Commit 9e01dc76 authored by Christoffer Dall's avatar Christoffer Dall Committed by Marc Zyngier

KVM: arm/arm64: arch_timer: Assign the phys timer on VHE systems

VHE systems don't have to emulate the physical timer, we can simply
assign the EL1 physical timer directly to the VM as the host always
uses the EL2 timers.

In order to minimize the amount of cruft, AArch32 gets definitions for
the physical timer too, but is should be generally unused on this
architecture.

Co-written with Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: default avatarMarc Zyngier <marc.zyngier@arm.com>
Signed-off-by: default avatarChristoffer Dall <christoffer.dall@arm.com>
parent e604dd5d
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
#define TTBR1 __ACCESS_CP15_64(1, c2) #define TTBR1 __ACCESS_CP15_64(1, c2)
#define VTTBR __ACCESS_CP15_64(6, c2) #define VTTBR __ACCESS_CP15_64(6, c2)
#define PAR __ACCESS_CP15_64(0, c7) #define PAR __ACCESS_CP15_64(0, c7)
#define CNTP_CVAL __ACCESS_CP15_64(2, c14)
#define CNTV_CVAL __ACCESS_CP15_64(3, c14) #define CNTV_CVAL __ACCESS_CP15_64(3, c14)
#define CNTVOFF __ACCESS_CP15_64(4, c14) #define CNTVOFF __ACCESS_CP15_64(4, c14)
...@@ -85,6 +86,7 @@ ...@@ -85,6 +86,7 @@
#define TID_PRIV __ACCESS_CP15(c13, 0, c0, 4) #define TID_PRIV __ACCESS_CP15(c13, 0, c0, 4)
#define HTPIDR __ACCESS_CP15(c13, 4, c0, 2) #define HTPIDR __ACCESS_CP15(c13, 4, c0, 2)
#define CNTKCTL __ACCESS_CP15(c14, 0, c1, 0) #define CNTKCTL __ACCESS_CP15(c14, 0, c1, 0)
#define CNTP_CTL __ACCESS_CP15(c14, 0, c2, 1)
#define CNTV_CTL __ACCESS_CP15(c14, 0, c3, 1) #define CNTV_CTL __ACCESS_CP15(c14, 0, c3, 1)
#define CNTHCTL __ACCESS_CP15(c14, 4, c1, 0) #define CNTHCTL __ACCESS_CP15(c14, 4, c1, 0)
...@@ -94,6 +96,8 @@ ...@@ -94,6 +96,8 @@
#define read_sysreg_el0(r) read_sysreg(r##_el0) #define read_sysreg_el0(r) read_sysreg(r##_el0)
#define write_sysreg_el0(v, r) write_sysreg(v, r##_el0) #define write_sysreg_el0(v, r) write_sysreg(v, r##_el0)
#define cntp_ctl_el0 CNTP_CTL
#define cntp_cval_el0 CNTP_CVAL
#define cntv_ctl_el0 CNTV_CTL #define cntv_ctl_el0 CNTV_CTL
#define cntv_cval_el0 CNTV_CVAL #define cntv_cval_el0 CNTV_CVAL
#define cntvoff_el2 CNTVOFF #define cntvoff_el2 CNTVOFF
......
...@@ -50,6 +50,10 @@ struct arch_timer_context { ...@@ -50,6 +50,10 @@ struct arch_timer_context {
/* Emulated Timer (may be unused) */ /* Emulated Timer (may be unused) */
struct hrtimer hrtimer; struct hrtimer hrtimer;
/* Duplicated state from arch_timer.c for convenience */
u32 host_timer_irq;
u32 host_timer_irq_flags;
}; };
struct arch_timer_cpu { struct arch_timer_cpu {
...@@ -104,6 +108,8 @@ bool kvm_arch_timer_get_input_level(int vintid); ...@@ -104,6 +108,8 @@ bool kvm_arch_timer_get_input_level(int vintid);
#define vcpu_vtimer(v) (&(v)->arch.timer_cpu.timers[TIMER_VTIMER]) #define vcpu_vtimer(v) (&(v)->arch.timer_cpu.timers[TIMER_VTIMER])
#define vcpu_ptimer(v) (&(v)->arch.timer_cpu.timers[TIMER_PTIMER]) #define vcpu_ptimer(v) (&(v)->arch.timer_cpu.timers[TIMER_PTIMER])
#define arch_timer_ctx_index(ctx) ((ctx) - vcpu_timer((ctx)->vcpu)->timers)
u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu, u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
enum kvm_arch_timers tmr, enum kvm_arch_timers tmr,
enum kvm_arch_timer_regs treg); enum kvm_arch_timer_regs treg);
......
...@@ -35,7 +35,9 @@ ...@@ -35,7 +35,9 @@
static struct timecounter *timecounter; static struct timecounter *timecounter;
static unsigned int host_vtimer_irq; static unsigned int host_vtimer_irq;
static unsigned int host_ptimer_irq;
static u32 host_vtimer_irq_flags; static u32 host_vtimer_irq_flags;
static u32 host_ptimer_irq_flags;
static DEFINE_STATIC_KEY_FALSE(has_gic_active_state); static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
...@@ -86,20 +88,24 @@ static void soft_timer_cancel(struct hrtimer *hrt) ...@@ -86,20 +88,24 @@ static void soft_timer_cancel(struct hrtimer *hrt)
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id) static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{ {
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id; struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
struct arch_timer_context *vtimer; struct arch_timer_context *ctx;
/* /*
* We may see a timer interrupt after vcpu_put() has been called which * We may see a timer interrupt after vcpu_put() has been called which
* sets the CPU's vcpu pointer to NULL, because even though the timer * sets the CPU's vcpu pointer to NULL, because even though the timer
* has been disabled in vtimer_save_state(), the hardware interrupt * has been disabled in timer_save_state(), the hardware interrupt
* signal may not have been retired from the interrupt controller yet. * signal may not have been retired from the interrupt controller yet.
*/ */
if (!vcpu) if (!vcpu)
return IRQ_HANDLED; return IRQ_HANDLED;
vtimer = vcpu_vtimer(vcpu); if (irq == host_vtimer_irq)
if (kvm_timer_should_fire(vtimer)) ctx = vcpu_vtimer(vcpu);
kvm_timer_update_irq(vcpu, true, vtimer); else
ctx = vcpu_ptimer(vcpu);
if (kvm_timer_should_fire(ctx))
kvm_timer_update_irq(vcpu, true, ctx);
if (userspace_irqchip(vcpu->kvm) && if (userspace_irqchip(vcpu->kvm) &&
!static_branch_unlikely(&has_gic_active_state)) !static_branch_unlikely(&has_gic_active_state))
...@@ -208,13 +214,25 @@ static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt) ...@@ -208,13 +214,25 @@ static enum hrtimer_restart kvm_phys_timer_expire(struct hrtimer *hrt)
static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx) static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
{ {
struct arch_timer_cpu *timer = vcpu_timer(timer_ctx->vcpu); struct arch_timer_cpu *timer = vcpu_timer(timer_ctx->vcpu);
enum kvm_arch_timers index = arch_timer_ctx_index(timer_ctx);
u64 cval, now; u64 cval, now;
if (timer->loaded) { if (timer->loaded) {
u32 cnt_ctl; u32 cnt_ctl = 0;
switch (index) {
case TIMER_VTIMER:
cnt_ctl = read_sysreg_el0(cntv_ctl);
break;
case TIMER_PTIMER:
cnt_ctl = read_sysreg_el0(cntp_ctl);
break;
case NR_KVM_TIMERS:
/* GCC is braindead */
cnt_ctl = 0;
break;
}
/* Only the virtual timer can be loaded so far */
cnt_ctl = read_sysreg_el0(cntv_ctl);
return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) && return (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
(cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) && (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
!(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK); !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
...@@ -310,7 +328,7 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu) ...@@ -310,7 +328,7 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
return; return;
/* /*
* The vtimer virtual interrupt is a 'mapped' interrupt, meaning part * If the timer virtual interrupt is a 'mapped' interrupt, part
* of its lifecycle is offloaded to the hardware, and we therefore may * of its lifecycle is offloaded to the hardware, and we therefore may
* not have lowered the irq.level value before having to signal a new * not have lowered the irq.level value before having to signal a new
* interrupt, but have to signal an interrupt every time the level is * interrupt, but have to signal an interrupt every time the level is
...@@ -319,31 +337,55 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu) ...@@ -319,31 +337,55 @@ static void kvm_timer_update_state(struct kvm_vcpu *vcpu)
level = kvm_timer_should_fire(vtimer); level = kvm_timer_should_fire(vtimer);
kvm_timer_update_irq(vcpu, level, vtimer); kvm_timer_update_irq(vcpu, level, vtimer);
if (has_vhe()) {
level = kvm_timer_should_fire(ptimer);
kvm_timer_update_irq(vcpu, level, ptimer);
return;
}
phys_timer_emulate(vcpu); phys_timer_emulate(vcpu);
if (kvm_timer_should_fire(ptimer) != ptimer->irq.level) if (kvm_timer_should_fire(ptimer) != ptimer->irq.level)
kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer); kvm_timer_update_irq(vcpu, !ptimer->irq.level, ptimer);
} }
static void vtimer_save_state(struct kvm_vcpu *vcpu) static void timer_save_state(struct arch_timer_context *ctx)
{ {
struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
unsigned long flags; unsigned long flags;
if (!timer->enabled)
return;
local_irq_save(flags); local_irq_save(flags);
if (!timer->loaded) if (!timer->loaded)
goto out; goto out;
if (timer->enabled) { switch (index) {
vtimer->cnt_ctl = read_sysreg_el0(cntv_ctl); case TIMER_VTIMER:
vtimer->cnt_cval = read_sysreg_el0(cntv_cval); ctx->cnt_ctl = read_sysreg_el0(cntv_ctl);
} ctx->cnt_cval = read_sysreg_el0(cntv_cval);
/* Disable the virtual timer */ /* Disable the timer */
write_sysreg_el0(0, cntv_ctl); write_sysreg_el0(0, cntv_ctl);
isb(); isb();
break;
case TIMER_PTIMER:
ctx->cnt_ctl = read_sysreg_el0(cntp_ctl);
ctx->cnt_cval = read_sysreg_el0(cntp_cval);
/* Disable the timer */
write_sysreg_el0(0, cntp_ctl);
isb();
break;
case NR_KVM_TIMERS:
break; /* GCC is braindead */
}
timer->loaded = false; timer->loaded = false;
out: out:
...@@ -382,21 +424,33 @@ static void kvm_timer_unblocking(struct kvm_vcpu *vcpu) ...@@ -382,21 +424,33 @@ static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
soft_timer_cancel(&timer->bg_timer); soft_timer_cancel(&timer->bg_timer);
} }
static void vtimer_restore_state(struct kvm_vcpu *vcpu) static void timer_restore_state(struct arch_timer_context *ctx)
{ {
struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
unsigned long flags; unsigned long flags;
if (!timer->enabled)
return;
local_irq_save(flags); local_irq_save(flags);
if (timer->loaded) if (timer->loaded)
goto out; goto out;
if (timer->enabled) { switch (index) {
write_sysreg_el0(vtimer->cnt_cval, cntv_cval); case TIMER_VTIMER:
write_sysreg_el0(ctx->cnt_cval, cntv_cval);
isb();
write_sysreg_el0(ctx->cnt_ctl, cntv_ctl);
break;
case TIMER_PTIMER:
write_sysreg_el0(ctx->cnt_cval, cntp_cval);
isb(); isb();
write_sysreg_el0(vtimer->cnt_ctl, cntv_ctl); write_sysreg_el0(ctx->cnt_ctl, cntp_ctl);
break;
case NR_KVM_TIMERS:
break; /* GCC is braindead */
} }
timer->loaded = true; timer->loaded = true;
...@@ -419,23 +473,23 @@ static void set_cntvoff(u64 cntvoff) ...@@ -419,23 +473,23 @@ static void set_cntvoff(u64 cntvoff)
kvm_call_hyp(__kvm_timer_set_cntvoff, low, high); kvm_call_hyp(__kvm_timer_set_cntvoff, low, high);
} }
static inline void set_vtimer_irq_phys_active(struct kvm_vcpu *vcpu, bool active) static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
{ {
int r; int r;
r = irq_set_irqchip_state(host_vtimer_irq, IRQCHIP_STATE_ACTIVE, active); r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
WARN_ON(r); WARN_ON(r);
} }
static void kvm_timer_vcpu_load_gic(struct kvm_vcpu *vcpu) static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
{ {
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); struct kvm_vcpu *vcpu = ctx->vcpu;
bool phys_active; bool phys_active;
if (irqchip_in_kernel(vcpu->kvm)) if (irqchip_in_kernel(vcpu->kvm))
phys_active = kvm_vgic_map_is_active(vcpu, vtimer->irq.irq); phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
else else
phys_active = vtimer->irq.level; phys_active = ctx->irq.level;
set_vtimer_irq_phys_active(vcpu, phys_active); set_timer_irq_phys_active(ctx, phys_active);
} }
static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu) static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
...@@ -467,14 +521,22 @@ void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu) ...@@ -467,14 +521,22 @@ void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
if (unlikely(!timer->enabled)) if (unlikely(!timer->enabled))
return; return;
if (static_branch_likely(&has_gic_active_state)) if (static_branch_likely(&has_gic_active_state)) {
kvm_timer_vcpu_load_gic(vcpu); kvm_timer_vcpu_load_gic(vtimer);
else if (has_vhe())
kvm_timer_vcpu_load_gic(ptimer);
} else {
kvm_timer_vcpu_load_nogic(vcpu); kvm_timer_vcpu_load_nogic(vcpu);
}
set_cntvoff(vtimer->cntvoff); set_cntvoff(vtimer->cntvoff);
vtimer_restore_state(vcpu); timer_restore_state(vtimer);
if (has_vhe()) {
timer_restore_state(ptimer);
return;
}
/* Set the background timer for the physical timer emulation. */ /* Set the background timer for the physical timer emulation. */
phys_timer_emulate(vcpu); phys_timer_emulate(vcpu);
...@@ -506,12 +568,17 @@ bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu) ...@@ -506,12 +568,17 @@ bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
{ {
struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu); struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
if (unlikely(!timer->enabled)) if (unlikely(!timer->enabled))
return; return;
vtimer_save_state(vcpu); timer_save_state(vtimer);
if (has_vhe()) {
timer_save_state(ptimer);
return;
}
/* /*
* Cancel the physical timer emulation, because the only case where we * Cancel the physical timer emulation, because the only case where we
...@@ -534,8 +601,7 @@ void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu) ...@@ -534,8 +601,7 @@ void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
* counter of non-VHE case. For VHE, the virtual counter uses a fixed * counter of non-VHE case. For VHE, the virtual counter uses a fixed
* virtual offset of zero, so no need to zero CNTVOFF_EL2 register. * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
*/ */
if (!has_vhe()) set_cntvoff(0);
set_cntvoff(0);
} }
/* /*
...@@ -550,7 +616,7 @@ static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu) ...@@ -550,7 +616,7 @@ static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
if (!kvm_timer_should_fire(vtimer)) { if (!kvm_timer_should_fire(vtimer)) {
kvm_timer_update_irq(vcpu, false, vtimer); kvm_timer_update_irq(vcpu, false, vtimer);
if (static_branch_likely(&has_gic_active_state)) if (static_branch_likely(&has_gic_active_state))
set_vtimer_irq_phys_active(vcpu, false); set_timer_irq_phys_active(vtimer, false);
else else
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
} }
...@@ -625,7 +691,12 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) ...@@ -625,7 +691,12 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
ptimer->hrtimer.function = kvm_phys_timer_expire; ptimer->hrtimer.function = kvm_phys_timer_expire;
vtimer->irq.irq = default_vtimer_irq.irq; vtimer->irq.irq = default_vtimer_irq.irq;
vtimer->host_timer_irq = host_vtimer_irq;
vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
ptimer->irq.irq = default_ptimer_irq.irq; ptimer->irq.irq = default_ptimer_irq.irq;
ptimer->host_timer_irq = host_ptimer_irq;
ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
vtimer->vcpu = vcpu; vtimer->vcpu = vcpu;
ptimer->vcpu = vcpu; ptimer->vcpu = vcpu;
...@@ -634,6 +705,7 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu) ...@@ -634,6 +705,7 @@ void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
static void kvm_timer_init_interrupt(void *info) static void kvm_timer_init_interrupt(void *info)
{ {
enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags); enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
} }
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value) int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
...@@ -815,6 +887,8 @@ int kvm_timer_hyp_init(bool has_gic) ...@@ -815,6 +887,8 @@ int kvm_timer_hyp_init(bool has_gic)
return -ENODEV; return -ENODEV;
} }
/* First, do the virtual EL1 timer irq */
if (info->virtual_irq <= 0) { if (info->virtual_irq <= 0) {
kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n", kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
info->virtual_irq); info->virtual_irq);
...@@ -825,15 +899,15 @@ int kvm_timer_hyp_init(bool has_gic) ...@@ -825,15 +899,15 @@ int kvm_timer_hyp_init(bool has_gic)
host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq); host_vtimer_irq_flags = irq_get_trigger_type(host_vtimer_irq);
if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH && if (host_vtimer_irq_flags != IRQF_TRIGGER_HIGH &&
host_vtimer_irq_flags != IRQF_TRIGGER_LOW) { host_vtimer_irq_flags != IRQF_TRIGGER_LOW) {
kvm_err("Invalid trigger for IRQ%d, assuming level low\n", kvm_err("Invalid trigger for vtimer IRQ%d, assuming level low\n",
host_vtimer_irq); host_vtimer_irq);
host_vtimer_irq_flags = IRQF_TRIGGER_LOW; host_vtimer_irq_flags = IRQF_TRIGGER_LOW;
} }
err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler, err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
"kvm guest timer", kvm_get_running_vcpus()); "kvm guest vtimer", kvm_get_running_vcpus());
if (err) { if (err) {
kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n", kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
host_vtimer_irq, err); host_vtimer_irq, err);
return err; return err;
} }
...@@ -851,6 +925,43 @@ int kvm_timer_hyp_init(bool has_gic) ...@@ -851,6 +925,43 @@ int kvm_timer_hyp_init(bool has_gic)
kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq); kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
/* Now let's do the physical EL1 timer irq */
if (info->physical_irq > 0) {
host_ptimer_irq = info->physical_irq;
host_ptimer_irq_flags = irq_get_trigger_type(host_ptimer_irq);
if (host_ptimer_irq_flags != IRQF_TRIGGER_HIGH &&
host_ptimer_irq_flags != IRQF_TRIGGER_LOW) {
kvm_err("Invalid trigger for ptimer IRQ%d, assuming level low\n",
host_ptimer_irq);
host_ptimer_irq_flags = IRQF_TRIGGER_LOW;
}
err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
"kvm guest ptimer", kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
host_ptimer_irq, err);
return err;
}
if (has_gic) {
err = irq_set_vcpu_affinity(host_ptimer_irq,
kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
goto out_free_irq;
}
}
kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
} else if (has_vhe()) {
kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
info->physical_irq);
err = -ENODEV;
goto out_free_irq;
}
cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING, cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
"kvm/arm/timer:starting", kvm_timer_starting_cpu, "kvm/arm/timer:starting", kvm_timer_starting_cpu,
kvm_timer_dying_cpu); kvm_timer_dying_cpu);
...@@ -898,8 +1009,10 @@ bool kvm_arch_timer_get_input_level(int vintid) ...@@ -898,8 +1009,10 @@ bool kvm_arch_timer_get_input_level(int vintid)
if (vintid == vcpu_vtimer(vcpu)->irq.irq) if (vintid == vcpu_vtimer(vcpu)->irq.irq)
timer = vcpu_vtimer(vcpu); timer = vcpu_vtimer(vcpu);
else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
timer = vcpu_ptimer(vcpu);
else else
BUG(); /* We only map the vtimer so far */ BUG();
return kvm_timer_should_fire(timer); return kvm_timer_should_fire(timer);
} }
...@@ -908,6 +1021,7 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu) ...@@ -908,6 +1021,7 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu)
{ {
struct arch_timer_cpu *timer = vcpu_timer(vcpu); struct arch_timer_cpu *timer = vcpu_timer(vcpu);
struct arch_timer_context *vtimer = vcpu_vtimer(vcpu); struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
int ret; int ret;
if (timer->enabled) if (timer->enabled)
...@@ -930,14 +1044,21 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu) ...@@ -930,14 +1044,21 @@ int kvm_timer_enable(struct kvm_vcpu *vcpu)
if (ret) if (ret)
return ret; return ret;
if (has_vhe()) {
ret = kvm_vgic_map_phys_irq(vcpu, host_ptimer_irq, ptimer->irq.irq,
kvm_arch_timer_get_input_level);
if (ret)
return ret;
}
no_vgic: no_vgic:
timer->enabled = 1; timer->enabled = 1;
return 0; return 0;
} }
/* /*
* On VHE system, we only need to configure trap on physical timer and counter * On VHE system, we only need to configure the EL2 timer trap register once,
* accesses in EL0 and EL1 once, not for every world switch. * not for every world switch.
* The host kernel runs at EL2 with HCR_EL2.TGE == 1, * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
* and this makes those bits have no effect for the host kernel execution. * and this makes those bits have no effect for the host kernel execution.
*/ */
...@@ -948,11 +1069,11 @@ void kvm_timer_init_vhe(void) ...@@ -948,11 +1069,11 @@ void kvm_timer_init_vhe(void)
u64 val; u64 val;
/* /*
* Disallow physical timer access for the guest. * VHE systems allow the guest direct access to the EL1 physical
* Physical counter access is allowed. * timer/counter.
*/ */
val = read_sysreg(cnthctl_el2); val = read_sysreg(cnthctl_el2);
val &= ~(CNTHCTL_EL1PCEN << cnthctl_shift); val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
val |= (CNTHCTL_EL1PCTEN << cnthctl_shift); val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
write_sysreg(val, cnthctl_el2); write_sysreg(val, cnthctl_el2);
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment