Commit afd4aea0 authored by Ben Hutchings's avatar Ben Hutchings Committed by David S. Miller

sfc: Add support for SFC9000 family (1)

This adds support for the SFC9000 family of 10G Ethernet controllers
and LAN-on-motherboard chips, starting with the SFL9021 'Siena' and
SFC9020 'Bethpage'.

The SFC9000 family is based on the SFC4000 'Falcon' architecture, but
with some significant changes:

- Two ports are associated with two independent PCI functions
  (except SFC9010)
- Integrated 10GBASE-T PHY(s) (SFL9021/9022)
- MAC, PHY and board peripherals are managed by firmware
  - Driver does not require board-specific code
  - Firmware supports wake-on-LAN and lights-out management through NC-SI
- IPv6 checksum offload and RSS
- Filtering by MAC address and VLAN (not included in this code)
- PCI SR-IOV (not included in this code)

Credit for this code is largely due to my colleagues at Solarflare:

   Guido Barzini
   Steve Hodgson
   Kieran Mansley
   Matthew Slattery
   Neil Turton
Signed-off-by: default avatarBen Hutchings <bhutchings@solarflare.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent f0d37f42
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2008-2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/delay.h>
#include "net_driver.h"
#include "nic.h"
#include "io.h"
#include "regs.h"
#include "mcdi_pcol.h"
#include "phy.h"
/**************************************************************************
*
* Management-Controller-to-Driver Interface
*
**************************************************************************
*/
/* Software-defined structure to the shared-memory */
#define CMD_NOTIFY_PORT0 0
#define CMD_NOTIFY_PORT1 4
#define CMD_PDU_PORT0 0x008
#define CMD_PDU_PORT1 0x108
#define REBOOT_FLAG_PORT0 0x3f8
#define REBOOT_FLAG_PORT1 0x3fc
#define MCDI_RPC_TIMEOUT 10 /*seconds */
#define MCDI_PDU(efx) \
(efx_port_num(efx) ? CMD_PDU_PORT1 : CMD_PDU_PORT0)
#define MCDI_DOORBELL(efx) \
(efx_port_num(efx) ? CMD_NOTIFY_PORT1 : CMD_NOTIFY_PORT0)
#define MCDI_REBOOT_FLAG(efx) \
(efx_port_num(efx) ? REBOOT_FLAG_PORT1 : REBOOT_FLAG_PORT0)
#define SEQ_MASK \
EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
static inline struct efx_mcdi_iface *efx_mcdi(struct efx_nic *efx)
{
struct siena_nic_data *nic_data;
EFX_BUG_ON_PARANOID(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
nic_data = efx->nic_data;
return &nic_data->mcdi;
}
void efx_mcdi_init(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return;
mcdi = efx_mcdi(efx);
init_waitqueue_head(&mcdi->wq);
spin_lock_init(&mcdi->iface_lock);
atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
mcdi->mode = MCDI_MODE_POLL;
(void) efx_mcdi_poll_reboot(efx);
}
static void efx_mcdi_copyin(struct efx_nic *efx, unsigned cmd,
const u8 *inbuf, size_t inlen)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
unsigned int i;
efx_dword_t hdr;
u32 xflags, seqno;
BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
BUG_ON(inlen & 3 || inlen >= 0x100);
seqno = mcdi->seqno & SEQ_MASK;
xflags = 0;
if (mcdi->mode == MCDI_MODE_EVENTS)
xflags |= MCDI_HEADER_XFLAGS_EVREQ;
EFX_POPULATE_DWORD_6(hdr,
MCDI_HEADER_RESPONSE, 0,
MCDI_HEADER_RESYNC, 1,
MCDI_HEADER_CODE, cmd,
MCDI_HEADER_DATALEN, inlen,
MCDI_HEADER_SEQ, seqno,
MCDI_HEADER_XFLAGS, xflags);
efx_writed(efx, &hdr, pdu);
for (i = 0; i < inlen; i += 4)
_efx_writed(efx, *((__le32 *)(inbuf + i)), pdu + 4 + i);
/* Ensure the payload is written out before the header */
wmb();
/* ring the doorbell with a distinctive value */
_efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
}
static void efx_mcdi_copyout(struct efx_nic *efx, u8 *outbuf, size_t outlen)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
int i;
BUG_ON(atomic_read(&mcdi->state) == MCDI_STATE_QUIESCENT);
BUG_ON(outlen & 3 || outlen >= 0x100);
for (i = 0; i < outlen; i += 4)
*((__le32 *)(outbuf + i)) = _efx_readd(efx, pdu + 4 + i);
}
static int efx_mcdi_poll(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
unsigned int time, finish;
unsigned int respseq, respcmd, error;
unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
unsigned int rc, spins;
efx_dword_t reg;
/* Check for a reboot atomically with respect to efx_mcdi_copyout() */
rc = efx_mcdi_poll_reboot(efx);
if (rc)
goto out;
/* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
* because generally mcdi responses are fast. After that, back off
* and poll once a jiffy (approximately)
*/
spins = TICK_USEC;
finish = get_seconds() + MCDI_RPC_TIMEOUT;
while (1) {
if (spins != 0) {
--spins;
udelay(1);
} else
schedule();
time = get_seconds();
rmb();
efx_readd(efx, &reg, pdu);
/* All 1's indicates that shared memory is in reset (and is
* not a valid header). Wait for it to come out reset before
* completing the command */
if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) != 0xffffffff &&
EFX_DWORD_FIELD(reg, MCDI_HEADER_RESPONSE))
break;
if (time >= finish)
return -ETIMEDOUT;
}
mcdi->resplen = EFX_DWORD_FIELD(reg, MCDI_HEADER_DATALEN);
respseq = EFX_DWORD_FIELD(reg, MCDI_HEADER_SEQ);
respcmd = EFX_DWORD_FIELD(reg, MCDI_HEADER_CODE);
error = EFX_DWORD_FIELD(reg, MCDI_HEADER_ERROR);
if (error && mcdi->resplen == 0) {
EFX_ERR(efx, "MC rebooted\n");
rc = EIO;
} else if ((respseq ^ mcdi->seqno) & SEQ_MASK) {
EFX_ERR(efx, "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
respseq, mcdi->seqno);
rc = EIO;
} else if (error) {
efx_readd(efx, &reg, pdu + 4);
switch (EFX_DWORD_FIELD(reg, EFX_DWORD_0)) {
#define TRANSLATE_ERROR(name) \
case MC_CMD_ERR_ ## name: \
rc = name; \
break
TRANSLATE_ERROR(ENOENT);
TRANSLATE_ERROR(EINTR);
TRANSLATE_ERROR(EACCES);
TRANSLATE_ERROR(EBUSY);
TRANSLATE_ERROR(EINVAL);
TRANSLATE_ERROR(EDEADLK);
TRANSLATE_ERROR(ENOSYS);
TRANSLATE_ERROR(ETIME);
#undef TRANSLATE_ERROR
default:
rc = EIO;
break;
}
} else
rc = 0;
out:
mcdi->resprc = rc;
if (rc)
mcdi->resplen = 0;
/* Return rc=0 like wait_event_timeout() */
return 0;
}
/* Test and clear MC-rebooted flag for this port/function */
int efx_mcdi_poll_reboot(struct efx_nic *efx)
{
unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_REBOOT_FLAG(efx);
efx_dword_t reg;
uint32_t value;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return false;
efx_readd(efx, &reg, addr);
value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
if (value == 0)
return 0;
EFX_ZERO_DWORD(reg);
efx_writed(efx, &reg, addr);
if (value == MC_STATUS_DWORD_ASSERT)
return -EINTR;
else
return -EIO;
}
static void efx_mcdi_acquire(struct efx_mcdi_iface *mcdi)
{
/* Wait until the interface becomes QUIESCENT and we win the race
* to mark it RUNNING. */
wait_event(mcdi->wq,
atomic_cmpxchg(&mcdi->state,
MCDI_STATE_QUIESCENT,
MCDI_STATE_RUNNING)
== MCDI_STATE_QUIESCENT);
}
static int efx_mcdi_await_completion(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
if (wait_event_timeout(
mcdi->wq,
atomic_read(&mcdi->state) == MCDI_STATE_COMPLETED,
msecs_to_jiffies(MCDI_RPC_TIMEOUT * 1000)) == 0)
return -ETIMEDOUT;
/* Check if efx_mcdi_set_mode() switched us back to polled completions.
* In which case, poll for completions directly. If efx_mcdi_ev_cpl()
* completed the request first, then we'll just end up completing the
* request again, which is safe.
*
* We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
* wait_event_timeout() implicitly provides.
*/
if (mcdi->mode == MCDI_MODE_POLL)
return efx_mcdi_poll(efx);
return 0;
}
static bool efx_mcdi_complete(struct efx_mcdi_iface *mcdi)
{
/* If the interface is RUNNING, then move to COMPLETED and wake any
* waiters. If the interface isn't in RUNNING then we've received a
* duplicate completion after we've already transitioned back to
* QUIESCENT. [A subsequent invocation would increment seqno, so would
* have failed the seqno check].
*/
if (atomic_cmpxchg(&mcdi->state,
MCDI_STATE_RUNNING,
MCDI_STATE_COMPLETED) == MCDI_STATE_RUNNING) {
wake_up(&mcdi->wq);
return true;
}
return false;
}
static void efx_mcdi_release(struct efx_mcdi_iface *mcdi)
{
atomic_set(&mcdi->state, MCDI_STATE_QUIESCENT);
wake_up(&mcdi->wq);
}
static void efx_mcdi_ev_cpl(struct efx_nic *efx, unsigned int seqno,
unsigned int datalen, unsigned int errno)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
bool wake = false;
spin_lock(&mcdi->iface_lock);
if ((seqno ^ mcdi->seqno) & SEQ_MASK) {
if (mcdi->credits)
/* The request has been cancelled */
--mcdi->credits;
else
EFX_ERR(efx, "MC response mismatch tx seq 0x%x rx "
"seq 0x%x\n", seqno, mcdi->seqno);
} else {
mcdi->resprc = errno;
mcdi->resplen = datalen;
wake = true;
}
spin_unlock(&mcdi->iface_lock);
if (wake)
efx_mcdi_complete(mcdi);
}
/* Issue the given command by writing the data into the shared memory PDU,
* ring the doorbell and wait for completion. Copyout the result. */
int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd,
const u8 *inbuf, size_t inlen, u8 *outbuf, size_t outlen,
size_t *outlen_actual)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
int rc;
BUG_ON(efx_nic_rev(efx) < EFX_REV_SIENA_A0);
efx_mcdi_acquire(mcdi);
/* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
spin_lock_bh(&mcdi->iface_lock);
++mcdi->seqno;
spin_unlock_bh(&mcdi->iface_lock);
efx_mcdi_copyin(efx, cmd, inbuf, inlen);
if (mcdi->mode == MCDI_MODE_POLL)
rc = efx_mcdi_poll(efx);
else
rc = efx_mcdi_await_completion(efx);
if (rc != 0) {
/* Close the race with efx_mcdi_ev_cpl() executing just too late
* and completing a request we've just cancelled, by ensuring
* that the seqno check therein fails.
*/
spin_lock_bh(&mcdi->iface_lock);
++mcdi->seqno;
++mcdi->credits;
spin_unlock_bh(&mcdi->iface_lock);
EFX_ERR(efx, "MC command 0x%x inlen %d mode %d timed out\n",
cmd, (int)inlen, mcdi->mode);
} else {
size_t resplen;
/* At the very least we need a memory barrier here to ensure
* we pick up changes from efx_mcdi_ev_cpl(). Protect against
* a spurious efx_mcdi_ev_cpl() running concurrently by
* acquiring the iface_lock. */
spin_lock_bh(&mcdi->iface_lock);
rc = -mcdi->resprc;
resplen = mcdi->resplen;
spin_unlock_bh(&mcdi->iface_lock);
if (rc == 0) {
efx_mcdi_copyout(efx, outbuf,
min(outlen, mcdi->resplen + 3) & ~0x3);
if (outlen_actual != NULL)
*outlen_actual = resplen;
} else if (cmd == MC_CMD_REBOOT && rc == -EIO)
; /* Don't reset if MC_CMD_REBOOT returns EIO */
else if (rc == -EIO || rc == -EINTR) {
EFX_ERR(efx, "MC fatal error %d\n", -rc);
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
} else
EFX_ERR(efx, "MC command 0x%x inlen %d failed rc=%d\n",
cmd, (int)inlen, -rc);
}
efx_mcdi_release(mcdi);
return rc;
}
void efx_mcdi_mode_poll(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return;
mcdi = efx_mcdi(efx);
if (mcdi->mode == MCDI_MODE_POLL)
return;
/* We can switch from event completion to polled completion, because
* mcdi requests are always completed in shared memory. We do this by
* switching the mode to POLL'd then completing the request.
* efx_mcdi_await_completion() will then call efx_mcdi_poll().
*
* We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
* which efx_mcdi_complete() provides for us.
*/
mcdi->mode = MCDI_MODE_POLL;
efx_mcdi_complete(mcdi);
}
void efx_mcdi_mode_event(struct efx_nic *efx)
{
struct efx_mcdi_iface *mcdi;
if (efx_nic_rev(efx) < EFX_REV_SIENA_A0)
return;
mcdi = efx_mcdi(efx);
if (mcdi->mode == MCDI_MODE_EVENTS)
return;
/* We can't switch from polled to event completion in the middle of a
* request, because the completion method is specified in the request.
* So acquire the interface to serialise the requestors. We don't need
* to acquire the iface_lock to change the mode here, but we do need a
* write memory barrier ensure that efx_mcdi_rpc() sees it, which
* efx_mcdi_acquire() provides.
*/
efx_mcdi_acquire(mcdi);
mcdi->mode = MCDI_MODE_EVENTS;
efx_mcdi_release(mcdi);
}
static void efx_mcdi_ev_death(struct efx_nic *efx, int rc)
{
struct efx_mcdi_iface *mcdi = efx_mcdi(efx);
/* If there is an outstanding MCDI request, it has been terminated
* either by a BADASSERT or REBOOT event. If the mcdi interface is
* in polled mode, then do nothing because the MC reboot handler will
* set the header correctly. However, if the mcdi interface is waiting
* for a CMDDONE event it won't receive it [and since all MCDI events
* are sent to the same queue, we can't be racing with
* efx_mcdi_ev_cpl()]
*
* There's a race here with efx_mcdi_rpc(), because we might receive
* a REBOOT event *before* the request has been copied out. In polled
* mode (during startup) this is irrelevent, because efx_mcdi_complete()
* is ignored. In event mode, this condition is just an edge-case of
* receiving a REBOOT event after posting the MCDI request. Did the mc
* reboot before or after the copyout? The best we can do always is
* just return failure.
*/
spin_lock(&mcdi->iface_lock);
if (efx_mcdi_complete(mcdi)) {
if (mcdi->mode == MCDI_MODE_EVENTS) {
mcdi->resprc = rc;
mcdi->resplen = 0;
}
} else
/* Nobody was waiting for an MCDI request, so trigger a reset */
efx_schedule_reset(efx, RESET_TYPE_MC_FAILURE);
spin_unlock(&mcdi->iface_lock);
}
static unsigned int efx_mcdi_event_link_speed[] = {
[MCDI_EVENT_LINKCHANGE_SPEED_100M] = 100,
[MCDI_EVENT_LINKCHANGE_SPEED_1G] = 1000,
[MCDI_EVENT_LINKCHANGE_SPEED_10G] = 10000,
};
static void efx_mcdi_process_link_change(struct efx_nic *efx, efx_qword_t *ev)
{
u32 flags, fcntl, speed, lpa;
speed = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_SPEED);
EFX_BUG_ON_PARANOID(speed >= ARRAY_SIZE(efx_mcdi_event_link_speed));
speed = efx_mcdi_event_link_speed[speed];
flags = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LINK_FLAGS);
fcntl = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_FCNTL);
lpa = EFX_QWORD_FIELD(*ev, MCDI_EVENT_LINKCHANGE_LP_CAP);
/* efx->link_state is only modified by efx_mcdi_phy_get_link(),
* which is only run after flushing the event queues. Therefore, it
* is safe to modify the link state outside of the mac_lock here.
*/
efx_mcdi_phy_decode_link(efx, &efx->link_state, speed, flags, fcntl);
efx_mcdi_phy_check_fcntl(efx, lpa);
efx_link_status_changed(efx);
}
static const char *sensor_names[] = {
[MC_CMD_SENSOR_CONTROLLER_TEMP] = "Controller temp. sensor",
[MC_CMD_SENSOR_PHY_COMMON_TEMP] = "PHY shared temp. sensor",
[MC_CMD_SENSOR_CONTROLLER_COOLING] = "Controller cooling",
[MC_CMD_SENSOR_PHY0_TEMP] = "PHY 0 temp. sensor",
[MC_CMD_SENSOR_PHY0_COOLING] = "PHY 0 cooling",
[MC_CMD_SENSOR_PHY1_TEMP] = "PHY 1 temp. sensor",
[MC_CMD_SENSOR_PHY1_COOLING] = "PHY 1 cooling",
[MC_CMD_SENSOR_IN_1V0] = "1.0V supply sensor",
[MC_CMD_SENSOR_IN_1V2] = "1.2V supply sensor",
[MC_CMD_SENSOR_IN_1V8] = "1.8V supply sensor",
[MC_CMD_SENSOR_IN_2V5] = "2.5V supply sensor",
[MC_CMD_SENSOR_IN_3V3] = "3.3V supply sensor",
[MC_CMD_SENSOR_IN_12V0] = "12V supply sensor"
};
static const char *sensor_status_names[] = {
[MC_CMD_SENSOR_STATE_OK] = "OK",
[MC_CMD_SENSOR_STATE_WARNING] = "Warning",
[MC_CMD_SENSOR_STATE_FATAL] = "Fatal",
[MC_CMD_SENSOR_STATE_BROKEN] = "Device failure",
};
static void efx_mcdi_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
{
unsigned int monitor, state, value;
const char *name, *state_txt;
monitor = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_MONITOR);
state = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_STATE);
value = EFX_QWORD_FIELD(*ev, MCDI_EVENT_SENSOREVT_VALUE);
/* Deal gracefully with the board having more drivers than we
* know about, but do not expect new sensor states. */
name = (monitor >= ARRAY_SIZE(sensor_names))
? "No sensor name available" :
sensor_names[monitor];
EFX_BUG_ON_PARANOID(state >= ARRAY_SIZE(sensor_status_names));
state_txt = sensor_status_names[state];
EFX_ERR(efx, "Sensor %d (%s) reports condition '%s' for raw value %d\n",
monitor, name, state_txt, value);
}
/* Called from falcon_process_eventq for MCDI events */
void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event)
{
struct efx_nic *efx = channel->efx;
int code = EFX_QWORD_FIELD(*event, MCDI_EVENT_CODE);
u32 data = EFX_QWORD_FIELD(*event, MCDI_EVENT_DATA);
switch (code) {
case MCDI_EVENT_CODE_BADSSERT:
EFX_ERR(efx, "MC watchdog or assertion failure at 0x%x\n", data);
efx_mcdi_ev_death(efx, EINTR);
break;
case MCDI_EVENT_CODE_PMNOTICE:
EFX_INFO(efx, "MCDI PM event.\n");
break;
case MCDI_EVENT_CODE_CMDDONE:
efx_mcdi_ev_cpl(efx,
MCDI_EVENT_FIELD(*event, CMDDONE_SEQ),
MCDI_EVENT_FIELD(*event, CMDDONE_DATALEN),
MCDI_EVENT_FIELD(*event, CMDDONE_ERRNO));
break;
case MCDI_EVENT_CODE_LINKCHANGE:
efx_mcdi_process_link_change(efx, event);
break;
case MCDI_EVENT_CODE_SENSOREVT:
efx_mcdi_sensor_event(efx, event);
break;
case MCDI_EVENT_CODE_SCHEDERR:
EFX_INFO(efx, "MC Scheduler error address=0x%x\n", data);
break;
case MCDI_EVENT_CODE_REBOOT:
EFX_INFO(efx, "MC Reboot\n");
efx_mcdi_ev_death(efx, EIO);
break;
case MCDI_EVENT_CODE_MAC_STATS_DMA:
/* MAC stats are gather lazily. We can ignore this. */
break;
default:
EFX_ERR(efx, "Unknown MCDI event 0x%x\n", code);
}
}
/**************************************************************************
*
* Specific request functions
*
**************************************************************************
*/
int efx_mcdi_fwver(struct efx_nic *efx, u64 *version, u32 *build)
{
u8 outbuf[ALIGN(MC_CMD_GET_VERSION_V1_OUT_LEN, 4)];
size_t outlength;
const __le16 *ver_words;
int rc;
BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_VERSION, NULL, 0,
outbuf, sizeof(outbuf), &outlength);
if (rc)
goto fail;
if (outlength == MC_CMD_GET_VERSION_V0_OUT_LEN) {
*version = 0;
*build = MCDI_DWORD(outbuf, GET_VERSION_OUT_FIRMWARE);
return 0;
}
if (outlength < MC_CMD_GET_VERSION_V1_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
ver_words = (__le16 *)MCDI_PTR(outbuf, GET_VERSION_OUT_VERSION);
*version = (((u64)le16_to_cpu(ver_words[0]) << 48) |
((u64)le16_to_cpu(ver_words[1]) << 32) |
((u64)le16_to_cpu(ver_words[2]) << 16) |
le16_to_cpu(ver_words[3]));
*build = MCDI_DWORD(outbuf, GET_VERSION_OUT_FIRMWARE);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
bool *was_attached)
{
u8 inbuf[MC_CMD_DRV_ATTACH_IN_LEN];
u8 outbuf[MC_CMD_DRV_ATTACH_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_NEW_STATE,
driver_operating ? 1 : 0);
MCDI_SET_DWORD(inbuf, DRV_ATTACH_IN_UPDATE, 1);
rc = efx_mcdi_rpc(efx, MC_CMD_DRV_ATTACH, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_DRV_ATTACH_OUT_LEN)
goto fail;
if (was_attached != NULL)
*was_attached = MCDI_DWORD(outbuf, DRV_ATTACH_OUT_OLD_STATE);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
u16 *fw_subtype_list)
{
uint8_t outbuf[MC_CMD_GET_BOARD_CFG_OUT_LEN];
size_t outlen;
int port_num = efx_port_num(efx);
int offset;
int rc;
BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_BOARD_CFG, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_BOARD_CFG_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
offset = (port_num)
? MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
: MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST;
if (mac_address)
memcpy(mac_address, outbuf + offset, ETH_ALEN);
if (fw_subtype_list)
memcpy(fw_subtype_list,
outbuf + MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_OFST,
MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_LEN);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d len=%d\n", __func__, rc, (int)outlen);
return rc;
}
int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart, u32 dest_evq)
{
u8 inbuf[MC_CMD_LOG_CTRL_IN_LEN];
u32 dest = 0;
int rc;
if (uart)
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART;
if (evq)
dest |= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ;
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST, dest);
MCDI_SET_DWORD(inbuf, LOG_CTRL_IN_LOG_DEST_EVQ, dest_evq);
BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_LOG_CTRL, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out)
{
u8 outbuf[MC_CMD_NVRAM_TYPES_OUT_LEN];
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_TYPES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_NVRAM_TYPES_OUT_LEN)
goto fail;
*nvram_types_out = MCDI_DWORD(outbuf, NVRAM_TYPES_OUT_TYPES);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n",
__func__, rc);
return rc;
}
int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
size_t *size_out, size_t *erase_size_out,
bool *protected_out)
{
u8 inbuf[MC_CMD_NVRAM_INFO_IN_LEN];
u8 outbuf[MC_CMD_NVRAM_INFO_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_INFO_IN_TYPE, type);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_INFO, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_NVRAM_INFO_OUT_LEN)
goto fail;
*size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_SIZE);
*erase_size_out = MCDI_DWORD(outbuf, NVRAM_INFO_OUT_ERASESIZE);
*protected_out = !!(MCDI_DWORD(outbuf, NVRAM_INFO_OUT_FLAGS) &
(1 << MC_CMD_NVRAM_PROTECTED_LBN));
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_update_start(struct efx_nic *efx, unsigned int type)
{
u8 inbuf[MC_CMD_NVRAM_UPDATE_START_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_START_IN_TYPE, type);
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_START, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
loff_t offset, u8 *buffer, size_t length)
{
u8 inbuf[MC_CMD_NVRAM_READ_IN_LEN];
u8 outbuf[MC_CMD_NVRAM_READ_OUT_LEN(length)];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_READ_IN_LENGTH, length);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_READ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
memcpy(buffer, MCDI_PTR(outbuf, NVRAM_READ_OUT_READ_BUFFER), length);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
loff_t offset, const u8 *buffer, size_t length)
{
u8 inbuf[MC_CMD_NVRAM_WRITE_IN_LEN(length)];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_WRITE_IN_LENGTH, length);
memcpy(MCDI_PTR(inbuf, NVRAM_WRITE_IN_WRITE_BUFFER), buffer, length);
BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_WRITE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
loff_t offset, size_t length)
{
u8 inbuf[MC_CMD_NVRAM_ERASE_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_TYPE, type);
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_OFFSET, offset);
MCDI_SET_DWORD(inbuf, NVRAM_ERASE_IN_LENGTH, length);
BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_ERASE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_nvram_update_finish(struct efx_nic *efx, unsigned int type)
{
u8 inbuf[MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, NVRAM_UPDATE_FINISH_IN_TYPE, type);
BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_UPDATE_FINISH, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_handle_assertion(struct efx_nic *efx)
{
union {
u8 asserts[MC_CMD_GET_ASSERTS_IN_LEN];
u8 reboot[MC_CMD_REBOOT_IN_LEN];
} inbuf;
u8 assertion[MC_CMD_GET_ASSERTS_OUT_LEN];
unsigned int flags, index, ofst;
const char *reason;
size_t outlen;
int retry;
int rc;
/* Check if the MC is in the assertion handler, retrying twice. Once
* because a boot-time assertion might cause this command to fail
* with EINTR. And once again because GET_ASSERTS can race with
* MC_CMD_REBOOT running on the other port. */
retry = 2;
do {
MCDI_SET_DWORD(inbuf.asserts, GET_ASSERTS_IN_CLEAR, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_ASSERTS,
inbuf.asserts, MC_CMD_GET_ASSERTS_IN_LEN,
assertion, sizeof(assertion), &outlen);
} while ((rc == -EINTR || rc == -EIO) && retry-- > 0);
if (rc)
return rc;
if (outlen < MC_CMD_GET_ASSERTS_OUT_LEN)
return -EINVAL;
flags = MCDI_DWORD(assertion, GET_ASSERTS_OUT_GLOBAL_FLAGS);
if (flags == MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS)
return 0;
/* Reset the hardware atomically such that only one port with succeed.
* This command will succeed if a reboot is no longer required (because
* the other port did it first), but fail with EIO if it succeeds.
*/
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf.reboot, REBOOT_IN_FLAGS,
MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION);
efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf.reboot, MC_CMD_REBOOT_IN_LEN,
NULL, 0, NULL);
/* Print out the assertion */
reason = (flags == MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL)
? "system-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL)
? "thread-level assertion"
: (flags == MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED)
? "watchdog reset"
: "unknown assertion";
EFX_ERR(efx, "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason,
MCDI_DWORD(assertion, GET_ASSERTS_OUT_SAVED_PC_OFFS),
MCDI_DWORD(assertion, GET_ASSERTS_OUT_THREAD_OFFS));
/* Print out the registers */
ofst = MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_OFST;
for (index = 1; index < 32; index++) {
EFX_ERR(efx, "R%.2d (?): 0x%.8x\n", index,
MCDI_DWORD2(assertion, ofst));
ofst += sizeof(efx_dword_t);
}
return 0;
}
void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
u8 inbuf[MC_CMD_SET_ID_LED_IN_LEN];
int rc;
BUILD_BUG_ON(EFX_LED_OFF != MC_CMD_LED_OFF);
BUILD_BUG_ON(EFX_LED_ON != MC_CMD_LED_ON);
BUILD_BUG_ON(EFX_LED_DEFAULT != MC_CMD_LED_DEFAULT);
BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, SET_ID_LED_IN_STATE, mode);
rc = efx_mcdi_rpc(efx, MC_CMD_SET_ID_LED, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
}
int efx_mcdi_reset_port(struct efx_nic *efx)
{
int rc = efx_mcdi_rpc(efx, MC_CMD_PORT_RESET, NULL, 0, NULL, 0, NULL);
if (rc)
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_reset_mc(struct efx_nic *efx)
{
u8 inbuf[MC_CMD_REBOOT_IN_LEN];
int rc;
BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, REBOOT_IN_FLAGS, 0);
rc = efx_mcdi_rpc(efx, MC_CMD_REBOOT, inbuf, sizeof(inbuf),
NULL, 0, NULL);
/* White is black, and up is down */
if (rc == -EIO)
return 0;
if (rc == 0)
rc = -EIO;
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
const u8 *mac, int *id_out)
{
u8 inbuf[MC_CMD_WOL_FILTER_SET_IN_LEN];
u8 outbuf[MC_CMD_WOL_FILTER_SET_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_WOL_TYPE, type);
MCDI_SET_DWORD(inbuf, WOL_FILTER_SET_IN_FILTER_MODE,
MC_CMD_FILTER_MODE_SIMPLE);
memcpy(MCDI_PTR(inbuf, WOL_FILTER_SET_IN_MAGIC_MAC), mac, ETH_ALEN);
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_SET, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_WOL_FILTER_SET_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_SET_OUT_FILTER_ID);
return 0;
fail:
*id_out = -1;
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int
efx_mcdi_wol_filter_set_magic(struct efx_nic *efx, const u8 *mac, int *id_out)
{
return efx_mcdi_wol_filter_set(efx, MC_CMD_WOL_TYPE_MAGIC, mac, id_out);
}
int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out)
{
u8 outbuf[MC_CMD_WOL_FILTER_GET_OUT_LEN];
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_GET, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_WOL_FILTER_GET_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
*id_out = (int)MCDI_DWORD(outbuf, WOL_FILTER_GET_OUT_FILTER_ID);
return 0;
fail:
*id_out = -1;
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id)
{
u8 inbuf[MC_CMD_WOL_FILTER_REMOVE_IN_LEN];
int rc;
MCDI_SET_DWORD(inbuf, WOL_FILTER_REMOVE_IN_FILTER_ID, (u32)id);
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_REMOVE, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_wol_filter_reset(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_WOL_FILTER_RESET, NULL, 0, NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2008-2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#ifndef EFX_MCDI_H
#define EFX_MCDI_H
/**
* enum efx_mcdi_state
* @MCDI_STATE_QUIESCENT: No pending MCDI requests. If the caller holds the
* mcdi_lock then they are able to move to MCDI_STATE_RUNNING
* @MCDI_STATE_RUNNING: There is an MCDI request pending. Only the thread that
* moved into this state is allowed to move out of it.
* @MCDI_STATE_COMPLETED: An MCDI request has completed, but the owning thread
* has not yet consumed the result. For all other threads, equivalent to
* MCDI_STATE_RUNNING.
*/
enum efx_mcdi_state {
MCDI_STATE_QUIESCENT,
MCDI_STATE_RUNNING,
MCDI_STATE_COMPLETED,
};
enum efx_mcdi_mode {
MCDI_MODE_POLL,
MCDI_MODE_EVENTS,
};
/**
* struct efx_mcdi_iface
* @state: Interface state. Waited for by mcdi_wq.
* @wq: Wait queue for threads waiting for state != STATE_RUNNING
* @iface_lock: Protects @credits, @seqno, @resprc, @resplen
* @mode: Poll for mcdi completion, or wait for an mcdi_event.
* Serialised by @lock
* @seqno: The next sequence number to use for mcdi requests.
* Serialised by @lock
* @credits: Number of spurious MCDI completion events allowed before we
* trigger a fatal error. Protected by @lock
* @resprc: Returned MCDI completion
* @resplen: Returned payload length
*/
struct efx_mcdi_iface {
atomic_t state;
wait_queue_head_t wq;
spinlock_t iface_lock;
enum efx_mcdi_mode mode;
unsigned int credits;
unsigned int seqno;
unsigned int resprc;
size_t resplen;
};
extern void efx_mcdi_init(struct efx_nic *efx);
extern int efx_mcdi_rpc(struct efx_nic *efx, unsigned cmd, const u8 *inbuf,
size_t inlen, u8 *outbuf, size_t outlen,
size_t *outlen_actual);
extern int efx_mcdi_poll_reboot(struct efx_nic *efx);
extern void efx_mcdi_mode_poll(struct efx_nic *efx);
extern void efx_mcdi_mode_event(struct efx_nic *efx);
extern void efx_mcdi_process_event(struct efx_channel *channel,
efx_qword_t *event);
#define MCDI_PTR2(_buf, _ofst) \
(((u8 *)_buf) + _ofst)
#define MCDI_SET_DWORD2(_buf, _ofst, _value) \
EFX_POPULATE_DWORD_1(*((efx_dword_t *)MCDI_PTR2(_buf, _ofst)), \
EFX_DWORD_0, _value)
#define MCDI_DWORD2(_buf, _ofst) \
EFX_DWORD_FIELD(*((efx_dword_t *)MCDI_PTR2(_buf, _ofst)), \
EFX_DWORD_0)
#define MCDI_QWORD2(_buf, _ofst) \
EFX_QWORD_FIELD64(*((efx_qword_t *)MCDI_PTR2(_buf, _ofst)), \
EFX_QWORD_0)
#define MCDI_PTR(_buf, _ofst) \
MCDI_PTR2(_buf, MC_CMD_ ## _ofst ## _OFST)
#define MCDI_SET_DWORD(_buf, _ofst, _value) \
MCDI_SET_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST, _value)
#define MCDI_DWORD(_buf, _ofst) \
MCDI_DWORD2(_buf, MC_CMD_ ## _ofst ## _OFST)
#define MCDI_QWORD(_buf, _ofst) \
MCDI_QWORD2(_buf, MC_CMD_ ## _ofst ## _OFST)
#define MCDI_EVENT_FIELD(_ev, _field) \
EFX_QWORD_FIELD(_ev, MCDI_EVENT_ ## _field)
extern int efx_mcdi_fwver(struct efx_nic *efx, u64 *version, u32 *build);
extern int efx_mcdi_drv_attach(struct efx_nic *efx, bool driver_operating,
bool *was_attached_out);
extern int efx_mcdi_get_board_cfg(struct efx_nic *efx, u8 *mac_address,
u16 *fw_subtype_list);
extern int efx_mcdi_log_ctrl(struct efx_nic *efx, bool evq, bool uart,
u32 dest_evq);
extern int efx_mcdi_nvram_types(struct efx_nic *efx, u32 *nvram_types_out);
extern int efx_mcdi_nvram_info(struct efx_nic *efx, unsigned int type,
size_t *size_out, size_t *erase_size_out,
bool *protected_out);
extern int efx_mcdi_nvram_update_start(struct efx_nic *efx,
unsigned int type);
extern int efx_mcdi_nvram_read(struct efx_nic *efx, unsigned int type,
loff_t offset, u8 *buffer, size_t length);
extern int efx_mcdi_nvram_write(struct efx_nic *efx, unsigned int type,
loff_t offset, const u8 *buffer,
size_t length);
extern int efx_mcdi_nvram_erase(struct efx_nic *efx, unsigned int type,
loff_t offset, size_t length);
extern int efx_mcdi_nvram_update_finish(struct efx_nic *efx,
unsigned int type);
extern int efx_mcdi_handle_assertion(struct efx_nic *efx);
extern void efx_mcdi_set_id_led(struct efx_nic *efx, enum efx_led_mode mode);
extern int efx_mcdi_reset_port(struct efx_nic *efx);
extern int efx_mcdi_reset_mc(struct efx_nic *efx);
extern int efx_mcdi_wol_filter_set(struct efx_nic *efx, u32 type,
const u8 *mac, int *id_out);
extern int efx_mcdi_wol_filter_set_magic(struct efx_nic *efx,
const u8 *mac, int *id_out);
extern int efx_mcdi_wol_filter_get_magic(struct efx_nic *efx, int *id_out);
extern int efx_mcdi_wol_filter_remove(struct efx_nic *efx, int id);
extern int efx_mcdi_wol_filter_reset(struct efx_nic *efx);
#endif /* EFX_MCDI_H */
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include "net_driver.h"
#include "efx.h"
#include "mac.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
static int efx_mcdi_set_mac(struct efx_nic *efx)
{
u32 reject, fcntl;
u8 cmdbytes[MC_CMD_SET_MAC_IN_LEN];
memcpy(cmdbytes + MC_CMD_SET_MAC_IN_ADDR_OFST,
efx->net_dev->dev_addr, ETH_ALEN);
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_MTU,
EFX_MAX_FRAME_LEN(efx->net_dev->mtu));
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_DRAIN, 0);
/* The MCDI command provides for controlling accept/reject
* of broadcast packets too, but the driver doesn't currently
* expose this. */
reject = (efx->promiscuous) ? 0 :
(1 << MC_CMD_SET_MAC_IN_REJECT_UNCST_LBN);
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_REJECT, reject);
switch (efx->wanted_fc) {
case EFX_FC_RX | EFX_FC_TX:
fcntl = MC_CMD_FCNTL_BIDIR;
break;
case EFX_FC_RX:
fcntl = MC_CMD_FCNTL_RESPOND;
break;
default:
fcntl = MC_CMD_FCNTL_OFF;
break;
}
if (efx->wanted_fc & EFX_FC_AUTO)
fcntl = MC_CMD_FCNTL_AUTO;
MCDI_SET_DWORD(cmdbytes, SET_MAC_IN_FCNTL, fcntl);
return efx_mcdi_rpc(efx, MC_CMD_SET_MAC, cmdbytes, sizeof(cmdbytes),
NULL, 0, NULL);
}
static int efx_mcdi_get_mac_faults(struct efx_nic *efx, u32 *faults)
{
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
size_t outlength;
int rc;
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), &outlength);
if (rc)
goto fail;
*faults = MCDI_DWORD(outbuf, GET_LINK_OUT_MAC_FAULT);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n",
__func__, rc);
return rc;
}
int efx_mcdi_mac_stats(struct efx_nic *efx, dma_addr_t dma_addr,
u32 dma_len, int enable, int clear)
{
u8 inbuf[MC_CMD_MAC_STATS_IN_LEN];
int rc;
efx_dword_t *cmd_ptr;
int period = 1000;
u32 addr_hi;
u32 addr_lo;
BUILD_BUG_ON(MC_CMD_MAC_STATS_OUT_LEN != 0);
addr_lo = ((u64)dma_addr) >> 0;
addr_hi = ((u64)dma_addr) >> 32;
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_LO, addr_lo);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_ADDR_HI, addr_hi);
cmd_ptr = (efx_dword_t *)MCDI_PTR(inbuf, MAC_STATS_IN_CMD);
if (enable)
EFX_POPULATE_DWORD_6(*cmd_ptr,
MC_CMD_MAC_STATS_CMD_DMA, 1,
MC_CMD_MAC_STATS_CMD_CLEAR, clear,
MC_CMD_MAC_STATS_CMD_PERIODIC_CHANGE, 1,
MC_CMD_MAC_STATS_CMD_PERIODIC_ENABLE, 1,
MC_CMD_MAC_STATS_CMD_PERIODIC_CLEAR, 0,
MC_CMD_MAC_STATS_CMD_PERIOD_MS, period);
else
EFX_POPULATE_DWORD_5(*cmd_ptr,
MC_CMD_MAC_STATS_CMD_DMA, 0,
MC_CMD_MAC_STATS_CMD_CLEAR, clear,
MC_CMD_MAC_STATS_CMD_PERIODIC_CHANGE, 1,
MC_CMD_MAC_STATS_CMD_PERIODIC_ENABLE, 0,
MC_CMD_MAC_STATS_CMD_PERIODIC_CLEAR, 0);
MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
rc = efx_mcdi_rpc(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: %s failed rc=%d\n",
__func__, enable ? "enable" : "disable", rc);
return rc;
}
static int efx_mcdi_mac_reconfigure(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_set_mac(efx);
if (rc != 0)
return rc;
/* Restore the multicast hash registers. */
efx->type->push_multicast_hash(efx);
return 0;
}
static bool efx_mcdi_mac_check_fault(struct efx_nic *efx)
{
u32 faults;
int rc = efx_mcdi_get_mac_faults(efx, &faults);
return (rc != 0) || (faults != 0);
}
struct efx_mac_operations efx_mcdi_mac_operations = {
.reconfigure = efx_mcdi_mac_reconfigure,
.update_stats = efx_port_dummy_op_void,
.check_fault = efx_mcdi_mac_check_fault,
};
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
/*
* Driver for PHY related operations via MCDI.
*/
#include "efx.h"
#include "phy.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "mdio_10g.h"
struct efx_mcdi_phy_cfg {
u32 flags;
u32 type;
u32 supported_cap;
u32 channel;
u32 port;
u32 stats_mask;
u8 name[20];
u32 media;
u32 mmd_mask;
u8 revision[20];
u32 forced_cap;
};
static int
efx_mcdi_get_phy_cfg(struct efx_nic *efx, struct efx_mcdi_phy_cfg *cfg)
{
u8 outbuf[MC_CMD_GET_PHY_CFG_OUT_LEN];
size_t outlen;
int rc;
BUILD_BUG_ON(MC_CMD_GET_PHY_CFG_IN_LEN != 0);
BUILD_BUG_ON(MC_CMD_GET_PHY_CFG_OUT_NAME_LEN != sizeof(cfg->name));
rc = efx_mcdi_rpc(efx, MC_CMD_GET_PHY_CFG, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_PHY_CFG_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
cfg->flags = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_FLAGS);
cfg->type = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_TYPE);
cfg->supported_cap =
MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_SUPPORTED_CAP);
cfg->channel = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_CHANNEL);
cfg->port = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_PRT);
cfg->stats_mask = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_STATS_MASK);
memcpy(cfg->name, MCDI_PTR(outbuf, GET_PHY_CFG_OUT_NAME),
sizeof(cfg->name));
cfg->media = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_MEDIA_TYPE);
cfg->mmd_mask = MCDI_DWORD(outbuf, GET_PHY_CFG_OUT_MMD_MASK);
memcpy(cfg->revision, MCDI_PTR(outbuf, GET_PHY_CFG_OUT_REVISION),
sizeof(cfg->revision));
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_mcdi_set_link(struct efx_nic *efx, u32 capabilities,
u32 flags, u32 loopback_mode,
u32 loopback_speed)
{
u8 inbuf[MC_CMD_SET_LINK_IN_LEN];
int rc;
BUILD_BUG_ON(MC_CMD_SET_LINK_OUT_LEN != 0);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_CAP, capabilities);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_FLAGS, flags);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_LOOPBACK_MODE, loopback_mode);
MCDI_SET_DWORD(inbuf, SET_LINK_IN_LOOPBACK_SPEED, loopback_speed);
rc = efx_mcdi_rpc(efx, MC_CMD_SET_LINK, inbuf, sizeof(inbuf),
NULL, 0, NULL);
if (rc)
goto fail;
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static int efx_mcdi_loopback_modes(struct efx_nic *efx, u64 *loopback_modes)
{
u8 outbuf[MC_CMD_GET_LOOPBACK_MODES_OUT_LEN];
size_t outlen;
int rc;
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LOOPBACK_MODES, NULL, 0,
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
if (outlen < MC_CMD_GET_LOOPBACK_MODES_OUT_LEN) {
rc = -EMSGSIZE;
goto fail;
}
*loopback_modes = MCDI_QWORD(outbuf, GET_LOOPBACK_MODES_SUGGESTED);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_mdio_read(struct efx_nic *efx, unsigned int bus,
unsigned int prtad, unsigned int devad, u16 addr,
u16 *value_out, u32 *status_out)
{
u8 inbuf[MC_CMD_MDIO_READ_IN_LEN];
u8 outbuf[MC_CMD_MDIO_READ_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_BUS, bus);
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_PRTAD, prtad);
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_DEVAD, devad);
MCDI_SET_DWORD(inbuf, MDIO_READ_IN_ADDR, addr);
rc = efx_mcdi_rpc(efx, MC_CMD_MDIO_READ, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
*value_out = (u16)MCDI_DWORD(outbuf, MDIO_READ_OUT_VALUE);
*status_out = MCDI_DWORD(outbuf, MDIO_READ_OUT_STATUS);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
int efx_mcdi_mdio_write(struct efx_nic *efx, unsigned int bus,
unsigned int prtad, unsigned int devad, u16 addr,
u16 value, u32 *status_out)
{
u8 inbuf[MC_CMD_MDIO_WRITE_IN_LEN];
u8 outbuf[MC_CMD_MDIO_WRITE_OUT_LEN];
size_t outlen;
int rc;
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_BUS, bus);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_PRTAD, prtad);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_DEVAD, devad);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_ADDR, addr);
MCDI_SET_DWORD(inbuf, MDIO_WRITE_IN_VALUE, value);
rc = efx_mcdi_rpc(efx, MC_CMD_MDIO_WRITE, inbuf, sizeof(inbuf),
outbuf, sizeof(outbuf), &outlen);
if (rc)
goto fail;
*status_out = MCDI_DWORD(outbuf, MDIO_WRITE_OUT_STATUS);
return 0;
fail:
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return rc;
}
static u32 mcdi_to_ethtool_cap(u32 media, u32 cap)
{
u32 result = 0;
switch (media) {
case MC_CMD_MEDIA_KX4:
result |= SUPPORTED_Backplane;
if (cap & (1 << MC_CMD_PHY_CAP_1000FDX_LBN))
result |= SUPPORTED_1000baseKX_Full;
if (cap & (1 << MC_CMD_PHY_CAP_10000FDX_LBN))
result |= SUPPORTED_10000baseKX4_Full;
break;
case MC_CMD_MEDIA_XFP:
case MC_CMD_MEDIA_SFP_PLUS:
result |= SUPPORTED_FIBRE;
break;
case MC_CMD_MEDIA_BASE_T:
result |= SUPPORTED_TP;
if (cap & (1 << MC_CMD_PHY_CAP_10HDX_LBN))
result |= SUPPORTED_10baseT_Half;
if (cap & (1 << MC_CMD_PHY_CAP_10FDX_LBN))
result |= SUPPORTED_10baseT_Full;
if (cap & (1 << MC_CMD_PHY_CAP_100HDX_LBN))
result |= SUPPORTED_100baseT_Half;
if (cap & (1 << MC_CMD_PHY_CAP_100FDX_LBN))
result |= SUPPORTED_100baseT_Full;
if (cap & (1 << MC_CMD_PHY_CAP_1000HDX_LBN))
result |= SUPPORTED_1000baseT_Half;
if (cap & (1 << MC_CMD_PHY_CAP_1000FDX_LBN))
result |= SUPPORTED_1000baseT_Full;
if (cap & (1 << MC_CMD_PHY_CAP_10000FDX_LBN))
result |= SUPPORTED_10000baseT_Full;
break;
}
if (cap & (1 << MC_CMD_PHY_CAP_PAUSE_LBN))
result |= SUPPORTED_Pause;
if (cap & (1 << MC_CMD_PHY_CAP_ASYM_LBN))
result |= SUPPORTED_Asym_Pause;
if (cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
result |= SUPPORTED_Autoneg;
return result;
}
static u32 ethtool_to_mcdi_cap(u32 cap)
{
u32 result = 0;
if (cap & SUPPORTED_10baseT_Half)
result |= (1 << MC_CMD_PHY_CAP_10HDX_LBN);
if (cap & SUPPORTED_10baseT_Full)
result |= (1 << MC_CMD_PHY_CAP_10FDX_LBN);
if (cap & SUPPORTED_100baseT_Half)
result |= (1 << MC_CMD_PHY_CAP_100HDX_LBN);
if (cap & SUPPORTED_100baseT_Full)
result |= (1 << MC_CMD_PHY_CAP_100FDX_LBN);
if (cap & SUPPORTED_1000baseT_Half)
result |= (1 << MC_CMD_PHY_CAP_1000HDX_LBN);
if (cap & (SUPPORTED_1000baseT_Full | SUPPORTED_1000baseKX_Full))
result |= (1 << MC_CMD_PHY_CAP_1000FDX_LBN);
if (cap & (SUPPORTED_10000baseT_Full | SUPPORTED_10000baseKX4_Full))
result |= (1 << MC_CMD_PHY_CAP_10000FDX_LBN);
if (cap & SUPPORTED_Pause)
result |= (1 << MC_CMD_PHY_CAP_PAUSE_LBN);
if (cap & SUPPORTED_Asym_Pause)
result |= (1 << MC_CMD_PHY_CAP_ASYM_LBN);
if (cap & SUPPORTED_Autoneg)
result |= (1 << MC_CMD_PHY_CAP_AN_LBN);
return result;
}
static u32 efx_get_mcdi_phy_flags(struct efx_nic *efx)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
enum efx_phy_mode mode, supported;
u32 flags;
/* TODO: Advertise the capabilities supported by this PHY */
supported = 0;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_TXDIS_LBN))
supported |= PHY_MODE_TX_DISABLED;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_LOWPOWER_LBN))
supported |= PHY_MODE_LOW_POWER;
if (phy_cfg->flags & (1 << MC_CMD_GET_PHY_CFG_POWEROFF_LBN))
supported |= PHY_MODE_OFF;
mode = efx->phy_mode & supported;
flags = 0;
if (mode & PHY_MODE_TX_DISABLED)
flags |= (1 << MC_CMD_SET_LINK_TXDIS_LBN);
if (mode & PHY_MODE_LOW_POWER)
flags |= (1 << MC_CMD_SET_LINK_LOWPOWER_LBN);
if (mode & PHY_MODE_OFF)
flags |= (1 << MC_CMD_SET_LINK_POWEROFF_LBN);
return flags;
}
static u32 mcdi_to_ethtool_media(u32 media)
{
switch (media) {
case MC_CMD_MEDIA_XAUI:
case MC_CMD_MEDIA_CX4:
case MC_CMD_MEDIA_KX4:
return PORT_OTHER;
case MC_CMD_MEDIA_XFP:
case MC_CMD_MEDIA_SFP_PLUS:
return PORT_FIBRE;
case MC_CMD_MEDIA_BASE_T:
return PORT_TP;
default:
return PORT_OTHER;
}
}
static int efx_mcdi_phy_probe(struct efx_nic *efx)
{
struct efx_mcdi_phy_cfg *phy_cfg;
int rc;
/* TODO: Move phy_data initialisation to
* phy_op->probe/remove, rather than init/fini */
phy_cfg = kzalloc(sizeof(*phy_cfg), GFP_KERNEL);
if (phy_cfg == NULL) {
rc = -ENOMEM;
goto fail_alloc;
}
rc = efx_mcdi_get_phy_cfg(efx, phy_cfg);
if (rc != 0)
goto fail;
efx->phy_type = phy_cfg->type;
efx->mdio_bus = phy_cfg->channel;
efx->mdio.prtad = phy_cfg->port;
efx->mdio.mmds = phy_cfg->mmd_mask & ~(1 << MC_CMD_MMD_CLAUSE22);
efx->mdio.mode_support = 0;
if (phy_cfg->mmd_mask & (1 << MC_CMD_MMD_CLAUSE22))
efx->mdio.mode_support |= MDIO_SUPPORTS_C22;
if (phy_cfg->mmd_mask & ~(1 << MC_CMD_MMD_CLAUSE22))
efx->mdio.mode_support |= MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
/* Assert that we can map efx -> mcdi loopback modes */
BUILD_BUG_ON(LOOPBACK_NONE != MC_CMD_LOOPBACK_NONE);
BUILD_BUG_ON(LOOPBACK_DATA != MC_CMD_LOOPBACK_DATA);
BUILD_BUG_ON(LOOPBACK_GMAC != MC_CMD_LOOPBACK_GMAC);
BUILD_BUG_ON(LOOPBACK_XGMII != MC_CMD_LOOPBACK_XGMII);
BUILD_BUG_ON(LOOPBACK_XGXS != MC_CMD_LOOPBACK_XGXS);
BUILD_BUG_ON(LOOPBACK_XAUI != MC_CMD_LOOPBACK_XAUI);
BUILD_BUG_ON(LOOPBACK_GMII != MC_CMD_LOOPBACK_GMII);
BUILD_BUG_ON(LOOPBACK_SGMII != MC_CMD_LOOPBACK_SGMII);
BUILD_BUG_ON(LOOPBACK_XGBR != MC_CMD_LOOPBACK_XGBR);
BUILD_BUG_ON(LOOPBACK_XFI != MC_CMD_LOOPBACK_XFI);
BUILD_BUG_ON(LOOPBACK_XAUI_FAR != MC_CMD_LOOPBACK_XAUI_FAR);
BUILD_BUG_ON(LOOPBACK_GMII_FAR != MC_CMD_LOOPBACK_GMII_FAR);
BUILD_BUG_ON(LOOPBACK_SGMII_FAR != MC_CMD_LOOPBACK_SGMII_FAR);
BUILD_BUG_ON(LOOPBACK_XFI_FAR != MC_CMD_LOOPBACK_XFI_FAR);
BUILD_BUG_ON(LOOPBACK_GPHY != MC_CMD_LOOPBACK_GPHY);
BUILD_BUG_ON(LOOPBACK_PHYXS != MC_CMD_LOOPBACK_PHYXS);
BUILD_BUG_ON(LOOPBACK_PCS != MC_CMD_LOOPBACK_PCS);
BUILD_BUG_ON(LOOPBACK_PMAPMD != MC_CMD_LOOPBACK_PMAPMD);
BUILD_BUG_ON(LOOPBACK_XPORT != MC_CMD_LOOPBACK_XPORT);
BUILD_BUG_ON(LOOPBACK_XGMII_WS != MC_CMD_LOOPBACK_XGMII_WS);
BUILD_BUG_ON(LOOPBACK_XAUI_WS != MC_CMD_LOOPBACK_XAUI_WS);
BUILD_BUG_ON(LOOPBACK_XAUI_WS_FAR != MC_CMD_LOOPBACK_XAUI_WS_FAR);
BUILD_BUG_ON(LOOPBACK_XAUI_WS_NEAR != MC_CMD_LOOPBACK_XAUI_WS_NEAR);
BUILD_BUG_ON(LOOPBACK_GMII_WS != MC_CMD_LOOPBACK_GMII_WS);
BUILD_BUG_ON(LOOPBACK_XFI_WS != MC_CMD_LOOPBACK_XFI_WS);
BUILD_BUG_ON(LOOPBACK_XFI_WS_FAR != MC_CMD_LOOPBACK_XFI_WS_FAR);
BUILD_BUG_ON(LOOPBACK_PHYXS_WS != MC_CMD_LOOPBACK_PHYXS_WS);
rc = efx_mcdi_loopback_modes(efx, &efx->loopback_modes);
if (rc != 0)
goto fail;
/* The MC indicates that LOOPBACK_NONE is a valid loopback mode,
* but by convention we don't */
efx->loopback_modes &= ~(1 << LOOPBACK_NONE);
kfree(phy_cfg);
return 0;
fail:
kfree(phy_cfg);
fail_alloc:
return rc;
}
static int efx_mcdi_phy_init(struct efx_nic *efx)
{
struct efx_mcdi_phy_cfg *phy_data;
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
u32 caps;
int rc;
phy_data = kzalloc(sizeof(*phy_data), GFP_KERNEL);
if (phy_data == NULL)
return -ENOMEM;
rc = efx_mcdi_get_phy_cfg(efx, phy_data);
if (rc != 0)
goto fail;
efx->phy_data = phy_data;
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc)
goto fail;
caps = MCDI_DWORD(outbuf, GET_LINK_OUT_CAP);
if (caps & (1 << MC_CMD_PHY_CAP_AN_LBN))
efx->link_advertising =
mcdi_to_ethtool_cap(phy_data->media, caps);
else
phy_data->forced_cap = caps;
return 0;
fail:
kfree(phy_data);
return rc;
}
int efx_mcdi_phy_reconfigure(struct efx_nic *efx)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u32 caps = (efx->link_advertising ?
ethtool_to_mcdi_cap(efx->link_advertising) :
phy_cfg->forced_cap);
return efx_mcdi_set_link(efx, caps, efx_get_mcdi_phy_flags(efx),
efx->loopback_mode, 0);
}
void efx_mcdi_phy_decode_link(struct efx_nic *efx,
struct efx_link_state *link_state,
u32 speed, u32 flags, u32 fcntl)
{
switch (fcntl) {
case MC_CMD_FCNTL_AUTO:
WARN_ON(1); /* This is not a link mode */
link_state->fc = EFX_FC_AUTO | EFX_FC_TX | EFX_FC_RX;
break;
case MC_CMD_FCNTL_BIDIR:
link_state->fc = EFX_FC_TX | EFX_FC_RX;
break;
case MC_CMD_FCNTL_RESPOND:
link_state->fc = EFX_FC_RX;
break;
default:
WARN_ON(1);
case MC_CMD_FCNTL_OFF:
link_state->fc = 0;
break;
}
link_state->up = !!(flags & (1 << MC_CMD_GET_LINK_LINK_UP_LBN));
link_state->fd = !!(flags & (1 << MC_CMD_GET_LINK_FULL_DUPLEX_LBN));
link_state->speed = speed;
}
/* Verify that the forced flow control settings (!EFX_FC_AUTO) are
* supported by the link partner. Warn the user if this isn't the case
*/
void efx_mcdi_phy_check_fcntl(struct efx_nic *efx, u32 lpa)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u32 rmtadv;
/* The link partner capabilities are only relevent if the
* link supports flow control autonegotiation */
if (~phy_cfg->supported_cap & (1 << MC_CMD_PHY_CAP_ASYM_LBN))
return;
/* If flow control autoneg is supported and enabled, then fine */
if (efx->wanted_fc & EFX_FC_AUTO)
return;
rmtadv = 0;
if (lpa & (1 << MC_CMD_PHY_CAP_PAUSE_LBN))
rmtadv |= ADVERTISED_Pause;
if (lpa & (1 << MC_CMD_PHY_CAP_ASYM_LBN))
rmtadv |= ADVERTISED_Asym_Pause;
if ((efx->wanted_fc & EFX_FC_TX) && rmtadv == ADVERTISED_Asym_Pause)
EFX_ERR(efx, "warning: link partner doesn't support "
"pause frames");
}
static bool efx_mcdi_phy_poll(struct efx_nic *efx)
{
struct efx_link_state old_state = efx->link_state;
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
int rc;
WARN_ON(!mutex_is_locked(&efx->mac_lock));
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc) {
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
efx->link_state.up = false;
} else {
efx_mcdi_phy_decode_link(
efx, &efx->link_state,
MCDI_DWORD(outbuf, GET_LINK_OUT_LINK_SPEED),
MCDI_DWORD(outbuf, GET_LINK_OUT_FLAGS),
MCDI_DWORD(outbuf, GET_LINK_OUT_FCNTL));
}
return !efx_link_state_equal(&efx->link_state, &old_state);
}
static void efx_mcdi_phy_fini(struct efx_nic *efx)
{
struct efx_mcdi_phy_data *phy_data = efx->phy_data;
efx->phy_data = NULL;
kfree(phy_data);
}
static void efx_mcdi_phy_get_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u8 outbuf[MC_CMD_GET_LINK_OUT_LEN];
int rc;
ecmd->supported =
mcdi_to_ethtool_cap(phy_cfg->media, phy_cfg->supported_cap);
ecmd->advertising = efx->link_advertising;
ecmd->speed = efx->link_state.speed;
ecmd->duplex = efx->link_state.fd;
ecmd->port = mcdi_to_ethtool_media(phy_cfg->media);
ecmd->phy_address = phy_cfg->port;
ecmd->transceiver = XCVR_INTERNAL;
ecmd->autoneg = !!(efx->link_advertising & ADVERTISED_Autoneg);
ecmd->mdio_support = (efx->mdio.mode_support &
(MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22));
BUILD_BUG_ON(MC_CMD_GET_LINK_IN_LEN != 0);
rc = efx_mcdi_rpc(efx, MC_CMD_GET_LINK, NULL, 0,
outbuf, sizeof(outbuf), NULL);
if (rc) {
EFX_ERR(efx, "%s: failed rc=%d\n", __func__, rc);
return;
}
ecmd->lp_advertising =
mcdi_to_ethtool_cap(phy_cfg->media,
MCDI_DWORD(outbuf, GET_LINK_OUT_LP_CAP));
}
static int efx_mcdi_phy_set_settings(struct efx_nic *efx, struct ethtool_cmd *ecmd)
{
struct efx_mcdi_phy_cfg *phy_cfg = efx->phy_data;
u32 caps;
int rc;
if (ecmd->autoneg) {
caps = (ethtool_to_mcdi_cap(ecmd->advertising) |
1 << MC_CMD_PHY_CAP_AN_LBN);
} else if (ecmd->duplex) {
switch (ecmd->speed) {
case 10: caps = 1 << MC_CMD_PHY_CAP_10FDX_LBN; break;
case 100: caps = 1 << MC_CMD_PHY_CAP_100FDX_LBN; break;
case 1000: caps = 1 << MC_CMD_PHY_CAP_1000FDX_LBN; break;
case 10000: caps = 1 << MC_CMD_PHY_CAP_10000FDX_LBN; break;
default: return -EINVAL;
}
} else {
switch (ecmd->speed) {
case 10: caps = 1 << MC_CMD_PHY_CAP_10HDX_LBN; break;
case 100: caps = 1 << MC_CMD_PHY_CAP_100HDX_LBN; break;
case 1000: caps = 1 << MC_CMD_PHY_CAP_1000HDX_LBN; break;
default: return -EINVAL;
}
}
rc = efx_mcdi_set_link(efx, caps, efx_get_mcdi_phy_flags(efx),
efx->loopback_mode, 0);
if (rc)
return rc;
if (ecmd->autoneg) {
efx_link_set_advertising(
efx, ecmd->advertising | ADVERTISED_Autoneg);
phy_cfg->forced_cap = 0;
} else {
efx_link_set_advertising(efx, 0);
phy_cfg->forced_cap = caps;
}
return 0;
}
struct efx_phy_operations efx_mcdi_phy_ops = {
.probe = efx_mcdi_phy_probe,
.init = efx_mcdi_phy_init,
.reconfigure = efx_mcdi_phy_reconfigure,
.poll = efx_mcdi_phy_poll,
.fini = efx_mcdi_phy_fini,
.get_settings = efx_mcdi_phy_get_settings,
.set_settings = efx_mcdi_phy_set_settings,
.run_tests = NULL,
.test_name = NULL,
};
/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2005-2006 Fen Systems Ltd.
* Copyright 2006-2009 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/module.h>
#include "net_driver.h"
#include "bitfield.h"
#include "efx.h"
#include "nic.h"
#include "mac.h"
#include "spi.h"
#include "regs.h"
#include "io.h"
#include "phy.h"
#include "workarounds.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
/* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
static void siena_init_wol(struct efx_nic *efx);
static void siena_push_irq_moderation(struct efx_channel *channel)
{
efx_dword_t timer_cmd;
if (channel->irq_moderation)
EFX_POPULATE_DWORD_2(timer_cmd,
FRF_CZ_TC_TIMER_MODE,
FFE_CZ_TIMER_MODE_INT_HLDOFF,
FRF_CZ_TC_TIMER_VAL,
channel->irq_moderation - 1);
else
EFX_POPULATE_DWORD_2(timer_cmd,
FRF_CZ_TC_TIMER_MODE,
FFE_CZ_TIMER_MODE_DIS,
FRF_CZ_TC_TIMER_VAL, 0);
efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
channel->channel);
}
static void siena_push_multicast_hash(struct efx_nic *efx)
{
WARN_ON(!mutex_is_locked(&efx->mac_lock));
efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
efx->multicast_hash.byte, sizeof(efx->multicast_hash),
NULL, 0, NULL);
}
static int siena_mdio_write(struct net_device *net_dev,
int prtad, int devad, u16 addr, u16 value)
{
struct efx_nic *efx = netdev_priv(net_dev);
uint32_t status;
int rc;
rc = efx_mcdi_mdio_write(efx, efx->mdio_bus, prtad, devad,
addr, value, &status);
if (rc)
return rc;
if (status != MC_CMD_MDIO_STATUS_GOOD)
return -EIO;
return 0;
}
static int siena_mdio_read(struct net_device *net_dev,
int prtad, int devad, u16 addr)
{
struct efx_nic *efx = netdev_priv(net_dev);
uint16_t value;
uint32_t status;
int rc;
rc = efx_mcdi_mdio_read(efx, efx->mdio_bus, prtad, devad,
addr, &value, &status);
if (rc)
return rc;
if (status != MC_CMD_MDIO_STATUS_GOOD)
return -EIO;
return (int)value;
}
/* This call is responsible for hooking in the MAC and PHY operations */
static int siena_probe_port(struct efx_nic *efx)
{
int rc;
/* Hook in PHY operations table */
efx->phy_op = &efx_mcdi_phy_ops;
/* Set up MDIO structure for PHY */
efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
efx->mdio.mdio_read = siena_mdio_read;
efx->mdio.mdio_write = siena_mdio_write;
/* Fill out MDIO structure and loopback modes */
rc = efx->phy_op->probe(efx);
if (rc != 0)
return rc;
/* Initial assumption */
efx->link_state.speed = 10000;
efx->link_state.fd = true;
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
/* Allocate buffer for stats */
rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
MC_CMD_MAC_NSTATS * sizeof(u64));
if (rc)
return rc;
EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
(u64)efx->stats_buffer.dma_addr,
efx->stats_buffer.addr,
(u64)virt_to_phys(efx->stats_buffer.addr));
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 1);
return 0;
}
void siena_remove_port(struct efx_nic *efx)
{
efx_nic_free_buffer(efx, &efx->stats_buffer);
}
static const struct efx_nic_register_test siena_register_tests[] = {
{ FR_AZ_ADR_REGION,
EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
{ FR_CZ_USR_EV_CFG,
EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_CFG,
EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
{ FR_AZ_TX_CFG,
EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
{ FR_AZ_TX_RESERVED,
EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
{ FR_AZ_SRM_TX_DC_CFG,
EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_CFG,
EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
{ FR_AZ_RX_DC_PF_WM,
EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_BZ_DP_CTRL,
EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
{ FR_BZ_RX_RSS_TKEY,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
{ FR_CZ_RX_RSS_IPV6_REG1,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
{ FR_CZ_RX_RSS_IPV6_REG2,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
{ FR_CZ_RX_RSS_IPV6_REG3,
EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
};
static int siena_test_registers(struct efx_nic *efx)
{
return efx_nic_test_registers(efx, siena_register_tests,
ARRAY_SIZE(siena_register_tests));
}
/**************************************************************************
*
* Device reset
*
**************************************************************************
*/
static int siena_reset_hw(struct efx_nic *efx, enum reset_type method)
{
if (method == RESET_TYPE_WORLD)
return efx_mcdi_reset_mc(efx);
else
return efx_mcdi_reset_port(efx);
}
static int siena_probe_nvconfig(struct efx_nic *efx)
{
int rc;
rc = efx_mcdi_get_board_cfg(efx, efx->mac_address, NULL);
if (rc)
return rc;
return 0;
}
static int siena_probe_nic(struct efx_nic *efx)
{
struct siena_nic_data *nic_data;
bool already_attached = 0;
int rc;
/* Allocate storage for hardware specific data */
nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
if (!nic_data)
return -ENOMEM;
efx->nic_data = nic_data;
if (efx_nic_fpga_ver(efx) != 0) {
EFX_ERR(efx, "Siena FPGA not supported\n");
rc = -ENODEV;
goto fail1;
}
efx_mcdi_init(efx);
/* Recover from a failed assertion before probing */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
goto fail1;
rc = efx_mcdi_fwver(efx, &nic_data->fw_version, &nic_data->fw_build);
if (rc) {
EFX_ERR(efx, "Failed to read MCPU firmware version - "
"rc %d\n", rc);
goto fail1; /* MCPU absent? */
}
/* Let the BMC know that the driver is now in charge of link and
* filter settings. We must do this before we reset the NIC */
rc = efx_mcdi_drv_attach(efx, true, &already_attached);
if (rc) {
EFX_ERR(efx, "Unable to register driver with MCPU\n");
goto fail2;
}
if (already_attached)
/* Not a fatal error */
EFX_ERR(efx, "Host already registered with MCPU\n");
/* Now we can reset the NIC */
rc = siena_reset_hw(efx, RESET_TYPE_ALL);
if (rc) {
EFX_ERR(efx, "failed to reset NIC\n");
goto fail3;
}
siena_init_wol(efx);
/* Allocate memory for INT_KER */
rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
if (rc)
goto fail4;
BUG_ON(efx->irq_status.dma_addr & 0x0f);
EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
(unsigned long long)efx->irq_status.dma_addr,
efx->irq_status.addr,
(unsigned long long)virt_to_phys(efx->irq_status.addr));
/* Read in the non-volatile configuration */
rc = siena_probe_nvconfig(efx);
if (rc == -EINVAL) {
EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
efx->phy_type = PHY_TYPE_NONE;
efx->mdio.prtad = MDIO_PRTAD_NONE;
} else if (rc) {
goto fail5;
}
return 0;
fail5:
efx_nic_free_buffer(efx, &efx->irq_status);
fail4:
fail3:
efx_mcdi_drv_attach(efx, false, NULL);
fail2:
fail1:
kfree(efx->nic_data);
return rc;
}
/* This call performs hardware-specific global initialisation, such as
* defining the descriptor cache sizes and number of RSS channels.
* It does not set up any buffers, descriptor rings or event queues.
*/
static int siena_init_nic(struct efx_nic *efx)
{
efx_oword_t temp;
int rc;
/* Recover from a failed assertion post-reset */
rc = efx_mcdi_handle_assertion(efx);
if (rc)
return rc;
/* Squash TX of packets of 16 bytes or less */
efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
* descriptors (which is bad).
*/
efx_reado(efx, &temp, FR_AZ_TX_CFG);
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
efx_writeo(efx, &temp, FR_AZ_TX_CFG);
efx_reado(efx, &temp, FR_AZ_RX_CFG);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
efx_writeo(efx, &temp, FR_AZ_RX_CFG);
if (efx_nic_rx_xoff_thresh >= 0 || efx_nic_rx_xon_thresh >= 0)
/* No MCDI operation has been defined to set thresholds */
EFX_ERR(efx, "ignoring RX flow control thresholds\n");
/* Enable event logging */
rc = efx_mcdi_log_ctrl(efx, true, false, 0);
if (rc)
return rc;
/* Set destination of both TX and RX Flush events */
EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
efx_nic_init_common(efx);
return 0;
}
static void siena_remove_nic(struct efx_nic *efx)
{
efx_nic_free_buffer(efx, &efx->irq_status);
siena_reset_hw(efx, RESET_TYPE_ALL);
/* Relinquish the device back to the BMC */
if (efx_nic_has_mc(efx))
efx_mcdi_drv_attach(efx, false, NULL);
/* Tear down the private nic state */
kfree(efx->nic_data);
efx->nic_data = NULL;
}
#define STATS_GENERATION_INVALID ((u64)(-1))
static int siena_try_update_nic_stats(struct efx_nic *efx)
{
u64 *dma_stats;
struct efx_mac_stats *mac_stats;
u64 generation_start;
u64 generation_end;
mac_stats = &efx->mac_stats;
dma_stats = (u64 *)efx->stats_buffer.addr;
generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
if (generation_end == STATS_GENERATION_INVALID)
return 0;
rmb();
#define MAC_STAT(M, D) \
mac_stats->M = dma_stats[MC_CMD_MAC_ ## D]
MAC_STAT(tx_bytes, TX_BYTES);
MAC_STAT(tx_bad_bytes, TX_BAD_BYTES);
mac_stats->tx_good_bytes = (mac_stats->tx_bytes -
mac_stats->tx_bad_bytes);
MAC_STAT(tx_packets, TX_PKTS);
MAC_STAT(tx_bad, TX_BAD_FCS_PKTS);
MAC_STAT(tx_pause, TX_PAUSE_PKTS);
MAC_STAT(tx_control, TX_CONTROL_PKTS);
MAC_STAT(tx_unicast, TX_UNICAST_PKTS);
MAC_STAT(tx_multicast, TX_MULTICAST_PKTS);
MAC_STAT(tx_broadcast, TX_BROADCAST_PKTS);
MAC_STAT(tx_lt64, TX_LT64_PKTS);
MAC_STAT(tx_64, TX_64_PKTS);
MAC_STAT(tx_65_to_127, TX_65_TO_127_PKTS);
MAC_STAT(tx_128_to_255, TX_128_TO_255_PKTS);
MAC_STAT(tx_256_to_511, TX_256_TO_511_PKTS);
MAC_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS);
MAC_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS);
MAC_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS);
MAC_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS);
mac_stats->tx_collision = 0;
MAC_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS);
MAC_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS);
MAC_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS);
MAC_STAT(tx_deferred, TX_DEFERRED_PKTS);
MAC_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS);
mac_stats->tx_collision = (mac_stats->tx_single_collision +
mac_stats->tx_multiple_collision +
mac_stats->tx_excessive_collision +
mac_stats->tx_late_collision);
MAC_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS);
MAC_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS);
MAC_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS);
MAC_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS);
MAC_STAT(rx_bytes, RX_BYTES);
MAC_STAT(rx_bad_bytes, RX_BAD_BYTES);
mac_stats->rx_good_bytes = (mac_stats->rx_bytes -
mac_stats->rx_bad_bytes);
MAC_STAT(rx_packets, RX_PKTS);
MAC_STAT(rx_good, RX_GOOD_PKTS);
mac_stats->rx_bad = mac_stats->rx_packets - mac_stats->rx_good;
MAC_STAT(rx_pause, RX_PAUSE_PKTS);
MAC_STAT(rx_control, RX_CONTROL_PKTS);
MAC_STAT(rx_unicast, RX_UNICAST_PKTS);
MAC_STAT(rx_multicast, RX_MULTICAST_PKTS);
MAC_STAT(rx_broadcast, RX_BROADCAST_PKTS);
MAC_STAT(rx_lt64, RX_UNDERSIZE_PKTS);
MAC_STAT(rx_64, RX_64_PKTS);
MAC_STAT(rx_65_to_127, RX_65_TO_127_PKTS);
MAC_STAT(rx_128_to_255, RX_128_TO_255_PKTS);
MAC_STAT(rx_256_to_511, RX_256_TO_511_PKTS);
MAC_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS);
MAC_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS);
MAC_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS);
MAC_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS);
mac_stats->rx_bad_lt64 = 0;
mac_stats->rx_bad_64_to_15xx = 0;
mac_stats->rx_bad_15xx_to_jumbo = 0;
MAC_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS);
MAC_STAT(rx_overflow, RX_OVERFLOW_PKTS);
mac_stats->rx_missed = 0;
MAC_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS);
MAC_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS);
MAC_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS);
MAC_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS);
MAC_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS);
mac_stats->rx_good_lt64 = 0;
efx->n_rx_nodesc_drop_cnt = dma_stats[MC_CMD_MAC_RX_NODESC_DROPS];
#undef MAC_STAT
rmb();
generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
if (generation_end != generation_start)
return -EAGAIN;
return 0;
}
static void siena_update_nic_stats(struct efx_nic *efx)
{
while (siena_try_update_nic_stats(efx) == -EAGAIN)
cpu_relax();
}
static void siena_start_nic_stats(struct efx_nic *efx)
{
u64 *dma_stats = (u64 *)efx->stats_buffer.addr;
dma_stats[MC_CMD_MAC_GENERATION_END] = STATS_GENERATION_INVALID;
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr,
MC_CMD_MAC_NSTATS * sizeof(u64), 1, 0);
}
static void siena_stop_nic_stats(struct efx_nic *efx)
{
efx_mcdi_mac_stats(efx, efx->stats_buffer.dma_addr, 0, 0, 0);
}
void siena_print_fwver(struct efx_nic *efx, char *buf, size_t len)
{
struct siena_nic_data *nic_data = efx->nic_data;
snprintf(buf, len, "%u.%u.%u.%u",
(unsigned int)(nic_data->fw_version >> 48),
(unsigned int)(nic_data->fw_version >> 32 & 0xffff),
(unsigned int)(nic_data->fw_version >> 16 & 0xffff),
(unsigned int)(nic_data->fw_version & 0xffff));
}
/**************************************************************************
*
* Wake on LAN
*
**************************************************************************
*/
static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
struct siena_nic_data *nic_data = efx->nic_data;
wol->supported = WAKE_MAGIC;
if (nic_data->wol_filter_id != -1)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int siena_set_wol(struct efx_nic *efx, u32 type)
{
struct siena_nic_data *nic_data = efx->nic_data;
int rc;
if (type & ~WAKE_MAGIC)
return -EINVAL;
if (type & WAKE_MAGIC) {
if (nic_data->wol_filter_id != -1)
efx_mcdi_wol_filter_remove(efx,
nic_data->wol_filter_id);
rc = efx_mcdi_wol_filter_set_magic(efx, efx->mac_address,
&nic_data->wol_filter_id);
if (rc)
goto fail;
pci_wake_from_d3(efx->pci_dev, true);
} else {
rc = efx_mcdi_wol_filter_reset(efx);
nic_data->wol_filter_id = -1;
pci_wake_from_d3(efx->pci_dev, false);
if (rc)
goto fail;
}
return 0;
fail:
EFX_ERR(efx, "%s failed: type=%d rc=%d\n", __func__, type, rc);
return rc;
}
static void siena_init_wol(struct efx_nic *efx)
{
struct siena_nic_data *nic_data = efx->nic_data;
int rc;
rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
if (rc != 0) {
/* If it failed, attempt to get into a synchronised
* state with MC by resetting any set WoL filters */
efx_mcdi_wol_filter_reset(efx);
nic_data->wol_filter_id = -1;
} else if (nic_data->wol_filter_id != -1) {
pci_wake_from_d3(efx->pci_dev, true);
}
}
/**************************************************************************
*
* Revision-dependent attributes used by efx.c and nic.c
*
**************************************************************************
*/
struct efx_nic_type siena_a0_nic_type = {
.probe = siena_probe_nic,
.remove = siena_remove_nic,
.init = siena_init_nic,
.fini = efx_port_dummy_op_void,
.monitor = NULL,
.reset = siena_reset_hw,
.probe_port = siena_probe_port,
.remove_port = siena_remove_port,
.prepare_flush = efx_port_dummy_op_void,
.update_stats = siena_update_nic_stats,
.start_stats = siena_start_nic_stats,
.stop_stats = siena_stop_nic_stats,
.set_id_led = efx_mcdi_set_id_led,
.push_irq_moderation = siena_push_irq_moderation,
.push_multicast_hash = siena_push_multicast_hash,
.reconfigure_port = efx_mcdi_phy_reconfigure,
.get_wol = siena_get_wol,
.set_wol = siena_set_wol,
.resume_wol = siena_init_wol,
.test_registers = siena_test_registers,
.default_mac_ops = &efx_mcdi_mac_operations,
.revision = EFX_REV_SIENA_A0,
.mem_map_size = (FR_CZ_MC_TREG_SMEM +
FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS),
.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
.rx_buffer_padding = 0,
.max_interrupt_mode = EFX_INT_MODE_MSIX,
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
* interrupt handler only supports 32
* channels */
.tx_dc_base = 0x88000,
.rx_dc_base = 0x68000,
.offload_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM,
.reset_world_flags = ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT,
};
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment