Commit a9742b79 authored by Dave Airlie's avatar Dave Airlie

Merge tag 'drm-amdkfd-next-2017-12-24' of git://people.freedesktop.org/~gabbayo/linux into drm-next

- Add CWSR (compute wave save restore) support for GFX8 (Carrizo)
- Fix SDMA user-mode queues support for GFX7 (Kaveri)
- Add SDMA user-mode queues support for GFX8 (Carrizo)
- Allow HWS (hardware scheduling) to schedule multiple processes concurrently
- Add debugfs support
- Simplify process locking and lock dependencies
- Refactoring topology code to prepare for dGPU support + fixes to that code
  - Add option to generate dummy/virtual CRAT table when its missing or deformed
  - Recognize CPUs other then APUs as compute entities
- Various clean ups and bug fixes

I have not yet sent the dGPU topology code because it depends on a patch
for the PCI subsystem that adds PCIe atomics support. Once that patch is
upstreamed we can continue with the rest of the dGPU code.

* tag 'drm-amdkfd-next-2017-12-24' of git://people.freedesktop.org/~gabbayo/linux: (53 commits)
  drm/amdgpu: Add support for reporting VRAM usage
  drm/amdkfd: Ignore ACPI CRAT for non-APU systems
  drm/amdkfd: Module option to disable CRAT table
  drm/amdkfd: Add AQL Queue Memory flag on topology
  drm/amdkfd: Fixup incorrect info in the CZ CRAT table
  drm/amdkfd: Add perf counters to topology
  drm/amdkfd: Add topology support for dGPUs
  drm/amdkfd: Add topology support for CPUs
  drm/amdkfd: Fix sibling_map[] size
  drm/amdkfd: Simplify counting of memory banks
  drm/amdkfd: Turn verbose topology messages into pr_debug
  drm/amdkfd: sync IOLINK defines to thunk spec
  drm/amdkfd: Support enumerating non-GPU devices
  drm/amdkfd: Decouple CRAT parsing from device list update
  drm/amdkfd: Reorganize CRAT fetching from ACPI
  drm/amdkfd: Group up CRAT related functions
  drm/amdkfd: Fix memory leaks in kfd topology
  drm/amdkfd: Topology: Fix location_id
  drm/amdkfd: Update number of compute unit from KGD
  drm/amd: Remove get_vmem_size from KGD-KFD interface
  ...
parents 35087762 9f0a0b41
...@@ -959,6 +959,7 @@ struct amdgpu_gfx_config { ...@@ -959,6 +959,7 @@ struct amdgpu_gfx_config {
}; };
struct amdgpu_cu_info { struct amdgpu_cu_info {
uint32_t simd_per_cu;
uint32_t max_waves_per_simd; uint32_t max_waves_per_simd;
uint32_t wave_front_size; uint32_t wave_front_size;
uint32_t max_scratch_slots_per_cu; uint32_t max_scratch_slots_per_cu;
......
...@@ -275,14 +275,34 @@ void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj) ...@@ -275,14 +275,34 @@ void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj)
kfree(mem); kfree(mem);
} }
uint64_t get_vmem_size(struct kgd_dev *kgd) void get_local_mem_info(struct kgd_dev *kgd,
struct kfd_local_mem_info *mem_info)
{ {
struct amdgpu_device *adev = struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
(struct amdgpu_device *)kgd; uint64_t address_mask = adev->dev->dma_mask ? ~*adev->dev->dma_mask :
~((1ULL << 32) - 1);
resource_size_t aper_limit = adev->mc.aper_base + adev->mc.aper_size;
memset(mem_info, 0, sizeof(*mem_info));
if (!(adev->mc.aper_base & address_mask || aper_limit & address_mask)) {
mem_info->local_mem_size_public = adev->mc.visible_vram_size;
mem_info->local_mem_size_private = adev->mc.real_vram_size -
adev->mc.visible_vram_size;
} else {
mem_info->local_mem_size_public = 0;
mem_info->local_mem_size_private = adev->mc.real_vram_size;
}
mem_info->vram_width = adev->mc.vram_width;
BUG_ON(kgd == NULL); pr_debug("Address base: 0x%llx limit 0x%llx public 0x%llx private 0x%llx\n",
adev->mc.aper_base, aper_limit,
mem_info->local_mem_size_public,
mem_info->local_mem_size_private);
return adev->mc.real_vram_size; if (amdgpu_sriov_vf(adev))
mem_info->mem_clk_max = adev->clock.default_mclk / 100;
else
mem_info->mem_clk_max = amdgpu_dpm_get_mclk(adev, false) / 100;
} }
uint64_t get_gpu_clock_counter(struct kgd_dev *kgd) uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
...@@ -298,6 +318,39 @@ uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd) ...@@ -298,6 +318,39 @@ uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
{ {
struct amdgpu_device *adev = (struct amdgpu_device *)kgd; struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
/* The sclk is in quantas of 10kHz */ /* the sclk is in quantas of 10kHz */
return adev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100; if (amdgpu_sriov_vf(adev))
return adev->clock.default_sclk / 100;
return amdgpu_dpm_get_sclk(adev, false) / 100;
}
void get_cu_info(struct kgd_dev *kgd, struct kfd_cu_info *cu_info)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
struct amdgpu_cu_info acu_info = adev->gfx.cu_info;
memset(cu_info, 0, sizeof(*cu_info));
if (sizeof(cu_info->cu_bitmap) != sizeof(acu_info.bitmap))
return;
cu_info->cu_active_number = acu_info.number;
cu_info->cu_ao_mask = acu_info.ao_cu_mask;
memcpy(&cu_info->cu_bitmap[0], &acu_info.bitmap[0],
sizeof(acu_info.bitmap));
cu_info->num_shader_engines = adev->gfx.config.max_shader_engines;
cu_info->num_shader_arrays_per_engine = adev->gfx.config.max_sh_per_se;
cu_info->num_cu_per_sh = adev->gfx.config.max_cu_per_sh;
cu_info->simd_per_cu = acu_info.simd_per_cu;
cu_info->max_waves_per_simd = acu_info.max_waves_per_simd;
cu_info->wave_front_size = acu_info.wave_front_size;
cu_info->max_scratch_slots_per_cu = acu_info.max_scratch_slots_per_cu;
cu_info->lds_size = acu_info.lds_size;
}
uint64_t amdgpu_amdkfd_get_vram_usage(struct kgd_dev *kgd)
{
struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
return amdgpu_vram_mgr_usage(&adev->mman.bdev.man[TTM_PL_VRAM]);
} }
...@@ -56,10 +56,13 @@ int alloc_gtt_mem(struct kgd_dev *kgd, size_t size, ...@@ -56,10 +56,13 @@ int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
void **mem_obj, uint64_t *gpu_addr, void **mem_obj, uint64_t *gpu_addr,
void **cpu_ptr); void **cpu_ptr);
void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj); void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj);
uint64_t get_vmem_size(struct kgd_dev *kgd); void get_local_mem_info(struct kgd_dev *kgd,
struct kfd_local_mem_info *mem_info);
uint64_t get_gpu_clock_counter(struct kgd_dev *kgd); uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);
uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd); uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
void get_cu_info(struct kgd_dev *kgd, struct kfd_cu_info *cu_info);
uint64_t amdgpu_amdkfd_get_vram_usage(struct kgd_dev *kgd);
#define read_user_wptr(mmptr, wptr, dst) \ #define read_user_wptr(mmptr, wptr, dst) \
({ \ ({ \
......
...@@ -105,7 +105,14 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, ...@@ -105,7 +105,14 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr, uint32_t queue_id, uint32_t __user *wptr,
uint32_t wptr_shift, uint32_t wptr_mask, uint32_t wptr_shift, uint32_t wptr_mask,
struct mm_struct *mm); struct mm_struct *mm);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd); static int kgd_hqd_dump(struct kgd_dev *kgd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm);
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id); uint32_t pipe_id, uint32_t queue_id);
...@@ -166,7 +173,7 @@ static int get_tile_config(struct kgd_dev *kgd, ...@@ -166,7 +173,7 @@ static int get_tile_config(struct kgd_dev *kgd,
static const struct kfd2kgd_calls kfd2kgd = { static const struct kfd2kgd_calls kfd2kgd = {
.init_gtt_mem_allocation = alloc_gtt_mem, .init_gtt_mem_allocation = alloc_gtt_mem,
.free_gtt_mem = free_gtt_mem, .free_gtt_mem = free_gtt_mem,
.get_vmem_size = get_vmem_size, .get_local_mem_info = get_local_mem_info,
.get_gpu_clock_counter = get_gpu_clock_counter, .get_gpu_clock_counter = get_gpu_clock_counter,
.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz, .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
.alloc_pasid = amdgpu_vm_alloc_pasid, .alloc_pasid = amdgpu_vm_alloc_pasid,
...@@ -177,6 +184,8 @@ static const struct kfd2kgd_calls kfd2kgd = { ...@@ -177,6 +184,8 @@ static const struct kfd2kgd_calls kfd2kgd = {
.init_interrupts = kgd_init_interrupts, .init_interrupts = kgd_init_interrupts,
.hqd_load = kgd_hqd_load, .hqd_load = kgd_hqd_load,
.hqd_sdma_load = kgd_hqd_sdma_load, .hqd_sdma_load = kgd_hqd_sdma_load,
.hqd_dump = kgd_hqd_dump,
.hqd_sdma_dump = kgd_hqd_sdma_dump,
.hqd_is_occupied = kgd_hqd_is_occupied, .hqd_is_occupied = kgd_hqd_is_occupied,
.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
.hqd_destroy = kgd_hqd_destroy, .hqd_destroy = kgd_hqd_destroy,
...@@ -191,6 +200,8 @@ static const struct kfd2kgd_calls kfd2kgd = { ...@@ -191,6 +200,8 @@ static const struct kfd2kgd_calls kfd2kgd = {
.get_fw_version = get_fw_version, .get_fw_version = get_fw_version,
.set_scratch_backing_va = set_scratch_backing_va, .set_scratch_backing_va = set_scratch_backing_va,
.get_tile_config = get_tile_config, .get_tile_config = get_tile_config,
.get_cu_info = get_cu_info,
.get_vram_usage = amdgpu_amdkfd_get_vram_usage
}; };
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void) struct kfd2kgd_calls *amdgpu_amdkfd_gfx_7_get_functions(void)
...@@ -375,7 +386,44 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, ...@@ -375,7 +386,44 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
return 0; return 0;
} }
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd) static int kgd_hqd_dump(struct kgd_dev *kgd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t i = 0, reg;
#define HQD_N_REGS (35+4)
#define DUMP_REG(addr) do { \
if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
break; \
(*dump)[i][0] = (addr) << 2; \
(*dump)[i++][1] = RREG32(addr); \
} while (0)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
acquire_queue(kgd, pipe_id, queue_id);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_MQD_CONTROL; reg++)
DUMP_REG(reg);
release_queue(kgd);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm)
{ {
struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct cik_sdma_rlc_registers *m; struct cik_sdma_rlc_registers *m;
...@@ -410,10 +458,17 @@ static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd) ...@@ -410,10 +458,17 @@ static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data); WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
} }
WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data = REG_SET_FIELD(m->sdma_rlc_doorbell, SDMA0_RLC0_DOORBELL,
m->sdma_rlc_doorbell); ENABLE, 1);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdma_rlc_rb_rptr);
if (read_user_wptr(mm, wptr, data))
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
else
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
m->sdma_rlc_rb_rptr);
WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR, WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
m->sdma_rlc_virtual_addr); m->sdma_rlc_virtual_addr);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdma_rlc_rb_base);
...@@ -423,8 +478,37 @@ static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd) ...@@ -423,8 +478,37 @@ static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
m->sdma_rlc_rb_rptr_addr_lo); m->sdma_rlc_rb_rptr_addr_lo);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI, WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
m->sdma_rlc_rb_rptr_addr_hi); m->sdma_rlc_rb_rptr_addr_hi);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
m->sdma_rlc_rb_cntl); data = REG_SET_FIELD(m->sdma_rlc_rb_cntl, SDMA0_RLC0_RB_CNTL,
RB_ENABLE, 1);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
return 0;
}
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;
uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (19+4)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
DUMP_REG(sdma_offset + reg);
for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
reg++)
DUMP_REG(sdma_offset + reg);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0; return 0;
} }
...@@ -575,7 +659,7 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, ...@@ -575,7 +659,7 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
struct cik_sdma_rlc_registers *m; struct cik_sdma_rlc_registers *m;
uint32_t sdma_base_addr; uint32_t sdma_base_addr;
uint32_t temp; uint32_t temp;
int timeout = utimeout; unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
m = get_sdma_mqd(mqd); m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(m); sdma_base_addr = get_sdma_base_addr(m);
...@@ -588,10 +672,9 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, ...@@ -588,10 +672,9 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT) if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT)
break; break;
if (timeout <= 0) if (time_after(jiffies, end_jiffies))
return -ETIME; return -ETIME;
msleep(20); usleep_range(500, 1000);
timeout -= 20;
} }
WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
...@@ -599,6 +682,8 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, ...@@ -599,6 +682,8 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) | RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK); SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
m->sdma_rlc_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
return 0; return 0;
} }
......
...@@ -45,7 +45,7 @@ enum hqd_dequeue_request_type { ...@@ -45,7 +45,7 @@ enum hqd_dequeue_request_type {
RESET_WAVES RESET_WAVES
}; };
struct cik_sdma_rlc_registers; struct vi_sdma_mqd;
/* /*
* Register access functions * Register access functions
...@@ -64,7 +64,14 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, ...@@ -64,7 +64,14 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
uint32_t queue_id, uint32_t __user *wptr, uint32_t queue_id, uint32_t __user *wptr,
uint32_t wptr_shift, uint32_t wptr_mask, uint32_t wptr_shift, uint32_t wptr_mask,
struct mm_struct *mm); struct mm_struct *mm);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd); static int kgd_hqd_dump(struct kgd_dev *kgd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm);
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id); uint32_t pipe_id, uint32_t queue_id);
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd); static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
...@@ -125,7 +132,7 @@ static int get_tile_config(struct kgd_dev *kgd, ...@@ -125,7 +132,7 @@ static int get_tile_config(struct kgd_dev *kgd,
static const struct kfd2kgd_calls kfd2kgd = { static const struct kfd2kgd_calls kfd2kgd = {
.init_gtt_mem_allocation = alloc_gtt_mem, .init_gtt_mem_allocation = alloc_gtt_mem,
.free_gtt_mem = free_gtt_mem, .free_gtt_mem = free_gtt_mem,
.get_vmem_size = get_vmem_size, .get_local_mem_info = get_local_mem_info,
.get_gpu_clock_counter = get_gpu_clock_counter, .get_gpu_clock_counter = get_gpu_clock_counter,
.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz, .get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
.alloc_pasid = amdgpu_vm_alloc_pasid, .alloc_pasid = amdgpu_vm_alloc_pasid,
...@@ -136,6 +143,8 @@ static const struct kfd2kgd_calls kfd2kgd = { ...@@ -136,6 +143,8 @@ static const struct kfd2kgd_calls kfd2kgd = {
.init_interrupts = kgd_init_interrupts, .init_interrupts = kgd_init_interrupts,
.hqd_load = kgd_hqd_load, .hqd_load = kgd_hqd_load,
.hqd_sdma_load = kgd_hqd_sdma_load, .hqd_sdma_load = kgd_hqd_sdma_load,
.hqd_dump = kgd_hqd_dump,
.hqd_sdma_dump = kgd_hqd_sdma_dump,
.hqd_is_occupied = kgd_hqd_is_occupied, .hqd_is_occupied = kgd_hqd_is_occupied,
.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied, .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
.hqd_destroy = kgd_hqd_destroy, .hqd_destroy = kgd_hqd_destroy,
...@@ -152,6 +161,8 @@ static const struct kfd2kgd_calls kfd2kgd = { ...@@ -152,6 +161,8 @@ static const struct kfd2kgd_calls kfd2kgd = {
.get_fw_version = get_fw_version, .get_fw_version = get_fw_version,
.set_scratch_backing_va = set_scratch_backing_va, .set_scratch_backing_va = set_scratch_backing_va,
.get_tile_config = get_tile_config, .get_tile_config = get_tile_config,
.get_cu_info = get_cu_info,
.get_vram_usage = amdgpu_amdkfd_get_vram_usage
}; };
struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void) struct kfd2kgd_calls *amdgpu_amdkfd_gfx_8_0_get_functions(void)
...@@ -268,9 +279,15 @@ static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id) ...@@ -268,9 +279,15 @@ static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
return 0; return 0;
} }
static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m) static inline uint32_t get_sdma_base_addr(struct vi_sdma_mqd *m)
{ {
return 0; uint32_t retval;
retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
m->sdma_queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
pr_debug("kfd: sdma base address: 0x%x\n", retval);
return retval;
} }
static inline struct vi_mqd *get_mqd(void *mqd) static inline struct vi_mqd *get_mqd(void *mqd)
...@@ -278,9 +295,9 @@ static inline struct vi_mqd *get_mqd(void *mqd) ...@@ -278,9 +295,9 @@ static inline struct vi_mqd *get_mqd(void *mqd)
return (struct vi_mqd *)mqd; return (struct vi_mqd *)mqd;
} }
static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
{ {
return (struct cik_sdma_rlc_registers *)mqd; return (struct vi_sdma_mqd *)mqd;
} }
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
...@@ -358,8 +375,138 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id, ...@@ -358,8 +375,138 @@ static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
return 0; return 0;
} }
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd) static int kgd_hqd_dump(struct kgd_dev *kgd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{ {
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t i = 0, reg;
#define HQD_N_REGS (54+4)
#define DUMP_REG(addr) do { \
if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
break; \
(*dump)[i][0] = (addr) << 2; \
(*dump)[i++][1] = RREG32(addr); \
} while (0)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
acquire_queue(kgd, pipe_id, queue_id);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE0);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE1);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE2);
DUMP_REG(mmCOMPUTE_STATIC_THREAD_MGMT_SE3);
for (reg = mmCP_MQD_BASE_ADDR; reg <= mmCP_HQD_EOP_DONES; reg++)
DUMP_REG(reg);
release_queue(kgd);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0;
}
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct vi_sdma_mqd *m;
unsigned long end_jiffies;
uint32_t sdma_base_addr;
uint32_t data;
m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(m);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
end_jiffies = msecs_to_jiffies(2000) + jiffies;
while (true) {
data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break;
if (time_after(jiffies, end_jiffies))
return -ETIME;
usleep_range(500, 1000);
}
if (m->sdma_engine_id) {
data = RREG32(mmSDMA1_GFX_CONTEXT_CNTL);
data = REG_SET_FIELD(data, SDMA1_GFX_CONTEXT_CNTL,
RESUME_CTX, 0);
WREG32(mmSDMA1_GFX_CONTEXT_CNTL, data);
} else {
data = RREG32(mmSDMA0_GFX_CONTEXT_CNTL);
data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
RESUME_CTX, 0);
WREG32(mmSDMA0_GFX_CONTEXT_CNTL, data);
}
data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
ENABLE, 1);
WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
if (read_user_wptr(mm, wptr, data))
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, data);
else
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
m->sdmax_rlcx_rb_rptr);
WREG32(sdma_base_addr + mmSDMA0_RLC0_VIRTUAL_ADDR,
m->sdmax_rlcx_virtual_addr);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
m->sdmax_rlcx_rb_base_hi);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
m->sdmax_rlcx_rb_rptr_addr_lo);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
m->sdmax_rlcx_rb_rptr_addr_hi);
data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
RB_ENABLE, 1);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
return 0;
}
static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs)
{
struct amdgpu_device *adev = get_amdgpu_device(kgd);
uint32_t sdma_offset = engine_id * SDMA1_REGISTER_OFFSET +
queue_id * KFD_VI_SDMA_QUEUE_OFFSET;
uint32_t i = 0, reg;
#undef HQD_N_REGS
#define HQD_N_REGS (19+4+2+3+7)
*dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
if (*dump == NULL)
return -ENOMEM;
for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
DUMP_REG(sdma_offset + reg);
for (reg = mmSDMA0_RLC0_VIRTUAL_ADDR; reg <= mmSDMA0_RLC0_WATERMARK;
reg++)
DUMP_REG(sdma_offset + reg);
for (reg = mmSDMA0_RLC0_CSA_ADDR_LO; reg <= mmSDMA0_RLC0_CSA_ADDR_HI;
reg++)
DUMP_REG(sdma_offset + reg);
for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN; reg <= mmSDMA0_RLC0_DUMMY_REG;
reg++)
DUMP_REG(sdma_offset + reg);
for (reg = mmSDMA0_RLC0_MIDCMD_DATA0; reg <= mmSDMA0_RLC0_MIDCMD_CNTL;
reg++)
DUMP_REG(sdma_offset + reg);
WARN_ON_ONCE(i != HQD_N_REGS);
*n_regs = i;
return 0; return 0;
} }
...@@ -388,7 +535,7 @@ static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address, ...@@ -388,7 +535,7 @@ static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd) static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{ {
struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct cik_sdma_rlc_registers *m; struct vi_sdma_mqd *m;
uint32_t sdma_base_addr; uint32_t sdma_base_addr;
uint32_t sdma_rlc_rb_cntl; uint32_t sdma_rlc_rb_cntl;
...@@ -509,10 +656,10 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, ...@@ -509,10 +656,10 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
unsigned int utimeout) unsigned int utimeout)
{ {
struct amdgpu_device *adev = get_amdgpu_device(kgd); struct amdgpu_device *adev = get_amdgpu_device(kgd);
struct cik_sdma_rlc_registers *m; struct vi_sdma_mqd *m;
uint32_t sdma_base_addr; uint32_t sdma_base_addr;
uint32_t temp; uint32_t temp;
int timeout = utimeout; unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
m = get_sdma_mqd(mqd); m = get_sdma_mqd(mqd);
sdma_base_addr = get_sdma_base_addr(m); sdma_base_addr = get_sdma_base_addr(m);
...@@ -523,18 +670,19 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd, ...@@ -523,18 +670,19 @@ static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
while (true) { while (true) {
temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS); temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
if (temp & SDMA0_STATUS_REG__RB_CMD_IDLE__SHIFT) if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
break; break;
if (timeout <= 0) if (time_after(jiffies, end_jiffies))
return -ETIME; return -ETIME;
msleep(20); usleep_range(500, 1000);
timeout -= 20;
} }
WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, 0); WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR, 0); RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, 0); SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
return 0; return 0;
} }
......
...@@ -562,7 +562,7 @@ ...@@ -562,7 +562,7 @@
#define PRIVATE_BASE(x) ((x) << 0) /* scratch */ #define PRIVATE_BASE(x) ((x) << 0) /* scratch */
#define SHARED_BASE(x) ((x) << 16) /* LDS */ #define SHARED_BASE(x) ((x) << 16) /* LDS */
#define KFD_CIK_SDMA_QUEUE_OFFSET 0x200 #define KFD_CIK_SDMA_QUEUE_OFFSET (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL)
/* valid for both DEFAULT_MTYPE and APE1_MTYPE */ /* valid for both DEFAULT_MTYPE and APE1_MTYPE */
enum { enum {
......
...@@ -48,6 +48,8 @@ ...@@ -48,6 +48,8 @@
#include "oss/oss_2_0_d.h" #include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h" #include "oss/oss_2_0_sh_mask.h"
#define NUM_SIMD_PER_CU 0x4 /* missing from the gfx_7 IP headers */
#define GFX7_NUM_GFX_RINGS 1 #define GFX7_NUM_GFX_RINGS 1
#define GFX7_MEC_HPD_SIZE 2048 #define GFX7_MEC_HPD_SIZE 2048
...@@ -5277,6 +5279,11 @@ static void gfx_v7_0_get_cu_info(struct amdgpu_device *adev) ...@@ -5277,6 +5279,11 @@ static void gfx_v7_0_get_cu_info(struct amdgpu_device *adev)
cu_info->number = active_cu_number; cu_info->number = active_cu_number;
cu_info->ao_cu_mask = ao_cu_mask; cu_info->ao_cu_mask = ao_cu_mask;
cu_info->simd_per_cu = NUM_SIMD_PER_CU;
cu_info->max_waves_per_simd = 10;
cu_info->max_scratch_slots_per_cu = 32;
cu_info->wave_front_size = 64;
cu_info->lds_size = 64;
} }
const struct amdgpu_ip_block_version gfx_v7_0_ip_block = const struct amdgpu_ip_block_version gfx_v7_0_ip_block =
......
...@@ -7116,6 +7116,11 @@ static void gfx_v8_0_get_cu_info(struct amdgpu_device *adev) ...@@ -7116,6 +7116,11 @@ static void gfx_v8_0_get_cu_info(struct amdgpu_device *adev)
cu_info->number = active_cu_number; cu_info->number = active_cu_number;
cu_info->ao_cu_mask = ao_cu_mask; cu_info->ao_cu_mask = ao_cu_mask;
cu_info->simd_per_cu = NUM_SIMD_PER_CU;
cu_info->max_waves_per_simd = 10;
cu_info->max_scratch_slots_per_cu = 32;
cu_info->wave_front_size = 64;
cu_info->lds_size = 64;
} }
const struct amdgpu_ip_block_version gfx_v8_0_ip_block = const struct amdgpu_ip_block_version gfx_v8_0_ip_block =
......
...@@ -27,6 +27,8 @@ ...@@ -27,6 +27,8 @@
#define SDMA1_REGISTER_OFFSET 0x200 /* not a register */ #define SDMA1_REGISTER_OFFSET 0x200 /* not a register */
#define SDMA_MAX_INSTANCE 2 #define SDMA_MAX_INSTANCE 2
#define KFD_VI_SDMA_QUEUE_OFFSET 0x80 /* not a register */
/* crtc instance offsets */ /* crtc instance offsets */
#define CRTC0_REGISTER_OFFSET (0x1b9c - 0x1b9c) #define CRTC0_REGISTER_OFFSET (0x1b9c - 0x1b9c)
#define CRTC1_REGISTER_OFFSET (0x1d9c - 0x1b9c) #define CRTC1_REGISTER_OFFSET (0x1d9c - 0x1b9c)
......
...@@ -35,6 +35,8 @@ amdkfd-y := kfd_module.o kfd_device.o kfd_chardev.o kfd_topology.o \ ...@@ -35,6 +35,8 @@ amdkfd-y := kfd_module.o kfd_device.o kfd_chardev.o kfd_topology.o \
kfd_process_queue_manager.o kfd_device_queue_manager.o \ kfd_process_queue_manager.o kfd_device_queue_manager.o \
kfd_device_queue_manager_cik.o kfd_device_queue_manager_vi.o \ kfd_device_queue_manager_cik.o kfd_device_queue_manager_vi.o \
kfd_interrupt.o kfd_events.o cik_event_interrupt.o \ kfd_interrupt.o kfd_events.o cik_event_interrupt.o \
kfd_dbgdev.o kfd_dbgmgr.o kfd_dbgdev.o kfd_dbgmgr.o kfd_crat.o
amdkfd-$(CONFIG_DEBUG_FS) += kfd_debugfs.o
obj-$(CONFIG_HSA_AMD) += amdkfd.o obj-$(CONFIG_HSA_AMD) += amdkfd.o
/*
* Copyright 2015-2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#if 0
HW (VI) source code for CWSR trap handler
#Version 18 + multiple trap handler
// this performance-optimal version was originally from Seven Xu at SRDC
// Revison #18 --...
/* Rev History
** #1. Branch from gc dv. //gfxip/gfx8/main/src/test/suites/block/cs/sr/cs_trap_handler.sp3#1,#50, #51, #52-53(Skip, Already Fixed by PV), #54-56(merged),#57-58(mergerd, skiped-already fixed by PV)
** #4. SR Memory Layout:
** 1. VGPR-SGPR-HWREG-{LDS}
** 2. tba_hi.bits.26 - reconfigured as the first wave in tg bits, for defer Save LDS for a threadgroup.. performance concern..
** #5. Update: 1. Accurate g8sr_ts_save_d timestamp
** #6. Update: 1. Fix s_barrier usage; 2. VGPR s/r using swizzle buffer?(NoNeed, already matched the swizzle pattern, more investigation)
** #7. Update: 1. don't barrier if noLDS
** #8. Branch: 1. Branch to ver#0, which is very similar to gc dv version
** 2. Fix SQ issue by s_sleep 2
** #9. Update: 1. Fix scc restore failed issue, restore wave_status at last
** 2. optimize s_buffer save by burst 16sgprs...
** #10. Update 1. Optimize restore sgpr by busrt 16 sgprs.
** #11. Update 1. Add 2 more timestamp for debug version
** #12. Update 1. Add VGPR SR using DWx4, some case improve and some case drop performance
** #13. Integ 1. Always use MUBUF for PV trap shader...
** #14. Update 1. s_buffer_store soft clause...
** #15. Update 1. PERF - sclar write with glc:0/mtype0 to allow L2 combine. perf improvement a lot.
** #16. Update 1. PRRF - UNROLL LDS_DMA got 2500cycle save in IP tree
** #17. Update 1. FUNC - LDS_DMA has issues while ATC, replace with ds_read/buffer_store for save part[TODO restore part]
** 2. PERF - Save LDS before save VGPR to cover LDS save long latency...
** #18. Update 1. FUNC - Implicitly estore STATUS.VCCZ, which is not writable by s_setreg_b32
** 2. FUNC - Handle non-CWSR traps
*/
var G8SR_WDMEM_HWREG_OFFSET = 0
var G8SR_WDMEM_SGPR_OFFSET = 128 // in bytes
// Keep definition same as the app shader, These 2 time stamps are part of the app shader... Should before any Save and after restore.
var G8SR_DEBUG_TIMESTAMP = 0
var G8SR_DEBUG_TS_SAVE_D_OFFSET = 40*4 // ts_save_d timestamp offset relative to SGPR_SR_memory_offset
var s_g8sr_ts_save_s = s[34:35] // save start
var s_g8sr_ts_sq_save_msg = s[36:37] // The save shader send SAVEWAVE msg to spi
var s_g8sr_ts_spi_wrexec = s[38:39] // the SPI write the sr address to SQ
var s_g8sr_ts_save_d = s[40:41] // save end
var s_g8sr_ts_restore_s = s[42:43] // restore start
var s_g8sr_ts_restore_d = s[44:45] // restore end
var G8SR_VGPR_SR_IN_DWX4 = 0
var G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4 = 0x00100000 // DWx4 stride is 4*4Bytes
var G8SR_RESTORE_BUF_RSRC_WORD1_STRIDE_DWx4 = G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4
/*************************************************************************/
/* control on how to run the shader */
/*************************************************************************/
//any hack that needs to be made to run this code in EMU (either because various EMU code are not ready or no compute save & restore in EMU run)
var EMU_RUN_HACK = 0
var EMU_RUN_HACK_RESTORE_NORMAL = 0
var EMU_RUN_HACK_SAVE_NORMAL_EXIT = 0
var EMU_RUN_HACK_SAVE_SINGLE_WAVE = 0
var EMU_RUN_HACK_SAVE_FIRST_TIME = 0 //for interrupted restore in which the first save is through EMU_RUN_HACK
var EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_LO = 0 //for interrupted restore in which the first save is through EMU_RUN_HACK
var EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_HI = 0 //for interrupted restore in which the first save is through EMU_RUN_HACK
var SAVE_LDS = 1
var WG_BASE_ADDR_LO = 0x9000a000
var WG_BASE_ADDR_HI = 0x0
var WAVE_SPACE = 0x5000 //memory size that each wave occupies in workgroup state mem
var CTX_SAVE_CONTROL = 0x0
var CTX_RESTORE_CONTROL = CTX_SAVE_CONTROL
var SIM_RUN_HACK = 0 //any hack that needs to be made to run this code in SIM (either because various RTL code are not ready or no compute save & restore in RTL run)
var SGPR_SAVE_USE_SQC = 1 //use SQC D$ to do the write
var USE_MTBUF_INSTEAD_OF_MUBUF = 0 //because TC EMU currently asserts on 0 of // overload DFMT field to carry 4 more bits of stride for MUBUF opcodes
var SWIZZLE_EN = 0 //whether we use swizzled buffer addressing
/**************************************************************************/
/* variables */
/**************************************************************************/
var SQ_WAVE_STATUS_INST_ATC_SHIFT = 23
var SQ_WAVE_STATUS_INST_ATC_MASK = 0x00800000
var SQ_WAVE_STATUS_SPI_PRIO_MASK = 0x00000006
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT = 12
var SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE = 9
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT = 8
var SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE = 6
var SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT = 24
var SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE = 3 //FIXME sq.blk still has 4 bits at this time while SQ programming guide has 3 bits
var SQ_WAVE_TRAPSTS_SAVECTX_MASK = 0x400
var SQ_WAVE_TRAPSTS_EXCE_MASK = 0x1FF // Exception mask
var SQ_WAVE_TRAPSTS_SAVECTX_SHIFT = 10
var SQ_WAVE_TRAPSTS_MEM_VIOL_MASK = 0x100
var SQ_WAVE_TRAPSTS_MEM_VIOL_SHIFT = 8
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK = 0x3FF
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT = 0x0
var SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE = 10
var SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK = 0xFFFFF800
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT = 11
var SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE = 21
var SQ_WAVE_IB_STS_RCNT_SHIFT = 16 //FIXME
var SQ_WAVE_IB_STS_RCNT_SIZE = 4 //FIXME
var SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT = 15 //FIXME
var SQ_WAVE_IB_STS_FIRST_REPLAY_SIZE = 1 //FIXME
var SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK_NEG = 0x00007FFF //FIXME
var SQ_BUF_RSRC_WORD1_ATC_SHIFT = 24
var SQ_BUF_RSRC_WORD3_MTYPE_SHIFT = 27
/* Save */
var S_SAVE_BUF_RSRC_WORD1_STRIDE = 0x00040000 //stride is 4 bytes
var S_SAVE_BUF_RSRC_WORD3_MISC = 0x00807FAC //SQ_SEL_X/Y/Z/W, BUF_NUM_FORMAT_FLOAT, (0 for MUBUF stride[17:14] when ADD_TID_ENABLE and BUF_DATA_FORMAT_32 for MTBUF), ADD_TID_ENABLE
var S_SAVE_SPI_INIT_ATC_MASK = 0x08000000 //bit[27]: ATC bit
var S_SAVE_SPI_INIT_ATC_SHIFT = 27
var S_SAVE_SPI_INIT_MTYPE_MASK = 0x70000000 //bit[30:28]: Mtype
var S_SAVE_SPI_INIT_MTYPE_SHIFT = 28
var S_SAVE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 //bit[26]: FirstWaveInTG
var S_SAVE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var S_SAVE_PC_HI_RCNT_SHIFT = 28 //FIXME check with Brian to ensure all fields other than PC[47:0] can be used
var S_SAVE_PC_HI_RCNT_MASK = 0xF0000000 //FIXME
var S_SAVE_PC_HI_FIRST_REPLAY_SHIFT = 27 //FIXME
var S_SAVE_PC_HI_FIRST_REPLAY_MASK = 0x08000000 //FIXME
var s_save_spi_init_lo = exec_lo
var s_save_spi_init_hi = exec_hi
//tba_lo and tba_hi need to be saved/restored
var s_save_pc_lo = ttmp0 //{TTMP1, TTMP0} = {3??h0,pc_rewind[3:0], HT[0],trapID[7:0], PC[47:0]}
var s_save_pc_hi = ttmp1
var s_save_exec_lo = ttmp2
var s_save_exec_hi = ttmp3
var s_save_status = ttmp4
var s_save_trapsts = ttmp5 //not really used until the end of the SAVE routine
var s_save_xnack_mask_lo = ttmp6
var s_save_xnack_mask_hi = ttmp7
var s_save_buf_rsrc0 = ttmp8
var s_save_buf_rsrc1 = ttmp9
var s_save_buf_rsrc2 = ttmp10
var s_save_buf_rsrc3 = ttmp11
var s_save_mem_offset = tma_lo
var s_save_alloc_size = s_save_trapsts //conflict
var s_save_tmp = s_save_buf_rsrc2 //shared with s_save_buf_rsrc2 (conflict: should not use mem access with s_save_tmp at the same time)
var s_save_m0 = tma_hi
/* Restore */
var S_RESTORE_BUF_RSRC_WORD1_STRIDE = S_SAVE_BUF_RSRC_WORD1_STRIDE
var S_RESTORE_BUF_RSRC_WORD3_MISC = S_SAVE_BUF_RSRC_WORD3_MISC
var S_RESTORE_SPI_INIT_ATC_MASK = 0x08000000 //bit[27]: ATC bit
var S_RESTORE_SPI_INIT_ATC_SHIFT = 27
var S_RESTORE_SPI_INIT_MTYPE_MASK = 0x70000000 //bit[30:28]: Mtype
var S_RESTORE_SPI_INIT_MTYPE_SHIFT = 28
var S_RESTORE_SPI_INIT_FIRST_WAVE_MASK = 0x04000000 //bit[26]: FirstWaveInTG
var S_RESTORE_SPI_INIT_FIRST_WAVE_SHIFT = 26
var S_RESTORE_PC_HI_RCNT_SHIFT = S_SAVE_PC_HI_RCNT_SHIFT
var S_RESTORE_PC_HI_RCNT_MASK = S_SAVE_PC_HI_RCNT_MASK
var S_RESTORE_PC_HI_FIRST_REPLAY_SHIFT = S_SAVE_PC_HI_FIRST_REPLAY_SHIFT
var S_RESTORE_PC_HI_FIRST_REPLAY_MASK = S_SAVE_PC_HI_FIRST_REPLAY_MASK
var s_restore_spi_init_lo = exec_lo
var s_restore_spi_init_hi = exec_hi
var s_restore_mem_offset = ttmp2
var s_restore_alloc_size = ttmp3
var s_restore_tmp = ttmp6 //tba_lo/hi need to be restored
var s_restore_mem_offset_save = s_restore_tmp //no conflict
var s_restore_m0 = s_restore_alloc_size //no conflict
var s_restore_mode = ttmp7
var s_restore_pc_lo = ttmp0
var s_restore_pc_hi = ttmp1
var s_restore_exec_lo = tma_lo //no conflict
var s_restore_exec_hi = tma_hi //no conflict
var s_restore_status = ttmp4
var s_restore_trapsts = ttmp5
var s_restore_xnack_mask_lo = xnack_mask_lo
var s_restore_xnack_mask_hi = xnack_mask_hi
var s_restore_buf_rsrc0 = ttmp8
var s_restore_buf_rsrc1 = ttmp9
var s_restore_buf_rsrc2 = ttmp10
var s_restore_buf_rsrc3 = ttmp11
/**************************************************************************/
/* trap handler entry points */
/**************************************************************************/
/* Shader Main*/
shader main
asic(VI)
type(CS)
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_RESTORE_NORMAL)) //hack to use trap_id for determining save/restore
//FIXME VCCZ un-init assertion s_getreg_b32 s_save_status, hwreg(HW_REG_STATUS) //save STATUS since we will change SCC
s_and_b32 s_save_tmp, s_save_pc_hi, 0xffff0000 //change SCC
s_cmp_eq_u32 s_save_tmp, 0x007e0000 //Save: trap_id = 0x7e. Restore: trap_id = 0x7f.
s_cbranch_scc0 L_JUMP_TO_RESTORE //do not need to recover STATUS here since we are going to RESTORE
//FIXME s_setreg_b32 hwreg(HW_REG_STATUS), s_save_status //need to recover STATUS since we are going to SAVE
s_branch L_SKIP_RESTORE //NOT restore, SAVE actually
else
s_branch L_SKIP_RESTORE //NOT restore. might be a regular trap or save
end
L_JUMP_TO_RESTORE:
s_branch L_RESTORE //restore
L_SKIP_RESTORE:
s_getreg_b32 s_save_status, hwreg(HW_REG_STATUS) //save STATUS since we will change SCC
s_andn2_b32 s_save_status, s_save_status, SQ_WAVE_STATUS_SPI_PRIO_MASK //check whether this is for save
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 s_save_trapsts, s_save_trapsts, SQ_WAVE_TRAPSTS_SAVECTX_MASK //check whether this is for save
s_cbranch_scc1 L_SAVE //this is the operation for save
// ********* Handle non-CWSR traps *******************
if (!EMU_RUN_HACK)
/* read tba and tma for next level trap handler, ttmp4 is used as s_save_status */
s_load_dwordx4 [ttmp8,ttmp9,ttmp10, ttmp11], [tma_lo,tma_hi], 0
s_waitcnt lgkmcnt(0)
s_or_b32 ttmp7, ttmp8, ttmp9
s_cbranch_scc0 L_NO_NEXT_TRAP //next level trap handler not been set
s_setreg_b32 hwreg(HW_REG_STATUS), s_save_status //restore HW status(SCC)
s_setpc_b64 [ttmp8,ttmp9] //jump to next level trap handler
L_NO_NEXT_TRAP:
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 s_save_trapsts, s_save_trapsts, SQ_WAVE_TRAPSTS_EXCE_MASK // Check whether it is an exception
s_cbranch_scc1 L_EXCP_CASE // Exception, jump back to the shader program directly.
s_add_u32 ttmp0, ttmp0, 4 // S_TRAP case, add 4 to ttmp0
s_addc_u32 ttmp1, ttmp1, 0
L_EXCP_CASE:
s_and_b32 ttmp1, ttmp1, 0xFFFF
s_setreg_b32 hwreg(HW_REG_STATUS), s_save_status //restore HW status(SCC)
s_rfe_b64 [ttmp0, ttmp1]
end
// ********* End handling of non-CWSR traps *******************
/**************************************************************************/
/* save routine */
/**************************************************************************/
L_SAVE:
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_save_s
s_waitcnt lgkmcnt(0) //FIXME, will cause xnack??
end
//check whether there is mem_viol
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
s_and_b32 s_save_trapsts, s_save_trapsts, SQ_WAVE_TRAPSTS_MEM_VIOL_MASK
s_cbranch_scc0 L_NO_PC_REWIND
//if so, need rewind PC assuming GDS operation gets NACKed
s_mov_b32 s_save_tmp, 0 //clear mem_viol bit
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_MEM_VIOL_SHIFT, 1), s_save_tmp //clear mem_viol bit
s_and_b32 s_save_pc_hi, s_save_pc_hi, 0x0000ffff //pc[47:32]
s_sub_u32 s_save_pc_lo, s_save_pc_lo, 8 //pc[31:0]-8
s_subb_u32 s_save_pc_hi, s_save_pc_hi, 0x0 // -scc
L_NO_PC_REWIND:
s_mov_b32 s_save_tmp, 0 //clear saveCtx bit
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_SAVECTX_SHIFT, 1), s_save_tmp //clear saveCtx bit
s_mov_b32 s_save_xnack_mask_lo, xnack_mask_lo //save XNACK_MASK
s_mov_b32 s_save_xnack_mask_hi, xnack_mask_hi //save XNACK must before any memory operation
s_getreg_b32 s_save_tmp, hwreg(HW_REG_IB_STS, SQ_WAVE_IB_STS_RCNT_SHIFT, SQ_WAVE_IB_STS_RCNT_SIZE) //save RCNT
s_lshl_b32 s_save_tmp, s_save_tmp, S_SAVE_PC_HI_RCNT_SHIFT
s_or_b32 s_save_pc_hi, s_save_pc_hi, s_save_tmp
s_getreg_b32 s_save_tmp, hwreg(HW_REG_IB_STS, SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT, SQ_WAVE_IB_STS_FIRST_REPLAY_SIZE) //save FIRST_REPLAY
s_lshl_b32 s_save_tmp, s_save_tmp, S_SAVE_PC_HI_FIRST_REPLAY_SHIFT
s_or_b32 s_save_pc_hi, s_save_pc_hi, s_save_tmp
s_getreg_b32 s_save_tmp, hwreg(HW_REG_IB_STS) //clear RCNT and FIRST_REPLAY in IB_STS
s_and_b32 s_save_tmp, s_save_tmp, SQ_WAVE_IB_STS_RCNT_FIRST_REPLAY_MASK_NEG
s_setreg_b32 hwreg(HW_REG_IB_STS), s_save_tmp
/* inform SPI the readiness and wait for SPI's go signal */
s_mov_b32 s_save_exec_lo, exec_lo //save EXEC and use EXEC for the go signal from SPI
s_mov_b32 s_save_exec_hi, exec_hi
s_mov_b64 exec, 0x0 //clear EXEC to get ready to receive
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_sq_save_msg
s_waitcnt lgkmcnt(0)
end
if (EMU_RUN_HACK)
else
s_sendmsg sendmsg(MSG_SAVEWAVE) //send SPI a message and wait for SPI's write to EXEC
end
L_SLEEP:
s_sleep 0x2 // sleep 1 (64clk) is not enough for 8 waves per SIMD, which will cause SQ hang, since the 7,8th wave could not get arbit to exec inst, while other waves are stuck into the sleep-loop and waiting for wrexec!=0
if (EMU_RUN_HACK)
else
s_cbranch_execz L_SLEEP
end
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_spi_wrexec
s_waitcnt lgkmcnt(0)
end
/* setup Resource Contants */
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_SAVE_SINGLE_WAVE))
//calculate wd_addr using absolute thread id
v_readlane_b32 s_save_tmp, v9, 0
s_lshr_b32 s_save_tmp, s_save_tmp, 6
s_mul_i32 s_save_tmp, s_save_tmp, WAVE_SPACE
s_add_i32 s_save_spi_init_lo, s_save_tmp, WG_BASE_ADDR_LO
s_mov_b32 s_save_spi_init_hi, WG_BASE_ADDR_HI
s_and_b32 s_save_spi_init_hi, s_save_spi_init_hi, CTX_SAVE_CONTROL
else
end
if ((EMU_RUN_HACK) && (EMU_RUN_HACK_SAVE_SINGLE_WAVE))
s_add_i32 s_save_spi_init_lo, s_save_tmp, WG_BASE_ADDR_LO
s_mov_b32 s_save_spi_init_hi, WG_BASE_ADDR_HI
s_and_b32 s_save_spi_init_hi, s_save_spi_init_hi, CTX_SAVE_CONTROL
else
end
s_mov_b32 s_save_buf_rsrc0, s_save_spi_init_lo //base_addr_lo
s_and_b32 s_save_buf_rsrc1, s_save_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_save_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes) although not neccessarily inited
s_mov_b32 s_save_buf_rsrc3, S_SAVE_BUF_RSRC_WORD3_MISC
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_ATC_MASK
s_lshr_b32 s_save_tmp, s_save_tmp, (S_SAVE_SPI_INIT_ATC_SHIFT-SQ_BUF_RSRC_WORD1_ATC_SHIFT) //get ATC bit into position
s_or_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, s_save_tmp //or ATC
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_MTYPE_MASK
s_lshr_b32 s_save_tmp, s_save_tmp, (S_SAVE_SPI_INIT_MTYPE_SHIFT-SQ_BUF_RSRC_WORD3_MTYPE_SHIFT) //get MTYPE bits into position
s_or_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, s_save_tmp //or MTYPE
//FIXME right now s_save_m0/s_save_mem_offset use tma_lo/tma_hi (might need to save them before using them?)
s_mov_b32 s_save_m0, m0 //save M0
/* global mem offset */
s_mov_b32 s_save_mem_offset, 0x0 //mem offset initial value = 0
/* save HW registers */
//////////////////////////////
L_SAVE_HWREG:
// HWREG SR memory offset : size(VGPR)+size(SGPR)
get_vgpr_size_bytes(s_save_mem_offset)
get_sgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_mov_b32 s_save_buf_rsrc2, 0x4 //NUM_RECORDS in bytes
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset) //M0
if ((EMU_RUN_HACK) && (EMU_RUN_HACK_SAVE_FIRST_TIME))
s_add_u32 s_save_pc_lo, s_save_pc_lo, 4 //pc[31:0]+4
s_addc_u32 s_save_pc_hi, s_save_pc_hi, 0x0 //carry bit over
s_mov_b32 tba_lo, EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_LO
s_mov_b32 tba_hi, EMU_RUN_HACK_SAVE_FIRST_TIME_TBA_HI
end
write_hwreg_to_mem(s_save_pc_lo, s_save_buf_rsrc0, s_save_mem_offset) //PC
write_hwreg_to_mem(s_save_pc_hi, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_exec_lo, s_save_buf_rsrc0, s_save_mem_offset) //EXEC
write_hwreg_to_mem(s_save_exec_hi, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(s_save_status, s_save_buf_rsrc0, s_save_mem_offset) //STATUS
//s_save_trapsts conflicts with s_save_alloc_size
s_getreg_b32 s_save_trapsts, hwreg(HW_REG_TRAPSTS)
write_hwreg_to_mem(s_save_trapsts, s_save_buf_rsrc0, s_save_mem_offset) //TRAPSTS
write_hwreg_to_mem(s_save_xnack_mask_lo, s_save_buf_rsrc0, s_save_mem_offset) //XNACK_MASK_LO
write_hwreg_to_mem(s_save_xnack_mask_hi, s_save_buf_rsrc0, s_save_mem_offset) //XNACK_MASK_HI
//use s_save_tmp would introduce conflict here between s_save_tmp and s_save_buf_rsrc2
s_getreg_b32 s_save_m0, hwreg(HW_REG_MODE) //MODE
write_hwreg_to_mem(s_save_m0, s_save_buf_rsrc0, s_save_mem_offset)
write_hwreg_to_mem(tba_lo, s_save_buf_rsrc0, s_save_mem_offset) //TBA_LO
write_hwreg_to_mem(tba_hi, s_save_buf_rsrc0, s_save_mem_offset) //TBA_HI
/* the first wave in the threadgroup */
// save fist_wave bits in tba_hi unused bit.26
s_and_b32 s_save_tmp, s_save_spi_init_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK // extract fisrt wave bit
//s_or_b32 tba_hi, s_save_tmp, tba_hi // save first wave bit to tba_hi.bits[26]
s_mov_b32 s_save_exec_hi, 0x0
s_or_b32 s_save_exec_hi, s_save_tmp, s_save_exec_hi // save first wave bit to s_save_exec_hi.bits[26]
/* save SGPRs */
// Save SGPR before LDS save, then the s0 to s4 can be used during LDS save...
//////////////////////////////
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_save_mem_offset)
// TODO, change RSRC word to rearrange memory layout for SGPRS
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_save_alloc_size, s_save_alloc_size, 1
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 4 //Number of SGPRs = (sgpr_size + 1) * 16 (non-zero value)
if (SGPR_SAVE_USE_SQC)
s_lshl_b32 s_save_buf_rsrc2, s_save_alloc_size, 2 //NUM_RECORDS in bytes
else
s_lshl_b32 s_save_buf_rsrc2, s_save_alloc_size, 8 //NUM_RECORDS in bytes (64 threads)
end
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
// backup s_save_buf_rsrc0,1 to s_save_pc_lo/hi, since write_16sgpr_to_mem function will change the rsrc0
//s_mov_b64 s_save_pc_lo, s_save_buf_rsrc0
s_mov_b64 s_save_xnack_mask_lo, s_save_buf_rsrc0
s_add_u32 s_save_buf_rsrc0, s_save_buf_rsrc0, s_save_mem_offset
s_addc_u32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0
s_mov_b32 m0, 0x0 //SGPR initial index value =0
L_SAVE_SGPR_LOOP:
// SGPR is allocated in 16 SGPR granularity
s_movrels_b64 s0, s0 //s0 = s[0+m0], s1 = s[1+m0]
s_movrels_b64 s2, s2 //s2 = s[2+m0], s3 = s[3+m0]
s_movrels_b64 s4, s4 //s4 = s[4+m0], s5 = s[5+m0]
s_movrels_b64 s6, s6 //s6 = s[6+m0], s7 = s[7+m0]
s_movrels_b64 s8, s8 //s8 = s[8+m0], s9 = s[9+m0]
s_movrels_b64 s10, s10 //s10 = s[10+m0], s11 = s[11+m0]
s_movrels_b64 s12, s12 //s12 = s[12+m0], s13 = s[13+m0]
s_movrels_b64 s14, s14 //s14 = s[14+m0], s15 = s[15+m0]
write_16sgpr_to_mem(s0, s_save_buf_rsrc0, s_save_mem_offset) //PV: the best performance should be using s_buffer_store_dwordx4
s_add_u32 m0, m0, 16 //next sgpr index
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_SGPR_LOOP //SGPR save is complete?
// restore s_save_buf_rsrc0,1
//s_mov_b64 s_save_buf_rsrc0, s_save_pc_lo
s_mov_b64 s_save_buf_rsrc0, s_save_xnack_mask_lo
/* save first 4 VGPR, then LDS save could use */
// each wave will alloc 4 vgprs at least...
/////////////////////////////////////////////////////////////////////////////////////
s_mov_b32 s_save_mem_offset, 0
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
// VGPR Allocated in 4-GPR granularity
if G8SR_VGPR_SR_IN_DWX4
// the const stride for DWx4 is 4*4 bytes
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4 // const stride to 4*4 bytes
buffer_store_dwordx4 v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE // reset const stride to 4 bytes
else
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3
end
/* save LDS */
//////////////////////////////
L_SAVE_LDS:
// Change EXEC to all threads...
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) //lds_size
s_and_b32 s_save_alloc_size, s_save_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_SAVE_LDS_DONE //no lds used? jump to L_SAVE_DONE
s_barrier //LDS is used? wait for other waves in the same TG
//s_and_b32 s_save_tmp, tba_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK //exec is still used here
s_and_b32 s_save_tmp, s_save_exec_hi, S_SAVE_SPI_INIT_FIRST_WAVE_MASK //exec is still used here
s_cbranch_scc0 L_SAVE_LDS_DONE
// first wave do LDS save;
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_save_buf_rsrc2, s_save_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_save_mem_offset)
get_sgpr_size_bytes(s_save_tmp)
s_add_u32 s_save_mem_offset, s_save_mem_offset, s_save_tmp
s_add_u32 s_save_mem_offset, s_save_mem_offset, get_hwreg_size_bytes()
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
s_mov_b32 m0, 0x0 //lds_offset initial value = 0
var LDS_DMA_ENABLE = 0
var UNROLL = 0
if UNROLL==0 && LDS_DMA_ENABLE==1
s_mov_b32 s3, 256*2
s_nop 0
s_nop 0
s_nop 0
L_SAVE_LDS_LOOP:
//TODO: looks the 2 buffer_store/load clause for s/r will hurt performance.???
if (SAVE_LDS) //SPI always alloc LDS space in 128DW granularity
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 // first 64DW
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 offset:256 // second 64DW
end
s_add_u32 m0, m0, s3 //every buffer_store_lds does 256 bytes
s_add_u32 s_save_mem_offset, s_save_mem_offset, s3 //mem offset increased by 256 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc=(m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_LDS_LOOP //LDS save is complete?
elsif LDS_DMA_ENABLE==1 && UNROLL==1 // UNROOL , has ichace miss
// store from higest LDS address to lowest
s_mov_b32 s3, 256*2
s_sub_u32 m0, s_save_alloc_size, s3
s_add_u32 s_save_mem_offset, s_save_mem_offset, m0
s_lshr_b32 s_save_alloc_size, s_save_alloc_size, 9 // how many 128 trunks...
s_sub_u32 s_save_alloc_size, 128, s_save_alloc_size // store from higheset addr to lowest
s_mul_i32 s_save_alloc_size, s_save_alloc_size, 6*4 // PC offset increment, each LDS save block cost 6*4 Bytes instruction
s_add_u32 s_save_alloc_size, s_save_alloc_size, 3*4 //2is the below 2 inst...//s_addc and s_setpc
s_nop 0
s_nop 0
s_nop 0 //pad 3 dw to let LDS_DMA align with 64Bytes
s_getpc_b64 s[0:1] // reuse s[0:1], since s[0:1] already saved
s_add_u32 s0, s0,s_save_alloc_size
s_addc_u32 s1, s1, 0
s_setpc_b64 s[0:1]
for var i =0; i< 128; i++
// be careful to make here a 64Byte aligned address, which could improve performance...
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 offset:0 // first 64DW
buffer_store_lds_dword s_save_buf_rsrc0, s_save_mem_offset lds:1 offset:256 // second 64DW
if i!=127
s_sub_u32 m0, m0, s3 // use a sgpr to shrink 2DW-inst to 1DW inst to improve performance , i.e. pack more LDS_DMA inst to one Cacheline
s_sub_u32 s_save_mem_offset, s_save_mem_offset, s3
end
end
else // BUFFER_STORE
v_mbcnt_lo_u32_b32 v2, 0xffffffff, 0x0
v_mbcnt_hi_u32_b32 v3, 0xffffffff, v2 // tid
v_mul_i32_i24 v2, v3, 8 // tid*8
v_mov_b32 v3, 256*2
s_mov_b32 m0, 0x10000
s_mov_b32 s0, s_save_buf_rsrc3
s_and_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, 0xFF7FFFFF // disable add_tid
s_or_b32 s_save_buf_rsrc3, s_save_buf_rsrc3, 0x58000 //DFMT
L_SAVE_LDS_LOOP_VECTOR:
ds_read_b64 v[0:1], v2 //x =LDS[a], byte address
s_waitcnt lgkmcnt(0)
buffer_store_dwordx2 v[0:1], v2, s_save_buf_rsrc0, s_save_mem_offset offen:1 glc:1 slc:1
// s_waitcnt vmcnt(0)
v_add_u32 v2, vcc[0:1], v2, v3
v_cmp_lt_u32 vcc[0:1], v2, s_save_alloc_size
s_cbranch_vccnz L_SAVE_LDS_LOOP_VECTOR
// restore rsrc3
s_mov_b32 s_save_buf_rsrc3, s0
end
L_SAVE_LDS_DONE:
/* save VGPRs - set the Rest VGPRs */
//////////////////////////////////////////////////////////////////////////////////////
L_SAVE_VGPR:
// VGPR SR memory offset: 0
// TODO rearrange the RSRC words to use swizzle for VGPR save...
s_mov_b32 s_save_mem_offset, (0+256*4) // for the rest VGPRs
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_save_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) //vpgr_size
s_add_u32 s_save_alloc_size, s_save_alloc_size, 1
s_lshl_b32 s_save_alloc_size, s_save_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value) //FIXME for GFX, zero is possible
s_lshl_b32 s_save_buf_rsrc2, s_save_alloc_size, 8 //NUM_RECORDS in bytes (64 threads*4)
if (SWIZZLE_EN)
s_add_u32 s_save_buf_rsrc2, s_save_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
// VGPR Allocated in 4-GPR granularity
if G8SR_VGPR_SR_IN_DWX4
// the const stride for DWx4 is 4*4 bytes
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, G8SR_SAVE_BUF_RSRC_WORD1_STRIDE_DWx4 // const stride to 4*4 bytes
s_mov_b32 m0, 4 // skip first 4 VGPRs
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc0 L_SAVE_VGPR_LOOP_END // no more vgprs
s_set_gpr_idx_on m0, 0x1 // This will change M0
s_add_u32 s_save_alloc_size, s_save_alloc_size, 0x1000 // because above inst change m0
L_SAVE_VGPR_LOOP:
v_mov_b32 v0, v0 // v0 = v[0+m0]
v_mov_b32 v1, v1
v_mov_b32 v2, v2
v_mov_b32 v3, v3
buffer_store_dwordx4 v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
s_add_u32 m0, m0, 4
s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc1 L_SAVE_VGPR_LOOP //VGPR save is complete?
s_set_gpr_idx_off
L_SAVE_VGPR_LOOP_END:
s_and_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_save_buf_rsrc1, s_save_buf_rsrc1, S_SAVE_BUF_RSRC_WORD1_STRIDE // reset const stride to 4 bytes
else
// VGPR store using dw burst
s_mov_b32 m0, 0x4 //VGPR initial index value =0
s_cmp_lt_u32 m0, s_save_alloc_size
s_cbranch_scc0 L_SAVE_VGPR_END
s_set_gpr_idx_on m0, 0x1 //M0[7:0] = M0[7:0] and M0[15:12] = 0x1
s_add_u32 s_save_alloc_size, s_save_alloc_size, 0x1000 //add 0x1000 since we compare m0 against it later
L_SAVE_VGPR_LOOP:
v_mov_b32 v0, v0 //v0 = v[0+m0]
v_mov_b32 v1, v1 //v0 = v[0+m0]
v_mov_b32 v2, v2 //v0 = v[0+m0]
v_mov_b32 v3, v3 //v0 = v[0+m0]
if(USE_MTBUF_INSTEAD_OF_MUBUF)
tbuffer_store_format_x v0, v0, s_save_buf_rsrc0, s_save_mem_offset format:BUF_NUM_FORMAT_FLOAT format: BUF_DATA_FORMAT_32 slc:1 glc:1
else
buffer_store_dword v0, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1
buffer_store_dword v1, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256
buffer_store_dword v2, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*2
buffer_store_dword v3, v0, s_save_buf_rsrc0, s_save_mem_offset slc:1 glc:1 offset:256*3
end
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_save_mem_offset, s_save_mem_offset, 256*4 //every buffer_store_dword does 256 bytes
s_cmp_lt_u32 m0, s_save_alloc_size //scc = (m0 < s_save_alloc_size) ? 1 : 0
s_cbranch_scc1 L_SAVE_VGPR_LOOP //VGPR save is complete?
s_set_gpr_idx_off
end
L_SAVE_VGPR_END:
/* S_PGM_END_SAVED */ //FIXME graphics ONLY
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_SAVE_NORMAL_EXIT))
s_and_b32 s_save_pc_hi, s_save_pc_hi, 0x0000ffff //pc[47:32]
s_add_u32 s_save_pc_lo, s_save_pc_lo, 4 //pc[31:0]+4
s_addc_u32 s_save_pc_hi, s_save_pc_hi, 0x0 //carry bit over
s_rfe_b64 s_save_pc_lo //Return to the main shader program
else
end
// Save Done timestamp
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_save_d
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_save_mem_offset)
s_add_u32 s_save_mem_offset, s_save_mem_offset, G8SR_DEBUG_TS_SAVE_D_OFFSET
s_waitcnt lgkmcnt(0) //FIXME, will cause xnack??
// Need reset rsrc2??
s_mov_b32 m0, s_save_mem_offset
s_mov_b32 s_save_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
s_buffer_store_dwordx2 s_g8sr_ts_save_d, s_save_buf_rsrc0, m0 glc:1
end
s_branch L_END_PGM
/**************************************************************************/
/* restore routine */
/**************************************************************************/
L_RESTORE:
/* Setup Resource Contants */
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_RESTORE_NORMAL))
//calculate wd_addr using absolute thread id
v_readlane_b32 s_restore_tmp, v9, 0
s_lshr_b32 s_restore_tmp, s_restore_tmp, 6
s_mul_i32 s_restore_tmp, s_restore_tmp, WAVE_SPACE
s_add_i32 s_restore_spi_init_lo, s_restore_tmp, WG_BASE_ADDR_LO
s_mov_b32 s_restore_spi_init_hi, WG_BASE_ADDR_HI
s_and_b32 s_restore_spi_init_hi, s_restore_spi_init_hi, CTX_RESTORE_CONTROL
else
end
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_restore_s
s_waitcnt lgkmcnt(0) //FIXME, will cause xnack??
// tma_lo/hi are sgpr 110, 111, which will not used for 112 SGPR allocated case...
s_mov_b32 s_restore_pc_lo, s_g8sr_ts_restore_s[0]
s_mov_b32 s_restore_pc_hi, s_g8sr_ts_restore_s[1] //backup ts to ttmp0/1, sicne exec will be finally restored..
end
s_mov_b32 s_restore_buf_rsrc0, s_restore_spi_init_lo //base_addr_lo
s_and_b32 s_restore_buf_rsrc1, s_restore_spi_init_hi, 0x0000FFFF //base_addr_hi
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, S_RESTORE_BUF_RSRC_WORD1_STRIDE
s_mov_b32 s_restore_buf_rsrc2, 0 //NUM_RECORDS initial value = 0 (in bytes)
s_mov_b32 s_restore_buf_rsrc3, S_RESTORE_BUF_RSRC_WORD3_MISC
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_ATC_MASK
s_lshr_b32 s_restore_tmp, s_restore_tmp, (S_RESTORE_SPI_INIT_ATC_SHIFT-SQ_BUF_RSRC_WORD1_ATC_SHIFT) //get ATC bit into position
s_or_b32 s_restore_buf_rsrc3, s_restore_buf_rsrc3, s_restore_tmp //or ATC
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_MTYPE_MASK
s_lshr_b32 s_restore_tmp, s_restore_tmp, (S_RESTORE_SPI_INIT_MTYPE_SHIFT-SQ_BUF_RSRC_WORD3_MTYPE_SHIFT) //get MTYPE bits into position
s_or_b32 s_restore_buf_rsrc3, s_restore_buf_rsrc3, s_restore_tmp //or MTYPE
/* global mem offset */
// s_mov_b32 s_restore_mem_offset, 0x0 //mem offset initial value = 0
/* the first wave in the threadgroup */
s_and_b32 s_restore_tmp, s_restore_spi_init_hi, S_RESTORE_SPI_INIT_FIRST_WAVE_MASK
s_cbranch_scc0 L_RESTORE_VGPR
/* restore LDS */
//////////////////////////////
L_RESTORE_LDS:
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on //be consistent with SAVE although can be moved ahead
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_LDS_ALLOC,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT,SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) //lds_size
s_and_b32 s_restore_alloc_size, s_restore_alloc_size, 0xFFFFFFFF //lds_size is zero?
s_cbranch_scc0 L_RESTORE_VGPR //no lds used? jump to L_RESTORE_VGPR
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 6 //LDS size in dwords = lds_size * 64dw
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //LDS size in bytes
s_mov_b32 s_restore_buf_rsrc2, s_restore_alloc_size //NUM_RECORDS in bytes
// LDS at offset: size(VGPR)+SIZE(SGPR)+SIZE(HWREG)
//
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, get_hwreg_size_bytes() //FIXME, Check if offset overflow???
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
s_mov_b32 m0, 0x0 //lds_offset initial value = 0
L_RESTORE_LDS_LOOP:
if (SAVE_LDS)
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 // first 64DW
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset lds:1 offset:256 // second 64DW
end
s_add_u32 m0, m0, 256*2 // 128 DW
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*2 //mem offset increased by 128DW
s_cmp_lt_u32 m0, s_restore_alloc_size //scc=(m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_LDS_LOOP //LDS restore is complete?
/* restore VGPRs */
//////////////////////////////
L_RESTORE_VGPR:
// VGPR SR memory offset : 0
s_mov_b32 s_restore_mem_offset, 0x0
s_mov_b32 exec_lo, 0xFFFFFFFF //need every thread from now on //be consistent with SAVE although can be moved ahead
s_mov_b32 exec_hi, 0xFFFFFFFF
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) //vpgr_size
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 1
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 2 //Number of VGPRs = (vgpr_size + 1) * 4 (non-zero value)
s_lshl_b32 s_restore_buf_rsrc2, s_restore_alloc_size, 8 //NUM_RECORDS in bytes (64 threads*4)
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
if G8SR_VGPR_SR_IN_DWX4
get_vgpr_size_bytes(s_restore_mem_offset)
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
// the const stride for DWx4 is 4*4 bytes
s_and_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, G8SR_RESTORE_BUF_RSRC_WORD1_STRIDE_DWx4 // const stride to 4*4 bytes
s_mov_b32 m0, s_restore_alloc_size
s_set_gpr_idx_on m0, 0x8 // Note.. This will change m0
L_RESTORE_VGPR_LOOP:
buffer_load_dwordx4 v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1
s_waitcnt vmcnt(0)
s_sub_u32 m0, m0, 4
v_mov_b32 v0, v0 // v[0+m0] = v0
v_mov_b32 v1, v1
v_mov_b32 v2, v2
v_mov_b32 v3, v3
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
s_cmp_eq_u32 m0, 0x8000
s_cbranch_scc0 L_RESTORE_VGPR_LOOP
s_set_gpr_idx_off
s_and_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, 0x0000FFFF // reset const stride to 0
s_or_b32 s_restore_buf_rsrc1, s_restore_buf_rsrc1, S_RESTORE_BUF_RSRC_WORD1_STRIDE // const stride to 4*4 bytes
else
// VGPR load using dw burst
s_mov_b32 s_restore_mem_offset_save, s_restore_mem_offset // restore start with v1, v0 will be the last
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4
s_mov_b32 m0, 4 //VGPR initial index value = 1
s_set_gpr_idx_on m0, 0x8 //M0[7:0] = M0[7:0] and M0[15:12] = 0x8
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 0x8000 //add 0x8000 since we compare m0 against it later
L_RESTORE_VGPR_LOOP:
if(USE_MTBUF_INSTEAD_OF_MUBUF)
tbuffer_load_format_x v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset format:BUF_NUM_FORMAT_FLOAT format: BUF_DATA_FORMAT_32 slc:1 glc:1
else
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset slc:1 glc:1 offset:256*3
end
s_waitcnt vmcnt(0) //ensure data ready
v_mov_b32 v0, v0 //v[0+m0] = v0
v_mov_b32 v1, v1
v_mov_b32 v2, v2
v_mov_b32 v3, v3
s_add_u32 m0, m0, 4 //next vgpr index
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, 256*4 //every buffer_load_dword does 256 bytes
s_cmp_lt_u32 m0, s_restore_alloc_size //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc1 L_RESTORE_VGPR_LOOP //VGPR restore (except v0) is complete?
s_set_gpr_idx_off
/* VGPR restore on v0 */
if(USE_MTBUF_INSTEAD_OF_MUBUF)
tbuffer_load_format_x v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save format:BUF_NUM_FORMAT_FLOAT format: BUF_DATA_FORMAT_32 slc:1 glc:1
else
buffer_load_dword v0, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1
buffer_load_dword v1, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256
buffer_load_dword v2, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*2
buffer_load_dword v3, v0, s_restore_buf_rsrc0, s_restore_mem_offset_save slc:1 glc:1 offset:256*3
end
end
/* restore SGPRs */
//////////////////////////////
// SGPR SR memory offset : size(VGPR)
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_sub_u32 s_restore_mem_offset, s_restore_mem_offset, 16*4 // restore SGPR from S[n] to S[0], by 16 sgprs group
// TODO, change RSRC word to rearrange memory layout for SGPRS
s_getreg_b32 s_restore_alloc_size, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_restore_alloc_size, s_restore_alloc_size, 1
s_lshl_b32 s_restore_alloc_size, s_restore_alloc_size, 4 //Number of SGPRs = (sgpr_size + 1) * 16 (non-zero value)
if (SGPR_SAVE_USE_SQC)
s_lshl_b32 s_restore_buf_rsrc2, s_restore_alloc_size, 2 //NUM_RECORDS in bytes
else
s_lshl_b32 s_restore_buf_rsrc2, s_restore_alloc_size, 8 //NUM_RECORDS in bytes (64 threads)
end
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
/* If 112 SGPRs ar allocated, 4 sgprs are not used TBA(108,109),TMA(110,111),
However, we are safe to restore these 4 SGPRs anyway, since TBA,TMA will later be restored by HWREG
*/
s_mov_b32 m0, s_restore_alloc_size
L_RESTORE_SGPR_LOOP:
read_16sgpr_from_mem(s0, s_restore_buf_rsrc0, s_restore_mem_offset) //PV: further performance improvement can be made
s_waitcnt lgkmcnt(0) //ensure data ready
s_sub_u32 m0, m0, 16 // Restore from S[n] to S[0]
s_movreld_b64 s0, s0 //s[0+m0] = s0
s_movreld_b64 s2, s2
s_movreld_b64 s4, s4
s_movreld_b64 s6, s6
s_movreld_b64 s8, s8
s_movreld_b64 s10, s10
s_movreld_b64 s12, s12
s_movreld_b64 s14, s14
s_cmp_eq_u32 m0, 0 //scc = (m0 < s_restore_alloc_size) ? 1 : 0
s_cbranch_scc0 L_RESTORE_SGPR_LOOP //SGPR restore (except s0) is complete?
/* restore HW registers */
//////////////////////////////
L_RESTORE_HWREG:
if G8SR_DEBUG_TIMESTAMP
s_mov_b32 s_g8sr_ts_restore_s[0], s_restore_pc_lo
s_mov_b32 s_g8sr_ts_restore_s[1], s_restore_pc_hi
end
// HWREG SR memory offset : size(VGPR)+size(SGPR)
get_vgpr_size_bytes(s_restore_mem_offset)
get_sgpr_size_bytes(s_restore_tmp)
s_add_u32 s_restore_mem_offset, s_restore_mem_offset, s_restore_tmp
s_mov_b32 s_restore_buf_rsrc2, 0x4 //NUM_RECORDS in bytes
if (SWIZZLE_EN)
s_add_u32 s_restore_buf_rsrc2, s_restore_buf_rsrc2, 0x0 //FIXME need to use swizzle to enable bounds checking?
else
s_mov_b32 s_restore_buf_rsrc2, 0x1000000 //NUM_RECORDS in bytes
end
read_hwreg_from_mem(s_restore_m0, s_restore_buf_rsrc0, s_restore_mem_offset) //M0
read_hwreg_from_mem(s_restore_pc_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //PC
read_hwreg_from_mem(s_restore_pc_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_exec_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //EXEC
read_hwreg_from_mem(s_restore_exec_hi, s_restore_buf_rsrc0, s_restore_mem_offset)
read_hwreg_from_mem(s_restore_status, s_restore_buf_rsrc0, s_restore_mem_offset) //STATUS
read_hwreg_from_mem(s_restore_trapsts, s_restore_buf_rsrc0, s_restore_mem_offset) //TRAPSTS
read_hwreg_from_mem(xnack_mask_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //XNACK_MASK_LO
read_hwreg_from_mem(xnack_mask_hi, s_restore_buf_rsrc0, s_restore_mem_offset) //XNACK_MASK_HI
read_hwreg_from_mem(s_restore_mode, s_restore_buf_rsrc0, s_restore_mem_offset) //MODE
read_hwreg_from_mem(tba_lo, s_restore_buf_rsrc0, s_restore_mem_offset) //TBA_LO
read_hwreg_from_mem(tba_hi, s_restore_buf_rsrc0, s_restore_mem_offset) //TBA_HI
s_waitcnt lgkmcnt(0) //from now on, it is safe to restore STATUS and IB_STS
s_and_b32 s_restore_pc_hi, s_restore_pc_hi, 0x0000ffff //pc[47:32] //Do it here in order not to affect STATUS
//for normal save & restore, the saved PC points to the next inst to execute, no adjustment needs to be made, otherwise:
if ((EMU_RUN_HACK) && (!EMU_RUN_HACK_RESTORE_NORMAL))
s_add_u32 s_restore_pc_lo, s_restore_pc_lo, 8 //pc[31:0]+8 //two back-to-back s_trap are used (first for save and second for restore)
s_addc_u32 s_restore_pc_hi, s_restore_pc_hi, 0x0 //carry bit over
end
if ((EMU_RUN_HACK) && (EMU_RUN_HACK_RESTORE_NORMAL))
s_add_u32 s_restore_pc_lo, s_restore_pc_lo, 4 //pc[31:0]+4 // save is hack through s_trap but restore is normal
s_addc_u32 s_restore_pc_hi, s_restore_pc_hi, 0x0 //carry bit over
end
s_mov_b32 m0, s_restore_m0
s_mov_b32 exec_lo, s_restore_exec_lo
s_mov_b32 exec_hi, s_restore_exec_hi
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_PRE_SAVECTX_MASK, s_restore_trapsts
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_PRE_SAVECTX_SIZE), s_restore_m0
s_and_b32 s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_MASK, s_restore_trapsts
s_lshr_b32 s_restore_m0, s_restore_m0, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT
s_setreg_b32 hwreg(HW_REG_TRAPSTS, SQ_WAVE_TRAPSTS_POST_SAVECTX_SHIFT, SQ_WAVE_TRAPSTS_POST_SAVECTX_SIZE), s_restore_m0
//s_setreg_b32 hwreg(HW_REG_TRAPSTS), s_restore_trapsts //don't overwrite SAVECTX bit as it may be set through external SAVECTX during restore
s_setreg_b32 hwreg(HW_REG_MODE), s_restore_mode
//reuse s_restore_m0 as a temp register
s_and_b32 s_restore_m0, s_restore_pc_hi, S_SAVE_PC_HI_RCNT_MASK
s_lshr_b32 s_restore_m0, s_restore_m0, S_SAVE_PC_HI_RCNT_SHIFT
s_lshl_b32 s_restore_m0, s_restore_m0, SQ_WAVE_IB_STS_RCNT_SHIFT
s_mov_b32 s_restore_tmp, 0x0 //IB_STS is zero
s_or_b32 s_restore_tmp, s_restore_tmp, s_restore_m0
s_and_b32 s_restore_m0, s_restore_pc_hi, S_SAVE_PC_HI_FIRST_REPLAY_MASK
s_lshr_b32 s_restore_m0, s_restore_m0, S_SAVE_PC_HI_FIRST_REPLAY_SHIFT
s_lshl_b32 s_restore_m0, s_restore_m0, SQ_WAVE_IB_STS_FIRST_REPLAY_SHIFT
s_or_b32 s_restore_tmp, s_restore_tmp, s_restore_m0
s_and_b32 s_restore_m0, s_restore_status, SQ_WAVE_STATUS_INST_ATC_MASK
s_lshr_b32 s_restore_m0, s_restore_m0, SQ_WAVE_STATUS_INST_ATC_SHIFT
s_setreg_b32 hwreg(HW_REG_IB_STS), s_restore_tmp
s_and_b64 exec, exec, exec // Restore STATUS.EXECZ, not writable by s_setreg_b32
s_and_b64 vcc, vcc, vcc // Restore STATUS.VCCZ, not writable by s_setreg_b32
s_setreg_b32 hwreg(HW_REG_STATUS), s_restore_status // SCC is included, which is changed by previous salu
s_barrier //barrier to ensure the readiness of LDS before access attempts from any other wave in the same TG //FIXME not performance-optimal at this time
if G8SR_DEBUG_TIMESTAMP
s_memrealtime s_g8sr_ts_restore_d
s_waitcnt lgkmcnt(0)
end
// s_rfe_b64 s_restore_pc_lo //Return to the main shader program and resume execution
s_rfe_restore_b64 s_restore_pc_lo, s_restore_m0 // s_restore_m0[0] is used to set STATUS.inst_atc
/**************************************************************************/
/* the END */
/**************************************************************************/
L_END_PGM:
s_endpgm
end
/**************************************************************************/
/* the helper functions */
/**************************************************************************/
//Only for save hwreg to mem
function write_hwreg_to_mem(s, s_rsrc, s_mem_offset)
s_mov_b32 exec_lo, m0 //assuming exec_lo is not needed anymore from this point on
s_mov_b32 m0, s_mem_offset
s_buffer_store_dword s, s_rsrc, m0 glc:1
s_add_u32 s_mem_offset, s_mem_offset, 4
s_mov_b32 m0, exec_lo
end
// HWREG are saved before SGPRs, so all HWREG could be use.
function write_16sgpr_to_mem(s, s_rsrc, s_mem_offset)
s_buffer_store_dwordx4 s[0], s_rsrc, 0 glc:1
s_buffer_store_dwordx4 s[4], s_rsrc, 16 glc:1
s_buffer_store_dwordx4 s[8], s_rsrc, 32 glc:1
s_buffer_store_dwordx4 s[12], s_rsrc, 48 glc:1
s_add_u32 s_rsrc[0], s_rsrc[0], 4*16
s_addc_u32 s_rsrc[1], s_rsrc[1], 0x0 // +scc
end
function read_hwreg_from_mem(s, s_rsrc, s_mem_offset)
s_buffer_load_dword s, s_rsrc, s_mem_offset glc:1
s_add_u32 s_mem_offset, s_mem_offset, 4
end
function read_16sgpr_from_mem(s, s_rsrc, s_mem_offset)
s_buffer_load_dwordx16 s, s_rsrc, s_mem_offset glc:1
s_sub_u32 s_mem_offset, s_mem_offset, 4*16
end
function get_lds_size_bytes(s_lds_size_byte)
// SQ LDS granularity is 64DW, while PGM_RSRC2.lds_size is in granularity 128DW
s_getreg_b32 s_lds_size_byte, hwreg(HW_REG_LDS_ALLOC, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SHIFT, SQ_WAVE_LDS_ALLOC_LDS_SIZE_SIZE) // lds_size
s_lshl_b32 s_lds_size_byte, s_lds_size_byte, 8 //LDS size in dwords = lds_size * 64 *4Bytes // granularity 64DW
end
function get_vgpr_size_bytes(s_vgpr_size_byte)
s_getreg_b32 s_vgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_VGPR_SIZE_SIZE) //vpgr_size
s_add_u32 s_vgpr_size_byte, s_vgpr_size_byte, 1
s_lshl_b32 s_vgpr_size_byte, s_vgpr_size_byte, (2+8) //Number of VGPRs = (vgpr_size + 1) * 4 * 64 * 4 (non-zero value) //FIXME for GFX, zero is possible
end
function get_sgpr_size_bytes(s_sgpr_size_byte)
s_getreg_b32 s_sgpr_size_byte, hwreg(HW_REG_GPR_ALLOC,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SHIFT,SQ_WAVE_GPR_ALLOC_SGPR_SIZE_SIZE) //spgr_size
s_add_u32 s_sgpr_size_byte, s_sgpr_size_byte, 1
s_lshl_b32 s_sgpr_size_byte, s_sgpr_size_byte, 6 //Number of SGPRs = (sgpr_size + 1) * 16 *4 (non-zero value)
end
function get_hwreg_size_bytes
return 128 //HWREG size 128 bytes
end
#endif
static const uint32_t cwsr_trap_gfx8_hex[] = {
0xbf820001, 0xbf820123,
0xb8f4f802, 0x89748674,
0xb8f5f803, 0x8675ff75,
0x00000400, 0xbf850011,
0xc00a1e37, 0x00000000,
0xbf8c007f, 0x87777978,
0xbf840002, 0xb974f802,
0xbe801d78, 0xb8f5f803,
0x8675ff75, 0x000001ff,
0xbf850002, 0x80708470,
0x82718071, 0x8671ff71,
0x0000ffff, 0xb974f802,
0xbe801f70, 0xb8f5f803,
0x8675ff75, 0x00000100,
0xbf840006, 0xbefa0080,
0xb97a0203, 0x8671ff71,
0x0000ffff, 0x80f08870,
0x82f18071, 0xbefa0080,
0xb97a0283, 0xbef60068,
0xbef70069, 0xb8fa1c07,
0x8e7a9c7a, 0x87717a71,
0xb8fa03c7, 0x8e7a9b7a,
0x87717a71, 0xb8faf807,
0x867aff7a, 0x00007fff,
0xb97af807, 0xbef2007e,
0xbef3007f, 0xbefe0180,
0xbf900004, 0xbf8e0002,
0xbf88fffe, 0xbef8007e,
0x8679ff7f, 0x0000ffff,
0x8779ff79, 0x00040000,
0xbefa0080, 0xbefb00ff,
0x00807fac, 0x867aff7f,
0x08000000, 0x8f7a837a,
0x877b7a7b, 0x867aff7f,
0x70000000, 0x8f7a817a,
0x877b7a7b, 0xbeef007c,
0xbeee0080, 0xb8ee2a05,
0x806e816e, 0x8e6e8a6e,
0xb8fa1605, 0x807a817a,
0x8e7a867a, 0x806e7a6e,
0xbefa0084, 0xbefa00ff,
0x01000000, 0xbefe007c,
0xbefc006e, 0xc0611bfc,
0x0000007c, 0x806e846e,
0xbefc007e, 0xbefe007c,
0xbefc006e, 0xc0611c3c,
0x0000007c, 0x806e846e,
0xbefc007e, 0xbefe007c,
0xbefc006e, 0xc0611c7c,
0x0000007c, 0x806e846e,
0xbefc007e, 0xbefe007c,
0xbefc006e, 0xc0611cbc,
0x0000007c, 0x806e846e,
0xbefc007e, 0xbefe007c,
0xbefc006e, 0xc0611cfc,
0x0000007c, 0x806e846e,
0xbefc007e, 0xbefe007c,
0xbefc006e, 0xc0611d3c,
0x0000007c, 0x806e846e,
0xbefc007e, 0xb8f5f803,
0xbefe007c, 0xbefc006e,
0xc0611d7c, 0x0000007c,
0x806e846e, 0xbefc007e,
0xbefe007c, 0xbefc006e,
0xc0611dbc, 0x0000007c,
0x806e846e, 0xbefc007e,
0xbefe007c, 0xbefc006e,
0xc0611dfc, 0x0000007c,
0x806e846e, 0xbefc007e,
0xb8eff801, 0xbefe007c,
0xbefc006e, 0xc0611bfc,
0x0000007c, 0x806e846e,
0xbefc007e, 0xbefe007c,
0xbefc006e, 0xc0611b3c,
0x0000007c, 0x806e846e,
0xbefc007e, 0xbefe007c,
0xbefc006e, 0xc0611b7c,
0x0000007c, 0x806e846e,
0xbefc007e, 0x867aff7f,
0x04000000, 0xbef30080,
0x8773737a, 0xb8ee2a05,
0x806e816e, 0x8e6e8a6e,
0xb8f51605, 0x80758175,
0x8e758475, 0x8e7a8275,
0xbefa00ff, 0x01000000,
0xbef60178, 0x80786e78,
0x82798079, 0xbefc0080,
0xbe802b00, 0xbe822b02,
0xbe842b04, 0xbe862b06,
0xbe882b08, 0xbe8a2b0a,
0xbe8c2b0c, 0xbe8e2b0e,
0xc06b003c, 0x00000000,
0xc06b013c, 0x00000010,
0xc06b023c, 0x00000020,
0xc06b033c, 0x00000030,
0x8078c078, 0x82798079,
0x807c907c, 0xbf0a757c,
0xbf85ffeb, 0xbef80176,
0xbeee0080, 0xbefe00c1,
0xbeff00c1, 0xbefa00ff,
0x01000000, 0xe0724000,
0x6e1e0000, 0xe0724100,
0x6e1e0100, 0xe0724200,
0x6e1e0200, 0xe0724300,
0x6e1e0300, 0xbefe00c1,
0xbeff00c1, 0xb8f54306,
0x8675c175, 0xbf84002c,
0xbf8a0000, 0x867aff73,
0x04000000, 0xbf840028,
0x8e758675, 0x8e758275,
0xbefa0075, 0xb8ee2a05,
0x806e816e, 0x8e6e8a6e,
0xb8fa1605, 0x807a817a,
0x8e7a867a, 0x806e7a6e,
0x806eff6e, 0x00000080,
0xbefa00ff, 0x01000000,
0xbefc0080, 0xd28c0002,
0x000100c1, 0xd28d0003,
0x000204c1, 0xd1060002,
0x00011103, 0x7e0602ff,
0x00000200, 0xbefc00ff,
0x00010000, 0xbe80007b,
0x867bff7b, 0xff7fffff,
0x877bff7b, 0x00058000,
0xd8ec0000, 0x00000002,
0xbf8c007f, 0xe0765000,
0x6e1e0002, 0x32040702,
0xd0c9006a, 0x0000eb02,
0xbf87fff7, 0xbefb0000,
0xbeee00ff, 0x00000400,
0xbefe00c1, 0xbeff00c1,
0xb8f52a05, 0x80758175,
0x8e758275, 0x8e7a8875,
0xbefa00ff, 0x01000000,
0xbefc0084, 0xbf0a757c,
0xbf840015, 0xbf11017c,
0x8075ff75, 0x00001000,
0x7e000300, 0x7e020301,
0x7e040302, 0x7e060303,
0xe0724000, 0x6e1e0000,
0xe0724100, 0x6e1e0100,
0xe0724200, 0x6e1e0200,
0xe0724300, 0x6e1e0300,
0x807c847c, 0x806eff6e,
0x00000400, 0xbf0a757c,
0xbf85ffef, 0xbf9c0000,
0xbf8200ca, 0xbef8007e,
0x8679ff7f, 0x0000ffff,
0x8779ff79, 0x00040000,
0xbefa0080, 0xbefb00ff,
0x00807fac, 0x8676ff7f,
0x08000000, 0x8f768376,
0x877b767b, 0x8676ff7f,
0x70000000, 0x8f768176,
0x877b767b, 0x8676ff7f,
0x04000000, 0xbf84001e,
0xbefe00c1, 0xbeff00c1,
0xb8f34306, 0x8673c173,
0xbf840019, 0x8e738673,
0x8e738273, 0xbefa0073,
0xb8f22a05, 0x80728172,
0x8e728a72, 0xb8f61605,
0x80768176, 0x8e768676,
0x80727672, 0x8072ff72,
0x00000080, 0xbefa00ff,
0x01000000, 0xbefc0080,
0xe0510000, 0x721e0000,
0xe0510100, 0x721e0000,
0x807cff7c, 0x00000200,
0x8072ff72, 0x00000200,
0xbf0a737c, 0xbf85fff6,
0xbef20080, 0xbefe00c1,
0xbeff00c1, 0xb8f32a05,
0x80738173, 0x8e738273,
0x8e7a8873, 0xbefa00ff,
0x01000000, 0xbef60072,
0x8072ff72, 0x00000400,
0xbefc0084, 0xbf11087c,
0x8073ff73, 0x00008000,
0xe0524000, 0x721e0000,
0xe0524100, 0x721e0100,
0xe0524200, 0x721e0200,
0xe0524300, 0x721e0300,
0xbf8c0f70, 0x7e000300,
0x7e020301, 0x7e040302,
0x7e060303, 0x807c847c,
0x8072ff72, 0x00000400,
0xbf0a737c, 0xbf85ffee,
0xbf9c0000, 0xe0524000,
0x761e0000, 0xe0524100,
0x761e0100, 0xe0524200,
0x761e0200, 0xe0524300,
0x761e0300, 0xb8f22a05,
0x80728172, 0x8e728a72,
0xb8f61605, 0x80768176,
0x8e768676, 0x80727672,
0x80f2c072, 0xb8f31605,
0x80738173, 0x8e738473,
0x8e7a8273, 0xbefa00ff,
0x01000000, 0xbefc0073,
0xc031003c, 0x00000072,
0x80f2c072, 0xbf8c007f,
0x80fc907c, 0xbe802d00,
0xbe822d02, 0xbe842d04,
0xbe862d06, 0xbe882d08,
0xbe8a2d0a, 0xbe8c2d0c,
0xbe8e2d0e, 0xbf06807c,
0xbf84fff1, 0xb8f22a05,
0x80728172, 0x8e728a72,
0xb8f61605, 0x80768176,
0x8e768676, 0x80727672,
0xbefa0084, 0xbefa00ff,
0x01000000, 0xc0211cfc,
0x00000072, 0x80728472,
0xc0211c3c, 0x00000072,
0x80728472, 0xc0211c7c,
0x00000072, 0x80728472,
0xc0211bbc, 0x00000072,
0x80728472, 0xc0211bfc,
0x00000072, 0x80728472,
0xc0211d3c, 0x00000072,
0x80728472, 0xc0211d7c,
0x00000072, 0x80728472,
0xc0211a3c, 0x00000072,
0x80728472, 0xc0211a7c,
0x00000072, 0x80728472,
0xc0211dfc, 0x00000072,
0x80728472, 0xc0211b3c,
0x00000072, 0x80728472,
0xc0211b7c, 0x00000072,
0x80728472, 0xbf8c007f,
0x8671ff71, 0x0000ffff,
0xbefc0073, 0xbefe006e,
0xbeff006f, 0x867375ff,
0x000003ff, 0xb9734803,
0x867375ff, 0xfffff800,
0x8f738b73, 0xb973a2c3,
0xb977f801, 0x8673ff71,
0xf0000000, 0x8f739c73,
0x8e739073, 0xbef60080,
0x87767376, 0x8673ff71,
0x08000000, 0x8f739b73,
0x8e738f73, 0x87767376,
0x8673ff74, 0x00800000,
0x8f739773, 0xb976f807,
0x86fe7e7e, 0x86ea6a6a,
0xb974f802, 0xbf8a0000,
0x95807370, 0xbf810000,
};
...@@ -117,7 +117,7 @@ static int kfd_open(struct inode *inode, struct file *filep) ...@@ -117,7 +117,7 @@ static int kfd_open(struct inode *inode, struct file *filep)
return -EPERM; return -EPERM;
} }
process = kfd_create_process(current); process = kfd_create_process(filep);
if (IS_ERR(process)) if (IS_ERR(process))
return PTR_ERR(process); return PTR_ERR(process);
...@@ -206,6 +206,7 @@ static int set_queue_properties_from_user(struct queue_properties *q_properties, ...@@ -206,6 +206,7 @@ static int set_queue_properties_from_user(struct queue_properties *q_properties,
q_properties->ctx_save_restore_area_address = q_properties->ctx_save_restore_area_address =
args->ctx_save_restore_address; args->ctx_save_restore_address;
q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size; q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
q_properties->ctl_stack_size = args->ctl_stack_size;
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE || if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL) args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
q_properties->type = KFD_QUEUE_TYPE_COMPUTE; q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
...@@ -431,6 +432,38 @@ static int kfd_ioctl_set_memory_policy(struct file *filep, ...@@ -431,6 +432,38 @@ static int kfd_ioctl_set_memory_policy(struct file *filep,
return err; return err;
} }
static int kfd_ioctl_set_trap_handler(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_trap_handler_args *args = data;
struct kfd_dev *dev;
int err = 0;
struct kfd_process_device *pdd;
dev = kfd_device_by_id(args->gpu_id);
if (dev == NULL)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = -ESRCH;
goto out;
}
if (dev->dqm->ops.set_trap_handler(dev->dqm,
&pdd->qpd,
args->tba_addr,
args->tma_addr))
err = -EINVAL;
out:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_dbg_register(struct file *filep, static int kfd_ioctl_dbg_register(struct file *filep,
struct kfd_process *p, void *data) struct kfd_process *p, void *data)
{ {
...@@ -493,7 +526,7 @@ static int kfd_ioctl_dbg_unregister(struct file *filep, ...@@ -493,7 +526,7 @@ static int kfd_ioctl_dbg_unregister(struct file *filep,
long status; long status;
dev = kfd_device_by_id(args->gpu_id); dev = kfd_device_by_id(args->gpu_id);
if (!dev) if (!dev || !dev->dbgmgr)
return -EINVAL; return -EINVAL;
if (dev->device_info->asic_family == CHIP_CARRIZO) { if (dev->device_info->asic_family == CHIP_CARRIZO) {
...@@ -979,7 +1012,10 @@ static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = { ...@@ -979,7 +1012,10 @@ static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
kfd_ioctl_set_scratch_backing_va, 0), kfd_ioctl_set_scratch_backing_va, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG, AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
kfd_ioctl_get_tile_config, 0) kfd_ioctl_get_tile_config, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
kfd_ioctl_set_trap_handler, 0),
}; };
#define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls) #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
...@@ -1088,6 +1124,10 @@ static int kfd_mmap(struct file *filp, struct vm_area_struct *vma) ...@@ -1088,6 +1124,10 @@ static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
KFD_MMAP_EVENTS_MASK) { KFD_MMAP_EVENTS_MASK) {
vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_EVENTS_MASK; vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_EVENTS_MASK;
return kfd_event_mmap(process, vma); return kfd_event_mmap(process, vma);
} else if ((vma->vm_pgoff & KFD_MMAP_RESERVED_MEM_MASK) ==
KFD_MMAP_RESERVED_MEM_MASK) {
vma->vm_pgoff = vma->vm_pgoff ^ KFD_MMAP_RESERVED_MEM_MASK;
return kfd_reserved_mem_mmap(process, vma);
} }
return -EFAULT; return -EFAULT;
......
/*
* Copyright 2015-2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/pci.h>
#include <linux/acpi.h>
#include <linux/amd-iommu.h>
#include "kfd_crat.h"
#include "kfd_priv.h"
#include "kfd_topology.h"
/* GPU Processor ID base for dGPUs for which VCRAT needs to be created.
* GPU processor ID are expressed with Bit[31]=1.
* The base is set to 0x8000_0000 + 0x1000 to avoid collision with GPU IDs
* used in the CRAT.
*/
static uint32_t gpu_processor_id_low = 0x80001000;
/* Return the next available gpu_processor_id and increment it for next GPU
* @total_cu_count - Total CUs present in the GPU including ones
* masked off
*/
static inline unsigned int get_and_inc_gpu_processor_id(
unsigned int total_cu_count)
{
int current_id = gpu_processor_id_low;
gpu_processor_id_low += total_cu_count;
return current_id;
}
/* Static table to describe GPU Cache information */
struct kfd_gpu_cache_info {
uint32_t cache_size;
uint32_t cache_level;
uint32_t flags;
/* Indicates how many Compute Units share this cache
* Value = 1 indicates the cache is not shared
*/
uint32_t num_cu_shared;
};
static struct kfd_gpu_cache_info kaveri_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 2,
},
/* TODO: Add L2 Cache information */
};
static struct kfd_gpu_cache_info carrizo_cache_info[] = {
{
/* TCP L1 Cache per CU */
.cache_size = 16,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 1,
},
{
/* Scalar L1 Instruction Cache (in SQC module) per bank */
.cache_size = 8,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_INST_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
{
/* Scalar L1 Data Cache (in SQC module) per bank. */
.cache_size = 4,
.cache_level = 1,
.flags = (CRAT_CACHE_FLAGS_ENABLED |
CRAT_CACHE_FLAGS_DATA_CACHE |
CRAT_CACHE_FLAGS_SIMD_CACHE),
.num_cu_shared = 4,
},
/* TODO: Add L2 Cache information */
};
/* NOTE: In future if more information is added to struct kfd_gpu_cache_info
* the following ASICs may need a separate table.
*/
#define hawaii_cache_info kaveri_cache_info
#define tonga_cache_info carrizo_cache_info
#define fiji_cache_info carrizo_cache_info
#define polaris10_cache_info carrizo_cache_info
#define polaris11_cache_info carrizo_cache_info
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
dev->node_props.cpu_core_id_base = cu->processor_id_low;
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
pr_debug("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
cu->processor_id_low);
}
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.simd_id_base = cu->processor_id_low;
dev->node_props.simd_count = cu->num_simd_cores;
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
dev->node_props.wave_front_size = cu->wave_front_size;
dev->node_props.array_count = cu->array_count;
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
pr_debug("CU GPU: id_base=%d\n", cu->processor_id_low);
}
/* kfd_parse_subtype_cu - parse compute unit subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu,
struct list_head *device_list)
{
struct kfd_topology_device *dev;
pr_debug("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
cu->proximity_domain, cu->hsa_capability);
list_for_each_entry(dev, device_list, list) {
if (cu->proximity_domain == dev->proximity_domain) {
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
kfd_populated_cu_info_cpu(dev, cu);
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
kfd_populated_cu_info_gpu(dev, cu);
break;
}
}
return 0;
}
/* kfd_parse_subtype_mem - parse memory subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem,
struct list_head *device_list)
{
struct kfd_mem_properties *props;
struct kfd_topology_device *dev;
pr_debug("Found memory entry in CRAT table with proximity_domain=%d\n",
mem->proximity_domain);
list_for_each_entry(dev, device_list, list) {
if (mem->proximity_domain == dev->proximity_domain) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
/* We're on GPU node */
if (dev->node_props.cpu_cores_count == 0) {
/* APU */
if (mem->visibility_type == 0)
props->heap_type =
HSA_MEM_HEAP_TYPE_FB_PRIVATE;
/* dGPU */
else
props->heap_type = mem->visibility_type;
} else
props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
props->size_in_bytes =
((uint64_t)mem->length_high << 32) +
mem->length_low;
props->width = mem->width;
dev->node_props.mem_banks_count++;
list_add_tail(&props->list, &dev->mem_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_cache - parse cache subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache,
struct list_head *device_list)
{
struct kfd_cache_properties *props;
struct kfd_topology_device *dev;
uint32_t id;
uint32_t total_num_of_cu;
id = cache->processor_id_low;
pr_debug("Found cache entry in CRAT table with processor_id=%d\n", id);
list_for_each_entry(dev, device_list, list) {
total_num_of_cu = (dev->node_props.array_count *
dev->node_props.cu_per_simd_array);
/* Cache infomration in CRAT doesn't have proximity_domain
* information as it is associated with a CPU core or GPU
* Compute Unit. So map the cache using CPU core Id or SIMD
* (GPU) ID.
* TODO: This works because currently we can safely assume that
* Compute Units are parsed before caches are parsed. In
* future, remove this dependency
*/
if ((id >= dev->node_props.cpu_core_id_base &&
id <= dev->node_props.cpu_core_id_base +
dev->node_props.cpu_cores_count) ||
(id >= dev->node_props.simd_id_base &&
id < dev->node_props.simd_id_base +
total_num_of_cu)) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->processor_id_low = id;
props->cache_level = cache->cache_level;
props->cache_size = cache->cache_size;
props->cacheline_size = cache->cache_line_size;
props->cachelines_per_tag = cache->lines_per_tag;
props->cache_assoc = cache->associativity;
props->cache_latency = cache->cache_latency;
memcpy(props->sibling_map, cache->sibling_map,
sizeof(props->sibling_map));
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
props->cache_type |= HSA_CACHE_TYPE_DATA;
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
props->cache_type |= HSA_CACHE_TYPE_CPU;
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
props->cache_type |= HSA_CACHE_TYPE_HSACU;
dev->cache_count++;
dev->node_props.caches_count++;
list_add_tail(&props->list, &dev->cache_props);
break;
}
}
return 0;
}
/* kfd_parse_subtype_iolink - parse iolink subtypes and attach it to correct
* topology device present in the device_list
*/
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink,
struct list_head *device_list)
{
struct kfd_iolink_properties *props = NULL, *props2;
struct kfd_topology_device *dev, *cpu_dev;
uint32_t id_from;
uint32_t id_to;
id_from = iolink->proximity_domain_from;
id_to = iolink->proximity_domain_to;
pr_debug("Found IO link entry in CRAT table with id_from=%d\n",
id_from);
list_for_each_entry(dev, device_list, list) {
if (id_from == dev->proximity_domain) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
props->node_from = id_from;
props->node_to = id_to;
props->ver_maj = iolink->version_major;
props->ver_min = iolink->version_minor;
props->iolink_type = iolink->io_interface_type;
if (props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS)
props->weight = 20;
else
props->weight = node_distance(id_from, id_to);
props->min_latency = iolink->minimum_latency;
props->max_latency = iolink->maximum_latency;
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
props->rec_transfer_size =
iolink->recommended_transfer_size;
dev->io_link_count++;
dev->node_props.io_links_count++;
list_add_tail(&props->list, &dev->io_link_props);
break;
}
}
/* CPU topology is created before GPUs are detected, so CPU->GPU
* links are not built at that time. If a PCIe type is discovered, it
* means a GPU is detected and we are adding GPU->CPU to the topology.
* At this time, also add the corresponded CPU->GPU link.
*/
if (props && props->iolink_type == CRAT_IOLINK_TYPE_PCIEXPRESS) {
cpu_dev = kfd_topology_device_by_proximity_domain(id_to);
if (!cpu_dev)
return -ENODEV;
/* same everything but the other direction */
props2 = kmemdup(props, sizeof(*props2), GFP_KERNEL);
props2->node_from = id_to;
props2->node_to = id_from;
props2->kobj = NULL;
cpu_dev->io_link_count++;
cpu_dev->node_props.io_links_count++;
list_add_tail(&props2->list, &cpu_dev->io_link_props);
}
return 0;
}
/* kfd_parse_subtype - parse subtypes and attach it to correct topology device
* present in the device_list
* @sub_type_hdr - subtype section of crat_image
* @device_list - list of topology devices present in this crat_image
*/
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr,
struct list_head *device_list)
{
struct crat_subtype_computeunit *cu;
struct crat_subtype_memory *mem;
struct crat_subtype_cache *cache;
struct crat_subtype_iolink *iolink;
int ret = 0;
switch (sub_type_hdr->type) {
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
ret = kfd_parse_subtype_cu(cu, device_list);
break;
case CRAT_SUBTYPE_MEMORY_AFFINITY:
mem = (struct crat_subtype_memory *)sub_type_hdr;
ret = kfd_parse_subtype_mem(mem, device_list);
break;
case CRAT_SUBTYPE_CACHE_AFFINITY:
cache = (struct crat_subtype_cache *)sub_type_hdr;
ret = kfd_parse_subtype_cache(cache, device_list);
break;
case CRAT_SUBTYPE_TLB_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found TLB entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
/*
* For now, nothing to do here
*/
pr_debug("Found CCOMPUTE entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_IOLINK_AFFINITY:
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
ret = kfd_parse_subtype_iolink(iolink, device_list);
break;
default:
pr_warn("Unknown subtype %d in CRAT\n",
sub_type_hdr->type);
}
return ret;
}
/* kfd_parse_crat_table - parse CRAT table. For each node present in CRAT
* create a kfd_topology_device and add in to device_list. Also parse
* CRAT subtypes and attach it to appropriate kfd_topology_device
* @crat_image - input image containing CRAT
* @device_list - [OUT] list of kfd_topology_device generated after
* parsing crat_image
* @proximity_domain - Proximity domain of the first device in the table
*
* Return - 0 if successful else -ve value
*/
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
uint32_t proximity_domain)
{
struct kfd_topology_device *top_dev = NULL;
struct crat_subtype_generic *sub_type_hdr;
uint16_t node_id;
int ret = 0;
struct crat_header *crat_table = (struct crat_header *)crat_image;
uint16_t num_nodes;
uint32_t image_len;
if (!crat_image)
return -EINVAL;
if (!list_empty(device_list)) {
pr_warn("Error device list should be empty\n");
return -EINVAL;
}
num_nodes = crat_table->num_domains;
image_len = crat_table->length;
pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
for (node_id = 0; node_id < num_nodes; node_id++) {
top_dev = kfd_create_topology_device(device_list);
if (!top_dev)
break;
top_dev->proximity_domain = proximity_domain++;
}
if (!top_dev) {
ret = -ENOMEM;
goto err;
}
memcpy(top_dev->oem_id, crat_table->oem_id, CRAT_OEMID_LENGTH);
memcpy(top_dev->oem_table_id, crat_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
top_dev->oem_revision = crat_table->oem_revision;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
((char *)crat_image) + image_len) {
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
ret = kfd_parse_subtype(sub_type_hdr, device_list);
if (ret)
break;
}
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
}
err:
if (ret)
kfd_release_topology_device_list(device_list);
return ret;
}
/* Helper function. See kfd_fill_gpu_cache_info for parameter description */
static int fill_in_pcache(struct crat_subtype_cache *pcache,
struct kfd_gpu_cache_info *pcache_info,
struct kfd_cu_info *cu_info,
int mem_available,
int cu_bitmask,
int cache_type, unsigned int cu_processor_id,
int cu_block)
{
unsigned int cu_sibling_map_mask;
int first_active_cu;
/* First check if enough memory is available */
if (sizeof(struct crat_subtype_cache) > mem_available)
return -ENOMEM;
cu_sibling_map_mask = cu_bitmask;
cu_sibling_map_mask >>= cu_block;
cu_sibling_map_mask &=
((1 << pcache_info[cache_type].num_cu_shared) - 1);
first_active_cu = ffs(cu_sibling_map_mask);
/* CU could be inactive. In case of shared cache find the first active
* CU. and incase of non-shared cache check if the CU is inactive. If
* inactive active skip it
*/
if (first_active_cu) {
memset(pcache, 0, sizeof(struct crat_subtype_cache));
pcache->type = CRAT_SUBTYPE_CACHE_AFFINITY;
pcache->length = sizeof(struct crat_subtype_cache);
pcache->flags = pcache_info[cache_type].flags;
pcache->processor_id_low = cu_processor_id
+ (first_active_cu - 1);
pcache->cache_level = pcache_info[cache_type].cache_level;
pcache->cache_size = pcache_info[cache_type].cache_size;
/* Sibling map is w.r.t processor_id_low, so shift out
* inactive CU
*/
cu_sibling_map_mask =
cu_sibling_map_mask >> (first_active_cu - 1);
pcache->sibling_map[0] = (uint8_t)(cu_sibling_map_mask & 0xFF);
pcache->sibling_map[1] =
(uint8_t)((cu_sibling_map_mask >> 8) & 0xFF);
pcache->sibling_map[2] =
(uint8_t)((cu_sibling_map_mask >> 16) & 0xFF);
pcache->sibling_map[3] =
(uint8_t)((cu_sibling_map_mask >> 24) & 0xFF);
return 0;
}
return 1;
}
/* kfd_fill_gpu_cache_info - Fill GPU cache info using kfd_gpu_cache_info
* tables
*
* @kdev - [IN] GPU device
* @gpu_processor_id - [IN] GPU processor ID to which these caches
* associate
* @available_size - [IN] Amount of memory available in pcache
* @cu_info - [IN] Compute Unit info obtained from KGD
* @pcache - [OUT] memory into which cache data is to be filled in.
* @size_filled - [OUT] amount of data used up in pcache.
* @num_of_entries - [OUT] number of caches added
*/
static int kfd_fill_gpu_cache_info(struct kfd_dev *kdev,
int gpu_processor_id,
int available_size,
struct kfd_cu_info *cu_info,
struct crat_subtype_cache *pcache,
int *size_filled,
int *num_of_entries)
{
struct kfd_gpu_cache_info *pcache_info;
int num_of_cache_types = 0;
int i, j, k;
int ct = 0;
int mem_available = available_size;
unsigned int cu_processor_id;
int ret;
switch (kdev->device_info->asic_family) {
case CHIP_KAVERI:
pcache_info = kaveri_cache_info;
num_of_cache_types = ARRAY_SIZE(kaveri_cache_info);
break;
case CHIP_HAWAII:
pcache_info = hawaii_cache_info;
num_of_cache_types = ARRAY_SIZE(hawaii_cache_info);
break;
case CHIP_CARRIZO:
pcache_info = carrizo_cache_info;
num_of_cache_types = ARRAY_SIZE(carrizo_cache_info);
break;
case CHIP_TONGA:
pcache_info = tonga_cache_info;
num_of_cache_types = ARRAY_SIZE(tonga_cache_info);
break;
case CHIP_FIJI:
pcache_info = fiji_cache_info;
num_of_cache_types = ARRAY_SIZE(fiji_cache_info);
break;
case CHIP_POLARIS10:
pcache_info = polaris10_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris10_cache_info);
break;
case CHIP_POLARIS11:
pcache_info = polaris11_cache_info;
num_of_cache_types = ARRAY_SIZE(polaris11_cache_info);
break;
default:
return -EINVAL;
}
*size_filled = 0;
*num_of_entries = 0;
/* For each type of cache listed in the kfd_gpu_cache_info table,
* go through all available Compute Units.
* The [i,j,k] loop will
* if kfd_gpu_cache_info.num_cu_shared = 1
* will parse through all available CU
* If (kfd_gpu_cache_info.num_cu_shared != 1)
* then it will consider only one CU from
* the shared unit
*/
for (ct = 0; ct < num_of_cache_types; ct++) {
cu_processor_id = gpu_processor_id;
for (i = 0; i < cu_info->num_shader_engines; i++) {
for (j = 0; j < cu_info->num_shader_arrays_per_engine;
j++) {
for (k = 0; k < cu_info->num_cu_per_sh;
k += pcache_info[ct].num_cu_shared) {
ret = fill_in_pcache(pcache,
pcache_info,
cu_info,
mem_available,
cu_info->cu_bitmap[i][j],
ct,
cu_processor_id,
k);
if (ret < 0)
break;
if (!ret) {
pcache++;
(*num_of_entries)++;
mem_available -=
sizeof(*pcache);
(*size_filled) +=
sizeof(*pcache);
}
/* Move to next CU block */
cu_processor_id +=
pcache_info[ct].num_cu_shared;
}
}
}
}
pr_debug("Added [%d] GPU cache entries\n", *num_of_entries);
return 0;
}
/*
* kfd_create_crat_image_acpi - Allocates memory for CRAT image and
* copies CRAT from ACPI (if available).
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: CRAT read from ACPI. If no CRAT in ACPI then
* crat_image will be NULL
* @size: [OUT] size of crat_image
*
* Return 0 if successful else return error code
*/
int kfd_create_crat_image_acpi(void **crat_image, size_t *size)
{
struct acpi_table_header *crat_table;
acpi_status status;
void *pcrat_image;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
/* Fetch the CRAT table from ACPI */
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
if (status == AE_NOT_FOUND) {
pr_warn("CRAT table not found\n");
return -ENODATA;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("CRAT table error: %s\n", err);
return -EINVAL;
}
if (ignore_crat) {
pr_info("CRAT table disabled by module option\n");
return -ENODATA;
}
pcrat_image = kmalloc(crat_table->length, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
memcpy(pcrat_image, crat_table, crat_table->length);
*crat_image = pcrat_image;
*size = crat_table->length;
return 0;
}
/* Memory required to create Virtual CRAT.
* Since there is no easy way to predict the amount of memory required, the
* following amount are allocated for CPU and GPU Virtual CRAT. This is
* expected to cover all known conditions. But to be safe additional check
* is put in the code to ensure we don't overwrite.
*/
#define VCRAT_SIZE_FOR_CPU (2 * PAGE_SIZE)
#define VCRAT_SIZE_FOR_GPU (3 * PAGE_SIZE)
/* kfd_fill_cu_for_cpu - Fill in Compute info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_cu_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_computeunit *sub_type_hdr)
{
const struct cpumask *cpumask;
*avail_size -= sizeof(struct crat_subtype_computeunit);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
cpumask = cpumask_of_node(numa_node_id);
/* Fill in CU data */
sub_type_hdr->flags |= CRAT_CU_FLAGS_CPU_PRESENT;
sub_type_hdr->proximity_domain = proximity_domain;
sub_type_hdr->processor_id_low = kfd_numa_node_to_apic_id(numa_node_id);
if (sub_type_hdr->processor_id_low == -1)
return -EINVAL;
sub_type_hdr->num_cpu_cores = cpumask_weight(cpumask);
return 0;
}
/* kfd_fill_mem_info_for_cpu - Fill in Memory info for the given CPU NUMA node
*
* @numa_node_id: CPU NUMA node id
* @avail_size: Available size in the memory
* @sub_type_hdr: Memory into which compute info will be filled in
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_mem_info_for_cpu(int numa_node_id, int *avail_size,
int proximity_domain,
struct crat_subtype_memory *sub_type_hdr)
{
uint64_t mem_in_bytes = 0;
pg_data_t *pgdat;
int zone_type;
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in Memory Subunit data */
/* Unlike si_meminfo, si_meminfo_node is not exported. So
* the following lines are duplicated from si_meminfo_node
* function
*/
pgdat = NODE_DATA(numa_node_id);
for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
mem_in_bytes += pgdat->node_zones[zone_type].managed_pages;
mem_in_bytes <<= PAGE_SHIFT;
sub_type_hdr->length_low = lower_32_bits(mem_in_bytes);
sub_type_hdr->length_high = upper_32_bits(mem_in_bytes);
sub_type_hdr->proximity_domain = proximity_domain;
return 0;
}
static int kfd_fill_iolink_info_for_cpu(int numa_node_id, int *avail_size,
uint32_t *num_entries,
struct crat_subtype_iolink *sub_type_hdr)
{
int nid;
struct cpuinfo_x86 *c = &cpu_data(0);
uint8_t link_type;
if (c->x86_vendor == X86_VENDOR_AMD)
link_type = CRAT_IOLINK_TYPE_HYPERTRANSPORT;
else
link_type = CRAT_IOLINK_TYPE_QPI_1_1;
*num_entries = 0;
/* Create IO links from this node to other CPU nodes */
for_each_online_node(nid) {
if (nid == numa_node_id) /* node itself */
continue;
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in IO link data */
sub_type_hdr->proximity_domain_from = numa_node_id;
sub_type_hdr->proximity_domain_to = nid;
sub_type_hdr->io_interface_type = link_type;
(*num_entries)++;
sub_type_hdr++;
}
return 0;
}
/* kfd_create_vcrat_image_cpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for CPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_cpu(void *pcrat_image, size_t *size)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct acpi_table_header *acpi_table;
acpi_status status;
struct crat_subtype_generic *sub_type_hdr;
int avail_size = *size;
int numa_node_id;
uint32_t entries = 0;
int ret = 0;
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_CPU)
return -EINVAL;
/* Fill in CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
crat_table->length = sizeof(struct crat_header);
status = acpi_get_table("DSDT", 0, &acpi_table);
if (status == AE_NOT_FOUND)
pr_warn("DSDT table not found for OEM information\n");
else {
crat_table->oem_revision = acpi_table->revision;
memcpy(crat_table->oem_id, acpi_table->oem_id,
CRAT_OEMID_LENGTH);
memcpy(crat_table->oem_table_id, acpi_table->oem_table_id,
CRAT_OEMTABLEID_LENGTH);
}
crat_table->total_entries = 0;
crat_table->num_domains = 0;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
for_each_online_node(numa_node_id) {
if (kfd_numa_node_to_apic_id(numa_node_id) == -1)
continue;
/* Fill in Subtype: Compute Unit */
ret = kfd_fill_cu_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_computeunit *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: Memory */
ret = kfd_fill_mem_info_for_cpu(numa_node_id, &avail_size,
crat_table->num_domains,
(struct crat_subtype_memory *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
/* Fill in Subtype: IO Link */
ret = kfd_fill_iolink_info_for_cpu(numa_node_id, &avail_size,
&entries,
(struct crat_subtype_iolink *)sub_type_hdr);
if (ret < 0)
return ret;
crat_table->length += (sub_type_hdr->length * entries);
crat_table->total_entries += entries;
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length * entries);
crat_table->num_domains++;
}
/* TODO: Add cache Subtype for CPU.
* Currently, CPU cache information is available in function
* detect_cache_attributes(cpu) defined in the file
* ./arch/x86/kernel/cpu/intel_cacheinfo.c. This function is not
* exported and to get the same information the code needs to be
* duplicated.
*/
*size = crat_table->length;
pr_info("Virtual CRAT table created for CPU\n");
return 0;
}
static int kfd_fill_gpu_memory_affinity(int *avail_size,
struct kfd_dev *kdev, uint8_t type, uint64_t size,
struct crat_subtype_memory *sub_type_hdr,
uint32_t proximity_domain,
const struct kfd_local_mem_info *local_mem_info)
{
*avail_size -= sizeof(struct crat_subtype_memory);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_memory));
sub_type_hdr->type = CRAT_SUBTYPE_MEMORY_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_memory);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
sub_type_hdr->proximity_domain = proximity_domain;
pr_debug("Fill gpu memory affinity - type 0x%x size 0x%llx\n",
type, size);
sub_type_hdr->length_low = lower_32_bits(size);
sub_type_hdr->length_high = upper_32_bits(size);
sub_type_hdr->width = local_mem_info->vram_width;
sub_type_hdr->visibility_type = type;
return 0;
}
/* kfd_fill_gpu_direct_io_link - Fill in direct io link from GPU
* to its NUMA node
* @avail_size: Available size in the memory
* @kdev - [IN] GPU device
* @sub_type_hdr: Memory into which io link info will be filled in
* @proximity_domain - proximity domain of the GPU node
*
* Return 0 if successful else return -ve value
*/
static int kfd_fill_gpu_direct_io_link(int *avail_size,
struct kfd_dev *kdev,
struct crat_subtype_iolink *sub_type_hdr,
uint32_t proximity_domain)
{
*avail_size -= sizeof(struct crat_subtype_iolink);
if (*avail_size < 0)
return -ENOMEM;
memset((void *)sub_type_hdr, 0, sizeof(struct crat_subtype_iolink));
/* Fill in subtype header data */
sub_type_hdr->type = CRAT_SUBTYPE_IOLINK_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_iolink);
sub_type_hdr->flags |= CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill in IOLINK subtype.
* TODO: Fill-in other fields of iolink subtype
*/
sub_type_hdr->io_interface_type = CRAT_IOLINK_TYPE_PCIEXPRESS;
sub_type_hdr->proximity_domain_from = proximity_domain;
#ifdef CONFIG_NUMA
if (kdev->pdev->dev.numa_node == NUMA_NO_NODE)
sub_type_hdr->proximity_domain_to = 0;
else
sub_type_hdr->proximity_domain_to = kdev->pdev->dev.numa_node;
#else
sub_type_hdr->proximity_domain_to = 0;
#endif
return 0;
}
/* kfd_create_vcrat_image_gpu - Create Virtual CRAT for CPU
*
* @pcrat_image: Fill in VCRAT for GPU
* @size: [IN] allocated size of crat_image.
* [OUT] actual size of data filled in crat_image
*/
static int kfd_create_vcrat_image_gpu(void *pcrat_image,
size_t *size, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
struct crat_header *crat_table = (struct crat_header *)pcrat_image;
struct crat_subtype_generic *sub_type_hdr;
struct crat_subtype_computeunit *cu;
struct kfd_cu_info cu_info;
struct amd_iommu_device_info iommu_info;
int avail_size = *size;
uint32_t total_num_of_cu;
int num_of_cache_entries = 0;
int cache_mem_filled = 0;
int ret = 0;
const u32 required_iommu_flags = AMD_IOMMU_DEVICE_FLAG_ATS_SUP |
AMD_IOMMU_DEVICE_FLAG_PRI_SUP |
AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
struct kfd_local_mem_info local_mem_info;
if (!pcrat_image || avail_size < VCRAT_SIZE_FOR_GPU)
return -EINVAL;
/* Fill the CRAT Header.
* Modify length and total_entries as subunits are added.
*/
avail_size -= sizeof(struct crat_header);
if (avail_size < 0)
return -ENOMEM;
memset(crat_table, 0, sizeof(struct crat_header));
memcpy(&crat_table->signature, CRAT_SIGNATURE,
sizeof(crat_table->signature));
/* Change length as we add more subtypes*/
crat_table->length = sizeof(struct crat_header);
crat_table->num_domains = 1;
crat_table->total_entries = 0;
/* Fill in Subtype: Compute Unit
* First fill in the sub type header and then sub type data
*/
avail_size -= sizeof(struct crat_subtype_computeunit);
if (avail_size < 0)
return -ENOMEM;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table + 1);
memset(sub_type_hdr, 0, sizeof(struct crat_subtype_computeunit));
sub_type_hdr->type = CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY;
sub_type_hdr->length = sizeof(struct crat_subtype_computeunit);
sub_type_hdr->flags = CRAT_SUBTYPE_FLAGS_ENABLED;
/* Fill CU subtype data */
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
cu->flags |= CRAT_CU_FLAGS_GPU_PRESENT;
cu->proximity_domain = proximity_domain;
kdev->kfd2kgd->get_cu_info(kdev->kgd, &cu_info);
cu->num_simd_per_cu = cu_info.simd_per_cu;
cu->num_simd_cores = cu_info.simd_per_cu * cu_info.cu_active_number;
cu->max_waves_simd = cu_info.max_waves_per_simd;
cu->wave_front_size = cu_info.wave_front_size;
cu->array_count = cu_info.num_shader_arrays_per_engine *
cu_info.num_shader_engines;
total_num_of_cu = (cu->array_count * cu_info.num_cu_per_sh);
cu->processor_id_low = get_and_inc_gpu_processor_id(total_num_of_cu);
cu->num_cu_per_array = cu_info.num_cu_per_sh;
cu->max_slots_scatch_cu = cu_info.max_scratch_slots_per_cu;
cu->num_banks = cu_info.num_shader_engines;
cu->lds_size_in_kb = cu_info.lds_size;
cu->hsa_capability = 0;
/* Check if this node supports IOMMU. During parsing this flag will
* translate to HSA_CAP_ATS_PRESENT
*/
iommu_info.flags = 0;
if (amd_iommu_device_info(kdev->pdev, &iommu_info) == 0) {
if ((iommu_info.flags & required_iommu_flags) ==
required_iommu_flags)
cu->hsa_capability |= CRAT_CU_FLAGS_IOMMU_PRESENT;
}
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
/* Fill in Subtype: Memory. Only on systems with large BAR (no
* private FB), report memory as public. On other systems
* report the total FB size (public+private) as a single
* private heap.
*/
kdev->kfd2kgd->get_local_mem_info(kdev->kgd, &local_mem_info);
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
if (local_mem_info.local_mem_size_private == 0)
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PUBLIC,
local_mem_info.local_mem_size_public,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
else
ret = kfd_fill_gpu_memory_affinity(&avail_size,
kdev, HSA_MEM_HEAP_TYPE_FB_PRIVATE,
local_mem_info.local_mem_size_public +
local_mem_info.local_mem_size_private,
(struct crat_subtype_memory *)sub_type_hdr,
proximity_domain,
&local_mem_info);
if (ret < 0)
return ret;
crat_table->length += sizeof(struct crat_subtype_memory);
crat_table->total_entries++;
/* TODO: Fill in cache information. This information is NOT readily
* available in KGD
*/
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
ret = kfd_fill_gpu_cache_info(kdev, cu->processor_id_low,
avail_size,
&cu_info,
(struct crat_subtype_cache *)sub_type_hdr,
&cache_mem_filled,
&num_of_cache_entries);
if (ret < 0)
return ret;
crat_table->length += cache_mem_filled;
crat_table->total_entries += num_of_cache_entries;
avail_size -= cache_mem_filled;
/* Fill in Subtype: IO_LINKS
* Only direct links are added here which is Link from GPU to
* to its NUMA node. Indirect links are added by userspace.
*/
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
cache_mem_filled);
ret = kfd_fill_gpu_direct_io_link(&avail_size, kdev,
(struct crat_subtype_iolink *)sub_type_hdr, proximity_domain);
if (ret < 0)
return ret;
crat_table->length += sub_type_hdr->length;
crat_table->total_entries++;
*size = crat_table->length;
pr_info("Virtual CRAT table created for GPU\n");
return ret;
}
/* kfd_create_crat_image_virtual - Allocates memory for CRAT image and
* creates a Virtual CRAT (VCRAT) image
*
* NOTE: Call kfd_destroy_crat_image to free CRAT image memory
*
* @crat_image: VCRAT image created because ACPI does not have a
* CRAT for this device
* @size: [OUT] size of virtual crat_image
* @flags: COMPUTE_UNIT_CPU - Create VCRAT for CPU device
* COMPUTE_UNIT_GPU - Create VCRAT for GPU
* (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU) - Create VCRAT for APU
* -- this option is not currently implemented.
* The assumption is that all AMD APUs will have CRAT
* @kdev: Valid kfd_device required if flags contain COMPUTE_UNIT_GPU
*
* Return 0 if successful else return -ve value
*/
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
int flags, struct kfd_dev *kdev,
uint32_t proximity_domain)
{
void *pcrat_image = NULL;
int ret = 0;
if (!crat_image)
return -EINVAL;
*crat_image = NULL;
/* Allocate one VCRAT_SIZE_FOR_CPU for CPU virtual CRAT image and
* VCRAT_SIZE_FOR_GPU for GPU virtual CRAT image. This should cover
* all the current conditions. A check is put not to overwrite beyond
* allocated size
*/
switch (flags) {
case COMPUTE_UNIT_CPU:
pcrat_image = kmalloc(VCRAT_SIZE_FOR_CPU, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = VCRAT_SIZE_FOR_CPU;
ret = kfd_create_vcrat_image_cpu(pcrat_image, size);
break;
case COMPUTE_UNIT_GPU:
if (!kdev)
return -EINVAL;
pcrat_image = kmalloc(VCRAT_SIZE_FOR_GPU, GFP_KERNEL);
if (!pcrat_image)
return -ENOMEM;
*size = VCRAT_SIZE_FOR_GPU;
ret = kfd_create_vcrat_image_gpu(pcrat_image, size, kdev,
proximity_domain);
break;
case (COMPUTE_UNIT_CPU | COMPUTE_UNIT_GPU):
/* TODO: */
ret = -EINVAL;
pr_err("VCRAT not implemented for APU\n");
break;
default:
ret = -EINVAL;
}
if (!ret)
*crat_image = pcrat_image;
else
kfree(pcrat_image);
return ret;
}
/* kfd_destroy_crat_image
*
* @crat_image: [IN] - crat_image from kfd_create_crat_image_xxx(..)
*
*/
void kfd_destroy_crat_image(void *crat_image)
{
kfree(crat_image);
}
...@@ -44,6 +44,10 @@ ...@@ -44,6 +44,10 @@
#define CRAT_OEMID_64BIT_MASK ((1ULL << (CRAT_OEMID_LENGTH * 8)) - 1) #define CRAT_OEMID_64BIT_MASK ((1ULL << (CRAT_OEMID_LENGTH * 8)) - 1)
/* Compute Unit flags */
#define COMPUTE_UNIT_CPU (1 << 0) /* Create Virtual CRAT for CPU */
#define COMPUTE_UNIT_GPU (1 << 1) /* Create Virtual CRAT for GPU */
struct crat_header { struct crat_header {
uint32_t signature; uint32_t signature;
uint32_t length; uint32_t length;
...@@ -105,7 +109,7 @@ struct crat_subtype_computeunit { ...@@ -105,7 +109,7 @@ struct crat_subtype_computeunit {
uint8_t wave_front_size; uint8_t wave_front_size;
uint8_t num_banks; uint8_t num_banks;
uint16_t micro_engine_id; uint16_t micro_engine_id;
uint8_t num_arrays; uint8_t array_count;
uint8_t num_cu_per_array; uint8_t num_cu_per_array;
uint8_t num_simd_per_cu; uint8_t num_simd_per_cu;
uint8_t max_slots_scatch_cu; uint8_t max_slots_scatch_cu;
...@@ -127,13 +131,14 @@ struct crat_subtype_memory { ...@@ -127,13 +131,14 @@ struct crat_subtype_memory {
uint8_t length; uint8_t length;
uint16_t reserved; uint16_t reserved;
uint32_t flags; uint32_t flags;
uint32_t promixity_domain; uint32_t proximity_domain;
uint32_t base_addr_low; uint32_t base_addr_low;
uint32_t base_addr_high; uint32_t base_addr_high;
uint32_t length_low; uint32_t length_low;
uint32_t length_high; uint32_t length_high;
uint32_t width; uint32_t width;
uint8_t reserved2[CRAT_MEMORY_RESERVED_LENGTH]; uint8_t visibility_type; /* for virtual (dGPU) CRAT */
uint8_t reserved2[CRAT_MEMORY_RESERVED_LENGTH - 1];
}; };
/* /*
...@@ -222,9 +227,12 @@ struct crat_subtype_ccompute { ...@@ -222,9 +227,12 @@ struct crat_subtype_ccompute {
/* /*
* HSA IO Link Affinity structure and definitions * HSA IO Link Affinity structure and definitions
*/ */
#define CRAT_IOLINK_FLAGS_ENABLED 0x00000001 #define CRAT_IOLINK_FLAGS_ENABLED (1 << 0)
#define CRAT_IOLINK_FLAGS_COHERENCY 0x00000002 #define CRAT_IOLINK_FLAGS_NON_COHERENT (1 << 1)
#define CRAT_IOLINK_FLAGS_RESERVED 0xfffffffc #define CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT (1 << 2)
#define CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT (1 << 3)
#define CRAT_IOLINK_FLAGS_NO_PEER_TO_PEER_DMA (1 << 4)
#define CRAT_IOLINK_FLAGS_RESERVED_MASK 0xffffffe0
/* /*
* IO interface types * IO interface types
...@@ -232,10 +240,18 @@ struct crat_subtype_ccompute { ...@@ -232,10 +240,18 @@ struct crat_subtype_ccompute {
#define CRAT_IOLINK_TYPE_UNDEFINED 0 #define CRAT_IOLINK_TYPE_UNDEFINED 0
#define CRAT_IOLINK_TYPE_HYPERTRANSPORT 1 #define CRAT_IOLINK_TYPE_HYPERTRANSPORT 1
#define CRAT_IOLINK_TYPE_PCIEXPRESS 2 #define CRAT_IOLINK_TYPE_PCIEXPRESS 2
#define CRAT_IOLINK_TYPE_OTHER 3 #define CRAT_IOLINK_TYPE_AMBA 3
#define CRAT_IOLINK_TYPE_MIPI 4
#define CRAT_IOLINK_TYPE_QPI_1_1 5
#define CRAT_IOLINK_TYPE_RESERVED1 6
#define CRAT_IOLINK_TYPE_RESERVED2 7
#define CRAT_IOLINK_TYPE_RAPID_IO 8
#define CRAT_IOLINK_TYPE_INFINIBAND 9
#define CRAT_IOLINK_TYPE_RESERVED3 10
#define CRAT_IOLINK_TYPE_OTHER 11
#define CRAT_IOLINK_TYPE_MAX 255 #define CRAT_IOLINK_TYPE_MAX 255
#define CRAT_IOLINK_RESERVED_LENGTH 24 #define CRAT_IOLINK_RESERVED_LENGTH 24
struct crat_subtype_iolink { struct crat_subtype_iolink {
uint8_t type; uint8_t type;
...@@ -291,4 +307,14 @@ struct cdit_header { ...@@ -291,4 +307,14 @@ struct cdit_header {
#pragma pack() #pragma pack()
struct kfd_dev;
int kfd_create_crat_image_acpi(void **crat_image, size_t *size);
void kfd_destroy_crat_image(void *crat_image);
int kfd_parse_crat_table(void *crat_image, struct list_head *device_list,
uint32_t proximity_domain);
int kfd_create_crat_image_virtual(void **crat_image, size_t *size,
int flags, struct kfd_dev *kdev,
uint32_t proximity_domain);
#endif /* KFD_CRAT_H_INCLUDED */ #endif /* KFD_CRAT_H_INCLUDED */
...@@ -95,7 +95,7 @@ static int dbgdev_diq_submit_ib(struct kfd_dbgdev *dbgdev, ...@@ -95,7 +95,7 @@ static int dbgdev_diq_submit_ib(struct kfd_dbgdev *dbgdev,
ib_packet->bitfields3.ib_base_hi = largep->u.high_part; ib_packet->bitfields3.ib_base_hi = largep->u.high_part;
ib_packet->control = (1 << 23) | (1 << 31) | ib_packet->control = (1 << 23) | (1 << 31) |
((size_in_bytes / sizeof(uint32_t)) & 0xfffff); ((size_in_bytes / 4) & 0xfffff);
ib_packet->bitfields5.pasid = pasid; ib_packet->bitfields5.pasid = pasid;
...@@ -126,8 +126,7 @@ static int dbgdev_diq_submit_ib(struct kfd_dbgdev *dbgdev, ...@@ -126,8 +126,7 @@ static int dbgdev_diq_submit_ib(struct kfd_dbgdev *dbgdev,
rm_packet->header.opcode = IT_RELEASE_MEM; rm_packet->header.opcode = IT_RELEASE_MEM;
rm_packet->header.type = PM4_TYPE_3; rm_packet->header.type = PM4_TYPE_3;
rm_packet->header.count = sizeof(struct pm4__release_mem) / rm_packet->header.count = sizeof(struct pm4__release_mem) / 4 - 2;
sizeof(unsigned int) - 2;
rm_packet->bitfields2.event_type = CACHE_FLUSH_AND_INV_TS_EVENT; rm_packet->bitfields2.event_type = CACHE_FLUSH_AND_INV_TS_EVENT;
rm_packet->bitfields2.event_index = rm_packet->bitfields2.event_index =
...@@ -652,8 +651,7 @@ static int dbgdev_wave_control_diq(struct kfd_dbgdev *dbgdev, ...@@ -652,8 +651,7 @@ static int dbgdev_wave_control_diq(struct kfd_dbgdev *dbgdev,
packets_vec[0].header.opcode = IT_SET_UCONFIG_REG; packets_vec[0].header.opcode = IT_SET_UCONFIG_REG;
packets_vec[0].header.type = PM4_TYPE_3; packets_vec[0].header.type = PM4_TYPE_3;
packets_vec[0].bitfields2.reg_offset = packets_vec[0].bitfields2.reg_offset =
GRBM_GFX_INDEX / (sizeof(uint32_t)) - GRBM_GFX_INDEX / 4 - USERCONFIG_REG_BASE;
USERCONFIG_REG_BASE;
packets_vec[0].bitfields2.insert_vmid = 0; packets_vec[0].bitfields2.insert_vmid = 0;
packets_vec[0].reg_data[0] = reg_gfx_index.u32All; packets_vec[0].reg_data[0] = reg_gfx_index.u32All;
...@@ -661,8 +659,7 @@ static int dbgdev_wave_control_diq(struct kfd_dbgdev *dbgdev, ...@@ -661,8 +659,7 @@ static int dbgdev_wave_control_diq(struct kfd_dbgdev *dbgdev,
packets_vec[1].header.count = 1; packets_vec[1].header.count = 1;
packets_vec[1].header.opcode = IT_SET_CONFIG_REG; packets_vec[1].header.opcode = IT_SET_CONFIG_REG;
packets_vec[1].header.type = PM4_TYPE_3; packets_vec[1].header.type = PM4_TYPE_3;
packets_vec[1].bitfields2.reg_offset = SQ_CMD / (sizeof(uint32_t)) - packets_vec[1].bitfields2.reg_offset = SQ_CMD / 4 - AMD_CONFIG_REG_BASE;
AMD_CONFIG_REG_BASE;
packets_vec[1].bitfields2.vmid_shift = SQ_CMD_VMID_OFFSET; packets_vec[1].bitfields2.vmid_shift = SQ_CMD_VMID_OFFSET;
packets_vec[1].bitfields2.insert_vmid = 1; packets_vec[1].bitfields2.insert_vmid = 1;
...@@ -678,8 +675,7 @@ static int dbgdev_wave_control_diq(struct kfd_dbgdev *dbgdev, ...@@ -678,8 +675,7 @@ static int dbgdev_wave_control_diq(struct kfd_dbgdev *dbgdev,
packets_vec[2].ordinal1 = packets_vec[0].ordinal1; packets_vec[2].ordinal1 = packets_vec[0].ordinal1;
packets_vec[2].bitfields2.reg_offset = packets_vec[2].bitfields2.reg_offset =
GRBM_GFX_INDEX / (sizeof(uint32_t)) - GRBM_GFX_INDEX / 4 - USERCONFIG_REG_BASE;
USERCONFIG_REG_BASE;
packets_vec[2].bitfields2.insert_vmid = 0; packets_vec[2].bitfields2.insert_vmid = 0;
packets_vec[2].reg_data[0] = reg_gfx_index.u32All; packets_vec[2].reg_data[0] = reg_gfx_index.u32All;
......
/*
* Copyright 2016-2017 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/debugfs.h>
#include "kfd_priv.h"
static struct dentry *debugfs_root;
static int kfd_debugfs_open(struct inode *inode, struct file *file)
{
int (*show)(struct seq_file *, void *) = inode->i_private;
return single_open(file, show, NULL);
}
static const struct file_operations kfd_debugfs_fops = {
.owner = THIS_MODULE,
.open = kfd_debugfs_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
void kfd_debugfs_init(void)
{
struct dentry *ent;
debugfs_root = debugfs_create_dir("kfd", NULL);
if (!debugfs_root || debugfs_root == ERR_PTR(-ENODEV)) {
pr_warn("Failed to create kfd debugfs dir\n");
return;
}
ent = debugfs_create_file("mqds", S_IFREG | 0444, debugfs_root,
kfd_debugfs_mqds_by_process,
&kfd_debugfs_fops);
if (!ent)
pr_warn("Failed to create mqds in kfd debugfs\n");
ent = debugfs_create_file("hqds", S_IFREG | 0444, debugfs_root,
kfd_debugfs_hqds_by_device,
&kfd_debugfs_fops);
if (!ent)
pr_warn("Failed to create hqds in kfd debugfs\n");
ent = debugfs_create_file("rls", S_IFREG | 0444, debugfs_root,
kfd_debugfs_rls_by_device,
&kfd_debugfs_fops);
if (!ent)
pr_warn("Failed to create rls in kfd debugfs\n");
}
void kfd_debugfs_fini(void)
{
debugfs_remove_recursive(debugfs_root);
}
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include "kfd_priv.h" #include "kfd_priv.h"
#include "kfd_device_queue_manager.h" #include "kfd_device_queue_manager.h"
#include "kfd_pm4_headers_vi.h" #include "kfd_pm4_headers_vi.h"
#include "cwsr_trap_handler_gfx8.asm"
#define MQD_SIZE_ALIGNED 768 #define MQD_SIZE_ALIGNED 768
...@@ -38,7 +39,8 @@ static const struct kfd_device_info kaveri_device_info = { ...@@ -38,7 +39,8 @@ static const struct kfd_device_info kaveri_device_info = {
.ih_ring_entry_size = 4 * sizeof(uint32_t), .ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik, .event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4, .num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED .mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = false,
}; };
static const struct kfd_device_info carrizo_device_info = { static const struct kfd_device_info carrizo_device_info = {
...@@ -49,7 +51,8 @@ static const struct kfd_device_info carrizo_device_info = { ...@@ -49,7 +51,8 @@ static const struct kfd_device_info carrizo_device_info = {
.ih_ring_entry_size = 4 * sizeof(uint32_t), .ih_ring_entry_size = 4 * sizeof(uint32_t),
.event_interrupt_class = &event_interrupt_class_cik, .event_interrupt_class = &event_interrupt_class_cik,
.num_of_watch_points = 4, .num_of_watch_points = 4,
.mqd_size_aligned = MQD_SIZE_ALIGNED .mqd_size_aligned = MQD_SIZE_ALIGNED,
.supports_cwsr = true,
}; };
struct kfd_deviceid { struct kfd_deviceid {
...@@ -212,6 +215,17 @@ static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid, ...@@ -212,6 +215,17 @@ static int iommu_invalid_ppr_cb(struct pci_dev *pdev, int pasid,
return AMD_IOMMU_INV_PRI_RSP_INVALID; return AMD_IOMMU_INV_PRI_RSP_INVALID;
} }
static void kfd_cwsr_init(struct kfd_dev *kfd)
{
if (cwsr_enable && kfd->device_info->supports_cwsr) {
BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
kfd->cwsr_isa = cwsr_trap_gfx8_hex;
kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
kfd->cwsr_enabled = true;
}
}
bool kgd2kfd_device_init(struct kfd_dev *kfd, bool kgd2kfd_device_init(struct kfd_dev *kfd,
const struct kgd2kfd_shared_resources *gpu_resources) const struct kgd2kfd_shared_resources *gpu_resources)
{ {
...@@ -224,6 +238,17 @@ bool kgd2kfd_device_init(struct kfd_dev *kfd, ...@@ -224,6 +238,17 @@ bool kgd2kfd_device_init(struct kfd_dev *kfd,
kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
- kfd->vm_info.first_vmid_kfd + 1; - kfd->vm_info.first_vmid_kfd + 1;
/* Verify module parameters regarding mapped process number*/
if ((hws_max_conc_proc < 0)
|| (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
dev_err(kfd_device,
"hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
kfd->vm_info.vmid_num_kfd);
kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
} else
kfd->max_proc_per_quantum = hws_max_conc_proc;
/* calculate max size of mqds needed for queues */ /* calculate max size of mqds needed for queues */
size = max_num_of_queues_per_device * size = max_num_of_queues_per_device *
kfd->device_info->mqd_size_aligned; kfd->device_info->mqd_size_aligned;
...@@ -286,6 +311,8 @@ bool kgd2kfd_device_init(struct kfd_dev *kfd, ...@@ -286,6 +311,8 @@ bool kgd2kfd_device_init(struct kfd_dev *kfd,
goto device_iommu_pasid_error; goto device_iommu_pasid_error;
} }
kfd_cwsr_init(kfd);
if (kfd_resume(kfd)) if (kfd_resume(kfd))
goto kfd_resume_error; goto kfd_resume_error;
......
...@@ -149,8 +149,7 @@ static void deallocate_vmid(struct device_queue_manager *dqm, ...@@ -149,8 +149,7 @@ static void deallocate_vmid(struct device_queue_manager *dqm,
static int create_queue_nocpsch(struct device_queue_manager *dqm, static int create_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q, struct queue *q,
struct qcm_process_device *qpd, struct qcm_process_device *qpd)
int *allocated_vmid)
{ {
int retval; int retval;
...@@ -170,9 +169,11 @@ static int create_queue_nocpsch(struct device_queue_manager *dqm, ...@@ -170,9 +169,11 @@ static int create_queue_nocpsch(struct device_queue_manager *dqm,
if (retval) if (retval)
goto out_unlock; goto out_unlock;
} }
*allocated_vmid = qpd->vmid;
q->properties.vmid = qpd->vmid; q->properties.vmid = qpd->vmid;
q->properties.tba_addr = qpd->tba_addr;
q->properties.tma_addr = qpd->tma_addr;
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
retval = create_compute_queue_nocpsch(dqm, q, qpd); retval = create_compute_queue_nocpsch(dqm, q, qpd);
else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
...@@ -181,10 +182,8 @@ static int create_queue_nocpsch(struct device_queue_manager *dqm, ...@@ -181,10 +182,8 @@ static int create_queue_nocpsch(struct device_queue_manager *dqm,
retval = -EINVAL; retval = -EINVAL;
if (retval) { if (retval) {
if (list_empty(&qpd->queues_list)) { if (list_empty(&qpd->queues_list))
deallocate_vmid(dqm, qpd, q); deallocate_vmid(dqm, qpd, q);
*allocated_vmid = 0;
}
goto out_unlock; goto out_unlock;
} }
...@@ -809,16 +808,13 @@ static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm, ...@@ -809,16 +808,13 @@ static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
} }
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
struct qcm_process_device *qpd, int *allocate_vmid) struct qcm_process_device *qpd)
{ {
int retval; int retval;
struct mqd_manager *mqd; struct mqd_manager *mqd;
retval = 0; retval = 0;
if (allocate_vmid)
*allocate_vmid = 0;
mutex_lock(&dqm->lock); mutex_lock(&dqm->lock);
if (dqm->total_queue_count >= max_num_of_queues_per_device) { if (dqm->total_queue_count >= max_num_of_queues_per_device) {
...@@ -846,6 +842,9 @@ static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q, ...@@ -846,6 +842,9 @@ static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
} }
dqm->asic_ops.init_sdma_vm(dqm, q, qpd); dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
q->properties.tba_addr = qpd->tba_addr;
q->properties.tma_addr = qpd->tma_addr;
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj, retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties); &q->gart_mqd_addr, &q->properties);
if (retval) if (retval)
...@@ -1110,6 +1109,26 @@ static bool set_cache_memory_policy(struct device_queue_manager *dqm, ...@@ -1110,6 +1109,26 @@ static bool set_cache_memory_policy(struct device_queue_manager *dqm,
return retval; return retval;
} }
static int set_trap_handler(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
uint64_t tba_addr,
uint64_t tma_addr)
{
uint64_t *tma;
if (dqm->dev->cwsr_enabled) {
/* Jump from CWSR trap handler to user trap */
tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
tma[0] = tba_addr;
tma[1] = tma_addr;
} else {
qpd->tba_addr = tba_addr;
qpd->tma_addr = tma_addr;
}
return 0;
}
static int process_termination_nocpsch(struct device_queue_manager *dqm, static int process_termination_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd) struct qcm_process_device *qpd)
{ {
...@@ -1241,6 +1260,7 @@ struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) ...@@ -1241,6 +1260,7 @@ struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
dqm->ops.create_kernel_queue = create_kernel_queue_cpsch; dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch; dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy; dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
dqm->ops.set_trap_handler = set_trap_handler;
dqm->ops.process_termination = process_termination_cpsch; dqm->ops.process_termination = process_termination_cpsch;
break; break;
case KFD_SCHED_POLICY_NO_HWS: case KFD_SCHED_POLICY_NO_HWS:
...@@ -1256,6 +1276,7 @@ struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev) ...@@ -1256,6 +1276,7 @@ struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
dqm->ops.initialize = initialize_nocpsch; dqm->ops.initialize = initialize_nocpsch;
dqm->ops.uninitialize = uninitialize; dqm->ops.uninitialize = uninitialize;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy; dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
dqm->ops.set_trap_handler = set_trap_handler;
dqm->ops.process_termination = process_termination_nocpsch; dqm->ops.process_termination = process_termination_nocpsch;
break; break;
default: default:
...@@ -1290,3 +1311,74 @@ void device_queue_manager_uninit(struct device_queue_manager *dqm) ...@@ -1290,3 +1311,74 @@ void device_queue_manager_uninit(struct device_queue_manager *dqm)
dqm->ops.uninitialize(dqm); dqm->ops.uninitialize(dqm);
kfree(dqm); kfree(dqm);
} }
#if defined(CONFIG_DEBUG_FS)
static void seq_reg_dump(struct seq_file *m,
uint32_t (*dump)[2], uint32_t n_regs)
{
uint32_t i, count;
for (i = 0, count = 0; i < n_regs; i++) {
if (count == 0 ||
dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
seq_printf(m, "%s %08x: %08x",
i ? "\n" : "",
dump[i][0], dump[i][1]);
count = 7;
} else {
seq_printf(m, " %08x", dump[i][1]);
count--;
}
}
seq_puts(m, "\n");
}
int dqm_debugfs_hqds(struct seq_file *m, void *data)
{
struct device_queue_manager *dqm = data;
uint32_t (*dump)[2], n_regs;
int pipe, queue;
int r = 0;
for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
int pipe_offset = pipe * get_queues_per_pipe(dqm);
for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
if (!test_bit(pipe_offset + queue,
dqm->dev->shared_resources.queue_bitmap))
continue;
r = dqm->dev->kfd2kgd->hqd_dump(
dqm->dev->kgd, pipe, queue, &dump, &n_regs);
if (r)
break;
seq_printf(m, " CP Pipe %d, Queue %d\n",
pipe, queue);
seq_reg_dump(m, dump, n_regs);
kfree(dump);
}
}
for (pipe = 0; pipe < CIK_SDMA_ENGINE_NUM; pipe++) {
for (queue = 0; queue < CIK_SDMA_QUEUES_PER_ENGINE; queue++) {
r = dqm->dev->kfd2kgd->hqd_sdma_dump(
dqm->dev->kgd, pipe, queue, &dump, &n_regs);
if (r)
break;
seq_printf(m, " SDMA Engine %d, RLC %d\n",
pipe, queue);
seq_reg_dump(m, dump, n_regs);
kfree(dump);
}
}
return r;
}
#endif
...@@ -84,8 +84,7 @@ struct device_process_node { ...@@ -84,8 +84,7 @@ struct device_process_node {
struct device_queue_manager_ops { struct device_queue_manager_ops {
int (*create_queue)(struct device_queue_manager *dqm, int (*create_queue)(struct device_queue_manager *dqm,
struct queue *q, struct queue *q,
struct qcm_process_device *qpd, struct qcm_process_device *qpd);
int *allocate_vmid);
int (*destroy_queue)(struct device_queue_manager *dqm, int (*destroy_queue)(struct device_queue_manager *dqm,
struct qcm_process_device *qpd, struct qcm_process_device *qpd,
...@@ -123,6 +122,11 @@ struct device_queue_manager_ops { ...@@ -123,6 +122,11 @@ struct device_queue_manager_ops {
void __user *alternate_aperture_base, void __user *alternate_aperture_base,
uint64_t alternate_aperture_size); uint64_t alternate_aperture_size);
int (*set_trap_handler)(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
uint64_t tba_addr,
uint64_t tma_addr);
int (*process_termination)(struct device_queue_manager *dqm, int (*process_termination)(struct device_queue_manager *dqm,
struct qcm_process_device *qpd); struct qcm_process_device *qpd);
}; };
......
...@@ -116,8 +116,7 @@ int kfd_doorbell_init(struct kfd_dev *kfd) ...@@ -116,8 +116,7 @@ int kfd_doorbell_init(struct kfd_dev *kfd)
pr_debug("doorbell aperture size == 0x%08lX\n", pr_debug("doorbell aperture size == 0x%08lX\n",
kfd->shared_resources.doorbell_aperture_size); kfd->shared_resources.doorbell_aperture_size);
pr_debug("doorbell kernel address == 0x%08lX\n", pr_debug("doorbell kernel address == %p\n", kfd->doorbell_kernel_ptr);
(uintptr_t)kfd->doorbell_kernel_ptr);
return 0; return 0;
} }
...@@ -194,8 +193,8 @@ u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd, ...@@ -194,8 +193,8 @@ u32 __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
pr_debug("Get kernel queue doorbell\n" pr_debug("Get kernel queue doorbell\n"
" doorbell offset == 0x%08X\n" " doorbell offset == 0x%08X\n"
" kernel address == 0x%08lX\n", " kernel address == %p\n",
*doorbell_off, (uintptr_t)(kfd->doorbell_kernel_ptr + inx)); *doorbell_off, (kfd->doorbell_kernel_ptr + inx));
return kfd->doorbell_kernel_ptr + inx; return kfd->doorbell_kernel_ptr + inx;
} }
...@@ -215,7 +214,7 @@ inline void write_kernel_doorbell(u32 __iomem *db, u32 value) ...@@ -215,7 +214,7 @@ inline void write_kernel_doorbell(u32 __iomem *db, u32 value)
{ {
if (db) { if (db) {
writel(value, db); writel(value, db);
pr_debug("Writing %d to doorbell address 0x%p\n", value, db); pr_debug("Writing %d to doorbell address %p\n", value, db);
} }
} }
......
...@@ -441,7 +441,7 @@ void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, ...@@ -441,7 +441,7 @@ void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
/* /*
* Because we are called from arbitrary context (workqueue) as opposed * Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are * to process context, kfd_process could attempt to exit while we are
* running so the lookup function returns a locked process. * running so the lookup function increments the process ref count.
*/ */
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
...@@ -493,7 +493,7 @@ void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id, ...@@ -493,7 +493,7 @@ void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
} }
mutex_unlock(&p->event_mutex); mutex_unlock(&p->event_mutex);
mutex_unlock(&p->mutex); kfd_unref_process(p);
} }
static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events) static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
...@@ -847,7 +847,7 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, ...@@ -847,7 +847,7 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
/* /*
* Because we are called from arbitrary context (workqueue) as opposed * Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are * to process context, kfd_process could attempt to exit while we are
* running so the lookup function returns a locked process. * running so the lookup function increments the process ref count.
*/ */
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
struct mm_struct *mm; struct mm_struct *mm;
...@@ -860,7 +860,7 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, ...@@ -860,7 +860,7 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
*/ */
mm = get_task_mm(p->lead_thread); mm = get_task_mm(p->lead_thread);
if (!mm) { if (!mm) {
mutex_unlock(&p->mutex); kfd_unref_process(p);
return; /* Process is exiting */ return; /* Process is exiting */
} }
...@@ -903,7 +903,7 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid, ...@@ -903,7 +903,7 @@ void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
&memory_exception_data); &memory_exception_data);
mutex_unlock(&p->event_mutex); mutex_unlock(&p->event_mutex);
mutex_unlock(&p->mutex); kfd_unref_process(p);
} }
void kfd_signal_hw_exception_event(unsigned int pasid) void kfd_signal_hw_exception_event(unsigned int pasid)
...@@ -911,7 +911,7 @@ void kfd_signal_hw_exception_event(unsigned int pasid) ...@@ -911,7 +911,7 @@ void kfd_signal_hw_exception_event(unsigned int pasid)
/* /*
* Because we are called from arbitrary context (workqueue) as opposed * Because we are called from arbitrary context (workqueue) as opposed
* to process context, kfd_process could attempt to exit while we are * to process context, kfd_process could attempt to exit while we are
* running so the lookup function returns a locked process. * running so the lookup function increments the process ref count.
*/ */
struct kfd_process *p = kfd_lookup_process_by_pasid(pasid); struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
...@@ -924,5 +924,5 @@ void kfd_signal_hw_exception_event(unsigned int pasid) ...@@ -924,5 +924,5 @@ void kfd_signal_hw_exception_event(unsigned int pasid)
lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL); lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
mutex_unlock(&p->event_mutex); mutex_unlock(&p->event_mutex);
mutex_unlock(&p->mutex); kfd_unref_process(p);
} }
...@@ -300,9 +300,14 @@ int kfd_init_apertures(struct kfd_process *process) ...@@ -300,9 +300,14 @@ int kfd_init_apertures(struct kfd_process *process)
struct kfd_process_device *pdd; struct kfd_process_device *pdd;
/*Iterating over all devices*/ /*Iterating over all devices*/
while ((dev = kfd_topology_enum_kfd_devices(id)) != NULL && while (kfd_topology_enum_kfd_devices(id, &dev) == 0 &&
id < NUM_OF_SUPPORTED_GPUS) { id < NUM_OF_SUPPORTED_GPUS) {
if (!dev) {
id++; /* Skip non GPU devices */
continue;
}
pdd = kfd_create_process_device_data(dev, process); pdd = kfd_create_process_device_data(dev, process);
if (!pdd) { if (!pdd) {
pr_err("Failed to create process device data\n"); pr_err("Failed to create process device data\n");
......
...@@ -218,7 +218,7 @@ static int acquire_packet_buffer(struct kernel_queue *kq, ...@@ -218,7 +218,7 @@ static int acquire_packet_buffer(struct kernel_queue *kq,
rptr = *kq->rptr_kernel; rptr = *kq->rptr_kernel;
wptr = *kq->wptr_kernel; wptr = *kq->wptr_kernel;
queue_address = (unsigned int *)kq->pq_kernel_addr; queue_address = (unsigned int *)kq->pq_kernel_addr;
queue_size_dwords = kq->queue->properties.queue_size / sizeof(uint32_t); queue_size_dwords = kq->queue->properties.queue_size / 4;
pr_debug("rptr: %d\n", rptr); pr_debug("rptr: %d\n", rptr);
pr_debug("wptr: %d\n", wptr); pr_debug("wptr: %d\n", wptr);
......
...@@ -50,6 +50,15 @@ module_param(sched_policy, int, 0444); ...@@ -50,6 +50,15 @@ module_param(sched_policy, int, 0444);
MODULE_PARM_DESC(sched_policy, MODULE_PARM_DESC(sched_policy,
"Scheduling policy (0 = HWS (Default), 1 = HWS without over-subscription, 2 = Non-HWS (Used for debugging only)"); "Scheduling policy (0 = HWS (Default), 1 = HWS without over-subscription, 2 = Non-HWS (Used for debugging only)");
int hws_max_conc_proc = 8;
module_param(hws_max_conc_proc, int, 0444);
MODULE_PARM_DESC(hws_max_conc_proc,
"Max # processes HWS can execute concurrently when sched_policy=0 (0 = no concurrency, #VMIDs for KFD = Maximum(default))");
int cwsr_enable = 1;
module_param(cwsr_enable, int, 0444);
MODULE_PARM_DESC(cwsr_enable, "CWSR enable (0 = Off, 1 = On (Default))");
int max_num_of_queues_per_device = KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT; int max_num_of_queues_per_device = KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT;
module_param(max_num_of_queues_per_device, int, 0444); module_param(max_num_of_queues_per_device, int, 0444);
MODULE_PARM_DESC(max_num_of_queues_per_device, MODULE_PARM_DESC(max_num_of_queues_per_device,
...@@ -60,6 +69,11 @@ module_param(send_sigterm, int, 0444); ...@@ -60,6 +69,11 @@ module_param(send_sigterm, int, 0444);
MODULE_PARM_DESC(send_sigterm, MODULE_PARM_DESC(send_sigterm,
"Send sigterm to HSA process on unhandled exception (0 = disable, 1 = enable)"); "Send sigterm to HSA process on unhandled exception (0 = disable, 1 = enable)");
int ignore_crat;
module_param(ignore_crat, int, 0444);
MODULE_PARM_DESC(ignore_crat,
"Ignore CRAT table during KFD initialization (0 = use CRAT (default), 1 = ignore CRAT)");
static int amdkfd_init_completed; static int amdkfd_init_completed;
int kgd2kfd_init(unsigned int interface_version, int kgd2kfd_init(unsigned int interface_version,
...@@ -114,6 +128,8 @@ static int __init kfd_module_init(void) ...@@ -114,6 +128,8 @@ static int __init kfd_module_init(void)
kfd_process_create_wq(); kfd_process_create_wq();
kfd_debugfs_init();
amdkfd_init_completed = 1; amdkfd_init_completed = 1;
dev_info(kfd_device, "Initialized module\n"); dev_info(kfd_device, "Initialized module\n");
...@@ -130,6 +146,7 @@ static void __exit kfd_module_exit(void) ...@@ -130,6 +146,7 @@ static void __exit kfd_module_exit(void)
{ {
amdkfd_init_completed = 0; amdkfd_init_completed = 0;
kfd_debugfs_fini();
kfd_process_destroy_wq(); kfd_process_destroy_wq();
kfd_topology_shutdown(); kfd_topology_shutdown();
kfd_chardev_exit(); kfd_chardev_exit();
......
...@@ -85,6 +85,10 @@ struct mqd_manager { ...@@ -85,6 +85,10 @@ struct mqd_manager {
uint64_t queue_address, uint32_t pipe_id, uint64_t queue_address, uint32_t pipe_id,
uint32_t queue_id); uint32_t queue_id);
#if defined(CONFIG_DEBUG_FS)
int (*debugfs_show_mqd)(struct seq_file *m, void *data);
#endif
struct mutex mqd_mutex; struct mutex mqd_mutex;
struct kfd_dev *dev; struct kfd_dev *dev;
}; };
......
...@@ -36,6 +36,11 @@ static inline struct cik_mqd *get_mqd(void *mqd) ...@@ -36,6 +36,11 @@ static inline struct cik_mqd *get_mqd(void *mqd)
return (struct cik_mqd *)mqd; return (struct cik_mqd *)mqd;
} }
static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
{
return (struct cik_sdma_rlc_registers *)mqd;
}
static int init_mqd(struct mqd_manager *mm, void **mqd, static int init_mqd(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q) struct queue_properties *q)
...@@ -149,7 +154,7 @@ static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id, ...@@ -149,7 +154,7 @@ static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
{ {
/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */ /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0); uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
uint32_t wptr_mask = (uint32_t)((p->queue_size / sizeof(uint32_t)) - 1); uint32_t wptr_mask = (uint32_t)((p->queue_size / 4) - 1);
return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
(uint32_t __user *)p->write_ptr, (uint32_t __user *)p->write_ptr,
...@@ -160,7 +165,9 @@ static int load_mqd_sdma(struct mqd_manager *mm, void *mqd, ...@@ -160,7 +165,9 @@ static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id, uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms) struct queue_properties *p, struct mm_struct *mms)
{ {
return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd); return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
(uint32_t __user *)p->write_ptr,
mms);
} }
static int update_mqd(struct mqd_manager *mm, void *mqd, static int update_mqd(struct mqd_manager *mm, void *mqd,
...@@ -176,8 +183,7 @@ static int update_mqd(struct mqd_manager *mm, void *mqd, ...@@ -176,8 +183,7 @@ static int update_mqd(struct mqd_manager *mm, void *mqd,
* Calculating queue size which is log base 2 of actual queue size -1 * Calculating queue size which is log base 2 of actual queue size -1
* dwords and another -1 for ffs * dwords and another -1 for ffs
*/ */
m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int)) m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
- 1 - 1;
m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
...@@ -202,7 +208,7 @@ static int update_mqd_sdma(struct mqd_manager *mm, void *mqd, ...@@ -202,7 +208,7 @@ static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
struct cik_sdma_rlc_registers *m; struct cik_sdma_rlc_registers *m;
m = get_sdma_mqd(mqd); m = get_sdma_mqd(mqd);
m->sdma_rlc_rb_cntl = (ffs(q->queue_size / sizeof(unsigned int)) - 1) m->sdma_rlc_rb_cntl = order_base_2(q->queue_size / 4)
<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT | << SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT | q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT | 1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
...@@ -343,8 +349,7 @@ static int update_mqd_hiq(struct mqd_manager *mm, void *mqd, ...@@ -343,8 +349,7 @@ static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
* Calculating queue size which is log base 2 of actual queue * Calculating queue size which is log base 2 of actual queue
* size -1 dwords * size -1 dwords
*/ */
m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int)) m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
- 1 - 1;
m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr); m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
...@@ -360,15 +365,25 @@ static int update_mqd_hiq(struct mqd_manager *mm, void *mqd, ...@@ -360,15 +365,25 @@ static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
return 0; return 0;
} }
struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd) #if defined(CONFIG_DEBUG_FS)
{
struct cik_sdma_rlc_registers *m;
m = (struct cik_sdma_rlc_registers *)mqd; static int debugfs_show_mqd(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct cik_mqd), false);
return 0;
}
return m; static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct cik_sdma_rlc_registers), false);
return 0;
} }
#endif
struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
struct kfd_dev *dev) struct kfd_dev *dev)
{ {
...@@ -392,6 +407,9 @@ struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, ...@@ -392,6 +407,9 @@ struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
mqd->update_mqd = update_mqd; mqd->update_mqd = update_mqd;
mqd->destroy_mqd = destroy_mqd; mqd->destroy_mqd = destroy_mqd;
mqd->is_occupied = is_occupied; mqd->is_occupied = is_occupied;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
break; break;
case KFD_MQD_TYPE_HIQ: case KFD_MQD_TYPE_HIQ:
mqd->init_mqd = init_mqd_hiq; mqd->init_mqd = init_mqd_hiq;
...@@ -400,6 +418,9 @@ struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, ...@@ -400,6 +418,9 @@ struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
mqd->update_mqd = update_mqd_hiq; mqd->update_mqd = update_mqd_hiq;
mqd->destroy_mqd = destroy_mqd; mqd->destroy_mqd = destroy_mqd;
mqd->is_occupied = is_occupied; mqd->is_occupied = is_occupied;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
break; break;
case KFD_MQD_TYPE_SDMA: case KFD_MQD_TYPE_SDMA:
mqd->init_mqd = init_mqd_sdma; mqd->init_mqd = init_mqd_sdma;
...@@ -408,6 +429,9 @@ struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type, ...@@ -408,6 +429,9 @@ struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
mqd->update_mqd = update_mqd_sdma; mqd->update_mqd = update_mqd_sdma;
mqd->destroy_mqd = destroy_mqd_sdma; mqd->destroy_mqd = destroy_mqd_sdma;
mqd->is_occupied = is_occupied_sdma; mqd->is_occupied = is_occupied_sdma;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
#endif
break; break;
default: default:
kfree(mqd); kfree(mqd);
......
...@@ -30,7 +30,7 @@ ...@@ -30,7 +30,7 @@
#include "vi_structs.h" #include "vi_structs.h"
#include "gca/gfx_8_0_sh_mask.h" #include "gca/gfx_8_0_sh_mask.h"
#include "gca/gfx_8_0_enum.h" #include "gca/gfx_8_0_enum.h"
#include "oss/oss_3_0_sh_mask.h"
#define CP_MQD_CONTROL__PRIV_STATE__SHIFT 0x8 #define CP_MQD_CONTROL__PRIV_STATE__SHIFT 0x8
static inline struct vi_mqd *get_mqd(void *mqd) static inline struct vi_mqd *get_mqd(void *mqd)
...@@ -38,6 +38,11 @@ static inline struct vi_mqd *get_mqd(void *mqd) ...@@ -38,6 +38,11 @@ static inline struct vi_mqd *get_mqd(void *mqd)
return (struct vi_mqd *)mqd; return (struct vi_mqd *)mqd;
} }
static inline struct vi_sdma_mqd *get_sdma_mqd(void *mqd)
{
return (struct vi_sdma_mqd *)mqd;
}
static int init_mqd(struct mqd_manager *mm, void **mqd, static int init_mqd(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr, struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q) struct queue_properties *q)
...@@ -84,6 +89,28 @@ static int init_mqd(struct mqd_manager *mm, void **mqd, ...@@ -84,6 +89,28 @@ static int init_mqd(struct mqd_manager *mm, void **mqd,
if (q->format == KFD_QUEUE_FORMAT_AQL) if (q->format == KFD_QUEUE_FORMAT_AQL)
m->cp_hqd_iq_rptr = 1; m->cp_hqd_iq_rptr = 1;
if (q->tba_addr) {
m->compute_tba_lo = lower_32_bits(q->tba_addr >> 8);
m->compute_tba_hi = upper_32_bits(q->tba_addr >> 8);
m->compute_tma_lo = lower_32_bits(q->tma_addr >> 8);
m->compute_tma_hi = upper_32_bits(q->tma_addr >> 8);
m->compute_pgm_rsrc2 |=
(1 << COMPUTE_PGM_RSRC2__TRAP_PRESENT__SHIFT);
}
if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address) {
m->cp_hqd_persistent_state |=
(1 << CP_HQD_PERSISTENT_STATE__QSWITCH_MODE__SHIFT);
m->cp_hqd_ctx_save_base_addr_lo =
lower_32_bits(q->ctx_save_restore_area_address);
m->cp_hqd_ctx_save_base_addr_hi =
upper_32_bits(q->ctx_save_restore_area_address);
m->cp_hqd_ctx_save_size = q->ctx_save_restore_area_size;
m->cp_hqd_cntl_stack_size = q->ctl_stack_size;
m->cp_hqd_cntl_stack_offset = q->ctl_stack_size;
m->cp_hqd_wg_state_offset = q->ctl_stack_size;
}
*mqd = m; *mqd = m;
if (gart_addr) if (gart_addr)
*gart_addr = addr; *gart_addr = addr;
...@@ -98,7 +125,7 @@ static int load_mqd(struct mqd_manager *mm, void *mqd, ...@@ -98,7 +125,7 @@ static int load_mqd(struct mqd_manager *mm, void *mqd,
{ {
/* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */ /* AQL write pointer counts in 64B packets, PM4/CP counts in dwords. */
uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0); uint32_t wptr_shift = (p->format == KFD_QUEUE_FORMAT_AQL ? 4 : 0);
uint32_t wptr_mask = (uint32_t)((p->queue_size / sizeof(uint32_t)) - 1); uint32_t wptr_mask = (uint32_t)((p->queue_size / 4) - 1);
return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id, return mm->dev->kfd2kgd->hqd_load(mm->dev->kgd, mqd, pipe_id, queue_id,
(uint32_t __user *)p->write_ptr, (uint32_t __user *)p->write_ptr,
...@@ -116,8 +143,7 @@ static int __update_mqd(struct mqd_manager *mm, void *mqd, ...@@ -116,8 +143,7 @@ static int __update_mqd(struct mqd_manager *mm, void *mqd,
m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT | m->cp_hqd_pq_control = 5 << CP_HQD_PQ_CONTROL__RPTR_BLOCK_SIZE__SHIFT |
atc_bit << CP_HQD_PQ_CONTROL__PQ_ATC__SHIFT | atc_bit << CP_HQD_PQ_CONTROL__PQ_ATC__SHIFT |
mtype << CP_HQD_PQ_CONTROL__MTYPE__SHIFT; mtype << CP_HQD_PQ_CONTROL__MTYPE__SHIFT;
m->cp_hqd_pq_control |= m->cp_hqd_pq_control |= order_base_2(q->queue_size / 4) - 1;
ffs(q->queue_size / sizeof(unsigned int)) - 1 - 1;
pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control); pr_debug("cp_hqd_pq_control 0x%x\n", m->cp_hqd_pq_control);
m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8); m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
...@@ -147,7 +173,7 @@ static int __update_mqd(struct mqd_manager *mm, void *mqd, ...@@ -147,7 +173,7 @@ static int __update_mqd(struct mqd_manager *mm, void *mqd,
* is safe, giving a maximum field value of 0xA. * is safe, giving a maximum field value of 0xA.
*/ */
m->cp_hqd_eop_control |= min(0xA, m->cp_hqd_eop_control |= min(0xA,
ffs(q->eop_ring_buffer_size / sizeof(unsigned int)) - 1 - 1); order_base_2(q->eop_ring_buffer_size / 4) - 1);
m->cp_hqd_eop_base_addr_lo = m->cp_hqd_eop_base_addr_lo =
lower_32_bits(q->eop_ring_buffer_address >> 8); lower_32_bits(q->eop_ring_buffer_address >> 8);
m->cp_hqd_eop_base_addr_hi = m->cp_hqd_eop_base_addr_hi =
...@@ -163,6 +189,11 @@ static int __update_mqd(struct mqd_manager *mm, void *mqd, ...@@ -163,6 +189,11 @@ static int __update_mqd(struct mqd_manager *mm, void *mqd,
2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT; 2 << CP_HQD_PQ_CONTROL__SLOT_BASED_WPTR__SHIFT;
} }
if (mm->dev->cwsr_enabled && q->ctx_save_restore_area_address)
m->cp_hqd_ctx_save_control =
atc_bit << CP_HQD_CTX_SAVE_CONTROL__ATC__SHIFT |
mtype << CP_HQD_CTX_SAVE_CONTROL__MTYPE__SHIFT;
q->is_active = (q->queue_size > 0 && q->is_active = (q->queue_size > 0 &&
q->queue_address != 0 && q->queue_address != 0 &&
q->queue_percent > 0); q->queue_percent > 0);
...@@ -234,6 +265,117 @@ static int update_mqd_hiq(struct mqd_manager *mm, void *mqd, ...@@ -234,6 +265,117 @@ static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
return retval; return retval;
} }
static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
struct queue_properties *q)
{
int retval;
struct vi_sdma_mqd *m;
retval = kfd_gtt_sa_allocate(mm->dev,
sizeof(struct vi_sdma_mqd),
mqd_mem_obj);
if (retval != 0)
return -ENOMEM;
m = (struct vi_sdma_mqd *) (*mqd_mem_obj)->cpu_ptr;
memset(m, 0, sizeof(struct vi_sdma_mqd));
*mqd = m;
if (gart_addr != NULL)
*gart_addr = (*mqd_mem_obj)->gpu_addr;
retval = mm->update_mqd(mm, m, q);
return retval;
}
static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
struct kfd_mem_obj *mqd_mem_obj)
{
kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
}
static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
uint32_t pipe_id, uint32_t queue_id,
struct queue_properties *p, struct mm_struct *mms)
{
return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd,
(uint32_t __user *)p->write_ptr,
mms);
}
static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
struct queue_properties *q)
{
struct vi_sdma_mqd *m;
m = get_sdma_mqd(mqd);
m->sdmax_rlcx_rb_cntl = order_base_2(q->queue_size / 4)
<< SDMA0_RLC0_RB_CNTL__RB_SIZE__SHIFT |
q->vmid << SDMA0_RLC0_RB_CNTL__RB_VMID__SHIFT |
1 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_ENABLE__SHIFT |
6 << SDMA0_RLC0_RB_CNTL__RPTR_WRITEBACK_TIMER__SHIFT;
m->sdmax_rlcx_rb_base = lower_32_bits(q->queue_address >> 8);
m->sdmax_rlcx_rb_base_hi = upper_32_bits(q->queue_address >> 8);
m->sdmax_rlcx_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
m->sdmax_rlcx_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
m->sdmax_rlcx_doorbell =
q->doorbell_off << SDMA0_RLC0_DOORBELL__OFFSET__SHIFT;
m->sdmax_rlcx_virtual_addr = q->sdma_vm_addr;
m->sdma_engine_id = q->sdma_engine_id;
m->sdma_queue_id = q->sdma_queue_id;
q->is_active = (q->queue_size > 0 &&
q->queue_address != 0 &&
q->queue_percent > 0);
return 0;
}
/*
* * preempt type here is ignored because there is only one way
* * to preempt sdma queue
*/
static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
enum kfd_preempt_type type,
unsigned int timeout, uint32_t pipe_id,
uint32_t queue_id)
{
return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
}
static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
uint64_t queue_address, uint32_t pipe_id,
uint32_t queue_id)
{
return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
}
#if defined(CONFIG_DEBUG_FS)
static int debugfs_show_mqd(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct vi_mqd), false);
return 0;
}
static int debugfs_show_mqd_sdma(struct seq_file *m, void *data)
{
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
data, sizeof(struct vi_sdma_mqd), false);
return 0;
}
#endif
struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
struct kfd_dev *dev) struct kfd_dev *dev)
{ {
...@@ -257,6 +399,9 @@ struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, ...@@ -257,6 +399,9 @@ struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
mqd->update_mqd = update_mqd; mqd->update_mqd = update_mqd;
mqd->destroy_mqd = destroy_mqd; mqd->destroy_mqd = destroy_mqd;
mqd->is_occupied = is_occupied; mqd->is_occupied = is_occupied;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
break; break;
case KFD_MQD_TYPE_HIQ: case KFD_MQD_TYPE_HIQ:
mqd->init_mqd = init_mqd_hiq; mqd->init_mqd = init_mqd_hiq;
...@@ -265,8 +410,20 @@ struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type, ...@@ -265,8 +410,20 @@ struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
mqd->update_mqd = update_mqd_hiq; mqd->update_mqd = update_mqd_hiq;
mqd->destroy_mqd = destroy_mqd; mqd->destroy_mqd = destroy_mqd;
mqd->is_occupied = is_occupied; mqd->is_occupied = is_occupied;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd;
#endif
break; break;
case KFD_MQD_TYPE_SDMA: case KFD_MQD_TYPE_SDMA:
mqd->init_mqd = init_mqd_sdma;
mqd->uninit_mqd = uninit_mqd_sdma;
mqd->load_mqd = load_mqd_sdma;
mqd->update_mqd = update_mqd_sdma;
mqd->destroy_mqd = destroy_mqd_sdma;
mqd->is_occupied = is_occupied_sdma;
#if defined(CONFIG_DEBUG_FS)
mqd->debugfs_show_mqd = debugfs_show_mqd_sdma;
#endif
break; break;
default: default:
kfree(mqd); kfree(mqd);
......
...@@ -45,7 +45,7 @@ static unsigned int build_pm4_header(unsigned int opcode, size_t packet_size) ...@@ -45,7 +45,7 @@ static unsigned int build_pm4_header(unsigned int opcode, size_t packet_size)
header.u32All = 0; header.u32All = 0;
header.opcode = opcode; header.opcode = opcode;
header.count = packet_size/sizeof(uint32_t) - 2; header.count = packet_size / 4 - 2;
header.type = PM4_TYPE_3; header.type = PM4_TYPE_3;
return header.u32All; return header.u32All;
...@@ -55,15 +55,27 @@ static void pm_calc_rlib_size(struct packet_manager *pm, ...@@ -55,15 +55,27 @@ static void pm_calc_rlib_size(struct packet_manager *pm,
unsigned int *rlib_size, unsigned int *rlib_size,
bool *over_subscription) bool *over_subscription)
{ {
unsigned int process_count, queue_count; unsigned int process_count, queue_count, compute_queue_count;
unsigned int map_queue_size; unsigned int map_queue_size;
unsigned int max_proc_per_quantum = 1;
struct kfd_dev *dev = pm->dqm->dev;
process_count = pm->dqm->processes_count; process_count = pm->dqm->processes_count;
queue_count = pm->dqm->queue_count; queue_count = pm->dqm->queue_count;
compute_queue_count = queue_count - pm->dqm->sdma_queue_count;
/* check if there is over subscription*/ /* check if there is over subscription
* Note: the arbitration between the number of VMIDs and
* hws_max_conc_proc has been done in
* kgd2kfd_device_init().
*/
*over_subscription = false; *over_subscription = false;
if ((process_count > 1) || queue_count > get_queues_num(pm->dqm)) {
if (dev->max_proc_per_quantum > 1)
max_proc_per_quantum = dev->max_proc_per_quantum;
if ((process_count > max_proc_per_quantum) ||
compute_queue_count > get_queues_num(pm->dqm)) {
*over_subscription = true; *over_subscription = true;
pr_debug("Over subscribed runlist\n"); pr_debug("Over subscribed runlist\n");
} }
...@@ -116,10 +128,24 @@ static int pm_create_runlist(struct packet_manager *pm, uint32_t *buffer, ...@@ -116,10 +128,24 @@ static int pm_create_runlist(struct packet_manager *pm, uint32_t *buffer,
uint64_t ib, size_t ib_size_in_dwords, bool chain) uint64_t ib, size_t ib_size_in_dwords, bool chain)
{ {
struct pm4_mes_runlist *packet; struct pm4_mes_runlist *packet;
int concurrent_proc_cnt = 0;
struct kfd_dev *kfd = pm->dqm->dev;
if (WARN_ON(!ib)) if (WARN_ON(!ib))
return -EFAULT; return -EFAULT;
/* Determine the number of processes to map together to HW:
* it can not exceed the number of VMIDs available to the
* scheduler, and it is determined by the smaller of the number
* of processes in the runlist and kfd module parameter
* hws_max_conc_proc.
* Note: the arbitration between the number of VMIDs and
* hws_max_conc_proc has been done in
* kgd2kfd_device_init().
*/
concurrent_proc_cnt = min(pm->dqm->processes_count,
kfd->max_proc_per_quantum);
packet = (struct pm4_mes_runlist *)buffer; packet = (struct pm4_mes_runlist *)buffer;
memset(buffer, 0, sizeof(struct pm4_mes_runlist)); memset(buffer, 0, sizeof(struct pm4_mes_runlist));
...@@ -130,6 +156,7 @@ static int pm_create_runlist(struct packet_manager *pm, uint32_t *buffer, ...@@ -130,6 +156,7 @@ static int pm_create_runlist(struct packet_manager *pm, uint32_t *buffer,
packet->bitfields4.chain = chain ? 1 : 0; packet->bitfields4.chain = chain ? 1 : 0;
packet->bitfields4.offload_polling = 0; packet->bitfields4.offload_polling = 0;
packet->bitfields4.valid = 1; packet->bitfields4.valid = 1;
packet->bitfields4.process_cnt = concurrent_proc_cnt;
packet->ordinal2 = lower_32_bits(ib); packet->ordinal2 = lower_32_bits(ib);
packet->bitfields3.ib_base_hi = upper_32_bits(ib); packet->bitfields3.ib_base_hi = upper_32_bits(ib);
...@@ -251,6 +278,7 @@ static int pm_create_runlist_ib(struct packet_manager *pm, ...@@ -251,6 +278,7 @@ static int pm_create_runlist_ib(struct packet_manager *pm,
return retval; return retval;
*rl_size_bytes = alloc_size_bytes; *rl_size_bytes = alloc_size_bytes;
pm->ib_size_bytes = alloc_size_bytes;
pr_debug("Building runlist ib process count: %d queues count %d\n", pr_debug("Building runlist ib process count: %d queues count %d\n",
pm->dqm->processes_count, pm->dqm->queue_count); pm->dqm->processes_count, pm->dqm->queue_count);
...@@ -564,3 +592,26 @@ void pm_release_ib(struct packet_manager *pm) ...@@ -564,3 +592,26 @@ void pm_release_ib(struct packet_manager *pm)
} }
mutex_unlock(&pm->lock); mutex_unlock(&pm->lock);
} }
#if defined(CONFIG_DEBUG_FS)
int pm_debugfs_runlist(struct seq_file *m, void *data)
{
struct packet_manager *pm = data;
mutex_lock(&pm->lock);
if (!pm->allocated) {
seq_puts(m, " No active runlist\n");
goto out;
}
seq_hex_dump(m, " ", DUMP_PREFIX_OFFSET, 32, 4,
pm->ib_buffer_obj->cpu_ptr, pm->ib_size_bytes, false);
out:
mutex_unlock(&pm->lock);
return 0;
}
#endif
...@@ -59,7 +59,7 @@ unsigned int kfd_pasid_alloc(void) ...@@ -59,7 +59,7 @@ unsigned int kfd_pasid_alloc(void)
struct kfd_dev *dev = NULL; struct kfd_dev *dev = NULL;
unsigned int i = 0; unsigned int i = 0;
while ((dev = kfd_topology_enum_kfd_devices(i)) != NULL) { while ((kfd_topology_enum_kfd_devices(i, &dev)) == 0) {
if (dev && dev->kfd2kgd) { if (dev && dev->kfd2kgd) {
kfd2kgd = dev->kfd2kgd; kfd2kgd = dev->kfd2kgd;
break; break;
......
...@@ -33,6 +33,8 @@ ...@@ -33,6 +33,8 @@
#include <linux/kfd_ioctl.h> #include <linux/kfd_ioctl.h>
#include <linux/idr.h> #include <linux/idr.h>
#include <linux/kfifo.h> #include <linux/kfifo.h>
#include <linux/seq_file.h>
#include <linux/kref.h>
#include <kgd_kfd_interface.h> #include <kgd_kfd_interface.h>
#include "amd_shared.h" #include "amd_shared.h"
...@@ -41,6 +43,7 @@ ...@@ -41,6 +43,7 @@
#define KFD_MMAP_DOORBELL_MASK 0x8000000000000 #define KFD_MMAP_DOORBELL_MASK 0x8000000000000
#define KFD_MMAP_EVENTS_MASK 0x4000000000000 #define KFD_MMAP_EVENTS_MASK 0x4000000000000
#define KFD_MMAP_RESERVED_MEM_MASK 0x2000000000000
/* /*
* When working with cp scheduler we should assign the HIQ manually or via * When working with cp scheduler we should assign the HIQ manually or via
...@@ -62,6 +65,15 @@ ...@@ -62,6 +65,15 @@
#define KFD_MAX_NUM_OF_PROCESSES 512 #define KFD_MAX_NUM_OF_PROCESSES 512
#define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
/*
* Size of the per-process TBA+TMA buffer: 2 pages
*
* The first page is the TBA used for the CWSR ISA code. The second
* page is used as TMA for daisy changing a user-mode trap handler.
*/
#define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
#define KFD_CWSR_TMA_OFFSET PAGE_SIZE
/* /*
* Kernel module parameter to specify maximum number of supported queues per * Kernel module parameter to specify maximum number of supported queues per
* device * device
...@@ -78,12 +90,26 @@ extern int max_num_of_queues_per_device; ...@@ -78,12 +90,26 @@ extern int max_num_of_queues_per_device;
/* Kernel module parameter to specify the scheduling policy */ /* Kernel module parameter to specify the scheduling policy */
extern int sched_policy; extern int sched_policy;
/*
* Kernel module parameter to specify the maximum process
* number per HW scheduler
*/
extern int hws_max_conc_proc;
extern int cwsr_enable;
/* /*
* Kernel module parameter to specify whether to send sigterm to HSA process on * Kernel module parameter to specify whether to send sigterm to HSA process on
* unhandled exception * unhandled exception
*/ */
extern int send_sigterm; extern int send_sigterm;
/*
* Ignore CRAT table during KFD initialization, can be used to work around
* broken CRAT tables on some AMD systems
*/
extern int ignore_crat;
/** /**
* enum kfd_sched_policy * enum kfd_sched_policy
* *
...@@ -131,6 +157,7 @@ struct kfd_device_info { ...@@ -131,6 +157,7 @@ struct kfd_device_info {
size_t ih_ring_entry_size; size_t ih_ring_entry_size;
uint8_t num_of_watch_points; uint8_t num_of_watch_points;
uint16_t mqd_size_aligned; uint16_t mqd_size_aligned;
bool supports_cwsr;
}; };
struct kfd_mem_obj { struct kfd_mem_obj {
...@@ -200,6 +227,14 @@ struct kfd_dev { ...@@ -200,6 +227,14 @@ struct kfd_dev {
/* Debug manager */ /* Debug manager */
struct kfd_dbgmgr *dbgmgr; struct kfd_dbgmgr *dbgmgr;
/* Maximum process number mapped to HW scheduler */
unsigned int max_proc_per_quantum;
/* CWSR */
bool cwsr_enabled;
const void *cwsr_isa;
unsigned int cwsr_isa_size;
}; };
/* KGD2KFD callbacks */ /* KGD2KFD callbacks */
...@@ -332,6 +367,9 @@ struct queue_properties { ...@@ -332,6 +367,9 @@ struct queue_properties {
uint32_t eop_ring_buffer_size; uint32_t eop_ring_buffer_size;
uint64_t ctx_save_restore_area_address; uint64_t ctx_save_restore_area_address;
uint32_t ctx_save_restore_area_size; uint32_t ctx_save_restore_area_size;
uint32_t ctl_stack_size;
uint64_t tba_addr;
uint64_t tma_addr;
}; };
/** /**
...@@ -439,6 +477,11 @@ struct qcm_process_device { ...@@ -439,6 +477,11 @@ struct qcm_process_device {
uint32_t num_gws; uint32_t num_gws;
uint32_t num_oac; uint32_t num_oac;
uint32_t sh_hidden_private_base; uint32_t sh_hidden_private_base;
/* CWSR memory */
void *cwsr_kaddr;
uint64_t tba_addr;
uint64_t tma_addr;
}; };
...@@ -501,6 +544,9 @@ struct kfd_process { ...@@ -501,6 +544,9 @@ struct kfd_process {
*/ */
void *mm; void *mm;
struct kref ref;
struct work_struct release_work;
struct mutex mutex; struct mutex mutex;
/* /*
...@@ -563,9 +609,10 @@ struct amdkfd_ioctl_desc { ...@@ -563,9 +609,10 @@ struct amdkfd_ioctl_desc {
void kfd_process_create_wq(void); void kfd_process_create_wq(void);
void kfd_process_destroy_wq(void); void kfd_process_destroy_wq(void);
struct kfd_process *kfd_create_process(const struct task_struct *); struct kfd_process *kfd_create_process(struct file *filep);
struct kfd_process *kfd_get_process(const struct task_struct *); struct kfd_process *kfd_get_process(const struct task_struct *);
struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid); struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
void kfd_unref_process(struct kfd_process *p);
struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev, struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
struct kfd_process *p); struct kfd_process *p);
...@@ -577,6 +624,9 @@ struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev, ...@@ -577,6 +624,9 @@ struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
struct kfd_process *p); struct kfd_process *p);
int kfd_reserved_mem_mmap(struct kfd_process *process,
struct vm_area_struct *vma);
/* Process device data iterator */ /* Process device data iterator */
struct kfd_process_device *kfd_get_first_process_device_data( struct kfd_process_device *kfd_get_first_process_device_data(
struct kfd_process *p); struct kfd_process *p);
...@@ -624,9 +674,12 @@ int kfd_topology_init(void); ...@@ -624,9 +674,12 @@ int kfd_topology_init(void);
void kfd_topology_shutdown(void); void kfd_topology_shutdown(void);
int kfd_topology_add_device(struct kfd_dev *gpu); int kfd_topology_add_device(struct kfd_dev *gpu);
int kfd_topology_remove_device(struct kfd_dev *gpu); int kfd_topology_remove_device(struct kfd_dev *gpu);
struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
uint32_t proximity_domain);
struct kfd_dev *kfd_device_by_id(uint32_t gpu_id); struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev); struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx); int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
int kfd_numa_node_to_apic_id(int numa_node_id);
/* Interrupts */ /* Interrupts */
int kfd_interrupt_init(struct kfd_dev *dev); int kfd_interrupt_init(struct kfd_dev *dev);
...@@ -643,8 +696,6 @@ int kgd2kfd_resume(struct kfd_dev *kfd); ...@@ -643,8 +696,6 @@ int kgd2kfd_resume(struct kfd_dev *kfd);
int kfd_init_apertures(struct kfd_process *process); int kfd_init_apertures(struct kfd_process *process);
/* Queue Context Management */ /* Queue Context Management */
struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd);
int init_queue(struct queue **q, const struct queue_properties *properties); int init_queue(struct queue **q, const struct queue_properties *properties);
void uninit_queue(struct queue *q); void uninit_queue(struct queue *q);
void print_queue_properties(struct queue_properties *q); void print_queue_properties(struct queue_properties *q);
...@@ -699,6 +750,7 @@ struct packet_manager { ...@@ -699,6 +750,7 @@ struct packet_manager {
struct mutex lock; struct mutex lock;
bool allocated; bool allocated;
struct kfd_mem_obj *ib_buffer_obj; struct kfd_mem_obj *ib_buffer_obj;
unsigned int ib_size_bytes;
}; };
int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm); int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
...@@ -745,4 +797,23 @@ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id); ...@@ -745,4 +797,23 @@ int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p); int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
/* Debugfs */
#if defined(CONFIG_DEBUG_FS)
void kfd_debugfs_init(void);
void kfd_debugfs_fini(void);
int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
int pqm_debugfs_mqds(struct seq_file *m, void *data);
int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
int dqm_debugfs_hqds(struct seq_file *m, void *data);
int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
int pm_debugfs_runlist(struct seq_file *m, void *data);
#else
static inline void kfd_debugfs_init(void) {}
static inline void kfd_debugfs_fini(void) {}
#endif
#endif #endif
...@@ -24,10 +24,12 @@ ...@@ -24,10 +24,12 @@
#include <linux/log2.h> #include <linux/log2.h>
#include <linux/sched.h> #include <linux/sched.h>
#include <linux/sched/mm.h> #include <linux/sched/mm.h>
#include <linux/sched/task.h>
#include <linux/slab.h> #include <linux/slab.h>
#include <linux/amd-iommu.h> #include <linux/amd-iommu.h>
#include <linux/notifier.h> #include <linux/notifier.h>
#include <linux/compat.h> #include <linux/compat.h>
#include <linux/mman.h>
struct mm_struct; struct mm_struct;
...@@ -46,13 +48,12 @@ DEFINE_STATIC_SRCU(kfd_processes_srcu); ...@@ -46,13 +48,12 @@ DEFINE_STATIC_SRCU(kfd_processes_srcu);
static struct workqueue_struct *kfd_process_wq; static struct workqueue_struct *kfd_process_wq;
struct kfd_process_release_work {
struct work_struct kfd_work;
struct kfd_process *p;
};
static struct kfd_process *find_process(const struct task_struct *thread); static struct kfd_process *find_process(const struct task_struct *thread);
static struct kfd_process *create_process(const struct task_struct *thread); static void kfd_process_ref_release(struct kref *ref);
static struct kfd_process *create_process(const struct task_struct *thread,
struct file *filep);
static int kfd_process_init_cwsr(struct kfd_process *p, struct file *filep);
void kfd_process_create_wq(void) void kfd_process_create_wq(void)
{ {
...@@ -68,9 +69,10 @@ void kfd_process_destroy_wq(void) ...@@ -68,9 +69,10 @@ void kfd_process_destroy_wq(void)
} }
} }
struct kfd_process *kfd_create_process(const struct task_struct *thread) struct kfd_process *kfd_create_process(struct file *filep)
{ {
struct kfd_process *process; struct kfd_process *process;
struct task_struct *thread = current;
if (!thread->mm) if (!thread->mm)
return ERR_PTR(-EINVAL); return ERR_PTR(-EINVAL);
...@@ -79,9 +81,6 @@ struct kfd_process *kfd_create_process(const struct task_struct *thread) ...@@ -79,9 +81,6 @@ struct kfd_process *kfd_create_process(const struct task_struct *thread)
if (thread->group_leader->mm != thread->mm) if (thread->group_leader->mm != thread->mm)
return ERR_PTR(-EINVAL); return ERR_PTR(-EINVAL);
/* Take mmap_sem because we call __mmu_notifier_register inside */
down_write(&thread->mm->mmap_sem);
/* /*
* take kfd processes mutex before starting of process creation * take kfd processes mutex before starting of process creation
* so there won't be a case where two threads of the same process * so there won't be a case where two threads of the same process
...@@ -93,14 +92,11 @@ struct kfd_process *kfd_create_process(const struct task_struct *thread) ...@@ -93,14 +92,11 @@ struct kfd_process *kfd_create_process(const struct task_struct *thread)
process = find_process(thread); process = find_process(thread);
if (process) if (process)
pr_debug("Process already found\n"); pr_debug("Process already found\n");
else
if (!process) process = create_process(thread, filep);
process = create_process(thread);
mutex_unlock(&kfd_processes_mutex); mutex_unlock(&kfd_processes_mutex);
up_write(&thread->mm->mmap_sem);
return process; return process;
} }
...@@ -144,63 +140,75 @@ static struct kfd_process *find_process(const struct task_struct *thread) ...@@ -144,63 +140,75 @@ static struct kfd_process *find_process(const struct task_struct *thread)
return p; return p;
} }
static void kfd_process_wq_release(struct work_struct *work) void kfd_unref_process(struct kfd_process *p)
{
kref_put(&p->ref, kfd_process_ref_release);
}
static void kfd_process_destroy_pdds(struct kfd_process *p)
{ {
struct kfd_process_release_work *my_work;
struct kfd_process_device *pdd, *temp; struct kfd_process_device *pdd, *temp;
struct kfd_process *p;
my_work = (struct kfd_process_release_work *) work; list_for_each_entry_safe(pdd, temp, &p->per_device_data,
per_device_list) {
pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n",
pdd->dev->id, p->pasid);
p = my_work->p; list_del(&pdd->per_device_list);
pr_debug("Releasing process (pasid %d) in workqueue\n", if (pdd->qpd.cwsr_kaddr)
p->pasid); free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
get_order(KFD_CWSR_TBA_TMA_SIZE));
mutex_lock(&p->mutex); kfree(pdd);
}
}
list_for_each_entry_safe(pdd, temp, &p->per_device_data, /* No process locking is needed in this function, because the process
per_device_list) { * is not findable any more. We must assume that no other thread is
pr_debug("Releasing pdd (topology id %d) for process (pasid %d) in workqueue\n", * using it any more, otherwise we couldn't safely free the process
pdd->dev->id, p->pasid); * structure in the end.
*/
static void kfd_process_wq_release(struct work_struct *work)
{
struct kfd_process *p = container_of(work, struct kfd_process,
release_work);
struct kfd_process_device *pdd;
pr_debug("Releasing process (pasid %d) in workqueue\n", p->pasid);
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
if (pdd->bound == PDD_BOUND) if (pdd->bound == PDD_BOUND)
amd_iommu_unbind_pasid(pdd->dev->pdev, p->pasid); amd_iommu_unbind_pasid(pdd->dev->pdev, p->pasid);
list_del(&pdd->per_device_list);
kfree(pdd);
} }
kfd_process_destroy_pdds(p);
kfd_event_free_process(p); kfd_event_free_process(p);
kfd_pasid_free(p->pasid); kfd_pasid_free(p->pasid);
kfd_free_process_doorbells(p); kfd_free_process_doorbells(p);
mutex_unlock(&p->mutex);
mutex_destroy(&p->mutex); mutex_destroy(&p->mutex);
kfree(p); put_task_struct(p->lead_thread);
kfree(work); kfree(p);
} }
static void kfd_process_destroy_delayed(struct rcu_head *rcu) static void kfd_process_ref_release(struct kref *ref)
{ {
struct kfd_process_release_work *work; struct kfd_process *p = container_of(ref, struct kfd_process, ref);
struct kfd_process *p;
p = container_of(rcu, struct kfd_process, rcu); INIT_WORK(&p->release_work, kfd_process_wq_release);
queue_work(kfd_process_wq, &p->release_work);
mmdrop(p->mm); }
work = kmalloc(sizeof(struct kfd_process_release_work), GFP_ATOMIC); static void kfd_process_destroy_delayed(struct rcu_head *rcu)
{
struct kfd_process *p = container_of(rcu, struct kfd_process, rcu);
if (work) { kfd_unref_process(p);
INIT_WORK((struct work_struct *) work, kfd_process_wq_release);
work->p = p;
queue_work(kfd_process_wq, (struct work_struct *) work);
}
} }
static void kfd_process_notifier_release(struct mmu_notifier *mn, static void kfd_process_notifier_release(struct mmu_notifier *mn,
...@@ -244,15 +252,12 @@ static void kfd_process_notifier_release(struct mmu_notifier *mn, ...@@ -244,15 +252,12 @@ static void kfd_process_notifier_release(struct mmu_notifier *mn,
kfd_process_dequeue_from_all_devices(p); kfd_process_dequeue_from_all_devices(p);
pqm_uninit(&p->pqm); pqm_uninit(&p->pqm);
/* Indicate to other users that MM is no longer valid */
p->mm = NULL;
mutex_unlock(&p->mutex); mutex_unlock(&p->mutex);
/* mmu_notifier_unregister_no_release(&p->mmu_notifier, mm);
* Because we drop mm_count inside kfd_process_destroy_delayed
* and because the mmu_notifier_unregister function also drop
* mm_count we need to take an extra count here.
*/
mmgrab(p->mm);
mmu_notifier_unregister_no_release(&p->mmu_notifier, p->mm);
mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed); mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed);
} }
...@@ -260,7 +265,44 @@ static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = { ...@@ -260,7 +265,44 @@ static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
.release = kfd_process_notifier_release, .release = kfd_process_notifier_release,
}; };
static struct kfd_process *create_process(const struct task_struct *thread) static int kfd_process_init_cwsr(struct kfd_process *p, struct file *filep)
{
unsigned long offset;
struct kfd_process_device *pdd = NULL;
struct kfd_dev *dev = NULL;
struct qcm_process_device *qpd = NULL;
list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
dev = pdd->dev;
qpd = &pdd->qpd;
if (!dev->cwsr_enabled || qpd->cwsr_kaddr)
continue;
offset = (dev->id | KFD_MMAP_RESERVED_MEM_MASK) << PAGE_SHIFT;
qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
MAP_SHARED, offset);
if (IS_ERR_VALUE(qpd->tba_addr)) {
int err = qpd->tba_addr;
pr_err("Failure to set tba address. error %d.\n", err);
qpd->tba_addr = 0;
qpd->cwsr_kaddr = NULL;
return err;
}
memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
}
return 0;
}
static struct kfd_process *create_process(const struct task_struct *thread,
struct file *filep)
{ {
struct kfd_process *process; struct kfd_process *process;
int err = -ENOMEM; int err = -ENOMEM;
...@@ -277,13 +319,15 @@ static struct kfd_process *create_process(const struct task_struct *thread) ...@@ -277,13 +319,15 @@ static struct kfd_process *create_process(const struct task_struct *thread)
if (kfd_alloc_process_doorbells(process) < 0) if (kfd_alloc_process_doorbells(process) < 0)
goto err_alloc_doorbells; goto err_alloc_doorbells;
kref_init(&process->ref);
mutex_init(&process->mutex); mutex_init(&process->mutex);
process->mm = thread->mm; process->mm = thread->mm;
/* register notifier */ /* register notifier */
process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops; process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
err = __mmu_notifier_register(&process->mmu_notifier, process->mm); err = mmu_notifier_register(&process->mmu_notifier, process->mm);
if (err) if (err)
goto err_mmu_notifier; goto err_mmu_notifier;
...@@ -291,6 +335,7 @@ static struct kfd_process *create_process(const struct task_struct *thread) ...@@ -291,6 +335,7 @@ static struct kfd_process *create_process(const struct task_struct *thread)
(uintptr_t)process->mm); (uintptr_t)process->mm);
process->lead_thread = thread->group_leader; process->lead_thread = thread->group_leader;
get_task_struct(process->lead_thread);
INIT_LIST_HEAD(&process->per_device_data); INIT_LIST_HEAD(&process->per_device_data);
...@@ -306,8 +351,14 @@ static struct kfd_process *create_process(const struct task_struct *thread) ...@@ -306,8 +351,14 @@ static struct kfd_process *create_process(const struct task_struct *thread)
if (err != 0) if (err != 0)
goto err_init_apertures; goto err_init_apertures;
err = kfd_process_init_cwsr(process, filep);
if (err)
goto err_init_cwsr;
return process; return process;
err_init_cwsr:
kfd_process_destroy_pdds(process);
err_init_apertures: err_init_apertures:
pqm_uninit(&process->pqm); pqm_uninit(&process->pqm);
err_process_pqm_init: err_process_pqm_init:
...@@ -343,16 +394,18 @@ struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev, ...@@ -343,16 +394,18 @@ struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
struct kfd_process_device *pdd = NULL; struct kfd_process_device *pdd = NULL;
pdd = kzalloc(sizeof(*pdd), GFP_KERNEL); pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
if (pdd != NULL) { if (!pdd)
pdd->dev = dev; return NULL;
INIT_LIST_HEAD(&pdd->qpd.queues_list);
INIT_LIST_HEAD(&pdd->qpd.priv_queue_list); pdd->dev = dev;
pdd->qpd.dqm = dev->dqm; INIT_LIST_HEAD(&pdd->qpd.queues_list);
pdd->process = p; INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
pdd->bound = PDD_UNBOUND; pdd->qpd.dqm = dev->dqm;
pdd->already_dequeued = false; pdd->qpd.pqm = &p->pqm;
list_add(&pdd->per_device_list, &p->per_device_data); pdd->process = p;
} pdd->bound = PDD_UNBOUND;
pdd->already_dequeued = false;
list_add(&pdd->per_device_list, &p->per_device_data);
return pdd; return pdd;
} }
...@@ -483,6 +536,8 @@ void kfd_process_iommu_unbind_callback(struct kfd_dev *dev, unsigned int pasid) ...@@ -483,6 +536,8 @@ void kfd_process_iommu_unbind_callback(struct kfd_dev *dev, unsigned int pasid)
mutex_unlock(kfd_get_dbgmgr_mutex()); mutex_unlock(kfd_get_dbgmgr_mutex());
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p); pdd = kfd_get_process_device_data(dev, p);
if (pdd) if (pdd)
/* For GPU relying on IOMMU, we need to dequeue here /* For GPU relying on IOMMU, we need to dequeue here
...@@ -491,6 +546,8 @@ void kfd_process_iommu_unbind_callback(struct kfd_dev *dev, unsigned int pasid) ...@@ -491,6 +546,8 @@ void kfd_process_iommu_unbind_callback(struct kfd_dev *dev, unsigned int pasid)
kfd_process_dequeue_from_device(pdd); kfd_process_dequeue_from_device(pdd);
mutex_unlock(&p->mutex); mutex_unlock(&p->mutex);
kfd_unref_process(p);
} }
struct kfd_process_device *kfd_get_first_process_device_data( struct kfd_process_device *kfd_get_first_process_device_data(
...@@ -515,22 +572,86 @@ bool kfd_has_process_device_data(struct kfd_process *p) ...@@ -515,22 +572,86 @@ bool kfd_has_process_device_data(struct kfd_process *p)
return !(list_empty(&p->per_device_data)); return !(list_empty(&p->per_device_data));
} }
/* This returns with process->mutex locked. */ /* This increments the process->ref counter. */
struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid) struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
{ {
struct kfd_process *p; struct kfd_process *p, *ret_p = NULL;
unsigned int temp; unsigned int temp;
int idx = srcu_read_lock(&kfd_processes_srcu); int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) { hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
if (p->pasid == pasid) { if (p->pasid == pasid) {
mutex_lock(&p->mutex); kref_get(&p->ref);
ret_p = p;
break; break;
} }
} }
srcu_read_unlock(&kfd_processes_srcu, idx); srcu_read_unlock(&kfd_processes_srcu, idx);
return p; return ret_p;
} }
int kfd_reserved_mem_mmap(struct kfd_process *process,
struct vm_area_struct *vma)
{
struct kfd_dev *dev = kfd_device_by_id(vma->vm_pgoff);
struct kfd_process_device *pdd;
struct qcm_process_device *qpd;
if (!dev)
return -EINVAL;
if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
pr_err("Incorrect CWSR mapping size.\n");
return -EINVAL;
}
pdd = kfd_get_process_device_data(dev, process);
if (!pdd)
return -EINVAL;
qpd = &pdd->qpd;
qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
get_order(KFD_CWSR_TBA_TMA_SIZE));
if (!qpd->cwsr_kaddr) {
pr_err("Error allocating per process CWSR buffer.\n");
return -ENOMEM;
}
vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
/* Mapping pages to user process */
return remap_pfn_range(vma, vma->vm_start,
PFN_DOWN(__pa(qpd->cwsr_kaddr)),
KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
}
#if defined(CONFIG_DEBUG_FS)
int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
{
struct kfd_process *p;
unsigned int temp;
int r = 0;
int idx = srcu_read_lock(&kfd_processes_srcu);
hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
seq_printf(m, "Process %d PASID %d:\n",
p->lead_thread->tgid, p->pasid);
mutex_lock(&p->mutex);
r = pqm_debugfs_mqds(m, &p->pqm);
mutex_unlock(&p->mutex);
if (r)
break;
}
srcu_read_unlock(&kfd_processes_srcu, idx);
return r;
}
#endif
...@@ -178,10 +178,8 @@ int pqm_create_queue(struct process_queue_manager *pqm, ...@@ -178,10 +178,8 @@ int pqm_create_queue(struct process_queue_manager *pqm,
return retval; return retval;
if (list_empty(&pdd->qpd.queues_list) && if (list_empty(&pdd->qpd.queues_list) &&
list_empty(&pdd->qpd.priv_queue_list)) { list_empty(&pdd->qpd.priv_queue_list))
pdd->qpd.pqm = pqm;
dev->dqm->ops.register_process(dev->dqm, &pdd->qpd); dev->dqm->ops.register_process(dev->dqm, &pdd->qpd);
}
pqn = kzalloc(sizeof(*pqn), GFP_KERNEL); pqn = kzalloc(sizeof(*pqn), GFP_KERNEL);
if (!pqn) { if (!pqn) {
...@@ -203,8 +201,7 @@ int pqm_create_queue(struct process_queue_manager *pqm, ...@@ -203,8 +201,7 @@ int pqm_create_queue(struct process_queue_manager *pqm,
goto err_create_queue; goto err_create_queue;
pqn->q = q; pqn->q = q;
pqn->kq = NULL; pqn->kq = NULL;
retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd);
&q->properties.vmid);
pr_debug("DQM returned %d for create_queue\n", retval); pr_debug("DQM returned %d for create_queue\n", retval);
print_queue(q); print_queue(q);
break; break;
...@@ -224,8 +221,7 @@ int pqm_create_queue(struct process_queue_manager *pqm, ...@@ -224,8 +221,7 @@ int pqm_create_queue(struct process_queue_manager *pqm,
goto err_create_queue; goto err_create_queue;
pqn->q = q; pqn->q = q;
pqn->kq = NULL; pqn->kq = NULL;
retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd, retval = dev->dqm->ops.create_queue(dev->dqm, q, &pdd->qpd);
&q->properties.vmid);
pr_debug("DQM returned %d for create_queue\n", retval); pr_debug("DQM returned %d for create_queue\n", retval);
print_queue(q); print_queue(q);
break; break;
...@@ -315,6 +311,10 @@ int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid) ...@@ -315,6 +311,10 @@ int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid)
if (pqn->q) { if (pqn->q) {
dqm = pqn->q->device->dqm; dqm = pqn->q->device->dqm;
retval = dqm->ops.destroy_queue(dqm, &pdd->qpd, pqn->q); retval = dqm->ops.destroy_queue(dqm, &pdd->qpd, pqn->q);
if (retval) {
pr_debug("Destroy queue failed, returned %d\n", retval);
goto err_destroy_queue;
}
uninit_queue(pqn->q); uninit_queue(pqn->q);
} }
...@@ -326,6 +326,7 @@ int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid) ...@@ -326,6 +326,7 @@ int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid)
list_empty(&pdd->qpd.priv_queue_list)) list_empty(&pdd->qpd.priv_queue_list))
dqm->ops.unregister_process(dqm, &pdd->qpd); dqm->ops.unregister_process(dqm, &pdd->qpd);
err_destroy_queue:
return retval; return retval;
} }
...@@ -367,4 +368,67 @@ struct kernel_queue *pqm_get_kernel_queue( ...@@ -367,4 +368,67 @@ struct kernel_queue *pqm_get_kernel_queue(
return NULL; return NULL;
} }
#if defined(CONFIG_DEBUG_FS)
int pqm_debugfs_mqds(struct seq_file *m, void *data)
{
struct process_queue_manager *pqm = data;
struct process_queue_node *pqn;
struct queue *q;
enum KFD_MQD_TYPE mqd_type;
struct mqd_manager *mqd_manager;
int r = 0;
list_for_each_entry(pqn, &pqm->queues, process_queue_list) {
if (pqn->q) {
q = pqn->q;
switch (q->properties.type) {
case KFD_QUEUE_TYPE_SDMA:
seq_printf(m, " SDMA queue on device %x\n",
q->device->id);
mqd_type = KFD_MQD_TYPE_SDMA;
break;
case KFD_QUEUE_TYPE_COMPUTE:
seq_printf(m, " Compute queue on device %x\n",
q->device->id);
mqd_type = KFD_MQD_TYPE_CP;
break;
default:
seq_printf(m,
" Bad user queue type %d on device %x\n",
q->properties.type, q->device->id);
continue;
}
mqd_manager = q->device->dqm->ops.get_mqd_manager(
q->device->dqm, mqd_type);
} else if (pqn->kq) {
q = pqn->kq->queue;
mqd_manager = pqn->kq->mqd;
switch (q->properties.type) {
case KFD_QUEUE_TYPE_DIQ:
seq_printf(m, " DIQ on device %x\n",
pqn->kq->dev->id);
mqd_type = KFD_MQD_TYPE_HIQ;
break;
default:
seq_printf(m,
" Bad kernel queue type %d on device %x\n",
q->properties.type,
pqn->kq->dev->id);
continue;
}
} else {
seq_printf(m,
" Weird: Queue node with neither kernel nor user queue\n");
continue;
}
r = mqd_manager->debugfs_show_mqd(m, q->mqd);
if (r != 0)
break;
}
return r;
}
#endif
...@@ -28,27 +28,32 @@ ...@@ -28,27 +28,32 @@
#include <linux/hash.h> #include <linux/hash.h>
#include <linux/cpufreq.h> #include <linux/cpufreq.h>
#include <linux/log2.h> #include <linux/log2.h>
#include <linux/dmi.h>
#include <linux/atomic.h>
#include "kfd_priv.h" #include "kfd_priv.h"
#include "kfd_crat.h" #include "kfd_crat.h"
#include "kfd_topology.h" #include "kfd_topology.h"
#include "kfd_device_queue_manager.h"
/* topology_device_list - Master list of all topology devices */
static struct list_head topology_device_list; static struct list_head topology_device_list;
static int topology_crat_parsed;
static struct kfd_system_properties sys_props; static struct kfd_system_properties sys_props;
static DECLARE_RWSEM(topology_lock); static DECLARE_RWSEM(topology_lock);
static atomic_t topology_crat_proximity_domain;
struct kfd_dev *kfd_device_by_id(uint32_t gpu_id) struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
uint32_t proximity_domain)
{ {
struct kfd_topology_device *top_dev; struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL; struct kfd_topology_device *device = NULL;
down_read(&topology_lock); down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list) list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu_id == gpu_id) { if (top_dev->proximity_domain == proximity_domain) {
device = top_dev->gpu; device = top_dev;
break; break;
} }
...@@ -57,7 +62,7 @@ struct kfd_dev *kfd_device_by_id(uint32_t gpu_id) ...@@ -57,7 +62,7 @@ struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
return device; return device;
} }
struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
{ {
struct kfd_topology_device *top_dev; struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL; struct kfd_dev *device = NULL;
...@@ -65,7 +70,7 @@ struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) ...@@ -65,7 +70,7 @@ struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
down_read(&topology_lock); down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list) list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu->pdev == pdev) { if (top_dev->gpu_id == gpu_id) {
device = top_dev->gpu; device = top_dev->gpu;
break; break;
} }
...@@ -75,282 +80,31 @@ struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev) ...@@ -75,282 +80,31 @@ struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
return device; return device;
} }
static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size) struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
struct acpi_table_header *crat_table;
acpi_status status;
if (!size)
return -EINVAL;
/*
* Fetch the CRAT table from ACPI
*/
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
if (status == AE_NOT_FOUND) {
pr_warn("CRAT table not found\n");
return -ENODATA;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("CRAT table error: %s\n", err);
return -EINVAL;
}
if (*size >= crat_table->length && crat_image != NULL)
memcpy(crat_image, crat_table, crat_table->length);
*size = crat_table->length;
return 0;
}
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
dev->node_props.cpu_core_id_base = cu->processor_id_low;
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
cu->processor_id_low);
}
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
dev->node_props.simd_id_base = cu->processor_id_low;
dev->node_props.simd_count = cu->num_simd_cores;
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
dev->node_props.wave_front_size = cu->wave_front_size;
dev->node_props.mem_banks_count = cu->num_banks;
dev->node_props.array_count = cu->num_arrays;
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
cu->processor_id_low);
}
/* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
{
struct kfd_topology_device *dev;
int i = 0;
pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
cu->proximity_domain, cu->hsa_capability);
list_for_each_entry(dev, &topology_device_list, list) {
if (cu->proximity_domain == i) {
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
kfd_populated_cu_info_cpu(dev, cu);
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
kfd_populated_cu_info_gpu(dev, cu);
break;
}
i++;
}
return 0;
}
/*
* kfd_parse_subtype_mem is called when the topology mutex is
* already acquired
*/
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
{
struct kfd_mem_properties *props;
struct kfd_topology_device *dev;
int i = 0;
pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
mem->promixity_domain);
list_for_each_entry(dev, &topology_device_list, list) {
if (mem->promixity_domain == i) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
if (dev->node_props.cpu_cores_count == 0)
props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
else
props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
props->size_in_bytes =
((uint64_t)mem->length_high << 32) +
mem->length_low;
props->width = mem->width;
dev->mem_bank_count++;
list_add_tail(&props->list, &dev->mem_props);
break;
}
i++;
}
return 0;
}
/*
* kfd_parse_subtype_cache is called when the topology mutex
* is already acquired
*/
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
{
struct kfd_cache_properties *props;
struct kfd_topology_device *dev;
uint32_t id;
id = cache->processor_id_low;
pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
list_for_each_entry(dev, &topology_device_list, list)
if (id == dev->node_props.cpu_core_id_base ||
id == dev->node_props.simd_id_base) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
props->processor_id_low = id;
props->cache_level = cache->cache_level;
props->cache_size = cache->cache_size;
props->cacheline_size = cache->cache_line_size;
props->cachelines_per_tag = cache->lines_per_tag;
props->cache_assoc = cache->associativity;
props->cache_latency = cache->cache_latency;
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
props->cache_type |= HSA_CACHE_TYPE_DATA;
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
props->cache_type |= HSA_CACHE_TYPE_CPU;
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
props->cache_type |= HSA_CACHE_TYPE_HSACU;
dev->cache_count++;
dev->node_props.caches_count++;
list_add_tail(&props->list, &dev->cache_props);
break;
}
return 0;
}
/*
* kfd_parse_subtype_iolink is called when the topology mutex
* is already acquired
*/
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
{ {
struct kfd_iolink_properties *props; struct kfd_topology_device *top_dev;
struct kfd_topology_device *dev; struct kfd_dev *device = NULL;
uint32_t i = 0;
uint32_t id_from;
uint32_t id_to;
id_from = iolink->proximity_domain_from;
id_to = iolink->proximity_domain_to;
pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from); down_read(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
if (id_from == i) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
props->node_from = id_from;
props->node_to = id_to;
props->ver_maj = iolink->version_major;
props->ver_min = iolink->version_minor;
/*
* weight factor (derived from CDIR), currently always 1
*/
props->weight = 1;
props->min_latency = iolink->minimum_latency;
props->max_latency = iolink->maximum_latency;
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
props->rec_transfer_size =
iolink->recommended_transfer_size;
dev->io_link_count++;
dev->node_props.io_links_count++;
list_add_tail(&props->list, &dev->io_link_props);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu->pdev == pdev) {
device = top_dev->gpu;
break; break;
} }
i++;
}
return 0; up_read(&topology_lock);
}
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
{
struct crat_subtype_computeunit *cu;
struct crat_subtype_memory *mem;
struct crat_subtype_cache *cache;
struct crat_subtype_iolink *iolink;
int ret = 0;
switch (sub_type_hdr->type) {
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
ret = kfd_parse_subtype_cu(cu);
break;
case CRAT_SUBTYPE_MEMORY_AFFINITY:
mem = (struct crat_subtype_memory *)sub_type_hdr;
ret = kfd_parse_subtype_mem(mem);
break;
case CRAT_SUBTYPE_CACHE_AFFINITY:
cache = (struct crat_subtype_cache *)sub_type_hdr;
ret = kfd_parse_subtype_cache(cache);
break;
case CRAT_SUBTYPE_TLB_AFFINITY:
/*
* For now, nothing to do here
*/
pr_info("Found TLB entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
/*
* For now, nothing to do here
*/
pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_IOLINK_AFFINITY:
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
ret = kfd_parse_subtype_iolink(iolink);
break;
default:
pr_warn("Unknown subtype (%d) in CRAT\n",
sub_type_hdr->type);
}
return ret; return device;
} }
/* Called with write topology_lock acquired */
static void kfd_release_topology_device(struct kfd_topology_device *dev) static void kfd_release_topology_device(struct kfd_topology_device *dev)
{ {
struct kfd_mem_properties *mem; struct kfd_mem_properties *mem;
struct kfd_cache_properties *cache; struct kfd_cache_properties *cache;
struct kfd_iolink_properties *iolink; struct kfd_iolink_properties *iolink;
struct kfd_perf_properties *perf;
list_del(&dev->list); list_del(&dev->list);
...@@ -375,25 +129,35 @@ static void kfd_release_topology_device(struct kfd_topology_device *dev) ...@@ -375,25 +129,35 @@ static void kfd_release_topology_device(struct kfd_topology_device *dev)
kfree(iolink); kfree(iolink);
} }
kfree(dev); while (dev->perf_props.next != &dev->perf_props) {
perf = container_of(dev->perf_props.next,
struct kfd_perf_properties, list);
list_del(&perf->list);
kfree(perf);
}
sys_props.num_devices--; kfree(dev);
} }
static void kfd_release_live_view(void) void kfd_release_topology_device_list(struct list_head *device_list)
{ {
struct kfd_topology_device *dev; struct kfd_topology_device *dev;
while (topology_device_list.next != &topology_device_list) { while (!list_empty(device_list)) {
dev = container_of(topology_device_list.next, dev = list_first_entry(device_list,
struct kfd_topology_device, list); struct kfd_topology_device, list);
kfd_release_topology_device(dev); kfd_release_topology_device(dev);
}
} }
static void kfd_release_live_view(void)
{
kfd_release_topology_device_list(&topology_device_list);
memset(&sys_props, 0, sizeof(sys_props)); memset(&sys_props, 0, sizeof(sys_props));
} }
static struct kfd_topology_device *kfd_create_topology_device(void) struct kfd_topology_device *kfd_create_topology_device(
struct list_head *device_list)
{ {
struct kfd_topology_device *dev; struct kfd_topology_device *dev;
...@@ -406,65 +170,13 @@ static struct kfd_topology_device *kfd_create_topology_device(void) ...@@ -406,65 +170,13 @@ static struct kfd_topology_device *kfd_create_topology_device(void)
INIT_LIST_HEAD(&dev->mem_props); INIT_LIST_HEAD(&dev->mem_props);
INIT_LIST_HEAD(&dev->cache_props); INIT_LIST_HEAD(&dev->cache_props);
INIT_LIST_HEAD(&dev->io_link_props); INIT_LIST_HEAD(&dev->io_link_props);
INIT_LIST_HEAD(&dev->perf_props);
list_add_tail(&dev->list, &topology_device_list); list_add_tail(&dev->list, device_list);
sys_props.num_devices++;
return dev; return dev;
} }
static int kfd_parse_crat_table(void *crat_image)
{
struct kfd_topology_device *top_dev;
struct crat_subtype_generic *sub_type_hdr;
uint16_t node_id;
int ret;
struct crat_header *crat_table = (struct crat_header *)crat_image;
uint16_t num_nodes;
uint32_t image_len;
if (!crat_image)
return -EINVAL;
num_nodes = crat_table->num_domains;
image_len = crat_table->length;
pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
for (node_id = 0; node_id < num_nodes; node_id++) {
top_dev = kfd_create_topology_device();
if (!top_dev) {
kfd_release_live_view();
return -ENOMEM;
}
}
sys_props.platform_id =
(*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
sys_props.platform_rev = crat_table->revision;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
((char *)crat_image) + image_len) {
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
ret = kfd_parse_subtype(sub_type_hdr);
if (ret != 0) {
kfd_release_live_view();
return ret;
}
}
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
}
sys_props.generation_count++;
topology_crat_parsed = 1;
return 0;
}
#define sysfs_show_gen_prop(buffer, fmt, ...) \ #define sysfs_show_gen_prop(buffer, fmt, ...) \
snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__) snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
...@@ -501,11 +213,17 @@ static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr, ...@@ -501,11 +213,17 @@ static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
return ret; return ret;
} }
static void kfd_topology_kobj_release(struct kobject *kobj)
{
kfree(kobj);
}
static const struct sysfs_ops sysprops_ops = { static const struct sysfs_ops sysprops_ops = {
.show = sysprops_show, .show = sysprops_show,
}; };
static struct kobj_type sysprops_type = { static struct kobj_type sysprops_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &sysprops_ops, .sysfs_ops = &sysprops_ops,
}; };
...@@ -541,6 +259,7 @@ static const struct sysfs_ops iolink_ops = { ...@@ -541,6 +259,7 @@ static const struct sysfs_ops iolink_ops = {
}; };
static struct kobj_type iolink_type = { static struct kobj_type iolink_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &iolink_ops, .sysfs_ops = &iolink_ops,
}; };
...@@ -568,6 +287,7 @@ static const struct sysfs_ops mem_ops = { ...@@ -568,6 +287,7 @@ static const struct sysfs_ops mem_ops = {
}; };
static struct kobj_type mem_type = { static struct kobj_type mem_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &mem_ops, .sysfs_ops = &mem_ops,
}; };
...@@ -575,7 +295,7 @@ static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, ...@@ -575,7 +295,7 @@ static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
char *buffer) char *buffer)
{ {
ssize_t ret; ssize_t ret;
uint32_t i; uint32_t i, j;
struct kfd_cache_properties *cache; struct kfd_cache_properties *cache;
/* Making sure that the buffer is an empty string */ /* Making sure that the buffer is an empty string */
...@@ -593,12 +313,18 @@ static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr, ...@@ -593,12 +313,18 @@ static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency); sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
sysfs_show_32bit_prop(buffer, "type", cache->cache_type); sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer); snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++) for (i = 0; i < CRAT_SIBLINGMAP_SIZE; i++)
ret = snprintf(buffer, PAGE_SIZE, "%s%d%s", for (j = 0; j < sizeof(cache->sibling_map[0])*8; j++) {
buffer, cache->sibling_map[i], /* Check each bit */
(i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ? if (cache->sibling_map[i] & (1 << j))
"\n" : ","); ret = snprintf(buffer, PAGE_SIZE,
"%s%d%s", buffer, 1, ",");
else
ret = snprintf(buffer, PAGE_SIZE,
"%s%d%s", buffer, 0, ",");
}
/* Replace the last "," with end of line */
*(buffer + strlen(buffer) - 1) = 0xA;
return ret; return ret;
} }
...@@ -607,9 +333,43 @@ static const struct sysfs_ops cache_ops = { ...@@ -607,9 +333,43 @@ static const struct sysfs_ops cache_ops = {
}; };
static struct kobj_type cache_type = { static struct kobj_type cache_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &cache_ops, .sysfs_ops = &cache_ops,
}; };
/****** Sysfs of Performance Counters ******/
struct kfd_perf_attr {
struct kobj_attribute attr;
uint32_t data;
};
static ssize_t perf_show(struct kobject *kobj, struct kobj_attribute *attrs,
char *buf)
{
struct kfd_perf_attr *attr;
buf[0] = 0;
attr = container_of(attrs, struct kfd_perf_attr, attr);
if (!attr->data) /* invalid data for PMC */
return 0;
else
return sysfs_show_32bit_val(buf, attr->data);
}
#define KFD_PERF_DESC(_name, _data) \
{ \
.attr = __ATTR(_name, 0444, perf_show, NULL), \
.data = _data, \
}
static struct kfd_perf_attr perf_attr_iommu[] = {
KFD_PERF_DESC(max_concurrent, 0),
KFD_PERF_DESC(num_counters, 0),
KFD_PERF_DESC(counter_ids, 0),
};
/****************************************/
static ssize_t node_show(struct kobject *kobj, struct attribute *attr, static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
char *buffer) char *buffer)
{ {
...@@ -646,18 +406,8 @@ static ssize_t node_show(struct kobject *kobj, struct attribute *attr, ...@@ -646,18 +406,8 @@ static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
dev->node_props.cpu_cores_count); dev->node_props.cpu_cores_count);
sysfs_show_32bit_prop(buffer, "simd_count", sysfs_show_32bit_prop(buffer, "simd_count",
dev->node_props.simd_count); dev->node_props.simd_count);
sysfs_show_32bit_prop(buffer, "mem_banks_count",
if (dev->mem_bank_count < dev->node_props.mem_banks_count) { dev->node_props.mem_banks_count);
pr_info_once("mem_banks_count truncated from %d to %d\n",
dev->node_props.mem_banks_count,
dev->mem_bank_count);
sysfs_show_32bit_prop(buffer, "mem_banks_count",
dev->mem_bank_count);
} else {
sysfs_show_32bit_prop(buffer, "mem_banks_count",
dev->node_props.mem_banks_count);
}
sysfs_show_32bit_prop(buffer, "caches_count", sysfs_show_32bit_prop(buffer, "caches_count",
dev->node_props.caches_count); dev->node_props.caches_count);
sysfs_show_32bit_prop(buffer, "io_links_count", sysfs_show_32bit_prop(buffer, "io_links_count",
...@@ -705,9 +455,12 @@ static ssize_t node_show(struct kobject *kobj, struct attribute *attr, ...@@ -705,9 +455,12 @@ static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
HSA_CAP_WATCH_POINTS_TOTALBITS_MASK); HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
} }
if (dev->gpu->device_info->asic_family == CHIP_TONGA)
dev->node_props.capability |=
HSA_CAP_AQL_QUEUE_DOUBLE_MAP;
sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute", sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz( dev->node_props.max_engine_clk_fcompute);
dev->gpu->kgd));
sysfs_show_64bit_prop(buffer, "local_mem_size", sysfs_show_64bit_prop(buffer, "local_mem_size",
(unsigned long long int) 0); (unsigned long long int) 0);
...@@ -729,6 +482,7 @@ static const struct sysfs_ops node_ops = { ...@@ -729,6 +482,7 @@ static const struct sysfs_ops node_ops = {
}; };
static struct kobj_type node_type = { static struct kobj_type node_type = {
.release = kfd_topology_kobj_release,
.sysfs_ops = &node_ops, .sysfs_ops = &node_ops,
}; };
...@@ -744,6 +498,7 @@ static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) ...@@ -744,6 +498,7 @@ static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
struct kfd_iolink_properties *iolink; struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache; struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem; struct kfd_mem_properties *mem;
struct kfd_perf_properties *perf;
if (dev->kobj_iolink) { if (dev->kobj_iolink) {
list_for_each_entry(iolink, &dev->io_link_props, list) list_for_each_entry(iolink, &dev->io_link_props, list)
...@@ -780,6 +535,16 @@ static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev) ...@@ -780,6 +535,16 @@ static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
dev->kobj_mem = NULL; dev->kobj_mem = NULL;
} }
if (dev->kobj_perf) {
list_for_each_entry(perf, &dev->perf_props, list) {
kfree(perf->attr_group);
perf->attr_group = NULL;
}
kobject_del(dev->kobj_perf);
kobject_put(dev->kobj_perf);
dev->kobj_perf = NULL;
}
if (dev->kobj_node) { if (dev->kobj_node) {
sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid); sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
sysfs_remove_file(dev->kobj_node, &dev->attr_name); sysfs_remove_file(dev->kobj_node, &dev->attr_name);
...@@ -796,8 +561,10 @@ static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, ...@@ -796,8 +561,10 @@ static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
struct kfd_iolink_properties *iolink; struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache; struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem; struct kfd_mem_properties *mem;
struct kfd_perf_properties *perf;
int ret; int ret;
uint32_t i; uint32_t i, num_attrs;
struct attribute **attrs;
if (WARN_ON(dev->kobj_node)) if (WARN_ON(dev->kobj_node))
return -EEXIST; return -EEXIST;
...@@ -826,6 +593,10 @@ static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, ...@@ -826,6 +593,10 @@ static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
if (!dev->kobj_iolink) if (!dev->kobj_iolink)
return -ENOMEM; return -ENOMEM;
dev->kobj_perf = kobject_create_and_add("perf", dev->kobj_node);
if (!dev->kobj_perf)
return -ENOMEM;
/* /*
* Creating sysfs files for node properties * Creating sysfs files for node properties
*/ */
...@@ -903,11 +674,38 @@ static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev, ...@@ -903,11 +674,38 @@ static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
if (ret < 0) if (ret < 0)
return ret; return ret;
i++; i++;
} }
/* All hardware blocks have the same number of attributes. */
num_attrs = sizeof(perf_attr_iommu)/sizeof(struct kfd_perf_attr);
list_for_each_entry(perf, &dev->perf_props, list) {
perf->attr_group = kzalloc(sizeof(struct kfd_perf_attr)
* num_attrs + sizeof(struct attribute_group),
GFP_KERNEL);
if (!perf->attr_group)
return -ENOMEM;
attrs = (struct attribute **)(perf->attr_group + 1);
if (!strcmp(perf->block_name, "iommu")) {
/* Information of IOMMU's num_counters and counter_ids is shown
* under /sys/bus/event_source/devices/amd_iommu. We don't
* duplicate here.
*/
perf_attr_iommu[0].data = perf->max_concurrent;
for (i = 0; i < num_attrs; i++)
attrs[i] = &perf_attr_iommu[i].attr.attr;
}
perf->attr_group->name = perf->block_name;
perf->attr_group->attrs = attrs;
ret = sysfs_create_group(dev->kobj_perf, perf->attr_group);
if (ret < 0)
return ret;
}
return 0; return 0;
} }
/* Called with write topology lock acquired */
static int kfd_build_sysfs_node_tree(void) static int kfd_build_sysfs_node_tree(void)
{ {
struct kfd_topology_device *dev; struct kfd_topology_device *dev;
...@@ -924,6 +722,7 @@ static int kfd_build_sysfs_node_tree(void) ...@@ -924,6 +722,7 @@ static int kfd_build_sysfs_node_tree(void)
return 0; return 0;
} }
/* Called with write topology lock acquired */
static void kfd_remove_sysfs_node_tree(void) static void kfd_remove_sysfs_node_tree(void)
{ {
struct kfd_topology_device *dev; struct kfd_topology_device *dev;
...@@ -995,75 +794,246 @@ static void kfd_topology_release_sysfs(void) ...@@ -995,75 +794,246 @@ static void kfd_topology_release_sysfs(void)
} }
} }
/* Called with write topology_lock acquired */
static void kfd_topology_update_device_list(struct list_head *temp_list,
struct list_head *master_list)
{
while (!list_empty(temp_list)) {
list_move_tail(temp_list->next, master_list);
sys_props.num_devices++;
}
}
static void kfd_debug_print_topology(void)
{
struct kfd_topology_device *dev;
down_read(&topology_lock);
dev = list_last_entry(&topology_device_list,
struct kfd_topology_device, list);
if (dev) {
if (dev->node_props.cpu_cores_count &&
dev->node_props.simd_count) {
pr_info("Topology: Add APU node [0x%0x:0x%0x]\n",
dev->node_props.device_id,
dev->node_props.vendor_id);
} else if (dev->node_props.cpu_cores_count)
pr_info("Topology: Add CPU node\n");
else if (dev->node_props.simd_count)
pr_info("Topology: Add dGPU node [0x%0x:0x%0x]\n",
dev->node_props.device_id,
dev->node_props.vendor_id);
}
up_read(&topology_lock);
}
/* Helper function for intializing platform_xx members of
* kfd_system_properties. Uses OEM info from the last CPU/APU node.
*/
static void kfd_update_system_properties(void)
{
struct kfd_topology_device *dev;
down_read(&topology_lock);
dev = list_last_entry(&topology_device_list,
struct kfd_topology_device, list);
if (dev) {
sys_props.platform_id =
(*((uint64_t *)dev->oem_id)) & CRAT_OEMID_64BIT_MASK;
sys_props.platform_oem = *((uint64_t *)dev->oem_table_id);
sys_props.platform_rev = dev->oem_revision;
}
up_read(&topology_lock);
}
static void find_system_memory(const struct dmi_header *dm,
void *private)
{
struct kfd_mem_properties *mem;
u16 mem_width, mem_clock;
struct kfd_topology_device *kdev =
(struct kfd_topology_device *)private;
const u8 *dmi_data = (const u8 *)(dm + 1);
if (dm->type == DMI_ENTRY_MEM_DEVICE && dm->length >= 0x15) {
mem_width = (u16)(*(const u16 *)(dmi_data + 0x6));
mem_clock = (u16)(*(const u16 *)(dmi_data + 0x11));
list_for_each_entry(mem, &kdev->mem_props, list) {
if (mem_width != 0xFFFF && mem_width != 0)
mem->width = mem_width;
if (mem_clock != 0)
mem->mem_clk_max = mem_clock;
}
}
}
/*
* Performance counters information is not part of CRAT but we would like to
* put them in the sysfs under topology directory for Thunk to get the data.
* This function is called before updating the sysfs.
*/
static int kfd_add_perf_to_topology(struct kfd_topology_device *kdev)
{
struct kfd_perf_properties *props;
if (amd_iommu_pc_supported()) {
props = kfd_alloc_struct(props);
if (!props)
return -ENOMEM;
strcpy(props->block_name, "iommu");
props->max_concurrent = amd_iommu_pc_get_max_banks(0) *
amd_iommu_pc_get_max_counters(0); /* assume one iommu */
list_add_tail(&props->list, &kdev->perf_props);
}
return 0;
}
/* kfd_add_non_crat_information - Add information that is not currently
* defined in CRAT but is necessary for KFD topology
* @dev - topology device to which addition info is added
*/
static void kfd_add_non_crat_information(struct kfd_topology_device *kdev)
{
/* Check if CPU only node. */
if (!kdev->gpu) {
/* Add system memory information */
dmi_walk(find_system_memory, kdev);
}
/* TODO: For GPU node, rearrange code from kfd_topology_add_device */
}
/* kfd_is_acpi_crat_invalid - CRAT from ACPI is valid only for AMD APU devices.
* Ignore CRAT for all other devices. AMD APU is identified if both CPU
* and GPU cores are present.
* @device_list - topology device list created by parsing ACPI CRAT table.
* @return - TRUE if invalid, FALSE is valid.
*/
static bool kfd_is_acpi_crat_invalid(struct list_head *device_list)
{
struct kfd_topology_device *dev;
list_for_each_entry(dev, device_list, list) {
if (dev->node_props.cpu_cores_count &&
dev->node_props.simd_count)
return false;
}
pr_info("Ignoring ACPI CRAT on non-APU system\n");
return true;
}
int kfd_topology_init(void) int kfd_topology_init(void)
{ {
void *crat_image = NULL; void *crat_image = NULL;
size_t image_size = 0; size_t image_size = 0;
int ret; int ret;
struct list_head temp_topology_device_list;
/* int cpu_only_node = 0;
* Initialize the head for the topology device list struct kfd_topology_device *kdev;
int proximity_domain;
/* topology_device_list - Master list of all topology devices
* temp_topology_device_list - temporary list created while parsing CRAT
* or VCRAT. Once parsing is complete the contents of list is moved to
* topology_device_list
*/ */
/* Initialize the head for the both the lists */
INIT_LIST_HEAD(&topology_device_list); INIT_LIST_HEAD(&topology_device_list);
INIT_LIST_HEAD(&temp_topology_device_list);
init_rwsem(&topology_lock); init_rwsem(&topology_lock);
topology_crat_parsed = 0;
memset(&sys_props, 0, sizeof(sys_props)); memset(&sys_props, 0, sizeof(sys_props));
/* Proximity domains in ACPI CRAT tables start counting at
* 0. The same should be true for virtual CRAT tables created
* at this stage. GPUs added later in kfd_topology_add_device
* use a counter.
*/
proximity_domain = 0;
/* /*
* Get the CRAT image from the ACPI * Get the CRAT image from the ACPI. If ACPI doesn't have one
* or if ACPI CRAT is invalid create a virtual CRAT.
* NOTE: The current implementation expects all AMD APUs to have
* CRAT. If no CRAT is available, it is assumed to be a CPU
*/ */
ret = kfd_topology_get_crat_acpi(crat_image, &image_size); ret = kfd_create_crat_image_acpi(&crat_image, &image_size);
if (ret == 0 && image_size > 0) { if (!ret) {
pr_info("Found CRAT image with size=%zd\n", image_size); ret = kfd_parse_crat_table(crat_image,
crat_image = kmalloc(image_size, GFP_KERNEL); &temp_topology_device_list,
if (!crat_image) { proximity_domain);
ret = -ENOMEM; if (ret ||
pr_err("No memory for allocating CRAT image\n"); kfd_is_acpi_crat_invalid(&temp_topology_device_list)) {
goto err; kfd_release_topology_device_list(
&temp_topology_device_list);
kfd_destroy_crat_image(crat_image);
crat_image = NULL;
} }
ret = kfd_topology_get_crat_acpi(crat_image, &image_size); }
if (ret == 0) { if (!crat_image) {
down_write(&topology_lock); ret = kfd_create_crat_image_virtual(&crat_image, &image_size,
ret = kfd_parse_crat_table(crat_image); COMPUTE_UNIT_CPU, NULL,
if (ret == 0) proximity_domain);
ret = kfd_topology_update_sysfs(); cpu_only_node = 1;
up_write(&topology_lock); if (ret) {
} else { pr_err("Error creating VCRAT table for CPU\n");
pr_err("Couldn't get CRAT table size from ACPI\n"); return ret;
} }
kfree(crat_image);
} else if (ret == -ENODATA) { ret = kfd_parse_crat_table(crat_image,
ret = 0; &temp_topology_device_list,
} else { proximity_domain);
pr_err("Couldn't get CRAT table size from ACPI\n"); if (ret) {
pr_err("Error parsing VCRAT table for CPU\n");
goto err;
}
}
kdev = list_first_entry(&temp_topology_device_list,
struct kfd_topology_device, list);
kfd_add_perf_to_topology(kdev);
down_write(&topology_lock);
kfd_topology_update_device_list(&temp_topology_device_list,
&topology_device_list);
atomic_set(&topology_crat_proximity_domain, sys_props.num_devices-1);
ret = kfd_topology_update_sysfs();
up_write(&topology_lock);
if (!ret) {
sys_props.generation_count++;
kfd_update_system_properties();
kfd_debug_print_topology();
pr_info("Finished initializing topology\n");
} else
pr_err("Failed to update topology in sysfs ret=%d\n", ret);
/* For nodes with GPU, this information gets added
* when GPU is detected (kfd_topology_add_device).
*/
if (cpu_only_node) {
/* Add additional information to CPU only node created above */
down_write(&topology_lock);
kdev = list_first_entry(&topology_device_list,
struct kfd_topology_device, list);
up_write(&topology_lock);
kfd_add_non_crat_information(kdev);
} }
err: err:
pr_info("Finished initializing topology ret=%d\n", ret); kfd_destroy_crat_image(crat_image);
return ret; return ret;
} }
void kfd_topology_shutdown(void) void kfd_topology_shutdown(void)
{ {
down_write(&topology_lock);
kfd_topology_release_sysfs(); kfd_topology_release_sysfs();
kfd_release_live_view(); kfd_release_live_view();
} up_write(&topology_lock);
static void kfd_debug_print_topology(void)
{
struct kfd_topology_device *dev;
uint32_t i = 0;
pr_info("DEBUG PRINT OF TOPOLOGY:");
list_for_each_entry(dev, &topology_device_list, list) {
pr_info("Node: %d\n", i);
pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
pr_info("\tSIMD count: %d", dev->node_props.simd_count);
i++;
}
} }
static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
...@@ -1072,11 +1042,15 @@ static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) ...@@ -1072,11 +1042,15 @@ static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
uint32_t buf[7]; uint32_t buf[7];
uint64_t local_mem_size; uint64_t local_mem_size;
int i; int i;
struct kfd_local_mem_info local_mem_info;
if (!gpu) if (!gpu)
return 0; return 0;
local_mem_size = gpu->kfd2kgd->get_vmem_size(gpu->kgd); gpu->kfd2kgd->get_local_mem_info(gpu->kgd, &local_mem_info);
local_mem_size = local_mem_info.local_mem_size_private +
local_mem_info.local_mem_size_public;
buf[0] = gpu->pdev->devfn; buf[0] = gpu->pdev->devfn;
buf[1] = gpu->pdev->subsystem_vendor; buf[1] = gpu->pdev->subsystem_vendor;
...@@ -1091,19 +1065,26 @@ static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu) ...@@ -1091,19 +1065,26 @@ static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
return hashout; return hashout;
} }
/* kfd_assign_gpu - Attach @gpu to the correct kfd topology device. If
* the GPU device is not already present in the topology device
* list then return NULL. This means a new topology device has to
* be created for this GPU.
* TODO: Rather than assiging @gpu to first topology device withtout
* gpu attached, it will better to have more stringent check.
*/
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu) static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
{ {
struct kfd_topology_device *dev; struct kfd_topology_device *dev;
struct kfd_topology_device *out_dev = NULL; struct kfd_topology_device *out_dev = NULL;
down_write(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) list_for_each_entry(dev, &topology_device_list, list)
if (!dev->gpu && (dev->node_props.simd_count > 0)) { if (!dev->gpu && (dev->node_props.simd_count > 0)) {
dev->gpu = gpu; dev->gpu = gpu;
out_dev = dev; out_dev = dev;
break; break;
} }
up_write(&topology_lock);
return out_dev; return out_dev;
} }
...@@ -1115,84 +1096,196 @@ static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival) ...@@ -1115,84 +1096,196 @@ static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
*/ */
} }
/* kfd_fill_mem_clk_max_info - Since CRAT doesn't have memory clock info,
* patch this after CRAT parsing.
*/
static void kfd_fill_mem_clk_max_info(struct kfd_topology_device *dev)
{
struct kfd_mem_properties *mem;
struct kfd_local_mem_info local_mem_info;
if (!dev)
return;
/* Currently, amdgpu driver (amdgpu_mc) deals only with GPUs with
* single bank of VRAM local memory.
* for dGPUs - VCRAT reports only one bank of Local Memory
* for APUs - If CRAT from ACPI reports more than one bank, then
* all the banks will report the same mem_clk_max information
*/
dev->gpu->kfd2kgd->get_local_mem_info(dev->gpu->kgd,
&local_mem_info);
list_for_each_entry(mem, &dev->mem_props, list)
mem->mem_clk_max = local_mem_info.mem_clk_max;
}
static void kfd_fill_iolink_non_crat_info(struct kfd_topology_device *dev)
{
struct kfd_iolink_properties *link;
if (!dev || !dev->gpu)
return;
/* GPU only creates direck links so apply flags setting to all */
if (dev->gpu->device_info->asic_family == CHIP_HAWAII)
list_for_each_entry(link, &dev->io_link_props, list)
link->flags = CRAT_IOLINK_FLAGS_ENABLED |
CRAT_IOLINK_FLAGS_NO_ATOMICS_32_BIT |
CRAT_IOLINK_FLAGS_NO_ATOMICS_64_BIT;
}
int kfd_topology_add_device(struct kfd_dev *gpu) int kfd_topology_add_device(struct kfd_dev *gpu)
{ {
uint32_t gpu_id; uint32_t gpu_id;
struct kfd_topology_device *dev; struct kfd_topology_device *dev;
int res; struct kfd_cu_info cu_info;
int res = 0;
struct list_head temp_topology_device_list;
void *crat_image = NULL;
size_t image_size = 0;
int proximity_domain;
INIT_LIST_HEAD(&temp_topology_device_list);
gpu_id = kfd_generate_gpu_id(gpu); gpu_id = kfd_generate_gpu_id(gpu);
pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id); pr_debug("Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
down_write(&topology_lock); proximity_domain = atomic_inc_return(&topology_crat_proximity_domain);
/*
* Try to assign the GPU to existing topology device (generated from /* Check to see if this gpu device exists in the topology_device_list.
* CRAT table * If so, assign the gpu to that device,
* else create a Virtual CRAT for this gpu device and then parse that
* CRAT to create a new topology device. Once created assign the gpu to
* that topology device
*/ */
dev = kfd_assign_gpu(gpu); dev = kfd_assign_gpu(gpu);
if (!dev) { if (!dev) {
pr_info("GPU was not found in the current topology. Extending.\n"); res = kfd_create_crat_image_virtual(&crat_image, &image_size,
kfd_debug_print_topology(); COMPUTE_UNIT_GPU, gpu,
dev = kfd_create_topology_device(); proximity_domain);
if (!dev) { if (res) {
res = -ENOMEM; pr_err("Error creating VCRAT for GPU (ID: 0x%x)\n",
gpu_id);
return res;
}
res = kfd_parse_crat_table(crat_image,
&temp_topology_device_list,
proximity_domain);
if (res) {
pr_err("Error parsing VCRAT for GPU (ID: 0x%x)\n",
gpu_id);
goto err; goto err;
} }
dev->gpu = gpu;
/* down_write(&topology_lock);
* TODO: Make a call to retrieve topology information from the kfd_topology_update_device_list(&temp_topology_device_list,
* GPU vBIOS &topology_device_list);
*/
/* Update the SYSFS tree, since we added another topology /* Update the SYSFS tree, since we added another topology
* device * device
*/ */
if (kfd_topology_update_sysfs() < 0) res = kfd_topology_update_sysfs();
kfd_topology_release_sysfs(); up_write(&topology_lock);
if (!res)
sys_props.generation_count++;
else
pr_err("Failed to update GPU (ID: 0x%x) to sysfs topology. res=%d\n",
gpu_id, res);
dev = kfd_assign_gpu(gpu);
if (WARN_ON(!dev)) {
res = -ENODEV;
goto err;
}
} }
dev->gpu_id = gpu_id; dev->gpu_id = gpu_id;
gpu->id = gpu_id; gpu->id = gpu_id;
/* TODO: Move the following lines to function
* kfd_add_non_crat_information
*/
/* Fill-in additional information that is not available in CRAT but
* needed for the topology
*/
dev->gpu->kfd2kgd->get_cu_info(dev->gpu->kgd, &cu_info);
dev->node_props.simd_arrays_per_engine =
cu_info.num_shader_arrays_per_engine;
dev->node_props.vendor_id = gpu->pdev->vendor; dev->node_props.vendor_id = gpu->pdev->vendor;
dev->node_props.device_id = gpu->pdev->device; dev->node_props.device_id = gpu->pdev->device;
dev->node_props.location_id = (gpu->pdev->bus->number << 24) + dev->node_props.location_id = PCI_DEVID(gpu->pdev->bus->number,
(gpu->pdev->devfn & 0xffffff); gpu->pdev->devfn);
/* dev->node_props.max_engine_clk_fcompute =
* TODO: Retrieve max engine clock values from KGD dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(dev->gpu->kgd);
*/ dev->node_props.max_engine_clk_ccompute =
cpufreq_quick_get_max(0) / 1000;
kfd_fill_mem_clk_max_info(dev);
kfd_fill_iolink_non_crat_info(dev);
switch (dev->gpu->device_info->asic_family) {
case CHIP_KAVERI:
case CHIP_HAWAII:
case CHIP_TONGA:
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_PRE_1_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
break;
case CHIP_CARRIZO:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
pr_debug("Adding doorbell packet type capability\n");
dev->node_props.capability |= ((HSA_CAP_DOORBELL_TYPE_1_0 <<
HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT) &
HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK);
break;
default:
WARN(1, "Unexpected ASIC family %u",
dev->gpu->device_info->asic_family);
}
/* Fix errors in CZ CRAT.
* simd_count: Carrizo CRAT reports wrong simd_count, probably
* because it doesn't consider masked out CUs
* max_waves_per_simd: Carrizo reports wrong max_waves_per_simd
* capability flag: Carrizo CRAT doesn't report IOMMU flags
*/
if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) { if (dev->gpu->device_info->asic_family == CHIP_CARRIZO) {
dev->node_props.capability |= HSA_CAP_DOORBELL_PACKET_TYPE; dev->node_props.simd_count =
pr_info("Adding doorbell packet type capability\n"); cu_info.simd_per_cu * cu_info.cu_active_number;
dev->node_props.max_waves_per_simd = 10;
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
} }
res = 0; kfd_debug_print_topology();
err:
up_write(&topology_lock);
if (res == 0) if (!res)
kfd_notify_gpu_change(gpu_id, 1); kfd_notify_gpu_change(gpu_id, 1);
err:
kfd_destroy_crat_image(crat_image);
return res; return res;
} }
int kfd_topology_remove_device(struct kfd_dev *gpu) int kfd_topology_remove_device(struct kfd_dev *gpu)
{ {
struct kfd_topology_device *dev; struct kfd_topology_device *dev, *tmp;
uint32_t gpu_id; uint32_t gpu_id;
int res = -ENODEV; int res = -ENODEV;
down_write(&topology_lock); down_write(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) list_for_each_entry_safe(dev, tmp, &topology_device_list, list)
if (dev->gpu == gpu) { if (dev->gpu == gpu) {
gpu_id = dev->gpu_id; gpu_id = dev->gpu_id;
kfd_remove_sysfs_node_entry(dev); kfd_remove_sysfs_node_entry(dev);
kfd_release_topology_device(dev); kfd_release_topology_device(dev);
sys_props.num_devices--;
res = 0; res = 0;
if (kfd_topology_update_sysfs() < 0) if (kfd_topology_update_sysfs() < 0)
kfd_topology_release_sysfs(); kfd_topology_release_sysfs();
...@@ -1201,28 +1294,32 @@ int kfd_topology_remove_device(struct kfd_dev *gpu) ...@@ -1201,28 +1294,32 @@ int kfd_topology_remove_device(struct kfd_dev *gpu)
up_write(&topology_lock); up_write(&topology_lock);
if (res == 0) if (!res)
kfd_notify_gpu_change(gpu_id, 0); kfd_notify_gpu_change(gpu_id, 0);
return res; return res;
} }
/* /* kfd_topology_enum_kfd_devices - Enumerate through all devices in KFD
* When idx is out of bounds, the function will return NULL * topology. If GPU device is found @idx, then valid kfd_dev pointer is
* returned through @kdev
* Return - 0: On success (@kdev will be NULL for non GPU nodes)
* -1: If end of list
*/ */
struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx) int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev)
{ {
struct kfd_topology_device *top_dev; struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
uint8_t device_idx = 0; uint8_t device_idx = 0;
*kdev = NULL;
down_read(&topology_lock); down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list) { list_for_each_entry(top_dev, &topology_device_list, list) {
if (device_idx == idx) { if (device_idx == idx) {
device = top_dev->gpu; *kdev = top_dev->gpu;
break; up_read(&topology_lock);
return 0;
} }
device_idx++; device_idx++;
...@@ -1230,6 +1327,88 @@ struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx) ...@@ -1230,6 +1327,88 @@ struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
up_read(&topology_lock); up_read(&topology_lock);
return device; return -1;
}
static int kfd_cpumask_to_apic_id(const struct cpumask *cpumask)
{
const struct cpuinfo_x86 *cpuinfo;
int first_cpu_of_numa_node;
if (!cpumask || cpumask == cpu_none_mask)
return -1;
first_cpu_of_numa_node = cpumask_first(cpumask);
if (first_cpu_of_numa_node >= nr_cpu_ids)
return -1;
cpuinfo = &cpu_data(first_cpu_of_numa_node);
return cpuinfo->apicid;
} }
/* kfd_numa_node_to_apic_id - Returns the APIC ID of the first logical processor
* of the given NUMA node (numa_node_id)
* Return -1 on failure
*/
int kfd_numa_node_to_apic_id(int numa_node_id)
{
if (numa_node_id == -1) {
pr_warn("Invalid NUMA Node. Use online CPU mask\n");
return kfd_cpumask_to_apic_id(cpu_online_mask);
}
return kfd_cpumask_to_apic_id(cpumask_of_node(numa_node_id));
}
#if defined(CONFIG_DEBUG_FS)
int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data)
{
struct kfd_topology_device *dev;
unsigned int i = 0;
int r = 0;
down_read(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
if (!dev->gpu) {
i++;
continue;
}
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
r = dqm_debugfs_hqds(m, dev->gpu->dqm);
if (r)
break;
}
up_read(&topology_lock);
return r;
}
int kfd_debugfs_rls_by_device(struct seq_file *m, void *data)
{
struct kfd_topology_device *dev;
unsigned int i = 0;
int r = 0;
down_read(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list) {
if (!dev->gpu) {
i++;
continue;
}
seq_printf(m, "Node %u, gpu_id %x:\n", i++, dev->gpu->id);
r = pm_debugfs_runlist(m, &dev->gpu->dqm->packets);
if (r)
break;
}
up_read(&topology_lock);
return r;
}
#endif
...@@ -39,8 +39,13 @@ ...@@ -39,8 +39,13 @@
#define HSA_CAP_WATCH_POINTS_SUPPORTED 0x00000080 #define HSA_CAP_WATCH_POINTS_SUPPORTED 0x00000080
#define HSA_CAP_WATCH_POINTS_TOTALBITS_MASK 0x00000f00 #define HSA_CAP_WATCH_POINTS_TOTALBITS_MASK 0x00000f00
#define HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT 8 #define HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT 8
#define HSA_CAP_RESERVED 0xfffff000 #define HSA_CAP_DOORBELL_TYPE_TOTALBITS_MASK 0x00003000
#define HSA_CAP_DOORBELL_PACKET_TYPE 0x00001000 #define HSA_CAP_DOORBELL_TYPE_TOTALBITS_SHIFT 12
#define HSA_CAP_RESERVED 0xffffc000
#define HSA_CAP_DOORBELL_TYPE_PRE_1_0 0x0
#define HSA_CAP_DOORBELL_TYPE_1_0 0x1
#define HSA_CAP_AQL_QUEUE_DOUBLE_MAP 0x00004000
struct kfd_node_properties { struct kfd_node_properties {
uint32_t cpu_cores_count; uint32_t cpu_cores_count;
...@@ -91,8 +96,6 @@ struct kfd_mem_properties { ...@@ -91,8 +96,6 @@ struct kfd_mem_properties {
struct attribute attr; struct attribute attr;
}; };
#define KFD_TOPOLOGY_CPU_SIBLINGS 256
#define HSA_CACHE_TYPE_DATA 0x00000001 #define HSA_CACHE_TYPE_DATA 0x00000001
#define HSA_CACHE_TYPE_INSTRUCTION 0x00000002 #define HSA_CACHE_TYPE_INSTRUCTION 0x00000002
#define HSA_CACHE_TYPE_CPU 0x00000004 #define HSA_CACHE_TYPE_CPU 0x00000004
...@@ -109,7 +112,7 @@ struct kfd_cache_properties { ...@@ -109,7 +112,7 @@ struct kfd_cache_properties {
uint32_t cache_assoc; uint32_t cache_assoc;
uint32_t cache_latency; uint32_t cache_latency;
uint32_t cache_type; uint32_t cache_type;
uint8_t sibling_map[KFD_TOPOLOGY_CPU_SIBLINGS]; uint8_t sibling_map[CRAT_SIBLINGMAP_SIZE];
struct kobject *kobj; struct kobject *kobj;
struct attribute attr; struct attribute attr;
}; };
...@@ -132,24 +135,36 @@ struct kfd_iolink_properties { ...@@ -132,24 +135,36 @@ struct kfd_iolink_properties {
struct attribute attr; struct attribute attr;
}; };
struct kfd_perf_properties {
struct list_head list;
char block_name[16];
uint32_t max_concurrent;
struct attribute_group *attr_group;
};
struct kfd_topology_device { struct kfd_topology_device {
struct list_head list; struct list_head list;
uint32_t gpu_id; uint32_t gpu_id;
uint32_t proximity_domain;
struct kfd_node_properties node_props; struct kfd_node_properties node_props;
uint32_t mem_bank_count;
struct list_head mem_props; struct list_head mem_props;
uint32_t cache_count; uint32_t cache_count;
struct list_head cache_props; struct list_head cache_props;
uint32_t io_link_count; uint32_t io_link_count;
struct list_head io_link_props; struct list_head io_link_props;
struct list_head perf_props;
struct kfd_dev *gpu; struct kfd_dev *gpu;
struct kobject *kobj_node; struct kobject *kobj_node;
struct kobject *kobj_mem; struct kobject *kobj_mem;
struct kobject *kobj_cache; struct kobject *kobj_cache;
struct kobject *kobj_iolink; struct kobject *kobj_iolink;
struct kobject *kobj_perf;
struct attribute attr_gpuid; struct attribute attr_gpuid;
struct attribute attr_name; struct attribute attr_name;
struct attribute attr_props; struct attribute attr_props;
uint8_t oem_id[CRAT_OEMID_LENGTH];
uint8_t oem_table_id[CRAT_OEMTABLEID_LENGTH];
uint32_t oem_revision;
}; };
struct kfd_system_properties { struct kfd_system_properties {
...@@ -164,6 +179,12 @@ struct kfd_system_properties { ...@@ -164,6 +179,12 @@ struct kfd_system_properties {
struct attribute attr_props; struct attribute attr_props;
}; };
struct kfd_topology_device *kfd_create_topology_device(
struct list_head *device_list);
void kfd_release_topology_device_list(struct list_head *device_list);
extern bool amd_iommu_pc_supported(void);
extern u8 amd_iommu_pc_get_max_banks(u16 devid);
extern u8 amd_iommu_pc_get_max_counters(u16 devid);
#endif /* __KFD_TOPOLOGY_H__ */ #endif /* __KFD_TOPOLOGY_H__ */
...@@ -46,6 +46,28 @@ enum kfd_preempt_type { ...@@ -46,6 +46,28 @@ enum kfd_preempt_type {
KFD_PREEMPT_TYPE_WAVEFRONT_RESET, KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
}; };
struct kfd_cu_info {
uint32_t num_shader_engines;
uint32_t num_shader_arrays_per_engine;
uint32_t num_cu_per_sh;
uint32_t cu_active_number;
uint32_t cu_ao_mask;
uint32_t simd_per_cu;
uint32_t max_waves_per_simd;
uint32_t wave_front_size;
uint32_t max_scratch_slots_per_cu;
uint32_t lds_size;
uint32_t cu_bitmap[4][4];
};
/* For getting GPU local memory information from KGD */
struct kfd_local_mem_info {
uint64_t local_mem_size_private;
uint64_t local_mem_size_public;
uint32_t vram_width;
uint32_t mem_clk_max;
};
enum kgd_memory_pool { enum kgd_memory_pool {
KGD_POOL_SYSTEM_CACHEABLE = 1, KGD_POOL_SYSTEM_CACHEABLE = 1,
KGD_POOL_SYSTEM_WRITECOMBINE = 2, KGD_POOL_SYSTEM_WRITECOMBINE = 2,
...@@ -106,7 +128,7 @@ struct tile_config { ...@@ -106,7 +128,7 @@ struct tile_config {
* *
* @free_gtt_mem: Frees a buffer that was allocated on the gart aperture * @free_gtt_mem: Frees a buffer that was allocated on the gart aperture
* *
* @get_vmem_size: Retrieves (physical) size of VRAM * @get_local_mem_info: Retrieves information about GPU local memory
* *
* @get_gpu_clock_counter: Retrieves GPU clock counter * @get_gpu_clock_counter: Retrieves GPU clock counter
* *
...@@ -131,6 +153,12 @@ struct tile_config { ...@@ -131,6 +153,12 @@ struct tile_config {
* @hqd_sdma_load: Loads the SDMA mqd structure to a H/W SDMA hqd slot. * @hqd_sdma_load: Loads the SDMA mqd structure to a H/W SDMA hqd slot.
* used only for no HWS mode. * used only for no HWS mode.
* *
* @hqd_dump: Dumps CPC HQD registers to an array of address-value pairs.
* Array is allocated with kmalloc, needs to be freed with kfree by caller.
*
* @hqd_sdma_dump: Dumps SDMA HQD registers to an array of address-value pairs.
* Array is allocated with kmalloc, needs to be freed with kfree by caller.
*
* @hqd_is_occupies: Checks if a hqd slot is occupied. * @hqd_is_occupies: Checks if a hqd slot is occupied.
* *
* @hqd_destroy: Destructs and preempts the queue assigned to that hqd slot. * @hqd_destroy: Destructs and preempts the queue assigned to that hqd slot.
...@@ -147,6 +175,10 @@ struct tile_config { ...@@ -147,6 +175,10 @@ struct tile_config {
* *
* @get_tile_config: Returns GPU-specific tiling mode information * @get_tile_config: Returns GPU-specific tiling mode information
* *
* @get_cu_info: Retrieves activated cu info
*
* @get_vram_usage: Returns current VRAM usage
*
* This structure contains function pointers to services that the kgd driver * This structure contains function pointers to services that the kgd driver
* provides to amdkfd driver. * provides to amdkfd driver.
* *
...@@ -158,7 +190,8 @@ struct kfd2kgd_calls { ...@@ -158,7 +190,8 @@ struct kfd2kgd_calls {
void (*free_gtt_mem)(struct kgd_dev *kgd, void *mem_obj); void (*free_gtt_mem)(struct kgd_dev *kgd, void *mem_obj);
uint64_t (*get_vmem_size)(struct kgd_dev *kgd); void (*get_local_mem_info)(struct kgd_dev *kgd,
struct kfd_local_mem_info *mem_info);
uint64_t (*get_gpu_clock_counter)(struct kgd_dev *kgd); uint64_t (*get_gpu_clock_counter)(struct kgd_dev *kgd);
uint32_t (*get_max_engine_clock_in_mhz)(struct kgd_dev *kgd); uint32_t (*get_max_engine_clock_in_mhz)(struct kgd_dev *kgd);
...@@ -184,7 +217,16 @@ struct kfd2kgd_calls { ...@@ -184,7 +217,16 @@ struct kfd2kgd_calls {
uint32_t wptr_shift, uint32_t wptr_mask, uint32_t wptr_shift, uint32_t wptr_mask,
struct mm_struct *mm); struct mm_struct *mm);
int (*hqd_sdma_load)(struct kgd_dev *kgd, void *mqd); int (*hqd_sdma_load)(struct kgd_dev *kgd, void *mqd,
uint32_t __user *wptr, struct mm_struct *mm);
int (*hqd_dump)(struct kgd_dev *kgd,
uint32_t pipe_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
int (*hqd_sdma_dump)(struct kgd_dev *kgd,
uint32_t engine_id, uint32_t queue_id,
uint32_t (**dump)[2], uint32_t *n_regs);
bool (*hqd_is_occupied)(struct kgd_dev *kgd, uint64_t queue_address, bool (*hqd_is_occupied)(struct kgd_dev *kgd, uint64_t queue_address,
uint32_t pipe_id, uint32_t queue_id); uint32_t pipe_id, uint32_t queue_id);
...@@ -224,6 +266,10 @@ struct kfd2kgd_calls { ...@@ -224,6 +266,10 @@ struct kfd2kgd_calls {
void (*set_scratch_backing_va)(struct kgd_dev *kgd, void (*set_scratch_backing_va)(struct kgd_dev *kgd,
uint64_t va, uint32_t vmid); uint64_t va, uint32_t vmid);
int (*get_tile_config)(struct kgd_dev *kgd, struct tile_config *config); int (*get_tile_config)(struct kgd_dev *kgd, struct tile_config *config);
void (*get_cu_info)(struct kgd_dev *kgd,
struct kfd_cu_info *cu_info);
uint64_t (*get_vram_usage)(struct kgd_dev *kgd);
}; };
/** /**
......
...@@ -153,6 +153,8 @@ struct vi_sdma_mqd { ...@@ -153,6 +153,8 @@ struct vi_sdma_mqd {
uint32_t reserved_125; uint32_t reserved_125;
uint32_t reserved_126; uint32_t reserved_126;
uint32_t reserved_127; uint32_t reserved_127;
uint32_t sdma_engine_id;
uint32_t sdma_queue_id;
}; };
struct vi_mqd { struct vi_mqd {
......
...@@ -58,7 +58,8 @@ struct kfd_ioctl_create_queue_args { ...@@ -58,7 +58,8 @@ struct kfd_ioctl_create_queue_args {
__u64 eop_buffer_address; /* to KFD */ __u64 eop_buffer_address; /* to KFD */
__u64 eop_buffer_size; /* to KFD */ __u64 eop_buffer_size; /* to KFD */
__u64 ctx_save_restore_address; /* to KFD */ __u64 ctx_save_restore_address; /* to KFD */
__u64 ctx_save_restore_size; /* to KFD */ __u32 ctx_save_restore_size; /* to KFD */
__u32 ctl_stack_size; /* to KFD */
}; };
struct kfd_ioctl_destroy_queue_args { struct kfd_ioctl_destroy_queue_args {
...@@ -261,6 +262,13 @@ struct kfd_ioctl_get_tile_config_args { ...@@ -261,6 +262,13 @@ struct kfd_ioctl_get_tile_config_args {
*/ */
}; };
struct kfd_ioctl_set_trap_handler_args {
uint64_t tba_addr; /* to KFD */
uint64_t tma_addr; /* to KFD */
uint32_t gpu_id; /* to KFD */
uint32_t pad;
};
#define AMDKFD_IOCTL_BASE 'K' #define AMDKFD_IOCTL_BASE 'K'
#define AMDKFD_IO(nr) _IO(AMDKFD_IOCTL_BASE, nr) #define AMDKFD_IO(nr) _IO(AMDKFD_IOCTL_BASE, nr)
#define AMDKFD_IOR(nr, type) _IOR(AMDKFD_IOCTL_BASE, nr, type) #define AMDKFD_IOR(nr, type) _IOR(AMDKFD_IOCTL_BASE, nr, type)
...@@ -321,7 +329,10 @@ struct kfd_ioctl_get_tile_config_args { ...@@ -321,7 +329,10 @@ struct kfd_ioctl_get_tile_config_args {
#define AMDKFD_IOC_GET_TILE_CONFIG \ #define AMDKFD_IOC_GET_TILE_CONFIG \
AMDKFD_IOWR(0x12, struct kfd_ioctl_get_tile_config_args) AMDKFD_IOWR(0x12, struct kfd_ioctl_get_tile_config_args)
#define AMDKFD_IOC_SET_TRAP_HANDLER \
AMDKFD_IOW(0x13, struct kfd_ioctl_set_trap_handler_args)
#define AMDKFD_COMMAND_START 0x01 #define AMDKFD_COMMAND_START 0x01
#define AMDKFD_COMMAND_END 0x13 #define AMDKFD_COMMAND_END 0x14
#endif #endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment