Commit aeca4e2c authored by Micah Morton's avatar Micah Morton Committed by James Morris

LSM: add SafeSetID module that gates setid calls

SafeSetID gates the setid family of syscalls to restrict UID/GID
transitions from a given UID/GID to only those approved by a
system-wide whitelist. These restrictions also prohibit the given
UIDs/GIDs from obtaining auxiliary privileges associated with
CAP_SET{U/G}ID, such as allowing a user to set up user namespace UID
mappings. For now, only gating the set*uid family of syscalls is
supported, with support for set*gid coming in a future patch set.
Signed-off-by: default avatarMicah Morton <mortonm@chromium.org>
Acked-by: default avatarKees Cook <keescook@chromium.org>
Signed-off-by: default avatarJames Morris <james.morris@microsoft.com>
parent 40852275
=========
SafeSetID
=========
SafeSetID is an LSM module that gates the setid family of syscalls to restrict
UID/GID transitions from a given UID/GID to only those approved by a
system-wide whitelist. These restrictions also prohibit the given UIDs/GIDs
from obtaining auxiliary privileges associated with CAP_SET{U/G}ID, such as
allowing a user to set up user namespace UID mappings.
Background
==========
In absence of file capabilities, processes spawned on a Linux system that need
to switch to a different user must be spawned with CAP_SETUID privileges.
CAP_SETUID is granted to programs running as root or those running as a non-root
user that have been explicitly given the CAP_SETUID runtime capability. It is
often preferable to use Linux runtime capabilities rather than file
capabilities, since using file capabilities to run a program with elevated
privileges opens up possible security holes since any user with access to the
file can exec() that program to gain the elevated privileges.
While it is possible to implement a tree of processes by giving full
CAP_SET{U/G}ID capabilities, this is often at odds with the goals of running a
tree of processes under non-root user(s) in the first place. Specifically,
since CAP_SETUID allows changing to any user on the system, including the root
user, it is an overpowered capability for what is needed in this scenario,
especially since programs often only call setuid() to drop privileges to a
lesser-privileged user -- not elevate privileges. Unfortunately, there is no
generally feasible way in Linux to restrict the potential UIDs that a user can
switch to through setuid() beyond allowing a switch to any user on the system.
This SafeSetID LSM seeks to provide a solution for restricting setid
capabilities in such a way.
The main use case for this LSM is to allow a non-root program to transition to
other untrusted uids without full blown CAP_SETUID capabilities. The non-root
program would still need CAP_SETUID to do any kind of transition, but the
additional restrictions imposed by this LSM would mean it is a "safer" version
of CAP_SETUID since the non-root program cannot take advantage of CAP_SETUID to
do any unapproved actions (e.g. setuid to uid 0 or create/enter new user
namespace). The higher level goal is to allow for uid-based sandboxing of system
services without having to give out CAP_SETUID all over the place just so that
non-root programs can drop to even-lesser-privileged uids. This is especially
relevant when one non-root daemon on the system should be allowed to spawn other
processes as different uids, but its undesirable to give the daemon a
basically-root-equivalent CAP_SETUID.
Other Approaches Considered
===========================
Solve this problem in userspace
-------------------------------
For candidate applications that would like to have restricted setid capabilities
as implemented in this LSM, an alternative option would be to simply take away
setid capabilities from the application completely and refactor the process
spawning semantics in the application (e.g. by using a privileged helper program
to do process spawning and UID/GID transitions). Unfortunately, there are a
number of semantics around process spawning that would be affected by this, such
as fork() calls where the program doesn???t immediately call exec() after the
fork(), parent processes specifying custom environment variables or command line
args for spawned child processes, or inheritance of file handles across a
fork()/exec(). Because of this, as solution that uses a privileged helper in
userspace would likely be less appealing to incorporate into existing projects
that rely on certain process-spawning semantics in Linux.
Use user namespaces
-------------------
Another possible approach would be to run a given process tree in its own user
namespace and give programs in the tree setid capabilities. In this way,
programs in the tree could change to any desired UID/GID in the context of their
own user namespace, and only approved UIDs/GIDs could be mapped back to the
initial system user namespace, affectively preventing privilege escalation.
Unfortunately, it is not generally feasible to use user namespaces in isolation,
without pairing them with other namespace types, which is not always an option.
Linux checks for capabilities based off of the user namespace that ???owns??? some
entity. For example, Linux has the notion that network namespaces are owned by
the user namespace in which they were created. A consequence of this is that
capability checks for access to a given network namespace are done by checking
whether a task has the given capability in the context of the user namespace
that owns the network namespace -- not necessarily the user namespace under
which the given task runs. Therefore spawning a process in a new user namespace
effectively prevents it from accessing the network namespace owned by the
initial namespace. This is a deal-breaker for any application that expects to
retain the CAP_NET_ADMIN capability for the purpose of adjusting network
configurations. Using user namespaces in isolation causes problems regarding
other system interactions, including use of pid namespaces and device creation.
Use an existing LSM
-------------------
None of the other in-tree LSMs have the capability to gate setid transitions, or
even employ the security_task_fix_setuid hook at all. SELinux says of that hook:
"Since setuid only affects the current process, and since the SELinux controls
are not based on the Linux identity attributes, SELinux does not need to control
this operation."
Directions for use
==================
This LSM hooks the setid syscalls to make sure transitions are allowed if an
applicable restriction policy is in place. Policies are configured through
securityfs by writing to the safesetid/add_whitelist_policy and
safesetid/flush_whitelist_policies files at the location where securityfs is
mounted. The format for adding a policy is '<UID>:<UID>', using literal
numbers, such as '123:456'. To flush the policies, any write to the file is
sufficient. Again, configuring a policy for a UID will prevent that UID from
obtaining auxiliary setid privileges, such as allowing a user to set up user
namespace UID mappings.
......@@ -46,3 +46,4 @@ subdirectories.
Smack
tomoyo
Yama
SafeSetID
......@@ -236,12 +236,13 @@ source "security/tomoyo/Kconfig"
source "security/apparmor/Kconfig"
source "security/loadpin/Kconfig"
source "security/yama/Kconfig"
source "security/safesetid/Kconfig"
source "security/integrity/Kconfig"
config LSM
string "Ordered list of enabled LSMs"
default "yama,loadpin,integrity,selinux,smack,tomoyo,apparmor"
default "yama,loadpin,safesetid,integrity,selinux,smack,tomoyo,apparmor"
help
A comma-separated list of LSMs, in initialization order.
Any LSMs left off this list will be ignored. This can be
......
......@@ -10,6 +10,7 @@ subdir-$(CONFIG_SECURITY_TOMOYO) += tomoyo
subdir-$(CONFIG_SECURITY_APPARMOR) += apparmor
subdir-$(CONFIG_SECURITY_YAMA) += yama
subdir-$(CONFIG_SECURITY_LOADPIN) += loadpin
subdir-$(CONFIG_SECURITY_SAFESETID) += safesetid
# always enable default capabilities
obj-y += commoncap.o
......@@ -25,6 +26,7 @@ obj-$(CONFIG_SECURITY_TOMOYO) += tomoyo/
obj-$(CONFIG_SECURITY_APPARMOR) += apparmor/
obj-$(CONFIG_SECURITY_YAMA) += yama/
obj-$(CONFIG_SECURITY_LOADPIN) += loadpin/
obj-$(CONFIG_SECURITY_SAFESETID) += safesetid/
obj-$(CONFIG_CGROUP_DEVICE) += device_cgroup.o
# Object integrity file lists
......
config SECURITY_SAFESETID
bool "Gate setid transitions to limit CAP_SET{U/G}ID capabilities"
default n
help
SafeSetID is an LSM module that gates the setid family of syscalls to
restrict UID/GID transitions from a given UID/GID to only those
approved by a system-wide whitelist. These restrictions also prohibit
the given UIDs/GIDs from obtaining auxiliary privileges associated
with CAP_SET{U/G}ID, such as allowing a user to set up user namespace
UID mappings.
If you are unsure how to answer this question, answer N.
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for the safesetid LSM.
#
obj-$(CONFIG_SECURITY_SAFESETID) := safesetid.o
safesetid-y := lsm.o securityfs.o
// SPDX-License-Identifier: GPL-2.0
/*
* SafeSetID Linux Security Module
*
* Author: Micah Morton <mortonm@chromium.org>
*
* Copyright (C) 2018 The Chromium OS Authors.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
*/
#define pr_fmt(fmt) "SafeSetID: " fmt
#include <asm/syscall.h>
#include <linux/hashtable.h>
#include <linux/lsm_hooks.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/sched/task_stack.h>
#include <linux/security.h>
/* Flag indicating whether initialization completed */
int safesetid_initialized;
#define NUM_BITS 8 /* 128 buckets in hash table */
static DEFINE_HASHTABLE(safesetid_whitelist_hashtable, NUM_BITS);
/*
* Hash table entry to store safesetid policy signifying that 'parent' user
* can setid to 'child' user.
*/
struct entry {
struct hlist_node next;
struct hlist_node dlist; /* for deletion cleanup */
uint64_t parent_kuid;
uint64_t child_kuid;
};
static DEFINE_SPINLOCK(safesetid_whitelist_hashtable_spinlock);
static bool check_setuid_policy_hashtable_key(kuid_t parent)
{
struct entry *entry;
rcu_read_lock();
hash_for_each_possible_rcu(safesetid_whitelist_hashtable,
entry, next, __kuid_val(parent)) {
if (entry->parent_kuid == __kuid_val(parent)) {
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
return false;
}
static bool check_setuid_policy_hashtable_key_value(kuid_t parent,
kuid_t child)
{
struct entry *entry;
rcu_read_lock();
hash_for_each_possible_rcu(safesetid_whitelist_hashtable,
entry, next, __kuid_val(parent)) {
if (entry->parent_kuid == __kuid_val(parent) &&
entry->child_kuid == __kuid_val(child)) {
rcu_read_unlock();
return true;
}
}
rcu_read_unlock();
return false;
}
static int safesetid_security_capable(const struct cred *cred,
struct user_namespace *ns,
int cap,
unsigned int opts)
{
if (cap == CAP_SETUID &&
check_setuid_policy_hashtable_key(cred->uid)) {
if (!(opts & CAP_OPT_INSETID)) {
/*
* Deny if we're not in a set*uid() syscall to avoid
* giving powers gated by CAP_SETUID that are related
* to functionality other than calling set*uid() (e.g.
* allowing user to set up userns uid mappings).
*/
pr_warn("Operation requires CAP_SETUID, which is not available to UID %u for operations besides approved set*uid transitions",
__kuid_val(cred->uid));
return -1;
}
}
return 0;
}
static int check_uid_transition(kuid_t parent, kuid_t child)
{
if (check_setuid_policy_hashtable_key_value(parent, child))
return 0;
pr_warn("UID transition (%d -> %d) blocked",
__kuid_val(parent),
__kuid_val(child));
/*
* Kill this process to avoid potential security vulnerabilities
* that could arise from a missing whitelist entry preventing a
* privileged process from dropping to a lesser-privileged one.
*/
force_sig(SIGKILL, current);
return -EACCES;
}
/*
* Check whether there is either an exception for user under old cred struct to
* set*uid to user under new cred struct, or the UID transition is allowed (by
* Linux set*uid rules) even without CAP_SETUID.
*/
static int safesetid_task_fix_setuid(struct cred *new,
const struct cred *old,
int flags)
{
/* Do nothing if there are no setuid restrictions for this UID. */
if (!check_setuid_policy_hashtable_key(old->uid))
return 0;
switch (flags) {
case LSM_SETID_RE:
/*
* Users for which setuid restrictions exist can only set the
* real UID to the real UID or the effective UID, unless an
* explicit whitelist policy allows the transition.
*/
if (!uid_eq(old->uid, new->uid) &&
!uid_eq(old->euid, new->uid)) {
return check_uid_transition(old->uid, new->uid);
}
/*
* Users for which setuid restrictions exist can only set the
* effective UID to the real UID, the effective UID, or the
* saved set-UID, unless an explicit whitelist policy allows
* the transition.
*/
if (!uid_eq(old->uid, new->euid) &&
!uid_eq(old->euid, new->euid) &&
!uid_eq(old->suid, new->euid)) {
return check_uid_transition(old->euid, new->euid);
}
break;
case LSM_SETID_ID:
/*
* Users for which setuid restrictions exist cannot change the
* real UID or saved set-UID unless an explicit whitelist
* policy allows the transition.
*/
if (!uid_eq(old->uid, new->uid))
return check_uid_transition(old->uid, new->uid);
if (!uid_eq(old->suid, new->suid))
return check_uid_transition(old->suid, new->suid);
break;
case LSM_SETID_RES:
/*
* Users for which setuid restrictions exist cannot change the
* real UID, effective UID, or saved set-UID to anything but
* one of: the current real UID, the current effective UID or
* the current saved set-user-ID unless an explicit whitelist
* policy allows the transition.
*/
if (!uid_eq(new->uid, old->uid) &&
!uid_eq(new->uid, old->euid) &&
!uid_eq(new->uid, old->suid)) {
return check_uid_transition(old->uid, new->uid);
}
if (!uid_eq(new->euid, old->uid) &&
!uid_eq(new->euid, old->euid) &&
!uid_eq(new->euid, old->suid)) {
return check_uid_transition(old->euid, new->euid);
}
if (!uid_eq(new->suid, old->uid) &&
!uid_eq(new->suid, old->euid) &&
!uid_eq(new->suid, old->suid)) {
return check_uid_transition(old->suid, new->suid);
}
break;
case LSM_SETID_FS:
/*
* Users for which setuid restrictions exist cannot change the
* filesystem UID to anything but one of: the current real UID,
* the current effective UID or the current saved set-UID
* unless an explicit whitelist policy allows the transition.
*/
if (!uid_eq(new->fsuid, old->uid) &&
!uid_eq(new->fsuid, old->euid) &&
!uid_eq(new->fsuid, old->suid) &&
!uid_eq(new->fsuid, old->fsuid)) {
return check_uid_transition(old->fsuid, new->fsuid);
}
break;
default:
pr_warn("Unknown setid state %d\n", flags);
force_sig(SIGKILL, current);
return -EINVAL;
}
return 0;
}
int add_safesetid_whitelist_entry(kuid_t parent, kuid_t child)
{
struct entry *new;
/* Return if entry already exists */
if (check_setuid_policy_hashtable_key_value(parent, child))
return 0;
new = kzalloc(sizeof(struct entry), GFP_KERNEL);
if (!new)
return -ENOMEM;
new->parent_kuid = __kuid_val(parent);
new->child_kuid = __kuid_val(child);
spin_lock(&safesetid_whitelist_hashtable_spinlock);
hash_add_rcu(safesetid_whitelist_hashtable,
&new->next,
__kuid_val(parent));
spin_unlock(&safesetid_whitelist_hashtable_spinlock);
return 0;
}
void flush_safesetid_whitelist_entries(void)
{
struct entry *entry;
struct hlist_node *hlist_node;
unsigned int bkt_loop_cursor;
HLIST_HEAD(free_list);
/*
* Could probably use hash_for_each_rcu here instead, but this should
* be fine as well.
*/
spin_lock(&safesetid_whitelist_hashtable_spinlock);
hash_for_each_safe(safesetid_whitelist_hashtable, bkt_loop_cursor,
hlist_node, entry, next) {
hash_del_rcu(&entry->next);
hlist_add_head(&entry->dlist, &free_list);
}
spin_unlock(&safesetid_whitelist_hashtable_spinlock);
synchronize_rcu();
hlist_for_each_entry_safe(entry, hlist_node, &free_list, dlist) {
hlist_del(&entry->dlist);
kfree(entry);
}
}
static struct security_hook_list safesetid_security_hooks[] = {
LSM_HOOK_INIT(task_fix_setuid, safesetid_task_fix_setuid),
LSM_HOOK_INIT(capable, safesetid_security_capable)
};
static int __init safesetid_security_init(void)
{
security_add_hooks(safesetid_security_hooks,
ARRAY_SIZE(safesetid_security_hooks), "safesetid");
/* Report that SafeSetID successfully initialized */
safesetid_initialized = 1;
return 0;
}
DEFINE_LSM(safesetid_security_init) = {
.init = safesetid_security_init,
};
/* SPDX-License-Identifier: GPL-2.0 */
/*
* SafeSetID Linux Security Module
*
* Author: Micah Morton <mortonm@chromium.org>
*
* Copyright (C) 2018 The Chromium OS Authors.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
*/
#ifndef _SAFESETID_H
#define _SAFESETID_H
#include <linux/types.h>
/* Flag indicating whether initialization completed */
extern int safesetid_initialized;
/* Function type. */
enum safesetid_whitelist_file_write_type {
SAFESETID_WHITELIST_ADD, /* Add whitelist policy. */
SAFESETID_WHITELIST_FLUSH, /* Flush whitelist policies. */
};
/* Add entry to safesetid whitelist to allow 'parent' to setid to 'child'. */
int add_safesetid_whitelist_entry(kuid_t parent, kuid_t child);
void flush_safesetid_whitelist_entries(void);
#endif /* _SAFESETID_H */
// SPDX-License-Identifier: GPL-2.0
/*
* SafeSetID Linux Security Module
*
* Author: Micah Morton <mortonm@chromium.org>
*
* Copyright (C) 2018 The Chromium OS Authors.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2, as
* published by the Free Software Foundation.
*
*/
#include <linux/security.h>
#include <linux/cred.h>
#include "lsm.h"
static struct dentry *safesetid_policy_dir;
struct safesetid_file_entry {
const char *name;
enum safesetid_whitelist_file_write_type type;
struct dentry *dentry;
};
static struct safesetid_file_entry safesetid_files[] = {
{.name = "add_whitelist_policy",
.type = SAFESETID_WHITELIST_ADD},
{.name = "flush_whitelist_policies",
.type = SAFESETID_WHITELIST_FLUSH},
};
/*
* In the case the input buffer contains one or more invalid UIDs, the kuid_t
* variables pointed to by 'parent' and 'child' will get updated but this
* function will return an error.
*/
static int parse_safesetid_whitelist_policy(const char __user *buf,
size_t len,
kuid_t *parent,
kuid_t *child)
{
char *kern_buf;
char *parent_buf;
char *child_buf;
const char separator[] = ":";
int ret;
size_t first_substring_length;
long parsed_parent;
long parsed_child;
/* Duplicate string from user memory and NULL-terminate */
kern_buf = memdup_user_nul(buf, len);
if (IS_ERR(kern_buf))
return PTR_ERR(kern_buf);
/*
* Format of |buf| string should be <UID>:<UID>.
* Find location of ":" in kern_buf (copied from |buf|).
*/
first_substring_length = strcspn(kern_buf, separator);
if (first_substring_length == 0 || first_substring_length == len) {
ret = -EINVAL;
goto free_kern;
}
parent_buf = kmemdup_nul(kern_buf, first_substring_length, GFP_KERNEL);
if (!parent_buf) {
ret = -ENOMEM;
goto free_kern;
}
ret = kstrtol(parent_buf, 0, &parsed_parent);
if (ret)
goto free_both;
child_buf = kern_buf + first_substring_length + 1;
ret = kstrtol(child_buf, 0, &parsed_child);
if (ret)
goto free_both;
*parent = make_kuid(current_user_ns(), parsed_parent);
if (!uid_valid(*parent)) {
ret = -EINVAL;
goto free_both;
}
*child = make_kuid(current_user_ns(), parsed_child);
if (!uid_valid(*child)) {
ret = -EINVAL;
goto free_both;
}
free_both:
kfree(parent_buf);
free_kern:
kfree(kern_buf);
return ret;
}
static ssize_t safesetid_file_write(struct file *file,
const char __user *buf,
size_t len,
loff_t *ppos)
{
struct safesetid_file_entry *file_entry =
file->f_inode->i_private;
kuid_t parent;
kuid_t child;
int ret;
if (!ns_capable(current_user_ns(), CAP_MAC_ADMIN))
return -EPERM;
if (*ppos != 0)
return -EINVAL;
switch (file_entry->type) {
case SAFESETID_WHITELIST_FLUSH:
flush_safesetid_whitelist_entries();
break;
case SAFESETID_WHITELIST_ADD:
ret = parse_safesetid_whitelist_policy(buf, len, &parent,
&child);
if (ret)
return ret;
ret = add_safesetid_whitelist_entry(parent, child);
if (ret)
return ret;
break;
default:
pr_warn("Unknown securityfs file %d\n", file_entry->type);
break;
}
/* Return len on success so caller won't keep trying to write */
return len;
}
static const struct file_operations safesetid_file_fops = {
.write = safesetid_file_write,
};
static void safesetid_shutdown_securityfs(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(safesetid_files); ++i) {
struct safesetid_file_entry *entry =
&safesetid_files[i];
securityfs_remove(entry->dentry);
entry->dentry = NULL;
}
securityfs_remove(safesetid_policy_dir);
safesetid_policy_dir = NULL;
}
static int __init safesetid_init_securityfs(void)
{
int i;
int ret;
if (!safesetid_initialized)
return 0;
safesetid_policy_dir = securityfs_create_dir("safesetid", NULL);
if (!safesetid_policy_dir) {
ret = PTR_ERR(safesetid_policy_dir);
goto error;
}
for (i = 0; i < ARRAY_SIZE(safesetid_files); ++i) {
struct safesetid_file_entry *entry =
&safesetid_files[i];
entry->dentry = securityfs_create_file(
entry->name, 0200, safesetid_policy_dir,
entry, &safesetid_file_fops);
if (IS_ERR(entry->dentry)) {
ret = PTR_ERR(entry->dentry);
goto error;
}
}
return 0;
error:
safesetid_shutdown_securityfs();
return ret;
}
fs_initcall(safesetid_init_securityfs);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment