Commit a939fc5a authored by Pratik Patel's avatar Pratik Patel Committed by Greg Kroah-Hartman

coresight-etm: add CoreSight ETM/PTM driver

This driver manages CoreSight ETM (Embedded Trace Macrocell) that
supports processor tracing. Currently supported version are ARM
ETMv3.x and PTM1.x.
Signed-off-by: default avatarPratik Patel <pratikp@codeaurora.org>
Signed-off-by: default avatarMathieu Poirier <mathieu.poirier@linaro.org>

coresight-etm3x: adding missing error checking
Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@linuxfoundation.org>
parent ceacc1d9
......@@ -1376,5 +1376,14 @@ config CORESIGHT_SINK_ETBV10
This enables support for the Embedded Trace Buffer version 1.0 driver
that complies with the generic implementation of the component without
special enhancement or added features.
config CORESIGHT_SOURCE_ETM3X
bool "CoreSight Embedded Trace Macrocell 3.x driver"
select CORESIGHT_LINKS_AND_SINKS
help
This driver provides support for processor ETM3.x and PTM1.x modules,
which allows tracing the instructions that a processor is executing
This is primarily useful for instruction level tracing. Depending
the ETM version data tracing may also be available.
endif
endmenu
/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __ASM_HARDWARE_CP14_H
#define __ASM_HARDWARE_CP14_H
#include <linux/types.h>
/* Accessors for CP14 registers */
#define dbg_read(reg) RCP14_##reg()
#define dbg_write(val, reg) WCP14_##reg(val)
#define etm_read(reg) RCP14_##reg()
#define etm_write(val, reg) WCP14_##reg(val)
/* MRC14 and MCR14 */
#define MRC14(op1, crn, crm, op2) \
({ \
u32 val; \
asm volatile("mrc p14, "#op1", %0, "#crn", "#crm", "#op2 : "=r" (val)); \
val; \
})
#define MCR14(val, op1, crn, crm, op2) \
({ \
asm volatile("mcr p14, "#op1", %0, "#crn", "#crm", "#op2 : : "r" (val));\
})
/*
* Debug Registers
*
* Available only in DBGv7
* DBGECR, DBGDSCCR, DBGDSMCR, DBGDRCR
*
* Available only in DBGv7.1
* DBGBXVRm, DBGOSDLR, DBGDEVID2, DBGDEVID1
*
* Read only
* DBGDIDR, DBGDSCRint, DBGDTRRXint, DBGDRAR, DBGOSLSR, DBGOSSRR, DBGPRSR,
* DBGPRSR, DBGDSAR, DBGAUTHSTATUS, DBGDEVID2, DBGDEVID1, DBGDEVID
*
* Write only
* DBGDTRTXint, DBGOSLAR
*/
#define RCP14_DBGDIDR() MRC14(0, c0, c0, 0)
#define RCP14_DBGDSCRint() MRC14(0, c0, c1, 0)
#define RCP14_DBGDTRRXint() MRC14(0, c0, c5, 0)
#define RCP14_DBGWFAR() MRC14(0, c0, c6, 0)
#define RCP14_DBGVCR() MRC14(0, c0, c7, 0)
#define RCP14_DBGECR() MRC14(0, c0, c9, 0)
#define RCP14_DBGDSCCR() MRC14(0, c0, c10, 0)
#define RCP14_DBGDSMCR() MRC14(0, c0, c11, 0)
#define RCP14_DBGDTRRXext() MRC14(0, c0, c0, 2)
#define RCP14_DBGDSCRext() MRC14(0, c0, c2, 2)
#define RCP14_DBGDTRTXext() MRC14(0, c0, c3, 2)
#define RCP14_DBGDRCR() MRC14(0, c0, c4, 2)
#define RCP14_DBGBVR0() MRC14(0, c0, c0, 4)
#define RCP14_DBGBVR1() MRC14(0, c0, c1, 4)
#define RCP14_DBGBVR2() MRC14(0, c0, c2, 4)
#define RCP14_DBGBVR3() MRC14(0, c0, c3, 4)
#define RCP14_DBGBVR4() MRC14(0, c0, c4, 4)
#define RCP14_DBGBVR5() MRC14(0, c0, c5, 4)
#define RCP14_DBGBVR6() MRC14(0, c0, c6, 4)
#define RCP14_DBGBVR7() MRC14(0, c0, c7, 4)
#define RCP14_DBGBVR8() MRC14(0, c0, c8, 4)
#define RCP14_DBGBVR9() MRC14(0, c0, c9, 4)
#define RCP14_DBGBVR10() MRC14(0, c0, c10, 4)
#define RCP14_DBGBVR11() MRC14(0, c0, c11, 4)
#define RCP14_DBGBVR12() MRC14(0, c0, c12, 4)
#define RCP14_DBGBVR13() MRC14(0, c0, c13, 4)
#define RCP14_DBGBVR14() MRC14(0, c0, c14, 4)
#define RCP14_DBGBVR15() MRC14(0, c0, c15, 4)
#define RCP14_DBGBCR0() MRC14(0, c0, c0, 5)
#define RCP14_DBGBCR1() MRC14(0, c0, c1, 5)
#define RCP14_DBGBCR2() MRC14(0, c0, c2, 5)
#define RCP14_DBGBCR3() MRC14(0, c0, c3, 5)
#define RCP14_DBGBCR4() MRC14(0, c0, c4, 5)
#define RCP14_DBGBCR5() MRC14(0, c0, c5, 5)
#define RCP14_DBGBCR6() MRC14(0, c0, c6, 5)
#define RCP14_DBGBCR7() MRC14(0, c0, c7, 5)
#define RCP14_DBGBCR8() MRC14(0, c0, c8, 5)
#define RCP14_DBGBCR9() MRC14(0, c0, c9, 5)
#define RCP14_DBGBCR10() MRC14(0, c0, c10, 5)
#define RCP14_DBGBCR11() MRC14(0, c0, c11, 5)
#define RCP14_DBGBCR12() MRC14(0, c0, c12, 5)
#define RCP14_DBGBCR13() MRC14(0, c0, c13, 5)
#define RCP14_DBGBCR14() MRC14(0, c0, c14, 5)
#define RCP14_DBGBCR15() MRC14(0, c0, c15, 5)
#define RCP14_DBGWVR0() MRC14(0, c0, c0, 6)
#define RCP14_DBGWVR1() MRC14(0, c0, c1, 6)
#define RCP14_DBGWVR2() MRC14(0, c0, c2, 6)
#define RCP14_DBGWVR3() MRC14(0, c0, c3, 6)
#define RCP14_DBGWVR4() MRC14(0, c0, c4, 6)
#define RCP14_DBGWVR5() MRC14(0, c0, c5, 6)
#define RCP14_DBGWVR6() MRC14(0, c0, c6, 6)
#define RCP14_DBGWVR7() MRC14(0, c0, c7, 6)
#define RCP14_DBGWVR8() MRC14(0, c0, c8, 6)
#define RCP14_DBGWVR9() MRC14(0, c0, c9, 6)
#define RCP14_DBGWVR10() MRC14(0, c0, c10, 6)
#define RCP14_DBGWVR11() MRC14(0, c0, c11, 6)
#define RCP14_DBGWVR12() MRC14(0, c0, c12, 6)
#define RCP14_DBGWVR13() MRC14(0, c0, c13, 6)
#define RCP14_DBGWVR14() MRC14(0, c0, c14, 6)
#define RCP14_DBGWVR15() MRC14(0, c0, c15, 6)
#define RCP14_DBGWCR0() MRC14(0, c0, c0, 7)
#define RCP14_DBGWCR1() MRC14(0, c0, c1, 7)
#define RCP14_DBGWCR2() MRC14(0, c0, c2, 7)
#define RCP14_DBGWCR3() MRC14(0, c0, c3, 7)
#define RCP14_DBGWCR4() MRC14(0, c0, c4, 7)
#define RCP14_DBGWCR5() MRC14(0, c0, c5, 7)
#define RCP14_DBGWCR6() MRC14(0, c0, c6, 7)
#define RCP14_DBGWCR7() MRC14(0, c0, c7, 7)
#define RCP14_DBGWCR8() MRC14(0, c0, c8, 7)
#define RCP14_DBGWCR9() MRC14(0, c0, c9, 7)
#define RCP14_DBGWCR10() MRC14(0, c0, c10, 7)
#define RCP14_DBGWCR11() MRC14(0, c0, c11, 7)
#define RCP14_DBGWCR12() MRC14(0, c0, c12, 7)
#define RCP14_DBGWCR13() MRC14(0, c0, c13, 7)
#define RCP14_DBGWCR14() MRC14(0, c0, c14, 7)
#define RCP14_DBGWCR15() MRC14(0, c0, c15, 7)
#define RCP14_DBGDRAR() MRC14(0, c1, c0, 0)
#define RCP14_DBGBXVR0() MRC14(0, c1, c0, 1)
#define RCP14_DBGBXVR1() MRC14(0, c1, c1, 1)
#define RCP14_DBGBXVR2() MRC14(0, c1, c2, 1)
#define RCP14_DBGBXVR3() MRC14(0, c1, c3, 1)
#define RCP14_DBGBXVR4() MRC14(0, c1, c4, 1)
#define RCP14_DBGBXVR5() MRC14(0, c1, c5, 1)
#define RCP14_DBGBXVR6() MRC14(0, c1, c6, 1)
#define RCP14_DBGBXVR7() MRC14(0, c1, c7, 1)
#define RCP14_DBGBXVR8() MRC14(0, c1, c8, 1)
#define RCP14_DBGBXVR9() MRC14(0, c1, c9, 1)
#define RCP14_DBGBXVR10() MRC14(0, c1, c10, 1)
#define RCP14_DBGBXVR11() MRC14(0, c1, c11, 1)
#define RCP14_DBGBXVR12() MRC14(0, c1, c12, 1)
#define RCP14_DBGBXVR13() MRC14(0, c1, c13, 1)
#define RCP14_DBGBXVR14() MRC14(0, c1, c14, 1)
#define RCP14_DBGBXVR15() MRC14(0, c1, c15, 1)
#define RCP14_DBGOSLSR() MRC14(0, c1, c1, 4)
#define RCP14_DBGOSSRR() MRC14(0, c1, c2, 4)
#define RCP14_DBGOSDLR() MRC14(0, c1, c3, 4)
#define RCP14_DBGPRCR() MRC14(0, c1, c4, 4)
#define RCP14_DBGPRSR() MRC14(0, c1, c5, 4)
#define RCP14_DBGDSAR() MRC14(0, c2, c0, 0)
#define RCP14_DBGITCTRL() MRC14(0, c7, c0, 4)
#define RCP14_DBGCLAIMSET() MRC14(0, c7, c8, 6)
#define RCP14_DBGCLAIMCLR() MRC14(0, c7, c9, 6)
#define RCP14_DBGAUTHSTATUS() MRC14(0, c7, c14, 6)
#define RCP14_DBGDEVID2() MRC14(0, c7, c0, 7)
#define RCP14_DBGDEVID1() MRC14(0, c7, c1, 7)
#define RCP14_DBGDEVID() MRC14(0, c7, c2, 7)
#define WCP14_DBGDTRTXint(val) MCR14(val, 0, c0, c5, 0)
#define WCP14_DBGWFAR(val) MCR14(val, 0, c0, c6, 0)
#define WCP14_DBGVCR(val) MCR14(val, 0, c0, c7, 0)
#define WCP14_DBGECR(val) MCR14(val, 0, c0, c9, 0)
#define WCP14_DBGDSCCR(val) MCR14(val, 0, c0, c10, 0)
#define WCP14_DBGDSMCR(val) MCR14(val, 0, c0, c11, 0)
#define WCP14_DBGDTRRXext(val) MCR14(val, 0, c0, c0, 2)
#define WCP14_DBGDSCRext(val) MCR14(val, 0, c0, c2, 2)
#define WCP14_DBGDTRTXext(val) MCR14(val, 0, c0, c3, 2)
#define WCP14_DBGDRCR(val) MCR14(val, 0, c0, c4, 2)
#define WCP14_DBGBVR0(val) MCR14(val, 0, c0, c0, 4)
#define WCP14_DBGBVR1(val) MCR14(val, 0, c0, c1, 4)
#define WCP14_DBGBVR2(val) MCR14(val, 0, c0, c2, 4)
#define WCP14_DBGBVR3(val) MCR14(val, 0, c0, c3, 4)
#define WCP14_DBGBVR4(val) MCR14(val, 0, c0, c4, 4)
#define WCP14_DBGBVR5(val) MCR14(val, 0, c0, c5, 4)
#define WCP14_DBGBVR6(val) MCR14(val, 0, c0, c6, 4)
#define WCP14_DBGBVR7(val) MCR14(val, 0, c0, c7, 4)
#define WCP14_DBGBVR8(val) MCR14(val, 0, c0, c8, 4)
#define WCP14_DBGBVR9(val) MCR14(val, 0, c0, c9, 4)
#define WCP14_DBGBVR10(val) MCR14(val, 0, c0, c10, 4)
#define WCP14_DBGBVR11(val) MCR14(val, 0, c0, c11, 4)
#define WCP14_DBGBVR12(val) MCR14(val, 0, c0, c12, 4)
#define WCP14_DBGBVR13(val) MCR14(val, 0, c0, c13, 4)
#define WCP14_DBGBVR14(val) MCR14(val, 0, c0, c14, 4)
#define WCP14_DBGBVR15(val) MCR14(val, 0, c0, c15, 4)
#define WCP14_DBGBCR0(val) MCR14(val, 0, c0, c0, 5)
#define WCP14_DBGBCR1(val) MCR14(val, 0, c0, c1, 5)
#define WCP14_DBGBCR2(val) MCR14(val, 0, c0, c2, 5)
#define WCP14_DBGBCR3(val) MCR14(val, 0, c0, c3, 5)
#define WCP14_DBGBCR4(val) MCR14(val, 0, c0, c4, 5)
#define WCP14_DBGBCR5(val) MCR14(val, 0, c0, c5, 5)
#define WCP14_DBGBCR6(val) MCR14(val, 0, c0, c6, 5)
#define WCP14_DBGBCR7(val) MCR14(val, 0, c0, c7, 5)
#define WCP14_DBGBCR8(val) MCR14(val, 0, c0, c8, 5)
#define WCP14_DBGBCR9(val) MCR14(val, 0, c0, c9, 5)
#define WCP14_DBGBCR10(val) MCR14(val, 0, c0, c10, 5)
#define WCP14_DBGBCR11(val) MCR14(val, 0, c0, c11, 5)
#define WCP14_DBGBCR12(val) MCR14(val, 0, c0, c12, 5)
#define WCP14_DBGBCR13(val) MCR14(val, 0, c0, c13, 5)
#define WCP14_DBGBCR14(val) MCR14(val, 0, c0, c14, 5)
#define WCP14_DBGBCR15(val) MCR14(val, 0, c0, c15, 5)
#define WCP14_DBGWVR0(val) MCR14(val, 0, c0, c0, 6)
#define WCP14_DBGWVR1(val) MCR14(val, 0, c0, c1, 6)
#define WCP14_DBGWVR2(val) MCR14(val, 0, c0, c2, 6)
#define WCP14_DBGWVR3(val) MCR14(val, 0, c0, c3, 6)
#define WCP14_DBGWVR4(val) MCR14(val, 0, c0, c4, 6)
#define WCP14_DBGWVR5(val) MCR14(val, 0, c0, c5, 6)
#define WCP14_DBGWVR6(val) MCR14(val, 0, c0, c6, 6)
#define WCP14_DBGWVR7(val) MCR14(val, 0, c0, c7, 6)
#define WCP14_DBGWVR8(val) MCR14(val, 0, c0, c8, 6)
#define WCP14_DBGWVR9(val) MCR14(val, 0, c0, c9, 6)
#define WCP14_DBGWVR10(val) MCR14(val, 0, c0, c10, 6)
#define WCP14_DBGWVR11(val) MCR14(val, 0, c0, c11, 6)
#define WCP14_DBGWVR12(val) MCR14(val, 0, c0, c12, 6)
#define WCP14_DBGWVR13(val) MCR14(val, 0, c0, c13, 6)
#define WCP14_DBGWVR14(val) MCR14(val, 0, c0, c14, 6)
#define WCP14_DBGWVR15(val) MCR14(val, 0, c0, c15, 6)
#define WCP14_DBGWCR0(val) MCR14(val, 0, c0, c0, 7)
#define WCP14_DBGWCR1(val) MCR14(val, 0, c0, c1, 7)
#define WCP14_DBGWCR2(val) MCR14(val, 0, c0, c2, 7)
#define WCP14_DBGWCR3(val) MCR14(val, 0, c0, c3, 7)
#define WCP14_DBGWCR4(val) MCR14(val, 0, c0, c4, 7)
#define WCP14_DBGWCR5(val) MCR14(val, 0, c0, c5, 7)
#define WCP14_DBGWCR6(val) MCR14(val, 0, c0, c6, 7)
#define WCP14_DBGWCR7(val) MCR14(val, 0, c0, c7, 7)
#define WCP14_DBGWCR8(val) MCR14(val, 0, c0, c8, 7)
#define WCP14_DBGWCR9(val) MCR14(val, 0, c0, c9, 7)
#define WCP14_DBGWCR10(val) MCR14(val, 0, c0, c10, 7)
#define WCP14_DBGWCR11(val) MCR14(val, 0, c0, c11, 7)
#define WCP14_DBGWCR12(val) MCR14(val, 0, c0, c12, 7)
#define WCP14_DBGWCR13(val) MCR14(val, 0, c0, c13, 7)
#define WCP14_DBGWCR14(val) MCR14(val, 0, c0, c14, 7)
#define WCP14_DBGWCR15(val) MCR14(val, 0, c0, c15, 7)
#define WCP14_DBGBXVR0(val) MCR14(val, 0, c1, c0, 1)
#define WCP14_DBGBXVR1(val) MCR14(val, 0, c1, c1, 1)
#define WCP14_DBGBXVR2(val) MCR14(val, 0, c1, c2, 1)
#define WCP14_DBGBXVR3(val) MCR14(val, 0, c1, c3, 1)
#define WCP14_DBGBXVR4(val) MCR14(val, 0, c1, c4, 1)
#define WCP14_DBGBXVR5(val) MCR14(val, 0, c1, c5, 1)
#define WCP14_DBGBXVR6(val) MCR14(val, 0, c1, c6, 1)
#define WCP14_DBGBXVR7(val) MCR14(val, 0, c1, c7, 1)
#define WCP14_DBGBXVR8(val) MCR14(val, 0, c1, c8, 1)
#define WCP14_DBGBXVR9(val) MCR14(val, 0, c1, c9, 1)
#define WCP14_DBGBXVR10(val) MCR14(val, 0, c1, c10, 1)
#define WCP14_DBGBXVR11(val) MCR14(val, 0, c1, c11, 1)
#define WCP14_DBGBXVR12(val) MCR14(val, 0, c1, c12, 1)
#define WCP14_DBGBXVR13(val) MCR14(val, 0, c1, c13, 1)
#define WCP14_DBGBXVR14(val) MCR14(val, 0, c1, c14, 1)
#define WCP14_DBGBXVR15(val) MCR14(val, 0, c1, c15, 1)
#define WCP14_DBGOSLAR(val) MCR14(val, 0, c1, c0, 4)
#define WCP14_DBGOSSRR(val) MCR14(val, 0, c1, c2, 4)
#define WCP14_DBGOSDLR(val) MCR14(val, 0, c1, c3, 4)
#define WCP14_DBGPRCR(val) MCR14(val, 0, c1, c4, 4)
#define WCP14_DBGITCTRL(val) MCR14(val, 0, c7, c0, 4)
#define WCP14_DBGCLAIMSET(val) MCR14(val, 0, c7, c8, 6)
#define WCP14_DBGCLAIMCLR(val) MCR14(val, 0, c7, c9, 6)
/*
* ETM Registers
*
* Available only in ETMv3.3, 3.4, 3.5
* ETMASICCR, ETMTECR2, ETMFFRR, ETMVDEVR, ETMVDCR1, ETMVDCR2, ETMVDCR3,
* ETMDCVRn, ETMDCMRn
*
* Available only in ETMv3.5 as read only
* ETMIDR2
*
* Available only in ETMv3.5, PFTv1.0, 1.1
* ETMTSEVR, ETMVMIDCVR, ETMPDCR
*
* Read only
* ETMCCR, ETMSCR, ETMIDR, ETMCCER, ETMOSLSR
* ETMLSR, ETMAUTHSTATUS, ETMDEVID, ETMDEVTYPE, ETMPIDR4, ETMPIDR5, ETMPIDR6,
* ETMPIDR7, ETMPIDR0, ETMPIDR1, ETMPIDR2, ETMPIDR2, ETMPIDR3, ETMCIDR0,
* ETMCIDR1, ETMCIDR2, ETMCIDR3
*
* Write only
* ETMOSLAR, ETMLAR
* Note: ETMCCER[11] controls WO nature of certain regs. Refer ETM arch spec.
*/
#define RCP14_ETMCR() MRC14(1, c0, c0, 0)
#define RCP14_ETMCCR() MRC14(1, c0, c1, 0)
#define RCP14_ETMTRIGGER() MRC14(1, c0, c2, 0)
#define RCP14_ETMASICCR() MRC14(1, c0, c3, 0)
#define RCP14_ETMSR() MRC14(1, c0, c4, 0)
#define RCP14_ETMSCR() MRC14(1, c0, c5, 0)
#define RCP14_ETMTSSCR() MRC14(1, c0, c6, 0)
#define RCP14_ETMTECR2() MRC14(1, c0, c7, 0)
#define RCP14_ETMTEEVR() MRC14(1, c0, c8, 0)
#define RCP14_ETMTECR1() MRC14(1, c0, c9, 0)
#define RCP14_ETMFFRR() MRC14(1, c0, c10, 0)
#define RCP14_ETMFFLR() MRC14(1, c0, c11, 0)
#define RCP14_ETMVDEVR() MRC14(1, c0, c12, 0)
#define RCP14_ETMVDCR1() MRC14(1, c0, c13, 0)
#define RCP14_ETMVDCR2() MRC14(1, c0, c14, 0)
#define RCP14_ETMVDCR3() MRC14(1, c0, c15, 0)
#define RCP14_ETMACVR0() MRC14(1, c0, c0, 1)
#define RCP14_ETMACVR1() MRC14(1, c0, c1, 1)
#define RCP14_ETMACVR2() MRC14(1, c0, c2, 1)
#define RCP14_ETMACVR3() MRC14(1, c0, c3, 1)
#define RCP14_ETMACVR4() MRC14(1, c0, c4, 1)
#define RCP14_ETMACVR5() MRC14(1, c0, c5, 1)
#define RCP14_ETMACVR6() MRC14(1, c0, c6, 1)
#define RCP14_ETMACVR7() MRC14(1, c0, c7, 1)
#define RCP14_ETMACVR8() MRC14(1, c0, c8, 1)
#define RCP14_ETMACVR9() MRC14(1, c0, c9, 1)
#define RCP14_ETMACVR10() MRC14(1, c0, c10, 1)
#define RCP14_ETMACVR11() MRC14(1, c0, c11, 1)
#define RCP14_ETMACVR12() MRC14(1, c0, c12, 1)
#define RCP14_ETMACVR13() MRC14(1, c0, c13, 1)
#define RCP14_ETMACVR14() MRC14(1, c0, c14, 1)
#define RCP14_ETMACVR15() MRC14(1, c0, c15, 1)
#define RCP14_ETMACTR0() MRC14(1, c0, c0, 2)
#define RCP14_ETMACTR1() MRC14(1, c0, c1, 2)
#define RCP14_ETMACTR2() MRC14(1, c0, c2, 2)
#define RCP14_ETMACTR3() MRC14(1, c0, c3, 2)
#define RCP14_ETMACTR4() MRC14(1, c0, c4, 2)
#define RCP14_ETMACTR5() MRC14(1, c0, c5, 2)
#define RCP14_ETMACTR6() MRC14(1, c0, c6, 2)
#define RCP14_ETMACTR7() MRC14(1, c0, c7, 2)
#define RCP14_ETMACTR8() MRC14(1, c0, c8, 2)
#define RCP14_ETMACTR9() MRC14(1, c0, c9, 2)
#define RCP14_ETMACTR10() MRC14(1, c0, c10, 2)
#define RCP14_ETMACTR11() MRC14(1, c0, c11, 2)
#define RCP14_ETMACTR12() MRC14(1, c0, c12, 2)
#define RCP14_ETMACTR13() MRC14(1, c0, c13, 2)
#define RCP14_ETMACTR14() MRC14(1, c0, c14, 2)
#define RCP14_ETMACTR15() MRC14(1, c0, c15, 2)
#define RCP14_ETMDCVR0() MRC14(1, c0, c0, 3)
#define RCP14_ETMDCVR2() MRC14(1, c0, c2, 3)
#define RCP14_ETMDCVR4() MRC14(1, c0, c4, 3)
#define RCP14_ETMDCVR6() MRC14(1, c0, c6, 3)
#define RCP14_ETMDCVR8() MRC14(1, c0, c8, 3)
#define RCP14_ETMDCVR10() MRC14(1, c0, c10, 3)
#define RCP14_ETMDCVR12() MRC14(1, c0, c12, 3)
#define RCP14_ETMDCVR14() MRC14(1, c0, c14, 3)
#define RCP14_ETMDCMR0() MRC14(1, c0, c0, 4)
#define RCP14_ETMDCMR2() MRC14(1, c0, c2, 4)
#define RCP14_ETMDCMR4() MRC14(1, c0, c4, 4)
#define RCP14_ETMDCMR6() MRC14(1, c0, c6, 4)
#define RCP14_ETMDCMR8() MRC14(1, c0, c8, 4)
#define RCP14_ETMDCMR10() MRC14(1, c0, c10, 4)
#define RCP14_ETMDCMR12() MRC14(1, c0, c12, 4)
#define RCP14_ETMDCMR14() MRC14(1, c0, c14, 4)
#define RCP14_ETMCNTRLDVR0() MRC14(1, c0, c0, 5)
#define RCP14_ETMCNTRLDVR1() MRC14(1, c0, c1, 5)
#define RCP14_ETMCNTRLDVR2() MRC14(1, c0, c2, 5)
#define RCP14_ETMCNTRLDVR3() MRC14(1, c0, c3, 5)
#define RCP14_ETMCNTENR0() MRC14(1, c0, c4, 5)
#define RCP14_ETMCNTENR1() MRC14(1, c0, c5, 5)
#define RCP14_ETMCNTENR2() MRC14(1, c0, c6, 5)
#define RCP14_ETMCNTENR3() MRC14(1, c0, c7, 5)
#define RCP14_ETMCNTRLDEVR0() MRC14(1, c0, c8, 5)
#define RCP14_ETMCNTRLDEVR1() MRC14(1, c0, c9, 5)
#define RCP14_ETMCNTRLDEVR2() MRC14(1, c0, c10, 5)
#define RCP14_ETMCNTRLDEVR3() MRC14(1, c0, c11, 5)
#define RCP14_ETMCNTVR0() MRC14(1, c0, c12, 5)
#define RCP14_ETMCNTVR1() MRC14(1, c0, c13, 5)
#define RCP14_ETMCNTVR2() MRC14(1, c0, c14, 5)
#define RCP14_ETMCNTVR3() MRC14(1, c0, c15, 5)
#define RCP14_ETMSQ12EVR() MRC14(1, c0, c0, 6)
#define RCP14_ETMSQ21EVR() MRC14(1, c0, c1, 6)
#define RCP14_ETMSQ23EVR() MRC14(1, c0, c2, 6)
#define RCP14_ETMSQ31EVR() MRC14(1, c0, c3, 6)
#define RCP14_ETMSQ32EVR() MRC14(1, c0, c4, 6)
#define RCP14_ETMSQ13EVR() MRC14(1, c0, c5, 6)
#define RCP14_ETMSQR() MRC14(1, c0, c7, 6)
#define RCP14_ETMEXTOUTEVR0() MRC14(1, c0, c8, 6)
#define RCP14_ETMEXTOUTEVR1() MRC14(1, c0, c9, 6)
#define RCP14_ETMEXTOUTEVR2() MRC14(1, c0, c10, 6)
#define RCP14_ETMEXTOUTEVR3() MRC14(1, c0, c11, 6)
#define RCP14_ETMCIDCVR0() MRC14(1, c0, c12, 6)
#define RCP14_ETMCIDCVR1() MRC14(1, c0, c13, 6)
#define RCP14_ETMCIDCVR2() MRC14(1, c0, c14, 6)
#define RCP14_ETMCIDCMR() MRC14(1, c0, c15, 6)
#define RCP14_ETMIMPSPEC0() MRC14(1, c0, c0, 7)
#define RCP14_ETMIMPSPEC1() MRC14(1, c0, c1, 7)
#define RCP14_ETMIMPSPEC2() MRC14(1, c0, c2, 7)
#define RCP14_ETMIMPSPEC3() MRC14(1, c0, c3, 7)
#define RCP14_ETMIMPSPEC4() MRC14(1, c0, c4, 7)
#define RCP14_ETMIMPSPEC5() MRC14(1, c0, c5, 7)
#define RCP14_ETMIMPSPEC6() MRC14(1, c0, c6, 7)
#define RCP14_ETMIMPSPEC7() MRC14(1, c0, c7, 7)
#define RCP14_ETMSYNCFR() MRC14(1, c0, c8, 7)
#define RCP14_ETMIDR() MRC14(1, c0, c9, 7)
#define RCP14_ETMCCER() MRC14(1, c0, c10, 7)
#define RCP14_ETMEXTINSELR() MRC14(1, c0, c11, 7)
#define RCP14_ETMTESSEICR() MRC14(1, c0, c12, 7)
#define RCP14_ETMEIBCR() MRC14(1, c0, c13, 7)
#define RCP14_ETMTSEVR() MRC14(1, c0, c14, 7)
#define RCP14_ETMAUXCR() MRC14(1, c0, c15, 7)
#define RCP14_ETMTRACEIDR() MRC14(1, c1, c0, 0)
#define RCP14_ETMIDR2() MRC14(1, c1, c2, 0)
#define RCP14_ETMVMIDCVR() MRC14(1, c1, c0, 1)
#define RCP14_ETMOSLSR() MRC14(1, c1, c1, 4)
/* Not available in PFTv1.1 */
#define RCP14_ETMOSSRR() MRC14(1, c1, c2, 4)
#define RCP14_ETMPDCR() MRC14(1, c1, c4, 4)
#define RCP14_ETMPDSR() MRC14(1, c1, c5, 4)
#define RCP14_ETMITCTRL() MRC14(1, c7, c0, 4)
#define RCP14_ETMCLAIMSET() MRC14(1, c7, c8, 6)
#define RCP14_ETMCLAIMCLR() MRC14(1, c7, c9, 6)
#define RCP14_ETMLSR() MRC14(1, c7, c13, 6)
#define RCP14_ETMAUTHSTATUS() MRC14(1, c7, c14, 6)
#define RCP14_ETMDEVID() MRC14(1, c7, c2, 7)
#define RCP14_ETMDEVTYPE() MRC14(1, c7, c3, 7)
#define RCP14_ETMPIDR4() MRC14(1, c7, c4, 7)
#define RCP14_ETMPIDR5() MRC14(1, c7, c5, 7)
#define RCP14_ETMPIDR6() MRC14(1, c7, c6, 7)
#define RCP14_ETMPIDR7() MRC14(1, c7, c7, 7)
#define RCP14_ETMPIDR0() MRC14(1, c7, c8, 7)
#define RCP14_ETMPIDR1() MRC14(1, c7, c9, 7)
#define RCP14_ETMPIDR2() MRC14(1, c7, c10, 7)
#define RCP14_ETMPIDR3() MRC14(1, c7, c11, 7)
#define RCP14_ETMCIDR0() MRC14(1, c7, c12, 7)
#define RCP14_ETMCIDR1() MRC14(1, c7, c13, 7)
#define RCP14_ETMCIDR2() MRC14(1, c7, c14, 7)
#define RCP14_ETMCIDR3() MRC14(1, c7, c15, 7)
#define WCP14_ETMCR(val) MCR14(val, 1, c0, c0, 0)
#define WCP14_ETMTRIGGER(val) MCR14(val, 1, c0, c2, 0)
#define WCP14_ETMASICCR(val) MCR14(val, 1, c0, c3, 0)
#define WCP14_ETMSR(val) MCR14(val, 1, c0, c4, 0)
#define WCP14_ETMTSSCR(val) MCR14(val, 1, c0, c6, 0)
#define WCP14_ETMTECR2(val) MCR14(val, 1, c0, c7, 0)
#define WCP14_ETMTEEVR(val) MCR14(val, 1, c0, c8, 0)
#define WCP14_ETMTECR1(val) MCR14(val, 1, c0, c9, 0)
#define WCP14_ETMFFRR(val) MCR14(val, 1, c0, c10, 0)
#define WCP14_ETMFFLR(val) MCR14(val, 1, c0, c11, 0)
#define WCP14_ETMVDEVR(val) MCR14(val, 1, c0, c12, 0)
#define WCP14_ETMVDCR1(val) MCR14(val, 1, c0, c13, 0)
#define WCP14_ETMVDCR2(val) MCR14(val, 1, c0, c14, 0)
#define WCP14_ETMVDCR3(val) MCR14(val, 1, c0, c15, 0)
#define WCP14_ETMACVR0(val) MCR14(val, 1, c0, c0, 1)
#define WCP14_ETMACVR1(val) MCR14(val, 1, c0, c1, 1)
#define WCP14_ETMACVR2(val) MCR14(val, 1, c0, c2, 1)
#define WCP14_ETMACVR3(val) MCR14(val, 1, c0, c3, 1)
#define WCP14_ETMACVR4(val) MCR14(val, 1, c0, c4, 1)
#define WCP14_ETMACVR5(val) MCR14(val, 1, c0, c5, 1)
#define WCP14_ETMACVR6(val) MCR14(val, 1, c0, c6, 1)
#define WCP14_ETMACVR7(val) MCR14(val, 1, c0, c7, 1)
#define WCP14_ETMACVR8(val) MCR14(val, 1, c0, c8, 1)
#define WCP14_ETMACVR9(val) MCR14(val, 1, c0, c9, 1)
#define WCP14_ETMACVR10(val) MCR14(val, 1, c0, c10, 1)
#define WCP14_ETMACVR11(val) MCR14(val, 1, c0, c11, 1)
#define WCP14_ETMACVR12(val) MCR14(val, 1, c0, c12, 1)
#define WCP14_ETMACVR13(val) MCR14(val, 1, c0, c13, 1)
#define WCP14_ETMACVR14(val) MCR14(val, 1, c0, c14, 1)
#define WCP14_ETMACVR15(val) MCR14(val, 1, c0, c15, 1)
#define WCP14_ETMACTR0(val) MCR14(val, 1, c0, c0, 2)
#define WCP14_ETMACTR1(val) MCR14(val, 1, c0, c1, 2)
#define WCP14_ETMACTR2(val) MCR14(val, 1, c0, c2, 2)
#define WCP14_ETMACTR3(val) MCR14(val, 1, c0, c3, 2)
#define WCP14_ETMACTR4(val) MCR14(val, 1, c0, c4, 2)
#define WCP14_ETMACTR5(val) MCR14(val, 1, c0, c5, 2)
#define WCP14_ETMACTR6(val) MCR14(val, 1, c0, c6, 2)
#define WCP14_ETMACTR7(val) MCR14(val, 1, c0, c7, 2)
#define WCP14_ETMACTR8(val) MCR14(val, 1, c0, c8, 2)
#define WCP14_ETMACTR9(val) MCR14(val, 1, c0, c9, 2)
#define WCP14_ETMACTR10(val) MCR14(val, 1, c0, c10, 2)
#define WCP14_ETMACTR11(val) MCR14(val, 1, c0, c11, 2)
#define WCP14_ETMACTR12(val) MCR14(val, 1, c0, c12, 2)
#define WCP14_ETMACTR13(val) MCR14(val, 1, c0, c13, 2)
#define WCP14_ETMACTR14(val) MCR14(val, 1, c0, c14, 2)
#define WCP14_ETMACTR15(val) MCR14(val, 1, c0, c15, 2)
#define WCP14_ETMDCVR0(val) MCR14(val, 1, c0, c0, 3)
#define WCP14_ETMDCVR2(val) MCR14(val, 1, c0, c2, 3)
#define WCP14_ETMDCVR4(val) MCR14(val, 1, c0, c4, 3)
#define WCP14_ETMDCVR6(val) MCR14(val, 1, c0, c6, 3)
#define WCP14_ETMDCVR8(val) MCR14(val, 1, c0, c8, 3)
#define WCP14_ETMDCVR10(val) MCR14(val, 1, c0, c10, 3)
#define WCP14_ETMDCVR12(val) MCR14(val, 1, c0, c12, 3)
#define WCP14_ETMDCVR14(val) MCR14(val, 1, c0, c14, 3)
#define WCP14_ETMDCMR0(val) MCR14(val, 1, c0, c0, 4)
#define WCP14_ETMDCMR2(val) MCR14(val, 1, c0, c2, 4)
#define WCP14_ETMDCMR4(val) MCR14(val, 1, c0, c4, 4)
#define WCP14_ETMDCMR6(val) MCR14(val, 1, c0, c6, 4)
#define WCP14_ETMDCMR8(val) MCR14(val, 1, c0, c8, 4)
#define WCP14_ETMDCMR10(val) MCR14(val, 1, c0, c10, 4)
#define WCP14_ETMDCMR12(val) MCR14(val, 1, c0, c12, 4)
#define WCP14_ETMDCMR14(val) MCR14(val, 1, c0, c14, 4)
#define WCP14_ETMCNTRLDVR0(val) MCR14(val, 1, c0, c0, 5)
#define WCP14_ETMCNTRLDVR1(val) MCR14(val, 1, c0, c1, 5)
#define WCP14_ETMCNTRLDVR2(val) MCR14(val, 1, c0, c2, 5)
#define WCP14_ETMCNTRLDVR3(val) MCR14(val, 1, c0, c3, 5)
#define WCP14_ETMCNTENR0(val) MCR14(val, 1, c0, c4, 5)
#define WCP14_ETMCNTENR1(val) MCR14(val, 1, c0, c5, 5)
#define WCP14_ETMCNTENR2(val) MCR14(val, 1, c0, c6, 5)
#define WCP14_ETMCNTENR3(val) MCR14(val, 1, c0, c7, 5)
#define WCP14_ETMCNTRLDEVR0(val) MCR14(val, 1, c0, c8, 5)
#define WCP14_ETMCNTRLDEVR1(val) MCR14(val, 1, c0, c9, 5)
#define WCP14_ETMCNTRLDEVR2(val) MCR14(val, 1, c0, c10, 5)
#define WCP14_ETMCNTRLDEVR3(val) MCR14(val, 1, c0, c11, 5)
#define WCP14_ETMCNTVR0(val) MCR14(val, 1, c0, c12, 5)
#define WCP14_ETMCNTVR1(val) MCR14(val, 1, c0, c13, 5)
#define WCP14_ETMCNTVR2(val) MCR14(val, 1, c0, c14, 5)
#define WCP14_ETMCNTVR3(val) MCR14(val, 1, c0, c15, 5)
#define WCP14_ETMSQ12EVR(val) MCR14(val, 1, c0, c0, 6)
#define WCP14_ETMSQ21EVR(val) MCR14(val, 1, c0, c1, 6)
#define WCP14_ETMSQ23EVR(val) MCR14(val, 1, c0, c2, 6)
#define WCP14_ETMSQ31EVR(val) MCR14(val, 1, c0, c3, 6)
#define WCP14_ETMSQ32EVR(val) MCR14(val, 1, c0, c4, 6)
#define WCP14_ETMSQ13EVR(val) MCR14(val, 1, c0, c5, 6)
#define WCP14_ETMSQR(val) MCR14(val, 1, c0, c7, 6)
#define WCP14_ETMEXTOUTEVR0(val) MCR14(val, 1, c0, c8, 6)
#define WCP14_ETMEXTOUTEVR1(val) MCR14(val, 1, c0, c9, 6)
#define WCP14_ETMEXTOUTEVR2(val) MCR14(val, 1, c0, c10, 6)
#define WCP14_ETMEXTOUTEVR3(val) MCR14(val, 1, c0, c11, 6)
#define WCP14_ETMCIDCVR0(val) MCR14(val, 1, c0, c12, 6)
#define WCP14_ETMCIDCVR1(val) MCR14(val, 1, c0, c13, 6)
#define WCP14_ETMCIDCVR2(val) MCR14(val, 1, c0, c14, 6)
#define WCP14_ETMCIDCMR(val) MCR14(val, 1, c0, c15, 6)
#define WCP14_ETMIMPSPEC0(val) MCR14(val, 1, c0, c0, 7)
#define WCP14_ETMIMPSPEC1(val) MCR14(val, 1, c0, c1, 7)
#define WCP14_ETMIMPSPEC2(val) MCR14(val, 1, c0, c2, 7)
#define WCP14_ETMIMPSPEC3(val) MCR14(val, 1, c0, c3, 7)
#define WCP14_ETMIMPSPEC4(val) MCR14(val, 1, c0, c4, 7)
#define WCP14_ETMIMPSPEC5(val) MCR14(val, 1, c0, c5, 7)
#define WCP14_ETMIMPSPEC6(val) MCR14(val, 1, c0, c6, 7)
#define WCP14_ETMIMPSPEC7(val) MCR14(val, 1, c0, c7, 7)
/* Can be read only in ETMv3.4, ETMv3.5 */
#define WCP14_ETMSYNCFR(val) MCR14(val, 1, c0, c8, 7)
#define WCP14_ETMEXTINSELR(val) MCR14(val, 1, c0, c11, 7)
#define WCP14_ETMTESSEICR(val) MCR14(val, 1, c0, c12, 7)
#define WCP14_ETMEIBCR(val) MCR14(val, 1, c0, c13, 7)
#define WCP14_ETMTSEVR(val) MCR14(val, 1, c0, c14, 7)
#define WCP14_ETMAUXCR(val) MCR14(val, 1, c0, c15, 7)
#define WCP14_ETMTRACEIDR(val) MCR14(val, 1, c1, c0, 0)
#define WCP14_ETMIDR2(val) MCR14(val, 1, c1, c2, 0)
#define WCP14_ETMVMIDCVR(val) MCR14(val, 1, c1, c0, 1)
#define WCP14_ETMOSLAR(val) MCR14(val, 1, c1, c0, 4)
/* Not available in PFTv1.1 */
#define WCP14_ETMOSSRR(val) MCR14(val, 1, c1, c2, 4)
#define WCP14_ETMPDCR(val) MCR14(val, 1, c1, c4, 4)
#define WCP14_ETMPDSR(val) MCR14(val, 1, c1, c5, 4)
#define WCP14_ETMITCTRL(val) MCR14(val, 1, c7, c0, 4)
#define WCP14_ETMCLAIMSET(val) MCR14(val, 1, c7, c8, 6)
#define WCP14_ETMCLAIMCLR(val) MCR14(val, 1, c7, c9, 6)
/* Writes to this from CP14 interface are ignored */
#define WCP14_ETMLAR(val) MCR14(val, 1, c7, c12, 6)
#endif
......@@ -8,3 +8,4 @@ obj-$(CONFIG_CORESIGHT_SINK_TPIU) += coresight-tpiu.o
obj-$(CONFIG_CORESIGHT_SINK_ETBV10) += coresight-etb10.o
obj-$(CONFIG_CORESIGHT_LINKS_AND_SINKS) += coresight-funnel.o \
coresight-replicator.o
obj-$(CONFIG_CORESIGHT_SOURCE_ETM3X) += coresight-etm3x.o coresight-etm-cp14.o
/* Copyright (c) 2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/bug.h>
#include <asm/hardware/cp14.h>
#include "coresight-etm.h"
int etm_readl_cp14(u32 reg, unsigned int *val)
{
switch (reg) {
case ETMCR:
*val = etm_read(ETMCR);
return 0;
case ETMCCR:
*val = etm_read(ETMCCR);
return 0;
case ETMTRIGGER:
*val = etm_read(ETMTRIGGER);
return 0;
case ETMSR:
*val = etm_read(ETMSR);
return 0;
case ETMSCR:
*val = etm_read(ETMSCR);
return 0;
case ETMTSSCR:
*val = etm_read(ETMTSSCR);
return 0;
case ETMTEEVR:
*val = etm_read(ETMTEEVR);
return 0;
case ETMTECR1:
*val = etm_read(ETMTECR1);
return 0;
case ETMFFLR:
*val = etm_read(ETMFFLR);
return 0;
case ETMACVRn(0):
*val = etm_read(ETMACVR0);
return 0;
case ETMACVRn(1):
*val = etm_read(ETMACVR1);
return 0;
case ETMACVRn(2):
*val = etm_read(ETMACVR2);
return 0;
case ETMACVRn(3):
*val = etm_read(ETMACVR3);
return 0;
case ETMACVRn(4):
*val = etm_read(ETMACVR4);
return 0;
case ETMACVRn(5):
*val = etm_read(ETMACVR5);
return 0;
case ETMACVRn(6):
*val = etm_read(ETMACVR6);
return 0;
case ETMACVRn(7):
*val = etm_read(ETMACVR7);
return 0;
case ETMACVRn(8):
*val = etm_read(ETMACVR8);
return 0;
case ETMACVRn(9):
*val = etm_read(ETMACVR9);
return 0;
case ETMACVRn(10):
*val = etm_read(ETMACVR10);
return 0;
case ETMACVRn(11):
*val = etm_read(ETMACVR11);
return 0;
case ETMACVRn(12):
*val = etm_read(ETMACVR12);
return 0;
case ETMACVRn(13):
*val = etm_read(ETMACVR13);
return 0;
case ETMACVRn(14):
*val = etm_read(ETMACVR14);
return 0;
case ETMACVRn(15):
*val = etm_read(ETMACVR15);
return 0;
case ETMACTRn(0):
*val = etm_read(ETMACTR0);
return 0;
case ETMACTRn(1):
*val = etm_read(ETMACTR1);
return 0;
case ETMACTRn(2):
*val = etm_read(ETMACTR2);
return 0;
case ETMACTRn(3):
*val = etm_read(ETMACTR3);
return 0;
case ETMACTRn(4):
*val = etm_read(ETMACTR4);
return 0;
case ETMACTRn(5):
*val = etm_read(ETMACTR5);
return 0;
case ETMACTRn(6):
*val = etm_read(ETMACTR6);
return 0;
case ETMACTRn(7):
*val = etm_read(ETMACTR7);
return 0;
case ETMACTRn(8):
*val = etm_read(ETMACTR8);
return 0;
case ETMACTRn(9):
*val = etm_read(ETMACTR9);
return 0;
case ETMACTRn(10):
*val = etm_read(ETMACTR10);
return 0;
case ETMACTRn(11):
*val = etm_read(ETMACTR11);
return 0;
case ETMACTRn(12):
*val = etm_read(ETMACTR12);
return 0;
case ETMACTRn(13):
*val = etm_read(ETMACTR13);
return 0;
case ETMACTRn(14):
*val = etm_read(ETMACTR14);
return 0;
case ETMACTRn(15):
*val = etm_read(ETMACTR15);
return 0;
case ETMCNTRLDVRn(0):
*val = etm_read(ETMCNTRLDVR0);
return 0;
case ETMCNTRLDVRn(1):
*val = etm_read(ETMCNTRLDVR1);
return 0;
case ETMCNTRLDVRn(2):
*val = etm_read(ETMCNTRLDVR2);
return 0;
case ETMCNTRLDVRn(3):
*val = etm_read(ETMCNTRLDVR3);
return 0;
case ETMCNTENRn(0):
*val = etm_read(ETMCNTENR0);
return 0;
case ETMCNTENRn(1):
*val = etm_read(ETMCNTENR1);
return 0;
case ETMCNTENRn(2):
*val = etm_read(ETMCNTENR2);
return 0;
case ETMCNTENRn(3):
*val = etm_read(ETMCNTENR3);
return 0;
case ETMCNTRLDEVRn(0):
*val = etm_read(ETMCNTRLDEVR0);
return 0;
case ETMCNTRLDEVRn(1):
*val = etm_read(ETMCNTRLDEVR1);
return 0;
case ETMCNTRLDEVRn(2):
*val = etm_read(ETMCNTRLDEVR2);
return 0;
case ETMCNTRLDEVRn(3):
*val = etm_read(ETMCNTRLDEVR3);
return 0;
case ETMCNTVRn(0):
*val = etm_read(ETMCNTVR0);
return 0;
case ETMCNTVRn(1):
*val = etm_read(ETMCNTVR1);
return 0;
case ETMCNTVRn(2):
*val = etm_read(ETMCNTVR2);
return 0;
case ETMCNTVRn(3):
*val = etm_read(ETMCNTVR3);
return 0;
case ETMSQ12EVR:
*val = etm_read(ETMSQ12EVR);
return 0;
case ETMSQ21EVR:
*val = etm_read(ETMSQ21EVR);
return 0;
case ETMSQ23EVR:
*val = etm_read(ETMSQ23EVR);
return 0;
case ETMSQ31EVR:
*val = etm_read(ETMSQ31EVR);
return 0;
case ETMSQ32EVR:
*val = etm_read(ETMSQ32EVR);
return 0;
case ETMSQ13EVR:
*val = etm_read(ETMSQ13EVR);
return 0;
case ETMSQR:
*val = etm_read(ETMSQR);
return 0;
case ETMEXTOUTEVRn(0):
*val = etm_read(ETMEXTOUTEVR0);
return 0;
case ETMEXTOUTEVRn(1):
*val = etm_read(ETMEXTOUTEVR1);
return 0;
case ETMEXTOUTEVRn(2):
*val = etm_read(ETMEXTOUTEVR2);
return 0;
case ETMEXTOUTEVRn(3):
*val = etm_read(ETMEXTOUTEVR3);
return 0;
case ETMCIDCVRn(0):
*val = etm_read(ETMCIDCVR0);
return 0;
case ETMCIDCVRn(1):
*val = etm_read(ETMCIDCVR1);
return 0;
case ETMCIDCVRn(2):
*val = etm_read(ETMCIDCVR2);
return 0;
case ETMCIDCMR:
*val = etm_read(ETMCIDCMR);
return 0;
case ETMIMPSPEC0:
*val = etm_read(ETMIMPSPEC0);
return 0;
case ETMIMPSPEC1:
*val = etm_read(ETMIMPSPEC1);
return 0;
case ETMIMPSPEC2:
*val = etm_read(ETMIMPSPEC2);
return 0;
case ETMIMPSPEC3:
*val = etm_read(ETMIMPSPEC3);
return 0;
case ETMIMPSPEC4:
*val = etm_read(ETMIMPSPEC4);
return 0;
case ETMIMPSPEC5:
*val = etm_read(ETMIMPSPEC5);
return 0;
case ETMIMPSPEC6:
*val = etm_read(ETMIMPSPEC6);
return 0;
case ETMIMPSPEC7:
*val = etm_read(ETMIMPSPEC7);
return 0;
case ETMSYNCFR:
*val = etm_read(ETMSYNCFR);
return 0;
case ETMIDR:
*val = etm_read(ETMIDR);
return 0;
case ETMCCER:
*val = etm_read(ETMCCER);
return 0;
case ETMEXTINSELR:
*val = etm_read(ETMEXTINSELR);
return 0;
case ETMTESSEICR:
*val = etm_read(ETMTESSEICR);
return 0;
case ETMEIBCR:
*val = etm_read(ETMEIBCR);
return 0;
case ETMTSEVR:
*val = etm_read(ETMTSEVR);
return 0;
case ETMAUXCR:
*val = etm_read(ETMAUXCR);
return 0;
case ETMTRACEIDR:
*val = etm_read(ETMTRACEIDR);
return 0;
case ETMVMIDCVR:
*val = etm_read(ETMVMIDCVR);
return 0;
case ETMOSLSR:
*val = etm_read(ETMOSLSR);
return 0;
case ETMOSSRR:
*val = etm_read(ETMOSSRR);
return 0;
case ETMPDCR:
*val = etm_read(ETMPDCR);
return 0;
case ETMPDSR:
*val = etm_read(ETMPDSR);
return 0;
default:
*val = 0;
return -EINVAL;
}
}
int etm_writel_cp14(u32 reg, u32 val)
{
switch (reg) {
case ETMCR:
etm_write(val, ETMCR);
break;
case ETMTRIGGER:
etm_write(val, ETMTRIGGER);
break;
case ETMSR:
etm_write(val, ETMSR);
break;
case ETMTSSCR:
etm_write(val, ETMTSSCR);
break;
case ETMTEEVR:
etm_write(val, ETMTEEVR);
break;
case ETMTECR1:
etm_write(val, ETMTECR1);
break;
case ETMFFLR:
etm_write(val, ETMFFLR);
break;
case ETMACVRn(0):
etm_write(val, ETMACVR0);
break;
case ETMACVRn(1):
etm_write(val, ETMACVR1);
break;
case ETMACVRn(2):
etm_write(val, ETMACVR2);
break;
case ETMACVRn(3):
etm_write(val, ETMACVR3);
break;
case ETMACVRn(4):
etm_write(val, ETMACVR4);
break;
case ETMACVRn(5):
etm_write(val, ETMACVR5);
break;
case ETMACVRn(6):
etm_write(val, ETMACVR6);
break;
case ETMACVRn(7):
etm_write(val, ETMACVR7);
break;
case ETMACVRn(8):
etm_write(val, ETMACVR8);
break;
case ETMACVRn(9):
etm_write(val, ETMACVR9);
break;
case ETMACVRn(10):
etm_write(val, ETMACVR10);
break;
case ETMACVRn(11):
etm_write(val, ETMACVR11);
break;
case ETMACVRn(12):
etm_write(val, ETMACVR12);
break;
case ETMACVRn(13):
etm_write(val, ETMACVR13);
break;
case ETMACVRn(14):
etm_write(val, ETMACVR14);
break;
case ETMACVRn(15):
etm_write(val, ETMACVR15);
break;
case ETMACTRn(0):
etm_write(val, ETMACTR0);
break;
case ETMACTRn(1):
etm_write(val, ETMACTR1);
break;
case ETMACTRn(2):
etm_write(val, ETMACTR2);
break;
case ETMACTRn(3):
etm_write(val, ETMACTR3);
break;
case ETMACTRn(4):
etm_write(val, ETMACTR4);
break;
case ETMACTRn(5):
etm_write(val, ETMACTR5);
break;
case ETMACTRn(6):
etm_write(val, ETMACTR6);
break;
case ETMACTRn(7):
etm_write(val, ETMACTR7);
break;
case ETMACTRn(8):
etm_write(val, ETMACTR8);
break;
case ETMACTRn(9):
etm_write(val, ETMACTR9);
break;
case ETMACTRn(10):
etm_write(val, ETMACTR10);
break;
case ETMACTRn(11):
etm_write(val, ETMACTR11);
break;
case ETMACTRn(12):
etm_write(val, ETMACTR12);
break;
case ETMACTRn(13):
etm_write(val, ETMACTR13);
break;
case ETMACTRn(14):
etm_write(val, ETMACTR14);
break;
case ETMACTRn(15):
etm_write(val, ETMACTR15);
break;
case ETMCNTRLDVRn(0):
etm_write(val, ETMCNTRLDVR0);
break;
case ETMCNTRLDVRn(1):
etm_write(val, ETMCNTRLDVR1);
break;
case ETMCNTRLDVRn(2):
etm_write(val, ETMCNTRLDVR2);
break;
case ETMCNTRLDVRn(3):
etm_write(val, ETMCNTRLDVR3);
break;
case ETMCNTENRn(0):
etm_write(val, ETMCNTENR0);
break;
case ETMCNTENRn(1):
etm_write(val, ETMCNTENR1);
break;
case ETMCNTENRn(2):
etm_write(val, ETMCNTENR2);
break;
case ETMCNTENRn(3):
etm_write(val, ETMCNTENR3);
break;
case ETMCNTRLDEVRn(0):
etm_write(val, ETMCNTRLDEVR0);
break;
case ETMCNTRLDEVRn(1):
etm_write(val, ETMCNTRLDEVR1);
break;
case ETMCNTRLDEVRn(2):
etm_write(val, ETMCNTRLDEVR2);
break;
case ETMCNTRLDEVRn(3):
etm_write(val, ETMCNTRLDEVR3);
break;
case ETMCNTVRn(0):
etm_write(val, ETMCNTVR0);
break;
case ETMCNTVRn(1):
etm_write(val, ETMCNTVR1);
break;
case ETMCNTVRn(2):
etm_write(val, ETMCNTVR2);
break;
case ETMCNTVRn(3):
etm_write(val, ETMCNTVR3);
break;
case ETMSQ12EVR:
etm_write(val, ETMSQ12EVR);
break;
case ETMSQ21EVR:
etm_write(val, ETMSQ21EVR);
break;
case ETMSQ23EVR:
etm_write(val, ETMSQ23EVR);
break;
case ETMSQ31EVR:
etm_write(val, ETMSQ31EVR);
break;
case ETMSQ32EVR:
etm_write(val, ETMSQ32EVR);
break;
case ETMSQ13EVR:
etm_write(val, ETMSQ13EVR);
break;
case ETMSQR:
etm_write(val, ETMSQR);
break;
case ETMEXTOUTEVRn(0):
etm_write(val, ETMEXTOUTEVR0);
break;
case ETMEXTOUTEVRn(1):
etm_write(val, ETMEXTOUTEVR1);
break;
case ETMEXTOUTEVRn(2):
etm_write(val, ETMEXTOUTEVR2);
break;
case ETMEXTOUTEVRn(3):
etm_write(val, ETMEXTOUTEVR3);
break;
case ETMCIDCVRn(0):
etm_write(val, ETMCIDCVR0);
break;
case ETMCIDCVRn(1):
etm_write(val, ETMCIDCVR1);
break;
case ETMCIDCVRn(2):
etm_write(val, ETMCIDCVR2);
break;
case ETMCIDCMR:
etm_write(val, ETMCIDCMR);
break;
case ETMIMPSPEC0:
etm_write(val, ETMIMPSPEC0);
break;
case ETMIMPSPEC1:
etm_write(val, ETMIMPSPEC1);
break;
case ETMIMPSPEC2:
etm_write(val, ETMIMPSPEC2);
break;
case ETMIMPSPEC3:
etm_write(val, ETMIMPSPEC3);
break;
case ETMIMPSPEC4:
etm_write(val, ETMIMPSPEC4);
break;
case ETMIMPSPEC5:
etm_write(val, ETMIMPSPEC5);
break;
case ETMIMPSPEC6:
etm_write(val, ETMIMPSPEC6);
break;
case ETMIMPSPEC7:
etm_write(val, ETMIMPSPEC7);
break;
case ETMSYNCFR:
etm_write(val, ETMSYNCFR);
break;
case ETMEXTINSELR:
etm_write(val, ETMEXTINSELR);
break;
case ETMTESSEICR:
etm_write(val, ETMTESSEICR);
break;
case ETMEIBCR:
etm_write(val, ETMEIBCR);
break;
case ETMTSEVR:
etm_write(val, ETMTSEVR);
break;
case ETMAUXCR:
etm_write(val, ETMAUXCR);
break;
case ETMTRACEIDR:
etm_write(val, ETMTRACEIDR);
break;
case ETMVMIDCVR:
etm_write(val, ETMVMIDCVR);
break;
case ETMOSLAR:
etm_write(val, ETMOSLAR);
break;
case ETMOSSRR:
etm_write(val, ETMOSSRR);
break;
case ETMPDCR:
etm_write(val, ETMPDCR);
break;
case ETMPDSR:
etm_write(val, ETMPDSR);
break;
default:
return -EINVAL;
}
return 0;
}
/* Copyright (c) 2014-2015, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef _CORESIGHT_CORESIGHT_ETM_H
#define _CORESIGHT_CORESIGHT_ETM_H
#include <linux/spinlock.h>
#include "coresight-priv.h"
/*
* Device registers:
* 0x000 - 0x2FC: Trace registers
* 0x300 - 0x314: Management registers
* 0x318 - 0xEFC: Trace registers
*
* Coresight registers
* 0xF00 - 0xF9C: Management registers
* 0xFA0 - 0xFA4: Management registers in PFTv1.0
* Trace registers in PFTv1.1
* 0xFA8 - 0xFFC: Management registers
*/
/* Trace registers (0x000-0x2FC) */
#define ETMCR 0x000
#define ETMCCR 0x004
#define ETMTRIGGER 0x008
#define ETMSR 0x010
#define ETMSCR 0x014
#define ETMTSSCR 0x018
#define ETMTECR2 0x01c
#define ETMTEEVR 0x020
#define ETMTECR1 0x024
#define ETMFFLR 0x02c
#define ETMACVRn(n) (0x040 + (n * 4))
#define ETMACTRn(n) (0x080 + (n * 4))
#define ETMCNTRLDVRn(n) (0x140 + (n * 4))
#define ETMCNTENRn(n) (0x150 + (n * 4))
#define ETMCNTRLDEVRn(n) (0x160 + (n * 4))
#define ETMCNTVRn(n) (0x170 + (n * 4))
#define ETMSQ12EVR 0x180
#define ETMSQ21EVR 0x184
#define ETMSQ23EVR 0x188
#define ETMSQ31EVR 0x18c
#define ETMSQ32EVR 0x190
#define ETMSQ13EVR 0x194
#define ETMSQR 0x19c
#define ETMEXTOUTEVRn(n) (0x1a0 + (n * 4))
#define ETMCIDCVRn(n) (0x1b0 + (n * 4))
#define ETMCIDCMR 0x1bc
#define ETMIMPSPEC0 0x1c0
#define ETMIMPSPEC1 0x1c4
#define ETMIMPSPEC2 0x1c8
#define ETMIMPSPEC3 0x1cc
#define ETMIMPSPEC4 0x1d0
#define ETMIMPSPEC5 0x1d4
#define ETMIMPSPEC6 0x1d8
#define ETMIMPSPEC7 0x1dc
#define ETMSYNCFR 0x1e0
#define ETMIDR 0x1e4
#define ETMCCER 0x1e8
#define ETMEXTINSELR 0x1ec
#define ETMTESSEICR 0x1f0
#define ETMEIBCR 0x1f4
#define ETMTSEVR 0x1f8
#define ETMAUXCR 0x1fc
#define ETMTRACEIDR 0x200
#define ETMVMIDCVR 0x240
/* Management registers (0x300-0x314) */
#define ETMOSLAR 0x300
#define ETMOSLSR 0x304
#define ETMOSSRR 0x308
#define ETMPDCR 0x310
#define ETMPDSR 0x314
#define ETM_MAX_ADDR_CMP 16
#define ETM_MAX_CNTR 4
#define ETM_MAX_CTXID_CMP 3
/* Register definition */
/* ETMCR - 0x00 */
#define ETMCR_PWD_DWN BIT(0)
#define ETMCR_STALL_MODE BIT(7)
#define ETMCR_ETM_PRG BIT(10)
#define ETMCR_ETM_EN BIT(11)
#define ETMCR_CYC_ACC BIT(12)
#define ETMCR_CTXID_SIZE (BIT(14)|BIT(15))
#define ETMCR_TIMESTAMP_EN BIT(28)
/* ETMCCR - 0x04 */
#define ETMCCR_FIFOFULL BIT(23)
/* ETMPDCR - 0x310 */
#define ETMPDCR_PWD_UP BIT(3)
/* ETMTECR1 - 0x024 */
#define ETMTECR1_ADDR_COMP_1 BIT(0)
#define ETMTECR1_INC_EXC BIT(24)
#define ETMTECR1_START_STOP BIT(25)
/* ETMCCER - 0x1E8 */
#define ETMCCER_TIMESTAMP BIT(22)
#define ETM_MODE_EXCLUDE BIT(0)
#define ETM_MODE_CYCACC BIT(1)
#define ETM_MODE_STALL BIT(2)
#define ETM_MODE_TIMESTAMP BIT(3)
#define ETM_MODE_CTXID BIT(4)
#define ETM_MODE_ALL 0x1f
#define ETM_SQR_MASK 0x3
#define ETM_TRACEID_MASK 0x3f
#define ETM_EVENT_MASK 0x1ffff
#define ETM_SYNC_MASK 0xfff
#define ETM_ALL_MASK 0xffffffff
#define ETMSR_PROG_BIT 1
#define ETM_SEQ_STATE_MAX_VAL (0x2)
#define PORT_SIZE_MASK (GENMASK(21, 21) | GENMASK(6, 4))
#define ETM_HARD_WIRE_RES_A /* Hard wired, always true */ \
((0x0f << 0) | \
/* Resource index A */ \
(0x06 << 4))
#define ETM_ADD_COMP_0 /* Single addr comparator 1 */ \
((0x00 << 7) | \
/* Resource index B */ \
(0x00 << 11))
#define ETM_EVENT_NOT_A BIT(14) /* NOT(A) */
#define ETM_DEFAULT_EVENT_VAL (ETM_HARD_WIRE_RES_A | \
ETM_ADD_COMP_0 | \
ETM_EVENT_NOT_A)
/**
* struct etm_drvdata - specifics associated to an ETM component
* @base: memory mapped base address for this component.
* @dev: the device entity associated to this component.
* @csdev: component vitals needed by the framework.
* @clk: the clock this component is associated to.
* @spinlock: only one at a time pls.
* @cpu: the cpu this component is affined to.
* @port_size: port size as reported by ETMCR bit 4-6 and 21.
* @arch: ETM/PTM version number.
* @use_cpu14: true if management registers need to be accessed via CP14.
* @enable: is this ETM/PTM currently tracing.
* @sticky_enable: true if ETM base configuration has been done.
* @boot_enable:true if we should start tracing at boot time.
* @os_unlock: true if access to management registers is allowed.
* @nr_addr_cmp:Number of pairs of address comparators as found in ETMCCR.
* @nr_cntr: Number of counters as found in ETMCCR bit 13-15.
* @nr_ext_inp: Number of external input as found in ETMCCR bit 17-19.
* @nr_ext_out: Number of external output as found in ETMCCR bit 20-22.
* @nr_ctxid_cmp: Number of contextID comparators as found in ETMCCR bit 24-25.
* @etmccr: value of register ETMCCR.
* @etmccer: value of register ETMCCER.
* @traceid: value of the current ID for this component.
* @mode: controls various modes supported by this ETM/PTM.
* @ctrl: used in conjunction with @mode.
* @trigger_event: setting for register ETMTRIGGER.
* @startstop_ctrl: setting for register ETMTSSCR.
* @enable_event: setting for register ETMTEEVR.
* @enable_ctrl1: setting for register ETMTECR1.
* @fifofull_level: setting for register ETMFFLR.
* @addr_idx: index for the address comparator selection.
* @addr_val: value for address comparator register.
* @addr_acctype: access type for address comparator register.
* @addr_type: current status of the comparator register.
* @cntr_idx: index for the counter register selection.
* @cntr_rld_val: reload value of a counter register.
* @cntr_event: control for counter enable register.
* @cntr_rld_event: value for counter reload event register.
* @cntr_val: counter value register.
* @seq_12_event: event causing the transition from 1 to 2.
* @seq_21_event: event causing the transition from 2 to 1.
* @seq_23_event: event causing the transition from 2 to 3.
* @seq_31_event: event causing the transition from 3 to 1.
* @seq_32_event: event causing the transition from 3 to 2.
* @seq_13_event: event causing the transition from 1 to 3.
* @seq_curr_state: current value of the sequencer register.
* @ctxid_idx: index for the context ID registers.
* @ctxid_val: value for the context ID to trigger on.
* @ctxid_mask: mask applicable to all the context IDs.
* @sync_freq: Synchronisation frequency.
* @timestamp_event: Defines an event that requests the insertion
of a timestamp into the trace stream.
*/
struct etm_drvdata {
void __iomem *base;
struct device *dev;
struct coresight_device *csdev;
struct clk *clk;
spinlock_t spinlock;
int cpu;
int port_size;
u8 arch;
bool use_cp14;
bool enable;
bool sticky_enable;
bool boot_enable;
bool os_unlock;
u8 nr_addr_cmp;
u8 nr_cntr;
u8 nr_ext_inp;
u8 nr_ext_out;
u8 nr_ctxid_cmp;
u32 etmccr;
u32 etmccer;
u32 traceid;
u32 mode;
u32 ctrl;
u32 trigger_event;
u32 startstop_ctrl;
u32 enable_event;
u32 enable_ctrl1;
u32 fifofull_level;
u8 addr_idx;
u32 addr_val[ETM_MAX_ADDR_CMP];
u32 addr_acctype[ETM_MAX_ADDR_CMP];
u32 addr_type[ETM_MAX_ADDR_CMP];
u8 cntr_idx;
u32 cntr_rld_val[ETM_MAX_CNTR];
u32 cntr_event[ETM_MAX_CNTR];
u32 cntr_rld_event[ETM_MAX_CNTR];
u32 cntr_val[ETM_MAX_CNTR];
u32 seq_12_event;
u32 seq_21_event;
u32 seq_23_event;
u32 seq_31_event;
u32 seq_32_event;
u32 seq_13_event;
u32 seq_curr_state;
u8 ctxid_idx;
u32 ctxid_val[ETM_MAX_CTXID_CMP];
u32 ctxid_mask;
u32 sync_freq;
u32 timestamp_event;
};
enum etm_addr_type {
ETM_ADDR_TYPE_NONE,
ETM_ADDR_TYPE_SINGLE,
ETM_ADDR_TYPE_RANGE,
ETM_ADDR_TYPE_START,
ETM_ADDR_TYPE_STOP,
};
#endif
/* Copyright (c) 2011-2012, The Linux Foundation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/smp.h>
#include <linux/sysfs.h>
#include <linux/stat.h>
#include <linux/clk.h>
#include <linux/cpu.h>
#include <linux/of.h>
#include <linux/coresight.h>
#include <linux/amba/bus.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
#include <asm/sections.h>
#include "coresight-etm.h"
#ifdef CONFIG_CORESIGHT_SOURCE_ETM_DEFAULT_ENABLE
static int boot_enable = 1;
#else
static int boot_enable;
#endif
module_param_named(
boot_enable, boot_enable, int, S_IRUGO
);
/* The number of ETM/PTM currently registered */
static int etm_count;
static struct etm_drvdata *etmdrvdata[NR_CPUS];
static inline void etm_writel(struct etm_drvdata *drvdata,
u32 val, u32 off)
{
if (drvdata->use_cp14) {
if (etm_writel_cp14(off, val)) {
dev_err(drvdata->dev,
"invalid CP14 access to ETM reg: %#x", off);
}
} else {
writel_relaxed(val, drvdata->base + off);
}
}
static inline unsigned int etm_readl(struct etm_drvdata *drvdata, u32 off)
{
u32 val;
if (drvdata->use_cp14) {
if (etm_readl_cp14(off, &val)) {
dev_err(drvdata->dev,
"invalid CP14 access to ETM reg: %#x", off);
}
} else {
val = readl_relaxed(drvdata->base + off);
}
return val;
}
/*
* Memory mapped writes to clear os lock are not supported on some processors
* and OS lock must be unlocked before any memory mapped access on such
* processors, otherwise memory mapped reads/writes will be invalid.
*/
static void etm_os_unlock(void *info)
{
struct etm_drvdata *drvdata = (struct etm_drvdata *)info;
/* Writing any value to ETMOSLAR unlocks the trace registers */
etm_writel(drvdata, 0x0, ETMOSLAR);
isb();
}
static void etm_set_pwrdwn(struct etm_drvdata *drvdata)
{
u32 etmcr;
/* Ensure pending cp14 accesses complete before setting pwrdwn */
mb();
isb();
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= ETMCR_PWD_DWN;
etm_writel(drvdata, etmcr, ETMCR);
}
static void etm_clr_pwrdwn(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~ETMCR_PWD_DWN;
etm_writel(drvdata, etmcr, ETMCR);
/* Ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_set_pwrup(struct etm_drvdata *drvdata)
{
u32 etmpdcr;
etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
etmpdcr |= ETMPDCR_PWD_UP;
writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
/* Ensure pwrup completes before subsequent cp14 accesses */
mb();
isb();
}
static void etm_clr_pwrup(struct etm_drvdata *drvdata)
{
u32 etmpdcr;
/* Ensure pending cp14 accesses complete before clearing pwrup */
mb();
isb();
etmpdcr = readl_relaxed(drvdata->base + ETMPDCR);
etmpdcr &= ~ETMPDCR_PWD_UP;
writel_relaxed(etmpdcr, drvdata->base + ETMPDCR);
}
/**
* coresight_timeout_etm - loop until a bit has changed to a specific state.
* @drvdata: etm's private data structure.
* @offset: address of a register, starting from @addr.
* @position: the position of the bit of interest.
* @value: the value the bit should have.
*
* Basically the same as @coresight_timeout except for the register access
* method where we have to account for CP14 configurations.
* Return: 0 as soon as the bit has taken the desired state or -EAGAIN if
* TIMEOUT_US has elapsed, which ever happens first.
*/
static int coresight_timeout_etm(struct etm_drvdata *drvdata, u32 offset,
int position, int value)
{
int i;
u32 val;
for (i = TIMEOUT_US; i > 0; i--) {
val = etm_readl(drvdata, offset);
/* Waiting on the bit to go from 0 to 1 */
if (value) {
if (val & BIT(position))
return 0;
/* Waiting on the bit to go from 1 to 0 */
} else {
if (!(val & BIT(position)))
return 0;
}
/*
* Delay is arbitrary - the specification doesn't say how long
* we are expected to wait. Extra check required to make sure
* we don't wait needlessly on the last iteration.
*/
if (i - 1)
udelay(1);
}
return -EAGAIN;
}
static void etm_set_prog(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr |= ETMCR_ETM_PRG;
etm_writel(drvdata, etmcr, ETMCR);
/*
* Recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 1)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n", ETMSR);
}
}
static void etm_clr_prog(struct etm_drvdata *drvdata)
{
u32 etmcr;
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= ~ETMCR_ETM_PRG;
etm_writel(drvdata, etmcr, ETMCR);
/*
* Recommended by spec for cp14 accesses to ensure etmcr write is
* complete before polling etmsr
*/
isb();
if (coresight_timeout_etm(drvdata, ETMSR, ETMSR_PROG_BIT, 0)) {
dev_err(drvdata->dev,
"timeout observed when probing at offset %#x\n", ETMSR);
}
}
static void etm_set_default(struct etm_drvdata *drvdata)
{
int i;
drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
drvdata->enable_event = ETM_HARD_WIRE_RES_A;
drvdata->seq_12_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_21_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_23_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_31_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_32_event = ETM_DEFAULT_EVENT_VAL;
drvdata->seq_13_event = ETM_DEFAULT_EVENT_VAL;
drvdata->timestamp_event = ETM_DEFAULT_EVENT_VAL;
for (i = 0; i < drvdata->nr_cntr; i++) {
drvdata->cntr_rld_val[i] = 0x0;
drvdata->cntr_event[i] = ETM_DEFAULT_EVENT_VAL;
drvdata->cntr_rld_event[i] = ETM_DEFAULT_EVENT_VAL;
drvdata->cntr_val[i] = 0x0;
}
drvdata->seq_curr_state = 0x0;
drvdata->ctxid_idx = 0x0;
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
drvdata->ctxid_val[i] = 0x0;
drvdata->ctxid_mask = 0x0;
}
static void etm_enable_hw(void *info)
{
int i;
u32 etmcr;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
/* Turn engine on */
etm_clr_pwrdwn(drvdata);
/* Apply power to trace registers */
etm_set_pwrup(drvdata);
/* Make sure all registers are accessible */
etm_os_unlock(drvdata);
etm_set_prog(drvdata);
etmcr = etm_readl(drvdata, ETMCR);
etmcr &= (ETMCR_PWD_DWN | ETMCR_ETM_PRG);
etmcr |= drvdata->port_size;
etm_writel(drvdata, drvdata->ctrl | etmcr, ETMCR);
etm_writel(drvdata, drvdata->trigger_event, ETMTRIGGER);
etm_writel(drvdata, drvdata->startstop_ctrl, ETMTSSCR);
etm_writel(drvdata, drvdata->enable_event, ETMTEEVR);
etm_writel(drvdata, drvdata->enable_ctrl1, ETMTECR1);
etm_writel(drvdata, drvdata->fifofull_level, ETMFFLR);
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
etm_writel(drvdata, drvdata->addr_val[i], ETMACVRn(i));
etm_writel(drvdata, drvdata->addr_acctype[i], ETMACTRn(i));
}
for (i = 0; i < drvdata->nr_cntr; i++) {
etm_writel(drvdata, drvdata->cntr_rld_val[i], ETMCNTRLDVRn(i));
etm_writel(drvdata, drvdata->cntr_event[i], ETMCNTENRn(i));
etm_writel(drvdata, drvdata->cntr_rld_event[i],
ETMCNTRLDEVRn(i));
etm_writel(drvdata, drvdata->cntr_val[i], ETMCNTVRn(i));
}
etm_writel(drvdata, drvdata->seq_12_event, ETMSQ12EVR);
etm_writel(drvdata, drvdata->seq_21_event, ETMSQ21EVR);
etm_writel(drvdata, drvdata->seq_23_event, ETMSQ23EVR);
etm_writel(drvdata, drvdata->seq_31_event, ETMSQ31EVR);
etm_writel(drvdata, drvdata->seq_32_event, ETMSQ32EVR);
etm_writel(drvdata, drvdata->seq_13_event, ETMSQ13EVR);
etm_writel(drvdata, drvdata->seq_curr_state, ETMSQR);
for (i = 0; i < drvdata->nr_ext_out; i++)
etm_writel(drvdata, ETM_DEFAULT_EVENT_VAL, ETMEXTOUTEVRn(i));
for (i = 0; i < drvdata->nr_ctxid_cmp; i++)
etm_writel(drvdata, drvdata->ctxid_val[i], ETMCIDCVRn(i));
etm_writel(drvdata, drvdata->ctxid_mask, ETMCIDCMR);
etm_writel(drvdata, drvdata->sync_freq, ETMSYNCFR);
/* No external input selected */
etm_writel(drvdata, 0x0, ETMEXTINSELR);
etm_writel(drvdata, drvdata->timestamp_event, ETMTSEVR);
/* No auxiliary control selected */
etm_writel(drvdata, 0x0, ETMAUXCR);
etm_writel(drvdata, drvdata->traceid, ETMTRACEIDR);
/* No VMID comparator value selected */
etm_writel(drvdata, 0x0, ETMVMIDCVR);
/* Ensures trace output is enabled from this ETM */
etm_writel(drvdata, drvdata->ctrl | ETMCR_ETM_EN | etmcr, ETMCR);
etm_clr_prog(drvdata);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d enable smp call done\n", drvdata->cpu);
}
static int etm_trace_id_simple(struct etm_drvdata *drvdata)
{
if (!drvdata->enable)
return drvdata->traceid;
return (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
}
static int etm_trace_id(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
unsigned long flags;
int trace_id = -1;
if (!drvdata->enable)
return drvdata->traceid;
if (clk_prepare_enable(drvdata->clk))
goto out;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
trace_id = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return trace_id;
}
static int etm_enable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
int ret;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
goto err_clk;
spin_lock(&drvdata->spinlock);
/*
* Configure the ETM only if the CPU is online. If it isn't online
* hw configuration will take place when 'CPU_STARTING' is received
* in @etm_cpu_callback.
*/
if (cpu_online(drvdata->cpu)) {
ret = smp_call_function_single(drvdata->cpu,
etm_enable_hw, drvdata, 1);
if (ret)
goto err;
}
drvdata->enable = true;
drvdata->sticky_enable = true;
spin_unlock(&drvdata->spinlock);
dev_info(drvdata->dev, "ETM tracing enabled\n");
return 0;
err:
spin_unlock(&drvdata->spinlock);
clk_disable_unprepare(drvdata->clk);
err_clk:
return ret;
}
static void etm_disable_hw(void *info)
{
int i;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
etm_set_prog(drvdata);
/* Program trace enable to low by using always false event */
etm_writel(drvdata, ETM_HARD_WIRE_RES_A | ETM_EVENT_NOT_A, ETMTEEVR);
/* Read back sequencer and counters for post trace analysis */
drvdata->seq_curr_state = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
for (i = 0; i < drvdata->nr_cntr; i++)
drvdata->cntr_val[i] = etm_readl(drvdata, ETMCNTVRn(i));
etm_set_pwrdwn(drvdata);
CS_LOCK(drvdata->base);
dev_dbg(drvdata->dev, "cpu: %d disable smp call done\n", drvdata->cpu);
}
static void etm_disable(struct coresight_device *csdev)
{
struct etm_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent);
/*
* Taking hotplug lock here protects from clocks getting disabled
* with tracing being left on (crash scenario) if user disable occurs
* after cpu online mask indicates the cpu is offline but before the
* DYING hotplug callback is serviced by the ETM driver.
*/
get_online_cpus();
spin_lock(&drvdata->spinlock);
/*
* Executing etm_disable_hw on the cpu whose ETM is being disabled
* ensures that register writes occur when cpu is powered.
*/
smp_call_function_single(drvdata->cpu, etm_disable_hw, drvdata, 1);
drvdata->enable = false;
spin_unlock(&drvdata->spinlock);
put_online_cpus();
clk_disable_unprepare(drvdata->clk);
dev_info(drvdata->dev, "ETM tracing disabled\n");
}
static const struct coresight_ops_source etm_source_ops = {
.trace_id = etm_trace_id,
.enable = etm_enable,
.disable = etm_disable,
};
static const struct coresight_ops etm_cs_ops = {
.source_ops = &etm_source_ops,
};
static ssize_t nr_addr_cmp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_addr_cmp;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_addr_cmp);
static ssize_t nr_cntr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{ unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_cntr;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_cntr);
static ssize_t nr_ctxid_cmp_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->nr_ctxid_cmp;
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(nr_ctxid_cmp);
static ssize_t etmsr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long flags, val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = etm_readl(drvdata, ETMSR);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
return sprintf(buf, "%#lx\n", val);
}
static DEVICE_ATTR_RO(etmsr);
static ssize_t reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int i, ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val) {
spin_lock(&drvdata->spinlock);
drvdata->mode = ETM_MODE_EXCLUDE;
drvdata->ctrl = 0x0;
drvdata->trigger_event = ETM_DEFAULT_EVENT_VAL;
drvdata->startstop_ctrl = 0x0;
drvdata->addr_idx = 0x0;
for (i = 0; i < drvdata->nr_addr_cmp; i++) {
drvdata->addr_val[i] = 0x0;
drvdata->addr_acctype[i] = 0x0;
drvdata->addr_type[i] = ETM_ADDR_TYPE_NONE;
}
drvdata->cntr_idx = 0x0;
etm_set_default(drvdata);
spin_unlock(&drvdata->spinlock);
}
return size;
}
static DEVICE_ATTR_WO(reset);
static ssize_t mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->mode;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t mode_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->mode = val & ETM_MODE_ALL;
if (drvdata->mode & ETM_MODE_EXCLUDE)
drvdata->enable_ctrl1 |= ETMTECR1_INC_EXC;
else
drvdata->enable_ctrl1 &= ~ETMTECR1_INC_EXC;
if (drvdata->mode & ETM_MODE_CYCACC)
drvdata->ctrl |= ETMCR_CYC_ACC;
else
drvdata->ctrl &= ~ETMCR_CYC_ACC;
if (drvdata->mode & ETM_MODE_STALL) {
if (!(drvdata->etmccr & ETMCCR_FIFOFULL)) {
dev_warn(drvdata->dev, "stall mode not supported\n");
return -EINVAL;
}
drvdata->ctrl |= ETMCR_STALL_MODE;
} else
drvdata->ctrl &= ~ETMCR_STALL_MODE;
if (drvdata->mode & ETM_MODE_TIMESTAMP) {
if (!(drvdata->etmccer & ETMCCER_TIMESTAMP)) {
dev_warn(drvdata->dev, "timestamp not supported\n");
return -EINVAL;
}
drvdata->ctrl |= ETMCR_TIMESTAMP_EN;
} else
drvdata->ctrl &= ~ETMCR_TIMESTAMP_EN;
if (drvdata->mode & ETM_MODE_CTXID)
drvdata->ctrl |= ETMCR_CTXID_SIZE;
else
drvdata->ctrl &= ~ETMCR_CTXID_SIZE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(mode);
static ssize_t trigger_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->trigger_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t trigger_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->trigger_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(trigger_event);
static ssize_t enable_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->enable_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t enable_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->enable_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(enable_event);
static ssize_t fifofull_level_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->fifofull_level;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t fifofull_level_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->fifofull_level = val;
return size;
}
static DEVICE_ATTR_RW(fifofull_level);
static ssize_t addr_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->addr_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_addr_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->addr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_idx);
static ssize_t addr_single_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_single_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_SINGLE)) {
spin_unlock(&drvdata->spinlock);
return -EINVAL;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_SINGLE;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_single);
static ssize_t addr_range_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val1, val2;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val1 = drvdata->addr_val[idx];
val2 = drvdata->addr_val[idx + 1];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx %#lx\n", val1, val2);
}
static ssize_t addr_range_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
unsigned long val1, val2;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (sscanf(buf, "%lx %lx", &val1, &val2) != 2)
return -EINVAL;
/* Lower address comparator cannot have a higher address value */
if (val1 > val2)
return -EINVAL;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (idx % 2 != 0) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
if (!((drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_NONE) ||
(drvdata->addr_type[idx] == ETM_ADDR_TYPE_RANGE &&
drvdata->addr_type[idx + 1] == ETM_ADDR_TYPE_RANGE))) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val1;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_val[idx + 1] = val2;
drvdata->addr_type[idx + 1] = ETM_ADDR_TYPE_RANGE;
drvdata->enable_ctrl1 |= (1 << (idx/2));
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_range);
static ssize_t addr_start_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_start_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_START)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_START;
drvdata->startstop_ctrl |= (1 << idx);
drvdata->enable_ctrl1 |= BIT(25);
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_start);
static ssize_t addr_stop_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u8 idx;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
val = drvdata->addr_val[idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_stop_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
u8 idx;
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
idx = drvdata->addr_idx;
if (!(drvdata->addr_type[idx] == ETM_ADDR_TYPE_NONE ||
drvdata->addr_type[idx] == ETM_ADDR_TYPE_STOP)) {
spin_unlock(&drvdata->spinlock);
return -EPERM;
}
drvdata->addr_val[idx] = val;
drvdata->addr_type[idx] = ETM_ADDR_TYPE_STOP;
drvdata->startstop_ctrl |= (1 << (idx + 16));
drvdata->enable_ctrl1 |= ETMTECR1_START_STOP;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_stop);
static ssize_t addr_acctype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->addr_acctype[drvdata->addr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t addr_acctype_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->addr_acctype[drvdata->addr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(addr_acctype);
static ssize_t cntr_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->cntr_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_cntr)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->cntr_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_idx);
static ssize_t cntr_rld_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_val[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_rld_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_rld_val);
static ssize_t cntr_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_event);
static ssize_t cntr_rld_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->cntr_rld_event[drvdata->cntr_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t cntr_rld_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_rld_event[drvdata->cntr_idx] = val & ETM_EVENT_MASK;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_rld_event);
static ssize_t cntr_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int i, ret = 0;
u32 val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
spin_lock(&drvdata->spinlock);
for (i = 0; i < drvdata->nr_cntr; i++)
ret += sprintf(buf, "counter %d: %x\n",
i, drvdata->cntr_val[i]);
spin_unlock(&drvdata->spinlock);
return ret;
}
for (i = 0; i < drvdata->nr_cntr; i++) {
val = etm_readl(drvdata, ETMCNTVRn(i));
ret += sprintf(buf, "counter %d: %x\n", i, val);
}
return ret;
}
static ssize_t cntr_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->cntr_val[drvdata->cntr_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(cntr_val);
static ssize_t seq_12_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_12_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_12_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_12_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_12_event);
static ssize_t seq_21_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_21_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_21_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_21_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_21_event);
static ssize_t seq_23_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_23_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_23_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_23_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_23_event);
static ssize_t seq_31_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_31_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_31_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_31_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_31_event);
static ssize_t seq_32_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_32_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_32_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_32_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_32_event);
static ssize_t seq_13_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->seq_13_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_13_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->seq_13_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(seq_13_event);
static ssize_t seq_curr_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long val, flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
val = drvdata->seq_curr_state;
goto out;
}
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = (etm_readl(drvdata, ETMSQR) & ETM_SQR_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return sprintf(buf, "%#lx\n", val);
}
static ssize_t seq_curr_state_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val > ETM_SEQ_STATE_MAX_VAL)
return -EINVAL;
drvdata->seq_curr_state = val;
return size;
}
static DEVICE_ATTR_RW(seq_curr_state);
static ssize_t ctxid_idx_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ctxid_idx;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_idx_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
if (val >= drvdata->nr_ctxid_cmp)
return -EINVAL;
/*
* Use spinlock to ensure index doesn't change while it gets
* dereferenced multiple times within a spinlock block elsewhere.
*/
spin_lock(&drvdata->spinlock);
drvdata->ctxid_idx = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_idx);
static ssize_t ctxid_val_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
spin_lock(&drvdata->spinlock);
val = drvdata->ctxid_val[drvdata->ctxid_idx];
spin_unlock(&drvdata->spinlock);
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_val_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
spin_lock(&drvdata->spinlock);
drvdata->ctxid_val[drvdata->ctxid_idx] = val;
spin_unlock(&drvdata->spinlock);
return size;
}
static DEVICE_ATTR_RW(ctxid_val);
static ssize_t ctxid_mask_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->ctxid_mask;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t ctxid_mask_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->ctxid_mask = val;
return size;
}
static DEVICE_ATTR_RW(ctxid_mask);
static ssize_t sync_freq_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->sync_freq;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t sync_freq_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->sync_freq = val & ETM_SYNC_MASK;
return size;
}
static DEVICE_ATTR_RW(sync_freq);
static ssize_t timestamp_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
val = drvdata->timestamp_event;
return sprintf(buf, "%#lx\n", val);
}
static ssize_t timestamp_event_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->timestamp_event = val & ETM_EVENT_MASK;
return size;
}
static DEVICE_ATTR_RW(timestamp_event);
static ssize_t status_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
ret = sprintf(buf,
"ETMCCR: 0x%08x\n"
"ETMCCER: 0x%08x\n"
"ETMSCR: 0x%08x\n"
"ETMIDR: 0x%08x\n"
"ETMCR: 0x%08x\n"
"ETMTRACEIDR: 0x%08x\n"
"Enable event: 0x%08x\n"
"Enable start/stop: 0x%08x\n"
"Enable control: CR1 0x%08x CR2 0x%08x\n"
"CPU affinity: %d\n",
drvdata->etmccr, drvdata->etmccer,
etm_readl(drvdata, ETMSCR), etm_readl(drvdata, ETMIDR),
etm_readl(drvdata, ETMCR), etm_trace_id_simple(drvdata),
etm_readl(drvdata, ETMTEEVR),
etm_readl(drvdata, ETMTSSCR),
etm_readl(drvdata, ETMTECR1),
etm_readl(drvdata, ETMTECR2),
drvdata->cpu);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
return ret;
}
static DEVICE_ATTR_RO(status);
static ssize_t traceid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
unsigned long val, flags;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
if (!drvdata->enable) {
val = drvdata->traceid;
goto out;
}
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
spin_lock_irqsave(&drvdata->spinlock, flags);
CS_UNLOCK(drvdata->base);
val = (etm_readl(drvdata, ETMTRACEIDR) & ETM_TRACEID_MASK);
CS_LOCK(drvdata->base);
spin_unlock_irqrestore(&drvdata->spinlock, flags);
clk_disable_unprepare(drvdata->clk);
out:
return sprintf(buf, "%#lx\n", val);
}
static ssize_t traceid_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t size)
{
int ret;
unsigned long val;
struct etm_drvdata *drvdata = dev_get_drvdata(dev->parent);
ret = kstrtoul(buf, 16, &val);
if (ret)
return ret;
drvdata->traceid = val & ETM_TRACEID_MASK;
return size;
}
static DEVICE_ATTR_RW(traceid);
static struct attribute *coresight_etm_attrs[] = {
&dev_attr_nr_addr_cmp.attr,
&dev_attr_nr_cntr.attr,
&dev_attr_nr_ctxid_cmp.attr,
&dev_attr_etmsr.attr,
&dev_attr_reset.attr,
&dev_attr_mode.attr,
&dev_attr_trigger_event.attr,
&dev_attr_enable_event.attr,
&dev_attr_fifofull_level.attr,
&dev_attr_addr_idx.attr,
&dev_attr_addr_single.attr,
&dev_attr_addr_range.attr,
&dev_attr_addr_start.attr,
&dev_attr_addr_stop.attr,
&dev_attr_addr_acctype.attr,
&dev_attr_cntr_idx.attr,
&dev_attr_cntr_rld_val.attr,
&dev_attr_cntr_event.attr,
&dev_attr_cntr_rld_event.attr,
&dev_attr_cntr_val.attr,
&dev_attr_seq_12_event.attr,
&dev_attr_seq_21_event.attr,
&dev_attr_seq_23_event.attr,
&dev_attr_seq_31_event.attr,
&dev_attr_seq_32_event.attr,
&dev_attr_seq_13_event.attr,
&dev_attr_seq_curr_state.attr,
&dev_attr_ctxid_idx.attr,
&dev_attr_ctxid_val.attr,
&dev_attr_ctxid_mask.attr,
&dev_attr_sync_freq.attr,
&dev_attr_timestamp_event.attr,
&dev_attr_status.attr,
&dev_attr_traceid.attr,
NULL,
};
ATTRIBUTE_GROUPS(coresight_etm);
static int etm_cpu_callback(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
unsigned int cpu = (unsigned long)hcpu;
if (!etmdrvdata[cpu])
goto out;
switch (action & (~CPU_TASKS_FROZEN)) {
case CPU_STARTING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (!etmdrvdata[cpu]->os_unlock) {
etm_os_unlock(etmdrvdata[cpu]);
etmdrvdata[cpu]->os_unlock = true;
}
if (etmdrvdata[cpu]->enable)
etm_enable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
case CPU_ONLINE:
if (etmdrvdata[cpu]->boot_enable &&
!etmdrvdata[cpu]->sticky_enable)
coresight_enable(etmdrvdata[cpu]->csdev);
break;
case CPU_DYING:
spin_lock(&etmdrvdata[cpu]->spinlock);
if (etmdrvdata[cpu]->enable)
etm_disable_hw(etmdrvdata[cpu]);
spin_unlock(&etmdrvdata[cpu]->spinlock);
break;
}
out:
return NOTIFY_OK;
}
static struct notifier_block etm_cpu_notifier = {
.notifier_call = etm_cpu_callback,
};
static bool etm_arch_supported(u8 arch)
{
switch (arch) {
case ETM_ARCH_V3_3:
break;
case ETM_ARCH_V3_5:
break;
case PFT_ARCH_V1_0:
break;
case PFT_ARCH_V1_1:
break;
default:
return false;
}
return true;
}
static void etm_init_arch_data(void *info)
{
u32 etmidr;
u32 etmccr;
struct etm_drvdata *drvdata = info;
CS_UNLOCK(drvdata->base);
/* First dummy read */
(void)etm_readl(drvdata, ETMPDSR);
/* Provide power to ETM: ETMPDCR[3] == 1 */
etm_set_pwrup(drvdata);
/*
* Clear power down bit since when this bit is set writes to
* certain registers might be ignored.
*/
etm_clr_pwrdwn(drvdata);
/*
* Set prog bit. It will be set from reset but this is included to
* ensure it is set
*/
etm_set_prog(drvdata);
/* Find all capabilities */
etmidr = etm_readl(drvdata, ETMIDR);
drvdata->arch = BMVAL(etmidr, 4, 11);
drvdata->port_size = etm_readl(drvdata, ETMCR) & PORT_SIZE_MASK;
drvdata->etmccer = etm_readl(drvdata, ETMCCER);
etmccr = etm_readl(drvdata, ETMCCR);
drvdata->etmccr = etmccr;
drvdata->nr_addr_cmp = BMVAL(etmccr, 0, 3) * 2;
drvdata->nr_cntr = BMVAL(etmccr, 13, 15);
drvdata->nr_ext_inp = BMVAL(etmccr, 17, 19);
drvdata->nr_ext_out = BMVAL(etmccr, 20, 22);
drvdata->nr_ctxid_cmp = BMVAL(etmccr, 24, 25);
etm_set_pwrdwn(drvdata);
etm_clr_pwrup(drvdata);
CS_LOCK(drvdata->base);
}
static void etm_init_default_data(struct etm_drvdata *drvdata)
{
static int etm3x_traceid;
u32 flags = (1 << 0 | /* instruction execute*/
3 << 3 | /* ARM instruction */
0 << 5 | /* No data value comparison */
0 << 7 | /* No exact mach */
0 << 8 | /* Ignore context ID */
0 << 10); /* Security ignored */
/*
* Initial configuration only - guarantees sources handled by
* this driver have a unique ID at startup time but not between
* all other types of sources. For that we lean on the core
* framework.
*/
drvdata->traceid = etm3x_traceid++;
drvdata->ctrl = (ETMCR_CYC_ACC | ETMCR_TIMESTAMP_EN);
drvdata->enable_ctrl1 = ETMTECR1_ADDR_COMP_1;
if (drvdata->nr_addr_cmp >= 2) {
drvdata->addr_val[0] = (u32) _stext;
drvdata->addr_val[1] = (u32) _etext;
drvdata->addr_acctype[0] = flags;
drvdata->addr_acctype[1] = flags;
drvdata->addr_type[0] = ETM_ADDR_TYPE_RANGE;
drvdata->addr_type[1] = ETM_ADDR_TYPE_RANGE;
}
etm_set_default(drvdata);
}
static int etm_probe(struct amba_device *adev, const struct amba_id *id)
{
int ret;
void __iomem *base;
struct device *dev = &adev->dev;
struct coresight_platform_data *pdata = NULL;
struct etm_drvdata *drvdata;
struct resource *res = &adev->res;
struct coresight_desc *desc;
struct device_node *np = adev->dev.of_node;
desc = devm_kzalloc(dev, sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
drvdata = devm_kzalloc(dev, sizeof(*drvdata), GFP_KERNEL);
if (!drvdata)
return -ENOMEM;
if (np) {
pdata = of_get_coresight_platform_data(dev, np);
if (IS_ERR(pdata))
return PTR_ERR(pdata);
adev->dev.platform_data = pdata;
drvdata->use_cp14 = of_property_read_bool(np, "arm,cp14");
}
drvdata->dev = &adev->dev;
dev_set_drvdata(dev, drvdata);
/* Validity for the resource is already checked by the AMBA core */
base = devm_ioremap_resource(dev, res);
if (IS_ERR(base))
return PTR_ERR(base);
drvdata->base = base;
spin_lock_init(&drvdata->spinlock);
drvdata->clk = adev->pclk;
ret = clk_prepare_enable(drvdata->clk);
if (ret)
return ret;
drvdata->cpu = pdata ? pdata->cpu : 0;
get_online_cpus();
etmdrvdata[drvdata->cpu] = drvdata;
if (!smp_call_function_single(drvdata->cpu, etm_os_unlock, drvdata, 1))
drvdata->os_unlock = true;
if (smp_call_function_single(drvdata->cpu,
etm_init_arch_data, drvdata, 1))
dev_err(dev, "ETM arch init failed\n");
if (!etm_count++)
register_hotcpu_notifier(&etm_cpu_notifier);
put_online_cpus();
if (etm_arch_supported(drvdata->arch) == false) {
ret = -EINVAL;
goto err_arch_supported;
}
etm_init_default_data(drvdata);
clk_disable_unprepare(drvdata->clk);
desc->type = CORESIGHT_DEV_TYPE_SOURCE;
desc->subtype.source_subtype = CORESIGHT_DEV_SUBTYPE_SOURCE_PROC;
desc->ops = &etm_cs_ops;
desc->pdata = pdata;
desc->dev = dev;
desc->groups = coresight_etm_groups;
drvdata->csdev = coresight_register(desc);
if (IS_ERR(drvdata->csdev)) {
ret = PTR_ERR(drvdata->csdev);
goto err_arch_supported;
}
dev_info(dev, "ETM initialized\n");
if (boot_enable) {
coresight_enable(drvdata->csdev);
drvdata->boot_enable = true;
}
return 0;
err_arch_supported:
clk_disable_unprepare(drvdata->clk);
if (--etm_count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
return ret;
}
static int etm_remove(struct amba_device *adev)
{
struct etm_drvdata *drvdata = amba_get_drvdata(adev);
coresight_unregister(drvdata->csdev);
if (--etm_count == 0)
unregister_hotcpu_notifier(&etm_cpu_notifier);
return 0;
}
static struct amba_id etm_ids[] = {
{ /* ETM 3.3 */
.id = 0x0003b921,
.mask = 0x0003ffff,
},
{ /* ETM 3.5 */
.id = 0x0003b956,
.mask = 0x0003ffff,
},
{ /* PTM 1.0 */
.id = 0x0003b950,
.mask = 0x0003ffff,
},
{ /* PTM 1.1 */
.id = 0x0003b95f,
.mask = 0x0003ffff,
},
{ 0, 0},
};
static struct amba_driver etm_driver = {
.drv = {
.name = "coresight-etm3x",
.owner = THIS_MODULE,
},
.probe = etm_probe,
.remove = etm_remove,
.id_table = etm_ids,
};
int __init etm_init(void)
{
return amba_driver_register(&etm_driver);
}
module_init(etm_init);
void __exit etm_exit(void)
{
amba_driver_unregister(&etm_driver);
}
module_exit(etm_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("CoreSight Program Flow Trace driver");
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment