste;
int pte_i, pte_p;
pgste = pgste_get_lock(ptep);
entry = *ptep;
/* Check pte entry after all locks have been acquired */
pte_i = pte_val(entry) & _PAGE_INVALID;
pte_p = pte_val(entry) & _PAGE_PROTECT;
if ((pte_i && (prot != PROT_NONE)) ||
(pte_p && (prot & PROT_WRITE))) {
pgste_set_unlock(ptep, pgste);
return -EAGAIN;
}
/* Change access rights and set pgste bit */
if (prot == PROT_NONE && !pte_i) {
ptep_flush_direct(mm, addr, ptep);
pgste = pgste_update_all(entry, pgste, mm);
pte_val(entry) |= _PAGE_INVALID;
}
if (prot == PROT_READ && !pte_p) {
ptep_flush_direct(mm, addr, ptep);
pte_val(entry) &= ~_PAGE_INVALID;
pte_val(entry) |= _PAGE_PROTECT;
}
pgste_val(pgste) |= bit;
pgste = pgste_set_pte(ptep, pgste, entry);
pgste_set_unlock(ptep, pgste);
return 0;
}
int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
pte_t *sptep, pte_t *tptep, pte_t pte)
{
pgste_t spgste, tpgste;
pte_t spte, tpte;
int rc = -EAGAIN;
if (!(pte_val(*tptep) & _PAGE_INVALID))
return 0; /* already shadowed */
spgste = pgste_get_lock(sptep);
spte = *sptep;
if (!(pte_val(spte) & _PAGE_INVALID) &&
!((pte_val(spte) & _PAGE_PROTECT) &&
!(pte_val(pte) & _PAGE_PROTECT))) {
pgste_val(spgste) |= PGSTE_VSIE_BIT;
tpgste = pgste_get_lock(tptep);
pte_val(tpte) = (pte_val(spte) & PAGE_MASK) |
(pte_val(pte) & _PAGE_PROTECT);
/* don't touch the storage key - it belongs to parent pgste */
tpgste = pgste_set_pte(tptep, tpgste, tpte);
pgste_set_unlock(tptep, tpgste);
rc = 1;
}
pgste_set_unlock(sptep, spgste);
return rc;
}
void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep)
{
pgste_t pgste;
pgste = pgste_get_lock(ptep);
/* notifier is called by the caller */
ptep_flush_direct(mm, saddr, ptep);
/* don't touch the storage key - it belongs to parent pgste */
pgste = pgste_set_pte(ptep, pgste, __pte(_PAGE_INVALID));
pgste_set_unlock(ptep, pgste);
}
static void ptep_zap_swap_entry(struct mm_struct *mm, swp_entry_t entry) static void ptep_zap_swap_entry(struct mm_struct *mm, swp_entry_t entry)
{ {
if (!non_swap_entry(entry)) if (!non_swap_entry(entry))
...@@ -483,7 +570,7 @@ bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long addr) ...@@ -483,7 +570,7 @@ bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long addr)
pgste_val(pgste) &= ~PGSTE_UC_BIT; pgste_val(pgste) &= ~PGSTE_UC_BIT;
pte = *ptep; pte = *ptep;
if (dirty && (pte_val(pte) & _PAGE_PRESENT)) { if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
pgste = pgste_ipte_notify(mm, addr, ptep, pgste); pgste = pgste_pte_notify(mm, addr, ptep, pgste);
__ptep_ipte(addr, ptep); __ptep_ipte(addr, ptep);
if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE)) if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
pte_val(pte) |= _PAGE_PROTECT; pte_val(pte) |= _PAGE_PROTECT;
......
...@@ -124,6 +124,15 @@ static inline int page_ref_sub_and_test(struct page *page, int nr) ...@@ -124,6 +124,15 @@ static inline int page_ref_sub_and_test(struct page *page, int nr)
return ret; return ret;
} }
static inline int page_ref_inc_return(struct page *page)
{
int ret = atomic_inc_return(&page->_refcount);
if (page_ref_tracepoint_active(__tracepoint_page_ref_mod_and_return))
__page_ref_mod_and_return(page, 1, ret);
return ret;
}
static inline int page_ref_dec_and_test(struct page *page) static inline int page_ref_dec_and_test(struct page *page)
{ {
int ret = atomic_dec_and_test(&page->_refcount); int ret = atomic_dec_and_test(&page->_refcount);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment