Commit a939fc5a authored by Pratik Patel's avatar Pratik Patel Committed by Greg Kroah-Hartman

coresight-etm: add CoreSight ETM/PTM driver

This driver manages CoreSight ETM (Embedded Trace Macrocell) that
supports processor tracing. Currently supported version are ARM
ETMv3.x and PTM1.x.
Signed-off-by: default avatarPratik Patel <pratikp@codeaurora.org>
Signed-off-by: default avatarMathieu Poirier <mathieu.poirier@linaro.org>

coresight-etm3x: adding missing error checking
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent ceacc1d9
...@@ -1376,5 +1376,14 @@ config CORESIGHT_SINK_ETBV10 ...@@ -1376,5 +1376,14 @@ config CORESIGHT_SINK_ETBV10
This enables support for the Embedded Trace Buffer version 1.0 driver This enables support for the Embedded Trace Buffer version 1.0 driver
that complies with the generic implementation of the component without that complies with the generic implementation of the component without
special enhancement or added features. special enhancement or added features.
config CORESIGHT_SOURCE_ETM3X
bool "CoreSight Embedded Trace Macrocell 3.x driver"
select CORESIGHT_LINKS_AND_SINKS
help
This driver provides support for processor ETM3.x and PTM1.x modules,
which allows tracing the instructions that a processor is executing
This is primarily useful for instruction level tracing. Depending
the ETM version data tracing may also be available.
endif endif
endmenu endmenu
/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __ASM_HARDWARE_CP14_H
#define __ASM_HARDWARE_CP14_H
#include <linux/types.h>
/* Accessors for CP14 registers */
#define dbg_read(reg) RCP14_##reg()
#define dbg_write(val, reg) WCP14_##reg(val)
#define etm_read(reg) RCP14_##reg()
#define etm_write(val, reg) WCP14_##reg(val)
/* MRC14 and MCR14 */
#define MRC14(op1, crn, crm, op2) \
({ \
u32 val; \
asm volatile("mrc p14, "#op1", %0, "#crn", "#crm", "#op2 : "=r" (val)); \
val; \
})
#define MCR14(val, op1, crn, crm, op2) \
({ \
asm volatile("mcr p14, "#op1", %0, "#crn", "#crm", "#op2 : : "r" (val));\
})
/*
* Debug Registers
*
* Available only in DBGv7
* DBGECR, DBGDSCCR, DBGDSMCR, DBGDRCR
*
* Available only in DBGv7.1
* DBGBXVRm, DBGOSDLR, DBGDEVID2, DBGDEVID1
*
* Read only
* DBGDIDR, DBGDSCRint, DBGDTRRXint, DBGDRAR, DBGOSLSR, DBGOSSRR, DBGPRSR,
* DBGPRSR, DBGDSAR, DBGAUTHSTATUS, DBGDEVID2, DBGDEVID1, DBGDEVID
*
* Write only
* DBGDTRTXint, DBGOSLAR
*/
#define RCP14_DBGDIDR() MRC14(0, c0, c0, 0)
#define RCP14_DBGDSCRint() MRC14(0, c0, c1, 0)
#define RCP14_DBGDTRRXint() MRC14(0, c0, c5, 0)
#define RCP14_DBGWFAR() MRC14(0, c0, c6, 0)
#define RCP14_DBGVCR() MRC14(0, c0, c7, 0)
#define RCP14_DBGECR() MRC14(0, c0, c9, 0)
#define RCP14_DBGDSCCR() MRC14(0, c0, c10, 0)
#define RCP14_DBGDSMCR() MRC14(0, c0, c11, 0)
#define RCP14_DBGDTRRXext() MRC14(0, c0, c0, 2)
#define RCP14_DBGDSCRext() MRC14(0, c0, c2, 2)
#define RCP14_DBGDTRTXext() MRC14(0, c0, c3, 2)
#define RCP14_DBGDRCR() MRC14(0, c0, c4, 2)
#define RCP14_DBGBVR0() MRC14(0, c0, c0, 4)
#define RCP14_DBGBVR1() MRC14(0, c0, c1, 4)
#define RCP14_DBGBVR2() MRC14(0, c0, c2, 4)
#define RCP14_DBGBVR3() MRC14(0, c0, c3, 4)
#define RCP14_DBGBVR4() MRC14(0, c0, c4, 4)
#define RCP14_DBGBVR5() MRC14(0, c0, c5, 4)
#define RCP14_DBGBVR6() MRC14(0, c0, c6, 4)
#define RCP14_DBGBVR7() MRC14(0, c0, c7, 4)
#define RCP14_DBGBVR8() MRC14(0, c0, c8, 4)
#define RCP14_DBGBVR9() MRC14(0, c0, c9, 4)
#define RCP14_DBGBVR10() MRC14(0, c0, c10, 4)
#define RCP14_DBGBVR11() MRC14(0, c0, c11, 4)
#define RCP14_DBGBVR12() MRC14(0, c0, c12, 4)
#define RCP14_DBGBVR13() MRC14(0, c0, c13, 4)
#define RCP14_DBGBVR14() MRC14(0, c0, c14, 4)
#define RCP14_DBGBVR15() MRC14(0, c0, c15, 4)
#define RCP14_DBGBCR0() MRC14(0, c0, c0, 5)
#define RCP14_DBGBCR1() MRC14(0, c0, c1, 5)
#define RCP14_DBGBCR2() MRC14(0, c0, c2, 5)
#define RCP14_DBGBCR3() MRC14(0, c0, c3, 5)
#define RCP14_DBGBCR4() MRC14(0, c0, c4, 5)
#define RCP14_DBGBCR5() MRC14(0, c0, c5, 5)
#define RCP14_DBGBCR6() MRC14(0, c0, c6, 5)
#define RCP14_DBGBCR7() MRC14(0, c0, c7, 5)
#define RCP14_DBGBCR8() MRC14(0, c0, c8, 5)
#define RCP14_DBGBCR9() MRC14(0, c0, c9, 5)
#define RCP14_DBGBCR10() MRC14(0, c0, c10, 5)
#define RCP14_DBGBCR11() MRC14(0, c0, c11, 5)
#define RCP14_DBGBCR12() MRC14(0, c0, c12, 5)
#define RCP14_DBGBCR13() MRC14(0, c0, c13, 5)
#define RCP14_DBGBCR14() MRC14(0, c0, c14, 5)
#define RCP14_DBGBCR15() MRC14(0, c0, c15, 5)
#define RCP14_DBGWVR0() MRC14(0, c0, c0, 6)
#define RCP14_DBGWVR1() MRC14(0, c0, c1, 6)
#define RCP14_DBGWVR2() MRC14(0, c0, c2, 6)
#define RCP14_DBGWVR3() MRC14(0, c0, c3, 6)
#define RCP14_DBGWVR4() MRC14(0, c0, c4, 6)
#define RCP14_DBGWVR5() MRC14(0, c0, c5, 6)
#define RCP14_DBGWVR6() MRC14(0, c0, c6, 6)
#define RCP14_DBGWVR7() MRC14(0, c0, c7, 6)
#define RCP14_DBGWVR8() MRC14(0, c0, c8, 6)
#define RCP14_DBGWVR9() MRC14(0, c0, c9, 6)
#define RCP14_DBGWVR10() MRC14(0, c0, c10, 6)
#define RCP14_DBGWVR11() MRC14(0, c0, c11, 6)
#define RCP14_DBGWVR12() MRC14(0, c0, c12, 6)
#define RCP14_DBGWVR13() MRC14(0, c0, c13, 6)
#define RCP14_DBGWVR14() MRC14(0, c0, c14, 6)
#define RCP14_DBGWVR15() MRC14(0, c0, c15, 6)
#define RCP14_DBGWCR0() MRC14(0, c0, c0, 7)
#define RCP14_DBGWCR1() MRC14(0, c0, c1, 7)
#define RCP14_DBGWCR2() MRC14(0, c0, c2, 7)
#define RCP14_DBGWCR3() MRC14(0, c0, c3, 7)
#define RCP14_DBGWCR4() MRC14(0, c0, c4, 7)
#define RCP14_DBGWCR5() MRC14(0, c0, c5, 7)
#define RCP14_DBGWCR6() MRC14(0, c0, c6, 7)
#define RCP14_DBGWCR7() MRC14(0, c0, c7, 7)
#define RCP14_DBGWCR8() MRC14(0, c0, c8, 7)
#define RCP14_DBGWCR9() MRC14(0, c0, c9, 7)
#define RCP14_DBGWCR10() MRC14(0, c0, c10, 7)
#define RCP14_DBGWCR11() MRC14(0, c0, c11, 7)
#define RCP14_DBGWCR12() MRC14(0, c0, c12, 7)
#define RCP14_DBGWCR13() MRC14(0, c0, c13, 7)
#define RCP14_DBGWCR14() MRC14(0, c0, c14, 7)
#define RCP14_DBGWCR15() MRC14(0, c0, c15, 7)
#define RCP14_DBGDRAR() MRC14(0, c1, c0, 0)
#define RCP14_DBGBXVR0() MRC14(0, c1, c0, 1)
#define RCP14_DBGBXVR1() MRC14(0, c1, c1, 1)
#define RCP14_DBGBXVR2() MRC14(0, c1, c2, 1)
#define RCP14_DBGBXVR3() MRC14(0, c1, c3, 1)
#define RCP14_DBGBXVR4() MRC14(0, c1, c4, 1)
#define RCP14_DBGBXVR5() MRC14(0, c1, c5, 1)
#define RCP14_DBGBXVR6() MRC14(0, c1, c6, 1)
#define RCP14_DBGBXVR7() MRC14(0, c1, c7, 1)
#define RCP14_DBGBXVR8() MRC14(0, c1, c8, 1)
#define RCP14_DBGBXVR9() MRC14(0, c1, c9, 1)
#define RCP14_DBGBXVR10() MRC14(0, c1, c10, 1)
#define RCP14_DBGBXVR11() MRC14(0, c1, c11, 1)
#define RCP14_DBGBXVR12() MRC14(0, c1, c12, 1)
#define RCP14_DBGBXVR13() MRC14(0, c1, c13, 1)
#define RCP14_DBGBXVR14() MRC14(0, c1, c14, 1)
#define RCP14_DBGBXVR15() MRC14(0, c1, c15, 1)
#define RCP14_DBGOSLSR() MRC14(0, c1, c1, 4)
#define RCP14_DBGOSSRR() MRC14(0, c1, c2, 4)
#define RCP14_DBGOSDLR() MRC14(0, c1, c3, 4)
#define RCP14_DBGPRCR() MRC14(0, c1, c4, 4)
#define RCP14_DBGPRSR() MRC14(0, c1, c5, 4)
#define RCP14_DBGDSAR() MRC14(0, c2, c0, 0)
#define RCP14_DBGITCTRL() MRC14(0, c7, c0, 4)
#define RCP14_DBGCLAIMSET() MRC14(0, c7, c8, 6)
#define RCP14_DBGCLAIMCLR() MRC14(0, c7, c9, 6)
#define RCP14_DBGAUTHSTATUS() MRC14(0, c7, c14, 6)
#define RCP14_DBGDEVID2() MRC14(0, c7, c0, 7)
#define RCP14_DBGDEVID1() MRC14(0, c7, c1, 7)
#define RCP14_DBGDEVID() MRC14(0, c7, c2, 7)
#define WCP14_DBGDTRTXint(val) MCR14(val, 0, c0, c5, 0)
#define WCP14_DBGWFAR(val) MCR14(val, 0, c0, c6, 0)
#define WCP14_DBGVCR(val) MCR14(val, 0, c0, c7, 0)
#define WCP14_DBGECR(val) MCR14(val, 0, c0, c9, 0)
#define WCP14_DBGDSCCR(val) MCR14(val, 0, c0, c10, 0)
#define WCP14_DBGDSMCR(val) MCR14(val, 0, c0, c11, 0)
#define WCP14_DBGDTRRXext(val) MCR14(val, 0, c0, c0, 2)
#define WCP14_DBGDSCRext(val) MCR14(val, 0, c0, c2, 2)
#define WCP14_DBGDTRTXext(val) MCR14(val, 0, c0, c3, 2)
#define WCP14_DBGDRCR(val) MCR14(val, 0, c0, c4, 2)
#define WCP14_DBGBVR0(val) MCR14(val, 0, c0, c0, 4)
#define WCP14_DBGBVR1(val) MCR14(val, 0, c0, c1, 4)
#define WCP14_DBGBVR2(val) MCR14(val, 0, c0, c2, 4)
#define WCP14_DBGBVR3(val) MCR14(val, 0, c0, c3, 4)
#define WCP14_DBGBVR4(val) MCR14(val, 0, c0, c4, 4)
#define WCP14_DBGBVR5(val) MCR14(val, 0, c0, c5, 4)
#define WCP14_DBGBVR6(val) MCR14(val, 0, c0, c6, 4)
#define WCP14_DBGBVR7(val) MCR14(val, 0, c0, c7, 4)
#define WCP14_DBGBVR8(val) MCR14(val, 0, c0, c8, 4)
#define WCP14_DBGBVR9(val) MCR14(val, 0, c0, c9, 4)
#define WCP14_DBGBVR10(val) MCR14(val, 0, c0, c10, 4)
#define WCP14_DBGBVR11(val) MCR14(val, 0, c0, c11, 4)
#define WCP14_DBGBVR12(val) MCR14(val, 0, c0, c12, 4)
#define WCP14_DBGBVR13(val) MCR14(val, 0, c0, c13, 4)
#define WCP14_DBGBVR14(val) MCR14(val, 0, c0, c14, 4)
#define WCP14_DBGBVR15(val) MCR14(val, 0, c0, c15, 4)
#define WCP14_DBGBCR0(val) MCR14(val, 0, c0, c0, 5)
#define WCP14_DBGBCR1(val) MCR14(val, 0, c0, c1, 5)
#define WCP14_DBGBCR2(val) MCR14(val, 0, c0, c2, 5)
#define WCP14_DBGBCR3(val) MCR14(val, 0, c0, c3, 5)
#define WCP14_DBGBCR4(val) MCR14(val, 0, c0, c4, 5)
#define WCP14_DBGBCR5(val) MCR14(val, 0, c0, c5, 5)
#define WCP14_DBGBCR6(val) MCR14(val, 0, c0, c6, 5)
#define WCP14_DBGBCR7(val) MCR14(val, 0, c0, c7, 5)
#define WCP14_DBGBCR8(val) MCR14(val, 0, c0, c8, 5)
#define WCP14_DBGBCR9(val) MCR14(val, 0, c0, c9, 5)
#define WCP14_DBGBCR10(val) MCR14(val, 0, c0, c10, 5)
#define WCP14_DBGBCR11(val) MCR14(val, 0, c0, c11, 5)
#define WCP14_DBGBCR12(val) MCR14(val, 0, c0, c12, 5)
#define WCP14_DBGBCR13(val) MCR14(val, 0, c0, c13, 5)
#define WCP14_DBGBCR14(val) MCR14(val, 0, c0, c14, 5)
#define WCP14_DBGBCR15(val) MCR14(val, 0, c0, c15, 5)
#define WCP14_DBGWVR0(val) MCR14(val, 0, c0, c0, 6)
#define WCP14_DBGWVR1(val) MCR14(val, 0, c0, c1, 6)
#define WCP14_DBGWVR2(val) MCR14(val, 0, c0, c2, 6)
#define WCP14_DBGWVR3(val) MCR14(val, 0, c0, c3, 6)
#define WCP14_DBGWVR4(val) MCR14(val, 0, c0, c4, 6)
#define WCP14_DBGWVR5(val) MCR14(val, 0, c0, c5, 6)
#define WCP14_DBGWVR6(val) MCR14(val, 0, c0, c6, 6)
#define WCP14_DBGWVR7(val) MCR14(val, 0, c0, c7, 6)
#define WCP14_DBGWVR8(val) MCR14(val, 0, c0, c8, 6)
#define WCP14_DBGWVR9(val) MCR14(val, 0, c0, c9, 6)
#define WCP14_DBGWVR10(val) MCR14(val, 0, c0, c10, 6)
#define WCP14_DBGWVR11(val) MCR14(val, 0, c0, c11, 6)
#define WCP14_DBGWVR12(val) MCR14(val, 0, c0, c12, 6)
#define WCP14_DBGWVR13(val) MCR14(val, 0, c0, c13, 6)
#define WCP14_DBGWVR14(val) MCR14(val, 0, c0, c14, 6)
#define WCP14_DBGWVR15(val) MCR14(val, 0, c0, c15, 6)
#define WCP14_DBGWCR0(val) MCR14(val, 0, c0, c0, 7)
#define WCP14_DBGWCR1(val) MCR14(val, 0, c0, c1, 7)
#define WCP14_DBGWCR2(val) MCR14(val, 0, c0, c2, 7)
#define WCP14_DBGWCR3(val) MCR14(val, 0, c0, c3, 7)
#define WCP14_DBGWCR4(val) MCR14(val, 0, c0, c4, 7)
#define WCP14_DBGWCR5(val) MCR14(val, 0, c0, c5, 7)
#define WCP14_DBGWCR6(val) MCR14(val, 0, c0, c6, 7)
#define WCP14_DBGWCR7(val) MCR14(val, 0, c0, c7, 7)
#define WCP14_DBGWCR8(val) MCR14(val, 0, c0, c8, 7)
#define WCP14_DBGWCR9(val) MCR14(val, 0, c0, c9, 7)
#define WCP14_DBGWCR10(val) MCR14(val, 0, c0, c10, 7)
#define WCP14_DBGWCR11(val) MCR14(val, 0, c0, c11, 7)
#define WCP14_DBGWCR12(val) MCR14(val, 0, c0, c12, 7)
#define WCP14_DBGWCR13(val) MCR14(val, 0, c0, c13, 7)
#define WCP14_DBGWCR14(val) MCR14(val, 0, c0, c14, 7)
#define WCP14_DBGWCR15(val) MCR14(val, 0, c0, c15, 7)
#define WCP14_DBGBXVR0(val) MCR14(val, 0, c1, c0, 1)
#define WCP14_DBGBXVR1(val) MCR14(val, 0, c1, c1, 1)
#define WCP14_DBGBXVR2(val) MCR14(val, 0, c1, c2, 1)
#define WCP14_DBGBXVR3(val) MCR14(val, 0, c1, c3, 1)
#define WCP14_DBGBXVR4(val) MCR14(val, 0, c1, c4, 1)
#define WCP14_DBGBXVR5(val) MCR14(val, 0, c1, c5, 1)
#define WCP14_DBGBXVR6(val) MCR14(val, 0, c1, c6, 1)
#define WCP14_DBGBXVR7(val) MCR14(val, 0, c1, c7, 1)
#define WCP14_DBGBXVR8(val) MCR14(val, 0, c1, c8, 1)
#define WCP14_DBGBXVR9(val) MCR14(val, 0, c1, c9, 1)
#define WCP14_DBGBXVR10(val) MCR14(val, 0, c1, c10, 1)
#define WCP14_DBGBXVR11(val) MCR14(val, 0, c1, c11, 1)
#define WCP14_DBGBXVR12(val) MCR14(val, 0, c1, c12, 1)
#define WCP14_DBGBXVR13(val) MCR14(val, 0, c1, c13, 1)
#define WCP14_DBGBXVR14(val) MCR14(val, 0, c1, c14, 1)
#define WCP14_DBGBXVR15(val) MCR14(val, 0, c1, c15, 1)
#define WCP14_DBGOSLAR(val) MCR14(val, 0, c1, c0, 4)
#define WCP14_DBGOSSRR(val) MCR14(val, 0, c1, c2, 4)
#define WCP14_DBGOSDLR(val) MCR14(val, 0, c1, c3, 4)
#define WCP14_DBGPRCR(val) MCR14(val, 0, c1, c4, 4)
#define WCP14_DBGITCTRL(val) MCR14(val, 0, c7, c0, 4)
#define WCP14_DBGCLAIMSET(val) MCR14(val, 0, c7, c8, 6)
#define WCP14_DBGCLAIMCLR(val) MCR14(val, 0, c7, c9, 6)
/*
* ETM Registers
*
* Available only in ETMv3.3, 3.4, 3.5
* ETMASICCR, ETMTECR2, ETMFFRR, ETMVDEVR, ETMVDCR1, ETMVDCR2, ETMVDCR3,
* ETMDCVRn, ETMDCMRn
*
* Available only in ETMv3.5 as read only
* ETMIDR2
*
* Available only in ETMv3.5, PFTv1.0, 1.1
* ETMTSEVR, ETMVMIDCVR, ETMPDCR
*
* Read only
* ETMCCR, ETMSCR, ETMIDR, ETMCCER, ETMOSLSR
* ETMLSR, ETMAUTHSTATUS, ETMDEVID, ETMDEVTYPE, ETMPIDR4, ETMPIDR5, ETMPIDR6,
* ETMPIDR7, ETMPIDR0, ETMPIDR1, ETMPIDR2, ETMPIDR2, ETMPIDR3, ETMCIDR0,
* ETMCIDR1, ETMCIDR2, ETMCIDR3
*
* Write only
* ETMOSLAR, ETMLAR
* Note: ETMCCER[11] controls WO nature of certain regs. Refer ETM arch spec.
*/
#define RCP14_ETMCR() MRC14(1, c0, c0, 0)
#define RCP14_ETMCCR() MRC14(1, c0, c1, 0)
#define RCP14_ETMTRIGGER() MRC14(1, c0, c2, 0)
#define RCP14_ETMASICCR() MRC14(1, c0, c3, 0)
#define RCP14_ETMSR() MRC14(1, c0, c4, 0)
#define RCP14_ETMSCR() MRC14(1, c0, c5, 0)
#define RCP14_ETMTSSCR() MRC14(1, c0, c6, 0)
#define RCP14_ETMTECR2() MRC14(1, c0, c7, 0)
#define RCP14_ETMTEEVR() MRC14(1, c0, c8, 0)
#define RCP14_ETMTECR1() MRC14(1, c0, c9, 0)
#define RCP14_ETMFFRR() MRC14(1, c0, c10, 0)
#define RCP14_ETMFFLR() MRC14(1, c0, c11, 0)
#define RCP14_ETMVDEVR() MRC14(1, c0, c12, 0)
#define RCP14_ETMVDCR1() MRC14(1, c0, c13, 0)
#define RCP14_ETMVDCR2() MRC14(1, c0, c14, 0)
#define RCP14_ETMVDCR3() MRC14(1, c0, c15, 0)
#define RCP14_ETMACVR0() MRC14(1, c0, c0, 1)
#define RCP14_ETMACVR1() MRC14(1, c0, c1, 1)
#define RCP14_ETMACVR2() MRC14(1, c0, c2, 1)
#define RCP14_ETMACVR3() MRC14(1, c0, c3, 1)
#define RCP14_ETMACVR4() MRC14(1, c0, c4, 1)
#define RCP14_ETMACVR5() MRC14(1, c0, c5, 1)
#define RCP14_ETMACVR6() MRC14(1, c0, c6, 1)
#define RCP14_ETMACVR7() MRC14(1, c0, c7, 1)
#define RCP14_ETMACVR8() MRC14(1, c0, c8, 1)
#define RCP14_ETMACVR9() MRC14(1, c0, c9, 1)
#define RCP14_ETMACVR10() MRC14(1, c0, c10, 1)
#define RCP14_ETMACVR11() MRC14(1, c0, c11, 1)
#define RCP14_ETMACVR12() MRC14(1, c0, c12, 1)
#define RCP14_ETMACVR13() MRC14(1, c0, c13, 1)
#define RCP14_ETMACVR14() MRC14(1, c0, c14, 1)
#define RCP14_ETMACVR15() MRC14(1, c0, c15, 1)
#define RCP14_ETMACTR0() MRC14(1, c0, c0, 2)
#define RCP14_ETMACTR1() MRC14(1, c0, c1, 2)
#define RCP14_ETMACTR2() MRC14(1, c0, c2, 2)
#define RCP14_ETMACTR3() MRC14(1, c0, c3, 2)
#define RCP14_ETMACTR4() MRC14(1, c0, c4, 2)
#define RCP14_ETMACTR5() MRC14(1, c0, c5, 2)
#define RCP14_ETMACTR6() MRC14(1, c0, c6, 2)
#define RCP14_ETMACTR7() MRC14(1, c0, c7, 2)
#define RCP14_ETMACTR8() MRC14(1, c0, c8, 2)
#define RCP14_ETMACTR9() MRC14(1, c0, c9, 2)
#define RCP14_ETMACTR10() MRC14(1, c0, c10, 2)
#define RCP14_ETMACTR11() MRC14(1, c0, c11, 2)
#define RCP14_ETMACTR12() MRC14(1, c0, c12, 2)
#define RCP14_ETMACTR13() MRC14(1, c0, c13, 2)
#define RCP14_ETMACTR14() MRC14(1, c0, c14, 2)
#define RCP14_ETMACTR15() MRC14(1, c0, c15, 2)
#define RCP14_ETMDCVR0() MRC14(1, c0, c0, 3)
#define RCP14_ETMDCVR2() MRC14(1, c0, c2, 3)
#define RCP14_ETMDCVR4() MRC14(1, c0, c4, 3)
#define RCP14_ETMDCVR6() MRC14(1, c0, c6, 3)
#define RCP14_ETMDCVR8() MRC14(1, c0, c8, 3)
#define RCP14_ETMDCVR10() MRC14(1, c0, c10, 3)
#define RCP14_ETMDCVR12() MRC14(1, c0, c12, 3)
#define RCP14_ETMDCVR14() MRC14(1, c0, c14, 3)
#define RCP14_ETMDCMR0() MRC14(1, c0, c0, 4)
#define RCP14_ETMDCMR2() MRC14(1, c0, c2, 4)
#define RCP14_ETMDCMR4() MRC14(1, c0, c4, 4)
#define RCP14_ETMDCMR6() MRC14(1, c0, c6, 4)
#define RCP14_ETMDCMR8() MRC14(1, c0, c8, 4)
#define RCP14_ETMDCMR10() MRC14(1, c0, c10, 4)
#define RCP14_ETMDCMR12() MRC14(1, c0, c12, 4)
#define RCP14_ETMDCMR14() MRC14(1, c0, c14, 4)
#define RCP14_ETMCNTRLDVR0() MRC14(1, c0, c0, 5)
#define RCP14_ETMCNTRLDVR1() MRC14(1, c0, c1, 5)
#define RCP14_ETMCNTRLDVR2() MRC14(1, c0, c2, 5)
#define RCP14_ETMCNTRLDVR3() MRC14(1, c0, c3, 5)
#define RCP14_ETMCNTENR0() MRC14(1, c0, c4, 5)
#define RCP14_ETMCNTENR1() MRC14(1, c0, c5, 5)
#define RCP14_ETMCNTENR2() MRC14(1, c0, c6, 5)
#define RCP14_ETMCNTENR3() MRC14(1, c0, c7, 5)
#define RCP14_ETMCNTRLDEVR0() MRC14(1, c0, c8, 5)
#define RCP14_ETMCNTRLDEVR1() MRC14(1, c0, c9, 5)
#define RCP14_ETMCNTRLDEVR2() MRC14(1, c0, c10, 5)
#define RCP14_ETMCNTRLDEVR3() MRC14(1, c0, c11, 5)
#define RCP14_ETMCNTVR0() MRC14(1, c0, c12, 5)
#define RCP14_ETMCNTVR1() MRC14(1, c0, c13, 5)
#define RCP14_ETMCNTVR2() MRC14(1, c0, c14, 5)
#define RCP14_ETMCNTVR3() MRC14(1, c0, c15, 5)
#define RCP14_ETMSQ12EVR() MRC14(1, c0, c0, 6)
#define RCP14_ETMSQ21EVR() MRC14(1, c0, c1, 6)
#define RCP14_ETMSQ23EVR() MRC14(1, c0, c2, 6)
#define RCP14_ETMSQ31EVR() MRC14(1, c0, c3, 6)
#define RCP14_ETMSQ32EVR() MRC14(1, c0, c4, 6)
#define RCP14_ETMSQ13EVR() MRC14(1, c0, c5, 6)
#define RCP14_ETMSQR() MRC14(1, c0, c7, 6)
#define RCP14_ETMEXTOUTEVR0() MRC14(1, c0, c8, 6)
#define RCP14_ETMEXTOUTEVR1() MRC14(1, c0, c9, 6)
#define RCP14_ETMEXTOUTEVR2() MRC14(1, c0, c10, 6)
#define RCP14_ETMEXTOUTEVR3() MRC14(1, c0, c11, 6)
#define RCP14_ETMCIDCVR0() MRC14(1, c0, c12, 6)
#define RCP14_ETMCIDCVR1() MRC14(1, c0, c13, 6)
#define RCP14_ETMCIDCVR2() MRC14(1, c0, c14, 6)
#define RCP14_ETMCIDCMR() MRC14(1, c0, c15, 6)
#define RCP14_ETMIMPSPEC0() MRC14(1, c0, c0, 7)
#define RCP14_ETMIMPSPEC1() MRC14(1, c0, c1, 7)
#define RCP14_ETMIMPSPEC2() MRC14(1, c0, c2, 7)
#define RCP14_ETMIMPSPEC3() MRC14(1, c0, c3, 7)
#define RCP14_ETMIMPSPEC4() MRC14(1, c0, c4, 7)
#define RCP14_ETMIMPSPEC5() MRC14(1, c0, c5, 7)
#define RCP14_ETMIMPSPEC6() MRC14(1, c0, c6, 7)
#define RCP14_ETMIMPSPEC7() MRC14(1, c0, c7, 7)
#define RCP14_ETMSYNCFR() MRC14(1, c0, c8, 7)
#define RCP14_ETMIDR() MRC14(1, c0, c9, 7)
#define RCP14_ETMCCER() MRC14(1, c0, c10, 7)
#define RCP14_ETMEXTINSELR() MRC14(1, c0, c11, 7)
#define RCP14_ETMTESSEICR() MRC14(1, c0, c12, 7)
#define RCP14_ETMEIBCR() MRC14(1, c0, c13, 7)
#define RCP14_ETMTSEVR() MRC14(1, c0, c14, 7)
#define RCP14_ETMAUXCR() MRC14(1, c0, c15, 7)
#define RCP14_ETMTRACEIDR() MRC14(1, c1, c0, 0)
#define RCP14_ETMIDR2() MRC14(1, c1, c2, 0)
#define RCP14_ETMVMIDCVR() MRC14(1, c1, c0, 1)
#define RCP14_ETMOSLSR() MRC14(1, c1, c1, 4)
/* Not available in PFTv1.1 */
#define RCP14_ETMOSSRR() MRC14(1, c1, c2, 4)
#define RCP14_ETMPDCR() MRC14(1, c1, c4, 4)
#define RCP14_ETMPDSR() MRC14(1, c1, c5, 4)
#define RCP14_ETMITCTRL() MRC14(1, c7, c0, 4)
#define RCP14_ETMCLAIMSET() MRC14(1, c7, c8, 6)
#define RCP14_ETMCLAIMCLR() MRC14(1, c7, c9, 6)
#define RCP14_ETMLSR() MRC14(1, c7, c13, 6)
#define RCP14_ETMAUTHSTATUS() MRC14(1, c7, c14, 6)
#define RCP14_ETMDEVID() MRC14(1, c7, c2, 7)
#define RCP14_ETMDEVTYPE() MRC14(1, c7, c3, 7)
#define RCP14_ETMPIDR4() MRC14(1, c7, c4, 7)
#define RCP14_ETMPIDR5() MRC14(1, c7, c5, 7)
#define RCP14_ETMPIDR6() MRC14(1, c7, c6, 7)
#define RCP14_ETMPIDR7() MRC14(1, c7, c7, 7)
#define RCP14_ETMPIDR0() MRC14(1, c7, c8, 7)
#define RCP14_ETMPIDR1() MRC14(1, c7, c9, 7)
#define RCP14_ETMPIDR2() MRC14(1, c7, c10, 7)
#define RCP14_ETMPIDR3() MRC14(1, c7, c11, 7)
#define RCP14_ETMCIDR0() MRC14(1, c7, c12, 7)
#define RCP14_ETMCIDR1() MRC14(1, c7, c13, 7)
#define RCP14_ETMCIDR2() MRC14(1, c7, c14, 7)
#define RCP14_ETMCIDR3() MRC14(1, c7, c15, 7)
#define WCP14_ETMCR(val) MCR14(val, 1, c0, c0, 0)
#define WCP14_ETMTRIGGER(val) MCR14(val, 1, c0, c2, 0)
#define WCP14_ETMASICCR(val) MCR14(val, 1, c0, c3, 0)
#define WCP14_ETMSR(val) MCR14(val, 1, c0, c4, 0)
#define WCP14_ETMTSSCR(val) MCR14(val, 1, c0, c6, 0)
#define WCP14_ETMTECR2(val) MCR14(val, 1, c0, c7, 0)
#define WCP14_ETMTEEVR(val) MCR14(val, 1, c0, c8, 0)
#define WCP14_ETMTECR1(val) MCR14(val, 1, c0, c9, 0)
#define WCP14_ETMFFRR(val) MCR14(val, 1, c0, c10, 0)
#define WCP14_ETMFFLR(val) MCR14(val, 1, c0, c11, 0)
#define WCP14_ETMVDEVR(val) MCR14(val, 1, c0, c12, 0)
#define WCP14_ETMVDCR1(val) MCR14(val, 1, c0, c13, 0)
#define WCP14_ETMVDCR2(val) MCR14(val, 1, c0, c14, 0)
#define WCP14_ETMVDCR3(val) MCR14(val, 1, c0, c15, 0)
#define WCP14_ETMACVR0(val) MCR14(val, 1, c0, c0, 1)
#define WCP14_ETMACVR1(val) MCR14(val, 1, c0, c1, 1)
#define WCP14_ETMACVR2(val) MCR14(val, 1, c0, c2, 1)
#define WCP14_ETMACVR3(val) MCR14(val, 1, c0, c3, 1)
#define WCP14_ETMACVR4(val) MCR14(val, 1, c0, c4, 1)
#define WCP14_ETMACVR5(val) MCR14(val, 1, c0, c5, 1)
#define WCP14_ETMACVR6(val) MCR14(val, 1, c0, c6, 1)
#define WCP14_ETMACVR7(val) MCR14(val, 1, c0, c7, 1)
#define WCP14_ETMACVR8(val) MCR14(val, 1, c0, c8, 1)
#define WCP14_ETMACVR9(val) MCR14(val, 1, c0, c9, 1)
#define WCP14_ETMACVR10(val) MCR14(val, 1, c0, c10, 1)
#define WCP14_ETMACVR11(val) MCR14(val, 1, c0, c11, 1)
#define WCP14_ETMACVR12(val) MCR14(val, 1, c0, c12, 1)
#define WCP14_ETMACVR13(val) MCR14(val, 1, c0, c13, 1)
#define WCP14_ETMACVR14(val) MCR14(val, 1, c0, c14, 1)
#define WCP14_ETMACVR15(val) MCR14(val, 1, c0, c15, 1)
#define WCP14_ETMACTR0(val) MCR14(val, 1, c0, c0, 2)
#define WCP14_ETMACTR1(val) MCR14(val, 1, c0, c1, 2)
#define WCP14_ETMACTR2(val) MCR14(val, 1, c0, c2, 2)
#define WCP14_ETMACTR3(val) MCR14(val, 1, c0, c3, 2)
#define WCP14_ETMACTR4(val) MCR14(val, 1, c0, c4, 2)
#define WCP14_ETMACTR5(val) MCR14(val, 1, c0, c5, 2)
#define WCP14_ETMACTR6(val) MCR14(val, 1, c0, c6, 2)
#define WCP14_ETMACTR7(val) MCR14(val, 1, c0, c7, 2)
#define WCP14_ETMACTR8(val) MCR14(val, 1, c0, c8, 2)
#define WCP14_ETMACTR9(val) MCR14(val, 1, c0, c9, 2)
#define WCP14_ETMACTR10(val) MCR14(val, 1, c0, c10, 2)
#define WCP14_ETMACTR11(val) MCR14(val, 1, c0, c11, 2)
#define WCP14_ETMACTR12(val) MCR14(val, 1, c0, c12, 2)
#define WCP14_ETMACTR13(val) MCR14(val, 1, c0, c13, 2)
#define WCP14_ETMACTR14(val) MCR14(val, 1, c0, c14, 2)
#define WCP14_ETMACTR15(val) MCR14(val, 1, c0, c15, 2)
#define WCP14_ETMDCVR0(val) MCR14(val, 1, c0, c0, 3)
#define WCP14_ETMDCVR2(val) MCR14(val, 1, c0, c2, 3)
#define WCP14_ETMDCVR4(val) MCR14(val, 1, c0, c4, 3)
#define WCP14_ETMDCVR6(val) MCR14(val, 1, c0, c6, 3)
#define WCP14_ETMDCVR8(val) MCR14(val, 1, c0, c8, 3)
#define WCP14_ETMDCVR10(val) MCR14(val, 1, c0, c10, 3)
#define WCP14_ETMDCVR12(val) MCR14(val, 1, c0, c12, 3)
#define WCP14_ETMDCVR14(val) MCR14(val, 1, c0, c14, 3)
#define WCP14_ETMDCMR0(val) MCR14(val, 1, c0, c0, 4)
#define WCP14_ETMDCMR2(val) MCR14(val, 1, c0, c2, 4)
#define WCP14_ETMDCMR4(val) MCR14(val, 1, c0, c4, 4)
#define WCP14_ETMDCMR6(val) MCR14(val, 1, c0, c6, 4)
#define WCP14_ETMDCMR8(val) MCR14(val, 1, c0, c8, 4)
#define WCP14_ETMDCMR10(val) MCR14(val, 1, c0, c10, 4)
#define WCP14_ETMDCMR12(val) MCR14(val, 1, c0, c12, 4)
#define WCP14_ETMDCMR14(val) MCR14(val, 1, c0, c14, 4)
#define WCP14_ETMCNTRLDVR0(val) MCR14(val, 1, c0, c0, 5)
#define WCP14_ETMCNTRLDVR1(val) MCR14(val, 1, c0, c1, 5)
#define WCP14_ETMCNTRLDVR2(val) MCR14(val, 1, c0, c2, 5)
#define WCP14_ETMCNTRLDVR3(val) MCR14(val, 1, c0, c3, 5)
#define WCP14_ETMCNTENR0(val) MCR14(val, 1, c0, c4, 5)
#define WCP14_ETMCNTENR1(val) MCR14(val, 1, c0, c5, 5)
#define WCP14_ETMCNTENR2(val) MCR14(val, 1, c0, c6, 5)
#define WCP14_ETMCNTENR3(val) MCR14(val, 1, c0, c7, 5)
#define WCP14_ETMCNTRLDEVR0(val) MCR14(val, 1, c0, c8, 5)
#define WCP14_ETMCNTRLDEVR1(val) MCR14(val, 1, c0, c9, 5)
#define WCP14_ETMCNTRLDEVR2(val) MCR14(val, 1, c0, c10, 5)
#define WCP14_ETMCNTRLDEVR3(val) MCR14(val, 1, c0, c11, 5)
#define WCP14_ETMCNTVR0(val) MCR14(val, 1, c0, c12, 5)
#define WCP14_ETMCNTVR1(val) MCR14(val, 1, c0, c13, 5)
#define WCP14_ETMCNTVR2(val) MCR14(val, 1, c0, c14, 5)
#define WCP14_ETMCNTVR3(val) MCR14(val, 1, c0, c15, 5)
#define WCP14_ETMSQ12EVR(val) MCR14(val, 1, c0, c0, 6)
#define WCP14_ETMSQ21EVR(val) MCR14(val, 1, c0, c1, 6)
#define WCP14_ETMSQ23EVR(val) MCR14(val, 1, c0, c2, 6)
#define WCP14_ETMSQ31EVR(val) MCR14(val, 1, c0, c3, 6)
#define WCP14_ETMSQ32EVR(val) MCR14(val, 1, c0, c4, 6)
#define WCP14_ETMSQ13EVR(val) MCR14(val, 1, c0, c5, 6)
#define WCP14_ETMSQR(val) MCR14(val, 1, c0, c7, 6)
#define WCP14_ETMEXTOUTEVR0(val) MCR14(val, 1, c0, c8, 6)
#define WCP14_ETMEXTOUTEVR1(val) MCR14(val, 1, c0, c9, 6)
#define WCP14_ETMEXTOUTEVR2(val) MCR14(val, 1, c0, c10, 6)
#define WCP14_ETMEXTOUTEVR3(val) MCR14(val, 1, c0, c11, 6)
#define WCP14_ETMCIDCVR0(val) MCR14(val, 1, c0, c12, 6)
#define WCP14_ETMCIDCVR1(val) MCR14(val, 1, c0, c13, 6)
#define WCP14_ETMCIDCVR2(val) MCR14(val, 1, c0, c14, 6)
#define WCP14_ETMCIDCMR(val) MCR14(val, 1, c0, c15, 6)
#define WCP14_ETMIMPSPEC0(val) MCR14(val, 1, c0, c0, 7)
#define WCP14_ETMIMPSPEC1(val) MCR14(val, 1, c0, c1, 7)
#define WCP14_ETMIMPSPEC2(val) MCR14(val, 1, c0, c2, 7)
#define WCP14_ETMIMPSPEC3(val) MCR14(val, 1, c0, c3, 7)
#define WCP14_ETMIMPSPEC4(val) MCR14(val, 1, c0, c4, 7)
#define WCP14_ETMIMPSPEC5(val) MCR14(val, 1, c0, c5, 7)
#define WCP14_ETMIMPSPEC6(val) MCR14(val, 1, c0, c6, 7)
#define WCP14_ETMIMPSPEC7(val) MCR14(val, 1, c0, c7, 7)
/* Can be read only in ETMv3.4, ETMv3.5 */
#define WCP14_ETMSYNCFR(val) MCR14(val, 1, c0, c8, 7)
#define WCP14_ETMEXTINSELR(val) MCR14(val, 1, c0, c11, 7)
#define WCP14_ETMTESSEICR(val) MCR14(val, 1, c0, c12, 7)
#define WCP14_ETMEIBCR(val) MCR14(val, 1, c0, c13, 7)
#define WCP14_ETMTSEVR(val) MCR14(val, 1, c0, c14, 7)
#define WCP14_ETMAUXCR(val) MCR14(val, 1, c0, c15, 7)
#define WCP14_ETMTRACEIDR(val) MCR14(val, 1, c1, c0, 0)
#define WCP14_ETMIDR2(val) MCR14(val, 1, c1, c2, 0)
#define WCP14_ETMVMIDCVR(val) MCR14(val, 1, c1, c0, 1)
#define WCP14_ETMOSLAR(val) MCR14(val, 1, c1, c0, 4)
/* Not available in PFTv1.1 */
#define WCP14_ETMOSSRR(val) MCR14(val, 1, c1, c2, 4)
#define WCP14_ETMPDCR(val) MCR14(val, 1, c1, c4, 4)
#define WCP14_ETMPDSR(val) MCR14(val, 1, c1, c5, 4)
#define WCP14_ETMITCTRL(val) MCR14(val, 1, c7, c0, 4)
#define WCP14_ETMCLAIMSET(val) MCR14(val, 1, c7, c8, 6)
#define WCP14_ETMCLAIMCLR(val) MCR14(val, 1, c7, c9, 6)
/* Writes to this from CP14 interface are ignored */
#define WCP14_ETMLAR(val) MCR14(val, 1, c7, c12, 6)
#endif
...@@ -8,3 +8,4 @@ obj-$(CONFIG_CORESIGHT_SINK_TPIU) += coresight-tpiu.o ...@@ -8,3 +8,4 @@ obj-$(CONFIG_CORESIGHT_SINK_TPIU) += coresight-tpiu.o
obj-$(CONFIG_CORESIGHT_SINK_ETBV10) += coresight-etb10.o obj-$(CONFIG_CORESIGHT_SINK_ETBV10) += coresight-etb10.o
obj-$(CONFIG_CORESIGHT_LINKS_AND_SINKS) += coresight-funnel.o \ obj-$(CONFIG_CORESIGHT_LINKS_AND_SINKS) += coresight-funnel.o \
coresight-replicator.o coresight-replicator.o
obj-$(CONFIG_CORESIGHT_SOURCE_ETM3X) += coresight-etm3x.o coresight-etm-cp14.o
/* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bug.h>
#include <asm/hardware/cp14.h>
#include "coresight-etm.h"
int etm_readl_cp14(u32 reg, unsigned int *val)
{
switch (reg) {
case ETMCR:
*val = etm_read(ETMCR);
return 0;
case ETMCCR:
*val = etm_read(ETMCCR);
return 0;
case ETMTRIGGER:
*val = etm_read(ETMTRIGGER);
return 0;
case ETMSR:
*val = etm_read(ETMSR);
return 0;
case ETMSCR:
*val = etm_read(ETMSCR);
return 0;
case ETMTSSCR:
*val = etm_read(ETMTSSCR);
return 0;
case ETMTEEVR:
*val = etm_read(ETMTEEVR);
return 0;
case ETMTECR1:
*val = etm_read(ETMTECR1);
return 0;
case ETMFFLR:
*val = etm_read(ETMFFLR);
return 0;
case ETMACVRn(0):
*val = etm_read(ETMACVR0);
return 0;
case ETMACVRn(1):
*val = etm_read(ETMACVR1);
return 0;
case ETMACVRn(2):
*val = etm_read(ETMACVR2);
return 0;
case ETMACVRn(3):
*val = etm_read(ETMACVR3);
return 0;
case ETMACVRn(4):
*val = etm_read(ETMACVR4);
return 0;
case ETMACVRn(5):
*val = etm_read(ETMACVR5);
return 0;
case ETMACVRn(6):
*val = etm_read(ETMACVR6);
return 0;
case ETMACVRn(7):
*val = etm_read(ETMACVR7);
return 0;
case ETMACVRn(8):
*val = etm_read(ETMACVR8);
return 0;
case ETMACVRn(9):
*val = etm_read(ETMACVR9);
return 0;
case ETMACVRn(10):
*val = etm_read(ETMACVR10);
return 0;
case ETMACVRn(11):
*val = etm_read(ETMACVR11);
return 0;
case ETMACVRn(12):
*val = etm_read(ETMACVR12);
return 0;
case ETMACVRn(13):
*val = etm_read(ETMACVR13);
return 0;
case ETMACVRn(14):
*val = etm_read(ETMACVR14);
return 0;
case ETMACVRn(15):
*val = etm_read(ETMACVR15);
return 0;
case ETMACTRn(0):
*val = etm_read(ETMACTR0);
return 0;
case ETMACTRn(1):
*val = etm_read(ETMACTR1);
return 0;
case ETMACTRn(2):
*val = etm_read(ETMACTR2);
return 0;
case ETMACTRn(3):
*val = etm_read(ETMACTR3);
return 0;
case ETMACTRn(4):
*val = etm_read(ETMACTR4);
return 0;
case ETMACTRn(5):
*val = etm_read(ETMACTR5);
return 0;
case ETMACTRn(6):
*val = etm_read(ETMACTR6);
return 0;
case ETMACTRn(7):
*val = etm_read(ETMACTR7);
return 0;
case ETMACTRn(8):
*val = etm_read(ETMACTR8);
return 0;
case ETMACTRn(9):
*val = etm_read(ETMACTR9);
return 0;
case ETMACTRn(10):
*val = etm_read(ETMACTR10);
return 0;
case ETMACTRn(11):
*val = etm_read(ETMACTR11);
return 0;
case ETMACTRn(12):
*val = etm_read(ETMACTR12);
return 0;
case ETMACTRn(13):
*val = etm_read(ETMACTR13);
return 0;
case ETMACTRn(14):
*val = etm_read(ETMACTR14);
return 0;
case ETMACTRn(15):
*val = etm_read(ETMACTR15);
return 0;
case ETMCNTRLDVRn(0):
*val = etm_read(ETMCNTRLDVR0);
return 0;
case ETMCNTRLDVRn(1):
*val = etm_read(ETMCNTRLDVR1);
return 0;
case ETMCNTRLDVRn(2):
*val = etm_read(ETMCNTRLDVR2);
return 0;
case ETMCNTRLDVRn(3):
*val = etm_read(ETMCNTRLDVR3);
return 0;
case ETMCNTENRn(0):
*val = etm_read(ETMCNTENR0);
return 0;
case ETMCNTENRn(1):
*val = etm_read(ETMCNTENR1);
return 0;
case ETMCNTENRn(2):
*val = etm_read(ETMCNTENR2);
return 0;
case ETMCNTENRn(3):
*val = etm_read(ETMCNTENR3);
return 0;
case ETMCNTRLDEVRn(0):
*val = etm_read(ETMCNTRLDEVR0);
return 0;
case ETMCNTRLDEVRn(1):
*val = etm_read(ETMCNTRLDEVR1);
return 0;
case ETMCNTRLDEVRn(2):
*val = etm_read(ETMCNTRLDEVR2);
return 0;
case ETMCNTRLDEVRn(3):
*val = etm_read(ETMCNTRLDEVR3);
return 0;
case ETMCNTVRn(0):
*val = etm_read(ETMCNTVR0);
return 0;
case ETMCNTVRn(1):
*val = etm_read(ETMCNTVR1);
return 0;
case ETMCNTVRn(2):
*val = etm_read(ETMCNTVR2);
return 0;
case ETMCNTVRn(3):
*val = etm_read(ETMCNTVR3);
return 0;
case ETMSQ12EVR:
*val = etm_read(ETMSQ12EVR);
return 0;
case ETMSQ21EVR:
*val = etm_read(ETMSQ21EVR);
return 0;
case ETMSQ23EVR:
*val = etm_read(ETMSQ23EVR);
return 0;
case ETMSQ31EVR:
*val = etm_read(ETMSQ31EVR);
return 0;
case ETMSQ32EVR:
*val = etm_read(ETMSQ32EVR);
return 0;
case ETMSQ13EVR:
*val = etm_read(ETMSQ13EVR);
return 0;
case ETMSQR:
*val = etm_read(ETMSQR);
return 0;
case ETMEXTOUTEVRn(0):
*val = etm_read(ETMEXTOUTEVR0);
return 0;
case ETMEXTOUTEVRn(1):
*val = etm_read(ETMEXTOUTEVR1);
return 0;
case ETMEXTOUTEVRn(2):
*val = etm_read(ETMEXTOUTEVR2);
return 0;
case ETMEXTOUTEVRn(3):
*val = etm_read(ETMEXTOUTEVR3);
return 0;
case ETMCIDCVRn(0):
*val = etm_read(ETMCIDCVR0);
return 0;
case ETMCIDCVRn(1):
*val = etm_read(ETMCIDCVR1);
return 0;
case ETMCIDCVRn(2):
*val = etm_read(ETMCIDCVR2);
return 0;
case ETMCIDCMR:
*val = etm_read(ETMCIDCMR);
return 0;
case ETMIMPSPEC0:
*val = etm_read(ETMIMPSPEC0);
return 0;
case ETMIMPSPEC1:
*val = etm_read(ETMIMPSPEC1);
return 0;
case ETMIMPSPEC2:
*val = etm_read(ETMIMPSPEC2);
return 0;
case ETMIMPSPEC3:
*val = etm_read(ETMIMPSPEC3);
return 0;
case ETMIMPSPEC4:
*val = etm_read(ETMIMPSPEC4);
return 0;
case ETMIMPSPEC5:
*val = etm_read(ETMIMPSPEC5);
return 0;
case ETMIMPSPEC6:
*val = etm_read(ETMIMPSPEC6);
return 0;
case ETMIMPSPEC7:
*val = etm_read(ETMIMPSPEC7);
return 0;
case ETMSYNCFR:
*val = etm_read(ETMSYNCFR);
return 0;
case ETMIDR:
*val = etm_read(ETMIDR);
return 0;
case ETMCCER:
*val = etm_read(ETMCCER);
return 0;
case ETMEXTINSELR:
*val = etm_read(ETMEXTINSELR);
return 0;
case ETMTESSEICR:
*val = etm_read(ETMTESSEICR);
return 0;
case ETMEIBCR:
*val = etm_read(ETMEIBCR);
return 0;
case ETMTSEVR:
*val = etm_read(ETMTSEVR);
return 0;
case ETMAUXCR:
*val = etm_read(ETMAUXCR);
return 0;
case ETMTRACEIDR:
*val = etm_read(ETMTRACEIDR);
return 0;
case ETMVMIDCVR:
*val = etm_read(ETMVMIDCVR);
return 0;
case ETMOSLSR:
*val = etm_read(ETMOSLSR);
return 0;
case ETMOSSRR:
*val = etm_read(ETMOSSRR);
return 0;
case ETMPDCR:
*val = etm_read(ETMPDCR);
return 0;
case ETMPDSR:
*val = etm_read(ETMPDSR);
return 0;
default:
*val = 0;
return -EINVAL;
}
}
int etm_writel_cp14(u32 reg, u32 val)
{
switch (reg) {
case ETMCR:
etm_write(val, ETMCR);
break;
case ETMTRIGGER:
etm_write(val, ETMTRIGGER);
break;
case ETMSR:
etm_write(val, ETMSR);
break;
case ETMTSSCR:
etm_write(val, ETMTSSCR);
break;
case ETMTEEVR:
etm_write(val, ETMTEEVR);
break;
case ETMTECR1:
etm_write(val, ETMTECR1);
break;
case ETMFFLR:
etm_write(val, ETMFFLR);
break;
case ETMACVRn(0):
etm_write(val, ETMACVR0);
break;
case ETMACVRn(1):
etm_write(val, ETMACVR1);
break;
case ETMACVRn(2):
etm_write(val, ETMACVR2);
break;
case ETMACVRn(3):
etm_write(val, ETMACVR3);
break;
case ETMACVRn(4):
etm_write(val, ETMACVR4);
break;
case ETMACVRn(5):
etm_write(val, ETMACVR5);
break;
case ETMACVRn(6):
etm_write(val, ETMACVR6);
break;
case ETMACVRn(7):
etm_write(val, ETMACVR7);
break;
case ETMACVRn(8):
etm_write(val, ETMACVR8);
break;
case ETMACVRn(9):
etm_write(val, ETMACVR9);
break;
case ETMACVRn(10):
etm_write(val, ETMACVR10);
break;
case ETMACVRn(11):
etm_write(val, ETMACVR11);
break;
case ETMACVRn(12):
etm_write(val, ETMACVR12);
break;
case ETMACVRn(13):
etm_write(val, ETMACVR13);
break;
case ETMACVRn(14):
etm_write(val, ETMACVR14);
break;
case ETMACVRn(15):
etm_write(val, ETMACVR15);
break;
case ETMACTRn(0):
etm_write(val, ETMACTR0);
break;
case ETMACTRn(1):
etm_write(val, ETMACTR1);
break;
case ETMACTRn(2):
etm_write(val, ETMACTR2);
break;
case ETMACTRn(3):
etm_write(val, ETMACTR3);
break;
case ETMACTRn(4):
etm_write(val, ETMACTR4);
break;
case ETMACTRn(5):
etm_write(val, ETMACTR5);
break;
case ETMACTRn(6):
etm_write(val, ETMACTR6);
break;
case ETMACTRn(7):
etm_write(val, ETMACTR7);
break;
case ETMACTRn(8):
etm_write(val, ETMACTR8);
break;
case ETMACTRn(9):
etm_write(val, ETMACTR9);
break;
case ETMACTRn(10):
etm_write(val, ETMACTR10);
break;
case ETMACTRn(11):
etm_write(val, ETMACTR11);
break;
case ETMACTRn(12):
etm_write(val, ETMACTR12);
break;
case ETMACTRn(13):
etm_write(val, ETMACTR13);
break;
case ETMACTRn(14):
etm_write(val, ETMACTR14);
break;
case ETMACTRn(15):
etm_write(val, ETMACTR15);
break;
case ETMCNTRLDVRn(0):
etm_write(val, ETMCNTRLDVR0);
break;
case ETMCNTRLDVRn(1):
etm_write(val, ETMCNTRLDVR1);
break;
case ETMCNTRLDVRn(2):
etm_write(val, ETMCNTRLDVR2);
break;
case ETMCNTRLDVRn(3):
etm_write(val, ETMCNTRLDVR3);
break;
case ETMCNTENRn(0):
etm_write(val, ETMCNTENR0);
break;
case ETMCNTENRn(1):
etm_write(val, ETMCNTENR1);
break;
case ETMCNTENRn(2):
etm_write(val, ETMCNTENR2);
break;
case ETMCNTENRn(3):
etm_write(val, ETMCNTENR3);
break;
case ETMCNTRLDEVRn(0):
etm_write(val, ETMCNTRLDEVR0);
break;
case ETMCNTRLDEVRn(1):
etm_write(val, ETMCNTRLDEVR1);
break;
case ETMCNTRLDEVRn(2):
etm_write(val, ETMCNTRLDEVR2);
break;
case ETMCNTRLDEVRn(3):
etm_write(val, ETMCNTRLDEVR3);
break;
case ETMCNTVRn(0):
etm_write(val, ETMCNTVR0);
break;
case ETMCNTVRn(1):
etm_write(val, ETMCNTVR1);
break;
case ETMCNTVRn(2):
etm_write(val, ETMCNTVR2);
break;
case ETMCNTVRn(3):
etm_write(val, ETMCNTVR3);
break;
case ETMSQ12EVR:
etm_write(val, ETMSQ12EVR);
break;
case ETMSQ21EVR:
etm_write(val, ETMSQ21EVR);
break;
case ETMSQ23EVR:
etm_write(val, ETMSQ23EVR);
break;
case ETMSQ31EVR:
etm_write(val, ETMSQ31EVR);
break;
case ETMSQ32EVR:
etm_write(val, ETMSQ32EVR);
break;
case ETMSQ13EVR:
etm_write(val, ETMSQ13EVR);
break;
case ETMSQR:
etm_write(val, ETMSQR);
break;
case ETMEXTOUTEVRn(0):
etm_write(val, ETMEXTOUTEVR0);
break;
case ETMEXTOUTEVRn(1):
etm_write(val, ETMEXTOUTEVR1);
break;
case ETMEXTOUTEVRn(2):
etm_write(val, ETMEXTOUTEVR2);
break;
case ETMEXTOUTEVRn(3):
etm_write(val, ETMEXTOUTEVR3);
break;
case ETMCIDCVRn(0):
etm_write(val, ETMCIDCVR0);
break;
case ETMCIDCVRn(1):
etm_write(val, ETMCIDCVR1);
break;
case ETMCIDCVRn(2):
etm_write(val, ETMCIDCVR2);
break;
case ETMCIDCMR:
etm_write(val, ETMCIDCMR);
break;
case ETMIMPSPEC0:
etm_write(val, ETMIMPSPEC0);
break;
case ETMIMPSPEC1:
etm_write(val, ETMIMPSPEC1);
break;
case ETMIMPSPEC2:
etm_write(val, ETMIMPSPEC2);
break;
case ETMIMPSPEC3:
etm_write(val, ETMIMPSPEC3);
break;
case ETMIMPSPEC4:
etm_write(val, ETMIMPSPEC4);
break;
case ETMIMPSPEC5:
etm_write(val, ETMIMPSPEC5);
break;
case ETMIMPSPEC6:
etm_write(val, ETMIMPSPEC6);
break;
case ETMIMPSPEC7:
etm_write(val, ETMIMPSPEC7);
break;
case ETMSYNCFR:
etm_write(val, ETMSYNCFR);
break;
case ETMEXTINSELR:
etm_write(val, ETMEXTINSELR);
break;
case ETMTESSEICR:
etm_write(val, ETMTESSEICR);
break;
case ETMEIBCR:
etm_write(val, ETMEIBCR);
break;
case ETMTSEVR:
etm_write(val, ETMTSEVR);
break;
case ETMAUXCR:
etm_write(val, ETMAUXCR);
break;
case ETMTRACEIDR:
etm_write(val, ETMTRACEIDR);
break;
case ETMVMIDCVR:
etm_write(val, ETMVMIDCVR);
break;
case ETMOSLAR:
etm_write(val, ETMOSLAR);
break;
case ETMOSSRR:
etm_write(val, ETMOSSRR);
break;
case ETMPDCR:
etm_write(val, ETMPDCR);
break;
case ETMPDSR:
etm_write(val, ETMPDSR);
break;
default:
return -EINVAL;
}
return 0;
}
/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _CORESIGHT_CORESIGHT_ETM_H
#define _CORESIGHT_CORESIGHT_ETM_H
#include <linux/spinlock.h>
#include "coresight-priv.h"
/*
* Device registers:
* 0x000 - 0x2FC: Trace registers
* 0x300 - 0x314: Management registers
* 0x318 - 0xEFC: Trace registers
*
* Coresight registers
* 0xF00 - 0xF9C: Management registers
* 0xFA0 - 0xFA4: Management registers in PFTv1.0
* Trace registers in PFTv1.1
* 0xFA8 - 0xFFC: Management registers
*/
/* Trace registers (0x000-0x2FC) */
#define ETMCR 0x000
#define ETMCCR 0x004
#define ETMTRIGGER 0x008
#define ETMSR 0x010
#define ETMSCR 0x014
#define ETMTSSCR 0x018
#define ETMTECR2 0x01c
#define ETMTEEVR 0x020
#define ETMTECR1 0x024
#define ETMFFLR 0x02c
#define ETMACVRn(n) (0x040 + (n * 4))
#define ETMACTRn(n) (0x080 + (n * 4))
#define ETMCNTRLDVRn(n) (0x140 + (n * 4))
#define ETMCNTENRn(n) (0x150 + (n * 4))
#define ETMCNTRLDEVRn(n) (0x160 + (n * 4))
#define ETMCNTVRn(n) (0x170 + (n * 4))
#define ETMSQ12EVR 0x180
#define ETMSQ21EVR 0x184
#define ETMSQ23EVR 0x188
#define ETMSQ31EVR 0x18c
#define ETMSQ32EVR 0x190
#define ETMSQ13EVR 0x194
#define ETMSQR 0x19c
#define ETMEXTOUTEVRn(n) (0x1a0 + (n * 4))
#define ETMCIDCVRn(n) (0x1b0 + (n * 4))
#define ETMCIDCMR 0x1bc
#define ETMIMPSPEC0 0x1c0
#define ETMIMPSPEC1 0x1c4
#define ETMIMPSPEC2 0x1c8
#define ETMIMPSPEC3 0x1cc
#define ETMIMPSPEC4 0x1d0
#define ETMIMPSPEC5 0x1d4
#define ETMIMPSPEC6 0x1d8
#define ETMIMPSPEC7 0x1dc
#define ETMSYNCFR 0x1e0
#define ETMIDR 0x1e4
#define ETMCCER 0x1e8
#define ETMEXTINSELR 0x1ec
#define ETMTESSEICR 0x1f0
#define ETMEIBCR 0x1f4
#define ETMTSEVR 0x1f8
#define ETMAUXCR 0x1fc
#define ETMTRACEIDR 0x200
#define ETMVMIDCVR 0x240
/* Management registers (0x300-0x314) */
#define ETMOSLAR 0x300
#define ETMOSLSR 0x304
#define ETMOSSRR 0x308
#define ETMPDCR 0x310
#define ETMPDSR 0x314
#define ETM_MAX_ADDR_CMP 16
#define ETM_MAX_CNTR 4
#define ETM_MAX_CTXID_CMP 3
/* Register definition */
/* ETMCR - 0x00 */
#define ETMCR_PWD_DWN BIT(0)
#define ETMCR_STALL_MODE BIT(7)
#define ETMCR_ETM_PRG BIT(10)
#define ETMCR_ETM_EN BIT(11)
#define ETMCR_CYC_ACC BIT(12)
#define ETMCR_CTXID_SIZE (BIT(14)|BIT(15))
#define ETMCR_TIMESTAMP_EN BIT(28)
/* ETMCCR - 0x04 */
#define ETMCCR_FIFOFULL BIT(23)
/* ETMPDCR - 0x310 */
#define ETMPDCR_PWD_UP BIT(3)
/* ETMTECR1 - 0x024 */
#define ETMTECR1_ADDR_COMP_1 BIT(0)
#define ETMTECR1_INC_EXC BIT(24)
#define ETMTECR1_START_STOP BIT(25)
/* ETMCCER - 0x1E8 */
#define ETMCCER_TIMESTAMP BIT(22)
#define ETM_MODE_EXCLUDE BIT(0)
#define ETM_MODE_CYCACC BIT(1)
#define ETM_MODE_STALL BIT(2)
#define ETM_MODE_TIMESTAMP BIT(3)
#define ETM_MODE_CTXID BIT(4)
#define ETM_MODE_ALL 0x1f
#define ETM_SQR_MASK 0x3
#define ETM_TRACEID_MASK 0x3f
#define ETM_EVENT_MASK 0x1ffff
#define ETM_SYNC_MASK 0xfff
#define ETM_ALL_MASK 0xffffffff
#define ETMSR_PROG_BIT 1
#define ETM_SEQ_STATE_MAX_VAL (0x2)
#define PORT_SIZE_MASK (GENMASK(21, 21) | GENMASK(6, 4))
#define ETM_HARD_WIRE_RES_A /* Hard wired, always true */ \
((0x0f << 0) | \
/* Resource index A */ \
(0x06 << 4))
#define ETM_ADD_COMP_0 /* Single addr comparator 1 */ \
((0x00 << 7) | \
/* Resource index B */ \
(0x00 << 11))
#define ETM_EVENT_NOT_A BIT(14) /* NOT(A) */
#define ETM_DEFAULT_EVENT_VAL (ETM_HARD_WIRE_RES_A | \
ETM_ADD_COMP_0 | \
ETM_EVENT_NOT_A)
/**
* struct etm_drvdata - specifics associated to an ETM component
* @base: memory mapped base address for this component.
* @dev: the device entity associated to this component.
* @csdev: component vitals needed by the framework.
* @clk: the clock this component is associated to.
* @spinlock: only one at a time pls.
* @cpu: the cpu this component is affined to.
* @port_size: port size as reported by ETMCR bit 4-6 and 21.
* @arch: ETM/PTM version number.
* @use_cpu14: true if management registers need to be accessed via CP14.
* @enable: is this ETM/PTM currently tracing.
* @sticky_enable: true if ETM base configuration has been done.
* @boot_enable:true if we should start tracing at boot time.
* @os_unlock: true if access to management registers is allowed.
* @nr_addr_cmp:Number of pairs of address comparators as found in ETMCCR.
* @nr_cntr: Number of counters as found in ETMCCR bit 13-15.
* @nr_ext_inp: Number of external input as found in ETMCCR bit 17-19.
* @nr_ext_out: Number of external output as found in ETMCCR bit 20-22.
* @nr_ctxid_cmp: Number of contextID comparators as found in ETMCCR bit 24-25.
* @etmccr: value of register ETMCCR.
* @etmccer: value of register ETMCCER.
* @traceid: value of the current ID for this component.
* @mode: controls various modes supported by this ETM/PTM.
* @ctrl: used in conjunction with @mode.
* @trigger_event: setting for register ETMTRIGGER.
* @startstop_ctrl: setting for register ETMTSSCR.
* @enable_event: setting for register ETMTEEVR.
* @enable_ctrl1: setting for register ETMTECR1.
* @fifofull_level: setting for register ETMFFLR.
* @addr_idx: index for the address comparator selection.
* @addr_val: value for address comparator register.
* @addr_acctype: access type for address comparator register.
* @addr_type: current status of the comparator register.
* @cntr_idx: index for the counter register selection.
* @cntr_rld_val: reload value of a counter register.
* @cntr_event: control for counter enable register.
* @cntr_rld_event: value for counter reload event register.
* @cntr_val: counter value register.
* @seq_12_event: event causing the transition from 1 to 2.
* @seq_21_event: event causing the transition from 2 to 1.
* @seq_23_event: event causing the transition from 2 to 3.
* @seq_31_event: event causing the transition from 3 to 1.
* @seq_32_event: event causing the transition from 3 to 2.
* @seq_13_event: event causing the transition from 1 to 3.
* @seq_curr_state: current value of the sequencer register.
* @ctxid_idx: index for the context ID registers.
* @ctxid_val: value for the context ID to trigger on.
* @ctxid_mask: mask applicable to all the context IDs.
* @sync_freq: Synchronisation frequency.
* @timestamp_event: Defines an event that requests the insertion
of a timestamp into the trace stream.
*/
struct etm_drvdata {
void __iomem *base;
struct device *dev;
struct coresight_device *csdev;
struct clk *clk;
spinlock_t spinlock;
int cpu;
int port_size;
u8 arch;
bool use_cp14;
bool enable;
bool sticky_enable;
bool boot_enable;
bool os_unlock;
u8 nr_addr_cmp;
u8 nr_cntr;
u8 nr_ext_inp;
u8 nr_ext_out;
u8 nr_ctxid_cmp;
u32 etmccr;
u32 etmccer;
u32 traceid;
u32 mode;
u32 ctrl;
u32 trigger_event;
u32 startstop_ctrl;
u32 enable_event;
u32 enable_ctrl1;
u32 fifofull_level;
u8 addr_idx;
u32 addr_val[ETM_MAX_ADDR_CMP];
u32 addr_acctype[ETM_MAX_ADDR_CMP];
u32 addr_type[ETM_MAX_ADDR_CMP];
u8 cntr_idx;
u32 cntr_rld_val[ETM_MAX_CNTR];
u32 cntr_event[ETM_MAX_CNTR];
u32 cntr_rld_event[ETM_MAX_CNTR];
u32 cntr_val[ETM_MAX_CNTR];
u32 seq_12_event;
u32 seq_21_event;
u32 seq_23_event;
u32 seq_31_event;
u32 seq_32_event;
u32 seq_13_event;
u32 seq_curr_state;
u8 ctxid_idx;
u32 ctxid_val[ETM_MAX_CTXID_CMP];
u32 ctxid_mask;
u32 sync_freq;
u32 timestamp_event;
};
enum etm_addr_type {
ETM_ADDR_TYPE_NONE,
ETM_ADDR_TYPE_SINGLE,
ETM_ADDR_TYPE_RANGE,
ETM_ADDR_TYPE_START,
ETM_ADDR_TYPE_STOP,
};
#endif
/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/of.h>
#include <linux/coresight.h>
#include <linux/amba/bus.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include "coresight-etm.h"
#ifdef CONFIG_CORESIGHT_SOURCE_ETM_DEFAULT_ENABLE
static int boot_enable = 1;
#else
static int boot_enable;
#endif
module_param_named(
boot_enable, boot_enable, int, S_IRUGO
);
/* The number of ETM/PTM currently registered */
static int etm_count;
static struct etm_drvdata *etmdrvdata[NR_CPUS];
static inline void etm_writel(struct etm_drvdata *drvdata,
u32 val, u32 off)
{
if (drvdata->use_cp14) {
if (etm_writel_cp14(off, val)) {
dev_err(drvdata->dev,
"invalid CP14 access to ETM reg: %#x", off);
}
} else {
writel_relaxed(val, drvdata->base + off);
}
}
static inline unsigned int etm_readl(struct etm_drvdata *drvdata, u32 off)
{
u32 val;
if (drvdata->use_cp14) {
if (etm_readl_cp14(off, &val)) {
dev_err(drvdata->dev,
"invalid CP14 access to ETM reg: %#x", off);
}
} else {
val = readl_relaxed(drvdata->base + off);
}
return val;
}
/*
* Memory mapped writes to clear os lock are not supported on some processors
* and OS lock must be unlocked before any memory mapped access on such
* processors, otherwise memory mapped reads/writes will be invalid.
*/
static void etm_os_unlock(void *info)
{
struct etm_drvdata *drvdata = (struct etm_drvdata *)info;
/* Writing any value to ETMOSLAR unlocks the trace registers */
etm_writel(drvdata, 0x0, ETMOSLAR);
isb();
}
static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
{
u32 etmcr;
/* Ensure pending cp14 accesses complete before setting pwrdwn */
mb();
isb();
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= ETMCR_PWD_DWN;
etm_writel(drvdata, etmcr, ETMCR);
}
static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~ETMCR_PWD_DWN;
etm_writel(drvdata, etmcr, ETMCR);
/* Ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_set_pwrup(struct etm_drvdata *drvdata)
{
u32 etmpdcr;
etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
etmpdcr |= ETMPDCR_PWD_UP;
writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
/* Ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_clr_pwrup(struct etm_drvdata *drvdata)
{
u32 etmpdcr;
/* Ensure pending cp14 accesses complete before clearing pwrup */
mb();
isb();
etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
etmpdcr &= ~ETMPDCR_PWD_UP;
writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
}
/**
* coresight_timeout_etm - loop until a bit has changed to a specific state.
* @drvdata: etm's private data structure.
* @offset: address of a register, starting from @addr.
* @position: the position of the bit of interest.
* @value: the value the bit should have.
*
* Basically the same as @coresight_timeout except for the register access
* method where we have to account for CP14 configurations.
* Return: 0 as soon as the bit has taken the desired state or -EAGAIN if
* TIMEOUT_US has elapsed, which ever happens first.
*/
static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset,
int position, int value)
{
int i;
u32 val;
for (i = TIMEOUT_US; i > 0; i--) {
val = etm_readl(drvdata, offset);
/* Waiting on the bit to go from 0 to 1 */
if (value) {
if (val & BIT(position))
return 0;
/* Waiting on the bit to go from 1 to 0 */
} else {
if (!(val & BIT(position)))
return 0;
}
/*
* Delay is arbitrary - the specification doesn't say how long
* we are expected to wait. Extra check required to make sure
* we don't wait needlessly on the last iteration.
*/
if (i - 1)
udelay(1);
}
return -EAGAIN;
}
static void etm_set_prog(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= ETMCR_ETM_PRG;
etm_writel(drvdata, etmcr, ETMCR);
/*
* Recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n", ETMSR);
}
}
static void etm_clr_prog(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~ETMCR_ETM_PRG;
etm_writel(drvdata, etmcr, ETMCR);
/*
* Recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n", ETMSR);
}
}
static void etm_set_default(struct etm_drvdata *drvdata)
{
int i;
drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
drvdata->enable_event = ETM_HARD_WIRE_RES_A;
drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL;
drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntr_rld_val[i] = 0x0;
drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL;
drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL;
drvdata->cntr_val[i] = 0x0;
}
drvdata->seq_curr_state = 0x0;
drvdata->ctxid_idx = 0x0;
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
drvdata->ctxid_val[i] = 0x0;
drvdata->ctxid_mask = 0x0;
}
static void etm_enable_hw(void *info)
{
int i;
u32 etmcr;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
/* Turn engine on */
etm_clr_pwrdwn(drvdata);
/* Apply power to trace registers */
etm_set_pwrup(drvdata);
/* Make sure all registers are accessible */
etm_os_unlock(drvdata);
etm_set_prog(drvdata);
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG);
etmcr |= drvdata->port_size;
etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
}
for (i = 0; i < drvdata->nr_cntr; i++) {
etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
etm_writel(drvdata, drvdata->cntr_rld_event[i],
ETMCNTRLDEVRn(i));
etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
}
etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
for (i = 0; i < drvdata->nr_ext_out; i++)
etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i));
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
/* No external input selected */
etm_writel(drvdata, 0x0, ETMEXTINSELR);
etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
/* No auxiliary control selected */
etm_writel(drvdata, 0x0, ETMAUXCR);
etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR);
/* No VMID comparator value selected */
etm_writel(drvdata, 0x0, ETMVMIDCVR);
/* Ensures trace output is enabled from this ETM */
etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR);
etm_clr_prog(drvdata);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
}
static int etm_trace_id_simple(struct etm_drvdata *drvdata)
{
if (!drvdata->enable)
return drvdata->traceid;
return (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
}
static int etm_trace_id(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
unsigned long flags;
int trace_id = -1;
if (!drvdata->enable)
return drvdata->traceid;
if (clk_prepare_enable(drvdata->clk))
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return trace_id;
}
static int etm_enable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
int ret;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto err_clk;
spin_lock(&drvdata->spinlock);
/*
* Configure the ETM only if the CPU is online. If it isn't online
* hw configuration will take place when 'CPU_STARTING' is received
* in @etm_cpu_callback.
*/
if (cpu_online(drvdata->cpu)) {
ret = smp_call_function_single(drvdata->cpu,
etm_enable_hw, drvdata, 1);
if (ret)
goto err;
}
drvdata->enable = true;
drvdata->sticky_enable = true;
spin_unlock(&drvdata->spinlock);
dev_info(drvdata->dev, "ETM tracing enabled\n");
return 0;
err:
spin_unlock(&drvdata->spinlock);
clk_disable_unprepare(drvdata->clk);
err_clk:
return ret;
}
static void etm_disable_hw(void *info)
{
int i;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
etm_set_prog(drvdata);
/* Program trace enable to low by using always false event */
etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR);
/* Read back sequencer and counters for post trace analysis */
drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
for (i = 0; i < drvdata->nr_cntr; i++)
drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i));
etm_set_pwrdwn(drvdata);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
}
static void etm_disable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
/*
* Taking hotplug lock here protects from clocks getting disabled
* with tracing being left on (crash scenario) if user disable occurs
* after cpu online mask indicates the cpu is offline but before the
* DYING hotplug callback is serviced by the ETM driver.
*/
get_online_cpus();
spin_lock(&drvdata->spinlock);
/*
* Executing etm_disable_hw on the cpu whose ETM is being disabled
* ensures that register writes occur when cpu is powered.
*/
smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1);
drvdata->enable = false;
spin_unlock(&drvdata->spinlock);
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
dev_info(drvdata->dev, "ETM tracing disabled\n");
}
static const struct coresight_ops_source etm_source_ops = {
.trace_id = etm_trace_id,
.enable = etm_enable,
.disable = etm_disable,
};
static const struct coresight_ops etm_cs_ops = {
.source_ops = &etm_source_ops,
};
static ssize_t nr_addr_cmp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_addr_cmp;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_addr_cmp);
static ssize_t nr_cntr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{ unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_cntr;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_cntr);
static ssize_t nr_ctxid_cmp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_ctxid_cmp;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_ctxid_cmp);
static ssize_t etmsr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long flags, val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = etm_readl(drvdata, ETMSR);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(etmsr);
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int i, ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val) {
spin_lock(&drvdata->spinlock);
drvdata->mode = ETM_MODE_EXCLUDE;
drvdata->ctrl = 0x0;
drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
drvdata->startstop_ctrl = 0x0;
drvdata->addr_idx = 0x0;
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
drvdata->addr_val[i] = 0x0;
drvdata->addr_acctype[i] = 0x0;
drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
}
drvdata->cntr_idx = 0x0;
etm_set_default(drvdata);
spin_unlock(&drvdata->spinlock);
}
return size;
}
static DEVICE_ATTR_WO(reset);
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->mode;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->mode = val & ETM_MODE_ALL;
if (drvdata->mode & ETM_MODE_EXCLUDE)
drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC;
else
drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC;
if (drvdata->mode & ETM_MODE_CYCACC)
drvdata->ctrl |= ETMCR_CYC_ACC;
else
drvdata->ctrl &= ~ETMCR_CYC_ACC;
if (drvdata->mode & ETM_MODE_STALL) {
if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) {
dev_warn(drvdata->dev, "stall mode not supported\n");
return -EINVAL;
}
drvdata->ctrl |= ETMCR_STALL_MODE;
} else
drvdata->ctrl &= ~ETMCR_STALL_MODE;
if (drvdata->mode & ETM_MODE_TIMESTAMP) {
if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) {
dev_warn(drvdata->dev, "timestamp not supported\n");
return -EINVAL;
}
drvdata->ctrl |= ETMCR_TIMESTAMP_EN;
} else
drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN;
if (drvdata->mode & ETM_MODE_CTXID)
drvdata->ctrl |= ETMCR_CTXID_SIZE;
else
drvdata->ctrl &= ~ETMCR_CTXID_SIZE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(mode);
static ssize_t trigger_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->trigger_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t trigger_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->trigger_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(trigger_event);
static ssize_t enable_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->enable_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t enable_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->enable_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(enable_event);
static ssize_t fifofull_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->fifofull_level;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t fifofull_level_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->fifofull_level = val;
return size;
}
static DEVICE_ATTR_RW(fifofull_level);
static ssize_t addr_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->addr_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_addr_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->addr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_idx);
static ssize_t addr_single_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_single_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_single);
static ssize_t addr_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val1, val2;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val1 = drvdata->addr_val[idx];
val2 = drvdata->addr_val[idx + 1];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx %#lx\n", val1, val2);
}
static ssize_t addr_range_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val1, val2;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
/* Lower address comparator cannot have a higher address value */
if (val1 > val2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val1;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_val[idx + 1] = val2;
drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
drvdata->enable_ctrl1 |= (1 << (idx/2));
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_range);
static ssize_t addr_start_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_start_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
drvdata->startstop_ctrl |= (1 << idx);
drvdata->enable_ctrl1 |= BIT(25);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_start);
static ssize_t addr_stop_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
drvdata->startstop_ctrl |= (1 << (idx + 16));
drvdata->enable_ctrl1 |= ETMTECR1_START_STOP;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_stop);
static ssize_t addr_acctype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->addr_acctype[drvdata->addr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_acctype_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->addr_acctype[drvdata->addr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_acctype);
static ssize_t cntr_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->cntr_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_cntr)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->cntr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_idx);
static ssize_t cntr_rld_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_val[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_rld_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_rld_val);
static ssize_t cntr_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_event);
static ssize_t cntr_rld_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_rld_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_rld_event);
static ssize_t cntr_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, ret = 0;
u32 val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
spin_lock(&drvdata->spinlock);
for (i = 0; i < drvdata->nr_cntr; i++)
ret += sprintf(buf, "counter %d: %x\n",
i, drvdata->cntr_val[i]);
spin_unlock(&drvdata->spinlock);
return ret;
}
for (i = 0; i < drvdata->nr_cntr; i++) {
val = etm_readl(drvdata, ETMCNTVRn(i));
ret += sprintf(buf, "counter %d: %x\n", i, val);
}
return ret;
}
static ssize_t cntr_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_val);
static ssize_t seq_12_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_12_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_12_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_12_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_12_event);
static ssize_t seq_21_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_21_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_21_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_21_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_21_event);
static ssize_t seq_23_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_23_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_23_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_23_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_23_event);
static ssize_t seq_31_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_31_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_31_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_31_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_31_event);
static ssize_t seq_32_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_32_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_32_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_32_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_32_event);
static ssize_t seq_13_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_13_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_13_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_13_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_13_event);
static ssize_t seq_curr_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long val, flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
val = drvdata->seq_curr_state;
goto out;
}
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_curr_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val > ETM_SEQ_STATE_MAX_VAL)
return -EINVAL;
drvdata->seq_curr_state = val;
return size;
}
static DEVICE_ATTR_RW(seq_curr_state);
static ssize_t ctxid_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ctxid_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_ctxid_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->ctxid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_idx);
static ssize_t ctxid_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->ctxid_val[drvdata->ctxid_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->ctxid_val[drvdata->ctxid_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_val);
static ssize_t ctxid_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ctxid_mask;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_mask_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->ctxid_mask = val;
return size;
}
static DEVICE_ATTR_RW(ctxid_mask);
static ssize_t sync_freq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->sync_freq;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t sync_freq_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->sync_freq = val & ETM_SYNC_MASK;
return size;
}
static DEVICE_ATTR_RW(sync_freq);
static ssize_t timestamp_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->timestamp_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t timestamp_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->timestamp_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(timestamp_event);
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
ret = sprintf(buf,
"ETMCCR: 0x%08x\n"
"ETMCCER: 0x%08x\n"
"ETMSCR: 0x%08x\n"
"ETMIDR: 0x%08x\n"
"ETMCR: 0x%08x\n"
"ETMTRACEIDR: 0x%08x\n"
"Enable event: 0x%08x\n"
"Enable start/stop: 0x%08x\n"
"Enable control: CR1 0x%08x CR2 0x%08x\n"
"CPU affinity: %d\n",
drvdata->etmccr, drvdata->etmccer,
etm_readl(drvdata, ETMSCR), etm_readl(drvdata, ETMIDR),
etm_readl(drvdata, ETMCR), etm_trace_id_simple(drvdata),
etm_readl(drvdata, ETMTEEVR),
etm_readl(drvdata, ETMTSSCR),
etm_readl(drvdata, ETMTECR1),
etm_readl(drvdata, ETMTECR2),
drvdata->cpu);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
return ret;
}
static DEVICE_ATTR_RO(status);
static ssize_t traceid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long val, flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
val = drvdata->traceid;
goto out;
}
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return sprintf(buf, "%#lx\n", val);
}
static ssize_t traceid_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->traceid = val & ETM_TRACEID_MASK;
return size;
}
static DEVICE_ATTR_RW(traceid);
static struct attribute *coresight_etm_attrs[] = {
&dev_attr_nr_addr_cmp.attr,
&dev_attr_nr_cntr.attr,
&dev_attr_nr_ctxid_cmp.attr,
&dev_attr_etmsr.attr,
&dev_attr_reset.attr,
&dev_attr_mode.attr,
&dev_attr_trigger_event.attr,
&dev_attr_enable_event.attr,
&dev_attr_fifofull_level.attr,
&dev_attr_addr_idx.attr,
&dev_attr_addr_single.attr,
&dev_attr_addr_range.attr,
&dev_attr_addr_start.attr,
&dev_attr_addr_stop.attr,
&dev_attr_addr_acctype.attr,
&dev_attr_cntr_idx.attr,
&dev_attr_cntr_rld_val.attr,
&dev_attr_cntr_event.attr,
&dev_attr_cntr_rld_event.attr,
&dev_attr_cntr_val.attr,
&dev_attr_seq_12_event.attr,
&dev_attr_seq_21_event.attr,
&dev_attr_seq_23_event.attr,
&dev_attr_seq_31_event.attr,
&dev_attr_seq_32_event.attr,
&dev_attr_seq_13_event.attr,
&dev_attr_seq_curr_state.attr,
&dev_attr_ctxid_idx.attr,
&dev_attr_ctxid_val.attr,
&dev_attr_ctxid_mask.attr,
&dev_attr_sync_freq.attr,
&dev_attr_timestamp_event.attr,
&dev_attr_status.attr,
&dev_attr_traceid.attr,
NULL,
};
ATTRIBUTE_GROUPS(coresight_etm);
static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
if (!etmdrvdata[cpu])
goto out;
switch (action & (~CPU_TASKS_FROZEN)) {
case CPU_STARTING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (!etmdrvdata[cpu]->os_unlock) {
etm_os_unlock(etmdrvdata[cpu]);
etmdrvdata[cpu]->os_unlock = true;
}
if (etmdrvdata[cpu]->enable)
etm_enable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
case CPU_ONLINE:
if (etmdrvdata[cpu]->boot_enable &&
!etmdrvdata[cpu]->sticky_enable)
coresight_enable(etmdrvdata[cpu]->csdev);
break;
case CPU_DYING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (etmdrvdata[cpu]->enable)
etm_disable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
}
out:
return NOTIFY_OK;
}
static struct notifier_block etm_cpu_notifier = {
.notifier_call = etm_cpu_callback,
};
static bool etm_arch_supported(u8 arch)
{
switch (arch) {
case ETM_ARCH_V3_3:
break;
case ETM_ARCH_V3_5:
break;
case PFT_ARCH_V1_0:
break;
case PFT_ARCH_V1_1:
break;
default:
return false;
}
return true;
}
static void etm_init_arch_data(void *info)
{
u32 etmidr;
u32 etmccr;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
/* First dummy read */
(void)etm_readl(drvdata, ETMPDSR);
/* Provide power to ETM: ETMPDCR[3] == 1 */
etm_set_pwrup(drvdata);
/*
* Clear power down bit since when this bit is set writes to
* certain registers might be ignored.
*/
etm_clr_pwrdwn(drvdata);
/*
* Set prog bit. It will be set from reset but this is included to
* ensure it is set
*/
etm_set_prog(drvdata);
/* Find all capabilities */
etmidr = etm_readl(drvdata, ETMIDR);
drvdata->arch = BMVAL(etmidr, 4, 11);
drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK;
drvdata->etmccer = etm_readl(drvdata, ETMCCER);
etmccr = etm_readl(drvdata, ETMCCR);
drvdata->etmccr = etmccr;
drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
etm_set_pwrdwn(drvdata);
etm_clr_pwrup(drvdata);
CS_LOCK(drvdata->base);
}
static void etm_init_default_data(struct etm_drvdata *drvdata)
{
static int etm3x_traceid;
u32 flags = (1 << 0 | /* instruction execute*/
3 << 3 | /* ARM instruction */
0 << 5 | /* No data value comparison */
0 << 7 | /* No exact mach */
0 << 8 | /* Ignore context ID */
0 << 10); /* Security ignored */
/*
* Initial configuration only - guarantees sources handled by
* this driver have a unique ID at startup time but not between
* all other types of sources. For that we lean on the core
* framework.
*/
drvdata->traceid = etm3x_traceid++;
drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN);
drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1;
if (drvdata->nr_addr_cmp >= 2) {
drvdata->addr_val[0] = (u32) _stext;
drvdata->addr_val[1] = (u32) _etext;
drvdata->addr_acctype[0] = flags;
drvdata->addr_acctype[1] = flags;
drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
}
etm_set_default(drvdata);
}
static int etm_probe(struct amba_device *adev, const struct amba_id *id)
{
int ret;
void __iomem *base;
struct device *dev = &adev->dev;
struct coresight_platform_data *pdata = NULL;
struct etm_drvdata *drvdata;
struct resource *res = &adev->res;
struct coresight_desc *desc;
struct device_node *np = adev->dev.of_node;
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
adev->dev.platform_data = pdata;
drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14");
}
drvdata->dev = &adev->dev;
dev_set_drvdata(dev, drvdata);
/* Validity for the resource is already checked by the AMBA core */
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
drvdata->base = base;
spin_lock_init(&drvdata->spinlock);
drvdata->clk = adev->pclk;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
drvdata->cpu = pdata ? pdata->cpu : 0;
get_online_cpus();
etmdrvdata[drvdata->cpu] = drvdata;
if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
drvdata->os_unlock = true;
if (smp_call_function_single(drvdata->cpu,
etm_init_arch_data, drvdata, 1))
dev_err(dev, "ETM arch init failed\n");
if (!etm_count++)
register_hotcpu_notifier(&etm_cpu_notifier);
put_online_cpus();
if (etm_arch_supported(drvdata->arch) == false) {
ret = -EINVAL;
goto err_arch_supported;
}
etm_init_default_data(drvdata);
clk_disable_unprepare(drvdata->clk);
desc->type = CORESIGHT_DEV_TYPE_SOURCE;
desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
desc->ops = &etm_cs_ops;
desc->pdata = pdata;
desc->dev = dev;
desc->groups = coresight_etm_groups;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err_arch_supported;
}
dev_info(dev, "ETM initialized\n");
if (boot_enable) {
coresight_enable(drvdata->csdev);
drvdata->boot_enable = true;
}
return 0;
err_arch_supported:
clk_disable_unprepare(drvdata->clk);
if (--etm_count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
return ret;
}
static int etm_remove(struct amba_device *adev)
{
struct etm_drvdata *drvdata = amba_get_drvdata(adev);
coresight_unregister(drvdata->csdev);
if (--etm_count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
return 0;
}
static struct amba_id etm_ids[] = {
{ /* ETM 3.3 */
.id = 0x0003b921,
.mask = 0x0003ffff,
},
{ /* ETM 3.5 */
.id = 0x0003b956,
.mask = 0x0003ffff,
},
{ /* PTM 1.0 */
.id = 0x0003b950,
.mask = 0x0003ffff,
},
{ /* PTM 1.1 */
.id = 0x0003b95f,
.mask = 0x0003ffff,
},
{ 0, 0},
};
static struct amba_driver etm_driver = {
.drv = {
.name = "coresight-etm3x",
.owner = THIS_MODULE,
},
.probe = etm_probe,
.remove = etm_remove,
.id_table = etm_ids,
};
int __init etm_init(void)
{
return amba_driver_register(&etm_driver);
}
module_init(etm_init);
void __exit etm_exit(void)
{
amba_driver_unregister(&etm_driver);
}
module_exit(etm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment