Commit 9e3a25dc authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'dma-mapping-5.3' of git://git.infradead.org/users/hch/dma-mapping

Pull dma-mapping updates from Christoph Hellwig:

 - move the USB special case that bounced DMA through a device bar into
   the USB code instead of handling it in the common DMA code (Laurentiu
   Tudor and Fredrik Noring)

 - don't dip into the global CMA pool for single page allocations
   (Nicolin Chen)

 - fix a crash when allocating memory for the atomic pool failed during
   boot (Florian Fainelli)

 - move support for MIPS-style uncached segments to the common code and
   use that for MIPS and nios2 (me)

 - make support for DMA_ATTR_NON_CONSISTENT and
   DMA_ATTR_NO_KERNEL_MAPPING generic (me)

 - convert nds32 to the generic remapping allocator (me)

* tag 'dma-mapping-5.3' of git://git.infradead.org/users/hch/dma-mapping: (29 commits)
  dma-mapping: mark dma_alloc_need_uncached as __always_inline
  MIPS: only select ARCH_HAS_UNCACHED_SEGMENT for non-coherent platforms
  usb: host: Fix excessive alignment restriction for local memory allocations
  lib/genalloc.c: Add algorithm, align and zeroed family of DMA allocators
  nios2: use the generic uncached segment support in dma-direct
  nds32: use the generic remapping allocator for coherent DMA allocations
  arc: use the generic remapping allocator for coherent DMA allocations
  dma-direct: handle DMA_ATTR_NO_KERNEL_MAPPING in common code
  dma-direct: handle DMA_ATTR_NON_CONSISTENT in common code
  dma-mapping: add a dma_alloc_need_uncached helper
  openrisc: remove the partial DMA_ATTR_NON_CONSISTENT support
  arc: remove the partial DMA_ATTR_NON_CONSISTENT support
  arm-nommu: remove the partial DMA_ATTR_NON_CONSISTENT support
  ARM: dma-mapping: allow larger DMA mask than supported
  dma-mapping: truncate dma masks to what dma_addr_t can hold
  iommu/dma: Apply dma_{alloc,free}_contiguous functions
  dma-remap: Avoid de-referencing NULL atomic_pool
  MIPS: use the generic uncached segment support in dma-direct
  dma-direct: provide generic support for uncached kernel segments
  au1100fb: fix DMA API abuse
  ...
parents 9787aed5 15ffe5e1
...@@ -260,6 +260,14 @@ config ARCH_HAS_SET_MEMORY ...@@ -260,6 +260,14 @@ config ARCH_HAS_SET_MEMORY
config ARCH_HAS_SET_DIRECT_MAP config ARCH_HAS_SET_DIRECT_MAP
bool bool
#
# Select if arch has an uncached kernel segment and provides the
# uncached_kernel_address / cached_kernel_address symbols to use it
#
config ARCH_HAS_UNCACHED_SEGMENT
select ARCH_HAS_DMA_PREP_COHERENT
bool
# Select if arch init_task must go in the __init_task_data section # Select if arch init_task must go in the __init_task_data section
config ARCH_TASK_STRUCT_ON_STACK config ARCH_TASK_STRUCT_ON_STACK
bool bool
......
...@@ -7,6 +7,7 @@ config ARC ...@@ -7,6 +7,7 @@ config ARC
def_bool y def_bool y
select ARC_TIMERS select ARC_TIMERS
select ARCH_HAS_DMA_COHERENT_TO_PFN select ARCH_HAS_DMA_COHERENT_TO_PFN
select ARCH_HAS_DMA_PREP_COHERENT
select ARCH_HAS_PTE_SPECIAL select ARCH_HAS_PTE_SPECIAL
select ARCH_HAS_SETUP_DMA_OPS select ARCH_HAS_SETUP_DMA_OPS
select ARCH_HAS_SYNC_DMA_FOR_CPU select ARCH_HAS_SYNC_DMA_FOR_CPU
...@@ -16,6 +17,7 @@ config ARC ...@@ -16,6 +17,7 @@ config ARC
select BUILDTIME_EXTABLE_SORT select BUILDTIME_EXTABLE_SORT
select CLONE_BACKWARDS select CLONE_BACKWARDS
select COMMON_CLK select COMMON_CLK
select DMA_DIRECT_REMAP
select GENERIC_ATOMIC64 if !ISA_ARCV2 || !(ARC_HAS_LL64 && ARC_HAS_LLSC) select GENERIC_ATOMIC64 if !ISA_ARCV2 || !(ARC_HAS_LL64 && ARC_HAS_LLSC)
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
select GENERIC_FIND_FIRST_BIT select GENERIC_FIND_FIRST_BIT
......
...@@ -8,51 +8,15 @@ ...@@ -8,51 +8,15 @@
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
/* /*
* ARCH specific callbacks for generic noncoherent DMA ops (dma/noncoherent.c) * ARCH specific callbacks for generic noncoherent DMA ops
* - hardware IOC not available (or "dma-coherent" not set for device in DT) * - hardware IOC not available (or "dma-coherent" not set for device in DT)
* - But still handle both coherent and non-coherent requests from caller * - But still handle both coherent and non-coherent requests from caller
* *
* For DMA coherent hardware (IOC) generic code suffices * For DMA coherent hardware (IOC) generic code suffices
*/ */
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs)
{
unsigned long order = get_order(size);
struct page *page;
phys_addr_t paddr;
void *kvaddr;
bool need_coh = !(attrs & DMA_ATTR_NON_CONSISTENT);
/*
* __GFP_HIGHMEM flag is cleared by upper layer functions
* (in include/linux/dma-mapping.h) so we should never get a
* __GFP_HIGHMEM here.
*/
BUG_ON(gfp & __GFP_HIGHMEM);
page = alloc_pages(gfp | __GFP_ZERO, order);
if (!page)
return NULL;
/* This is linear addr (0x8000_0000 based) */
paddr = page_to_phys(page);
*dma_handle = paddr;
/*
* A coherent buffer needs MMU mapping to enforce non-cachability.
* kvaddr is kernel Virtual address (0x7000_0000 based).
*/
if (need_coh) {
kvaddr = ioremap_nocache(paddr, size);
if (kvaddr == NULL) {
__free_pages(page, order);
return NULL;
}
} else {
kvaddr = (void *)(u32)paddr;
}
void arch_dma_prep_coherent(struct page *page, size_t size)
{
/* /*
* Evict any existing L1 and/or L2 lines for the backing page * Evict any existing L1 and/or L2 lines for the backing page
* in case it was used earlier as a normal "cached" page. * in case it was used earlier as a normal "cached" page.
...@@ -63,28 +27,7 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, ...@@ -63,28 +27,7 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
* Currently flush_cache_vmap nukes the L1 cache completely which * Currently flush_cache_vmap nukes the L1 cache completely which
* will be optimized as a separate commit * will be optimized as a separate commit
*/ */
if (need_coh) dma_cache_wback_inv(page_to_phys(page), size);
dma_cache_wback_inv(paddr, size);
return kvaddr;
}
void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs)
{
phys_addr_t paddr = dma_handle;
struct page *page = virt_to_page(paddr);
if (!(attrs & DMA_ATTR_NON_CONSISTENT))
iounmap((void __force __iomem *)vaddr);
__free_pages(page, get_order(size));
}
long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
dma_addr_t dma_addr)
{
return __phys_to_pfn(dma_addr);
} }
/* /*
...@@ -161,3 +104,9 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, ...@@ -161,3 +104,9 @@ void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
dev_info(dev, "use %sncoherent DMA ops\n", dev_info(dev, "use %sncoherent DMA ops\n",
dev->dma_coherent ? "" : "non"); dev->dma_coherent ? "" : "non");
} }
static int __init atomic_pool_init(void)
{
return dma_atomic_pool_init(GFP_KERNEL, pgprot_noncached(PAGE_KERNEL));
}
postcore_initcall(atomic_pool_init);
...@@ -35,18 +35,7 @@ static void *arm_nommu_dma_alloc(struct device *dev, size_t size, ...@@ -35,18 +35,7 @@ static void *arm_nommu_dma_alloc(struct device *dev, size_t size,
unsigned long attrs) unsigned long attrs)
{ {
void *ret; void *ret = dma_alloc_from_global_coherent(size, dma_handle);
/*
* Try generic allocator first if we are advertised that
* consistency is not required.
*/
if (attrs & DMA_ATTR_NON_CONSISTENT)
return dma_direct_alloc_pages(dev, size, dma_handle, gfp,
attrs);
ret = dma_alloc_from_global_coherent(size, dma_handle);
/* /*
* dma_alloc_from_global_coherent() may fail because: * dma_alloc_from_global_coherent() may fail because:
...@@ -66,16 +55,9 @@ static void arm_nommu_dma_free(struct device *dev, size_t size, ...@@ -66,16 +55,9 @@ static void arm_nommu_dma_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, void *cpu_addr, dma_addr_t dma_addr,
unsigned long attrs) unsigned long attrs)
{ {
if (attrs & DMA_ATTR_NON_CONSISTENT) { int ret = dma_release_from_global_coherent(get_order(size), cpu_addr);
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
} else {
int ret = dma_release_from_global_coherent(get_order(size),
cpu_addr);
WARN_ON_ONCE(ret == 0);
}
return; WARN_ON_ONCE(ret == 0);
} }
static int arm_nommu_dma_mmap(struct device *dev, struct vm_area_struct *vma, static int arm_nommu_dma_mmap(struct device *dev, struct vm_area_struct *vma,
......
...@@ -216,25 +216,7 @@ EXPORT_SYMBOL(arm_coherent_dma_ops); ...@@ -216,25 +216,7 @@ EXPORT_SYMBOL(arm_coherent_dma_ops);
static int __dma_supported(struct device *dev, u64 mask, bool warn) static int __dma_supported(struct device *dev, u64 mask, bool warn)
{ {
unsigned long max_dma_pfn; unsigned long max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
/*
* If the mask allows for more memory than we can address,
* and we actually have that much memory, then we must
* indicate that DMA to this device is not supported.
*/
if (sizeof(mask) != sizeof(dma_addr_t) &&
mask > (dma_addr_t)~0 &&
dma_to_pfn(dev, ~0) < max_pfn - 1) {
if (warn) {
dev_warn(dev, "Coherent DMA mask %#llx is larger than dma_addr_t allows\n",
mask);
dev_warn(dev, "Driver did not use or check the return value from dma_set_coherent_mask()?\n");
}
return 0;
}
max_dma_pfn = min(max_pfn, arm_dma_pfn_limit);
/* /*
* Translate the device's DMA mask to a PFN limit. This * Translate the device's DMA mask to a PFN limit. This
......
...@@ -1121,6 +1121,7 @@ config DMA_NONCOHERENT ...@@ -1121,6 +1121,7 @@ config DMA_NONCOHERENT
bool bool
select ARCH_HAS_DMA_MMAP_PGPROT select ARCH_HAS_DMA_MMAP_PGPROT
select ARCH_HAS_SYNC_DMA_FOR_DEVICE select ARCH_HAS_SYNC_DMA_FOR_DEVICE
select ARCH_HAS_UNCACHED_SEGMENT
select NEED_DMA_MAP_STATE select NEED_DMA_MAP_STATE
select ARCH_HAS_DMA_COHERENT_TO_PFN select ARCH_HAS_DMA_COHERENT_TO_PFN
select DMA_NONCOHERENT_CACHE_SYNC select DMA_NONCOHERENT_CACHE_SYNC
......
...@@ -258,9 +258,6 @@ extern bool __virt_addr_valid(const volatile void *kaddr); ...@@ -258,9 +258,6 @@ extern bool __virt_addr_valid(const volatile void *kaddr);
((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) | \ ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
#define UNCAC_ADDR(addr) (UNCAC_BASE + __pa(addr))
#define CAC_ADDR(addr) ((unsigned long)__va((addr) - UNCAC_BASE))
#include <asm-generic/memory_model.h> #include <asm-generic/memory_model.h>
#include <asm-generic/getorder.h> #include <asm-generic/getorder.h>
......
...@@ -575,10 +575,6 @@ static void *jazz_dma_alloc(struct device *dev, size_t size, ...@@ -575,10 +575,6 @@ static void *jazz_dma_alloc(struct device *dev, size_t size,
return NULL; return NULL;
} }
if (!(attrs & DMA_ATTR_NON_CONSISTENT)) {
dma_cache_wback_inv((unsigned long)ret, size);
ret = (void *)UNCAC_ADDR(ret);
}
return ret; return ret;
} }
...@@ -586,8 +582,6 @@ static void jazz_dma_free(struct device *dev, size_t size, void *vaddr, ...@@ -586,8 +582,6 @@ static void jazz_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs) dma_addr_t dma_handle, unsigned long attrs)
{ {
vdma_free(dma_handle); vdma_free(dma_handle);
if (!(attrs & DMA_ATTR_NON_CONSISTENT))
vaddr = (void *)CAC_ADDR((unsigned long)vaddr);
dma_direct_free_pages(dev, size, vaddr, dma_handle, attrs); dma_direct_free_pages(dev, size, vaddr, dma_handle, attrs);
} }
......
...@@ -62,8 +62,6 @@ void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size); ...@@ -62,8 +62,6 @@ void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
void (*_dma_cache_wback)(unsigned long start, unsigned long size); void (*_dma_cache_wback)(unsigned long start, unsigned long size);
void (*_dma_cache_inv)(unsigned long start, unsigned long size); void (*_dma_cache_inv)(unsigned long start, unsigned long size);
EXPORT_SYMBOL(_dma_cache_wback_inv);
#endif /* CONFIG_DMA_NONCOHERENT */ #endif /* CONFIG_DMA_NONCOHERENT */
/* /*
......
...@@ -44,33 +44,25 @@ static inline bool cpu_needs_post_dma_flush(struct device *dev) ...@@ -44,33 +44,25 @@ static inline bool cpu_needs_post_dma_flush(struct device *dev)
} }
} }
void *arch_dma_alloc(struct device *dev, size_t size, void arch_dma_prep_coherent(struct page *page, size_t size)
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{ {
void *ret; dma_cache_wback_inv((unsigned long)page_address(page), size);
}
ret = dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
if (ret && !(attrs & DMA_ATTR_NON_CONSISTENT)) {
dma_cache_wback_inv((unsigned long) ret, size);
ret = (void *)UNCAC_ADDR(ret);
}
return ret; void *uncached_kernel_address(void *addr)
{
return (void *)(__pa(addr) + UNCAC_BASE);
} }
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, void *cached_kernel_address(void *addr)
dma_addr_t dma_addr, unsigned long attrs)
{ {
if (!(attrs & DMA_ATTR_NON_CONSISTENT)) return __va(addr) - UNCAC_BASE;
cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr);
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
} }
long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr, long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
dma_addr_t dma_addr) dma_addr_t dma_addr)
{ {
unsigned long addr = CAC_ADDR((unsigned long)cpu_addr); return page_to_pfn(virt_to_page(cached_kernel_address(cpu_addr)));
return page_to_pfn(virt_to_page((void *)addr));
} }
pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot, pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
......
...@@ -7,12 +7,14 @@ ...@@ -7,12 +7,14 @@
config NDS32 config NDS32
def_bool y def_bool y
select ARCH_32BIT_OFF_T select ARCH_32BIT_OFF_T
select ARCH_HAS_DMA_PREP_COHERENT
select ARCH_HAS_SYNC_DMA_FOR_CPU select ARCH_HAS_SYNC_DMA_FOR_CPU
select ARCH_HAS_SYNC_DMA_FOR_DEVICE select ARCH_HAS_SYNC_DMA_FOR_DEVICE
select ARCH_WANT_FRAME_POINTERS if FTRACE select ARCH_WANT_FRAME_POINTERS if FTRACE
select CLKSRC_MMIO select CLKSRC_MMIO
select CLONE_BACKWARDS select CLONE_BACKWARDS
select COMMON_CLK select COMMON_CLK
select DMA_DIRECT_REMAP
select GENERIC_ATOMIC64 select GENERIC_ATOMIC64
select GENERIC_CPU_DEVICES select GENERIC_CPU_DEVICES
select GENERIC_CLOCKEVENTS select GENERIC_CLOCKEVENTS
......
...@@ -3,327 +3,13 @@ ...@@ -3,327 +3,13 @@
#include <linux/types.h> #include <linux/types.h>
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/string.h>
#include <linux/dma-noncoherent.h> #include <linux/dma-noncoherent.h>
#include <linux/io.h>
#include <linux/cache.h> #include <linux/cache.h>
#include <linux/highmem.h> #include <linux/highmem.h>
#include <linux/slab.h>
#include <asm/cacheflush.h> #include <asm/cacheflush.h>
#include <asm/tlbflush.h> #include <asm/tlbflush.h>
#include <asm/proc-fns.h> #include <asm/proc-fns.h>
/*
* This is the page table (2MB) covering uncached, DMA consistent allocations
*/
static pte_t *consistent_pte;
static DEFINE_RAW_SPINLOCK(consistent_lock);
/*
* VM region handling support.
*
* This should become something generic, handling VM region allocations for
* vmalloc and similar (ioremap, module space, etc).
*
* I envisage vmalloc()'s supporting vm_struct becoming:
*
* struct vm_struct {
* struct vm_region region;
* unsigned long flags;
* struct page **pages;
* unsigned int nr_pages;
* unsigned long phys_addr;
* };
*
* get_vm_area() would then call vm_region_alloc with an appropriate
* struct vm_region head (eg):
*
* struct vm_region vmalloc_head = {
* .vm_list = LIST_HEAD_INIT(vmalloc_head.vm_list),
* .vm_start = VMALLOC_START,
* .vm_end = VMALLOC_END,
* };
*
* However, vmalloc_head.vm_start is variable (typically, it is dependent on
* the amount of RAM found at boot time.) I would imagine that get_vm_area()
* would have to initialise this each time prior to calling vm_region_alloc().
*/
struct arch_vm_region {
struct list_head vm_list;
unsigned long vm_start;
unsigned long vm_end;
struct page *vm_pages;
};
static struct arch_vm_region consistent_head = {
.vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
.vm_start = CONSISTENT_BASE,
.vm_end = CONSISTENT_END,
};
static struct arch_vm_region *vm_region_alloc(struct arch_vm_region *head,
size_t size, int gfp)
{
unsigned long addr = head->vm_start, end = head->vm_end - size;
unsigned long flags;
struct arch_vm_region *c, *new;
new = kmalloc(sizeof(struct arch_vm_region), gfp);
if (!new)
goto out;
raw_spin_lock_irqsave(&consistent_lock, flags);
list_for_each_entry(c, &head->vm_list, vm_list) {
if ((addr + size) < addr)
goto nospc;
if ((addr + size) <= c->vm_start)
goto found;
addr = c->vm_end;
if (addr > end)
goto nospc;
}
found:
/*
* Insert this entry _before_ the one we found.
*/
list_add_tail(&new->vm_list, &c->vm_list);
new->vm_start = addr;
new->vm_end = addr + size;
raw_spin_unlock_irqrestore(&consistent_lock, flags);
return new;
nospc:
raw_spin_unlock_irqrestore(&consistent_lock, flags);
kfree(new);
out:
return NULL;
}
static struct arch_vm_region *vm_region_find(struct arch_vm_region *head,
unsigned long addr)
{
struct arch_vm_region *c;
list_for_each_entry(c, &head->vm_list, vm_list) {
if (c->vm_start == addr)
goto out;
}
c = NULL;
out:
return c;
}
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
gfp_t gfp, unsigned long attrs)
{
struct page *page;
struct arch_vm_region *c;
unsigned long order;
u64 mask = ~0ULL, limit;
pgprot_t prot = pgprot_noncached(PAGE_KERNEL);
if (!consistent_pte) {
pr_err("%s: not initialized\n", __func__);
dump_stack();
return NULL;
}
if (dev) {
mask = dev->coherent_dma_mask;
/*
* Sanity check the DMA mask - it must be non-zero, and
* must be able to be satisfied by a DMA allocation.
*/
if (mask == 0) {
dev_warn(dev, "coherent DMA mask is unset\n");
goto no_page;
}
}
/*
* Sanity check the allocation size.
*/
size = PAGE_ALIGN(size);
limit = (mask + 1) & ~mask;
if ((limit && size >= limit) ||
size >= (CONSISTENT_END - CONSISTENT_BASE)) {
pr_warn("coherent allocation too big "
"(requested %#x mask %#llx)\n", size, mask);
goto no_page;
}
order = get_order(size);
if (mask != 0xffffffff)
gfp |= GFP_DMA;
page = alloc_pages(gfp, order);
if (!page)
goto no_page;
/*
* Invalidate any data that might be lurking in the
* kernel direct-mapped region for device DMA.
*/
{
unsigned long kaddr = (unsigned long)page_address(page);
memset(page_address(page), 0, size);
cpu_dma_wbinval_range(kaddr, kaddr + size);
}
/*
* Allocate a virtual address in the consistent mapping region.
*/
c = vm_region_alloc(&consistent_head, size,
gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
if (c) {
pte_t *pte = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
struct page *end = page + (1 << order);
c->vm_pages = page;
/*
* Set the "dma handle"
*/
*handle = page_to_phys(page);
do {
BUG_ON(!pte_none(*pte));
/*
* x86 does not mark the pages reserved...
*/
SetPageReserved(page);
set_pte(pte, mk_pte(page, prot));
page++;
pte++;
} while (size -= PAGE_SIZE);
/*
* Free the otherwise unused pages.
*/
while (page < end) {
__free_page(page);
page++;
}
return (void *)c->vm_start;
}
if (page)
__free_pages(page, order);
no_page:
*handle = ~0;
return NULL;
}
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t handle, unsigned long attrs)
{
struct arch_vm_region *c;
unsigned long flags, addr;
pte_t *ptep;
size = PAGE_ALIGN(size);
raw_spin_lock_irqsave(&consistent_lock, flags);
c = vm_region_find(&consistent_head, (unsigned long)cpu_addr);
if (!c)
goto no_area;
if ((c->vm_end - c->vm_start) != size) {
pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
__func__, c->vm_end - c->vm_start, size);
dump_stack();
size = c->vm_end - c->vm_start;
}
ptep = consistent_pte + CONSISTENT_OFFSET(c->vm_start);
addr = c->vm_start;
do {
pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
unsigned long pfn;
ptep++;
addr += PAGE_SIZE;
if (!pte_none(pte) && pte_present(pte)) {
pfn = pte_pfn(pte);
if (pfn_valid(pfn)) {
struct page *page = pfn_to_page(pfn);
/*
* x86 does not mark the pages reserved...
*/
ClearPageReserved(page);
__free_page(page);
continue;
}
}
pr_crit("%s: bad page in kernel page table\n", __func__);
} while (size -= PAGE_SIZE);
flush_tlb_kernel_range(c->vm_start, c->vm_end);
list_del(&c->vm_list);
raw_spin_unlock_irqrestore(&consistent_lock, flags);
kfree(c);
return;
no_area:
raw_spin_unlock_irqrestore(&consistent_lock, flags);
pr_err("%s: trying to free invalid coherent area: %p\n",
__func__, cpu_addr);
dump_stack();
}
/*
* Initialise the consistent memory allocation.
*/
static int __init consistent_init(void)
{
pgd_t *pgd;
pmd_t *pmd;
pte_t *pte;
int ret = 0;
do {
pgd = pgd_offset(&init_mm, CONSISTENT_BASE);
pmd = pmd_alloc(&init_mm, pgd, CONSISTENT_BASE);
if (!pmd) {
pr_err("%s: no pmd tables\n", __func__);
ret = -ENOMEM;
break;
}
/* The first level mapping may be created in somewhere.
* It's not necessary to warn here. */
/* WARN_ON(!pmd_none(*pmd)); */
pte = pte_alloc_kernel(pmd, CONSISTENT_BASE);
if (!pte) {
ret = -ENOMEM;
break;
}
consistent_pte = pte;
} while (0);
return ret;
}
core_initcall(consistent_init);
static inline void cache_op(phys_addr_t paddr, size_t size, static inline void cache_op(phys_addr_t paddr, size_t size,
void (*fn)(unsigned long start, unsigned long end)) void (*fn)(unsigned long start, unsigned long end))
{ {
...@@ -389,3 +75,14 @@ void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, ...@@ -389,3 +75,14 @@ void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
BUG(); BUG();
} }
} }
void arch_dma_prep_coherent(struct page *page, size_t size)
{
cache_op(page_to_phys(page), size, cpu_dma_wbinval_range);
}
static int __init atomic_pool_init(void)
{
return dma_atomic_pool_init(GFP_KERNEL, pgprot_noncached(PAGE_KERNEL));
}
postcore_initcall(atomic_pool_init);
...@@ -4,6 +4,7 @@ config NIOS2 ...@@ -4,6 +4,7 @@ config NIOS2
select ARCH_32BIT_OFF_T select ARCH_32BIT_OFF_T
select ARCH_HAS_SYNC_DMA_FOR_CPU select ARCH_HAS_SYNC_DMA_FOR_CPU
select ARCH_HAS_SYNC_DMA_FOR_DEVICE select ARCH_HAS_SYNC_DMA_FOR_DEVICE
select ARCH_HAS_UNCACHED_SEGMENT
select ARCH_NO_SWAP select ARCH_NO_SWAP
select TIMER_OF select TIMER_OF
select GENERIC_ATOMIC64 select GENERIC_ATOMIC64
......
...@@ -101,12 +101,6 @@ static inline bool pfn_valid(unsigned long pfn) ...@@ -101,12 +101,6 @@ static inline bool pfn_valid(unsigned long pfn)
# define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | \ # define VM_DATA_DEFAULT_FLAGS (VM_READ | VM_WRITE | \
VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
# define UNCAC_ADDR(addr) \
((void *)((unsigned)(addr) | CONFIG_NIOS2_IO_REGION_BASE))
# define CAC_ADDR(addr) \
((void *)(((unsigned)(addr) & ~CONFIG_NIOS2_IO_REGION_BASE) | \
CONFIG_NIOS2_KERNEL_REGION_BASE))
#include <asm-generic/memory_model.h> #include <asm-generic/memory_model.h>
#include <asm-generic/getorder.h> #include <asm-generic/getorder.h>
......
...@@ -60,32 +60,28 @@ void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, ...@@ -60,32 +60,28 @@ void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
} }
} }
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, void arch_dma_prep_coherent(struct page *page, size_t size)
gfp_t gfp, unsigned long attrs)
{ {
void *ret; unsigned long start = (unsigned long)page_address(page);
/* optimized page clearing */ flush_dcache_range(start, start + size);
gfp |= __GFP_ZERO; }
if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff)) void *uncached_kernel_address(void *ptr)
gfp |= GFP_DMA; {
unsigned long addr = (unsigned long)ptr;
ret = (void *) __get_free_pages(gfp, get_order(size)); addr |= CONFIG_NIOS2_IO_REGION_BASE;
if (ret != NULL) {
*dma_handle = virt_to_phys(ret);
flush_dcache_range((unsigned long) ret,
(unsigned long) ret + size);
ret = UNCAC_ADDR(ret);
}
return ret; return (void *)ptr;
} }
void arch_dma_free(struct device *dev, size_t size, void *vaddr, void *cached_kernel_address(void *ptr)
dma_addr_t dma_handle, unsigned long attrs)
{ {
unsigned long addr = (unsigned long) CAC_ADDR((unsigned long) vaddr); unsigned long addr = (unsigned long)ptr;
addr &= ~CONFIG_NIOS2_IO_REGION_BASE;
addr |= CONFIG_NIOS2_KERNEL_REGION_BASE;
free_pages(addr, get_order(size)); return (void *)ptr;
} }
...@@ -94,15 +94,13 @@ arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, ...@@ -94,15 +94,13 @@ arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
va = (unsigned long)page; va = (unsigned long)page;
if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) { /*
/* * We need to iterate through the pages, clearing the dcache for
* We need to iterate through the pages, clearing the dcache for * them and setting the cache-inhibit bit.
* them and setting the cache-inhibit bit. */
*/ if (walk_page_range(va, va + size, &walk)) {
if (walk_page_range(va, va + size, &walk)) { free_pages_exact(page, size);
free_pages_exact(page, size); return NULL;
return NULL;
}
} }
return (void *)va; return (void *)va;
...@@ -118,10 +116,8 @@ arch_dma_free(struct device *dev, size_t size, void *vaddr, ...@@ -118,10 +116,8 @@ arch_dma_free(struct device *dev, size_t size, void *vaddr,
.mm = &init_mm .mm = &init_mm
}; };
if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0) { /* walk_page_range shouldn't be able to fail here */
/* walk_page_range shouldn't be able to fail here */ WARN_ON(walk_page_range(va, va + size, &walk));
WARN_ON(walk_page_range(va, va + size, &walk));
}
free_pages_exact(vaddr, size); free_pages_exact(vaddr, size);
} }
......
...@@ -394,17 +394,20 @@ pcxl_dma_init(void) ...@@ -394,17 +394,20 @@ pcxl_dma_init(void)
__initcall(pcxl_dma_init); __initcall(pcxl_dma_init);
static void *pcxl_dma_alloc(struct device *dev, size_t size, void *arch_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{ {
unsigned long vaddr; unsigned long vaddr;
unsigned long paddr; unsigned long paddr;
int order; int order;
if (boot_cpu_data.cpu_type != pcxl2 && boot_cpu_data.cpu_type != pcxl)
return NULL;
order = get_order(size); order = get_order(size);
size = 1 << (order + PAGE_SHIFT); size = 1 << (order + PAGE_SHIFT);
vaddr = pcxl_alloc_range(size); vaddr = pcxl_alloc_range(size);
paddr = __get_free_pages(flag | __GFP_ZERO, order); paddr = __get_free_pages(gfp | __GFP_ZERO, order);
flush_kernel_dcache_range(paddr, size); flush_kernel_dcache_range(paddr, size);
paddr = __pa(paddr); paddr = __pa(paddr);
map_uncached_pages(vaddr, size, paddr); map_uncached_pages(vaddr, size, paddr);
...@@ -421,44 +424,19 @@ static void *pcxl_dma_alloc(struct device *dev, size_t size, ...@@ -421,44 +424,19 @@ static void *pcxl_dma_alloc(struct device *dev, size_t size,
return (void *)vaddr; return (void *)vaddr;
} }
static void *pcx_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
{
void *addr;
if ((attrs & DMA_ATTR_NON_CONSISTENT) == 0)
return NULL;
addr = (void *)__get_free_pages(flag | __GFP_ZERO, get_order(size));
if (addr)
*dma_handle = (dma_addr_t)virt_to_phys(addr);
return addr;
}
void *arch_dma_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{
if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl)
return pcxl_dma_alloc(dev, size, dma_handle, gfp, attrs);
else
return pcx_dma_alloc(dev, size, dma_handle, gfp, attrs);
}
void arch_dma_free(struct device *dev, size_t size, void *vaddr, void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs) dma_addr_t dma_handle, unsigned long attrs)
{ {
int order = get_order(size); int order = get_order(size);
if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) { WARN_ON_ONCE(boot_cpu_data.cpu_type != pcxl2 &&
size = 1 << (order + PAGE_SHIFT); boot_cpu_data.cpu_type != pcxl);
unmap_uncached_pages((unsigned long)vaddr, size);
pcxl_free_range((unsigned long)vaddr, size);
vaddr = __va(dma_handle); size = 1 << (order + PAGE_SHIFT);
} unmap_uncached_pages((unsigned long)vaddr, size);
free_pages((unsigned long)vaddr, get_order(size)); pcxl_free_range((unsigned long)vaddr, size);
free_pages((unsigned long)__va(dma_handle), order);
} }
void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
......
...@@ -163,10 +163,6 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, ...@@ -163,10 +163,6 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
*handle = phys_to_dma(dev, page_to_phys(page)); *handle = phys_to_dma(dev, page_to_phys(page));
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
return page;
}
#ifdef CONFIG_MMU #ifdef CONFIG_MMU
if (PageHighMem(page)) { if (PageHighMem(page)) {
void *p; void *p;
...@@ -192,9 +188,7 @@ void arch_dma_free(struct device *dev, size_t size, void *vaddr, ...@@ -192,9 +188,7 @@ void arch_dma_free(struct device *dev, size_t size, void *vaddr,
unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
struct page *page; struct page *page;
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) { if (platform_vaddr_uncached(vaddr)) {
page = vaddr;
} else if (platform_vaddr_uncached(vaddr)) {
page = virt_to_page(platform_vaddr_to_cached(vaddr)); page = virt_to_page(platform_vaddr_to_cached(vaddr));
} else { } else {
#ifdef CONFIG_MMU #ifdef CONFIG_MMU
......
...@@ -951,8 +951,8 @@ static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr) ...@@ -951,8 +951,8 @@ static void __iommu_dma_free(struct device *dev, size_t size, void *cpu_addr)
if (pages) if (pages)
__iommu_dma_free_pages(pages, count); __iommu_dma_free_pages(pages, count);
if (page && !dma_release_from_contiguous(dev, page, count)) if (page)
__free_pages(page, get_order(alloc_size)); dma_free_contiguous(dev, page, alloc_size);
} }
static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr, static void iommu_dma_free(struct device *dev, size_t size, void *cpu_addr,
...@@ -970,12 +970,7 @@ static void *iommu_dma_alloc_pages(struct device *dev, size_t size, ...@@ -970,12 +970,7 @@ static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
struct page *page = NULL; struct page *page = NULL;
void *cpu_addr; void *cpu_addr;
if (gfpflags_allow_blocking(gfp)) page = dma_alloc_contiguous(dev, alloc_size, gfp);
page = dma_alloc_from_contiguous(dev, alloc_size >> PAGE_SHIFT,
get_order(alloc_size),
gfp & __GFP_NOWARN);
if (!page)
page = alloc_pages(gfp, get_order(alloc_size));
if (!page) if (!page)
return NULL; return NULL;
...@@ -997,8 +992,7 @@ static void *iommu_dma_alloc_pages(struct device *dev, size_t size, ...@@ -997,8 +992,7 @@ static void *iommu_dma_alloc_pages(struct device *dev, size_t size,
memset(cpu_addr, 0, alloc_size); memset(cpu_addr, 0, alloc_size);
return cpu_addr; return cpu_addr;
out_free_pages: out_free_pages:
if (!dma_release_from_contiguous(dev, page, alloc_size >> PAGE_SHIFT)) dma_free_contiguous(dev, page, alloc_size);
__free_pages(page, get_order(alloc_size));
return NULL; return NULL;
} }
......
...@@ -45,6 +45,7 @@ config USB_ARCH_HAS_HCD ...@@ -45,6 +45,7 @@ config USB_ARCH_HAS_HCD
config USB config USB
tristate "Support for Host-side USB" tristate "Support for Host-side USB"
depends on USB_ARCH_HAS_HCD depends on USB_ARCH_HAS_HCD
select GENERIC_ALLOCATOR
select USB_COMMON select USB_COMMON
select NLS # for UTF-8 strings select NLS # for UTF-8 strings
---help--- ---help---
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include <linux/io.h> #include <linux/io.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#include <linux/dmapool.h> #include <linux/dmapool.h>
#include <linux/genalloc.h>
#include <linux/usb.h> #include <linux/usb.h>
#include <linux/usb/hcd.h> #include <linux/usb/hcd.h>
...@@ -67,7 +68,7 @@ int hcd_buffer_create(struct usb_hcd *hcd) ...@@ -67,7 +68,7 @@ int hcd_buffer_create(struct usb_hcd *hcd)
if (!IS_ENABLED(CONFIG_HAS_DMA) || if (!IS_ENABLED(CONFIG_HAS_DMA) ||
(!is_device_dma_capable(hcd->self.sysdev) && (!is_device_dma_capable(hcd->self.sysdev) &&
!(hcd->driver->flags & HCD_LOCAL_MEM))) !hcd->localmem_pool))
return 0; return 0;
for (i = 0; i < HCD_BUFFER_POOLS; i++) { for (i = 0; i < HCD_BUFFER_POOLS; i++) {
...@@ -124,10 +125,12 @@ void *hcd_buffer_alloc( ...@@ -124,10 +125,12 @@ void *hcd_buffer_alloc(
if (size == 0) if (size == 0)
return NULL; return NULL;
if (hcd->localmem_pool)
return gen_pool_dma_alloc(hcd->localmem_pool, size, dma);
/* some USB hosts just use PIO */ /* some USB hosts just use PIO */
if (!IS_ENABLED(CONFIG_HAS_DMA) || if (!IS_ENABLED(CONFIG_HAS_DMA) ||
(!is_device_dma_capable(bus->sysdev) && !is_device_dma_capable(bus->sysdev)) {
!(hcd->driver->flags & HCD_LOCAL_MEM))) {
*dma = ~(dma_addr_t) 0; *dma = ~(dma_addr_t) 0;
return kmalloc(size, mem_flags); return kmalloc(size, mem_flags);
} }
...@@ -152,9 +155,13 @@ void hcd_buffer_free( ...@@ -152,9 +155,13 @@ void hcd_buffer_free(
if (!addr) if (!addr)
return; return;
if (hcd->localmem_pool) {
gen_pool_free(hcd->localmem_pool, (unsigned long)addr, size);
return;
}
if (!IS_ENABLED(CONFIG_HAS_DMA) || if (!IS_ENABLED(CONFIG_HAS_DMA) ||
(!is_device_dma_capable(bus->sysdev) && !is_device_dma_capable(bus->sysdev)) {
!(hcd->driver->flags & HCD_LOCAL_MEM))) {
kfree(addr); kfree(addr);
return; return;
} }
......
...@@ -29,6 +29,8 @@ ...@@ -29,6 +29,8 @@
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/types.h> #include <linux/types.h>
#include <linux/genalloc.h>
#include <linux/io.h>
#include <linux/phy/phy.h> #include <linux/phy/phy.h>
#include <linux/usb.h> #include <linux/usb.h>
...@@ -1345,14 +1347,14 @@ EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); ...@@ -1345,14 +1347,14 @@ EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
* using regular system memory - like pci devices doing bus mastering. * using regular system memory - like pci devices doing bus mastering.
* *
* To support host controllers with limited dma capabilities we provide dma * To support host controllers with limited dma capabilities we provide dma
* bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag. * bounce buffers. This feature can be enabled by initializing
* hcd->localmem_pool using usb_hcd_setup_local_mem().
* For this to work properly the host controller code must first use the * For this to work properly the host controller code must first use the
* function dma_declare_coherent_memory() to point out which memory area * function dma_declare_coherent_memory() to point out which memory area
* that should be used for dma allocations. * that should be used for dma allocations.
* *
* The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for * The initialized hcd->localmem_pool then tells the usb code to allocate all
* dma using dma_alloc_coherent() which in turn allocates from the memory * data for dma using the genalloc API.
* area pointed out with dma_declare_coherent_memory().
* *
* So, to summarize... * So, to summarize...
* *
...@@ -1362,9 +1364,6 @@ EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep); ...@@ -1362,9 +1364,6 @@ EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
* (a) "normal" kernel memory is no good, and * (a) "normal" kernel memory is no good, and
* (b) there's not enough to share * (b) there's not enough to share
* *
* - The only *portable* hook for such stuff in the
* DMA framework is dma_declare_coherent_memory()
*
* - So we use that, even though the primary requirement * - So we use that, even though the primary requirement
* is that the memory be "local" (hence addressable * is that the memory be "local" (hence addressable
* by that device), not "coherent". * by that device), not "coherent".
...@@ -1531,7 +1530,7 @@ int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, ...@@ -1531,7 +1530,7 @@ int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
urb->setup_dma)) urb->setup_dma))
return -EAGAIN; return -EAGAIN;
urb->transfer_flags |= URB_SETUP_MAP_SINGLE; urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
} else if (hcd->driver->flags & HCD_LOCAL_MEM) { } else if (hcd->localmem_pool) {
ret = hcd_alloc_coherent( ret = hcd_alloc_coherent(
urb->dev->bus, mem_flags, urb->dev->bus, mem_flags,
&urb->setup_dma, &urb->setup_dma,
...@@ -1601,7 +1600,7 @@ int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb, ...@@ -1601,7 +1600,7 @@ int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
else else
urb->transfer_flags |= URB_DMA_MAP_SINGLE; urb->transfer_flags |= URB_DMA_MAP_SINGLE;
} }
} else if (hcd->driver->flags & HCD_LOCAL_MEM) { } else if (hcd->localmem_pool) {
ret = hcd_alloc_coherent( ret = hcd_alloc_coherent(
urb->dev->bus, mem_flags, urb->dev->bus, mem_flags,
&urb->transfer_dma, &urb->transfer_dma,
...@@ -3039,6 +3038,40 @@ usb_hcd_platform_shutdown(struct platform_device *dev) ...@@ -3039,6 +3038,40 @@ usb_hcd_platform_shutdown(struct platform_device *dev)
} }
EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown); EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
dma_addr_t dma, size_t size)
{
int err;
void *local_mem;
hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
dev_to_node(hcd->self.sysdev),
dev_name(hcd->self.sysdev));
if (IS_ERR(hcd->localmem_pool))
return PTR_ERR(hcd->localmem_pool);
local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
size, MEMREMAP_WC);
if (!local_mem)
return -ENOMEM;
/*
* Here we pass a dma_addr_t but the arg type is a phys_addr_t.
* It's not backed by system memory and thus there's no kernel mapping
* for it.
*/
err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
dma, size, dev_to_node(hcd->self.sysdev));
if (err < 0) {
dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
err);
return err;
}
return 0;
}
EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
#if IS_ENABLED(CONFIG_USB_MON) #if IS_ENABLED(CONFIG_USB_MON)
......
...@@ -559,7 +559,7 @@ static int ehci_init(struct usb_hcd *hcd) ...@@ -559,7 +559,7 @@ static int ehci_init(struct usb_hcd *hcd)
ehci->command = temp; ehci->command = temp;
/* Accept arbitrarily long scatter-gather lists */ /* Accept arbitrarily long scatter-gather lists */
if (!(hcd->driver->flags & HCD_LOCAL_MEM)) if (!hcd->localmem_pool)
hcd->self.sg_tablesize = ~0; hcd->self.sg_tablesize = ~0;
/* Prepare for unlinking active QHs */ /* Prepare for unlinking active QHs */
......
...@@ -4996,7 +4996,7 @@ static int hcd_fotg210_init(struct usb_hcd *hcd) ...@@ -4996,7 +4996,7 @@ static int hcd_fotg210_init(struct usb_hcd *hcd)
fotg210->command = temp; fotg210->command = temp;
/* Accept arbitrarily long scatter-gather lists */ /* Accept arbitrarily long scatter-gather lists */
if (!(hcd->driver->flags & HCD_LOCAL_MEM)) if (!hcd->localmem_pool)
hcd->self.sg_tablesize = ~0; hcd->self.sg_tablesize = ~0;
return 0; return 0;
} }
......
...@@ -40,6 +40,7 @@ ...@@ -40,6 +40,7 @@
#include <linux/dmapool.h> #include <linux/dmapool.h>
#include <linux/workqueue.h> #include <linux/workqueue.h>
#include <linux/debugfs.h> #include <linux/debugfs.h>
#include <linux/genalloc.h>
#include <asm/io.h> #include <asm/io.h>
#include <asm/irq.h> #include <asm/irq.h>
...@@ -447,7 +448,7 @@ static int ohci_init (struct ohci_hcd *ohci) ...@@ -447,7 +448,7 @@ static int ohci_init (struct ohci_hcd *ohci)
struct usb_hcd *hcd = ohci_to_hcd(ohci); struct usb_hcd *hcd = ohci_to_hcd(ohci);
/* Accept arbitrarily long scatter-gather lists */ /* Accept arbitrarily long scatter-gather lists */
if (!(hcd->driver->flags & HCD_LOCAL_MEM)) if (!hcd->localmem_pool)
hcd->self.sg_tablesize = ~0; hcd->self.sg_tablesize = ~0;
if (distrust_firmware) if (distrust_firmware)
...@@ -505,8 +506,15 @@ static int ohci_init (struct ohci_hcd *ohci) ...@@ -505,8 +506,15 @@ static int ohci_init (struct ohci_hcd *ohci)
timer_setup(&ohci->io_watchdog, io_watchdog_func, 0); timer_setup(&ohci->io_watchdog, io_watchdog_func, 0);
ohci->prev_frame_no = IO_WATCHDOG_OFF; ohci->prev_frame_no = IO_WATCHDOG_OFF;
ohci->hcca = dma_alloc_coherent (hcd->self.controller, if (hcd->localmem_pool)
sizeof(*ohci->hcca), &ohci->hcca_dma, GFP_KERNEL); ohci->hcca = gen_pool_dma_alloc_align(hcd->localmem_pool,
sizeof(*ohci->hcca),
&ohci->hcca_dma, 256);
else
ohci->hcca = dma_alloc_coherent(hcd->self.controller,
sizeof(*ohci->hcca),
&ohci->hcca_dma,
GFP_KERNEL);
if (!ohci->hcca) if (!ohci->hcca)
return -ENOMEM; return -ENOMEM;
...@@ -990,9 +998,14 @@ static void ohci_stop (struct usb_hcd *hcd) ...@@ -990,9 +998,14 @@ static void ohci_stop (struct usb_hcd *hcd)
remove_debug_files (ohci); remove_debug_files (ohci);
ohci_mem_cleanup (ohci); ohci_mem_cleanup (ohci);
if (ohci->hcca) { if (ohci->hcca) {
dma_free_coherent (hcd->self.controller, if (hcd->localmem_pool)
sizeof *ohci->hcca, gen_pool_free(hcd->localmem_pool,
ohci->hcca, ohci->hcca_dma); (unsigned long)ohci->hcca,
sizeof(*ohci->hcca));
else
dma_free_coherent(hcd->self.controller,
sizeof(*ohci->hcca),
ohci->hcca, ohci->hcca_dma);
ohci->hcca = NULL; ohci->hcca = NULL;
ohci->hcca_dma = 0; ohci->hcca_dma = 0;
} }
......
...@@ -36,6 +36,13 @@ static void ohci_hcd_init (struct ohci_hcd *ohci) ...@@ -36,6 +36,13 @@ static void ohci_hcd_init (struct ohci_hcd *ohci)
static int ohci_mem_init (struct ohci_hcd *ohci) static int ohci_mem_init (struct ohci_hcd *ohci)
{ {
/*
* HCs with local memory allocate from localmem_pool so there's
* no need to create the below dma pools.
*/
if (ohci_to_hcd(ohci)->localmem_pool)
return 0;
ohci->td_cache = dma_pool_create ("ohci_td", ohci->td_cache = dma_pool_create ("ohci_td",
ohci_to_hcd(ohci)->self.controller, ohci_to_hcd(ohci)->self.controller,
sizeof (struct td), sizeof (struct td),
...@@ -84,8 +91,13 @@ td_alloc (struct ohci_hcd *hc, gfp_t mem_flags) ...@@ -84,8 +91,13 @@ td_alloc (struct ohci_hcd *hc, gfp_t mem_flags)
{ {
dma_addr_t dma; dma_addr_t dma;
struct td *td; struct td *td;
struct usb_hcd *hcd = ohci_to_hcd(hc);
td = dma_pool_zalloc (hc->td_cache, mem_flags, &dma); if (hcd->localmem_pool)
td = gen_pool_dma_zalloc_align(hcd->localmem_pool,
sizeof(*td), &dma, 32);
else
td = dma_pool_zalloc(hc->td_cache, mem_flags, &dma);
if (td) { if (td) {
/* in case hc fetches it, make it look dead */ /* in case hc fetches it, make it look dead */
td->hwNextTD = cpu_to_hc32 (hc, dma); td->hwNextTD = cpu_to_hc32 (hc, dma);
...@@ -99,6 +111,7 @@ static void ...@@ -99,6 +111,7 @@ static void
td_free (struct ohci_hcd *hc, struct td *td) td_free (struct ohci_hcd *hc, struct td *td)
{ {
struct td **prev = &hc->td_hash [TD_HASH_FUNC (td->td_dma)]; struct td **prev = &hc->td_hash [TD_HASH_FUNC (td->td_dma)];
struct usb_hcd *hcd = ohci_to_hcd(hc);
while (*prev && *prev != td) while (*prev && *prev != td)
prev = &(*prev)->td_hash; prev = &(*prev)->td_hash;
...@@ -106,7 +119,12 @@ td_free (struct ohci_hcd *hc, struct td *td) ...@@ -106,7 +119,12 @@ td_free (struct ohci_hcd *hc, struct td *td)
*prev = td->td_hash; *prev = td->td_hash;
else if ((td->hwINFO & cpu_to_hc32(hc, TD_DONE)) != 0) else if ((td->hwINFO & cpu_to_hc32(hc, TD_DONE)) != 0)
ohci_dbg (hc, "no hash for td %p\n", td); ohci_dbg (hc, "no hash for td %p\n", td);
dma_pool_free (hc->td_cache, td, td->td_dma);
if (hcd->localmem_pool)
gen_pool_free(hcd->localmem_pool, (unsigned long)td,
sizeof(*td));
else
dma_pool_free(hc->td_cache, td, td->td_dma);
} }
/*-------------------------------------------------------------------------*/ /*-------------------------------------------------------------------------*/
...@@ -117,8 +135,13 @@ ed_alloc (struct ohci_hcd *hc, gfp_t mem_flags) ...@@ -117,8 +135,13 @@ ed_alloc (struct ohci_hcd *hc, gfp_t mem_flags)
{ {
dma_addr_t dma; dma_addr_t dma;
struct ed *ed; struct ed *ed;
struct usb_hcd *hcd = ohci_to_hcd(hc);
ed = dma_pool_zalloc (hc->ed_cache, mem_flags, &dma); if (hcd->localmem_pool)
ed = gen_pool_dma_zalloc_align(hcd->localmem_pool,
sizeof(*ed), &dma, 16);
else
ed = dma_pool_zalloc(hc->ed_cache, mem_flags, &dma);
if (ed) { if (ed) {
INIT_LIST_HEAD (&ed->td_list); INIT_LIST_HEAD (&ed->td_list);
ed->dma = dma; ed->dma = dma;
...@@ -129,6 +152,12 @@ ed_alloc (struct ohci_hcd *hc, gfp_t mem_flags) ...@@ -129,6 +152,12 @@ ed_alloc (struct ohci_hcd *hc, gfp_t mem_flags)
static void static void
ed_free (struct ohci_hcd *hc, struct ed *ed) ed_free (struct ohci_hcd *hc, struct ed *ed)
{ {
dma_pool_free (hc->ed_cache, ed, ed->dma); struct usb_hcd *hcd = ohci_to_hcd(hc);
if (hcd->localmem_pool)
gen_pool_free(hcd->localmem_pool, (unsigned long)ed,
sizeof(*ed));
else
dma_pool_free(hc->ed_cache, ed, ed->dma);
} }
...@@ -49,7 +49,7 @@ static const struct hc_driver ohci_sm501_hc_driver = { ...@@ -49,7 +49,7 @@ static const struct hc_driver ohci_sm501_hc_driver = {
* generic hardware linkage * generic hardware linkage
*/ */
.irq = ohci_irq, .irq = ohci_irq,
.flags = HCD_USB11 | HCD_MEMORY | HCD_LOCAL_MEM, .flags = HCD_USB11 | HCD_MEMORY,
/* /*
* basic lifecycle operations * basic lifecycle operations
...@@ -110,40 +110,18 @@ static int ohci_hcd_sm501_drv_probe(struct platform_device *pdev) ...@@ -110,40 +110,18 @@ static int ohci_hcd_sm501_drv_probe(struct platform_device *pdev)
goto err0; goto err0;
} }
/* The sm501 chip is equipped with local memory that may be used
* by on-chip devices such as the video controller and the usb host.
* This driver uses dma_declare_coherent_memory() to make sure
* usb allocations with dma_alloc_coherent() allocate from
* this local memory. The dma_handle returned by dma_alloc_coherent()
* will be an offset starting from 0 for the first local memory byte.
*
* So as long as data is allocated using dma_alloc_coherent() all is
* fine. This is however not always the case - buffers may be allocated
* using kmalloc() - so the usb core needs to be told that it must copy
* data into our local memory if the buffers happen to be placed in
* regular memory. The HCD_LOCAL_MEM flag does just that.
*/
retval = dma_declare_coherent_memory(dev, mem->start,
mem->start - mem->parent->start,
resource_size(mem));
if (retval) {
dev_err(dev, "cannot declare coherent memory\n");
goto err1;
}
/* allocate, reserve and remap resources for registers */ /* allocate, reserve and remap resources for registers */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0); res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (res == NULL) { if (res == NULL) {
dev_err(dev, "no resource definition for registers\n"); dev_err(dev, "no resource definition for registers\n");
retval = -ENOENT; retval = -ENOENT;
goto err2; goto err1;
} }
hcd = usb_create_hcd(driver, &pdev->dev, dev_name(&pdev->dev)); hcd = usb_create_hcd(driver, &pdev->dev, dev_name(&pdev->dev));
if (!hcd) { if (!hcd) {
retval = -ENOMEM; retval = -ENOMEM;
goto err2; goto err1;
} }
hcd->rsrc_start = res->start; hcd->rsrc_start = res->start;
...@@ -164,6 +142,25 @@ static int ohci_hcd_sm501_drv_probe(struct platform_device *pdev) ...@@ -164,6 +142,25 @@ static int ohci_hcd_sm501_drv_probe(struct platform_device *pdev)
ohci_hcd_init(hcd_to_ohci(hcd)); ohci_hcd_init(hcd_to_ohci(hcd));
/* The sm501 chip is equipped with local memory that may be used
* by on-chip devices such as the video controller and the usb host.
* This driver uses genalloc so that usb allocations with
* gen_pool_dma_alloc() allocate from this local memory. The dma_handle
* returned by gen_pool_dma_alloc() will be an offset starting from 0
* for the first local memory byte.
*
* So as long as data is allocated using gen_pool_dma_alloc() all is
* fine. This is however not always the case - buffers may be allocated
* using kmalloc() - so the usb core needs to be told that it must copy
* data into our local memory if the buffers happen to be placed in
* regular memory. A non-null hcd->localmem_pool initialized by the
* the call to usb_hcd_setup_local_mem() below does just that.
*/
if (usb_hcd_setup_local_mem(hcd, mem->start,
mem->start - mem->parent->start,
resource_size(mem)) < 0)
goto err5;
retval = usb_add_hcd(hcd, irq, IRQF_SHARED); retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
if (retval) if (retval)
goto err5; goto err5;
...@@ -181,8 +178,6 @@ static int ohci_hcd_sm501_drv_probe(struct platform_device *pdev) ...@@ -181,8 +178,6 @@ static int ohci_hcd_sm501_drv_probe(struct platform_device *pdev)
release_mem_region(hcd->rsrc_start, hcd->rsrc_len); release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
err3: err3:
usb_put_hcd(hcd); usb_put_hcd(hcd);
err2:
dma_release_declared_memory(dev);
err1: err1:
release_mem_region(mem->start, resource_size(mem)); release_mem_region(mem->start, resource_size(mem));
err0: err0:
...@@ -197,7 +192,6 @@ static int ohci_hcd_sm501_drv_remove(struct platform_device *pdev) ...@@ -197,7 +192,6 @@ static int ohci_hcd_sm501_drv_remove(struct platform_device *pdev)
usb_remove_hcd(hcd); usb_remove_hcd(hcd);
release_mem_region(hcd->rsrc_start, hcd->rsrc_len); release_mem_region(hcd->rsrc_start, hcd->rsrc_len);
usb_put_hcd(hcd); usb_put_hcd(hcd);
dma_release_declared_memory(&pdev->dev);
mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); mem = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (mem) if (mem)
release_mem_region(mem->start, resource_size(mem)); release_mem_region(mem->start, resource_size(mem));
......
...@@ -153,7 +153,7 @@ static const struct hc_driver ohci_tmio_hc_driver = { ...@@ -153,7 +153,7 @@ static const struct hc_driver ohci_tmio_hc_driver = {
/* generic hardware linkage */ /* generic hardware linkage */
.irq = ohci_irq, .irq = ohci_irq,
.flags = HCD_USB11 | HCD_MEMORY | HCD_LOCAL_MEM, .flags = HCD_USB11 | HCD_MEMORY,
/* basic lifecycle operations */ /* basic lifecycle operations */
.start = ohci_tmio_start, .start = ohci_tmio_start,
...@@ -224,11 +224,6 @@ static int ohci_hcd_tmio_drv_probe(struct platform_device *dev) ...@@ -224,11 +224,6 @@ static int ohci_hcd_tmio_drv_probe(struct platform_device *dev)
goto err_ioremap_regs; goto err_ioremap_regs;
} }
ret = dma_declare_coherent_memory(&dev->dev, sram->start, sram->start,
resource_size(sram));
if (ret)
goto err_dma_declare;
if (cell->enable) { if (cell->enable) {
ret = cell->enable(dev); ret = cell->enable(dev);
if (ret) if (ret)
...@@ -239,6 +234,11 @@ static int ohci_hcd_tmio_drv_probe(struct platform_device *dev) ...@@ -239,6 +234,11 @@ static int ohci_hcd_tmio_drv_probe(struct platform_device *dev)
ohci = hcd_to_ohci(hcd); ohci = hcd_to_ohci(hcd);
ohci_hcd_init(ohci); ohci_hcd_init(ohci);
ret = usb_hcd_setup_local_mem(hcd, sram->start, sram->start,
resource_size(sram));
if (ret < 0)
goto err_enable;
ret = usb_add_hcd(hcd, irq, 0); ret = usb_add_hcd(hcd, irq, 0);
if (ret) if (ret)
goto err_add_hcd; goto err_add_hcd;
...@@ -254,8 +254,6 @@ static int ohci_hcd_tmio_drv_probe(struct platform_device *dev) ...@@ -254,8 +254,6 @@ static int ohci_hcd_tmio_drv_probe(struct platform_device *dev)
if (cell->disable) if (cell->disable)
cell->disable(dev); cell->disable(dev);
err_enable: err_enable:
dma_release_declared_memory(&dev->dev);
err_dma_declare:
iounmap(hcd->regs); iounmap(hcd->regs);
err_ioremap_regs: err_ioremap_regs:
iounmap(tmio->ccr); iounmap(tmio->ccr);
...@@ -276,7 +274,6 @@ static int ohci_hcd_tmio_drv_remove(struct platform_device *dev) ...@@ -276,7 +274,6 @@ static int ohci_hcd_tmio_drv_remove(struct platform_device *dev)
tmio_stop_hc(dev); tmio_stop_hc(dev);
if (cell->disable) if (cell->disable)
cell->disable(dev); cell->disable(dev);
dma_release_declared_memory(&dev->dev);
iounmap(hcd->regs); iounmap(hcd->regs);
iounmap(tmio->ccr); iounmap(tmio->ccr);
usb_put_hcd(hcd); usb_put_hcd(hcd);
......
...@@ -385,6 +385,8 @@ struct ohci_hcd { ...@@ -385,6 +385,8 @@ struct ohci_hcd {
/* /*
* memory management for queue data structures * memory management for queue data structures
*
* @td_cache and @ed_cache are %NULL if &usb_hcd.localmem_pool is used.
*/ */
struct dma_pool *td_cache; struct dma_pool *td_cache;
struct dma_pool *ed_cache; struct dma_pool *ed_cache;
......
...@@ -581,7 +581,7 @@ static int uhci_start(struct usb_hcd *hcd) ...@@ -581,7 +581,7 @@ static int uhci_start(struct usb_hcd *hcd)
hcd->uses_new_polling = 1; hcd->uses_new_polling = 1;
/* Accept arbitrarily long scatter-gather lists */ /* Accept arbitrarily long scatter-gather lists */
if (!(hcd->driver->flags & HCD_LOCAL_MEM)) if (!hcd->localmem_pool)
hcd->self.sg_tablesize = ~0; hcd->self.sg_tablesize = ~0;
spin_lock_init(&uhci->lock); spin_lock_init(&uhci->lock);
......
...@@ -340,14 +340,12 @@ int au1100fb_fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fbi) ...@@ -340,14 +340,12 @@ int au1100fb_fb_pan_display(struct fb_var_screeninfo *var, struct fb_info *fbi)
*/ */
int au1100fb_fb_mmap(struct fb_info *fbi, struct vm_area_struct *vma) int au1100fb_fb_mmap(struct fb_info *fbi, struct vm_area_struct *vma)
{ {
struct au1100fb_device *fbdev; struct au1100fb_device *fbdev = to_au1100fb_device(fbi);
fbdev = to_au1100fb_device(fbi);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
pgprot_val(vma->vm_page_prot) |= (6 << 9); //CCA=6 pgprot_val(vma->vm_page_prot) |= (6 << 9); //CCA=6
return vm_iomap_memory(vma, fbdev->fb_phys, fbdev->fb_len); return dma_mmap_coherent(fbdev->dev, vma, fbdev->fb_mem, fbdev->fb_phys,
fbdev->fb_len);
} }
static struct fb_ops au1100fb_ops = static struct fb_ops au1100fb_ops =
...@@ -412,7 +410,6 @@ static int au1100fb_drv_probe(struct platform_device *dev) ...@@ -412,7 +410,6 @@ static int au1100fb_drv_probe(struct platform_device *dev)
{ {
struct au1100fb_device *fbdev; struct au1100fb_device *fbdev;
struct resource *regs_res; struct resource *regs_res;
unsigned long page;
struct clk *c; struct clk *c;
/* Allocate new device private */ /* Allocate new device private */
...@@ -424,6 +421,7 @@ static int au1100fb_drv_probe(struct platform_device *dev) ...@@ -424,6 +421,7 @@ static int au1100fb_drv_probe(struct platform_device *dev)
goto failed; goto failed;
platform_set_drvdata(dev, (void *)fbdev); platform_set_drvdata(dev, (void *)fbdev);
fbdev->dev = &dev->dev;
/* Allocate region for our registers and map them */ /* Allocate region for our registers and map them */
regs_res = platform_get_resource(dev, IORESOURCE_MEM, 0); regs_res = platform_get_resource(dev, IORESOURCE_MEM, 0);
...@@ -472,20 +470,6 @@ static int au1100fb_drv_probe(struct platform_device *dev) ...@@ -472,20 +470,6 @@ static int au1100fb_drv_probe(struct platform_device *dev)
au1100fb_fix.smem_start = fbdev->fb_phys; au1100fb_fix.smem_start = fbdev->fb_phys;
au1100fb_fix.smem_len = fbdev->fb_len; au1100fb_fix.smem_len = fbdev->fb_len;
/*
* Set page reserved so that mmap will work. This is necessary
* since we'll be remapping normal memory.
*/
for (page = (unsigned long)fbdev->fb_mem;
page < PAGE_ALIGN((unsigned long)fbdev->fb_mem + fbdev->fb_len);
page += PAGE_SIZE) {
#ifdef CONFIG_DMA_NONCOHERENT
SetPageReserved(virt_to_page(CAC_ADDR((void *)page)));
#else
SetPageReserved(virt_to_page(page));
#endif
}
print_dbg("Framebuffer memory map at %p", fbdev->fb_mem); print_dbg("Framebuffer memory map at %p", fbdev->fb_mem);
print_dbg("phys=0x%08x, size=%dK", fbdev->fb_phys, fbdev->fb_len / 1024); print_dbg("phys=0x%08x, size=%dK", fbdev->fb_phys, fbdev->fb_len / 1024);
......
...@@ -110,6 +110,7 @@ struct au1100fb_device { ...@@ -110,6 +110,7 @@ struct au1100fb_device {
dma_addr_t fb_phys; dma_addr_t fb_phys;
int panel_idx; int panel_idx;
struct clk *lcdclk; struct clk *lcdclk;
struct device *dev;
}; };
/********************************************************************/ /********************************************************************/
......
...@@ -50,6 +50,7 @@ ...@@ -50,6 +50,7 @@
#ifdef __KERNEL__ #ifdef __KERNEL__
#include <linux/device.h> #include <linux/device.h>
#include <linux/mm.h>
struct cma; struct cma;
struct page; struct page;
...@@ -111,6 +112,8 @@ struct page *dma_alloc_from_contiguous(struct device *dev, size_t count, ...@@ -111,6 +112,8 @@ struct page *dma_alloc_from_contiguous(struct device *dev, size_t count,
unsigned int order, bool no_warn); unsigned int order, bool no_warn);
bool dma_release_from_contiguous(struct device *dev, struct page *pages, bool dma_release_from_contiguous(struct device *dev, struct page *pages,
int count); int count);
struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp);
void dma_free_contiguous(struct device *dev, struct page *page, size_t size);
#else #else
...@@ -153,6 +156,22 @@ bool dma_release_from_contiguous(struct device *dev, struct page *pages, ...@@ -153,6 +156,22 @@ bool dma_release_from_contiguous(struct device *dev, struct page *pages,
return false; return false;
} }
/* Use fallback alloc() and free() when CONFIG_DMA_CMA=n */
static inline struct page *dma_alloc_contiguous(struct device *dev, size_t size,
gfp_t gfp)
{
int node = dev ? dev_to_node(dev) : NUMA_NO_NODE;
size_t align = get_order(PAGE_ALIGN(size));
return alloc_pages_node(node, gfp, align);
}
static inline void dma_free_contiguous(struct device *dev, struct page *page,
size_t size)
{
__free_pages(page, get_order(size));
}
#endif #endif
#endif #endif
......
...@@ -20,6 +20,22 @@ static inline bool dev_is_dma_coherent(struct device *dev) ...@@ -20,6 +20,22 @@ static inline bool dev_is_dma_coherent(struct device *dev)
} }
#endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */ #endif /* CONFIG_ARCH_HAS_DMA_COHERENCE_H */
/*
* Check if an allocation needs to be marked uncached to be coherent.
*/
static __always_inline bool dma_alloc_need_uncached(struct device *dev,
unsigned long attrs)
{
if (dev_is_dma_coherent(dev))
return false;
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
return false;
if (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
(attrs & DMA_ATTR_NON_CONSISTENT))
return false;
return true;
}
void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
gfp_t gfp, unsigned long attrs); gfp_t gfp, unsigned long attrs);
void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
...@@ -80,4 +96,7 @@ static inline void arch_dma_prep_coherent(struct page *page, size_t size) ...@@ -80,4 +96,7 @@ static inline void arch_dma_prep_coherent(struct page *page, size_t size)
} }
#endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */ #endif /* CONFIG_ARCH_HAS_DMA_PREP_COHERENT */
void *uncached_kernel_address(void *addr);
void *cached_kernel_address(void *addr);
#endif /* _LINUX_DMA_NONCOHERENT_H */ #endif /* _LINUX_DMA_NONCOHERENT_H */
...@@ -155,6 +155,15 @@ static inline unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size) ...@@ -155,6 +155,15 @@ static inline unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
extern void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, extern void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size,
dma_addr_t *dma); dma_addr_t *dma);
extern void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
dma_addr_t *dma, genpool_algo_t algo, void *data);
extern void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
dma_addr_t *dma, int align);
extern void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma);
extern void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
dma_addr_t *dma, genpool_algo_t algo, void *data);
extern void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
dma_addr_t *dma, int align);
extern void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr, extern void gen_pool_free_owner(struct gen_pool *pool, unsigned long addr,
size_t size, void **owner); size_t size, void **owner);
static inline void gen_pool_free(struct gen_pool *pool, unsigned long addr, static inline void gen_pool_free(struct gen_pool *pool, unsigned long addr,
......
...@@ -216,6 +216,9 @@ struct usb_hcd { ...@@ -216,6 +216,9 @@ struct usb_hcd {
#define HC_IS_RUNNING(state) ((state) & __ACTIVE) #define HC_IS_RUNNING(state) ((state) & __ACTIVE)
#define HC_IS_SUSPENDED(state) ((state) & __SUSPEND) #define HC_IS_SUSPENDED(state) ((state) & __SUSPEND)
/* memory pool for HCs having local memory, or %NULL */
struct gen_pool *localmem_pool;
/* more shared queuing code would be good; it should support /* more shared queuing code would be good; it should support
* smarter scheduling, handle transaction translators, etc; * smarter scheduling, handle transaction translators, etc;
* input size of periodic table to an interrupt scheduler. * input size of periodic table to an interrupt scheduler.
...@@ -253,7 +256,6 @@ struct hc_driver { ...@@ -253,7 +256,6 @@ struct hc_driver {
int flags; int flags;
#define HCD_MEMORY 0x0001 /* HC regs use memory (else I/O) */ #define HCD_MEMORY 0x0001 /* HC regs use memory (else I/O) */
#define HCD_LOCAL_MEM 0x0002 /* HC needs local memory */
#define HCD_SHARED 0x0004 /* Two (or more) usb_hcds share HW */ #define HCD_SHARED 0x0004 /* Two (or more) usb_hcds share HW */
#define HCD_USB11 0x0010 /* USB 1.1 */ #define HCD_USB11 0x0010 /* USB 1.1 */
#define HCD_USB2 0x0020 /* USB 2.0 */ #define HCD_USB2 0x0020 /* USB 2.0 */
...@@ -461,6 +463,8 @@ extern int usb_add_hcd(struct usb_hcd *hcd, ...@@ -461,6 +463,8 @@ extern int usb_add_hcd(struct usb_hcd *hcd,
unsigned int irqnum, unsigned long irqflags); unsigned int irqnum, unsigned long irqflags);
extern void usb_remove_hcd(struct usb_hcd *hcd); extern void usb_remove_hcd(struct usb_hcd *hcd);
extern int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1); extern int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1);
int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
dma_addr_t dma, size_t size);
struct platform_device; struct platform_device;
extern void usb_hcd_platform_shutdown(struct platform_device *dev); extern void usb_hcd_platform_shutdown(struct platform_device *dev);
......
...@@ -214,6 +214,62 @@ bool dma_release_from_contiguous(struct device *dev, struct page *pages, ...@@ -214,6 +214,62 @@ bool dma_release_from_contiguous(struct device *dev, struct page *pages,
return cma_release(dev_get_cma_area(dev), pages, count); return cma_release(dev_get_cma_area(dev), pages, count);
} }
/**
* dma_alloc_contiguous() - allocate contiguous pages
* @dev: Pointer to device for which the allocation is performed.
* @size: Requested allocation size.
* @gfp: Allocation flags.
*
* This function allocates contiguous memory buffer for specified device. It
* first tries to use device specific contiguous memory area if available or
* the default global one, then tries a fallback allocation of normal pages.
*
* Note that it byapss one-page size of allocations from the global area as
* the addresses within one page are always contiguous, so there is no need
* to waste CMA pages for that kind; it also helps reduce fragmentations.
*/
struct page *dma_alloc_contiguous(struct device *dev, size_t size, gfp_t gfp)
{
int node = dev ? dev_to_node(dev) : NUMA_NO_NODE;
size_t count = PAGE_ALIGN(size) >> PAGE_SHIFT;
size_t align = get_order(PAGE_ALIGN(size));
struct page *page = NULL;
struct cma *cma = NULL;
if (dev && dev->cma_area)
cma = dev->cma_area;
else if (count > 1)
cma = dma_contiguous_default_area;
/* CMA can be used only in the context which permits sleeping */
if (cma && gfpflags_allow_blocking(gfp)) {
align = min_t(size_t, align, CONFIG_CMA_ALIGNMENT);
page = cma_alloc(cma, count, align, gfp & __GFP_NOWARN);
}
/* Fallback allocation of normal pages */
if (!page)
page = alloc_pages_node(node, gfp, align);
return page;
}
/**
* dma_free_contiguous() - release allocated pages
* @dev: Pointer to device for which the pages were allocated.
* @page: Pointer to the allocated pages.
* @size: Size of allocated pages.
*
* This function releases memory allocated by dma_alloc_contiguous(). As the
* cma_release returns false when provided pages do not belong to contiguous
* area and true otherwise, this function then does a fallback __free_pages()
* upon a false-return.
*/
void dma_free_contiguous(struct device *dev, struct page *page, size_t size)
{
if (!cma_release(dev_get_cma_area(dev), page, size >> PAGE_SHIFT))
__free_pages(page, get_order(size));
}
/* /*
* Support for reserved memory regions defined in device tree * Support for reserved memory regions defined in device tree
*/ */
......
...@@ -96,8 +96,6 @@ static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size) ...@@ -96,8 +96,6 @@ static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{ {
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
int page_order = get_order(size);
struct page *page = NULL; struct page *page = NULL;
u64 phys_mask; u64 phys_mask;
...@@ -109,20 +107,9 @@ struct page *__dma_direct_alloc_pages(struct device *dev, size_t size, ...@@ -109,20 +107,9 @@ struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask, gfp |= __dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
&phys_mask); &phys_mask);
again: again:
/* CMA can be used only in the context which permits sleeping */ page = dma_alloc_contiguous(dev, size, gfp);
if (gfpflags_allow_blocking(gfp)) {
page = dma_alloc_from_contiguous(dev, count, page_order,
gfp & __GFP_NOWARN);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
dma_release_from_contiguous(dev, page, count);
page = NULL;
}
}
if (!page)
page = alloc_pages_node(dev_to_node(dev), gfp, page_order);
if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) { if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
__free_pages(page, page_order); dma_free_contiguous(dev, page, size);
page = NULL; page = NULL;
if (IS_ENABLED(CONFIG_ZONE_DMA32) && if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
...@@ -151,10 +138,18 @@ void *dma_direct_alloc_pages(struct device *dev, size_t size, ...@@ -151,10 +138,18 @@ void *dma_direct_alloc_pages(struct device *dev, size_t size,
if (!page) if (!page)
return NULL; return NULL;
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
/* remove any dirty cache lines on the kernel alias */
if (!PageHighMem(page))
arch_dma_prep_coherent(page, size);
/* return the page pointer as the opaque cookie */
return page;
}
if (PageHighMem(page)) { if (PageHighMem(page)) {
/* /*
* Depending on the cma= arguments and per-arch setup * Depending on the cma= arguments and per-arch setup
* dma_alloc_from_contiguous could return highmem pages. * dma_alloc_contiguous could return highmem pages.
* Without remapping there is no way to return them here, * Without remapping there is no way to return them here,
* so log an error and fail. * so log an error and fail.
*/ */
...@@ -171,15 +166,19 @@ void *dma_direct_alloc_pages(struct device *dev, size_t size, ...@@ -171,15 +166,19 @@ void *dma_direct_alloc_pages(struct device *dev, size_t size,
*dma_handle = phys_to_dma(dev, page_to_phys(page)); *dma_handle = phys_to_dma(dev, page_to_phys(page));
} }
memset(ret, 0, size); memset(ret, 0, size);
if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs)) {
arch_dma_prep_coherent(page, size);
ret = uncached_kernel_address(ret);
}
return ret; return ret;
} }
void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page) void __dma_direct_free_pages(struct device *dev, size_t size, struct page *page)
{ {
unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; dma_free_contiguous(dev, page, size);
if (!dma_release_from_contiguous(dev, page, count))
__free_pages(page, get_order(size));
} }
void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
...@@ -187,15 +186,26 @@ void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr, ...@@ -187,15 +186,26 @@ void dma_direct_free_pages(struct device *dev, size_t size, void *cpu_addr,
{ {
unsigned int page_order = get_order(size); unsigned int page_order = get_order(size);
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
/* cpu_addr is a struct page cookie, not a kernel address */
__dma_direct_free_pages(dev, size, cpu_addr);
return;
}
if (force_dma_unencrypted()) if (force_dma_unencrypted())
set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order); set_memory_encrypted((unsigned long)cpu_addr, 1 << page_order);
if (IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs))
cpu_addr = cached_kernel_address(cpu_addr);
__dma_direct_free_pages(dev, size, virt_to_page(cpu_addr)); __dma_direct_free_pages(dev, size, virt_to_page(cpu_addr));
} }
void *dma_direct_alloc(struct device *dev, size_t size, void *dma_direct_alloc(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
{ {
if (!dev_is_dma_coherent(dev)) if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs))
return arch_dma_alloc(dev, size, dma_handle, gfp, attrs); return arch_dma_alloc(dev, size, dma_handle, gfp, attrs);
return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs); return dma_direct_alloc_pages(dev, size, dma_handle, gfp, attrs);
} }
...@@ -203,7 +213,8 @@ void *dma_direct_alloc(struct device *dev, size_t size, ...@@ -203,7 +213,8 @@ void *dma_direct_alloc(struct device *dev, size_t size,
void dma_direct_free(struct device *dev, size_t size, void dma_direct_free(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
{ {
if (!dev_is_dma_coherent(dev)) if (!IS_ENABLED(CONFIG_ARCH_HAS_UNCACHED_SEGMENT) &&
dma_alloc_need_uncached(dev, attrs))
arch_dma_free(dev, size, cpu_addr, dma_addr, attrs); arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
else else
dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs); dma_direct_free_pages(dev, size, cpu_addr, dma_addr, attrs);
......
...@@ -317,6 +317,12 @@ void arch_dma_set_mask(struct device *dev, u64 mask); ...@@ -317,6 +317,12 @@ void arch_dma_set_mask(struct device *dev, u64 mask);
int dma_set_mask(struct device *dev, u64 mask) int dma_set_mask(struct device *dev, u64 mask)
{ {
/*
* Truncate the mask to the actually supported dma_addr_t width to
* avoid generating unsupportable addresses.
*/
mask = (dma_addr_t)mask;
if (!dev->dma_mask || !dma_supported(dev, mask)) if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO; return -EIO;
...@@ -330,6 +336,12 @@ EXPORT_SYMBOL(dma_set_mask); ...@@ -330,6 +336,12 @@ EXPORT_SYMBOL(dma_set_mask);
#ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask) int dma_set_coherent_mask(struct device *dev, u64 mask)
{ {
/*
* Truncate the mask to the actually supported dma_addr_t width to
* avoid generating unsupportable addresses.
*/
mask = (dma_addr_t)mask;
if (!dma_supported(dev, mask)) if (!dma_supported(dev, mask))
return -EIO; return -EIO;
......
...@@ -158,6 +158,9 @@ int __init dma_atomic_pool_init(gfp_t gfp, pgprot_t prot) ...@@ -158,6 +158,9 @@ int __init dma_atomic_pool_init(gfp_t gfp, pgprot_t prot)
bool dma_in_atomic_pool(void *start, size_t size) bool dma_in_atomic_pool(void *start, size_t size)
{ {
if (unlikely(!atomic_pool))
return false;
return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
} }
...@@ -199,8 +202,7 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, ...@@ -199,8 +202,7 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
size = PAGE_ALIGN(size); size = PAGE_ALIGN(size);
if (!gfpflags_allow_blocking(flags) && if (!gfpflags_allow_blocking(flags)) {
!(attrs & DMA_ATTR_NO_KERNEL_MAPPING)) {
ret = dma_alloc_from_pool(size, &page, flags); ret = dma_alloc_from_pool(size, &page, flags);
if (!ret) if (!ret)
return NULL; return NULL;
...@@ -214,11 +216,6 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, ...@@ -214,11 +216,6 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
/* remove any dirty cache lines on the kernel alias */ /* remove any dirty cache lines on the kernel alias */
arch_dma_prep_coherent(page, size); arch_dma_prep_coherent(page, size);
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) {
ret = page; /* opaque cookie */
goto done;
}
/* create a coherent mapping */ /* create a coherent mapping */
ret = dma_common_contiguous_remap(page, size, VM_USERMAP, ret = dma_common_contiguous_remap(page, size, VM_USERMAP,
arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs), arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs),
...@@ -237,10 +234,7 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, ...@@ -237,10 +234,7 @@ void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
void arch_dma_free(struct device *dev, size_t size, void *vaddr, void arch_dma_free(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle, unsigned long attrs) dma_addr_t dma_handle, unsigned long attrs)
{ {
if (attrs & DMA_ATTR_NO_KERNEL_MAPPING) { if (!dma_free_from_pool(vaddr, PAGE_ALIGN(size))) {
/* vaddr is a struct page cookie, not a kernel address */
__dma_direct_free_pages(dev, size, vaddr);
} else if (!dma_free_from_pool(vaddr, PAGE_ALIGN(size))) {
phys_addr_t phys = dma_to_phys(dev, dma_handle); phys_addr_t phys = dma_to_phys(dev, dma_handle);
struct page *page = pfn_to_page(__phys_to_pfn(phys)); struct page *page = pfn_to_page(__phys_to_pfn(phys));
......
...@@ -327,21 +327,45 @@ EXPORT_SYMBOL(gen_pool_alloc_algo_owner); ...@@ -327,21 +327,45 @@ EXPORT_SYMBOL(gen_pool_alloc_algo_owner);
* gen_pool_dma_alloc - allocate special memory from the pool for DMA usage * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
* @pool: pool to allocate from * @pool: pool to allocate from
* @size: number of bytes to allocate from the pool * @size: number of bytes to allocate from the pool
* @dma: dma-view physical address return value. Use NULL if unneeded. * @dma: dma-view physical address return value. Use %NULL if unneeded.
* *
* Allocate the requested number of bytes from the specified pool. * Allocate the requested number of bytes from the specified pool.
* Uses the pool allocation function (with first-fit algorithm by default). * Uses the pool allocation function (with first-fit algorithm by default).
* Can not be used in NMI handler on architectures without * Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation. * NMI-safe cmpxchg implementation.
*
* Return: virtual address of the allocated memory, or %NULL on failure
*/ */
void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
{
return gen_pool_dma_alloc_algo(pool, size, dma, pool->algo, pool->data);
}
EXPORT_SYMBOL(gen_pool_dma_alloc);
/**
* gen_pool_dma_alloc_algo - allocate special memory from the pool for DMA
* usage with the given pool algorithm
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @dma: DMA-view physical address return value. Use %NULL if unneeded.
* @algo: algorithm passed from caller
* @data: data passed to algorithm
*
* Allocate the requested number of bytes from the specified pool. Uses the
* given pool allocation function. Can not be used in NMI handler on
* architectures without NMI-safe cmpxchg implementation.
*
* Return: virtual address of the allocated memory, or %NULL on failure
*/
void *gen_pool_dma_alloc_algo(struct gen_pool *pool, size_t size,
dma_addr_t *dma, genpool_algo_t algo, void *data)
{ {
unsigned long vaddr; unsigned long vaddr;
if (!pool) if (!pool)
return NULL; return NULL;
vaddr = gen_pool_alloc(pool, size); vaddr = gen_pool_alloc_algo(pool, size, algo, data);
if (!vaddr) if (!vaddr)
return NULL; return NULL;
...@@ -350,7 +374,102 @@ void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma) ...@@ -350,7 +374,102 @@ void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
return (void *)vaddr; return (void *)vaddr;
} }
EXPORT_SYMBOL(gen_pool_dma_alloc); EXPORT_SYMBOL(gen_pool_dma_alloc_algo);
/**
* gen_pool_dma_alloc_align - allocate special memory from the pool for DMA
* usage with the given alignment
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @dma: DMA-view physical address return value. Use %NULL if unneeded.
* @align: alignment in bytes for starting address
*
* Allocate the requested number bytes from the specified pool, with the given
* alignment restriction. Can not be used in NMI handler on architectures
* without NMI-safe cmpxchg implementation.
*
* Return: virtual address of the allocated memory, or %NULL on failure
*/
void *gen_pool_dma_alloc_align(struct gen_pool *pool, size_t size,
dma_addr_t *dma, int align)
{
struct genpool_data_align data = { .align = align };
return gen_pool_dma_alloc_algo(pool, size, dma,
gen_pool_first_fit_align, &data);
}
EXPORT_SYMBOL(gen_pool_dma_alloc_align);
/**
* gen_pool_dma_zalloc - allocate special zeroed memory from the pool for
* DMA usage
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @dma: dma-view physical address return value. Use %NULL if unneeded.
*
* Allocate the requested number of zeroed bytes from the specified pool.
* Uses the pool allocation function (with first-fit algorithm by default).
* Can not be used in NMI handler on architectures without
* NMI-safe cmpxchg implementation.
*
* Return: virtual address of the allocated zeroed memory, or %NULL on failure
*/
void *gen_pool_dma_zalloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
{
return gen_pool_dma_zalloc_algo(pool, size, dma, pool->algo, pool->data);
}
EXPORT_SYMBOL(gen_pool_dma_zalloc);
/**
* gen_pool_dma_zalloc_algo - allocate special zeroed memory from the pool for
* DMA usage with the given pool algorithm
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @dma: DMA-view physical address return value. Use %NULL if unneeded.
* @algo: algorithm passed from caller
* @data: data passed to algorithm
*
* Allocate the requested number of zeroed bytes from the specified pool. Uses
* the given pool allocation function. Can not be used in NMI handler on
* architectures without NMI-safe cmpxchg implementation.
*
* Return: virtual address of the allocated zeroed memory, or %NULL on failure
*/
void *gen_pool_dma_zalloc_algo(struct gen_pool *pool, size_t size,
dma_addr_t *dma, genpool_algo_t algo, void *data)
{
void *vaddr = gen_pool_dma_alloc_algo(pool, size, dma, algo, data);
if (vaddr)
memset(vaddr, 0, size);
return vaddr;
}
EXPORT_SYMBOL(gen_pool_dma_zalloc_algo);
/**
* gen_pool_dma_zalloc_align - allocate special zeroed memory from the pool for
* DMA usage with the given alignment
* @pool: pool to allocate from
* @size: number of bytes to allocate from the pool
* @dma: DMA-view physical address return value. Use %NULL if unneeded.
* @align: alignment in bytes for starting address
*
* Allocate the requested number of zeroed bytes from the specified pool,
* with the given alignment restriction. Can not be used in NMI handler on
* architectures without NMI-safe cmpxchg implementation.
*
* Return: virtual address of the allocated zeroed memory, or %NULL on failure
*/
void *gen_pool_dma_zalloc_align(struct gen_pool *pool, size_t size,
dma_addr_t *dma, int align)
{
struct genpool_data_align data = { .align = align };
return gen_pool_dma_zalloc_algo(pool, size, dma,
gen_pool_first_fit_align, &data);
}
EXPORT_SYMBOL(gen_pool_dma_zalloc_align);
/** /**
* gen_pool_free - free allocated special memory back to the pool * gen_pool_free - free allocated special memory back to the pool
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment