Commit 91c00924 authored by Dan Williams's avatar Dan Williams

md: raid5_run_ops - run stripe operations outside sh->lock

When the raid acceleration work was proposed, Neil laid out the following
attack plan:

1/ move the xor and copy operations outside spin_lock(&sh->lock)
2/ find/implement an asynchronous offload api

The raid5_run_ops routine uses the asynchronous offload api (async_tx) and
the stripe_operations member of a stripe_head to carry out xor+copy
operations asynchronously, outside the lock.

To perform operations outside the lock a new set of state flags is needed
to track new requests, in-flight requests, and completed requests.  In this
new model handle_stripe is tasked with scanning the stripe_head for work,
updating the stripe_operations structure, and finally dropping the lock and
calling raid5_run_ops for processing.  The following flags outline the
requests that handle_stripe can make of raid5_run_ops:

STRIPE_OP_BIOFILL
 - copy data into request buffers to satisfy a read request
STRIPE_OP_COMPUTE_BLK
 - generate a missing block in the cache from the other blocks
STRIPE_OP_PREXOR
 - subtract existing data as part of the read-modify-write process
STRIPE_OP_BIODRAIN
 - copy data out of request buffers to satisfy a write request
STRIPE_OP_POSTXOR
 - recalculate parity for new data that has entered the cache
STRIPE_OP_CHECK
 - verify that the parity is correct
STRIPE_OP_IO
 - submit i/o to the member disks (note this was already performed outside
   the stripe lock, but it made sense to add it as an operation type

The flow is:
1/ handle_stripe sets STRIPE_OP_* in sh->ops.pending
2/ raid5_run_ops reads sh->ops.pending, sets sh->ops.ack, and submits the
   operation to the async_tx api
3/ async_tx triggers the completion callback routine to set
   sh->ops.complete and release the stripe
4/ handle_stripe runs again to finish the operation and optionally submit
   new operations that were previously blocked

Note this patch just defines raid5_run_ops, subsequent commits (one per
major operation type) modify handle_stripe to take advantage of this
routine.

Changelog:
* removed ops_complete_biodrain in favor of ops_complete_postxor and
  ops_complete_write.
* removed the raid5_run_ops workqueue
* call bi_end_io for reads in ops_complete_biofill, saves a call to
  handle_stripe
* explicitly handle the 2-disk raid5 case (xor becomes memcpy), Neil Brown
* fix race between async engines and bi_end_io call for reads, Neil Brown
* remove unnecessary spin_lock from ops_complete_biofill
* remove test_and_set/test_and_clear BUG_ONs, Neil Brown
* remove explicit interrupt handling for channel switching, this feature
  was absorbed (i.e. it is now implicit) by the async_tx api
* use return_io in ops_complete_biofill
Signed-off-by: default avatarDan Williams <dan.j.williams@intel.com>
Acked-By: default avatarNeilBrown <neilb@suse.de>
parent 45b4233c
...@@ -52,6 +52,7 @@ ...@@ -52,6 +52,7 @@
#include "raid6.h" #include "raid6.h"
#include <linux/raid/bitmap.h> #include <linux/raid/bitmap.h>
#include <linux/async_tx.h>
/* /*
* Stripe cache * Stripe cache
...@@ -341,6 +342,541 @@ static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector ...@@ -341,6 +342,541 @@ static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector
return sh; return sh;
} }
static int
raid5_end_read_request(struct bio *bi, unsigned int bytes_done, int error);
static int
raid5_end_write_request (struct bio *bi, unsigned int bytes_done, int error);
static void ops_run_io(struct stripe_head *sh)
{
raid5_conf_t *conf = sh->raid_conf;
int i, disks = sh->disks;
might_sleep();
for (i = disks; i--; ) {
int rw;
struct bio *bi;
mdk_rdev_t *rdev;
if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
rw = WRITE;
else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
rw = READ;
else
continue;
bi = &sh->dev[i].req;
bi->bi_rw = rw;
if (rw == WRITE)
bi->bi_end_io = raid5_end_write_request;
else
bi->bi_end_io = raid5_end_read_request;
rcu_read_lock();
rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = NULL;
if (rdev)
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
if (rdev) {
if (test_bit(STRIPE_SYNCING, &sh->state) ||
test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
test_bit(STRIPE_EXPAND_READY, &sh->state))
md_sync_acct(rdev->bdev, STRIPE_SECTORS);
bi->bi_bdev = rdev->bdev;
pr_debug("%s: for %llu schedule op %ld on disc %d\n",
__FUNCTION__, (unsigned long long)sh->sector,
bi->bi_rw, i);
atomic_inc(&sh->count);
bi->bi_sector = sh->sector + rdev->data_offset;
bi->bi_flags = 1 << BIO_UPTODATE;
bi->bi_vcnt = 1;
bi->bi_max_vecs = 1;
bi->bi_idx = 0;
bi->bi_io_vec = &sh->dev[i].vec;
bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
bi->bi_io_vec[0].bv_offset = 0;
bi->bi_size = STRIPE_SIZE;
bi->bi_next = NULL;
if (rw == WRITE &&
test_bit(R5_ReWrite, &sh->dev[i].flags))
atomic_add(STRIPE_SECTORS,
&rdev->corrected_errors);
generic_make_request(bi);
} else {
if (rw == WRITE)
set_bit(STRIPE_DEGRADED, &sh->state);
pr_debug("skip op %ld on disc %d for sector %llu\n",
bi->bi_rw, i, (unsigned long long)sh->sector);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page *page,
sector_t sector, struct dma_async_tx_descriptor *tx)
{
struct bio_vec *bvl;
struct page *bio_page;
int i;
int page_offset;
if (bio->bi_sector >= sector)
page_offset = (signed)(bio->bi_sector - sector) * 512;
else
page_offset = (signed)(sector - bio->bi_sector) * -512;
bio_for_each_segment(bvl, bio, i) {
int len = bio_iovec_idx(bio, i)->bv_len;
int clen;
int b_offset = 0;
if (page_offset < 0) {
b_offset = -page_offset;
page_offset += b_offset;
len -= b_offset;
}
if (len > 0 && page_offset + len > STRIPE_SIZE)
clen = STRIPE_SIZE - page_offset;
else
clen = len;
if (clen > 0) {
b_offset += bio_iovec_idx(bio, i)->bv_offset;
bio_page = bio_iovec_idx(bio, i)->bv_page;
if (frombio)
tx = async_memcpy(page, bio_page, page_offset,
b_offset, clen,
ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_SRC,
tx, NULL, NULL);
else
tx = async_memcpy(bio_page, page, b_offset,
page_offset, clen,
ASYNC_TX_DEP_ACK | ASYNC_TX_KMAP_DST,
tx, NULL, NULL);
}
if (clen < len) /* hit end of page */
break;
page_offset += len;
}
return tx;
}
static void ops_complete_biofill(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
struct bio *return_bi = NULL;
raid5_conf_t *conf = sh->raid_conf;
int i, more_to_read = 0;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
/* clear completed biofills */
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* check if this stripe has new incoming reads */
if (dev->toread)
more_to_read++;
/* acknowledge completion of a biofill operation */
/* and check if we need to reply to a read request
*/
if (test_bit(R5_Wantfill, &dev->flags) && !dev->toread) {
struct bio *rbi, *rbi2;
clear_bit(R5_Wantfill, &dev->flags);
/* The access to dev->read is outside of the
* spin_lock_irq(&conf->device_lock), but is protected
* by the STRIPE_OP_BIOFILL pending bit
*/
BUG_ON(!dev->read);
rbi = dev->read;
dev->read = NULL;
while (rbi && rbi->bi_sector <
dev->sector + STRIPE_SECTORS) {
rbi2 = r5_next_bio(rbi, dev->sector);
spin_lock_irq(&conf->device_lock);
if (--rbi->bi_phys_segments == 0) {
rbi->bi_next = return_bi;
return_bi = rbi;
}
spin_unlock_irq(&conf->device_lock);
rbi = rbi2;
}
}
}
clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
return_io(return_bi);
if (more_to_read)
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void ops_run_biofill(struct stripe_head *sh)
{
struct dma_async_tx_descriptor *tx = NULL;
raid5_conf_t *conf = sh->raid_conf;
int i;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_Wantfill, &dev->flags)) {
struct bio *rbi;
spin_lock_irq(&conf->device_lock);
dev->read = rbi = dev->toread;
dev->toread = NULL;
spin_unlock_irq(&conf->device_lock);
while (rbi && rbi->bi_sector <
dev->sector + STRIPE_SECTORS) {
tx = async_copy_data(0, rbi, dev->page,
dev->sector, tx);
rbi = r5_next_bio(rbi, dev->sector);
}
}
}
atomic_inc(&sh->count);
async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
ops_complete_biofill, sh);
}
static void ops_complete_compute5(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int target = sh->ops.target;
struct r5dev *tgt = &sh->dev[target];
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
set_bit(R5_UPTODATE, &tgt->flags);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
clear_bit(R5_Wantcompute, &tgt->flags);
set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, unsigned long pending)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
int target = sh->ops.target;
struct r5dev *tgt = &sh->dev[target];
struct page *xor_dest = tgt->page;
int count = 0;
struct dma_async_tx_descriptor *tx;
int i;
pr_debug("%s: stripe %llu block: %d\n",
__FUNCTION__, (unsigned long long)sh->sector, target);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
for (i = disks; i--; )
if (i != target)
xor_srcs[count++] = sh->dev[i].page;
atomic_inc(&sh->count);
if (unlikely(count == 1))
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
0, NULL, ops_complete_compute5, sh);
else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
ASYNC_TX_XOR_ZERO_DST, NULL,
ops_complete_compute5, sh);
/* ack now if postxor is not set to be run */
if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
async_tx_ack(tx);
return tx;
}
static void ops_complete_prexor(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
}
static struct dma_async_tx_descriptor *
ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
int count = 0, pd_idx = sh->pd_idx, i;
/* existing parity data subtracted */
struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* Only process blocks that are known to be uptodate */
if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
xor_srcs[count++] = dev->page;
}
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
ops_complete_prexor, sh);
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
int disks = sh->disks;
int pd_idx = sh->pd_idx, i;
/* check if prexor is active which means only process blocks
* that are part of a read-modify-write (Wantprexor)
*/
int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
struct bio *chosen;
int towrite;
towrite = 0;
if (prexor) { /* rmw */
if (dev->towrite &&
test_bit(R5_Wantprexor, &dev->flags))
towrite = 1;
} else { /* rcw */
if (i != pd_idx && dev->towrite &&
test_bit(R5_LOCKED, &dev->flags))
towrite = 1;
}
if (towrite) {
struct bio *wbi;
spin_lock(&sh->lock);
chosen = dev->towrite;
dev->towrite = NULL;
BUG_ON(dev->written);
wbi = dev->written = chosen;
spin_unlock(&sh->lock);
while (wbi && wbi->bi_sector <
dev->sector + STRIPE_SECTORS) {
tx = async_copy_data(1, wbi, dev->page,
dev->sector, tx);
wbi = r5_next_bio(wbi, dev->sector);
}
}
}
return tx;
}
static void ops_complete_postxor(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void ops_complete_write(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int disks = sh->disks, i, pd_idx = sh->pd_idx;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->written || i == pd_idx)
set_bit(R5_UPTODATE, &dev->flags);
}
set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void
ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
int count = 0, pd_idx = sh->pd_idx, i;
struct page *xor_dest;
int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
unsigned long flags;
dma_async_tx_callback callback;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
/* check if prexor is active which means only process blocks
* that are part of a read-modify-write (written)
*/
if (prexor) {
xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->written)
xor_srcs[count++] = dev->page;
}
} else {
xor_dest = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i != pd_idx)
xor_srcs[count++] = dev->page;
}
}
/* check whether this postxor is part of a write */
callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
ops_complete_write : ops_complete_postxor;
/* 1/ if we prexor'd then the dest is reused as a source
* 2/ if we did not prexor then we are redoing the parity
* set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
* for the synchronous xor case
*/
flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
atomic_inc(&sh->count);
if (unlikely(count == 1)) {
flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
flags, tx, callback, sh);
} else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
flags, tx, callback, sh);
}
static void ops_complete_check(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int pd_idx = sh->pd_idx;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
sh->ops.zero_sum_result == 0)
set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
set_bit(STRIPE_HANDLE, &sh->state);
release_stripe(sh);
}
static void ops_run_check(struct stripe_head *sh)
{
/* kernel stack size limits the total number of disks */
int disks = sh->disks;
struct page *xor_srcs[disks];
struct dma_async_tx_descriptor *tx;
int count = 0, pd_idx = sh->pd_idx, i;
struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
pr_debug("%s: stripe %llu\n", __FUNCTION__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i != pd_idx)
xor_srcs[count++] = dev->page;
}
tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
&sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
if (tx)
set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
else
clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
atomic_inc(&sh->count);
tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
ops_complete_check, sh);
}
static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
{
int overlap_clear = 0, i, disks = sh->disks;
struct dma_async_tx_descriptor *tx = NULL;
if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
ops_run_biofill(sh);
overlap_clear++;
}
if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
tx = ops_run_compute5(sh, pending);
if (test_bit(STRIPE_OP_PREXOR, &pending))
tx = ops_run_prexor(sh, tx);
if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
tx = ops_run_biodrain(sh, tx);
overlap_clear++;
}
if (test_bit(STRIPE_OP_POSTXOR, &pending))
ops_run_postxor(sh, tx);
if (test_bit(STRIPE_OP_CHECK, &pending))
ops_run_check(sh);
if (test_bit(STRIPE_OP_IO, &pending))
ops_run_io(sh);
if (overlap_clear)
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&sh->raid_conf->wait_for_overlap);
}
}
static int grow_one_stripe(raid5_conf_t *conf) static int grow_one_stripe(raid5_conf_t *conf)
{ {
struct stripe_head *sh; struct stripe_head *sh;
......
...@@ -116,13 +116,46 @@ ...@@ -116,13 +116,46 @@
* attach a request to an active stripe (add_stripe_bh()) * attach a request to an active stripe (add_stripe_bh())
* lockdev attach-buffer unlockdev * lockdev attach-buffer unlockdev
* handle a stripe (handle_stripe()) * handle a stripe (handle_stripe())
* lockstripe clrSTRIPE_HANDLE ... (lockdev check-buffers unlockdev) .. change-state .. record io needed unlockstripe schedule io * lockstripe clrSTRIPE_HANDLE ...
* (lockdev check-buffers unlockdev) ..
* change-state ..
* record io/ops needed unlockstripe schedule io/ops
* release an active stripe (release_stripe()) * release an active stripe (release_stripe())
* lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev * lockdev if (!--cnt) { if STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
* *
* The refcount counts each thread that have activated the stripe, * The refcount counts each thread that have activated the stripe,
* plus raid5d if it is handling it, plus one for each active request * plus raid5d if it is handling it, plus one for each active request
* on a cached buffer. * on a cached buffer, and plus one if the stripe is undergoing stripe
* operations.
*
* Stripe operations are performed outside the stripe lock,
* the stripe operations are:
* -copying data between the stripe cache and user application buffers
* -computing blocks to save a disk access, or to recover a missing block
* -updating the parity on a write operation (reconstruct write and
* read-modify-write)
* -checking parity correctness
* -running i/o to disk
* These operations are carried out by raid5_run_ops which uses the async_tx
* api to (optionally) offload operations to dedicated hardware engines.
* When requesting an operation handle_stripe sets the pending bit for the
* operation and increments the count. raid5_run_ops is then run whenever
* the count is non-zero.
* There are some critical dependencies between the operations that prevent some
* from being requested while another is in flight.
* 1/ Parity check operations destroy the in cache version of the parity block,
* so we prevent parity dependent operations like writes and compute_blocks
* from starting while a check is in progress. Some dma engines can perform
* the check without damaging the parity block, in these cases the parity
* block is re-marked up to date (assuming the check was successful) and is
* not re-read from disk.
* 2/ When a write operation is requested we immediately lock the affected
* blocks, and mark them as not up to date. This causes new read requests
* to be held off, as well as parity checks and compute block operations.
* 3/ Once a compute block operation has been requested handle_stripe treats
* that block as if it is up to date. raid5_run_ops guaruntees that any
* operation that is dependent on the compute block result is initiated after
* the compute block completes.
*/ */
struct stripe_head { struct stripe_head {
...@@ -136,11 +169,26 @@ struct stripe_head { ...@@ -136,11 +169,26 @@ struct stripe_head {
spinlock_t lock; spinlock_t lock;
int bm_seq; /* sequence number for bitmap flushes */ int bm_seq; /* sequence number for bitmap flushes */
int disks; /* disks in stripe */ int disks; /* disks in stripe */
/* stripe_operations
* @pending - pending ops flags (set for request->issue->complete)
* @ack - submitted ops flags (set for issue->complete)
* @complete - completed ops flags (set for complete)
* @target - STRIPE_OP_COMPUTE_BLK target
* @count - raid5_runs_ops is set to run when this is non-zero
*/
struct stripe_operations {
unsigned long pending;
unsigned long ack;
unsigned long complete;
int target;
int count;
u32 zero_sum_result;
} ops;
struct r5dev { struct r5dev {
struct bio req; struct bio req;
struct bio_vec vec; struct bio_vec vec;
struct page *page; struct page *page;
struct bio *toread, *towrite, *written; struct bio *toread, *read, *towrite, *written;
sector_t sector; /* sector of this page */ sector_t sector; /* sector of this page */
unsigned long flags; unsigned long flags;
} dev[1]; /* allocated with extra space depending of RAID geometry */ } dev[1]; /* allocated with extra space depending of RAID geometry */
...@@ -174,6 +222,15 @@ struct r6_state { ...@@ -174,6 +222,15 @@ struct r6_state {
#define R5_ReWrite 9 /* have tried to over-write the readerror */ #define R5_ReWrite 9 /* have tried to over-write the readerror */
#define R5_Expanded 10 /* This block now has post-expand data */ #define R5_Expanded 10 /* This block now has post-expand data */
#define R5_Wantcompute 11 /* compute_block in progress treat as
* uptodate
*/
#define R5_Wantfill 12 /* dev->toread contains a bio that needs
* filling
*/
#define R5_Wantprexor 13 /* distinguish blocks ready for rmw from
* other "towrites"
*/
/* /*
* Write method * Write method
*/ */
...@@ -195,6 +252,24 @@ struct r6_state { ...@@ -195,6 +252,24 @@ struct r6_state {
#define STRIPE_EXPANDING 9 #define STRIPE_EXPANDING 9
#define STRIPE_EXPAND_SOURCE 10 #define STRIPE_EXPAND_SOURCE 10
#define STRIPE_EXPAND_READY 11 #define STRIPE_EXPAND_READY 11
/*
* Operations flags (in issue order)
*/
#define STRIPE_OP_BIOFILL 0
#define STRIPE_OP_COMPUTE_BLK 1
#define STRIPE_OP_PREXOR 2
#define STRIPE_OP_BIODRAIN 3
#define STRIPE_OP_POSTXOR 4
#define STRIPE_OP_CHECK 5
#define STRIPE_OP_IO 6
/* modifiers to the base operations
* STRIPE_OP_MOD_REPAIR_PD - compute the parity block and write it back
* STRIPE_OP_MOD_DMA_CHECK - parity is not corrupted by the check
*/
#define STRIPE_OP_MOD_REPAIR_PD 7
#define STRIPE_OP_MOD_DMA_CHECK 8
/* /*
* Plugging: * Plugging:
* *
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment