Commit 9b6a5174 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'juju' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6

* 'juju' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394/linux1394-2.6: (138 commits)
  firewire: Convert OHCI driver to use standard goto unwinding for error handling.
  firewire: Always use parens with sizeof.
  firewire: Drop single buffer request support.
  firewire: Add a comment to describe why we split the sg list.
  firewire: Return SCSI_MLQUEUE_HOST_BUSY for out of memory cases in queuecommand.
  firewire: Handle the last few DMA mapping error cases.
  firewire: Allocate scsi_host up front and allocate the sbp2_device as hostdata.
  firewire: Provide module aliase for backwards compatibility.
  firewire: Add to fw-core-y instead of assigning fw-core-objs in Makefile.
  firewire: Break out shared IEEE1394 constant to separate header file.
  firewire: Use linux/*.h instead of asm/*.h header files.
  firewire: Uppercase most macro names.
  firewire: Coding style cleanup: no spaces after function names.
  firewire: Convert card_rwsem to a regular mutex.
  firewire: Clean up comment style.
  firewire: Use lib/ implementation of CRC ITU-T.
  CRC ITU-T V.41
  firewire: Rename fw-device-cdev.c to fw-cdev.c and move header to include/linux.
  firewire: Future proof the iso ioctls by adding a handle for the iso context.
  firewire: Add read/write and size annotations to IOC numbers.
  ...
Acked-by: default avatarChristoph Hellwig <hch@infradead.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parents fc0b60f1 d79406dd
......@@ -36,6 +36,7 @@ obj-$(CONFIG_FC4) += fc4/
obj-$(CONFIG_SCSI) += scsi/
obj-$(CONFIG_ATA) += ata/
obj-$(CONFIG_FUSION) += message/
obj-$(CONFIG_FIREWIRE) += firewire/
obj-$(CONFIG_IEEE1394) += ieee1394/
obj-y += cdrom/
obj-y += auxdisplay/
......
# -*- shell-script -*-
comment "An alternative FireWire stack is available with EXPERIMENTAL=y"
depends on EXPERIMENTAL=n
config FIREWIRE
tristate "IEEE 1394 (FireWire) support (JUJU alternative stack, experimental)"
depends on EXPERIMENTAL
select CRC_ITU_T
help
IEEE 1394 describes a high performance serial bus, which is also
known as FireWire(tm) or i.Link(tm) and is used for connecting all
sorts of devices (most notably digital video cameras) to your
computer.
If you have FireWire hardware and want to use it, say Y here. This
is the core support only, you will also need to select a driver for
your IEEE 1394 adapter.
To compile this driver as a module, say M here: the module will be
called fw-core.
This is the "JUJU" FireWire stack, an alternative implementation
designed for robustness and simplicity. You can build either this
stack, or the classic stack (the ieee1394 driver, ohci1394 etc.)
or both.
config FIREWIRE_OHCI
tristate "Support for OHCI FireWire host controllers"
depends on PCI && FIREWIRE
help
Enable this driver if you have a FireWire controller based
on the OHCI specification. For all practical purposes, this
is the only chipset in use, so say Y here.
To compile this driver as a module, say M here: The module will be
called fw-ohci.
If you also build ohci1394 of the classic IEEE 1394 driver stack,
blacklist either ohci1394 or fw-ohci to let hotplug load the desired
driver.
config FIREWIRE_SBP2
tristate "Support for storage devices (SBP-2 protocol driver)"
depends on FIREWIRE && SCSI
help
This option enables you to use SBP-2 devices connected to a
FireWire bus. SBP-2 devices include storage devices like
harddisks and DVD drives, also some other FireWire devices
like scanners.
To compile this driver as a module, say M here: The module will be
called fw-sbp2.
You should also enable support for disks, CD-ROMs, etc. in the SCSI
configuration section.
If you also build sbp2 of the classic IEEE 1394 driver stack,
blacklist either sbp2 or fw-sbp2 to let hotplug load the desired
driver.
#
# Makefile for the Linux IEEE 1394 implementation
#
fw-core-y += fw-card.o fw-topology.o fw-transaction.o fw-iso.o \
fw-device.o fw-cdev.o
obj-$(CONFIG_FIREWIRE) += fw-core.o
obj-$(CONFIG_FIREWIRE_OHCI) += fw-ohci.o
obj-$(CONFIG_FIREWIRE_SBP2) += fw-sbp2.o
/*
* Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/mutex.h>
#include <linux/crc-itu-t.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
int fw_compute_block_crc(u32 *block)
{
__be32 be32_block[256];
int i, length;
length = (*block >> 16) & 0xff;
for (i = 0; i < length; i++)
be32_block[i] = cpu_to_be32(block[i + 1]);
*block |= crc_itu_t(0, (u8 *) be32_block, length * 4);
return length;
}
static DEFINE_MUTEX(card_mutex);
static LIST_HEAD(card_list);
static LIST_HEAD(descriptor_list);
static int descriptor_count;
#define BIB_CRC(v) ((v) << 0)
#define BIB_CRC_LENGTH(v) ((v) << 16)
#define BIB_INFO_LENGTH(v) ((v) << 24)
#define BIB_LINK_SPEED(v) ((v) << 0)
#define BIB_GENERATION(v) ((v) << 4)
#define BIB_MAX_ROM(v) ((v) << 8)
#define BIB_MAX_RECEIVE(v) ((v) << 12)
#define BIB_CYC_CLK_ACC(v) ((v) << 16)
#define BIB_PMC ((1) << 27)
#define BIB_BMC ((1) << 28)
#define BIB_ISC ((1) << 29)
#define BIB_CMC ((1) << 30)
#define BIB_IMC ((1) << 31)
static u32 *
generate_config_rom(struct fw_card *card, size_t *config_rom_length)
{
struct fw_descriptor *desc;
static u32 config_rom[256];
int i, j, length;
/*
* Initialize contents of config rom buffer. On the OHCI
* controller, block reads to the config rom accesses the host
* memory, but quadlet read access the hardware bus info block
* registers. That's just crack, but it means we should make
* sure the contents of bus info block in host memory mathces
* the version stored in the OHCI registers.
*/
memset(config_rom, 0, sizeof(config_rom));
config_rom[0] = BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0);
config_rom[1] = 0x31333934;
config_rom[2] =
BIB_LINK_SPEED(card->link_speed) |
BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
BIB_MAX_ROM(2) |
BIB_MAX_RECEIVE(card->max_receive) |
BIB_BMC | BIB_ISC | BIB_CMC | BIB_IMC;
config_rom[3] = card->guid >> 32;
config_rom[4] = card->guid;
/* Generate root directory. */
i = 5;
config_rom[i++] = 0;
config_rom[i++] = 0x0c0083c0; /* node capabilities */
j = i + descriptor_count;
/* Generate root directory entries for descriptors. */
list_for_each_entry (desc, &descriptor_list, link) {
if (desc->immediate > 0)
config_rom[i++] = desc->immediate;
config_rom[i] = desc->key | (j - i);
i++;
j += desc->length;
}
/* Update root directory length. */
config_rom[5] = (i - 5 - 1) << 16;
/* End of root directory, now copy in descriptors. */
list_for_each_entry (desc, &descriptor_list, link) {
memcpy(&config_rom[i], desc->data, desc->length * 4);
i += desc->length;
}
/* Calculate CRCs for all blocks in the config rom. This
* assumes that CRC length and info length are identical for
* the bus info block, which is always the case for this
* implementation. */
for (i = 0; i < j; i += length + 1)
length = fw_compute_block_crc(config_rom + i);
*config_rom_length = j;
return config_rom;
}
static void
update_config_roms(void)
{
struct fw_card *card;
u32 *config_rom;
size_t length;
list_for_each_entry (card, &card_list, link) {
config_rom = generate_config_rom(card, &length);
card->driver->set_config_rom(card, config_rom, length);
}
}
int
fw_core_add_descriptor(struct fw_descriptor *desc)
{
size_t i;
/*
* Check descriptor is valid; the length of all blocks in the
* descriptor has to add up to exactly the length of the
* block.
*/
i = 0;
while (i < desc->length)
i += (desc->data[i] >> 16) + 1;
if (i != desc->length)
return -EINVAL;
mutex_lock(&card_mutex);
list_add_tail(&desc->link, &descriptor_list);
descriptor_count++;
if (desc->immediate > 0)
descriptor_count++;
update_config_roms();
mutex_unlock(&card_mutex);
return 0;
}
EXPORT_SYMBOL(fw_core_add_descriptor);
void
fw_core_remove_descriptor(struct fw_descriptor *desc)
{
mutex_lock(&card_mutex);
list_del(&desc->link);
descriptor_count--;
if (desc->immediate > 0)
descriptor_count--;
update_config_roms();
mutex_unlock(&card_mutex);
}
EXPORT_SYMBOL(fw_core_remove_descriptor);
static const char gap_count_table[] = {
63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
};
struct bm_data {
struct fw_transaction t;
struct {
__be32 arg;
__be32 data;
} lock;
u32 old;
int rcode;
struct completion done;
};
static void
complete_bm_lock(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct bm_data *bmd = data;
if (rcode == RCODE_COMPLETE)
bmd->old = be32_to_cpu(*(__be32 *) payload);
bmd->rcode = rcode;
complete(&bmd->done);
}
static void
fw_card_bm_work(struct work_struct *work)
{
struct fw_card *card = container_of(work, struct fw_card, work.work);
struct fw_device *root;
struct bm_data bmd;
unsigned long flags;
int root_id, new_root_id, irm_id, gap_count, generation, grace;
int do_reset = 0;
spin_lock_irqsave(&card->lock, flags);
generation = card->generation;
root = card->root_node->data;
root_id = card->root_node->node_id;
grace = time_after(jiffies, card->reset_jiffies + DIV_ROUND_UP(HZ, 10));
if (card->bm_generation + 1 == generation ||
(card->bm_generation != generation && grace)) {
/*
* This first step is to figure out who is IRM and
* then try to become bus manager. If the IRM is not
* well defined (e.g. does not have an active link
* layer or does not responds to our lock request, we
* will have to do a little vigilante bus management.
* In that case, we do a goto into the gap count logic
* so that when we do the reset, we still optimize the
* gap count. That could well save a reset in the
* next generation.
*/
irm_id = card->irm_node->node_id;
if (!card->irm_node->link_on) {
new_root_id = card->local_node->node_id;
fw_notify("IRM has link off, making local node (%02x) root.\n",
new_root_id);
goto pick_me;
}
bmd.lock.arg = cpu_to_be32(0x3f);
bmd.lock.data = cpu_to_be32(card->local_node->node_id);
spin_unlock_irqrestore(&card->lock, flags);
init_completion(&bmd.done);
fw_send_request(card, &bmd.t, TCODE_LOCK_COMPARE_SWAP,
irm_id, generation,
SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID,
&bmd.lock, sizeof(bmd.lock),
complete_bm_lock, &bmd);
wait_for_completion(&bmd.done);
if (bmd.rcode == RCODE_GENERATION) {
/*
* Another bus reset happened. Just return,
* the BM work has been rescheduled.
*/
return;
}
if (bmd.rcode == RCODE_COMPLETE && bmd.old != 0x3f)
/* Somebody else is BM, let them do the work. */
return;
spin_lock_irqsave(&card->lock, flags);
if (bmd.rcode != RCODE_COMPLETE) {
/*
* The lock request failed, maybe the IRM
* isn't really IRM capable after all. Let's
* do a bus reset and pick the local node as
* root, and thus, IRM.
*/
new_root_id = card->local_node->node_id;
fw_notify("BM lock failed, making local node (%02x) root.\n",
new_root_id);
goto pick_me;
}
} else if (card->bm_generation != generation) {
/*
* OK, we weren't BM in the last generation, and it's
* less than 100ms since last bus reset. Reschedule
* this task 100ms from now.
*/
spin_unlock_irqrestore(&card->lock, flags);
schedule_delayed_work(&card->work, DIV_ROUND_UP(HZ, 10));
return;
}
/*
* We're bus manager for this generation, so next step is to
* make sure we have an active cycle master and do gap count
* optimization.
*/
card->bm_generation = generation;
if (root == NULL) {
/*
* Either link_on is false, or we failed to read the
* config rom. In either case, pick another root.
*/
new_root_id = card->local_node->node_id;
} else if (atomic_read(&root->state) != FW_DEVICE_RUNNING) {
/*
* If we haven't probed this device yet, bail out now
* and let's try again once that's done.
*/
spin_unlock_irqrestore(&card->lock, flags);
return;
} else if (root->config_rom[2] & BIB_CMC) {
/*
* FIXME: I suppose we should set the cmstr bit in the
* STATE_CLEAR register of this node, as described in
* 1394-1995, 8.4.2.6. Also, send out a force root
* packet for this node.
*/
new_root_id = root_id;
} else {
/*
* Current root has an active link layer and we
* successfully read the config rom, but it's not
* cycle master capable.
*/
new_root_id = card->local_node->node_id;
}
pick_me:
/* Now figure out what gap count to set. */
if (card->topology_type == FW_TOPOLOGY_A &&
card->root_node->max_hops < ARRAY_SIZE(gap_count_table))
gap_count = gap_count_table[card->root_node->max_hops];
else
gap_count = 63;
/*
* Finally, figure out if we should do a reset or not. If we've
* done less that 5 resets with the same physical topology and we
* have either a new root or a new gap count setting, let's do it.
*/
if (card->bm_retries++ < 5 &&
(card->gap_count != gap_count || new_root_id != root_id))
do_reset = 1;
spin_unlock_irqrestore(&card->lock, flags);
if (do_reset) {
fw_notify("phy config: card %d, new root=%x, gap_count=%d\n",
card->index, new_root_id, gap_count);
fw_send_phy_config(card, new_root_id, generation, gap_count);
fw_core_initiate_bus_reset(card, 1);
}
}
static void
flush_timer_callback(unsigned long data)
{
struct fw_card *card = (struct fw_card *)data;
fw_flush_transactions(card);
}
void
fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
struct device *device)
{
static atomic_t index = ATOMIC_INIT(-1);
kref_init(&card->kref);
card->index = atomic_inc_return(&index);
card->driver = driver;
card->device = device;
card->current_tlabel = 0;
card->tlabel_mask = 0;
card->color = 0;
INIT_LIST_HEAD(&card->transaction_list);
spin_lock_init(&card->lock);
setup_timer(&card->flush_timer,
flush_timer_callback, (unsigned long)card);
card->local_node = NULL;
INIT_DELAYED_WORK(&card->work, fw_card_bm_work);
}
EXPORT_SYMBOL(fw_card_initialize);
int
fw_card_add(struct fw_card *card,
u32 max_receive, u32 link_speed, u64 guid)
{
u32 *config_rom;
size_t length;
card->max_receive = max_receive;
card->link_speed = link_speed;
card->guid = guid;
/* Activate link_on bit and contender bit in our self ID packets.*/
if (card->driver->update_phy_reg(card, 4, 0,
PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
return -EIO;
/*
* The subsystem grabs a reference when the card is added and
* drops it when the driver calls fw_core_remove_card.
*/
fw_card_get(card);
mutex_lock(&card_mutex);
config_rom = generate_config_rom(card, &length);
list_add_tail(&card->link, &card_list);
mutex_unlock(&card_mutex);
return card->driver->enable(card, config_rom, length);
}
EXPORT_SYMBOL(fw_card_add);
/*
* The next few functions implements a dummy driver that use once a
* card driver shuts down an fw_card. This allows the driver to
* cleanly unload, as all IO to the card will be handled by the dummy
* driver instead of calling into the (possibly) unloaded module. The
* dummy driver just fails all IO.
*/
static int
dummy_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
BUG();
return -1;
}
static int
dummy_update_phy_reg(struct fw_card *card, int address,
int clear_bits, int set_bits)
{
return -ENODEV;
}
static int
dummy_set_config_rom(struct fw_card *card,
u32 *config_rom, size_t length)
{
/*
* We take the card out of card_list before setting the dummy
* driver, so this should never get called.
*/
BUG();
return -1;
}
static void
dummy_send_request(struct fw_card *card, struct fw_packet *packet)
{
packet->callback(packet, card, -ENODEV);
}
static void
dummy_send_response(struct fw_card *card, struct fw_packet *packet)
{
packet->callback(packet, card, -ENODEV);
}
static int
dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
return -ENOENT;
}
static int
dummy_enable_phys_dma(struct fw_card *card,
int node_id, int generation)
{
return -ENODEV;
}
static struct fw_card_driver dummy_driver = {
.name = "dummy",
.enable = dummy_enable,
.update_phy_reg = dummy_update_phy_reg,
.set_config_rom = dummy_set_config_rom,
.send_request = dummy_send_request,
.cancel_packet = dummy_cancel_packet,
.send_response = dummy_send_response,
.enable_phys_dma = dummy_enable_phys_dma,
};
void
fw_core_remove_card(struct fw_card *card)
{
card->driver->update_phy_reg(card, 4,
PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
fw_core_initiate_bus_reset(card, 1);
mutex_lock(&card_mutex);
list_del(&card->link);
mutex_unlock(&card_mutex);
/* Set up the dummy driver. */
card->driver = &dummy_driver;
fw_flush_transactions(card);
fw_destroy_nodes(card);
fw_card_put(card);
}
EXPORT_SYMBOL(fw_core_remove_card);
struct fw_card *
fw_card_get(struct fw_card *card)
{
kref_get(&card->kref);
return card;
}
EXPORT_SYMBOL(fw_card_get);
static void
release_card(struct kref *kref)
{
struct fw_card *card = container_of(kref, struct fw_card, kref);
kfree(card);
}
/*
* An assumption for fw_card_put() is that the card driver allocates
* the fw_card struct with kalloc and that it has been shut down
* before the last ref is dropped.
*/
void
fw_card_put(struct fw_card *card)
{
kref_put(&card->kref, release_card);
}
EXPORT_SYMBOL(fw_card_put);
int
fw_core_initiate_bus_reset(struct fw_card *card, int short_reset)
{
int reg = short_reset ? 5 : 1;
int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
return card->driver->update_phy_reg(card, reg, 0, bit);
}
EXPORT_SYMBOL(fw_core_initiate_bus_reset);
/*
* Char device for device raw access
*
* Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/vmalloc.h>
#include <linux/poll.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/idr.h>
#include <linux/compat.h>
#include <linux/firewire-cdev.h>
#include <asm/uaccess.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
struct client;
struct client_resource {
struct list_head link;
void (*release)(struct client *client, struct client_resource *r);
u32 handle;
};
/*
* dequeue_event() just kfree()'s the event, so the event has to be
* the first field in the struct.
*/
struct event {
struct { void *data; size_t size; } v[2];
struct list_head link;
};
struct bus_reset {
struct event event;
struct fw_cdev_event_bus_reset reset;
};
struct response {
struct event event;
struct fw_transaction transaction;
struct client *client;
struct client_resource resource;
struct fw_cdev_event_response response;
};
struct iso_interrupt {
struct event event;
struct fw_cdev_event_iso_interrupt interrupt;
};
struct client {
u32 version;
struct fw_device *device;
spinlock_t lock;
u32 resource_handle;
struct list_head resource_list;
struct list_head event_list;
wait_queue_head_t wait;
u64 bus_reset_closure;
struct fw_iso_context *iso_context;
u64 iso_closure;
struct fw_iso_buffer buffer;
unsigned long vm_start;
struct list_head link;
};
static inline void __user *
u64_to_uptr(__u64 value)
{
return (void __user *)(unsigned long)value;
}
static inline __u64
uptr_to_u64(void __user *ptr)
{
return (__u64)(unsigned long)ptr;
}
static int fw_device_op_open(struct inode *inode, struct file *file)
{
struct fw_device *device;
struct client *client;
unsigned long flags;
device = fw_device_from_devt(inode->i_rdev);
if (device == NULL)
return -ENODEV;
client = kzalloc(sizeof(*client), GFP_KERNEL);
if (client == NULL)
return -ENOMEM;
client->device = fw_device_get(device);
INIT_LIST_HEAD(&client->event_list);
INIT_LIST_HEAD(&client->resource_list);
spin_lock_init(&client->lock);
init_waitqueue_head(&client->wait);
file->private_data = client;
spin_lock_irqsave(&device->card->lock, flags);
list_add_tail(&client->link, &device->client_list);
spin_unlock_irqrestore(&device->card->lock, flags);
return 0;
}
static void queue_event(struct client *client, struct event *event,
void *data0, size_t size0, void *data1, size_t size1)
{
unsigned long flags;
event->v[0].data = data0;
event->v[0].size = size0;
event->v[1].data = data1;
event->v[1].size = size1;
spin_lock_irqsave(&client->lock, flags);
list_add_tail(&event->link, &client->event_list);
wake_up_interruptible(&client->wait);
spin_unlock_irqrestore(&client->lock, flags);
}
static int
dequeue_event(struct client *client, char __user *buffer, size_t count)
{
unsigned long flags;
struct event *event;
size_t size, total;
int i, retval;
retval = wait_event_interruptible(client->wait,
!list_empty(&client->event_list) ||
fw_device_is_shutdown(client->device));
if (retval < 0)
return retval;
if (list_empty(&client->event_list) &&
fw_device_is_shutdown(client->device))
return -ENODEV;
spin_lock_irqsave(&client->lock, flags);
event = container_of(client->event_list.next, struct event, link);
list_del(&event->link);
spin_unlock_irqrestore(&client->lock, flags);
total = 0;
for (i = 0; i < ARRAY_SIZE(event->v) && total < count; i++) {
size = min(event->v[i].size, count - total);
if (copy_to_user(buffer + total, event->v[i].data, size)) {
retval = -EFAULT;
goto out;
}
total += size;
}
retval = total;
out:
kfree(event);
return retval;
}
static ssize_t
fw_device_op_read(struct file *file,
char __user *buffer, size_t count, loff_t *offset)
{
struct client *client = file->private_data;
return dequeue_event(client, buffer, count);
}
static void
fill_bus_reset_event(struct fw_cdev_event_bus_reset *event,
struct client *client)
{
struct fw_card *card = client->device->card;
event->closure = client->bus_reset_closure;
event->type = FW_CDEV_EVENT_BUS_RESET;
event->node_id = client->device->node_id;
event->local_node_id = card->local_node->node_id;
event->bm_node_id = 0; /* FIXME: We don't track the BM. */
event->irm_node_id = card->irm_node->node_id;
event->root_node_id = card->root_node->node_id;
event->generation = card->generation;
}
static void
for_each_client(struct fw_device *device,
void (*callback)(struct client *client))
{
struct fw_card *card = device->card;
struct client *c;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(c, &device->client_list, link)
callback(c);
spin_unlock_irqrestore(&card->lock, flags);
}
static void
queue_bus_reset_event(struct client *client)
{
struct bus_reset *bus_reset;
bus_reset = kzalloc(sizeof(*bus_reset), GFP_ATOMIC);
if (bus_reset == NULL) {
fw_notify("Out of memory when allocating bus reset event\n");
return;
}
fill_bus_reset_event(&bus_reset->reset, client);
queue_event(client, &bus_reset->event,
&bus_reset->reset, sizeof(bus_reset->reset), NULL, 0);
}
void fw_device_cdev_update(struct fw_device *device)
{
for_each_client(device, queue_bus_reset_event);
}
static void wake_up_client(struct client *client)
{
wake_up_interruptible(&client->wait);
}
void fw_device_cdev_remove(struct fw_device *device)
{
for_each_client(device, wake_up_client);
}
static int ioctl_get_info(struct client *client, void *buffer)
{
struct fw_cdev_get_info *get_info = buffer;
struct fw_cdev_event_bus_reset bus_reset;
client->version = get_info->version;
get_info->version = FW_CDEV_VERSION;
if (get_info->rom != 0) {
void __user *uptr = u64_to_uptr(get_info->rom);
size_t want = get_info->rom_length;
size_t have = client->device->config_rom_length * 4;
if (copy_to_user(uptr, client->device->config_rom,
min(want, have)))
return -EFAULT;
}
get_info->rom_length = client->device->config_rom_length * 4;
client->bus_reset_closure = get_info->bus_reset_closure;
if (get_info->bus_reset != 0) {
void __user *uptr = u64_to_uptr(get_info->bus_reset);
fill_bus_reset_event(&bus_reset, client);
if (copy_to_user(uptr, &bus_reset, sizeof(bus_reset)))
return -EFAULT;
}
get_info->card = client->device->card->index;
return 0;
}
static void
add_client_resource(struct client *client, struct client_resource *resource)
{
unsigned long flags;
spin_lock_irqsave(&client->lock, flags);
list_add_tail(&resource->link, &client->resource_list);
resource->handle = client->resource_handle++;
spin_unlock_irqrestore(&client->lock, flags);
}
static int
release_client_resource(struct client *client, u32 handle,
struct client_resource **resource)
{
struct client_resource *r;
unsigned long flags;
spin_lock_irqsave(&client->lock, flags);
list_for_each_entry(r, &client->resource_list, link) {
if (r->handle == handle) {
list_del(&r->link);
break;
}
}
spin_unlock_irqrestore(&client->lock, flags);
if (&r->link == &client->resource_list)
return -EINVAL;
if (resource)
*resource = r;
else
r->release(client, r);
return 0;
}
static void
release_transaction(struct client *client, struct client_resource *resource)
{
struct response *response =
container_of(resource, struct response, resource);
fw_cancel_transaction(client->device->card, &response->transaction);
}
static void
complete_transaction(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct response *response = data;
struct client *client = response->client;
unsigned long flags;
if (length < response->response.length)
response->response.length = length;
if (rcode == RCODE_COMPLETE)
memcpy(response->response.data, payload,
response->response.length);
spin_lock_irqsave(&client->lock, flags);
list_del(&response->resource.link);
spin_unlock_irqrestore(&client->lock, flags);
response->response.type = FW_CDEV_EVENT_RESPONSE;
response->response.rcode = rcode;
queue_event(client, &response->event,
&response->response, sizeof(response->response),
response->response.data, response->response.length);
}
static ssize_t ioctl_send_request(struct client *client, void *buffer)
{
struct fw_device *device = client->device;
struct fw_cdev_send_request *request = buffer;
struct response *response;
/* What is the biggest size we'll accept, really? */
if (request->length > 4096)
return -EINVAL;
response = kmalloc(sizeof(*response) + request->length, GFP_KERNEL);
if (response == NULL)
return -ENOMEM;
response->client = client;
response->response.length = request->length;
response->response.closure = request->closure;
if (request->data &&
copy_from_user(response->response.data,
u64_to_uptr(request->data), request->length)) {
kfree(response);
return -EFAULT;
}
response->resource.release = release_transaction;
add_client_resource(client, &response->resource);
fw_send_request(device->card, &response->transaction,
request->tcode & 0x1f,
device->node->node_id,
request->generation,
device->node->max_speed,
request->offset,
response->response.data, request->length,
complete_transaction, response);
if (request->data)
return sizeof(request) + request->length;
else
return sizeof(request);
}
struct address_handler {
struct fw_address_handler handler;
__u64 closure;
struct client *client;
struct client_resource resource;
};
struct request {
struct fw_request *request;
void *data;
size_t length;
struct client_resource resource;
};
struct request_event {
struct event event;
struct fw_cdev_event_request request;
};
static void
release_request(struct client *client, struct client_resource *resource)
{
struct request *request =
container_of(resource, struct request, resource);
fw_send_response(client->device->card, request->request,
RCODE_CONFLICT_ERROR);
kfree(request);
}
static void
handle_request(struct fw_card *card, struct fw_request *r,
int tcode, int destination, int source,
int generation, int speed,
unsigned long long offset,
void *payload, size_t length, void *callback_data)
{
struct address_handler *handler = callback_data;
struct request *request;
struct request_event *e;
struct client *client = handler->client;
request = kmalloc(sizeof(*request), GFP_ATOMIC);
e = kmalloc(sizeof(*e), GFP_ATOMIC);
if (request == NULL || e == NULL) {
kfree(request);
kfree(e);
fw_send_response(card, r, RCODE_CONFLICT_ERROR);
return;
}
request->request = r;
request->data = payload;
request->length = length;
request->resource.release = release_request;
add_client_resource(client, &request->resource);
e->request.type = FW_CDEV_EVENT_REQUEST;
e->request.tcode = tcode;
e->request.offset = offset;
e->request.length = length;
e->request.handle = request->resource.handle;
e->request.closure = handler->closure;
queue_event(client, &e->event,
&e->request, sizeof(e->request), payload, length);
}
static void
release_address_handler(struct client *client,
struct client_resource *resource)
{
struct address_handler *handler =
container_of(resource, struct address_handler, resource);
fw_core_remove_address_handler(&handler->handler);
kfree(handler);
}
static int ioctl_allocate(struct client *client, void *buffer)
{
struct fw_cdev_allocate *request = buffer;
struct address_handler *handler;
struct fw_address_region region;
handler = kmalloc(sizeof(*handler), GFP_KERNEL);
if (handler == NULL)
return -ENOMEM;
region.start = request->offset;
region.end = request->offset + request->length;
handler->handler.length = request->length;
handler->handler.address_callback = handle_request;
handler->handler.callback_data = handler;
handler->closure = request->closure;
handler->client = client;
if (fw_core_add_address_handler(&handler->handler, &region) < 0) {
kfree(handler);
return -EBUSY;
}
handler->resource.release = release_address_handler;
add_client_resource(client, &handler->resource);
request->handle = handler->resource.handle;
return 0;
}
static int ioctl_deallocate(struct client *client, void *buffer)
{
struct fw_cdev_deallocate *request = buffer;
return release_client_resource(client, request->handle, NULL);
}
static int ioctl_send_response(struct client *client, void *buffer)
{
struct fw_cdev_send_response *request = buffer;
struct client_resource *resource;
struct request *r;
if (release_client_resource(client, request->handle, &resource) < 0)
return -EINVAL;
r = container_of(resource, struct request, resource);
if (request->length < r->length)
r->length = request->length;
if (copy_from_user(r->data, u64_to_uptr(request->data), r->length))
return -EFAULT;
fw_send_response(client->device->card, r->request, request->rcode);
kfree(r);
return 0;
}
static int ioctl_initiate_bus_reset(struct client *client, void *buffer)
{
struct fw_cdev_initiate_bus_reset *request = buffer;
int short_reset;
short_reset = (request->type == FW_CDEV_SHORT_RESET);
return fw_core_initiate_bus_reset(client->device->card, short_reset);
}
struct descriptor {
struct fw_descriptor d;
struct client_resource resource;
u32 data[0];
};
static void release_descriptor(struct client *client,
struct client_resource *resource)
{
struct descriptor *descriptor =
container_of(resource, struct descriptor, resource);
fw_core_remove_descriptor(&descriptor->d);
kfree(descriptor);
}
static int ioctl_add_descriptor(struct client *client, void *buffer)
{
struct fw_cdev_add_descriptor *request = buffer;
struct descriptor *descriptor;
int retval;
if (request->length > 256)
return -EINVAL;
descriptor =
kmalloc(sizeof(*descriptor) + request->length * 4, GFP_KERNEL);
if (descriptor == NULL)
return -ENOMEM;
if (copy_from_user(descriptor->data,
u64_to_uptr(request->data), request->length * 4)) {
kfree(descriptor);
return -EFAULT;
}
descriptor->d.length = request->length;
descriptor->d.immediate = request->immediate;
descriptor->d.key = request->key;
descriptor->d.data = descriptor->data;
retval = fw_core_add_descriptor(&descriptor->d);
if (retval < 0) {
kfree(descriptor);
return retval;
}
descriptor->resource.release = release_descriptor;
add_client_resource(client, &descriptor->resource);
request->handle = descriptor->resource.handle;
return 0;
}
static int ioctl_remove_descriptor(struct client *client, void *buffer)
{
struct fw_cdev_remove_descriptor *request = buffer;
return release_client_resource(client, request->handle, NULL);
}
static void
iso_callback(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header, void *data)
{
struct client *client = data;
struct iso_interrupt *interrupt;
interrupt = kzalloc(sizeof(*interrupt) + header_length, GFP_ATOMIC);
if (interrupt == NULL)
return;
interrupt->interrupt.type = FW_CDEV_EVENT_ISO_INTERRUPT;
interrupt->interrupt.closure = client->iso_closure;
interrupt->interrupt.cycle = cycle;
interrupt->interrupt.header_length = header_length;
memcpy(interrupt->interrupt.header, header, header_length);
queue_event(client, &interrupt->event,
&interrupt->interrupt,
sizeof(interrupt->interrupt) + header_length, NULL, 0);
}
static int ioctl_create_iso_context(struct client *client, void *buffer)
{
struct fw_cdev_create_iso_context *request = buffer;
if (request->channel > 63)
return -EINVAL;
switch (request->type) {
case FW_ISO_CONTEXT_RECEIVE:
if (request->header_size < 4 || (request->header_size & 3))
return -EINVAL;
break;
case FW_ISO_CONTEXT_TRANSMIT:
if (request->speed > SCODE_3200)
return -EINVAL;
break;
default:
return -EINVAL;
}
client->iso_closure = request->closure;
client->iso_context = fw_iso_context_create(client->device->card,
request->type,
request->channel,
request->speed,
request->header_size,
iso_callback, client);
if (IS_ERR(client->iso_context))
return PTR_ERR(client->iso_context);
/* We only support one context at this time. */
request->handle = 0;
return 0;
}
static int ioctl_queue_iso(struct client *client, void *buffer)
{
struct fw_cdev_queue_iso *request = buffer;
struct fw_cdev_iso_packet __user *p, *end, *next;
struct fw_iso_context *ctx = client->iso_context;
unsigned long payload, buffer_end, header_length;
int count;
struct {
struct fw_iso_packet packet;
u8 header[256];
} u;
if (ctx == NULL || request->handle != 0)
return -EINVAL;
/*
* If the user passes a non-NULL data pointer, has mmap()'ed
* the iso buffer, and the pointer points inside the buffer,
* we setup the payload pointers accordingly. Otherwise we
* set them both to 0, which will still let packets with
* payload_length == 0 through. In other words, if no packets
* use the indirect payload, the iso buffer need not be mapped
* and the request->data pointer is ignored.
*/
payload = (unsigned long)request->data - client->vm_start;
buffer_end = client->buffer.page_count << PAGE_SHIFT;
if (request->data == 0 || client->buffer.pages == NULL ||
payload >= buffer_end) {
payload = 0;
buffer_end = 0;
}
if (!access_ok(VERIFY_READ, request->packets, request->size))
return -EFAULT;
p = (struct fw_cdev_iso_packet __user *)u64_to_uptr(request->packets);
end = (void __user *)p + request->size;
count = 0;
while (p < end) {
if (__copy_from_user(&u.packet, p, sizeof(*p)))
return -EFAULT;
if (ctx->type == FW_ISO_CONTEXT_TRANSMIT) {
header_length = u.packet.header_length;
} else {
/*
* We require that header_length is a multiple of
* the fixed header size, ctx->header_size.
*/
if (ctx->header_size == 0) {
if (u.packet.header_length > 0)
return -EINVAL;
} else if (u.packet.header_length % ctx->header_size != 0) {
return -EINVAL;
}
header_length = 0;
}
next = (struct fw_cdev_iso_packet __user *)
&p->header[header_length / 4];
if (next > end)
return -EINVAL;
if (__copy_from_user
(u.packet.header, p->header, header_length))
return -EFAULT;
if (u.packet.skip && ctx->type == FW_ISO_CONTEXT_TRANSMIT &&
u.packet.header_length + u.packet.payload_length > 0)
return -EINVAL;
if (payload + u.packet.payload_length > buffer_end)
return -EINVAL;
if (fw_iso_context_queue(ctx, &u.packet,
&client->buffer, payload))
break;
p = next;
payload += u.packet.payload_length;
count++;
}
request->size -= uptr_to_u64(p) - request->packets;
request->packets = uptr_to_u64(p);
request->data = client->vm_start + payload;
return count;
}
static int ioctl_start_iso(struct client *client, void *buffer)
{
struct fw_cdev_start_iso *request = buffer;
if (request->handle != 0)
return -EINVAL;
if (client->iso_context->type == FW_ISO_CONTEXT_RECEIVE) {
if (request->tags == 0 || request->tags > 15)
return -EINVAL;
if (request->sync > 15)
return -EINVAL;
}
return fw_iso_context_start(client->iso_context, request->cycle,
request->sync, request->tags);
}
static int ioctl_stop_iso(struct client *client, void *buffer)
{
struct fw_cdev_stop_iso *request = buffer;
if (request->handle != 0)
return -EINVAL;
return fw_iso_context_stop(client->iso_context);
}
static int (* const ioctl_handlers[])(struct client *client, void *buffer) = {
ioctl_get_info,
ioctl_send_request,
ioctl_allocate,
ioctl_deallocate,
ioctl_send_response,
ioctl_initiate_bus_reset,
ioctl_add_descriptor,
ioctl_remove_descriptor,
ioctl_create_iso_context,
ioctl_queue_iso,
ioctl_start_iso,
ioctl_stop_iso,
};
static int
dispatch_ioctl(struct client *client, unsigned int cmd, void __user *arg)
{
char buffer[256];
int retval;
if (_IOC_TYPE(cmd) != '#' ||
_IOC_NR(cmd) >= ARRAY_SIZE(ioctl_handlers))
return -EINVAL;
if (_IOC_DIR(cmd) & _IOC_WRITE) {
if (_IOC_SIZE(cmd) > sizeof(buffer) ||
copy_from_user(buffer, arg, _IOC_SIZE(cmd)))
return -EFAULT;
}
retval = ioctl_handlers[_IOC_NR(cmd)](client, buffer);
if (retval < 0)
return retval;
if (_IOC_DIR(cmd) & _IOC_READ) {
if (_IOC_SIZE(cmd) > sizeof(buffer) ||
copy_to_user(arg, buffer, _IOC_SIZE(cmd)))
return -EFAULT;
}
return 0;
}
static long
fw_device_op_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct client *client = file->private_data;
return dispatch_ioctl(client, cmd, (void __user *) arg);
}
#ifdef CONFIG_COMPAT
static long
fw_device_op_compat_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)
{
struct client *client = file->private_data;
return dispatch_ioctl(client, cmd, compat_ptr(arg));
}
#endif
static int fw_device_op_mmap(struct file *file, struct vm_area_struct *vma)
{
struct client *client = file->private_data;
enum dma_data_direction direction;
unsigned long size;
int page_count, retval;
/* FIXME: We could support multiple buffers, but we don't. */
if (client->buffer.pages != NULL)
return -EBUSY;
if (!(vma->vm_flags & VM_SHARED))
return -EINVAL;
if (vma->vm_start & ~PAGE_MASK)
return -EINVAL;
client->vm_start = vma->vm_start;
size = vma->vm_end - vma->vm_start;
page_count = size >> PAGE_SHIFT;
if (size & ~PAGE_MASK)
return -EINVAL;
if (vma->vm_flags & VM_WRITE)
direction = DMA_TO_DEVICE;
else
direction = DMA_FROM_DEVICE;
retval = fw_iso_buffer_init(&client->buffer, client->device->card,
page_count, direction);
if (retval < 0)
return retval;
retval = fw_iso_buffer_map(&client->buffer, vma);
if (retval < 0)
fw_iso_buffer_destroy(&client->buffer, client->device->card);
return retval;
}
static int fw_device_op_release(struct inode *inode, struct file *file)
{
struct client *client = file->private_data;
struct event *e, *next_e;
struct client_resource *r, *next_r;
unsigned long flags;
if (client->buffer.pages)
fw_iso_buffer_destroy(&client->buffer, client->device->card);
if (client->iso_context)
fw_iso_context_destroy(client->iso_context);
list_for_each_entry_safe(r, next_r, &client->resource_list, link)
r->release(client, r);
/*
* FIXME: We should wait for the async tasklets to stop
* running before freeing the memory.
*/
list_for_each_entry_safe(e, next_e, &client->event_list, link)
kfree(e);
spin_lock_irqsave(&client->device->card->lock, flags);
list_del(&client->link);
spin_unlock_irqrestore(&client->device->card->lock, flags);
fw_device_put(client->device);
kfree(client);
return 0;
}
static unsigned int fw_device_op_poll(struct file *file, poll_table * pt)
{
struct client *client = file->private_data;
unsigned int mask = 0;
poll_wait(file, &client->wait, pt);
if (fw_device_is_shutdown(client->device))
mask |= POLLHUP | POLLERR;
if (!list_empty(&client->event_list))
mask |= POLLIN | POLLRDNORM;
return mask;
}
const struct file_operations fw_device_ops = {
.owner = THIS_MODULE,
.open = fw_device_op_open,
.read = fw_device_op_read,
.unlocked_ioctl = fw_device_op_ioctl,
.poll = fw_device_op_poll,
.release = fw_device_op_release,
.mmap = fw_device_op_mmap,
#ifdef CONFIG_COMPAT
.compat_ioctl = fw_device_op_compat_ioctl,
#endif
};
/*
* Device probing and sysfs code.
*
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/kthread.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/idr.h>
#include <linux/rwsem.h>
#include <asm/semaphore.h>
#include <linux/ctype.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 * p)
{
ci->p = p + 1;
ci->end = ci->p + (p[0] >> 16);
}
EXPORT_SYMBOL(fw_csr_iterator_init);
int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
{
*key = *ci->p >> 24;
*value = *ci->p & 0xffffff;
return ci->p++ < ci->end;
}
EXPORT_SYMBOL(fw_csr_iterator_next);
static int is_fw_unit(struct device *dev);
static int match_unit_directory(u32 * directory, const struct fw_device_id *id)
{
struct fw_csr_iterator ci;
int key, value, match;
match = 0;
fw_csr_iterator_init(&ci, directory);
while (fw_csr_iterator_next(&ci, &key, &value)) {
if (key == CSR_VENDOR && value == id->vendor)
match |= FW_MATCH_VENDOR;
if (key == CSR_MODEL && value == id->model)
match |= FW_MATCH_MODEL;
if (key == CSR_SPECIFIER_ID && value == id->specifier_id)
match |= FW_MATCH_SPECIFIER_ID;
if (key == CSR_VERSION && value == id->version)
match |= FW_MATCH_VERSION;
}
return (match & id->match_flags) == id->match_flags;
}
static int fw_unit_match(struct device *dev, struct device_driver *drv)
{
struct fw_unit *unit = fw_unit(dev);
struct fw_driver *driver = fw_driver(drv);
int i;
/* We only allow binding to fw_units. */
if (!is_fw_unit(dev))
return 0;
for (i = 0; driver->id_table[i].match_flags != 0; i++) {
if (match_unit_directory(unit->directory, &driver->id_table[i]))
return 1;
}
return 0;
}
static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
{
struct fw_device *device = fw_device(unit->device.parent);
struct fw_csr_iterator ci;
int key, value;
int vendor = 0;
int model = 0;
int specifier_id = 0;
int version = 0;
fw_csr_iterator_init(&ci, &device->config_rom[5]);
while (fw_csr_iterator_next(&ci, &key, &value)) {
switch (key) {
case CSR_VENDOR:
vendor = value;
break;
case CSR_MODEL:
model = value;
break;
}
}
fw_csr_iterator_init(&ci, unit->directory);
while (fw_csr_iterator_next(&ci, &key, &value)) {
switch (key) {
case CSR_SPECIFIER_ID:
specifier_id = value;
break;
case CSR_VERSION:
version = value;
break;
}
}
return snprintf(buffer, buffer_size,
"ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
vendor, model, specifier_id, version);
}
static int
fw_unit_uevent(struct device *dev, char **envp, int num_envp,
char *buffer, int buffer_size)
{
struct fw_unit *unit = fw_unit(dev);
char modalias[64];
int length = 0;
int i = 0;
get_modalias(unit, modalias, sizeof(modalias));
if (add_uevent_var(envp, num_envp, &i,
buffer, buffer_size, &length,
"MODALIAS=%s", modalias))
return -ENOMEM;
envp[i] = NULL;
return 0;
}
struct bus_type fw_bus_type = {
.name = "firewire",
.match = fw_unit_match,
};
EXPORT_SYMBOL(fw_bus_type);
struct fw_device *fw_device_get(struct fw_device *device)
{
get_device(&device->device);
return device;
}
void fw_device_put(struct fw_device *device)
{
put_device(&device->device);
}
static void fw_device_release(struct device *dev)
{
struct fw_device *device = fw_device(dev);
unsigned long flags;
/*
* Take the card lock so we don't set this to NULL while a
* FW_NODE_UPDATED callback is being handled.
*/
spin_lock_irqsave(&device->card->lock, flags);
device->node->data = NULL;
spin_unlock_irqrestore(&device->card->lock, flags);
fw_node_put(device->node);
fw_card_put(device->card);
kfree(device->config_rom);
kfree(device);
}
int fw_device_enable_phys_dma(struct fw_device *device)
{
return device->card->driver->enable_phys_dma(device->card,
device->node_id,
device->generation);
}
EXPORT_SYMBOL(fw_device_enable_phys_dma);
struct config_rom_attribute {
struct device_attribute attr;
u32 key;
};
static ssize_t
show_immediate(struct device *dev, struct device_attribute *dattr, char *buf)
{
struct config_rom_attribute *attr =
container_of(dattr, struct config_rom_attribute, attr);
struct fw_csr_iterator ci;
u32 *dir;
int key, value;
if (is_fw_unit(dev))
dir = fw_unit(dev)->directory;
else
dir = fw_device(dev)->config_rom + 5;
fw_csr_iterator_init(&ci, dir);
while (fw_csr_iterator_next(&ci, &key, &value))
if (attr->key == key)
return snprintf(buf, buf ? PAGE_SIZE : 0,
"0x%06x\n", value);
return -ENOENT;
}
#define IMMEDIATE_ATTR(name, key) \
{ __ATTR(name, S_IRUGO, show_immediate, NULL), key }
static ssize_t
show_text_leaf(struct device *dev, struct device_attribute *dattr, char *buf)
{
struct config_rom_attribute *attr =
container_of(dattr, struct config_rom_attribute, attr);
struct fw_csr_iterator ci;
u32 *dir, *block = NULL, *p, *end;
int length, key, value, last_key = 0;
char *b;
if (is_fw_unit(dev))
dir = fw_unit(dev)->directory;
else
dir = fw_device(dev)->config_rom + 5;
fw_csr_iterator_init(&ci, dir);
while (fw_csr_iterator_next(&ci, &key, &value)) {
if (attr->key == last_key &&
key == (CSR_DESCRIPTOR | CSR_LEAF))
block = ci.p - 1 + value;
last_key = key;
}
if (block == NULL)
return -ENOENT;
length = min(block[0] >> 16, 256U);
if (length < 3)
return -ENOENT;
if (block[1] != 0 || block[2] != 0)
/* Unknown encoding. */
return -ENOENT;
if (buf == NULL)
return length * 4;
b = buf;
end = &block[length + 1];
for (p = &block[3]; p < end; p++, b += 4)
* (u32 *) b = (__force u32) __cpu_to_be32(*p);
/* Strip trailing whitespace and add newline. */
while (b--, (isspace(*b) || *b == '\0') && b > buf);
strcpy(b + 1, "\n");
return b + 2 - buf;
}
#define TEXT_LEAF_ATTR(name, key) \
{ __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
static struct config_rom_attribute config_rom_attributes[] = {
IMMEDIATE_ATTR(vendor, CSR_VENDOR),
IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
IMMEDIATE_ATTR(version, CSR_VERSION),
IMMEDIATE_ATTR(model, CSR_MODEL),
TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
TEXT_LEAF_ATTR(model_name, CSR_MODEL),
TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
};
static void
init_fw_attribute_group(struct device *dev,
struct device_attribute *attrs,
struct fw_attribute_group *group)
{
struct device_attribute *attr;
int i, j;
for (j = 0; attrs[j].attr.name != NULL; j++)
group->attrs[j] = &attrs[j].attr;
for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
attr = &config_rom_attributes[i].attr;
if (attr->show(dev, attr, NULL) < 0)
continue;
group->attrs[j++] = &attr->attr;
}
BUG_ON(j >= ARRAY_SIZE(group->attrs));
group->attrs[j++] = NULL;
group->groups[0] = &group->group;
group->groups[1] = NULL;
group->group.attrs = group->attrs;
dev->groups = group->groups;
}
static ssize_t
modalias_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fw_unit *unit = fw_unit(dev);
int length;
length = get_modalias(unit, buf, PAGE_SIZE);
strcpy(buf + length, "\n");
return length + 1;
}
static ssize_t
rom_index_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fw_device *device = fw_device(dev->parent);
struct fw_unit *unit = fw_unit(dev);
return snprintf(buf, PAGE_SIZE, "%d\n",
(int)(unit->directory - device->config_rom));
}
static struct device_attribute fw_unit_attributes[] = {
__ATTR_RO(modalias),
__ATTR_RO(rom_index),
__ATTR_NULL,
};
static ssize_t
config_rom_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fw_device *device = fw_device(dev);
memcpy(buf, device->config_rom, device->config_rom_length * 4);
return device->config_rom_length * 4;
}
static ssize_t
guid_show(struct device *dev, struct device_attribute *attr, char *buf)
{
struct fw_device *device = fw_device(dev);
u64 guid;
guid = ((u64)device->config_rom[3] << 32) | device->config_rom[4];
return snprintf(buf, PAGE_SIZE, "0x%016llx\n",
(unsigned long long)guid);
}
static struct device_attribute fw_device_attributes[] = {
__ATTR_RO(config_rom),
__ATTR_RO(guid),
__ATTR_NULL,
};
struct read_quadlet_callback_data {
struct completion done;
int rcode;
u32 data;
};
static void
complete_transaction(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct read_quadlet_callback_data *callback_data = data;
if (rcode == RCODE_COMPLETE)
callback_data->data = be32_to_cpu(*(__be32 *)payload);
callback_data->rcode = rcode;
complete(&callback_data->done);
}
static int read_rom(struct fw_device *device, int index, u32 * data)
{
struct read_quadlet_callback_data callback_data;
struct fw_transaction t;
u64 offset;
init_completion(&callback_data.done);
offset = 0xfffff0000400ULL + index * 4;
fw_send_request(device->card, &t, TCODE_READ_QUADLET_REQUEST,
device->node_id,
device->generation, SCODE_100,
offset, NULL, 4, complete_transaction, &callback_data);
wait_for_completion(&callback_data.done);
*data = callback_data.data;
return callback_data.rcode;
}
static int read_bus_info_block(struct fw_device *device)
{
static u32 rom[256];
u32 stack[16], sp, key;
int i, end, length;
/* First read the bus info block. */
for (i = 0; i < 5; i++) {
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
return -1;
/*
* As per IEEE1212 7.2, during power-up, devices can
* reply with a 0 for the first quadlet of the config
* rom to indicate that they are booting (for example,
* if the firmware is on the disk of a external
* harddisk). In that case we just fail, and the
* retry mechanism will try again later.
*/
if (i == 0 && rom[i] == 0)
return -1;
}
/*
* Now parse the config rom. The config rom is a recursive
* directory structure so we parse it using a stack of
* references to the blocks that make up the structure. We
* push a reference to the root directory on the stack to
* start things off.
*/
length = i;
sp = 0;
stack[sp++] = 0xc0000005;
while (sp > 0) {
/*
* Pop the next block reference of the stack. The
* lower 24 bits is the offset into the config rom,
* the upper 8 bits are the type of the reference the
* block.
*/
key = stack[--sp];
i = key & 0xffffff;
if (i >= ARRAY_SIZE(rom))
/*
* The reference points outside the standard
* config rom area, something's fishy.
*/
return -1;
/* Read header quadlet for the block to get the length. */
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
return -1;
end = i + (rom[i] >> 16) + 1;
i++;
if (end > ARRAY_SIZE(rom))
/*
* This block extends outside standard config
* area (and the array we're reading it
* into). That's broken, so ignore this
* device.
*/
return -1;
/*
* Now read in the block. If this is a directory
* block, check the entries as we read them to see if
* it references another block, and push it in that case.
*/
while (i < end) {
if (read_rom(device, i, &rom[i]) != RCODE_COMPLETE)
return -1;
if ((key >> 30) == 3 && (rom[i] >> 30) > 1 &&
sp < ARRAY_SIZE(stack))
stack[sp++] = i + rom[i];
i++;
}
if (length < i)
length = i;
}
device->config_rom = kmalloc(length * 4, GFP_KERNEL);
if (device->config_rom == NULL)
return -1;
memcpy(device->config_rom, rom, length * 4);
device->config_rom_length = length;
return 0;
}
static void fw_unit_release(struct device *dev)
{
struct fw_unit *unit = fw_unit(dev);
kfree(unit);
}
static struct device_type fw_unit_type = {
.uevent = fw_unit_uevent,
.release = fw_unit_release,
};
static int is_fw_unit(struct device *dev)
{
return dev->type == &fw_unit_type;
}
static void create_units(struct fw_device *device)
{
struct fw_csr_iterator ci;
struct fw_unit *unit;
int key, value, i;
i = 0;
fw_csr_iterator_init(&ci, &device->config_rom[5]);
while (fw_csr_iterator_next(&ci, &key, &value)) {
if (key != (CSR_UNIT | CSR_DIRECTORY))
continue;
/*
* Get the address of the unit directory and try to
* match the drivers id_tables against it.
*/
unit = kzalloc(sizeof(*unit), GFP_KERNEL);
if (unit == NULL) {
fw_error("failed to allocate memory for unit\n");
continue;
}
unit->directory = ci.p + value - 1;
unit->device.bus = &fw_bus_type;
unit->device.type = &fw_unit_type;
unit->device.parent = &device->device;
snprintf(unit->device.bus_id, sizeof(unit->device.bus_id),
"%s.%d", device->device.bus_id, i++);
init_fw_attribute_group(&unit->device,
fw_unit_attributes,
&unit->attribute_group);
if (device_register(&unit->device) < 0)
goto skip_unit;
continue;
skip_unit:
kfree(unit);
}
}
static int shutdown_unit(struct device *device, void *data)
{
device_unregister(device);
return 0;
}
static DECLARE_RWSEM(idr_rwsem);
static DEFINE_IDR(fw_device_idr);
int fw_cdev_major;
struct fw_device *fw_device_from_devt(dev_t devt)
{
struct fw_device *device;
down_read(&idr_rwsem);
device = idr_find(&fw_device_idr, MINOR(devt));
up_read(&idr_rwsem);
return device;
}
static void fw_device_shutdown(struct work_struct *work)
{
struct fw_device *device =
container_of(work, struct fw_device, work.work);
int minor = MINOR(device->device.devt);
down_write(&idr_rwsem);
idr_remove(&fw_device_idr, minor);
up_write(&idr_rwsem);
fw_device_cdev_remove(device);
device_for_each_child(&device->device, NULL, shutdown_unit);
device_unregister(&device->device);
}
static struct device_type fw_device_type = {
.release = fw_device_release,
};
/*
* These defines control the retry behavior for reading the config
* rom. It shouldn't be necessary to tweak these; if the device
* doesn't respond to a config rom read within 10 seconds, it's not
* going to respond at all. As for the initial delay, a lot of
* devices will be able to respond within half a second after bus
* reset. On the other hand, it's not really worth being more
* aggressive than that, since it scales pretty well; if 10 devices
* are plugged in, they're all getting read within one second.
*/
#define MAX_RETRIES 10
#define RETRY_DELAY (3 * HZ)
#define INITIAL_DELAY (HZ / 2)
static void fw_device_init(struct work_struct *work)
{
struct fw_device *device =
container_of(work, struct fw_device, work.work);
int minor, err;
/*
* All failure paths here set node->data to NULL, so that we
* don't try to do device_for_each_child() on a kfree()'d
* device.
*/
if (read_bus_info_block(device) < 0) {
if (device->config_rom_retries < MAX_RETRIES) {
device->config_rom_retries++;
schedule_delayed_work(&device->work, RETRY_DELAY);
} else {
fw_notify("giving up on config rom for node id %x\n",
device->node_id);
if (device->node == device->card->root_node)
schedule_delayed_work(&device->card->work, 0);
fw_device_release(&device->device);
}
return;
}
err = -ENOMEM;
down_write(&idr_rwsem);
if (idr_pre_get(&fw_device_idr, GFP_KERNEL))
err = idr_get_new(&fw_device_idr, device, &minor);
up_write(&idr_rwsem);
if (err < 0)
goto error;
device->device.bus = &fw_bus_type;
device->device.type = &fw_device_type;
device->device.parent = device->card->device;
device->device.devt = MKDEV(fw_cdev_major, minor);
snprintf(device->device.bus_id, sizeof(device->device.bus_id),
"fw%d", minor);
init_fw_attribute_group(&device->device,
fw_device_attributes,
&device->attribute_group);
if (device_add(&device->device)) {
fw_error("Failed to add device.\n");
goto error_with_cdev;
}
create_units(device);
/*
* Transition the device to running state. If it got pulled
* out from under us while we did the intialization work, we
* have to shut down the device again here. Normally, though,
* fw_node_event will be responsible for shutting it down when
* necessary. We have to use the atomic cmpxchg here to avoid
* racing with the FW_NODE_DESTROYED case in
* fw_node_event().
*/
if (atomic_cmpxchg(&device->state,
FW_DEVICE_INITIALIZING,
FW_DEVICE_RUNNING) == FW_DEVICE_SHUTDOWN)
fw_device_shutdown(&device->work.work);
else
fw_notify("created new fw device %s (%d config rom retries)\n",
device->device.bus_id, device->config_rom_retries);
/*
* Reschedule the IRM work if we just finished reading the
* root node config rom. If this races with a bus reset we
* just end up running the IRM work a couple of extra times -
* pretty harmless.
*/
if (device->node == device->card->root_node)
schedule_delayed_work(&device->card->work, 0);
return;
error_with_cdev:
down_write(&idr_rwsem);
idr_remove(&fw_device_idr, minor);
up_write(&idr_rwsem);
error:
put_device(&device->device);
}
static int update_unit(struct device *dev, void *data)
{
struct fw_unit *unit = fw_unit(dev);
struct fw_driver *driver = (struct fw_driver *)dev->driver;
if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
down(&dev->sem);
driver->update(unit);
up(&dev->sem);
}
return 0;
}
static void fw_device_update(struct work_struct *work)
{
struct fw_device *device =
container_of(work, struct fw_device, work.work);
fw_device_cdev_update(device);
device_for_each_child(&device->device, NULL, update_unit);
}
void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
{
struct fw_device *device;
switch (event) {
case FW_NODE_CREATED:
case FW_NODE_LINK_ON:
if (!node->link_on)
break;
device = kzalloc(sizeof(*device), GFP_ATOMIC);
if (device == NULL)
break;
/*
* Do minimal intialization of the device here, the
* rest will happen in fw_device_init(). We need the
* card and node so we can read the config rom and we
* need to do device_initialize() now so
* device_for_each_child() in FW_NODE_UPDATED is
* doesn't freak out.
*/
device_initialize(&device->device);
atomic_set(&device->state, FW_DEVICE_INITIALIZING);
device->card = fw_card_get(card);
device->node = fw_node_get(node);
device->node_id = node->node_id;
device->generation = card->generation;
INIT_LIST_HEAD(&device->client_list);
/*
* Set the node data to point back to this device so
* FW_NODE_UPDATED callbacks can update the node_id
* and generation for the device.
*/
node->data = device;
/*
* Many devices are slow to respond after bus resets,
* especially if they are bus powered and go through
* power-up after getting plugged in. We schedule the
* first config rom scan half a second after bus reset.
*/
INIT_DELAYED_WORK(&device->work, fw_device_init);
schedule_delayed_work(&device->work, INITIAL_DELAY);
break;
case FW_NODE_UPDATED:
if (!node->link_on || node->data == NULL)
break;
device = node->data;
device->node_id = node->node_id;
device->generation = card->generation;
if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
PREPARE_DELAYED_WORK(&device->work, fw_device_update);
schedule_delayed_work(&device->work, 0);
}
break;
case FW_NODE_DESTROYED:
case FW_NODE_LINK_OFF:
if (!node->data)
break;
/*
* Destroy the device associated with the node. There
* are two cases here: either the device is fully
* initialized (FW_DEVICE_RUNNING) or we're in the
* process of reading its config rom
* (FW_DEVICE_INITIALIZING). If it is fully
* initialized we can reuse device->work to schedule a
* full fw_device_shutdown(). If not, there's work
* scheduled to read it's config rom, and we just put
* the device in shutdown state to have that code fail
* to create the device.
*/
device = node->data;
if (atomic_xchg(&device->state,
FW_DEVICE_SHUTDOWN) == FW_DEVICE_RUNNING) {
PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
schedule_delayed_work(&device->work, 0);
}
break;
}
}
/*
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef __fw_device_h
#define __fw_device_h
#include <linux/fs.h>
#include <linux/cdev.h>
#include <asm/atomic.h>
enum fw_device_state {
FW_DEVICE_INITIALIZING,
FW_DEVICE_RUNNING,
FW_DEVICE_SHUTDOWN,
};
struct fw_attribute_group {
struct attribute_group *groups[2];
struct attribute_group group;
struct attribute *attrs[11];
};
struct fw_device {
atomic_t state;
struct fw_node *node;
int node_id;
int generation;
struct fw_card *card;
struct device device;
struct list_head link;
struct list_head client_list;
u32 *config_rom;
size_t config_rom_length;
int config_rom_retries;
struct delayed_work work;
struct fw_attribute_group attribute_group;
};
static inline struct fw_device *
fw_device(struct device *dev)
{
return container_of(dev, struct fw_device, device);
}
static inline int
fw_device_is_shutdown(struct fw_device *device)
{
return atomic_read(&device->state) == FW_DEVICE_SHUTDOWN;
}
struct fw_device *fw_device_get(struct fw_device *device);
void fw_device_put(struct fw_device *device);
int fw_device_enable_phys_dma(struct fw_device *device);
void fw_device_cdev_update(struct fw_device *device);
void fw_device_cdev_remove(struct fw_device *device);
struct fw_device *fw_device_from_devt(dev_t devt);
extern int fw_cdev_major;
struct fw_unit {
struct device device;
u32 *directory;
struct fw_attribute_group attribute_group;
};
static inline struct fw_unit *
fw_unit(struct device *dev)
{
return container_of(dev, struct fw_unit, device);
}
#define CSR_OFFSET 0x40
#define CSR_LEAF 0x80
#define CSR_DIRECTORY 0xc0
#define CSR_DESCRIPTOR 0x01
#define CSR_VENDOR 0x03
#define CSR_HARDWARE_VERSION 0x04
#define CSR_NODE_CAPABILITIES 0x0c
#define CSR_UNIT 0x11
#define CSR_SPECIFIER_ID 0x12
#define CSR_VERSION 0x13
#define CSR_DEPENDENT_INFO 0x14
#define CSR_MODEL 0x17
#define CSR_INSTANCE 0x18
#define SBP2_COMMAND_SET_SPECIFIER 0x38
#define SBP2_COMMAND_SET 0x39
#define SBP2_COMMAND_SET_REVISION 0x3b
#define SBP2_FIRMWARE_REVISION 0x3c
struct fw_csr_iterator {
u32 *p;
u32 *end;
};
void fw_csr_iterator_init(struct fw_csr_iterator *ci, u32 *p);
int fw_csr_iterator_next(struct fw_csr_iterator *ci,
int *key, int *value);
#define FW_MATCH_VENDOR 0x0001
#define FW_MATCH_MODEL 0x0002
#define FW_MATCH_SPECIFIER_ID 0x0004
#define FW_MATCH_VERSION 0x0008
struct fw_device_id {
u32 match_flags;
u32 vendor;
u32 model;
u32 specifier_id;
u32 version;
void *driver_data;
};
struct fw_driver {
struct device_driver driver;
/* Called when the parent device sits through a bus reset. */
void (*update) (struct fw_unit *unit);
const struct fw_device_id *id_table;
};
static inline struct fw_driver *
fw_driver(struct device_driver *drv)
{
return container_of(drv, struct fw_driver, driver);
}
extern const struct file_operations fw_device_ops;
#endif /* __fw_device_h */
/*
* Isochronous IO functionality
*
* Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
int
fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
int page_count, enum dma_data_direction direction)
{
int i, j, retval = -ENOMEM;
dma_addr_t address;
buffer->page_count = page_count;
buffer->direction = direction;
buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
GFP_KERNEL);
if (buffer->pages == NULL)
goto out;
for (i = 0; i < buffer->page_count; i++) {
buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
if (buffer->pages[i] == NULL)
goto out_pages;
address = dma_map_page(card->device, buffer->pages[i],
0, PAGE_SIZE, direction);
if (dma_mapping_error(address)) {
__free_page(buffer->pages[i]);
goto out_pages;
}
set_page_private(buffer->pages[i], address);
}
return 0;
out_pages:
for (j = 0; j < i; j++) {
address = page_private(buffer->pages[j]);
dma_unmap_page(card->device, address,
PAGE_SIZE, DMA_TO_DEVICE);
__free_page(buffer->pages[j]);
}
kfree(buffer->pages);
out:
buffer->pages = NULL;
return retval;
}
int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
{
unsigned long uaddr;
int i, retval;
uaddr = vma->vm_start;
for (i = 0; i < buffer->page_count; i++) {
retval = vm_insert_page(vma, uaddr, buffer->pages[i]);
if (retval)
return retval;
uaddr += PAGE_SIZE;
}
return 0;
}
void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
struct fw_card *card)
{
int i;
dma_addr_t address;
for (i = 0; i < buffer->page_count; i++) {
address = page_private(buffer->pages[i]);
dma_unmap_page(card->device, address,
PAGE_SIZE, DMA_TO_DEVICE);
__free_page(buffer->pages[i]);
}
kfree(buffer->pages);
buffer->pages = NULL;
}
struct fw_iso_context *
fw_iso_context_create(struct fw_card *card, int type,
int channel, int speed, size_t header_size,
fw_iso_callback_t callback, void *callback_data)
{
struct fw_iso_context *ctx;
ctx = card->driver->allocate_iso_context(card, type, header_size);
if (IS_ERR(ctx))
return ctx;
ctx->card = card;
ctx->type = type;
ctx->channel = channel;
ctx->speed = speed;
ctx->header_size = header_size;
ctx->callback = callback;
ctx->callback_data = callback_data;
return ctx;
}
EXPORT_SYMBOL(fw_iso_context_create);
void fw_iso_context_destroy(struct fw_iso_context *ctx)
{
struct fw_card *card = ctx->card;
card->driver->free_iso_context(ctx);
}
EXPORT_SYMBOL(fw_iso_context_destroy);
int
fw_iso_context_start(struct fw_iso_context *ctx, int cycle, int sync, int tags)
{
return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
}
EXPORT_SYMBOL(fw_iso_context_start);
int
fw_iso_context_queue(struct fw_iso_context *ctx,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct fw_card *card = ctx->card;
return card->driver->queue_iso(ctx, packet, buffer, payload);
}
EXPORT_SYMBOL(fw_iso_context_queue);
int
fw_iso_context_stop(struct fw_iso_context *ctx)
{
return ctx->card->driver->stop_iso(ctx);
}
EXPORT_SYMBOL(fw_iso_context_stop);
/*
* Driver for OHCI 1394 controllers
*
* Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/dma-mapping.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include "fw-transaction.h"
#include "fw-ohci.h"
#define DESCRIPTOR_OUTPUT_MORE 0
#define DESCRIPTOR_OUTPUT_LAST (1 << 12)
#define DESCRIPTOR_INPUT_MORE (2 << 12)
#define DESCRIPTOR_INPUT_LAST (3 << 12)
#define DESCRIPTOR_STATUS (1 << 11)
#define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
#define DESCRIPTOR_PING (1 << 7)
#define DESCRIPTOR_YY (1 << 6)
#define DESCRIPTOR_NO_IRQ (0 << 4)
#define DESCRIPTOR_IRQ_ERROR (1 << 4)
#define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
#define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
#define DESCRIPTOR_WAIT (3 << 0)
struct descriptor {
__le16 req_count;
__le16 control;
__le32 data_address;
__le32 branch_address;
__le16 res_count;
__le16 transfer_status;
} __attribute__((aligned(16)));
struct db_descriptor {
__le16 first_size;
__le16 control;
__le16 second_req_count;
__le16 first_req_count;
__le32 branch_address;
__le16 second_res_count;
__le16 first_res_count;
__le32 reserved0;
__le32 first_buffer;
__le32 second_buffer;
__le32 reserved1;
} __attribute__((aligned(16)));
#define CONTROL_SET(regs) (regs)
#define CONTROL_CLEAR(regs) ((regs) + 4)
#define COMMAND_PTR(regs) ((regs) + 12)
#define CONTEXT_MATCH(regs) ((regs) + 16)
struct ar_buffer {
struct descriptor descriptor;
struct ar_buffer *next;
__le32 data[0];
};
struct ar_context {
struct fw_ohci *ohci;
struct ar_buffer *current_buffer;
struct ar_buffer *last_buffer;
void *pointer;
u32 regs;
struct tasklet_struct tasklet;
};
struct context;
typedef int (*descriptor_callback_t)(struct context *ctx,
struct descriptor *d,
struct descriptor *last);
struct context {
struct fw_ohci *ohci;
u32 regs;
struct descriptor *buffer;
dma_addr_t buffer_bus;
size_t buffer_size;
struct descriptor *head_descriptor;
struct descriptor *tail_descriptor;
struct descriptor *tail_descriptor_last;
struct descriptor *prev_descriptor;
descriptor_callback_t callback;
struct tasklet_struct tasklet;
};
#define IT_HEADER_SY(v) ((v) << 0)
#define IT_HEADER_TCODE(v) ((v) << 4)
#define IT_HEADER_CHANNEL(v) ((v) << 8)
#define IT_HEADER_TAG(v) ((v) << 14)
#define IT_HEADER_SPEED(v) ((v) << 16)
#define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
struct iso_context {
struct fw_iso_context base;
struct context context;
void *header;
size_t header_length;
};
#define CONFIG_ROM_SIZE 1024
struct fw_ohci {
struct fw_card card;
u32 version;
__iomem char *registers;
dma_addr_t self_id_bus;
__le32 *self_id_cpu;
struct tasklet_struct bus_reset_tasklet;
int node_id;
int generation;
int request_generation;
u32 bus_seconds;
/*
* Spinlock for accessing fw_ohci data. Never call out of
* this driver with this lock held.
*/
spinlock_t lock;
u32 self_id_buffer[512];
/* Config rom buffers */
__be32 *config_rom;
dma_addr_t config_rom_bus;
__be32 *next_config_rom;
dma_addr_t next_config_rom_bus;
u32 next_header;
struct ar_context ar_request_ctx;
struct ar_context ar_response_ctx;
struct context at_request_ctx;
struct context at_response_ctx;
u32 it_context_mask;
struct iso_context *it_context_list;
u32 ir_context_mask;
struct iso_context *ir_context_list;
};
static inline struct fw_ohci *fw_ohci(struct fw_card *card)
{
return container_of(card, struct fw_ohci, card);
}
#define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
#define IR_CONTEXT_BUFFER_FILL 0x80000000
#define IR_CONTEXT_ISOCH_HEADER 0x40000000
#define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
#define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
#define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
#define CONTEXT_RUN 0x8000
#define CONTEXT_WAKE 0x1000
#define CONTEXT_DEAD 0x0800
#define CONTEXT_ACTIVE 0x0400
#define OHCI1394_MAX_AT_REQ_RETRIES 0x2
#define OHCI1394_MAX_AT_RESP_RETRIES 0x2
#define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
#define FW_OHCI_MAJOR 240
#define OHCI1394_REGISTER_SIZE 0x800
#define OHCI_LOOP_COUNT 500
#define OHCI1394_PCI_HCI_Control 0x40
#define SELF_ID_BUF_SIZE 0x800
#define OHCI_TCODE_PHY_PACKET 0x0e
#define OHCI_VERSION_1_1 0x010010
#define ISO_BUFFER_SIZE (64 * 1024)
#define AT_BUFFER_SIZE 4096
static char ohci_driver_name[] = KBUILD_MODNAME;
static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
{
writel(data, ohci->registers + offset);
}
static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
{
return readl(ohci->registers + offset);
}
static inline void flush_writes(const struct fw_ohci *ohci)
{
/* Do a dummy read to flush writes. */
reg_read(ohci, OHCI1394_Version);
}
static int
ohci_update_phy_reg(struct fw_card *card, int addr,
int clear_bits, int set_bits)
{
struct fw_ohci *ohci = fw_ohci(card);
u32 val, old;
reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
msleep(2);
val = reg_read(ohci, OHCI1394_PhyControl);
if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
fw_error("failed to set phy reg bits.\n");
return -EBUSY;
}
old = OHCI1394_PhyControl_ReadData(val);
old = (old & ~clear_bits) | set_bits;
reg_write(ohci, OHCI1394_PhyControl,
OHCI1394_PhyControl_Write(addr, old));
return 0;
}
static int ar_context_add_page(struct ar_context *ctx)
{
struct device *dev = ctx->ohci->card.device;
struct ar_buffer *ab;
dma_addr_t ab_bus;
size_t offset;
ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
if (ab == NULL)
return -ENOMEM;
ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
if (dma_mapping_error(ab_bus)) {
free_page((unsigned long) ab);
return -ENOMEM;
}
memset(&ab->descriptor, 0, sizeof(ab->descriptor));
ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS);
offset = offsetof(struct ar_buffer, data);
ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
ab->descriptor.branch_address = 0;
dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
ctx->last_buffer->next = ab;
ctx->last_buffer = ab;
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
flush_writes(ctx->ohci);
return 0;
}
static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
{
struct fw_ohci *ohci = ctx->ohci;
struct fw_packet p;
u32 status, length, tcode;
p.header[0] = le32_to_cpu(buffer[0]);
p.header[1] = le32_to_cpu(buffer[1]);
p.header[2] = le32_to_cpu(buffer[2]);
tcode = (p.header[0] >> 4) & 0x0f;
switch (tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
case TCODE_READ_QUADLET_RESPONSE:
p.header[3] = (__force __u32) buffer[3];
p.header_length = 16;
p.payload_length = 0;
break;
case TCODE_READ_BLOCK_REQUEST :
p.header[3] = le32_to_cpu(buffer[3]);
p.header_length = 16;
p.payload_length = 0;
break;
case TCODE_WRITE_BLOCK_REQUEST:
case TCODE_READ_BLOCK_RESPONSE:
case TCODE_LOCK_REQUEST:
case TCODE_LOCK_RESPONSE:
p.header[3] = le32_to_cpu(buffer[3]);
p.header_length = 16;
p.payload_length = p.header[3] >> 16;
break;
case TCODE_WRITE_RESPONSE:
case TCODE_READ_QUADLET_REQUEST:
case OHCI_TCODE_PHY_PACKET:
p.header_length = 12;
p.payload_length = 0;
break;
}
p.payload = (void *) buffer + p.header_length;
/* FIXME: What to do about evt_* errors? */
length = (p.header_length + p.payload_length + 3) / 4;
status = le32_to_cpu(buffer[length]);
p.ack = ((status >> 16) & 0x1f) - 16;
p.speed = (status >> 21) & 0x7;
p.timestamp = status & 0xffff;
p.generation = ohci->request_generation;
/*
* The OHCI bus reset handler synthesizes a phy packet with
* the new generation number when a bus reset happens (see
* section 8.4.2.3). This helps us determine when a request
* was received and make sure we send the response in the same
* generation. We only need this for requests; for responses
* we use the unique tlabel for finding the matching
* request.
*/
if (p.ack + 16 == 0x09)
ohci->request_generation = (buffer[2] >> 16) & 0xff;
else if (ctx == &ohci->ar_request_ctx)
fw_core_handle_request(&ohci->card, &p);
else
fw_core_handle_response(&ohci->card, &p);
return buffer + length + 1;
}
static void ar_context_tasklet(unsigned long data)
{
struct ar_context *ctx = (struct ar_context *)data;
struct fw_ohci *ohci = ctx->ohci;
struct ar_buffer *ab;
struct descriptor *d;
void *buffer, *end;
ab = ctx->current_buffer;
d = &ab->descriptor;
if (d->res_count == 0) {
size_t size, rest, offset;
/*
* This descriptor is finished and we may have a
* packet split across this and the next buffer. We
* reuse the page for reassembling the split packet.
*/
offset = offsetof(struct ar_buffer, data);
dma_unmap_single(ohci->card.device,
ab->descriptor.data_address - offset,
PAGE_SIZE, DMA_BIDIRECTIONAL);
buffer = ab;
ab = ab->next;
d = &ab->descriptor;
size = buffer + PAGE_SIZE - ctx->pointer;
rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
memmove(buffer, ctx->pointer, size);
memcpy(buffer + size, ab->data, rest);
ctx->current_buffer = ab;
ctx->pointer = (void *) ab->data + rest;
end = buffer + size + rest;
while (buffer < end)
buffer = handle_ar_packet(ctx, buffer);
free_page((unsigned long)buffer);
ar_context_add_page(ctx);
} else {
buffer = ctx->pointer;
ctx->pointer = end =
(void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
while (buffer < end)
buffer = handle_ar_packet(ctx, buffer);
}
}
static int
ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
{
struct ar_buffer ab;
ctx->regs = regs;
ctx->ohci = ohci;
ctx->last_buffer = &ab;
tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
ar_context_add_page(ctx);
ar_context_add_page(ctx);
ctx->current_buffer = ab.next;
ctx->pointer = ctx->current_buffer->data;
reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab.descriptor.branch_address);
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
flush_writes(ctx->ohci);
return 0;
}
static void context_tasklet(unsigned long data)
{
struct context *ctx = (struct context *) data;
struct fw_ohci *ohci = ctx->ohci;
struct descriptor *d, *last;
u32 address;
int z;
dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
ctx->buffer_size, DMA_TO_DEVICE);
d = ctx->tail_descriptor;
last = ctx->tail_descriptor_last;
while (last->branch_address != 0) {
address = le32_to_cpu(last->branch_address);
z = address & 0xf;
d = ctx->buffer + (address - ctx->buffer_bus) / sizeof(*d);
last = (z == 2) ? d : d + z - 1;
if (!ctx->callback(ctx, d, last))
break;
ctx->tail_descriptor = d;
ctx->tail_descriptor_last = last;
}
}
static int
context_init(struct context *ctx, struct fw_ohci *ohci,
size_t buffer_size, u32 regs,
descriptor_callback_t callback)
{
ctx->ohci = ohci;
ctx->regs = regs;
ctx->buffer_size = buffer_size;
ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
if (ctx->buffer == NULL)
return -ENOMEM;
tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
ctx->callback = callback;
ctx->buffer_bus =
dma_map_single(ohci->card.device, ctx->buffer,
buffer_size, DMA_TO_DEVICE);
if (dma_mapping_error(ctx->buffer_bus)) {
kfree(ctx->buffer);
return -ENOMEM;
}
ctx->head_descriptor = ctx->buffer;
ctx->prev_descriptor = ctx->buffer;
ctx->tail_descriptor = ctx->buffer;
ctx->tail_descriptor_last = ctx->buffer;
/*
* We put a dummy descriptor in the buffer that has a NULL
* branch address and looks like it's been sent. That way we
* have a descriptor to append DMA programs to. Also, the
* ring buffer invariant is that it always has at least one
* element so that head == tail means buffer full.
*/
memset(ctx->head_descriptor, 0, sizeof(*ctx->head_descriptor));
ctx->head_descriptor->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
ctx->head_descriptor++;
return 0;
}
static void
context_release(struct context *ctx)
{
struct fw_card *card = &ctx->ohci->card;
dma_unmap_single(card->device, ctx->buffer_bus,
ctx->buffer_size, DMA_TO_DEVICE);
kfree(ctx->buffer);
}
static struct descriptor *
context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
{
struct descriptor *d, *tail, *end;
d = ctx->head_descriptor;
tail = ctx->tail_descriptor;
end = ctx->buffer + ctx->buffer_size / sizeof(*d);
if (d + z <= tail) {
goto has_space;
} else if (d > tail && d + z <= end) {
goto has_space;
} else if (d > tail && ctx->buffer + z <= tail) {
d = ctx->buffer;
goto has_space;
}
return NULL;
has_space:
memset(d, 0, z * sizeof(*d));
*d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
return d;
}
static void context_run(struct context *ctx, u32 extra)
{
struct fw_ohci *ohci = ctx->ohci;
reg_write(ohci, COMMAND_PTR(ctx->regs),
le32_to_cpu(ctx->tail_descriptor_last->branch_address));
reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
flush_writes(ohci);
}
static void context_append(struct context *ctx,
struct descriptor *d, int z, int extra)
{
dma_addr_t d_bus;
d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof(*d);
ctx->head_descriptor = d + z + extra;
ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
ctx->prev_descriptor = z == 2 ? d : d + z - 1;
dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
ctx->buffer_size, DMA_TO_DEVICE);
reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
flush_writes(ctx->ohci);
}
static void context_stop(struct context *ctx)
{
u32 reg;
int i;
reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
flush_writes(ctx->ohci);
for (i = 0; i < 10; i++) {
reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
if ((reg & CONTEXT_ACTIVE) == 0)
break;
fw_notify("context_stop: still active (0x%08x)\n", reg);
msleep(1);
}
}
struct driver_data {
struct fw_packet *packet;
};
/*
* This function apppends a packet to the DMA queue for transmission.
* Must always be called with the ochi->lock held to ensure proper
* generation handling and locking around packet queue manipulation.
*/
static int
at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
{
struct fw_ohci *ohci = ctx->ohci;
dma_addr_t d_bus, payload_bus;
struct driver_data *driver_data;
struct descriptor *d, *last;
__le32 *header;
int z, tcode;
u32 reg;
d = context_get_descriptors(ctx, 4, &d_bus);
if (d == NULL) {
packet->ack = RCODE_SEND_ERROR;
return -1;
}
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
d[0].res_count = cpu_to_le16(packet->timestamp);
/*
* The DMA format for asyncronous link packets is different
* from the IEEE1394 layout, so shift the fields around
* accordingly. If header_length is 8, it's a PHY packet, to
* which we need to prepend an extra quadlet.
*/
header = (__le32 *) &d[1];
if (packet->header_length > 8) {
header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
(packet->speed << 16));
header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
(packet->header[0] & 0xffff0000));
header[2] = cpu_to_le32(packet->header[2]);
tcode = (packet->header[0] >> 4) & 0x0f;
if (TCODE_IS_BLOCK_PACKET(tcode))
header[3] = cpu_to_le32(packet->header[3]);
else
header[3] = (__force __le32) packet->header[3];
d[0].req_count = cpu_to_le16(packet->header_length);
} else {
header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
(packet->speed << 16));
header[1] = cpu_to_le32(packet->header[0]);
header[2] = cpu_to_le32(packet->header[1]);
d[0].req_count = cpu_to_le16(12);
}
driver_data = (struct driver_data *) &d[3];
driver_data->packet = packet;
packet->driver_data = driver_data;
if (packet->payload_length > 0) {
payload_bus =
dma_map_single(ohci->card.device, packet->payload,
packet->payload_length, DMA_TO_DEVICE);
if (dma_mapping_error(payload_bus)) {
packet->ack = RCODE_SEND_ERROR;
return -1;
}
d[2].req_count = cpu_to_le16(packet->payload_length);
d[2].data_address = cpu_to_le32(payload_bus);
last = &d[2];
z = 3;
} else {
last = &d[0];
z = 2;
}
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
DESCRIPTOR_IRQ_ALWAYS |
DESCRIPTOR_BRANCH_ALWAYS);
/* FIXME: Document how the locking works. */
if (ohci->generation != packet->generation) {
packet->ack = RCODE_GENERATION;
return -1;
}
context_append(ctx, d, z, 4 - z);
/* If the context isn't already running, start it up. */
reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
if ((reg & CONTEXT_RUN) == 0)
context_run(ctx, 0);
return 0;
}
static int handle_at_packet(struct context *context,
struct descriptor *d,
struct descriptor *last)
{
struct driver_data *driver_data;
struct fw_packet *packet;
struct fw_ohci *ohci = context->ohci;
dma_addr_t payload_bus;
int evt;
if (last->transfer_status == 0)
/* This descriptor isn't done yet, stop iteration. */
return 0;
driver_data = (struct driver_data *) &d[3];
packet = driver_data->packet;
if (packet == NULL)
/* This packet was cancelled, just continue. */
return 1;
payload_bus = le32_to_cpu(last->data_address);
if (payload_bus != 0)
dma_unmap_single(ohci->card.device, payload_bus,
packet->payload_length, DMA_TO_DEVICE);
evt = le16_to_cpu(last->transfer_status) & 0x1f;
packet->timestamp = le16_to_cpu(last->res_count);
switch (evt) {
case OHCI1394_evt_timeout:
/* Async response transmit timed out. */
packet->ack = RCODE_CANCELLED;
break;
case OHCI1394_evt_flushed:
/*
* The packet was flushed should give same error as
* when we try to use a stale generation count.
*/
packet->ack = RCODE_GENERATION;
break;
case OHCI1394_evt_missing_ack:
/*
* Using a valid (current) generation count, but the
* node is not on the bus or not sending acks.
*/
packet->ack = RCODE_NO_ACK;
break;
case ACK_COMPLETE + 0x10:
case ACK_PENDING + 0x10:
case ACK_BUSY_X + 0x10:
case ACK_BUSY_A + 0x10:
case ACK_BUSY_B + 0x10:
case ACK_DATA_ERROR + 0x10:
case ACK_TYPE_ERROR + 0x10:
packet->ack = evt - 0x10;
break;
default:
packet->ack = RCODE_SEND_ERROR;
break;
}
packet->callback(packet, &ohci->card, packet->ack);
return 1;
}
#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
static void
handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
struct fw_packet response;
int tcode, length, i;
tcode = HEADER_GET_TCODE(packet->header[0]);
if (TCODE_IS_BLOCK_PACKET(tcode))
length = HEADER_GET_DATA_LENGTH(packet->header[3]);
else
length = 4;
i = csr - CSR_CONFIG_ROM;
if (i + length > CONFIG_ROM_SIZE) {
fw_fill_response(&response, packet->header,
RCODE_ADDRESS_ERROR, NULL, 0);
} else if (!TCODE_IS_READ_REQUEST(tcode)) {
fw_fill_response(&response, packet->header,
RCODE_TYPE_ERROR, NULL, 0);
} else {
fw_fill_response(&response, packet->header, RCODE_COMPLETE,
(void *) ohci->config_rom + i, length);
}
fw_core_handle_response(&ohci->card, &response);
}
static void
handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
{
struct fw_packet response;
int tcode, length, ext_tcode, sel;
__be32 *payload, lock_old;
u32 lock_arg, lock_data;
tcode = HEADER_GET_TCODE(packet->header[0]);
length = HEADER_GET_DATA_LENGTH(packet->header[3]);
payload = packet->payload;
ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
if (tcode == TCODE_LOCK_REQUEST &&
ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
lock_arg = be32_to_cpu(payload[0]);
lock_data = be32_to_cpu(payload[1]);
} else if (tcode == TCODE_READ_QUADLET_REQUEST) {
lock_arg = 0;
lock_data = 0;
} else {
fw_fill_response(&response, packet->header,
RCODE_TYPE_ERROR, NULL, 0);
goto out;
}
sel = (csr - CSR_BUS_MANAGER_ID) / 4;
reg_write(ohci, OHCI1394_CSRData, lock_data);
reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
reg_write(ohci, OHCI1394_CSRControl, sel);
if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
else
fw_notify("swap not done yet\n");
fw_fill_response(&response, packet->header,
RCODE_COMPLETE, &lock_old, sizeof(lock_old));
out:
fw_core_handle_response(&ohci->card, &response);
}
static void
handle_local_request(struct context *ctx, struct fw_packet *packet)
{
u64 offset;
u32 csr;
if (ctx == &ctx->ohci->at_request_ctx) {
packet->ack = ACK_PENDING;
packet->callback(packet, &ctx->ohci->card, packet->ack);
}
offset =
((unsigned long long)
HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
packet->header[2];
csr = offset - CSR_REGISTER_BASE;
/* Handle config rom reads. */
if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
handle_local_rom(ctx->ohci, packet, csr);
else switch (csr) {
case CSR_BUS_MANAGER_ID:
case CSR_BANDWIDTH_AVAILABLE:
case CSR_CHANNELS_AVAILABLE_HI:
case CSR_CHANNELS_AVAILABLE_LO:
handle_local_lock(ctx->ohci, packet, csr);
break;
default:
if (ctx == &ctx->ohci->at_request_ctx)
fw_core_handle_request(&ctx->ohci->card, packet);
else
fw_core_handle_response(&ctx->ohci->card, packet);
break;
}
if (ctx == &ctx->ohci->at_response_ctx) {
packet->ack = ACK_COMPLETE;
packet->callback(packet, &ctx->ohci->card, packet->ack);
}
}
static void
at_context_transmit(struct context *ctx, struct fw_packet *packet)
{
unsigned long flags;
int retval;
spin_lock_irqsave(&ctx->ohci->lock, flags);
if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
ctx->ohci->generation == packet->generation) {
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
handle_local_request(ctx, packet);
return;
}
retval = at_context_queue_packet(ctx, packet);
spin_unlock_irqrestore(&ctx->ohci->lock, flags);
if (retval < 0)
packet->callback(packet, &ctx->ohci->card, packet->ack);
}
static void bus_reset_tasklet(unsigned long data)
{
struct fw_ohci *ohci = (struct fw_ohci *)data;
int self_id_count, i, j, reg;
int generation, new_generation;
unsigned long flags;
reg = reg_read(ohci, OHCI1394_NodeID);
if (!(reg & OHCI1394_NodeID_idValid)) {
fw_error("node ID not valid, new bus reset in progress\n");
return;
}
ohci->node_id = reg & 0xffff;
/*
* The count in the SelfIDCount register is the number of
* bytes in the self ID receive buffer. Since we also receive
* the inverted quadlets and a header quadlet, we shift one
* bit extra to get the actual number of self IDs.
*/
self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
fw_error("inconsistent self IDs\n");
ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
}
/*
* Check the consistency of the self IDs we just read. The
* problem we face is that a new bus reset can start while we
* read out the self IDs from the DMA buffer. If this happens,
* the DMA buffer will be overwritten with new self IDs and we
* will read out inconsistent data. The OHCI specification
* (section 11.2) recommends a technique similar to
* linux/seqlock.h, where we remember the generation of the
* self IDs in the buffer before reading them out and compare
* it to the current generation after reading them out. If
* the two generations match we know we have a consistent set
* of self IDs.
*/
new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
if (new_generation != generation) {
fw_notify("recursive bus reset detected, "
"discarding self ids\n");
return;
}
/* FIXME: Document how the locking works. */
spin_lock_irqsave(&ohci->lock, flags);
ohci->generation = generation;
context_stop(&ohci->at_request_ctx);
context_stop(&ohci->at_response_ctx);
reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
/*
* This next bit is unrelated to the AT context stuff but we
* have to do it under the spinlock also. If a new config rom
* was set up before this reset, the old one is now no longer
* in use and we can free it. Update the config rom pointers
* to point to the current config rom and clear the
* next_config_rom pointer so a new udpate can take place.
*/
if (ohci->next_config_rom != NULL) {
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
ohci->config_rom, ohci->config_rom_bus);
ohci->config_rom = ohci->next_config_rom;
ohci->config_rom_bus = ohci->next_config_rom_bus;
ohci->next_config_rom = NULL;
/*
* Restore config_rom image and manually update
* config_rom registers. Writing the header quadlet
* will indicate that the config rom is ready, so we
* do that last.
*/
reg_write(ohci, OHCI1394_BusOptions,
be32_to_cpu(ohci->config_rom[2]));
ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
}
spin_unlock_irqrestore(&ohci->lock, flags);
fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
self_id_count, ohci->self_id_buffer);
}
static irqreturn_t irq_handler(int irq, void *data)
{
struct fw_ohci *ohci = data;
u32 event, iso_event, cycle_time;
int i;
event = reg_read(ohci, OHCI1394_IntEventClear);
if (!event)
return IRQ_NONE;
reg_write(ohci, OHCI1394_IntEventClear, event);
if (event & OHCI1394_selfIDComplete)
tasklet_schedule(&ohci->bus_reset_tasklet);
if (event & OHCI1394_RQPkt)
tasklet_schedule(&ohci->ar_request_ctx.tasklet);
if (event & OHCI1394_RSPkt)
tasklet_schedule(&ohci->ar_response_ctx.tasklet);
if (event & OHCI1394_reqTxComplete)
tasklet_schedule(&ohci->at_request_ctx.tasklet);
if (event & OHCI1394_respTxComplete)
tasklet_schedule(&ohci->at_response_ctx.tasklet);
iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
while (iso_event) {
i = ffs(iso_event) - 1;
tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
iso_event &= ~(1 << i);
}
iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
while (iso_event) {
i = ffs(iso_event) - 1;
tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
iso_event &= ~(1 << i);
}
if (event & OHCI1394_cycle64Seconds) {
cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
if ((cycle_time & 0x80000000) == 0)
ohci->bus_seconds++;
}
return IRQ_HANDLED;
}
static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
{
struct fw_ohci *ohci = fw_ohci(card);
struct pci_dev *dev = to_pci_dev(card->device);
/*
* When the link is not yet enabled, the atomic config rom
* update mechanism described below in ohci_set_config_rom()
* is not active. We have to update ConfigRomHeader and
* BusOptions manually, and the write to ConfigROMmap takes
* effect immediately. We tie this to the enabling of the
* link, so we have a valid config rom before enabling - the
* OHCI requires that ConfigROMhdr and BusOptions have valid
* values before enabling.
*
* However, when the ConfigROMmap is written, some controllers
* always read back quadlets 0 and 2 from the config rom to
* the ConfigRomHeader and BusOptions registers on bus reset.
* They shouldn't do that in this initial case where the link
* isn't enabled. This means we have to use the same
* workaround here, setting the bus header to 0 and then write
* the right values in the bus reset tasklet.
*/
ohci->next_config_rom =
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
&ohci->next_config_rom_bus, GFP_KERNEL);
if (ohci->next_config_rom == NULL)
return -ENOMEM;
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
ohci->next_header = config_rom[0];
ohci->next_config_rom[0] = 0;
reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
if (request_irq(dev->irq, irq_handler,
IRQF_SHARED, ohci_driver_name, ohci)) {
fw_error("Failed to allocate shared interrupt %d.\n",
dev->irq);
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
ohci->config_rom, ohci->config_rom_bus);
return -EIO;
}
reg_write(ohci, OHCI1394_HCControlSet,
OHCI1394_HCControl_linkEnable |
OHCI1394_HCControl_BIBimageValid);
flush_writes(ohci);
/*
* We are ready to go, initiate bus reset to finish the
* initialization.
*/
fw_core_initiate_bus_reset(&ohci->card, 1);
return 0;
}
static int
ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
{
struct fw_ohci *ohci;
unsigned long flags;
int retval = 0;
__be32 *next_config_rom;
dma_addr_t next_config_rom_bus;
ohci = fw_ohci(card);
/*
* When the OHCI controller is enabled, the config rom update
* mechanism is a bit tricky, but easy enough to use. See
* section 5.5.6 in the OHCI specification.
*
* The OHCI controller caches the new config rom address in a
* shadow register (ConfigROMmapNext) and needs a bus reset
* for the changes to take place. When the bus reset is
* detected, the controller loads the new values for the
* ConfigRomHeader and BusOptions registers from the specified
* config rom and loads ConfigROMmap from the ConfigROMmapNext
* shadow register. All automatically and atomically.
*
* Now, there's a twist to this story. The automatic load of
* ConfigRomHeader and BusOptions doesn't honor the
* noByteSwapData bit, so with a be32 config rom, the
* controller will load be32 values in to these registers
* during the atomic update, even on litte endian
* architectures. The workaround we use is to put a 0 in the
* header quadlet; 0 is endian agnostic and means that the
* config rom isn't ready yet. In the bus reset tasklet we
* then set up the real values for the two registers.
*
* We use ohci->lock to avoid racing with the code that sets
* ohci->next_config_rom to NULL (see bus_reset_tasklet).
*/
next_config_rom =
dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
&next_config_rom_bus, GFP_KERNEL);
if (next_config_rom == NULL)
return -ENOMEM;
spin_lock_irqsave(&ohci->lock, flags);
if (ohci->next_config_rom == NULL) {
ohci->next_config_rom = next_config_rom;
ohci->next_config_rom_bus = next_config_rom_bus;
memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
length * 4);
ohci->next_header = config_rom[0];
ohci->next_config_rom[0] = 0;
reg_write(ohci, OHCI1394_ConfigROMmap,
ohci->next_config_rom_bus);
} else {
dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
next_config_rom, next_config_rom_bus);
retval = -EBUSY;
}
spin_unlock_irqrestore(&ohci->lock, flags);
/*
* Now initiate a bus reset to have the changes take
* effect. We clean up the old config rom memory and DMA
* mappings in the bus reset tasklet, since the OHCI
* controller could need to access it before the bus reset
* takes effect.
*/
if (retval == 0)
fw_core_initiate_bus_reset(&ohci->card, 1);
return retval;
}
static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
at_context_transmit(&ohci->at_request_ctx, packet);
}
static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
at_context_transmit(&ohci->at_response_ctx, packet);
}
static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
{
struct fw_ohci *ohci = fw_ohci(card);
struct context *ctx = &ohci->at_request_ctx;
struct driver_data *driver_data = packet->driver_data;
int retval = -ENOENT;
tasklet_disable(&ctx->tasklet);
if (packet->ack != 0)
goto out;
driver_data->packet = NULL;
packet->ack = RCODE_CANCELLED;
packet->callback(packet, &ohci->card, packet->ack);
retval = 0;
out:
tasklet_enable(&ctx->tasklet);
return retval;
}
static int
ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
{
struct fw_ohci *ohci = fw_ohci(card);
unsigned long flags;
int n, retval = 0;
/*
* FIXME: Make sure this bitmask is cleared when we clear the busReset
* interrupt bit. Clear physReqResourceAllBuses on bus reset.
*/
spin_lock_irqsave(&ohci->lock, flags);
if (ohci->generation != generation) {
retval = -ESTALE;
goto out;
}
/*
* Note, if the node ID contains a non-local bus ID, physical DMA is
* enabled for _all_ nodes on remote buses.
*/
n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
if (n < 32)
reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
else
reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
flush_writes(ohci);
out:
spin_unlock_irqrestore(&ohci->lock, flags);
return retval;
}
static u64
ohci_get_bus_time(struct fw_card *card)
{
struct fw_ohci *ohci = fw_ohci(card);
u32 cycle_time;
u64 bus_time;
cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
return bus_time;
}
static int handle_ir_dualbuffer_packet(struct context *context,
struct descriptor *d,
struct descriptor *last)
{
struct iso_context *ctx =
container_of(context, struct iso_context, context);
struct db_descriptor *db = (struct db_descriptor *) d;
__le32 *ir_header;
size_t header_length;
void *p, *end;
int i;
if (db->first_res_count > 0 && db->second_res_count > 0)
/* This descriptor isn't done yet, stop iteration. */
return 0;
header_length = le16_to_cpu(db->first_req_count) -
le16_to_cpu(db->first_res_count);
i = ctx->header_length;
p = db + 1;
end = p + header_length;
while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
/*
* The iso header is byteswapped to little endian by
* the controller, but the remaining header quadlets
* are big endian. We want to present all the headers
* as big endian, so we have to swap the first
* quadlet.
*/
*(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
i += ctx->base.header_size;
p += ctx->base.header_size + 4;
}
ctx->header_length = i;
if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
ir_header = (__le32 *) (db + 1);
ctx->base.callback(&ctx->base,
le32_to_cpu(ir_header[0]) & 0xffff,
ctx->header_length, ctx->header,
ctx->base.callback_data);
ctx->header_length = 0;
}
return 1;
}
static int handle_it_packet(struct context *context,
struct descriptor *d,
struct descriptor *last)
{
struct iso_context *ctx =
container_of(context, struct iso_context, context);
if (last->transfer_status == 0)
/* This descriptor isn't done yet, stop iteration. */
return 0;
if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
0, NULL, ctx->base.callback_data);
return 1;
}
static struct fw_iso_context *
ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
{
struct fw_ohci *ohci = fw_ohci(card);
struct iso_context *ctx, *list;
descriptor_callback_t callback;
u32 *mask, regs;
unsigned long flags;
int index, retval = -ENOMEM;
if (type == FW_ISO_CONTEXT_TRANSMIT) {
mask = &ohci->it_context_mask;
list = ohci->it_context_list;
callback = handle_it_packet;
} else {
mask = &ohci->ir_context_mask;
list = ohci->ir_context_list;
callback = handle_ir_dualbuffer_packet;
}
/* FIXME: We need a fallback for pre 1.1 OHCI. */
if (callback == handle_ir_dualbuffer_packet &&
ohci->version < OHCI_VERSION_1_1)
return ERR_PTR(-EINVAL);
spin_lock_irqsave(&ohci->lock, flags);
index = ffs(*mask) - 1;
if (index >= 0)
*mask &= ~(1 << index);
spin_unlock_irqrestore(&ohci->lock, flags);
if (index < 0)
return ERR_PTR(-EBUSY);
if (type == FW_ISO_CONTEXT_TRANSMIT)
regs = OHCI1394_IsoXmitContextBase(index);
else
regs = OHCI1394_IsoRcvContextBase(index);
ctx = &list[index];
memset(ctx, 0, sizeof(*ctx));
ctx->header_length = 0;
ctx->header = (void *) __get_free_page(GFP_KERNEL);
if (ctx->header == NULL)
goto out;
retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
regs, callback);
if (retval < 0)
goto out_with_header;
return &ctx->base;
out_with_header:
free_page((unsigned long)ctx->header);
out:
spin_lock_irqsave(&ohci->lock, flags);
*mask |= 1 << index;
spin_unlock_irqrestore(&ohci->lock, flags);
return ERR_PTR(retval);
}
static int ohci_start_iso(struct fw_iso_context *base,
s32 cycle, u32 sync, u32 tags)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
struct fw_ohci *ohci = ctx->context.ohci;
u32 control, match;
int index;
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
index = ctx - ohci->it_context_list;
match = 0;
if (cycle >= 0)
match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
(cycle & 0x7fff) << 16;
reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
context_run(&ctx->context, match);
} else {
index = ctx - ohci->ir_context_list;
control = IR_CONTEXT_DUAL_BUFFER_MODE | IR_CONTEXT_ISOCH_HEADER;
match = (tags << 28) | (sync << 8) | ctx->base.channel;
if (cycle >= 0) {
match |= (cycle & 0x07fff) << 12;
control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
}
reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
context_run(&ctx->context, control);
}
return 0;
}
static int ohci_stop_iso(struct fw_iso_context *base)
{
struct fw_ohci *ohci = fw_ohci(base->card);
struct iso_context *ctx = container_of(base, struct iso_context, base);
int index;
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
index = ctx - ohci->it_context_list;
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
} else {
index = ctx - ohci->ir_context_list;
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
}
flush_writes(ohci);
context_stop(&ctx->context);
return 0;
}
static void ohci_free_iso_context(struct fw_iso_context *base)
{
struct fw_ohci *ohci = fw_ohci(base->card);
struct iso_context *ctx = container_of(base, struct iso_context, base);
unsigned long flags;
int index;
ohci_stop_iso(base);
context_release(&ctx->context);
free_page((unsigned long)ctx->header);
spin_lock_irqsave(&ohci->lock, flags);
if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
index = ctx - ohci->it_context_list;
ohci->it_context_mask |= 1 << index;
} else {
index = ctx - ohci->ir_context_list;
ohci->ir_context_mask |= 1 << index;
}
spin_unlock_irqrestore(&ohci->lock, flags);
}
static int
ohci_queue_iso_transmit(struct fw_iso_context *base,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
struct descriptor *d, *last, *pd;
struct fw_iso_packet *p;
__le32 *header;
dma_addr_t d_bus, page_bus;
u32 z, header_z, payload_z, irq;
u32 payload_index, payload_end_index, next_page_index;
int page, end_page, i, length, offset;
/*
* FIXME: Cycle lost behavior should be configurable: lose
* packet, retransmit or terminate..
*/
p = packet;
payload_index = payload;
if (p->skip)
z = 1;
else
z = 2;
if (p->header_length > 0)
z++;
/* Determine the first page the payload isn't contained in. */
end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
if (p->payload_length > 0)
payload_z = end_page - (payload_index >> PAGE_SHIFT);
else
payload_z = 0;
z += payload_z;
/* Get header size in number of descriptors. */
header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
if (d == NULL)
return -ENOMEM;
if (!p->skip) {
d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
d[0].req_count = cpu_to_le16(8);
header = (__le32 *) &d[1];
header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
IT_HEADER_TAG(p->tag) |
IT_HEADER_TCODE(TCODE_STREAM_DATA) |
IT_HEADER_CHANNEL(ctx->base.channel) |
IT_HEADER_SPEED(ctx->base.speed));
header[1] =
cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
p->payload_length));
}
if (p->header_length > 0) {
d[2].req_count = cpu_to_le16(p->header_length);
d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
memcpy(&d[z], p->header, p->header_length);
}
pd = d + z - payload_z;
payload_end_index = payload_index + p->payload_length;
for (i = 0; i < payload_z; i++) {
page = payload_index >> PAGE_SHIFT;
offset = payload_index & ~PAGE_MASK;
next_page_index = (page + 1) << PAGE_SHIFT;
length =
min(next_page_index, payload_end_index) - payload_index;
pd[i].req_count = cpu_to_le16(length);
page_bus = page_private(buffer->pages[page]);
pd[i].data_address = cpu_to_le32(page_bus + offset);
payload_index += length;
}
if (p->interrupt)
irq = DESCRIPTOR_IRQ_ALWAYS;
else
irq = DESCRIPTOR_NO_IRQ;
last = z == 2 ? d : d + z - 1;
last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS |
irq);
context_append(&ctx->context, d, z, header_z);
return 0;
}
static int
ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
struct db_descriptor *db = NULL;
struct descriptor *d;
struct fw_iso_packet *p;
dma_addr_t d_bus, page_bus;
u32 z, header_z, length, rest;
int page, offset, packet_count, header_size;
/*
* FIXME: Cycle lost behavior should be configurable: lose
* packet, retransmit or terminate..
*/
if (packet->skip) {
d = context_get_descriptors(&ctx->context, 2, &d_bus);
if (d == NULL)
return -ENOMEM;
db = (struct db_descriptor *) d;
db->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS |
DESCRIPTOR_WAIT);
db->first_size = cpu_to_le16(ctx->base.header_size + 4);
context_append(&ctx->context, d, 2, 0);
}
p = packet;
z = 2;
/*
* The OHCI controller puts the status word in the header
* buffer too, so we need 4 extra bytes per packet.
*/
packet_count = p->header_length / ctx->base.header_size;
header_size = packet_count * (ctx->base.header_size + 4);
/* Get header size in number of descriptors. */
header_z = DIV_ROUND_UP(header_size, sizeof(*d));
page = payload >> PAGE_SHIFT;
offset = payload & ~PAGE_MASK;
rest = p->payload_length;
/* FIXME: OHCI 1.0 doesn't support dual buffer receive */
/* FIXME: make packet-per-buffer/dual-buffer a context option */
while (rest > 0) {
d = context_get_descriptors(&ctx->context,
z + header_z, &d_bus);
if (d == NULL)
return -ENOMEM;
db = (struct db_descriptor *) d;
db->control = cpu_to_le16(DESCRIPTOR_STATUS |
DESCRIPTOR_BRANCH_ALWAYS);
db->first_size = cpu_to_le16(ctx->base.header_size + 4);
db->first_req_count = cpu_to_le16(header_size);
db->first_res_count = db->first_req_count;
db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
if (offset + rest < PAGE_SIZE)
length = rest;
else
length = PAGE_SIZE - offset;
db->second_req_count = cpu_to_le16(length);
db->second_res_count = db->second_req_count;
page_bus = page_private(buffer->pages[page]);
db->second_buffer = cpu_to_le32(page_bus + offset);
if (p->interrupt && length == rest)
db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
context_append(&ctx->context, d, z, header_z);
offset = (offset + length) & ~PAGE_MASK;
rest -= length;
page++;
}
return 0;
}
static int
ohci_queue_iso(struct fw_iso_context *base,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct iso_context *ctx = container_of(base, struct iso_context, base);
if (base->type == FW_ISO_CONTEXT_TRANSMIT)
return ohci_queue_iso_transmit(base, packet, buffer, payload);
else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
return ohci_queue_iso_receive_dualbuffer(base, packet,
buffer, payload);
else
/* FIXME: Implement fallback for OHCI 1.0 controllers. */
return -EINVAL;
}
static const struct fw_card_driver ohci_driver = {
.name = ohci_driver_name,
.enable = ohci_enable,
.update_phy_reg = ohci_update_phy_reg,
.set_config_rom = ohci_set_config_rom,
.send_request = ohci_send_request,
.send_response = ohci_send_response,
.cancel_packet = ohci_cancel_packet,
.enable_phys_dma = ohci_enable_phys_dma,
.get_bus_time = ohci_get_bus_time,
.allocate_iso_context = ohci_allocate_iso_context,
.free_iso_context = ohci_free_iso_context,
.queue_iso = ohci_queue_iso,
.start_iso = ohci_start_iso,
.stop_iso = ohci_stop_iso,
};
static int software_reset(struct fw_ohci *ohci)
{
int i;
reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
for (i = 0; i < OHCI_LOOP_COUNT; i++) {
if ((reg_read(ohci, OHCI1394_HCControlSet) &
OHCI1394_HCControl_softReset) == 0)
return 0;
msleep(1);
}
return -EBUSY;
}
static int __devinit
pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
{
struct fw_ohci *ohci;
u32 bus_options, max_receive, link_speed;
u64 guid;
int err;
size_t size;
ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
if (ohci == NULL) {
fw_error("Could not malloc fw_ohci data.\n");
return -ENOMEM;
}
fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
err = pci_enable_device(dev);
if (err) {
fw_error("Failed to enable OHCI hardware.\n");
goto fail_put_card;
}
pci_set_master(dev);
pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
pci_set_drvdata(dev, ohci);
spin_lock_init(&ohci->lock);
tasklet_init(&ohci->bus_reset_tasklet,
bus_reset_tasklet, (unsigned long)ohci);
err = pci_request_region(dev, 0, ohci_driver_name);
if (err) {
fw_error("MMIO resource unavailable\n");
goto fail_disable;
}
ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
if (ohci->registers == NULL) {
fw_error("Failed to remap registers\n");
err = -ENXIO;
goto fail_iomem;
}
if (software_reset(ohci)) {
fw_error("Failed to reset ohci card.\n");
err = -EBUSY;
goto fail_registers;
}
/*
* Now enable LPS, which we need in order to start accessing
* most of the registers. In fact, on some cards (ALI M5251),
* accessing registers in the SClk domain without LPS enabled
* will lock up the machine. Wait 50msec to make sure we have
* full link enabled.
*/
reg_write(ohci, OHCI1394_HCControlSet,
OHCI1394_HCControl_LPS |
OHCI1394_HCControl_postedWriteEnable);
flush_writes(ohci);
msleep(50);
reg_write(ohci, OHCI1394_HCControlClear,
OHCI1394_HCControl_noByteSwapData);
reg_write(ohci, OHCI1394_LinkControlSet,
OHCI1394_LinkControl_rcvSelfID |
OHCI1394_LinkControl_cycleTimerEnable |
OHCI1394_LinkControl_cycleMaster);
ar_context_init(&ohci->ar_request_ctx, ohci,
OHCI1394_AsReqRcvContextControlSet);
ar_context_init(&ohci->ar_response_ctx, ohci,
OHCI1394_AsRspRcvContextControlSet);
context_init(&ohci->at_request_ctx, ohci, AT_BUFFER_SIZE,
OHCI1394_AsReqTrContextControlSet, handle_at_packet);
context_init(&ohci->at_response_ctx, ohci, AT_BUFFER_SIZE,
OHCI1394_AsRspTrContextControlSet, handle_at_packet);
reg_write(ohci, OHCI1394_ATRetries,
OHCI1394_MAX_AT_REQ_RETRIES |
(OHCI1394_MAX_AT_RESP_RETRIES << 4) |
(OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
ohci->it_context_list = kzalloc(size, GFP_KERNEL);
reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
fw_error("Out of memory for it/ir contexts.\n");
err = -ENOMEM;
goto fail_registers;
}
/* self-id dma buffer allocation */
ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
SELF_ID_BUF_SIZE,
&ohci->self_id_bus,
GFP_KERNEL);
if (ohci->self_id_cpu == NULL) {
fw_error("Out of memory for self ID buffer.\n");
err = -ENOMEM;
goto fail_registers;
}
reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
reg_write(ohci, OHCI1394_IntEventClear, ~0);
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
reg_write(ohci, OHCI1394_IntMaskSet,
OHCI1394_selfIDComplete |
OHCI1394_RQPkt | OHCI1394_RSPkt |
OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
OHCI1394_isochRx | OHCI1394_isochTx |
OHCI1394_masterIntEnable |
OHCI1394_cycle64Seconds);
bus_options = reg_read(ohci, OHCI1394_BusOptions);
max_receive = (bus_options >> 12) & 0xf;
link_speed = bus_options & 0x7;
guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
reg_read(ohci, OHCI1394_GUIDLo);
err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
if (err < 0)
goto fail_self_id;
ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
return 0;
fail_self_id:
dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
ohci->self_id_cpu, ohci->self_id_bus);
fail_registers:
kfree(ohci->it_context_list);
kfree(ohci->ir_context_list);
pci_iounmap(dev, ohci->registers);
fail_iomem:
pci_release_region(dev, 0);
fail_disable:
pci_disable_device(dev);
fail_put_card:
fw_card_put(&ohci->card);
return err;
}
static void pci_remove(struct pci_dev *dev)
{
struct fw_ohci *ohci;
ohci = pci_get_drvdata(dev);
reg_write(ohci, OHCI1394_IntMaskClear, ~0);
flush_writes(ohci);
fw_core_remove_card(&ohci->card);
/*
* FIXME: Fail all pending packets here, now that the upper
* layers can't queue any more.
*/
software_reset(ohci);
free_irq(dev->irq, ohci);
dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
ohci->self_id_cpu, ohci->self_id_bus);
kfree(ohci->it_context_list);
kfree(ohci->ir_context_list);
pci_iounmap(dev, ohci->registers);
pci_release_region(dev, 0);
pci_disable_device(dev);
fw_card_put(&ohci->card);
fw_notify("Removed fw-ohci device.\n");
}
static struct pci_device_id pci_table[] = {
{ PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
{ }
};
MODULE_DEVICE_TABLE(pci, pci_table);
static struct pci_driver fw_ohci_pci_driver = {
.name = ohci_driver_name,
.id_table = pci_table,
.probe = pci_probe,
.remove = pci_remove,
};
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
MODULE_LICENSE("GPL");
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_OHCI1394_MODULE
MODULE_ALIAS("ohci1394");
#endif
static int __init fw_ohci_init(void)
{
return pci_register_driver(&fw_ohci_pci_driver);
}
static void __exit fw_ohci_cleanup(void)
{
pci_unregister_driver(&fw_ohci_pci_driver);
}
module_init(fw_ohci_init);
module_exit(fw_ohci_cleanup);
#ifndef __fw_ohci_h
#define __fw_ohci_h
/* OHCI register map */
#define OHCI1394_Version 0x000
#define OHCI1394_GUID_ROM 0x004
#define OHCI1394_ATRetries 0x008
#define OHCI1394_CSRData 0x00C
#define OHCI1394_CSRCompareData 0x010
#define OHCI1394_CSRControl 0x014
#define OHCI1394_ConfigROMhdr 0x018
#define OHCI1394_BusID 0x01C
#define OHCI1394_BusOptions 0x020
#define OHCI1394_GUIDHi 0x024
#define OHCI1394_GUIDLo 0x028
#define OHCI1394_ConfigROMmap 0x034
#define OHCI1394_PostedWriteAddressLo 0x038
#define OHCI1394_PostedWriteAddressHi 0x03C
#define OHCI1394_VendorID 0x040
#define OHCI1394_HCControlSet 0x050
#define OHCI1394_HCControlClear 0x054
#define OHCI1394_HCControl_BIBimageValid 0x80000000
#define OHCI1394_HCControl_noByteSwapData 0x40000000
#define OHCI1394_HCControl_programPhyEnable 0x00800000
#define OHCI1394_HCControl_aPhyEnhanceEnable 0x00400000
#define OHCI1394_HCControl_LPS 0x00080000
#define OHCI1394_HCControl_postedWriteEnable 0x00040000
#define OHCI1394_HCControl_linkEnable 0x00020000
#define OHCI1394_HCControl_softReset 0x00010000
#define OHCI1394_SelfIDBuffer 0x064
#define OHCI1394_SelfIDCount 0x068
#define OHCI1394_IRMultiChanMaskHiSet 0x070
#define OHCI1394_IRMultiChanMaskHiClear 0x074
#define OHCI1394_IRMultiChanMaskLoSet 0x078
#define OHCI1394_IRMultiChanMaskLoClear 0x07C
#define OHCI1394_IntEventSet 0x080
#define OHCI1394_IntEventClear 0x084
#define OHCI1394_IntMaskSet 0x088
#define OHCI1394_IntMaskClear 0x08C
#define OHCI1394_IsoXmitIntEventSet 0x090
#define OHCI1394_IsoXmitIntEventClear 0x094
#define OHCI1394_IsoXmitIntMaskSet 0x098
#define OHCI1394_IsoXmitIntMaskClear 0x09C
#define OHCI1394_IsoRecvIntEventSet 0x0A0
#define OHCI1394_IsoRecvIntEventClear 0x0A4
#define OHCI1394_IsoRecvIntMaskSet 0x0A8
#define OHCI1394_IsoRecvIntMaskClear 0x0AC
#define OHCI1394_InitialBandwidthAvailable 0x0B0
#define OHCI1394_InitialChannelsAvailableHi 0x0B4
#define OHCI1394_InitialChannelsAvailableLo 0x0B8
#define OHCI1394_FairnessControl 0x0DC
#define OHCI1394_LinkControlSet 0x0E0
#define OHCI1394_LinkControlClear 0x0E4
#define OHCI1394_LinkControl_rcvSelfID (1 << 9)
#define OHCI1394_LinkControl_rcvPhyPkt (1 << 10)
#define OHCI1394_LinkControl_cycleTimerEnable (1 << 20)
#define OHCI1394_LinkControl_cycleMaster (1 << 21)
#define OHCI1394_LinkControl_cycleSource (1 << 22)
#define OHCI1394_NodeID 0x0E8
#define OHCI1394_NodeID_idValid 0x80000000
#define OHCI1394_PhyControl 0x0EC
#define OHCI1394_PhyControl_Read(addr) (((addr) << 8) | 0x00008000)
#define OHCI1394_PhyControl_ReadDone 0x80000000
#define OHCI1394_PhyControl_ReadData(r) (((r) & 0x00ff0000) >> 16)
#define OHCI1394_PhyControl_Write(addr, data) (((addr) << 8) | (data) | 0x00004000)
#define OHCI1394_PhyControl_WriteDone 0x00004000
#define OHCI1394_IsochronousCycleTimer 0x0F0
#define OHCI1394_AsReqFilterHiSet 0x100
#define OHCI1394_AsReqFilterHiClear 0x104
#define OHCI1394_AsReqFilterLoSet 0x108
#define OHCI1394_AsReqFilterLoClear 0x10C
#define OHCI1394_PhyReqFilterHiSet 0x110
#define OHCI1394_PhyReqFilterHiClear 0x114
#define OHCI1394_PhyReqFilterLoSet 0x118
#define OHCI1394_PhyReqFilterLoClear 0x11C
#define OHCI1394_PhyUpperBound 0x120
#define OHCI1394_AsReqTrContextBase 0x180
#define OHCI1394_AsReqTrContextControlSet 0x180
#define OHCI1394_AsReqTrContextControlClear 0x184
#define OHCI1394_AsReqTrCommandPtr 0x18C
#define OHCI1394_AsRspTrContextBase 0x1A0
#define OHCI1394_AsRspTrContextControlSet 0x1A0
#define OHCI1394_AsRspTrContextControlClear 0x1A4
#define OHCI1394_AsRspTrCommandPtr 0x1AC
#define OHCI1394_AsReqRcvContextBase 0x1C0
#define OHCI1394_AsReqRcvContextControlSet 0x1C0
#define OHCI1394_AsReqRcvContextControlClear 0x1C4
#define OHCI1394_AsReqRcvCommandPtr 0x1CC
#define OHCI1394_AsRspRcvContextBase 0x1E0
#define OHCI1394_AsRspRcvContextControlSet 0x1E0
#define OHCI1394_AsRspRcvContextControlClear 0x1E4
#define OHCI1394_AsRspRcvCommandPtr 0x1EC
/* Isochronous transmit registers */
#define OHCI1394_IsoXmitContextBase(n) (0x200 + 16 * (n))
#define OHCI1394_IsoXmitContextControlSet(n) (0x200 + 16 * (n))
#define OHCI1394_IsoXmitContextControlClear(n) (0x204 + 16 * (n))
#define OHCI1394_IsoXmitCommandPtr(n) (0x20C + 16 * (n))
/* Isochronous receive registers */
#define OHCI1394_IsoRcvContextBase(n) (0x400 + 32 * (n))
#define OHCI1394_IsoRcvContextControlSet(n) (0x400 + 32 * (n))
#define OHCI1394_IsoRcvContextControlClear(n) (0x404 + 32 * (n))
#define OHCI1394_IsoRcvCommandPtr(n) (0x40C + 32 * (n))
#define OHCI1394_IsoRcvContextMatch(n) (0x410 + 32 * (n))
/* Interrupts Mask/Events */
#define OHCI1394_reqTxComplete 0x00000001
#define OHCI1394_respTxComplete 0x00000002
#define OHCI1394_ARRQ 0x00000004
#define OHCI1394_ARRS 0x00000008
#define OHCI1394_RQPkt 0x00000010
#define OHCI1394_RSPkt 0x00000020
#define OHCI1394_isochTx 0x00000040
#define OHCI1394_isochRx 0x00000080
#define OHCI1394_postedWriteErr 0x00000100
#define OHCI1394_lockRespErr 0x00000200
#define OHCI1394_selfIDComplete 0x00010000
#define OHCI1394_busReset 0x00020000
#define OHCI1394_phy 0x00080000
#define OHCI1394_cycleSynch 0x00100000
#define OHCI1394_cycle64Seconds 0x00200000
#define OHCI1394_cycleLost 0x00400000
#define OHCI1394_cycleInconsistent 0x00800000
#define OHCI1394_unrecoverableError 0x01000000
#define OHCI1394_cycleTooLong 0x02000000
#define OHCI1394_phyRegRcvd 0x04000000
#define OHCI1394_masterIntEnable 0x80000000
#define OHCI1394_evt_no_status 0x0
#define OHCI1394_evt_long_packet 0x2
#define OHCI1394_evt_missing_ack 0x3
#define OHCI1394_evt_underrun 0x4
#define OHCI1394_evt_overrun 0x5
#define OHCI1394_evt_descriptor_read 0x6
#define OHCI1394_evt_data_read 0x7
#define OHCI1394_evt_data_write 0x8
#define OHCI1394_evt_bus_reset 0x9
#define OHCI1394_evt_timeout 0xa
#define OHCI1394_evt_tcode_err 0xb
#define OHCI1394_evt_reserved_b 0xc
#define OHCI1394_evt_reserved_c 0xd
#define OHCI1394_evt_unknown 0xe
#define OHCI1394_evt_flushed 0xf
#define OHCI1394_phy_tcode 0xe
#endif /* __fw_ohci_h */
/*
* SBP2 driver (SCSI over IEEE1394)
*
* Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
* The basic structure of this driver is based on the old storage driver,
* drivers/ieee1394/sbp2.c, originally written by
* James Goodwin <jamesg@filanet.com>
* with later contributions and ongoing maintenance from
* Ben Collins <bcollins@debian.org>,
* Stefan Richter <stefanr@s5r6.in-berlin.de>
* and many others.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/scatterlist.h>
#include <linux/dma-mapping.h>
#include <linux/timer.h>
#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_dbg.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
/* I don't know why the SCSI stack doesn't define something like this... */
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
static const char sbp2_driver_name[] = "sbp2";
struct sbp2_device {
struct kref kref;
struct fw_unit *unit;
struct fw_address_handler address_handler;
struct list_head orb_list;
u64 management_agent_address;
u64 command_block_agent_address;
u32 workarounds;
int login_id;
/*
* We cache these addresses and only update them once we've
* logged in or reconnected to the sbp2 device. That way, any
* IO to the device will automatically fail and get retried if
* it happens in a window where the device is not ready to
* handle it (e.g. after a bus reset but before we reconnect).
*/
int node_id;
int address_high;
int generation;
int retries;
struct delayed_work work;
};
#define SBP2_MAX_SG_ELEMENT_LENGTH 0xf000
#define SBP2_MAX_SECTORS 255 /* Max sectors supported */
#define SBP2_ORB_TIMEOUT 2000 /* Timeout in ms */
#define SBP2_ORB_NULL 0x80000000
#define SBP2_DIRECTION_TO_MEDIA 0x0
#define SBP2_DIRECTION_FROM_MEDIA 0x1
/* Unit directory keys */
#define SBP2_COMMAND_SET_SPECIFIER 0x38
#define SBP2_COMMAND_SET 0x39
#define SBP2_COMMAND_SET_REVISION 0x3b
#define SBP2_FIRMWARE_REVISION 0x3c
/* Flags for detected oddities and brokeness */
#define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
#define SBP2_WORKAROUND_INQUIRY_36 0x2
#define SBP2_WORKAROUND_MODE_SENSE_8 0x4
#define SBP2_WORKAROUND_FIX_CAPACITY 0x8
#define SBP2_WORKAROUND_OVERRIDE 0x100
/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST 0x0
#define SBP2_QUERY_LOGINS_REQUEST 0x1
#define SBP2_RECONNECT_REQUEST 0x3
#define SBP2_SET_PASSWORD_REQUEST 0x4
#define SBP2_LOGOUT_REQUEST 0x7
#define SBP2_ABORT_TASK_REQUEST 0xb
#define SBP2_ABORT_TASK_SET 0xc
#define SBP2_LOGICAL_UNIT_RESET 0xe
#define SBP2_TARGET_RESET_REQUEST 0xf
/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE 0x00
#define SBP2_AGENT_RESET 0x04
#define SBP2_ORB_POINTER 0x08
#define SBP2_DOORBELL 0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE 0x0
#define SBP2_STATUS_TRANSPORT_FAILURE 0x1
#define SBP2_STATUS_ILLEGAL_REQUEST 0x2
#define SBP2_STATUS_VENDOR_DEPENDENT 0x3
#define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v) ((v).orb_low)
#define STATUS_GET_DATA(v) ((v).data)
struct sbp2_status {
u32 status;
u32 orb_low;
u8 data[24];
};
struct sbp2_pointer {
u32 high;
u32 low;
};
struct sbp2_orb {
struct fw_transaction t;
dma_addr_t request_bus;
int rcode;
struct sbp2_pointer pointer;
void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
struct list_head link;
};
#define MANAGEMENT_ORB_LUN(v) ((v))
#define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
#define MANAGEMENT_ORB_EXCLUSIVE ((1) << 28)
#define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
#define MANAGEMENT_ORB_NOTIFY ((1) << 31)
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
struct sbp2_management_orb {
struct sbp2_orb base;
struct {
struct sbp2_pointer password;
struct sbp2_pointer response;
u32 misc;
u32 length;
struct sbp2_pointer status_fifo;
} request;
__be32 response[4];
dma_addr_t response_bus;
struct completion done;
struct sbp2_status status;
};
#define LOGIN_RESPONSE_GET_LOGIN_ID(v) ((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v) (((v).misc >> 16) & 0xffff)
struct sbp2_login_response {
u32 misc;
struct sbp2_pointer command_block_agent;
u32 reconnect_hold;
};
#define COMMAND_ORB_DATA_SIZE(v) ((v))
#define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
#define COMMAND_ORB_SPEED(v) ((v) << 24)
#define COMMAND_ORB_DIRECTION(v) ((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
#define COMMAND_ORB_NOTIFY ((1) << 31)
struct sbp2_command_orb {
struct sbp2_orb base;
struct {
struct sbp2_pointer next;
struct sbp2_pointer data_descriptor;
u32 misc;
u8 command_block[12];
} request;
struct scsi_cmnd *cmd;
scsi_done_fn_t done;
struct fw_unit *unit;
struct sbp2_pointer page_table[SG_ALL];
dma_addr_t page_table_bus;
dma_addr_t request_buffer_bus;
};
/*
* List of devices with known bugs.
*
* The firmware_revision field, masked with 0xffff00, is the best
* indicator for the type of bridge chip of a device. It yields a few
* false positives but this did not break correctly behaving devices
* so far. We use ~0 as a wildcard, since the 24 bit values we get
* from the config rom can never match that.
*/
static const struct {
u32 firmware_revision;
u32 model;
unsigned workarounds;
} sbp2_workarounds_table[] = {
/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
.firmware_revision = 0x002800,
.model = 0x001010,
.workarounds = SBP2_WORKAROUND_INQUIRY_36 |
SBP2_WORKAROUND_MODE_SENSE_8,
},
/* Initio bridges, actually only needed for some older ones */ {
.firmware_revision = 0x000200,
.model = ~0,
.workarounds = SBP2_WORKAROUND_INQUIRY_36,
},
/* Symbios bridge */ {
.firmware_revision = 0xa0b800,
.model = ~0,
.workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
},
/*
* There are iPods (2nd gen, 3rd gen) with model_id == 0, but
* these iPods do not feature the read_capacity bug according
* to one report. Read_capacity behaviour as well as model_id
* could change due to Apple-supplied firmware updates though.
*/
/* iPod 4th generation. */ {
.firmware_revision = 0x0a2700,
.model = 0x000021,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod mini */ {
.firmware_revision = 0x0a2700,
.model = 0x000023,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
},
/* iPod Photo */ {
.firmware_revision = 0x0a2700,
.model = 0x00007e,
.workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
}
};
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, int speed,
unsigned long long offset,
void *payload, size_t length, void *callback_data)
{
struct sbp2_device *sd = callback_data;
struct sbp2_orb *orb;
struct sbp2_status status;
size_t header_size;
unsigned long flags;
if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
length == 0 || length > sizeof(status)) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
return;
}
header_size = min(length, 2 * sizeof(u32));
fw_memcpy_from_be32(&status, payload, header_size);
if (length > header_size)
memcpy(status.data, payload + 8, length - header_size);
if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
fw_notify("non-orb related status write, not handled\n");
fw_send_response(card, request, RCODE_COMPLETE);
return;
}
/* Lookup the orb corresponding to this status write. */
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(orb, &sd->orb_list, link) {
if (STATUS_GET_ORB_HIGH(status) == 0 &&
STATUS_GET_ORB_LOW(status) == orb->request_bus &&
orb->rcode == RCODE_COMPLETE) {
list_del(&orb->link);
break;
}
}
spin_unlock_irqrestore(&card->lock, flags);
if (&orb->link != &sd->orb_list)
orb->callback(orb, &status);
else
fw_error("status write for unknown orb\n");
fw_send_response(card, request, RCODE_COMPLETE);
}
static void
complete_transaction(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct sbp2_orb *orb = data;
unsigned long flags;
orb->rcode = rcode;
if (rcode != RCODE_COMPLETE) {
spin_lock_irqsave(&card->lock, flags);
list_del(&orb->link);
spin_unlock_irqrestore(&card->lock, flags);
orb->callback(orb, NULL);
}
}
static void
sbp2_send_orb(struct sbp2_orb *orb, struct fw_unit *unit,
int node_id, int generation, u64 offset)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
unsigned long flags;
orb->pointer.high = 0;
orb->pointer.low = orb->request_bus;
fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
spin_lock_irqsave(&device->card->lock, flags);
list_add_tail(&orb->link, &sd->orb_list);
spin_unlock_irqrestore(&device->card->lock, flags);
fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
node_id, generation,
device->node->max_speed, offset,
&orb->pointer, sizeof(orb->pointer),
complete_transaction, orb);
}
static int sbp2_cancel_orbs(struct fw_unit *unit)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct sbp2_orb *orb, *next;
struct list_head list;
unsigned long flags;
int retval = -ENOENT;
INIT_LIST_HEAD(&list);
spin_lock_irqsave(&device->card->lock, flags);
list_splice_init(&sd->orb_list, &list);
spin_unlock_irqrestore(&device->card->lock, flags);
list_for_each_entry_safe(orb, next, &list, link) {
retval = 0;
if (fw_cancel_transaction(device->card, &orb->t) == 0)
continue;
orb->rcode = RCODE_CANCELLED;
orb->callback(orb, NULL);
}
return retval;
}
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
struct sbp2_management_orb *orb =
(struct sbp2_management_orb *)base_orb;
if (status)
memcpy(&orb->status, status, sizeof(*status));
complete(&orb->done);
}
static int
sbp2_send_management_orb(struct fw_unit *unit, int node_id, int generation,
int function, int lun, void *response)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct sbp2_management_orb *orb;
int retval = -ENOMEM;
orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
if (orb == NULL)
return -ENOMEM;
/*
* The sbp2 device is going to send a block read request to
* read out the request from host memory, so map it for dma.
*/
orb->base.request_bus =
dma_map_single(device->card->device, &orb->request,
sizeof(orb->request), DMA_TO_DEVICE);
if (dma_mapping_error(orb->base.request_bus))
goto out;
orb->response_bus =
dma_map_single(device->card->device, &orb->response,
sizeof(orb->response), DMA_FROM_DEVICE);
if (dma_mapping_error(orb->response_bus))
goto out;
orb->request.response.high = 0;
orb->request.response.low = orb->response_bus;
orb->request.misc =
MANAGEMENT_ORB_NOTIFY |
MANAGEMENT_ORB_FUNCTION(function) |
MANAGEMENT_ORB_LUN(lun);
orb->request.length =
MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
orb->request.status_fifo.high = sd->address_handler.offset >> 32;
orb->request.status_fifo.low = sd->address_handler.offset;
/*
* FIXME: Yeah, ok this isn't elegant, we hardwire exclusive
* login and 1 second reconnect time. The reconnect setting
* is probably fine, but the exclusive login should be an option.
*/
if (function == SBP2_LOGIN_REQUEST) {
orb->request.misc |=
MANAGEMENT_ORB_EXCLUSIVE |
MANAGEMENT_ORB_RECONNECT(0);
}
fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
init_completion(&orb->done);
orb->base.callback = complete_management_orb;
sbp2_send_orb(&orb->base, unit,
node_id, generation, sd->management_agent_address);
wait_for_completion_timeout(&orb->done,
msecs_to_jiffies(SBP2_ORB_TIMEOUT));
retval = -EIO;
if (sbp2_cancel_orbs(unit) == 0) {
fw_error("orb reply timed out, rcode=0x%02x\n",
orb->base.rcode);
goto out;
}
if (orb->base.rcode != RCODE_COMPLETE) {
fw_error("management write failed, rcode 0x%02x\n",
orb->base.rcode);
goto out;
}
if (STATUS_GET_RESPONSE(orb->status) != 0 ||
STATUS_GET_SBP_STATUS(orb->status) != 0) {
fw_error("error status: %d:%d\n",
STATUS_GET_RESPONSE(orb->status),
STATUS_GET_SBP_STATUS(orb->status));
goto out;
}
retval = 0;
out:
dma_unmap_single(device->card->device, orb->base.request_bus,
sizeof(orb->request), DMA_TO_DEVICE);
dma_unmap_single(device->card->device, orb->response_bus,
sizeof(orb->response), DMA_FROM_DEVICE);
if (response)
fw_memcpy_from_be32(response,
orb->response, sizeof(orb->response));
kfree(orb);
return retval;
}
static void
complete_agent_reset_write(struct fw_card *card, int rcode,
void *payload, size_t length, void *data)
{
struct fw_transaction *t = data;
kfree(t);
}
static int sbp2_agent_reset(struct fw_unit *unit)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
struct fw_transaction *t;
static u32 zero;
t = kzalloc(sizeof(*t), GFP_ATOMIC);
if (t == NULL)
return -ENOMEM;
fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
sd->node_id, sd->generation, SCODE_400,
sd->command_block_agent_address + SBP2_AGENT_RESET,
&zero, sizeof(zero), complete_agent_reset_write, t);
return 0;
}
static void sbp2_reconnect(struct work_struct *work);
static struct scsi_host_template scsi_driver_template;
static void
release_sbp2_device(struct kref *kref)
{
struct sbp2_device *sd = container_of(kref, struct sbp2_device, kref);
struct Scsi_Host *host =
container_of((void *)sd, struct Scsi_Host, hostdata[0]);
sbp2_send_management_orb(sd->unit, sd->node_id, sd->generation,
SBP2_LOGOUT_REQUEST, sd->login_id, NULL);
scsi_remove_host(host);
fw_core_remove_address_handler(&sd->address_handler);
fw_notify("removed sbp2 unit %s\n", sd->unit->device.bus_id);
put_device(&sd->unit->device);
scsi_host_put(host);
}
static void sbp2_login(struct work_struct *work)
{
struct sbp2_device *sd =
container_of(work, struct sbp2_device, work.work);
struct Scsi_Host *host =
container_of((void *)sd, struct Scsi_Host, hostdata[0]);
struct fw_unit *unit = sd->unit;
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_login_response response;
int generation, node_id, local_node_id, lun, retval;
/* FIXME: Make this work for multi-lun devices. */
lun = 0;
generation = device->card->generation;
node_id = device->node->node_id;
local_node_id = device->card->local_node->node_id;
if (sbp2_send_management_orb(unit, node_id, generation,
SBP2_LOGIN_REQUEST, lun, &response) < 0) {
if (sd->retries++ < 5) {
schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
} else {
fw_error("failed to login to %s\n",
unit->device.bus_id);
kref_put(&sd->kref, release_sbp2_device);
}
return;
}
sd->generation = generation;
sd->node_id = node_id;
sd->address_high = local_node_id << 16;
/* Get command block agent offset and login id. */
sd->command_block_agent_address =
((u64) (response.command_block_agent.high & 0xffff) << 32) |
response.command_block_agent.low;
sd->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
fw_notify("logged in to sbp2 unit %s (%d retries)\n",
unit->device.bus_id, sd->retries);
fw_notify(" - management_agent_address: 0x%012llx\n",
(unsigned long long) sd->management_agent_address);
fw_notify(" - command_block_agent_address: 0x%012llx\n",
(unsigned long long) sd->command_block_agent_address);
fw_notify(" - status write address: 0x%012llx\n",
(unsigned long long) sd->address_handler.offset);
#if 0
/* FIXME: The linux1394 sbp2 does this last step. */
sbp2_set_busy_timeout(scsi_id);
#endif
PREPARE_DELAYED_WORK(&sd->work, sbp2_reconnect);
sbp2_agent_reset(unit);
/* FIXME: Loop over luns here. */
lun = 0;
retval = scsi_add_device(host, 0, 0, lun);
if (retval < 0) {
sbp2_send_management_orb(unit, sd->node_id, sd->generation,
SBP2_LOGOUT_REQUEST, sd->login_id,
NULL);
/*
* Set this back to sbp2_login so we fall back and
* retry login on bus reset.
*/
PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
}
kref_put(&sd->kref, release_sbp2_device);
}
static int sbp2_probe(struct device *dev)
{
struct fw_unit *unit = fw_unit(dev);
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd;
struct fw_csr_iterator ci;
struct Scsi_Host *host;
int i, key, value, err;
u32 model, firmware_revision;
err = -ENOMEM;
host = scsi_host_alloc(&scsi_driver_template, sizeof(*sd));
if (host == NULL)
goto fail;
sd = (struct sbp2_device *) host->hostdata;
unit->device.driver_data = sd;
sd->unit = unit;
INIT_LIST_HEAD(&sd->orb_list);
kref_init(&sd->kref);
sd->address_handler.length = 0x100;
sd->address_handler.address_callback = sbp2_status_write;
sd->address_handler.callback_data = sd;
err = fw_core_add_address_handler(&sd->address_handler,
&fw_high_memory_region);
if (err < 0)
goto fail_host;
err = fw_device_enable_phys_dma(device);
if (err < 0)
goto fail_address_handler;
err = scsi_add_host(host, &unit->device);
if (err < 0)
goto fail_address_handler;
/*
* Scan unit directory to get management agent address,
* firmware revison and model. Initialize firmware_revision
* and model to values that wont match anything in our table.
*/
firmware_revision = 0xff000000;
model = 0xff000000;
fw_csr_iterator_init(&ci, unit->directory);
while (fw_csr_iterator_next(&ci, &key, &value)) {
switch (key) {
case CSR_DEPENDENT_INFO | CSR_OFFSET:
sd->management_agent_address =
0xfffff0000000ULL + 4 * value;
break;
case SBP2_FIRMWARE_REVISION:
firmware_revision = value;
break;
case CSR_MODEL:
model = value;
break;
}
}
for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
if (sbp2_workarounds_table[i].firmware_revision !=
(firmware_revision & 0xffffff00))
continue;
if (sbp2_workarounds_table[i].model != model &&
sbp2_workarounds_table[i].model != ~0)
continue;
sd->workarounds |= sbp2_workarounds_table[i].workarounds;
break;
}
if (sd->workarounds)
fw_notify("Workarounds for node %s: 0x%x "
"(firmware_revision 0x%06x, model_id 0x%06x)\n",
unit->device.bus_id,
sd->workarounds, firmware_revision, model);
get_device(&unit->device);
/*
* We schedule work to do the login so we can easily
* reschedule retries. Always get the ref before scheduling
* work.
*/
INIT_DELAYED_WORK(&sd->work, sbp2_login);
if (schedule_delayed_work(&sd->work, 0))
kref_get(&sd->kref);
return 0;
fail_address_handler:
fw_core_remove_address_handler(&sd->address_handler);
fail_host:
scsi_host_put(host);
fail:
return err;
}
static int sbp2_remove(struct device *dev)
{
struct fw_unit *unit = fw_unit(dev);
struct sbp2_device *sd = unit->device.driver_data;
kref_put(&sd->kref, release_sbp2_device);
return 0;
}
static void sbp2_reconnect(struct work_struct *work)
{
struct sbp2_device *sd =
container_of(work, struct sbp2_device, work.work);
struct fw_unit *unit = sd->unit;
struct fw_device *device = fw_device(unit->device.parent);
int generation, node_id, local_node_id;
generation = device->card->generation;
node_id = device->node->node_id;
local_node_id = device->card->local_node->node_id;
if (sbp2_send_management_orb(unit, node_id, generation,
SBP2_RECONNECT_REQUEST,
sd->login_id, NULL) < 0) {
if (sd->retries++ >= 5) {
fw_error("failed to reconnect to %s\n",
unit->device.bus_id);
/* Fall back and try to log in again. */
sd->retries = 0;
PREPARE_DELAYED_WORK(&sd->work, sbp2_login);
}
schedule_delayed_work(&sd->work, DIV_ROUND_UP(HZ, 5));
return;
}
sd->generation = generation;
sd->node_id = node_id;
sd->address_high = local_node_id << 16;
fw_notify("reconnected to unit %s (%d retries)\n",
unit->device.bus_id, sd->retries);
sbp2_agent_reset(unit);
sbp2_cancel_orbs(unit);
kref_put(&sd->kref, release_sbp2_device);
}
static void sbp2_update(struct fw_unit *unit)
{
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_device *sd = unit->device.driver_data;
sd->retries = 0;
fw_device_enable_phys_dma(device);
if (schedule_delayed_work(&sd->work, 0))
kref_get(&sd->kref);
}
#define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
#define SBP2_SW_VERSION_ENTRY 0x00010483
static const struct fw_device_id sbp2_id_table[] = {
{
.match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
.version = SBP2_SW_VERSION_ENTRY,
},
{ }
};
static struct fw_driver sbp2_driver = {
.driver = {
.owner = THIS_MODULE,
.name = sbp2_driver_name,
.bus = &fw_bus_type,
.probe = sbp2_probe,
.remove = sbp2_remove,
},
.update = sbp2_update,
.id_table = sbp2_id_table,
};
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
{
int sam_status;
sense_data[0] = 0x70;
sense_data[1] = 0x0;
sense_data[2] = sbp2_status[1];
sense_data[3] = sbp2_status[4];
sense_data[4] = sbp2_status[5];
sense_data[5] = sbp2_status[6];
sense_data[6] = sbp2_status[7];
sense_data[7] = 10;
sense_data[8] = sbp2_status[8];
sense_data[9] = sbp2_status[9];
sense_data[10] = sbp2_status[10];
sense_data[11] = sbp2_status[11];
sense_data[12] = sbp2_status[2];
sense_data[13] = sbp2_status[3];
sense_data[14] = sbp2_status[12];
sense_data[15] = sbp2_status[13];
sam_status = sbp2_status[0] & 0x3f;
switch (sam_status) {
case SAM_STAT_GOOD:
case SAM_STAT_CHECK_CONDITION:
case SAM_STAT_CONDITION_MET:
case SAM_STAT_BUSY:
case SAM_STAT_RESERVATION_CONFLICT:
case SAM_STAT_COMMAND_TERMINATED:
return DID_OK << 16 | sam_status;
default:
return DID_ERROR << 16;
}
}
static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
struct sbp2_command_orb *orb = (struct sbp2_command_orb *)base_orb;
struct fw_unit *unit = orb->unit;
struct fw_device *device = fw_device(unit->device.parent);
struct scatterlist *sg;
int result;
if (status != NULL) {
if (STATUS_GET_DEAD(*status))
sbp2_agent_reset(unit);
switch (STATUS_GET_RESPONSE(*status)) {
case SBP2_STATUS_REQUEST_COMPLETE:
result = DID_OK << 16;
break;
case SBP2_STATUS_TRANSPORT_FAILURE:
result = DID_BUS_BUSY << 16;
break;
case SBP2_STATUS_ILLEGAL_REQUEST:
case SBP2_STATUS_VENDOR_DEPENDENT:
default:
result = DID_ERROR << 16;
break;
}
if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
orb->cmd->sense_buffer);
} else {
/*
* If the orb completes with status == NULL, something
* went wrong, typically a bus reset happened mid-orb
* or when sending the write (less likely).
*/
result = DID_BUS_BUSY << 16;
}
dma_unmap_single(device->card->device, orb->base.request_bus,
sizeof(orb->request), DMA_TO_DEVICE);
if (orb->cmd->use_sg > 0) {
sg = (struct scatterlist *)orb->cmd->request_buffer;
dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
orb->cmd->sc_data_direction);
}
if (orb->page_table_bus != 0)
dma_unmap_single(device->card->device, orb->page_table_bus,
sizeof(orb->page_table_bus), DMA_TO_DEVICE);
if (orb->request_buffer_bus != 0)
dma_unmap_single(device->card->device, orb->request_buffer_bus,
sizeof(orb->request_buffer_bus),
DMA_FROM_DEVICE);
orb->cmd->result = result;
orb->done(orb->cmd);
kfree(orb);
}
static int sbp2_command_orb_map_scatterlist(struct sbp2_command_orb *orb)
{
struct sbp2_device *sd =
(struct sbp2_device *)orb->cmd->device->host->hostdata;
struct fw_unit *unit = sd->unit;
struct fw_device *device = fw_device(unit->device.parent);
struct scatterlist *sg;
int sg_len, l, i, j, count;
size_t size;
dma_addr_t sg_addr;
sg = (struct scatterlist *)orb->cmd->request_buffer;
count = dma_map_sg(device->card->device, sg, orb->cmd->use_sg,
orb->cmd->sc_data_direction);
if (count == 0)
goto fail;
/*
* Handle the special case where there is only one element in
* the scatter list by converting it to an immediate block
* request. This is also a workaround for broken devices such
* as the second generation iPod which doesn't support page
* tables.
*/
if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
orb->request.data_descriptor.high = sd->address_high;
orb->request.data_descriptor.low = sg_dma_address(sg);
orb->request.misc |=
COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
return 0;
}
/*
* Convert the scatterlist to an sbp2 page table. If any
* scatterlist entries are too big for sbp2, we split them as we
* go. Even if we ask the block I/O layer to not give us sg
* elements larger than 65535 bytes, some IOMMUs may merge sg elements
* during DMA mapping, and Linux currently doesn't prevent this.
*/
for (i = 0, j = 0; i < count; i++) {
sg_len = sg_dma_len(sg + i);
sg_addr = sg_dma_address(sg + i);
while (sg_len) {
l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
orb->page_table[j].low = sg_addr;
orb->page_table[j].high = (l << 16);
sg_addr += l;
sg_len -= l;
j++;
}
}
size = sizeof(orb->page_table[0]) * j;
/*
* The data_descriptor pointer is the one case where we need
* to fill in the node ID part of the address. All other
* pointers assume that the data referenced reside on the
* initiator (i.e. us), but data_descriptor can refer to data
* on other nodes so we need to put our ID in descriptor.high.
*/
orb->page_table_bus =
dma_map_single(device->card->device, orb->page_table,
size, DMA_TO_DEVICE);
if (dma_mapping_error(orb->page_table_bus))
goto fail_page_table;
orb->request.data_descriptor.high = sd->address_high;
orb->request.data_descriptor.low = orb->page_table_bus;
orb->request.misc |=
COMMAND_ORB_PAGE_TABLE_PRESENT |
COMMAND_ORB_DATA_SIZE(j);
fw_memcpy_to_be32(orb->page_table, orb->page_table, size);
return 0;
fail_page_table:
dma_unmap_sg(device->card->device, sg, orb->cmd->use_sg,
orb->cmd->sc_data_direction);
fail:
return -ENOMEM;
}
/* SCSI stack integration */
static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
struct sbp2_device *sd =
(struct sbp2_device *)cmd->device->host->hostdata;
struct fw_unit *unit = sd->unit;
struct fw_device *device = fw_device(unit->device.parent);
struct sbp2_command_orb *orb;
/*
* Bidirectional commands are not yet implemented, and unknown
* transfer direction not handled.
*/
if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
fw_error("Cannot handle DMA_BIDIRECTIONAL - rejecting command");
cmd->result = DID_ERROR << 16;
done(cmd);
return 0;
}
orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
if (orb == NULL) {
fw_notify("failed to alloc orb\n");
goto fail_alloc;
}
/* Initialize rcode to something not RCODE_COMPLETE. */
orb->base.rcode = -1;
orb->base.request_bus =
dma_map_single(device->card->device, &orb->request,
sizeof(orb->request), DMA_TO_DEVICE);
if (dma_mapping_error(orb->base.request_bus))
goto fail_mapping;
orb->unit = unit;
orb->done = done;
orb->cmd = cmd;
orb->request.next.high = SBP2_ORB_NULL;
orb->request.next.low = 0x0;
/*
* At speed 100 we can do 512 bytes per packet, at speed 200,
* 1024 bytes per packet etc. The SBP-2 max_payload field
* specifies the max payload size as 2 ^ (max_payload + 2), so
* if we set this to max_speed + 7, we get the right value.
*/
orb->request.misc =
COMMAND_ORB_MAX_PAYLOAD(device->node->max_speed + 7) |
COMMAND_ORB_SPEED(device->node->max_speed) |
COMMAND_ORB_NOTIFY;
if (cmd->sc_data_direction == DMA_FROM_DEVICE)
orb->request.misc |=
COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
else if (cmd->sc_data_direction == DMA_TO_DEVICE)
orb->request.misc |=
COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
if (cmd->use_sg && sbp2_command_orb_map_scatterlist(orb) < 0)
goto fail_map_payload;
fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
memset(orb->request.command_block,
0, sizeof(orb->request.command_block));
memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));
orb->base.callback = complete_command_orb;
sbp2_send_orb(&orb->base, unit, sd->node_id, sd->generation,
sd->command_block_agent_address + SBP2_ORB_POINTER);
return 0;
fail_map_payload:
dma_unmap_single(device->card->device, orb->base.request_bus,
sizeof(orb->request), DMA_TO_DEVICE);
fail_mapping:
kfree(orb);
fail_alloc:
return SCSI_MLQUEUE_HOST_BUSY;
}
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
sdev->allow_restart = 1;
if (sd->workarounds & SBP2_WORKAROUND_INQUIRY_36)
sdev->inquiry_len = 36;
return 0;
}
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
struct sbp2_device *sd = (struct sbp2_device *)sdev->host->hostdata;
struct fw_unit *unit = sd->unit;
sdev->use_10_for_rw = 1;
if (sdev->type == TYPE_ROM)
sdev->use_10_for_ms = 1;
if (sdev->type == TYPE_DISK &&
sd->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
sdev->skip_ms_page_8 = 1;
if (sd->workarounds & SBP2_WORKAROUND_FIX_CAPACITY) {
fw_notify("setting fix_capacity for %s\n", unit->device.bus_id);
sdev->fix_capacity = 1;
}
return 0;
}
/*
* Called by scsi stack when something has really gone wrong. Usually
* called when a command has timed-out for some reason.
*/
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
struct sbp2_device *sd =
(struct sbp2_device *)cmd->device->host->hostdata;
struct fw_unit *unit = sd->unit;
fw_notify("sbp2_scsi_abort\n");
sbp2_agent_reset(unit);
sbp2_cancel_orbs(unit);
return SUCCESS;
}
static struct scsi_host_template scsi_driver_template = {
.module = THIS_MODULE,
.name = "SBP-2 IEEE-1394",
.proc_name = (char *)sbp2_driver_name,
.queuecommand = sbp2_scsi_queuecommand,
.slave_alloc = sbp2_scsi_slave_alloc,
.slave_configure = sbp2_scsi_slave_configure,
.eh_abort_handler = sbp2_scsi_abort,
.this_id = -1,
.sg_tablesize = SG_ALL,
.use_clustering = ENABLE_CLUSTERING,
.cmd_per_lun = 1,
.can_queue = 1,
};
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif
static int __init sbp2_init(void)
{
return driver_register(&sbp2_driver.driver);
}
static void __exit sbp2_cleanup(void)
{
driver_unregister(&sbp2_driver.driver);
}
module_init(sbp2_init);
module_exit(sbp2_cleanup);
/*
* Incremental bus scan, based on bus topology
*
* Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/module.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#define SELF_ID_PHY_ID(q) (((q) >> 24) & 0x3f)
#define SELF_ID_EXTENDED(q) (((q) >> 23) & 0x01)
#define SELF_ID_LINK_ON(q) (((q) >> 22) & 0x01)
#define SELF_ID_GAP_COUNT(q) (((q) >> 16) & 0x3f)
#define SELF_ID_PHY_SPEED(q) (((q) >> 14) & 0x03)
#define SELF_ID_CONTENDER(q) (((q) >> 11) & 0x01)
#define SELF_ID_PHY_INITIATOR(q) (((q) >> 1) & 0x01)
#define SELF_ID_MORE_PACKETS(q) (((q) >> 0) & 0x01)
#define SELF_ID_EXT_SEQUENCE(q) (((q) >> 20) & 0x07)
static u32 *count_ports(u32 *sid, int *total_port_count, int *child_port_count)
{
u32 q;
int port_type, shift, seq;
*total_port_count = 0;
*child_port_count = 0;
shift = 6;
q = *sid;
seq = 0;
while (1) {
port_type = (q >> shift) & 0x03;
switch (port_type) {
case SELFID_PORT_CHILD:
(*child_port_count)++;
case SELFID_PORT_PARENT:
case SELFID_PORT_NCONN:
(*total_port_count)++;
case SELFID_PORT_NONE:
break;
}
shift -= 2;
if (shift == 0) {
if (!SELF_ID_MORE_PACKETS(q))
return sid + 1;
shift = 16;
sid++;
q = *sid;
/*
* Check that the extra packets actually are
* extended self ID packets and that the
* sequence numbers in the extended self ID
* packets increase as expected.
*/
if (!SELF_ID_EXTENDED(q) ||
seq != SELF_ID_EXT_SEQUENCE(q))
return NULL;
seq++;
}
}
}
static int get_port_type(u32 *sid, int port_index)
{
int index, shift;
index = (port_index + 5) / 8;
shift = 16 - ((port_index + 5) & 7) * 2;
return (sid[index] >> shift) & 0x03;
}
static struct fw_node *fw_node_create(u32 sid, int port_count, int color)
{
struct fw_node *node;
node = kzalloc(sizeof(*node) + port_count * sizeof(node->ports[0]),
GFP_ATOMIC);
if (node == NULL)
return NULL;
node->color = color;
node->node_id = LOCAL_BUS | SELF_ID_PHY_ID(sid);
node->link_on = SELF_ID_LINK_ON(sid);
node->phy_speed = SELF_ID_PHY_SPEED(sid);
node->port_count = port_count;
atomic_set(&node->ref_count, 1);
INIT_LIST_HEAD(&node->link);
return node;
}
/*
* Compute the maximum hop count for this node and it's children. The
* maximum hop count is the maximum number of connections between any
* two nodes in the subtree rooted at this node. We need this for
* setting the gap count. As we build the tree bottom up in
* build_tree() below, this is fairly easy to do: for each node we
* maintain the max hop count and the max depth, ie the number of hops
* to the furthest leaf. Computing the max hop count breaks down into
* two cases: either the path goes through this node, in which case
* the hop count is the sum of the two biggest child depths plus 2.
* Or it could be the case that the max hop path is entirely
* containted in a child tree, in which case the max hop count is just
* the max hop count of this child.
*/
static void update_hop_count(struct fw_node *node)
{
int depths[2] = { -1, -1 };
int max_child_hops = 0;
int i;
for (i = 0; i < node->port_count; i++) {
if (node->ports[i].node == NULL)
continue;
if (node->ports[i].node->max_hops > max_child_hops)
max_child_hops = node->ports[i].node->max_hops;
if (node->ports[i].node->max_depth > depths[0]) {
depths[1] = depths[0];
depths[0] = node->ports[i].node->max_depth;
} else if (node->ports[i].node->max_depth > depths[1])
depths[1] = node->ports[i].node->max_depth;
}
node->max_depth = depths[0] + 1;
node->max_hops = max(max_child_hops, depths[0] + depths[1] + 2);
}
/**
* build_tree - Build the tree representation of the topology
* @self_ids: array of self IDs to create the tree from
* @self_id_count: the length of the self_ids array
* @local_id: the node ID of the local node
*
* This function builds the tree representation of the topology given
* by the self IDs from the latest bus reset. During the construction
* of the tree, the function checks that the self IDs are valid and
* internally consistent. On succcess this funtions returns the
* fw_node corresponding to the local card otherwise NULL.
*/
static struct fw_node *build_tree(struct fw_card *card,
u32 *sid, int self_id_count)
{
struct fw_node *node, *child, *local_node, *irm_node;
struct list_head stack, *h;
u32 *next_sid, *end, q;
int i, port_count, child_port_count, phy_id, parent_count, stack_depth;
int gap_count, topology_type;
local_node = NULL;
node = NULL;
INIT_LIST_HEAD(&stack);
stack_depth = 0;
end = sid + self_id_count;
phy_id = 0;
irm_node = NULL;
gap_count = SELF_ID_GAP_COUNT(*sid);
topology_type = 0;
while (sid < end) {
next_sid = count_ports(sid, &port_count, &child_port_count);
if (next_sid == NULL) {
fw_error("Inconsistent extended self IDs.\n");
return NULL;
}
q = *sid;
if (phy_id != SELF_ID_PHY_ID(q)) {
fw_error("PHY ID mismatch in self ID: %d != %d.\n",
phy_id, SELF_ID_PHY_ID(q));
return NULL;
}
if (child_port_count > stack_depth) {
fw_error("Topology stack underflow\n");
return NULL;
}
/*
* Seek back from the top of our stack to find the
* start of the child nodes for this node.
*/
for (i = 0, h = &stack; i < child_port_count; i++)
h = h->prev;
child = fw_node(h);
node = fw_node_create(q, port_count, card->color);
if (node == NULL) {
fw_error("Out of memory while building topology.");
return NULL;
}
if (phy_id == (card->node_id & 0x3f))
local_node = node;
if (SELF_ID_CONTENDER(q))
irm_node = node;
if (node->phy_speed == SCODE_BETA)
topology_type |= FW_TOPOLOGY_B;
else
topology_type |= FW_TOPOLOGY_A;
parent_count = 0;
for (i = 0; i < port_count; i++) {
switch (get_port_type(sid, i)) {
case SELFID_PORT_PARENT:
/*
* Who's your daddy? We dont know the
* parent node at this time, so we
* temporarily abuse node->color for
* remembering the entry in the
* node->ports array where the parent
* node should be. Later, when we
* handle the parent node, we fix up
* the reference.
*/
parent_count++;
node->color = i;
break;
case SELFID_PORT_CHILD:
node->ports[i].node = child;
/*
* Fix up parent reference for this
* child node.
*/
child->ports[child->color].node = node;
child->color = card->color;
child = fw_node(child->link.next);
break;
}
}
/*
* Check that the node reports exactly one parent
* port, except for the root, which of course should
* have no parents.
*/
if ((next_sid == end && parent_count != 0) ||
(next_sid < end && parent_count != 1)) {
fw_error("Parent port inconsistency for node %d: "
"parent_count=%d\n", phy_id, parent_count);
return NULL;
}
/* Pop the child nodes off the stack and push the new node. */
__list_del(h->prev, &stack);
list_add_tail(&node->link, &stack);
stack_depth += 1 - child_port_count;
/*
* If all PHYs does not report the same gap count
* setting, we fall back to 63 which will force a gap
* count reconfiguration and a reset.
*/
if (SELF_ID_GAP_COUNT(q) != gap_count)
gap_count = 63;
update_hop_count(node);
sid = next_sid;
phy_id++;
}
card->root_node = node;
card->irm_node = irm_node;
card->gap_count = gap_count;
card->topology_type = topology_type;
return local_node;
}
typedef void (*fw_node_callback_t)(struct fw_card * card,
struct fw_node * node,
struct fw_node * parent);
static void
for_each_fw_node(struct fw_card *card, struct fw_node *root,
fw_node_callback_t callback)
{
struct list_head list;
struct fw_node *node, *next, *child, *parent;
int i;
INIT_LIST_HEAD(&list);
fw_node_get(root);
list_add_tail(&root->link, &list);
parent = NULL;
list_for_each_entry(node, &list, link) {
node->color = card->color;
for (i = 0; i < node->port_count; i++) {
child = node->ports[i].node;
if (!child)
continue;
if (child->color == card->color)
parent = child;
else {
fw_node_get(child);
list_add_tail(&child->link, &list);
}
}
callback(card, node, parent);
}
list_for_each_entry_safe(node, next, &list, link)
fw_node_put(node);
}
static void
report_lost_node(struct fw_card *card,
struct fw_node *node, struct fw_node *parent)
{
fw_node_event(card, node, FW_NODE_DESTROYED);
fw_node_put(node);
}
static void
report_found_node(struct fw_card *card,
struct fw_node *node, struct fw_node *parent)
{
int b_path = (node->phy_speed == SCODE_BETA);
if (parent != NULL) {
/* min() macro doesn't work here with gcc 3.4 */
node->max_speed = parent->max_speed < node->phy_speed ?
parent->max_speed : node->phy_speed;
node->b_path = parent->b_path && b_path;
} else {
node->max_speed = node->phy_speed;
node->b_path = b_path;
}
fw_node_event(card, node, FW_NODE_CREATED);
}
void fw_destroy_nodes(struct fw_card *card)
{
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
card->color++;
if (card->local_node != NULL)
for_each_fw_node(card, card->local_node, report_lost_node);
spin_unlock_irqrestore(&card->lock, flags);
}
static void move_tree(struct fw_node *node0, struct fw_node *node1, int port)
{
struct fw_node *tree;
int i;
tree = node1->ports[port].node;
node0->ports[port].node = tree;
for (i = 0; i < tree->port_count; i++) {
if (tree->ports[i].node == node1) {
tree->ports[i].node = node0;
break;
}
}
}
/**
* update_tree - compare the old topology tree for card with the new
* one specified by root. Queue the nodes and mark them as either
* found, lost or updated. Update the nodes in the card topology tree
* as we go.
*/
static void
update_tree(struct fw_card *card, struct fw_node *root)
{
struct list_head list0, list1;
struct fw_node *node0, *node1;
int i, event;
INIT_LIST_HEAD(&list0);
list_add_tail(&card->local_node->link, &list0);
INIT_LIST_HEAD(&list1);
list_add_tail(&root->link, &list1);
node0 = fw_node(list0.next);
node1 = fw_node(list1.next);
while (&node0->link != &list0) {
/* assert(node0->port_count == node1->port_count); */
if (node0->link_on && !node1->link_on)
event = FW_NODE_LINK_OFF;
else if (!node0->link_on && node1->link_on)
event = FW_NODE_LINK_ON;
else
event = FW_NODE_UPDATED;
node0->node_id = node1->node_id;
node0->color = card->color;
node0->link_on = node1->link_on;
node0->initiated_reset = node1->initiated_reset;
node0->max_hops = node1->max_hops;
node1->color = card->color;
fw_node_event(card, node0, event);
if (card->root_node == node1)
card->root_node = node0;
if (card->irm_node == node1)
card->irm_node = node0;
for (i = 0; i < node0->port_count; i++) {
if (node0->ports[i].node && node1->ports[i].node) {
/*
* This port didn't change, queue the
* connected node for further
* investigation.
*/
if (node0->ports[i].node->color == card->color)
continue;
list_add_tail(&node0->ports[i].node->link,
&list0);
list_add_tail(&node1->ports[i].node->link,
&list1);
} else if (node0->ports[i].node) {
/*
* The nodes connected here were
* unplugged; unref the lost nodes and
* queue FW_NODE_LOST callbacks for
* them.
*/
for_each_fw_node(card, node0->ports[i].node,
report_lost_node);
node0->ports[i].node = NULL;
} else if (node1->ports[i].node) {
/*
* One or more node were connected to
* this port. Move the new nodes into
* the tree and queue FW_NODE_CREATED
* callbacks for them.
*/
move_tree(node0, node1, i);
for_each_fw_node(card, node0->ports[i].node,
report_found_node);
}
}
node0 = fw_node(node0->link.next);
node1 = fw_node(node1->link.next);
}
}
static void
update_topology_map(struct fw_card *card, u32 *self_ids, int self_id_count)
{
int node_count;
card->topology_map[1]++;
node_count = (card->root_node->node_id & 0x3f) + 1;
card->topology_map[2] = (node_count << 16) | self_id_count;
card->topology_map[0] = (self_id_count + 2) << 16;
memcpy(&card->topology_map[3], self_ids, self_id_count * 4);
fw_compute_block_crc(card->topology_map);
}
void
fw_core_handle_bus_reset(struct fw_card *card,
int node_id, int generation,
int self_id_count, u32 * self_ids)
{
struct fw_node *local_node;
unsigned long flags;
fw_flush_transactions(card);
spin_lock_irqsave(&card->lock, flags);
/*
* If the new topology has a different self_id_count the topology
* changed, either nodes were added or removed. In that case we
* reset the IRM reset counter.
*/
if (card->self_id_count != self_id_count)
card->bm_retries = 0;
card->node_id = node_id;
card->generation = generation;
card->reset_jiffies = jiffies;
schedule_delayed_work(&card->work, 0);
local_node = build_tree(card, self_ids, self_id_count);
update_topology_map(card, self_ids, self_id_count);
card->color++;
if (local_node == NULL) {
fw_error("topology build failed\n");
/* FIXME: We need to issue a bus reset in this case. */
} else if (card->local_node == NULL) {
card->local_node = local_node;
for_each_fw_node(card, local_node, report_found_node);
} else {
update_tree(card, local_node);
}
spin_unlock_irqrestore(&card->lock, flags);
}
EXPORT_SYMBOL(fw_core_handle_bus_reset);
/*
* Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef __fw_topology_h
#define __fw_topology_h
enum {
FW_TOPOLOGY_A = 0x01,
FW_TOPOLOGY_B = 0x02,
FW_TOPOLOGY_MIXED = 0x03,
};
enum {
FW_NODE_CREATED = 0x00,
FW_NODE_UPDATED = 0x01,
FW_NODE_DESTROYED = 0x02,
FW_NODE_LINK_ON = 0x03,
FW_NODE_LINK_OFF = 0x04,
};
struct fw_port {
struct fw_node *node;
unsigned speed : 3; /* S100, S200, ... S3200 */
};
struct fw_node {
u16 node_id;
u8 color;
u8 port_count;
unsigned link_on : 1;
unsigned initiated_reset : 1;
unsigned b_path : 1;
u8 phy_speed : 3; /* As in the self ID packet. */
u8 max_speed : 5; /* Minimum of all phy-speeds and port speeds on
* the path from the local node to this node. */
u8 max_depth : 4; /* Maximum depth to any leaf node */
u8 max_hops : 4; /* Max hops in this sub tree */
atomic_t ref_count;
/* For serializing node topology into a list. */
struct list_head link;
/* Upper layer specific data. */
void *data;
struct fw_port ports[0];
};
static inline struct fw_node *
fw_node(struct list_head *l)
{
return list_entry(l, struct fw_node, link);
}
static inline struct fw_node *
fw_node_get(struct fw_node *node)
{
atomic_inc(&node->ref_count);
return node;
}
static inline void
fw_node_put(struct fw_node *node)
{
if (atomic_dec_and_test(&node->ref_count))
kfree(node);
}
void
fw_destroy_nodes(struct fw_card *card);
int
fw_compute_block_crc(u32 *block);
#endif /* __fw_topology_h */
/*
* Core IEEE1394 transaction logic
*
* Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/poll.h>
#include <linux/list.h>
#include <linux/kthread.h>
#include <asm/uaccess.h>
#include <asm/semaphore.h>
#include "fw-transaction.h"
#include "fw-topology.h"
#include "fw-device.h"
#define HEADER_PRI(pri) ((pri) << 0)
#define HEADER_TCODE(tcode) ((tcode) << 4)
#define HEADER_RETRY(retry) ((retry) << 8)
#define HEADER_TLABEL(tlabel) ((tlabel) << 10)
#define HEADER_DESTINATION(destination) ((destination) << 16)
#define HEADER_SOURCE(source) ((source) << 16)
#define HEADER_RCODE(rcode) ((rcode) << 12)
#define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
#define HEADER_DATA_LENGTH(length) ((length) << 16)
#define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
#define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
#define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
#define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
#define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
#define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
#define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
#define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
#define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
#define PHY_IDENTIFIER(id) ((id) << 30)
static int
close_transaction(struct fw_transaction *transaction,
struct fw_card *card, int rcode,
u32 *payload, size_t length)
{
struct fw_transaction *t;
unsigned long flags;
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(t, &card->transaction_list, link) {
if (t == transaction) {
list_del(&t->link);
card->tlabel_mask &= ~(1 << t->tlabel);
break;
}
}
spin_unlock_irqrestore(&card->lock, flags);
if (&t->link != &card->transaction_list) {
t->callback(card, rcode, payload, length, t->callback_data);
return 0;
}
return -ENOENT;
}
/*
* Only valid for transactions that are potentially pending (ie have
* been sent).
*/
int
fw_cancel_transaction(struct fw_card *card,
struct fw_transaction *transaction)
{
/*
* Cancel the packet transmission if it's still queued. That
* will call the packet transmission callback which cancels
* the transaction.
*/
if (card->driver->cancel_packet(card, &transaction->packet) == 0)
return 0;
/*
* If the request packet has already been sent, we need to see
* if the transaction is still pending and remove it in that case.
*/
return close_transaction(transaction, card, RCODE_CANCELLED, NULL, 0);
}
EXPORT_SYMBOL(fw_cancel_transaction);
static void
transmit_complete_callback(struct fw_packet *packet,
struct fw_card *card, int status)
{
struct fw_transaction *t =
container_of(packet, struct fw_transaction, packet);
switch (status) {
case ACK_COMPLETE:
close_transaction(t, card, RCODE_COMPLETE, NULL, 0);
break;
case ACK_PENDING:
t->timestamp = packet->timestamp;
break;
case ACK_BUSY_X:
case ACK_BUSY_A:
case ACK_BUSY_B:
close_transaction(t, card, RCODE_BUSY, NULL, 0);
break;
case ACK_DATA_ERROR:
close_transaction(t, card, RCODE_DATA_ERROR, NULL, 0);
break;
case ACK_TYPE_ERROR:
close_transaction(t, card, RCODE_TYPE_ERROR, NULL, 0);
break;
default:
/*
* In this case the ack is really a juju specific
* rcode, so just forward that to the callback.
*/
close_transaction(t, card, status, NULL, 0);
break;
}
}
static void
fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
int node_id, int source_id, int generation, int speed,
unsigned long long offset, void *payload, size_t length)
{
int ext_tcode;
if (tcode > 0x10) {
ext_tcode = tcode - 0x10;
tcode = TCODE_LOCK_REQUEST;
} else
ext_tcode = 0;
packet->header[0] =
HEADER_RETRY(RETRY_X) |
HEADER_TLABEL(tlabel) |
HEADER_TCODE(tcode) |
HEADER_DESTINATION(node_id);
packet->header[1] =
HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
packet->header[2] =
offset;
switch (tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
packet->header[3] = *(u32 *)payload;
packet->header_length = 16;
packet->payload_length = 0;
break;
case TCODE_LOCK_REQUEST:
case TCODE_WRITE_BLOCK_REQUEST:
packet->header[3] =
HEADER_DATA_LENGTH(length) |
HEADER_EXTENDED_TCODE(ext_tcode);
packet->header_length = 16;
packet->payload = payload;
packet->payload_length = length;
break;
case TCODE_READ_QUADLET_REQUEST:
packet->header_length = 12;
packet->payload_length = 0;
break;
case TCODE_READ_BLOCK_REQUEST:
packet->header[3] =
HEADER_DATA_LENGTH(length) |
HEADER_EXTENDED_TCODE(ext_tcode);
packet->header_length = 16;
packet->payload_length = 0;
break;
}
packet->speed = speed;
packet->generation = generation;
packet->ack = 0;
}
/**
* This function provides low-level access to the IEEE1394 transaction
* logic. Most C programs would use either fw_read(), fw_write() or
* fw_lock() instead - those function are convenience wrappers for
* this function. The fw_send_request() function is primarily
* provided as a flexible, one-stop entry point for languages bindings
* and protocol bindings.
*
* FIXME: Document this function further, in particular the possible
* values for rcode in the callback. In short, we map ACK_COMPLETE to
* RCODE_COMPLETE, internal errors set errno and set rcode to
* RCODE_SEND_ERROR (which is out of range for standard ieee1394
* rcodes). All other rcodes are forwarded unchanged. For all
* errors, payload is NULL, length is 0.
*
* Can not expect the callback to be called before the function
* returns, though this does happen in some cases (ACK_COMPLETE and
* errors).
*
* The payload is only used for write requests and must not be freed
* until the callback has been called.
*
* @param card the card from which to send the request
* @param tcode the tcode for this transaction. Do not use
* TCODE_LOCK_REQUEST directly, insted use TCODE_LOCK_MASK_SWAP
* etc. to specify tcode and ext_tcode.
* @param node_id the destination node ID (bus ID and PHY ID concatenated)
* @param generation the generation for which node_id is valid
* @param speed the speed to use for sending the request
* @param offset the 48 bit offset on the destination node
* @param payload the data payload for the request subaction
* @param length the length in bytes of the data to read
* @param callback function to be called when the transaction is completed
* @param callback_data pointer to arbitrary data, which will be
* passed to the callback
*/
void
fw_send_request(struct fw_card *card, struct fw_transaction *t,
int tcode, int node_id, int generation, int speed,
unsigned long long offset,
void *payload, size_t length,
fw_transaction_callback_t callback, void *callback_data)
{
unsigned long flags;
int tlabel, source;
/*
* Bump the flush timer up 100ms first of all so we
* don't race with a flush timer callback.
*/
mod_timer(&card->flush_timer, jiffies + DIV_ROUND_UP(HZ, 10));
/*
* Allocate tlabel from the bitmap and put the transaction on
* the list while holding the card spinlock.
*/
spin_lock_irqsave(&card->lock, flags);
source = card->node_id;
tlabel = card->current_tlabel;
if (card->tlabel_mask & (1 << tlabel)) {
spin_unlock_irqrestore(&card->lock, flags);
callback(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
return;
}
card->current_tlabel = (card->current_tlabel + 1) & 0x1f;
card->tlabel_mask |= (1 << tlabel);
list_add_tail(&t->link, &card->transaction_list);
spin_unlock_irqrestore(&card->lock, flags);
/* Initialize rest of transaction, fill out packet and send it. */
t->node_id = node_id;
t->tlabel = tlabel;
t->callback = callback;
t->callback_data = callback_data;
fw_fill_request(&t->packet, tcode, t->tlabel,
node_id, source, generation,
speed, offset, payload, length);
t->packet.callback = transmit_complete_callback;
card->driver->send_request(card, &t->packet);
}
EXPORT_SYMBOL(fw_send_request);
static void
transmit_phy_packet_callback(struct fw_packet *packet,
struct fw_card *card, int status)
{
kfree(packet);
}
static void send_phy_packet(struct fw_card *card, u32 data, int generation)
{
struct fw_packet *packet;
packet = kzalloc(sizeof(*packet), GFP_ATOMIC);
if (packet == NULL)
return;
packet->header[0] = data;
packet->header[1] = ~data;
packet->header_length = 8;
packet->payload_length = 0;
packet->speed = SCODE_100;
packet->generation = generation;
packet->callback = transmit_phy_packet_callback;
card->driver->send_request(card, packet);
}
void fw_send_phy_config(struct fw_card *card,
int node_id, int generation, int gap_count)
{
u32 q;
q = PHY_IDENTIFIER(PHY_PACKET_CONFIG) |
PHY_CONFIG_ROOT_ID(node_id) |
PHY_CONFIG_GAP_COUNT(gap_count);
send_phy_packet(card, q, generation);
}
void fw_flush_transactions(struct fw_card *card)
{
struct fw_transaction *t, *next;
struct list_head list;
unsigned long flags;
INIT_LIST_HEAD(&list);
spin_lock_irqsave(&card->lock, flags);
list_splice_init(&card->transaction_list, &list);
card->tlabel_mask = 0;
spin_unlock_irqrestore(&card->lock, flags);
list_for_each_entry_safe(t, next, &list, link) {
card->driver->cancel_packet(card, &t->packet);
/*
* At this point cancel_packet will never call the
* transaction callback, since we just took all the
* transactions out of the list. So do it here.
*/
t->callback(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
}
}
static struct fw_address_handler *
lookup_overlapping_address_handler(struct list_head *list,
unsigned long long offset, size_t length)
{
struct fw_address_handler *handler;
list_for_each_entry(handler, list, link) {
if (handler->offset < offset + length &&
offset < handler->offset + handler->length)
return handler;
}
return NULL;
}
static struct fw_address_handler *
lookup_enclosing_address_handler(struct list_head *list,
unsigned long long offset, size_t length)
{
struct fw_address_handler *handler;
list_for_each_entry(handler, list, link) {
if (handler->offset <= offset &&
offset + length <= handler->offset + handler->length)
return handler;
}
return NULL;
}
static DEFINE_SPINLOCK(address_handler_lock);
static LIST_HEAD(address_handler_list);
const struct fw_address_region fw_low_memory_region =
{ .start = 0x000000000000ULL, .end = 0x000100000000ULL, };
const struct fw_address_region fw_high_memory_region =
{ .start = 0x000100000000ULL, .end = 0xffffe0000000ULL, };
const struct fw_address_region fw_private_region =
{ .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
const struct fw_address_region fw_csr_region =
{ .start = 0xfffff0000000ULL, .end = 0xfffff0000800ULL, };
const struct fw_address_region fw_unit_space_region =
{ .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
EXPORT_SYMBOL(fw_low_memory_region);
EXPORT_SYMBOL(fw_high_memory_region);
EXPORT_SYMBOL(fw_private_region);
EXPORT_SYMBOL(fw_csr_region);
EXPORT_SYMBOL(fw_unit_space_region);
/**
* Allocate a range of addresses in the node space of the OHCI
* controller. When a request is received that falls within the
* specified address range, the specified callback is invoked. The
* parameters passed to the callback give the details of the
* particular request
*/
int
fw_core_add_address_handler(struct fw_address_handler *handler,
const struct fw_address_region *region)
{
struct fw_address_handler *other;
unsigned long flags;
int ret = -EBUSY;
spin_lock_irqsave(&address_handler_lock, flags);
handler->offset = region->start;
while (handler->offset + handler->length <= region->end) {
other =
lookup_overlapping_address_handler(&address_handler_list,
handler->offset,
handler->length);
if (other != NULL) {
handler->offset += other->length;
} else {
list_add_tail(&handler->link, &address_handler_list);
ret = 0;
break;
}
}
spin_unlock_irqrestore(&address_handler_lock, flags);
return ret;
}
EXPORT_SYMBOL(fw_core_add_address_handler);
/**
* Deallocate a range of addresses allocated with fw_allocate. This
* will call the associated callback one last time with a the special
* tcode TCODE_DEALLOCATE, to let the client destroy the registered
* callback data. For convenience, the callback parameters offset and
* length are set to the start and the length respectively for the
* deallocated region, payload is set to NULL.
*/
void fw_core_remove_address_handler(struct fw_address_handler *handler)
{
unsigned long flags;
spin_lock_irqsave(&address_handler_lock, flags);
list_del(&handler->link);
spin_unlock_irqrestore(&address_handler_lock, flags);
}
EXPORT_SYMBOL(fw_core_remove_address_handler);
struct fw_request {
struct fw_packet response;
u32 request_header[4];
int ack;
u32 length;
u32 data[0];
};
static void
free_response_callback(struct fw_packet *packet,
struct fw_card *card, int status)
{
struct fw_request *request;
request = container_of(packet, struct fw_request, response);
kfree(request);
}
void
fw_fill_response(struct fw_packet *response, u32 *request_header,
int rcode, void *payload, size_t length)
{
int tcode, tlabel, extended_tcode, source, destination;
tcode = HEADER_GET_TCODE(request_header[0]);
tlabel = HEADER_GET_TLABEL(request_header[0]);
source = HEADER_GET_DESTINATION(request_header[0]);
destination = HEADER_GET_SOURCE(request_header[1]);
extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
response->header[0] =
HEADER_RETRY(RETRY_1) |
HEADER_TLABEL(tlabel) |
HEADER_DESTINATION(destination);
response->header[1] =
HEADER_SOURCE(source) |
HEADER_RCODE(rcode);
response->header[2] = 0;
switch (tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
case TCODE_WRITE_BLOCK_REQUEST:
response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
response->header_length = 12;
response->payload_length = 0;
break;
case TCODE_READ_QUADLET_REQUEST:
response->header[0] |=
HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
if (payload != NULL)
response->header[3] = *(u32 *)payload;
else
response->header[3] = 0;
response->header_length = 16;
response->payload_length = 0;
break;
case TCODE_READ_BLOCK_REQUEST:
case TCODE_LOCK_REQUEST:
response->header[0] |= HEADER_TCODE(tcode + 2);
response->header[3] =
HEADER_DATA_LENGTH(length) |
HEADER_EXTENDED_TCODE(extended_tcode);
response->header_length = 16;
response->payload = payload;
response->payload_length = length;
break;
default:
BUG();
return;
}
}
EXPORT_SYMBOL(fw_fill_response);
static struct fw_request *
allocate_request(struct fw_packet *p)
{
struct fw_request *request;
u32 *data, length;
int request_tcode, t;
request_tcode = HEADER_GET_TCODE(p->header[0]);
switch (request_tcode) {
case TCODE_WRITE_QUADLET_REQUEST:
data = &p->header[3];
length = 4;
break;
case TCODE_WRITE_BLOCK_REQUEST:
case TCODE_LOCK_REQUEST:
data = p->payload;
length = HEADER_GET_DATA_LENGTH(p->header[3]);
break;
case TCODE_READ_QUADLET_REQUEST:
data = NULL;
length = 4;
break;
case TCODE_READ_BLOCK_REQUEST:
data = NULL;
length = HEADER_GET_DATA_LENGTH(p->header[3]);
break;
default:
BUG();
return NULL;
}
request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
if (request == NULL)
return NULL;
t = (p->timestamp & 0x1fff) + 4000;
if (t >= 8000)
t = (p->timestamp & ~0x1fff) + 0x2000 + t - 8000;
else
t = (p->timestamp & ~0x1fff) + t;
request->response.speed = p->speed;
request->response.timestamp = t;
request->response.generation = p->generation;
request->response.ack = 0;
request->response.callback = free_response_callback;
request->ack = p->ack;
request->length = length;
if (data)
memcpy(request->data, data, length);
memcpy(request->request_header, p->header, sizeof(p->header));
return request;
}
void
fw_send_response(struct fw_card *card, struct fw_request *request, int rcode)
{
/*
* Broadcast packets are reported as ACK_COMPLETE, so this
* check is sufficient to ensure we don't send response to
* broadcast packets or posted writes.
*/
if (request->ack != ACK_PENDING)
return;
if (rcode == RCODE_COMPLETE)
fw_fill_response(&request->response, request->request_header,
rcode, request->data, request->length);
else
fw_fill_response(&request->response, request->request_header,
rcode, NULL, 0);
card->driver->send_response(card, &request->response);
}
EXPORT_SYMBOL(fw_send_response);
void
fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
{
struct fw_address_handler *handler;
struct fw_request *request;
unsigned long long offset;
unsigned long flags;
int tcode, destination, source;
if (p->payload_length > 2048) {
/* FIXME: send error response. */
return;
}
if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
return;
request = allocate_request(p);
if (request == NULL) {
/* FIXME: send statically allocated busy packet. */
return;
}
offset =
((unsigned long long)
HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) | p->header[2];
tcode = HEADER_GET_TCODE(p->header[0]);
destination = HEADER_GET_DESTINATION(p->header[0]);
source = HEADER_GET_SOURCE(p->header[0]);
spin_lock_irqsave(&address_handler_lock, flags);
handler = lookup_enclosing_address_handler(&address_handler_list,
offset, request->length);
spin_unlock_irqrestore(&address_handler_lock, flags);
/*
* FIXME: lookup the fw_node corresponding to the sender of
* this request and pass that to the address handler instead
* of the node ID. We may also want to move the address
* allocations to fw_node so we only do this callback if the
* upper layers registered it for this node.
*/
if (handler == NULL)
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
else
handler->address_callback(card, request,
tcode, destination, source,
p->generation, p->speed, offset,
request->data, request->length,
handler->callback_data);
}
EXPORT_SYMBOL(fw_core_handle_request);
void
fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
{
struct fw_transaction *t;
unsigned long flags;
u32 *data;
size_t data_length;
int tcode, tlabel, destination, source, rcode;
tcode = HEADER_GET_TCODE(p->header[0]);
tlabel = HEADER_GET_TLABEL(p->header[0]);
destination = HEADER_GET_DESTINATION(p->header[0]);
source = HEADER_GET_SOURCE(p->header[1]);
rcode = HEADER_GET_RCODE(p->header[1]);
spin_lock_irqsave(&card->lock, flags);
list_for_each_entry(t, &card->transaction_list, link) {
if (t->node_id == source && t->tlabel == tlabel) {
list_del(&t->link);
card->tlabel_mask &= ~(1 << t->tlabel);
break;
}
}
spin_unlock_irqrestore(&card->lock, flags);
if (&t->link == &card->transaction_list) {
fw_notify("Unsolicited response (source %x, tlabel %x)\n",
source, tlabel);
return;
}
/*
* FIXME: sanity check packet, is length correct, does tcodes
* and addresses match.
*/
switch (tcode) {
case TCODE_READ_QUADLET_RESPONSE:
data = (u32 *) &p->header[3];
data_length = 4;
break;
case TCODE_WRITE_RESPONSE:
data = NULL;
data_length = 0;
break;
case TCODE_READ_BLOCK_RESPONSE:
case TCODE_LOCK_RESPONSE:
data = p->payload;
data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
break;
default:
/* Should never happen, this is just to shut up gcc. */
data = NULL;
data_length = 0;
break;
}
t->callback(card, rcode, data, data_length, t->callback_data);
}
EXPORT_SYMBOL(fw_core_handle_response);
const struct fw_address_region topology_map_region =
{ .start = 0xfffff0001000ull, .end = 0xfffff0001400ull, };
static void
handle_topology_map(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, int speed,
unsigned long long offset,
void *payload, size_t length, void *callback_data)
{
int i, start, end;
u32 *map;
if (!TCODE_IS_READ_REQUEST(tcode)) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
return;
}
if ((offset & 3) > 0 || (length & 3) > 0) {
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
return;
}
start = (offset - topology_map_region.start) / 4;
end = start + length / 4;
map = payload;
for (i = 0; i < length / 4; i++)
map[i] = cpu_to_be32(card->topology_map[start + i]);
fw_send_response(card, request, RCODE_COMPLETE);
}
static struct fw_address_handler topology_map = {
.length = 0x200,
.address_callback = handle_topology_map,
};
const struct fw_address_region registers_region =
{ .start = 0xfffff0000000ull, .end = 0xfffff0000400ull, };
static void
handle_registers(struct fw_card *card, struct fw_request *request,
int tcode, int destination, int source,
int generation, int speed,
unsigned long long offset,
void *payload, size_t length, void *callback_data)
{
int reg = offset - CSR_REGISTER_BASE;
unsigned long long bus_time;
__be32 *data = payload;
switch (reg) {
case CSR_CYCLE_TIME:
case CSR_BUS_TIME:
if (!TCODE_IS_READ_REQUEST(tcode) || length != 4) {
fw_send_response(card, request, RCODE_TYPE_ERROR);
break;
}
bus_time = card->driver->get_bus_time(card);
if (reg == CSR_CYCLE_TIME)
*data = cpu_to_be32(bus_time);
else
*data = cpu_to_be32(bus_time >> 25);
fw_send_response(card, request, RCODE_COMPLETE);
break;
case CSR_BUS_MANAGER_ID:
case CSR_BANDWIDTH_AVAILABLE:
case CSR_CHANNELS_AVAILABLE_HI:
case CSR_CHANNELS_AVAILABLE_LO:
/*
* FIXME: these are handled by the OHCI hardware and
* the stack never sees these request. If we add
* support for a new type of controller that doesn't
* handle this in hardware we need to deal with these
* transactions.
*/
BUG();
break;
case CSR_BUSY_TIMEOUT:
/* FIXME: Implement this. */
default:
fw_send_response(card, request, RCODE_ADDRESS_ERROR);
break;
}
}
static struct fw_address_handler registers = {
.length = 0x400,
.address_callback = handle_registers,
};
MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
MODULE_LICENSE("GPL");
static const u32 vendor_textual_descriptor[] = {
/* textual descriptor leaf () */
0x00060000,
0x00000000,
0x00000000,
0x4c696e75, /* L i n u */
0x78204669, /* x F i */
0x72657769, /* r e w i */
0x72650000, /* r e */
};
static const u32 model_textual_descriptor[] = {
/* model descriptor leaf () */
0x00030000,
0x00000000,
0x00000000,
0x4a756a75, /* J u j u */
};
static struct fw_descriptor vendor_id_descriptor = {
.length = ARRAY_SIZE(vendor_textual_descriptor),
.immediate = 0x03d00d1e,
.key = 0x81000000,
.data = vendor_textual_descriptor,
};
static struct fw_descriptor model_id_descriptor = {
.length = ARRAY_SIZE(model_textual_descriptor),
.immediate = 0x17000001,
.key = 0x81000000,
.data = model_textual_descriptor,
};
static int __init fw_core_init(void)
{
int retval;
retval = bus_register(&fw_bus_type);
if (retval < 0)
return retval;
fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
if (fw_cdev_major < 0) {
bus_unregister(&fw_bus_type);
return fw_cdev_major;
}
retval = fw_core_add_address_handler(&topology_map,
&topology_map_region);
BUG_ON(retval < 0);
retval = fw_core_add_address_handler(&registers,
&registers_region);
BUG_ON(retval < 0);
/* Add the vendor textual descriptor. */
retval = fw_core_add_descriptor(&vendor_id_descriptor);
BUG_ON(retval < 0);
retval = fw_core_add_descriptor(&model_id_descriptor);
BUG_ON(retval < 0);
return 0;
}
static void __exit fw_core_cleanup(void)
{
unregister_chrdev(fw_cdev_major, "firewire");
bus_unregister(&fw_bus_type);
}
module_init(fw_core_init);
module_exit(fw_core_cleanup);
/*
* Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef __fw_transaction_h
#define __fw_transaction_h
#include <linux/device.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <linux/dma-mapping.h>
#include <linux/firewire-constants.h>
#define TCODE_IS_READ_REQUEST(tcode) (((tcode) & ~1) == 4)
#define TCODE_IS_BLOCK_PACKET(tcode) (((tcode) & 1) != 0)
#define TCODE_IS_REQUEST(tcode) (((tcode) & 2) == 0)
#define TCODE_IS_RESPONSE(tcode) (((tcode) & 2) != 0)
#define TCODE_HAS_REQUEST_DATA(tcode) (((tcode) & 12) != 4)
#define TCODE_HAS_RESPONSE_DATA(tcode) (((tcode) & 12) != 0)
#define LOCAL_BUS 0xffc0
#define SELFID_PORT_CHILD 0x3
#define SELFID_PORT_PARENT 0x2
#define SELFID_PORT_NCONN 0x1
#define SELFID_PORT_NONE 0x0
#define PHY_PACKET_CONFIG 0x0
#define PHY_PACKET_LINK_ON 0x1
#define PHY_PACKET_SELF_ID 0x2
/* Bit fields _within_ the PHY registers. */
#define PHY_LINK_ACTIVE 0x80
#define PHY_CONTENDER 0x40
#define PHY_BUS_RESET 0x40
#define PHY_BUS_SHORT_RESET 0x40
#define CSR_REGISTER_BASE 0xfffff0000000ULL
/* register offsets relative to CSR_REGISTER_BASE */
#define CSR_STATE_CLEAR 0x0
#define CSR_STATE_SET 0x4
#define CSR_NODE_IDS 0x8
#define CSR_RESET_START 0xc
#define CSR_SPLIT_TIMEOUT_HI 0x18
#define CSR_SPLIT_TIMEOUT_LO 0x1c
#define CSR_CYCLE_TIME 0x200
#define CSR_BUS_TIME 0x204
#define CSR_BUSY_TIMEOUT 0x210
#define CSR_BUS_MANAGER_ID 0x21c
#define CSR_BANDWIDTH_AVAILABLE 0x220
#define CSR_CHANNELS_AVAILABLE 0x224
#define CSR_CHANNELS_AVAILABLE_HI 0x224
#define CSR_CHANNELS_AVAILABLE_LO 0x228
#define CSR_BROADCAST_CHANNEL 0x234
#define CSR_CONFIG_ROM 0x400
#define CSR_CONFIG_ROM_END 0x800
#define CSR_FCP_COMMAND 0xB00
#define CSR_FCP_RESPONSE 0xD00
#define CSR_FCP_END 0xF00
#define CSR_TOPOLOGY_MAP 0x1000
#define CSR_TOPOLOGY_MAP_END 0x1400
#define CSR_SPEED_MAP 0x2000
#define CSR_SPEED_MAP_END 0x3000
#define fw_notify(s, args...) printk(KERN_NOTICE KBUILD_MODNAME ": " s, ## args)
#define fw_error(s, args...) printk(KERN_ERR KBUILD_MODNAME ": " s, ## args)
#define fw_debug(s, args...) printk(KERN_DEBUG KBUILD_MODNAME ": " s, ## args)
static inline void
fw_memcpy_from_be32(void *_dst, void *_src, size_t size)
{
u32 *dst = _dst;
u32 *src = _src;
int i;
for (i = 0; i < size / 4; i++)
dst[i] = cpu_to_be32(src[i]);
}
static inline void
fw_memcpy_to_be32(void *_dst, void *_src, size_t size)
{
fw_memcpy_from_be32(_dst, _src, size);
}
struct fw_card;
struct fw_packet;
struct fw_node;
struct fw_request;
struct fw_descriptor {
struct list_head link;
size_t length;
u32 immediate;
u32 key;
const u32 *data;
};
int fw_core_add_descriptor(struct fw_descriptor *desc);
void fw_core_remove_descriptor(struct fw_descriptor *desc);
typedef void (*fw_packet_callback_t)(struct fw_packet *packet,
struct fw_card *card, int status);
typedef void (*fw_transaction_callback_t)(struct fw_card *card, int rcode,
void *data,
size_t length,
void *callback_data);
typedef void (*fw_address_callback_t)(struct fw_card *card,
struct fw_request *request,
int tcode, int destination, int source,
int generation, int speed,
unsigned long long offset,
void *data, size_t length,
void *callback_data);
typedef void (*fw_bus_reset_callback_t)(struct fw_card *handle,
int node_id, int generation,
u32 *self_ids,
int self_id_count,
void *callback_data);
struct fw_packet {
int speed;
int generation;
u32 header[4];
size_t header_length;
void *payload;
size_t payload_length;
u32 timestamp;
/*
* This callback is called when the packet transmission has
* completed; for successful transmission, the status code is
* the ack received from the destination, otherwise it's a
* negative errno: ENOMEM, ESTALE, ETIMEDOUT, ENODEV, EIO.
* The callback can be called from tasklet context and thus
* must never block.
*/
fw_packet_callback_t callback;
int ack;
struct list_head link;
void *driver_data;
};
struct fw_transaction {
int node_id; /* The generation is implied; it is always the current. */
int tlabel;
int timestamp;
struct list_head link;
struct fw_packet packet;
/*
* The data passed to the callback is valid only during the
* callback.
*/
fw_transaction_callback_t callback;
void *callback_data;
};
static inline struct fw_packet *
fw_packet(struct list_head *l)
{
return list_entry(l, struct fw_packet, link);
}
struct fw_address_handler {
u64 offset;
size_t length;
fw_address_callback_t address_callback;
void *callback_data;
struct list_head link;
};
struct fw_address_region {
u64 start;
u64 end;
};
extern const struct fw_address_region fw_low_memory_region;
extern const struct fw_address_region fw_high_memory_region;
extern const struct fw_address_region fw_private_region;
extern const struct fw_address_region fw_csr_region;
extern const struct fw_address_region fw_unit_space_region;
int fw_core_add_address_handler(struct fw_address_handler *handler,
const struct fw_address_region *region);
void fw_core_remove_address_handler(struct fw_address_handler *handler);
void fw_fill_response(struct fw_packet *response, u32 *request_header,
int rcode, void *payload, size_t length);
void fw_send_response(struct fw_card *card,
struct fw_request *request, int rcode);
extern struct bus_type fw_bus_type;
struct fw_card {
const struct fw_card_driver *driver;
struct device *device;
struct kref kref;
int node_id;
int generation;
/* This is the generation used for timestamping incoming requests. */
int request_generation;
int current_tlabel, tlabel_mask;
struct list_head transaction_list;
struct timer_list flush_timer;
unsigned long reset_jiffies;
unsigned long long guid;
int max_receive;
int link_speed;
int config_rom_generation;
/*
* We need to store up to 4 self ID for a maximum of 63
* devices plus 3 words for the topology map header.
*/
int self_id_count;
u32 topology_map[252 + 3];
spinlock_t lock; /* Take this lock when handling the lists in
* this struct. */
struct fw_node *local_node;
struct fw_node *root_node;
struct fw_node *irm_node;
int color;
int gap_count;
int topology_type;
int index;
struct list_head link;
/* Work struct for BM duties. */
struct delayed_work work;
int bm_retries;
int bm_generation;
};
struct fw_card *fw_card_get(struct fw_card *card);
void fw_card_put(struct fw_card *card);
/*
* The iso packet format allows for an immediate header/payload part
* stored in 'header' immediately after the packet info plus an
* indirect payload part that is pointer to by the 'payload' field.
* Applications can use one or the other or both to implement simple
* low-bandwidth streaming (e.g. audio) or more advanced
* scatter-gather streaming (e.g. assembling video frame automatically).
*/
struct fw_iso_packet {
u16 payload_length; /* Length of indirect payload. */
u32 interrupt : 1; /* Generate interrupt on this packet */
u32 skip : 1; /* Set to not send packet at all. */
u32 tag : 2;
u32 sy : 4;
u32 header_length : 8; /* Length of immediate header. */
u32 header[0];
};
#define FW_ISO_CONTEXT_TRANSMIT 0
#define FW_ISO_CONTEXT_RECEIVE 1
#define FW_ISO_CONTEXT_MATCH_TAG0 1
#define FW_ISO_CONTEXT_MATCH_TAG1 2
#define FW_ISO_CONTEXT_MATCH_TAG2 4
#define FW_ISO_CONTEXT_MATCH_TAG3 8
#define FW_ISO_CONTEXT_MATCH_ALL_TAGS 15
struct fw_iso_context;
typedef void (*fw_iso_callback_t)(struct fw_iso_context *context,
u32 cycle,
size_t header_length,
void *header,
void *data);
/*
* An iso buffer is just a set of pages mapped for DMA in the
* specified direction. Since the pages are to be used for DMA, they
* are not mapped into the kernel virtual address space. We store the
* DMA address in the page private. The helper function
* fw_iso_buffer_map() will map the pages into a given vma.
*/
struct fw_iso_buffer {
enum dma_data_direction direction;
struct page **pages;
int page_count;
};
struct fw_iso_context {
struct fw_card *card;
int type;
int channel;
int speed;
size_t header_size;
fw_iso_callback_t callback;
void *callback_data;
};
int
fw_iso_buffer_init(struct fw_iso_buffer *buffer,
struct fw_card *card,
int page_count,
enum dma_data_direction direction);
int
fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma);
void
fw_iso_buffer_destroy(struct fw_iso_buffer *buffer, struct fw_card *card);
struct fw_iso_context *
fw_iso_context_create(struct fw_card *card, int type,
int channel, int speed, size_t header_size,
fw_iso_callback_t callback, void *callback_data);
void
fw_iso_context_destroy(struct fw_iso_context *ctx);
int
fw_iso_context_queue(struct fw_iso_context *ctx,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload);
int
fw_iso_context_start(struct fw_iso_context *ctx,
int cycle, int sync, int tags);
int
fw_iso_context_stop(struct fw_iso_context *ctx);
struct fw_card_driver {
const char *name;
/*
* Enable the given card with the given initial config rom.
* This function is expected to activate the card, and either
* enable the PHY or set the link_on bit and initiate a bus
* reset.
*/
int (*enable)(struct fw_card *card, u32 *config_rom, size_t length);
int (*update_phy_reg)(struct fw_card *card, int address,
int clear_bits, int set_bits);
/*
* Update the config rom for an enabled card. This function
* should change the config rom that is presented on the bus
* an initiate a bus reset.
*/
int (*set_config_rom)(struct fw_card *card,
u32 *config_rom, size_t length);
void (*send_request)(struct fw_card *card, struct fw_packet *packet);
void (*send_response)(struct fw_card *card, struct fw_packet *packet);
/* Calling cancel is valid once a packet has been submitted. */
int (*cancel_packet)(struct fw_card *card, struct fw_packet *packet);
/*
* Allow the specified node ID to do direct DMA out and in of
* host memory. The card will disable this for all node when
* a bus reset happens, so driver need to reenable this after
* bus reset. Returns 0 on success, -ENODEV if the card
* doesn't support this, -ESTALE if the generation doesn't
* match.
*/
int (*enable_phys_dma)(struct fw_card *card,
int node_id, int generation);
u64 (*get_bus_time)(struct fw_card *card);
struct fw_iso_context *
(*allocate_iso_context)(struct fw_card *card,
int type, size_t header_size);
void (*free_iso_context)(struct fw_iso_context *ctx);
int (*start_iso)(struct fw_iso_context *ctx,
s32 cycle, u32 sync, u32 tags);
int (*queue_iso)(struct fw_iso_context *ctx,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload);
int (*stop_iso)(struct fw_iso_context *ctx);
};
int
fw_core_initiate_bus_reset(struct fw_card *card, int short_reset);
void
fw_send_request(struct fw_card *card, struct fw_transaction *t,
int tcode, int node_id, int generation, int speed,
unsigned long long offset,
void *data, size_t length,
fw_transaction_callback_t callback, void *callback_data);
int fw_cancel_transaction(struct fw_card *card,
struct fw_transaction *transaction);
void fw_flush_transactions(struct fw_card *card);
void fw_send_phy_config(struct fw_card *card,
int node_id, int generation, int gap_count);
/*
* Called by the topology code to inform the device code of node
* activity; found, lost, or updated nodes.
*/
void
fw_node_event(struct fw_card *card, struct fw_node *node, int event);
/* API used by card level drivers */
void
fw_card_initialize(struct fw_card *card, const struct fw_card_driver *driver,
struct device *device);
int
fw_card_add(struct fw_card *card,
u32 max_receive, u32 link_speed, u64 guid);
void
fw_core_remove_card(struct fw_card *card);
void
fw_core_handle_bus_reset(struct fw_card *card,
int node_id, int generation,
int self_id_count, u32 *self_ids);
void
fw_core_handle_request(struct fw_card *card, struct fw_packet *request);
void
fw_core_handle_response(struct fw_card *card, struct fw_packet *packet);
#endif /* __fw_transaction_h */
menu "IEEE 1394 (FireWire) support"
depends on PCI || BROKEN
source "drivers/firewire/Kconfig"
config IEEE1394
tristate "IEEE 1394 (FireWire) support"
depends on PCI || BROKEN
......
/*
* crc-itu-t.h - CRC ITU-T V.41 routine
*
* Implements the standard CRC ITU-T V.41:
* Width 16
* Poly 0x0x1021 (x^16 + x^12 + x^15 + 1)
* Init 0
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#ifndef CRC_ITU_T_H
#define CRC_ITU_T_H
#include <linux/types.h>
extern u16 const crc_itu_t_table[256];
extern u16 crc_itu_t(u16 crc, const u8 *buffer, size_t len);
static inline u16 crc_itu_t_byte(u16 crc, const u8 data)
{
return (crc << 8) ^ crc_itu_t_table[((crc >> 8) ^ data) & 0xff];
}
#endif /* CRC_ITU_T_H */
/*
* Char device interface.
*
* Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#ifndef _LINUX_FIREWIRE_CDEV_H
#define _LINUX_FIREWIRE_CDEV_H
#include <linux/ioctl.h>
#include <linux/types.h>
#include <linux/firewire-constants.h>
#define FW_CDEV_EVENT_BUS_RESET 0x00
#define FW_CDEV_EVENT_RESPONSE 0x01
#define FW_CDEV_EVENT_REQUEST 0x02
#define FW_CDEV_EVENT_ISO_INTERRUPT 0x03
/* The 'closure' fields are for user space to use. Data passed in the
* 'closure' field for a request will be returned in the corresponding
* event. It's a 64-bit type so that it's a fixed size type big
* enough to hold a pointer on all platforms. */
struct fw_cdev_event_common {
__u64 closure;
__u32 type;
};
struct fw_cdev_event_bus_reset {
__u64 closure;
__u32 type;
__u32 node_id;
__u32 local_node_id;
__u32 bm_node_id;
__u32 irm_node_id;
__u32 root_node_id;
__u32 generation;
};
struct fw_cdev_event_response {
__u64 closure;
__u32 type;
__u32 rcode;
__u32 length;
__u32 data[0];
};
struct fw_cdev_event_request {
__u64 closure;
__u32 type;
__u32 tcode;
__u64 offset;
__u32 handle;
__u32 length;
__u32 data[0];
};
struct fw_cdev_event_iso_interrupt {
__u64 closure;
__u32 type;
__u32 cycle;
__u32 header_length; /* Length in bytes of following headers. */
__u32 header[0];
};
union fw_cdev_event {
struct fw_cdev_event_common common;
struct fw_cdev_event_bus_reset bus_reset;
struct fw_cdev_event_response response;
struct fw_cdev_event_request request;
struct fw_cdev_event_iso_interrupt iso_interrupt;
};
#define FW_CDEV_IOC_GET_INFO _IOWR('#', 0x00, struct fw_cdev_get_info)
#define FW_CDEV_IOC_SEND_REQUEST _IOW('#', 0x01, struct fw_cdev_send_request)
#define FW_CDEV_IOC_ALLOCATE _IOWR('#', 0x02, struct fw_cdev_allocate)
#define FW_CDEV_IOC_DEALLOCATE _IOW('#', 0x03, struct fw_cdev_deallocate)
#define FW_CDEV_IOC_SEND_RESPONSE _IOW('#', 0x04, struct fw_cdev_send_response)
#define FW_CDEV_IOC_INITIATE_BUS_RESET _IOW('#', 0x05, struct fw_cdev_initiate_bus_reset)
#define FW_CDEV_IOC_ADD_DESCRIPTOR _IOWR('#', 0x06, struct fw_cdev_add_descriptor)
#define FW_CDEV_IOC_REMOVE_DESCRIPTOR _IOW('#', 0x07, struct fw_cdev_remove_descriptor)
#define FW_CDEV_IOC_CREATE_ISO_CONTEXT _IOWR('#', 0x08, struct fw_cdev_create_iso_context)
#define FW_CDEV_IOC_QUEUE_ISO _IOWR('#', 0x09, struct fw_cdev_queue_iso)
#define FW_CDEV_IOC_START_ISO _IOW('#', 0x0a, struct fw_cdev_start_iso)
#define FW_CDEV_IOC_STOP_ISO _IOW('#', 0x0b, struct fw_cdev_stop_iso)
/* FW_CDEV_VERSION History
*
* 1 Feb 18, 2007: Initial version.
*/
#define FW_CDEV_VERSION 1
struct fw_cdev_get_info {
/* The version field is just a running serial number. We
* never break backwards compatibility. Userspace passes in
* the version it expects and the kernel passes back the
* highest version it can provide. Even if the structs in
* this interface are extended in a later version, the kernel
* will not copy back more data than what was present in the
* interface version userspace expects. */
__u32 version;
/* If non-zero, at most rom_length bytes of config rom will be
* copied into that user space address. In either case,
* rom_length is updated with the actual length of the config
* rom. */
__u32 rom_length;
__u64 rom;
/* If non-zero, a fw_cdev_event_bus_reset struct will be
* copied here with the current state of the bus. This does
* not cause a bus reset to happen. The value of closure in
* this and sub-sequent bus reset events is set to
* bus_reset_closure. */
__u64 bus_reset;
__u64 bus_reset_closure;
/* The index of the card this devices belongs to. */
__u32 card;
};
struct fw_cdev_send_request {
__u32 tcode;
__u32 length;
__u64 offset;
__u64 closure;
__u64 data;
__u32 generation;
};
struct fw_cdev_send_response {
__u32 rcode;
__u32 length;
__u64 data;
__u32 handle;
};
struct fw_cdev_allocate {
__u64 offset;
__u64 closure;
__u32 length;
__u32 handle;
};
struct fw_cdev_deallocate {
__u32 handle;
};
#define FW_CDEV_LONG_RESET 0
#define FW_CDEV_SHORT_RESET 1
struct fw_cdev_initiate_bus_reset {
__u32 type;
};
struct fw_cdev_add_descriptor {
__u32 immediate;
__u32 key;
__u64 data;
__u32 length;
__u32 handle;
};
struct fw_cdev_remove_descriptor {
__u32 handle;
};
#define FW_CDEV_ISO_CONTEXT_TRANSMIT 0
#define FW_CDEV_ISO_CONTEXT_RECEIVE 1
#define FW_CDEV_ISO_CONTEXT_MATCH_TAG0 1
#define FW_CDEV_ISO_CONTEXT_MATCH_TAG1 2
#define FW_CDEV_ISO_CONTEXT_MATCH_TAG2 4
#define FW_CDEV_ISO_CONTEXT_MATCH_TAG3 8
#define FW_CDEV_ISO_CONTEXT_MATCH_ALL_TAGS 15
struct fw_cdev_create_iso_context {
__u32 type;
__u32 header_size;
__u32 channel;
__u32 speed;
__u64 closure;
__u32 handle;
};
struct fw_cdev_iso_packet {
__u16 payload_length; /* Length of indirect payload. */
__u32 interrupt : 1; /* Generate interrupt on this packet */
__u32 skip : 1; /* Set to not send packet at all. */
__u32 tag : 2;
__u32 sy : 4;
__u32 header_length : 8; /* Length of immediate header. */
__u32 header[0];
};
struct fw_cdev_queue_iso {
__u64 packets;
__u64 data;
__u32 size;
__u32 handle;
};
struct fw_cdev_start_iso {
__s32 cycle;
__u32 sync;
__u32 tags;
__u32 handle;
};
struct fw_cdev_stop_iso {
__u32 handle;
};
#endif /* _LINUX_FIREWIRE_CDEV_H */
#ifndef _LINUX_FIREWIRE_CONSTANTS_H
#define _LINUX_FIREWIRE_CONSTANTS_H
#define TCODE_WRITE_QUADLET_REQUEST 0x0
#define TCODE_WRITE_BLOCK_REQUEST 0x1
#define TCODE_WRITE_RESPONSE 0x2
#define TCODE_READ_QUADLET_REQUEST 0x4
#define TCODE_READ_BLOCK_REQUEST 0x5
#define TCODE_READ_QUADLET_RESPONSE 0x6
#define TCODE_READ_BLOCK_RESPONSE 0x7
#define TCODE_CYCLE_START 0x8
#define TCODE_LOCK_REQUEST 0x9
#define TCODE_STREAM_DATA 0xa
#define TCODE_LOCK_RESPONSE 0xb
#define EXTCODE_MASK_SWAP 0x1
#define EXTCODE_COMPARE_SWAP 0x2
#define EXTCODE_FETCH_ADD 0x3
#define EXTCODE_LITTLE_ADD 0x4
#define EXTCODE_BOUNDED_ADD 0x5
#define EXTCODE_WRAP_ADD 0x6
#define EXTCODE_VENDOR_DEPENDENT 0x7
/* Juju specific tcodes */
#define TCODE_LOCK_MASK_SWAP (0x10 | EXTCODE_MASK_SWAP)
#define TCODE_LOCK_COMPARE_SWAP (0x10 | EXTCODE_COMPARE_SWAP)
#define TCODE_LOCK_FETCH_ADD (0x10 | EXTCODE_FETCH_ADD)
#define TCODE_LOCK_LITTLE_ADD (0x10 | EXTCODE_LITTLE_ADD)
#define TCODE_LOCK_BOUNDED_ADD (0x10 | EXTCODE_BOUNDED_ADD)
#define TCODE_LOCK_WRAP_ADD (0x10 | EXTCODE_WRAP_ADD)
#define TCODE_LOCK_VENDOR_DEPENDENT (0x10 | EXTCODE_VENDOR_DEPENDENT)
#define RCODE_COMPLETE 0x0
#define RCODE_CONFLICT_ERROR 0x4
#define RCODE_DATA_ERROR 0x5
#define RCODE_TYPE_ERROR 0x6
#define RCODE_ADDRESS_ERROR 0x7
/* Juju specific rcodes */
#define RCODE_SEND_ERROR 0x10
#define RCODE_CANCELLED 0x11
#define RCODE_BUSY 0x12
#define RCODE_GENERATION 0x13
#define RCODE_NO_ACK 0x14
#define SCODE_100 0x0
#define SCODE_200 0x1
#define SCODE_400 0x2
#define SCODE_800 0x3
#define SCODE_1600 0x4
#define SCODE_3200 0x5
#define SCODE_BETA 0x3
#define ACK_COMPLETE 0x1
#define ACK_PENDING 0x2
#define ACK_BUSY_X 0x4
#define ACK_BUSY_A 0x5
#define ACK_BUSY_B 0x6
#define ACK_DATA_ERROR 0xd
#define ACK_TYPE_ERROR 0xe
#define RETRY_1 0x00
#define RETRY_X 0x01
#define RETRY_A 0x02
#define RETRY_B 0x03
#endif /* _LINUX_FIREWIRE_CONSTANTS_H */
......@@ -23,6 +23,14 @@ config CRC16
the kernel tree does. Such modules that use library CRC16
functions require M here.
config CRC_ITU_T
tristate "CRC ITU-T V.41 functions"
help
This option is provided for the case where no in-kernel-tree
modules require CRC ITU-T V.41 functions, but a module built outside
the kernel tree does. Such modules that use library CRC ITU-T V.41
functions require M here.
config CRC32
tristate "CRC32 functions"
default y
......
......@@ -41,6 +41,7 @@ endif
obj-$(CONFIG_BITREVERSE) += bitrev.o
obj-$(CONFIG_CRC_CCITT) += crc-ccitt.o
obj-$(CONFIG_CRC16) += crc16.o
obj-$(CONFIG_CRC_ITU_T) += crc-itu-t.o
obj-$(CONFIG_CRC32) += crc32.o
obj-$(CONFIG_LIBCRC32C) += libcrc32c.o
obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o
......
/*
* crc-itu-t.c
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/types.h>
#include <linux/module.h>
#include <linux/crc-itu-t.h>
/** CRC table for the CRC ITU-T V.41 0x0x1021 (x^16 + x^12 + x^15 + 1) */
const u16 crc_itu_t_table[256] = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
};
EXPORT_SYMBOL(crc_itu_t_table);
/**
* crc_itu_t - Compute the CRC-ITU-T for the data buffer
*
* @crc: previous CRC value
* @buffer: data pointer
* @len: number of bytes in the buffer
*
* Returns the updated CRC value
*/
u16 crc_itu_t(u16 crc, const u8 *buffer, size_t len)
{
while (len--)
crc = crc_itu_t_byte(crc, *buffer++);
return crc;
}
EXPORT_SYMBOL(crc_itu_t);
MODULE_DESCRIPTION("CRC ITU-T V.41 calculations");
MODULE_LICENSE("GPL");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment