Commit aff3d9ef authored by Joao Pinto's avatar Joao Pinto Committed by David S. Miller

net: stmmac: enable multiple buffers

This patch creates 2 new structures (stmmac_tx_queue and stmmac_rx_queue)
in include/linux/stmmac.h, enabling that each RX and TX queue has its
own buffers and data.
Signed-off-by: default avatarJoao Pinto <jpinto@synopsys.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent de6b08fd
...@@ -26,12 +26,15 @@ ...@@ -26,12 +26,15 @@
static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
{ {
struct stmmac_priv *priv = (struct stmmac_priv *)p; struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)p;
unsigned int entry = priv->cur_tx;
struct dma_desc *desc = priv->dma_tx + entry;
unsigned int nopaged_len = skb_headlen(skb); unsigned int nopaged_len = skb_headlen(skb);
struct stmmac_priv *priv = tx_q->priv_data;
unsigned int entry = tx_q->cur_tx;
unsigned int bmax, des2; unsigned int bmax, des2;
unsigned int i = 1, len; unsigned int i = 1, len;
struct dma_desc *desc;
desc = tx_q->dma_tx + entry;
if (priv->plat->enh_desc) if (priv->plat->enh_desc)
bmax = BUF_SIZE_8KiB; bmax = BUF_SIZE_8KiB;
...@@ -45,16 +48,16 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) ...@@ -45,16 +48,16 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
desc->des2 = cpu_to_le32(des2); desc->des2 = cpu_to_le32(des2);
if (dma_mapping_error(priv->device, des2)) if (dma_mapping_error(priv->device, des2))
return -1; return -1;
priv->tx_skbuff_dma[entry].buf = des2; tx_q->tx_skbuff_dma[entry].buf = des2;
priv->tx_skbuff_dma[entry].len = bmax; tx_q->tx_skbuff_dma[entry].len = bmax;
/* do not close the descriptor and do not set own bit */ /* do not close the descriptor and do not set own bit */
priv->hw->desc->prepare_tx_desc(desc, 1, bmax, csum, STMMAC_CHAIN_MODE, priv->hw->desc->prepare_tx_desc(desc, 1, bmax, csum, STMMAC_CHAIN_MODE,
0, false); 0, false);
while (len != 0) { while (len != 0) {
priv->tx_skbuff[entry] = NULL; tx_q->tx_skbuff[entry] = NULL;
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
desc = priv->dma_tx + entry; desc = tx_q->dma_tx + entry;
if (len > bmax) { if (len > bmax) {
des2 = dma_map_single(priv->device, des2 = dma_map_single(priv->device,
...@@ -63,8 +66,8 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) ...@@ -63,8 +66,8 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
desc->des2 = cpu_to_le32(des2); desc->des2 = cpu_to_le32(des2);
if (dma_mapping_error(priv->device, des2)) if (dma_mapping_error(priv->device, des2))
return -1; return -1;
priv->tx_skbuff_dma[entry].buf = des2; tx_q->tx_skbuff_dma[entry].buf = des2;
priv->tx_skbuff_dma[entry].len = bmax; tx_q->tx_skbuff_dma[entry].len = bmax;
priv->hw->desc->prepare_tx_desc(desc, 0, bmax, csum, priv->hw->desc->prepare_tx_desc(desc, 0, bmax, csum,
STMMAC_CHAIN_MODE, 1, STMMAC_CHAIN_MODE, 1,
false); false);
...@@ -77,8 +80,8 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) ...@@ -77,8 +80,8 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
desc->des2 = cpu_to_le32(des2); desc->des2 = cpu_to_le32(des2);
if (dma_mapping_error(priv->device, des2)) if (dma_mapping_error(priv->device, des2))
return -1; return -1;
priv->tx_skbuff_dma[entry].buf = des2; tx_q->tx_skbuff_dma[entry].buf = des2;
priv->tx_skbuff_dma[entry].len = len; tx_q->tx_skbuff_dma[entry].len = len;
/* last descriptor can be set now */ /* last descriptor can be set now */
priv->hw->desc->prepare_tx_desc(desc, 0, len, csum, priv->hw->desc->prepare_tx_desc(desc, 0, len, csum,
STMMAC_CHAIN_MODE, 1, STMMAC_CHAIN_MODE, 1,
...@@ -87,7 +90,7 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) ...@@ -87,7 +90,7 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
} }
} }
priv->cur_tx = entry; tx_q->cur_tx = entry;
return entry; return entry;
} }
...@@ -136,32 +139,34 @@ static void stmmac_init_dma_chain(void *des, dma_addr_t phy_addr, ...@@ -136,32 +139,34 @@ static void stmmac_init_dma_chain(void *des, dma_addr_t phy_addr,
static void stmmac_refill_desc3(void *priv_ptr, struct dma_desc *p) static void stmmac_refill_desc3(void *priv_ptr, struct dma_desc *p)
{ {
struct stmmac_priv *priv = (struct stmmac_priv *)priv_ptr; struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)priv_ptr;
struct stmmac_priv *priv = rx_q->priv_data;
if (priv->hwts_rx_en && !priv->extend_desc) if (priv->hwts_rx_en && !priv->extend_desc)
/* NOTE: Device will overwrite des3 with timestamp value if /* NOTE: Device will overwrite des3 with timestamp value if
* 1588-2002 time stamping is enabled, hence reinitialize it * 1588-2002 time stamping is enabled, hence reinitialize it
* to keep explicit chaining in the descriptor. * to keep explicit chaining in the descriptor.
*/ */
p->des3 = cpu_to_le32((unsigned int)(priv->dma_rx_phy + p->des3 = cpu_to_le32((unsigned int)(rx_q->dma_rx_phy +
(((priv->dirty_rx) + 1) % (((rx_q->dirty_rx) + 1) %
DMA_RX_SIZE) * DMA_RX_SIZE) *
sizeof(struct dma_desc))); sizeof(struct dma_desc)));
} }
static void stmmac_clean_desc3(void *priv_ptr, struct dma_desc *p) static void stmmac_clean_desc3(void *priv_ptr, struct dma_desc *p)
{ {
struct stmmac_priv *priv = (struct stmmac_priv *)priv_ptr; struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)priv_ptr;
unsigned int entry = priv->dirty_tx; struct stmmac_priv *priv = tx_q->priv_data;
unsigned int entry = tx_q->dirty_tx;
if (priv->tx_skbuff_dma[entry].last_segment && !priv->extend_desc && if (tx_q->tx_skbuff_dma[entry].last_segment && !priv->extend_desc &&
priv->hwts_tx_en) priv->hwts_tx_en)
/* NOTE: Device will overwrite des3 with timestamp value if /* NOTE: Device will overwrite des3 with timestamp value if
* 1588-2002 time stamping is enabled, hence reinitialize it * 1588-2002 time stamping is enabled, hence reinitialize it
* to keep explicit chaining in the descriptor. * to keep explicit chaining in the descriptor.
*/ */
p->des3 = cpu_to_le32((unsigned int)((priv->dma_tx_phy + p->des3 = cpu_to_le32((unsigned int)((tx_q->dma_tx_phy +
((priv->dirty_tx + 1) % DMA_TX_SIZE)) ((tx_q->dirty_tx + 1) % DMA_TX_SIZE))
* sizeof(struct dma_desc))); * sizeof(struct dma_desc)));
} }
......
...@@ -26,16 +26,17 @@ ...@@ -26,16 +26,17 @@
static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
{ {
struct stmmac_priv *priv = (struct stmmac_priv *)p; struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)p;
unsigned int entry = priv->cur_tx;
struct dma_desc *desc;
unsigned int nopaged_len = skb_headlen(skb); unsigned int nopaged_len = skb_headlen(skb);
struct stmmac_priv *priv = tx_q->priv_data;
unsigned int entry = tx_q->cur_tx;
unsigned int bmax, len, des2; unsigned int bmax, len, des2;
struct dma_desc *desc;
if (priv->extend_desc) if (priv->extend_desc)
desc = (struct dma_desc *)(priv->dma_etx + entry); desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else else
desc = priv->dma_tx + entry; desc = tx_q->dma_tx + entry;
if (priv->plat->enh_desc) if (priv->plat->enh_desc)
bmax = BUF_SIZE_8KiB; bmax = BUF_SIZE_8KiB;
...@@ -52,29 +53,29 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) ...@@ -52,29 +53,29 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
if (dma_mapping_error(priv->device, des2)) if (dma_mapping_error(priv->device, des2))
return -1; return -1;
priv->tx_skbuff_dma[entry].buf = des2; tx_q->tx_skbuff_dma[entry].buf = des2;
priv->tx_skbuff_dma[entry].len = bmax; tx_q->tx_skbuff_dma[entry].len = bmax;
priv->tx_skbuff_dma[entry].is_jumbo = true; tx_q->tx_skbuff_dma[entry].is_jumbo = true;
desc->des3 = cpu_to_le32(des2 + BUF_SIZE_4KiB); desc->des3 = cpu_to_le32(des2 + BUF_SIZE_4KiB);
priv->hw->desc->prepare_tx_desc(desc, 1, bmax, csum, priv->hw->desc->prepare_tx_desc(desc, 1, bmax, csum,
STMMAC_RING_MODE, 0, false); STMMAC_RING_MODE, 0, false);
priv->tx_skbuff[entry] = NULL; tx_q->tx_skbuff[entry] = NULL;
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
if (priv->extend_desc) if (priv->extend_desc)
desc = (struct dma_desc *)(priv->dma_etx + entry); desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else else
desc = priv->dma_tx + entry; desc = tx_q->dma_tx + entry;
des2 = dma_map_single(priv->device, skb->data + bmax, len, des2 = dma_map_single(priv->device, skb->data + bmax, len,
DMA_TO_DEVICE); DMA_TO_DEVICE);
desc->des2 = cpu_to_le32(des2); desc->des2 = cpu_to_le32(des2);
if (dma_mapping_error(priv->device, des2)) if (dma_mapping_error(priv->device, des2))
return -1; return -1;
priv->tx_skbuff_dma[entry].buf = des2; tx_q->tx_skbuff_dma[entry].buf = des2;
priv->tx_skbuff_dma[entry].len = len; tx_q->tx_skbuff_dma[entry].len = len;
priv->tx_skbuff_dma[entry].is_jumbo = true; tx_q->tx_skbuff_dma[entry].is_jumbo = true;
desc->des3 = cpu_to_le32(des2 + BUF_SIZE_4KiB); desc->des3 = cpu_to_le32(des2 + BUF_SIZE_4KiB);
priv->hw->desc->prepare_tx_desc(desc, 0, len, csum, priv->hw->desc->prepare_tx_desc(desc, 0, len, csum,
...@@ -85,15 +86,15 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum) ...@@ -85,15 +86,15 @@ static int stmmac_jumbo_frm(void *p, struct sk_buff *skb, int csum)
desc->des2 = cpu_to_le32(des2); desc->des2 = cpu_to_le32(des2);
if (dma_mapping_error(priv->device, des2)) if (dma_mapping_error(priv->device, des2))
return -1; return -1;
priv->tx_skbuff_dma[entry].buf = des2; tx_q->tx_skbuff_dma[entry].buf = des2;
priv->tx_skbuff_dma[entry].len = nopaged_len; tx_q->tx_skbuff_dma[entry].len = nopaged_len;
priv->tx_skbuff_dma[entry].is_jumbo = true; tx_q->tx_skbuff_dma[entry].is_jumbo = true;
desc->des3 = cpu_to_le32(des2 + BUF_SIZE_4KiB); desc->des3 = cpu_to_le32(des2 + BUF_SIZE_4KiB);
priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len, csum, priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len, csum,
STMMAC_RING_MODE, 0, true); STMMAC_RING_MODE, 0, true);
} }
priv->cur_tx = entry; tx_q->cur_tx = entry;
return entry; return entry;
} }
...@@ -125,12 +126,13 @@ static void stmmac_init_desc3(struct dma_desc *p) ...@@ -125,12 +126,13 @@ static void stmmac_init_desc3(struct dma_desc *p)
static void stmmac_clean_desc3(void *priv_ptr, struct dma_desc *p) static void stmmac_clean_desc3(void *priv_ptr, struct dma_desc *p)
{ {
struct stmmac_priv *priv = (struct stmmac_priv *)priv_ptr; struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)priv_ptr;
unsigned int entry = priv->dirty_tx; struct stmmac_priv *priv = tx_q->priv_data;
unsigned int entry = tx_q->dirty_tx;
/* des3 is only used for jumbo frames tx or time stamping */ /* des3 is only used for jumbo frames tx or time stamping */
if (unlikely(priv->tx_skbuff_dma[entry].is_jumbo || if (unlikely(tx_q->tx_skbuff_dma[entry].is_jumbo ||
(priv->tx_skbuff_dma[entry].last_segment && (tx_q->tx_skbuff_dma[entry].last_segment &&
!priv->extend_desc && priv->hwts_tx_en))) !priv->extend_desc && priv->hwts_tx_en)))
p->des3 = 0; p->des3 = 0;
} }
......
...@@ -46,6 +46,35 @@ struct stmmac_tx_info { ...@@ -46,6 +46,35 @@ struct stmmac_tx_info {
bool is_jumbo; bool is_jumbo;
}; };
/* Frequently used values are kept adjacent for cache effect */
struct stmmac_tx_queue {
u32 queue_index;
struct stmmac_priv *priv_data;
struct dma_extended_desc *dma_etx ____cacheline_aligned_in_smp;
struct dma_desc *dma_tx;
struct sk_buff **tx_skbuff;
struct stmmac_tx_info *tx_skbuff_dma;
unsigned int cur_tx;
unsigned int dirty_tx;
dma_addr_t dma_tx_phy;
u32 tx_tail_addr;
};
struct stmmac_rx_queue {
u32 queue_index;
struct stmmac_priv *priv_data;
struct dma_extended_desc *dma_erx;
struct dma_desc *dma_rx ____cacheline_aligned_in_smp;
struct sk_buff **rx_skbuff;
dma_addr_t *rx_skbuff_dma;
struct napi_struct napi ____cacheline_aligned_in_smp;
unsigned int cur_rx;
unsigned int dirty_rx;
u32 rx_zeroc_thresh;
dma_addr_t dma_rx_phy;
u32 rx_tail_addr;
};
struct stmmac_priv { struct stmmac_priv {
/* Frequently used values are kept adjacent for cache effect */ /* Frequently used values are kept adjacent for cache effect */
struct dma_extended_desc *dma_etx ____cacheline_aligned_in_smp; struct dma_extended_desc *dma_etx ____cacheline_aligned_in_smp;
...@@ -56,28 +85,22 @@ struct stmmac_priv { ...@@ -56,28 +85,22 @@ struct stmmac_priv {
u32 tx_count_frames; u32 tx_count_frames;
u32 tx_coal_frames; u32 tx_coal_frames;
u32 tx_coal_timer; u32 tx_coal_timer;
struct stmmac_tx_info *tx_skbuff_dma;
dma_addr_t dma_tx_phy;
int tx_coalesce; int tx_coalesce;
int hwts_tx_en; int hwts_tx_en;
bool tx_path_in_lpi_mode; bool tx_path_in_lpi_mode;
struct timer_list txtimer; struct timer_list txtimer;
bool tso; bool tso;
struct dma_desc *dma_rx ____cacheline_aligned_in_smp; /* TX Queue */
struct dma_extended_desc *dma_erx; struct stmmac_tx_queue *tx_queue;
struct sk_buff **rx_skbuff;
unsigned int cur_rx; /* RX Queue */
unsigned int dirty_rx; struct stmmac_rx_queue *rx_queue;
unsigned int dma_buf_sz; unsigned int dma_buf_sz;
unsigned int rx_copybreak; unsigned int rx_copybreak;
unsigned int rx_zeroc_thresh;
u32 rx_riwt; u32 rx_riwt;
int hwts_rx_en; int hwts_rx_en;
dma_addr_t *rx_skbuff_dma;
dma_addr_t dma_rx_phy;
struct napi_struct napi ____cacheline_aligned_in_smp;
void __iomem *ioaddr; void __iomem *ioaddr;
struct net_device *dev; struct net_device *dev;
...@@ -119,8 +142,6 @@ struct stmmac_priv { ...@@ -119,8 +142,6 @@ struct stmmac_priv {
spinlock_t ptp_lock; spinlock_t ptp_lock;
void __iomem *mmcaddr; void __iomem *mmcaddr;
void __iomem *ptpaddr; void __iomem *ptpaddr;
u32 rx_tail_addr;
u32 tx_tail_addr;
u32 mss; u32 mss;
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
......
...@@ -185,26 +185,38 @@ static void print_pkt(unsigned char *buf, int len) ...@@ -185,26 +185,38 @@ static void print_pkt(unsigned char *buf, int len)
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len); print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
} }
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv) /**
* stmmac_tx_avail - Get tx queue availability
* @priv: driver private structure
* @queue: TX queue index
*/
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
{ {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
u32 avail; u32 avail;
if (priv->dirty_tx > priv->cur_tx) if (tx_q->dirty_tx > tx_q->cur_tx)
avail = priv->dirty_tx - priv->cur_tx - 1; avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
else else
avail = DMA_TX_SIZE - priv->cur_tx + priv->dirty_tx - 1; avail = DMA_TX_SIZE - tx_q->cur_tx + tx_q->dirty_tx - 1;
return avail; return avail;
} }
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv) /**
* stmmac_rx_dirty - Get RX queue dirty
* @priv: driver private structure
* @queue: RX queue index
*/
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
{ {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
u32 dirty; u32 dirty;
if (priv->dirty_rx <= priv->cur_rx) if (rx_q->dirty_rx <= rx_q->cur_rx)
dirty = priv->cur_rx - priv->dirty_rx; dirty = rx_q->cur_rx - rx_q->dirty_rx;
else else
dirty = DMA_RX_SIZE - priv->dirty_rx + priv->cur_rx; dirty = DMA_RX_SIZE - rx_q->dirty_rx + rx_q->cur_rx;
return dirty; return dirty;
} }
...@@ -232,9 +244,19 @@ static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv) ...@@ -232,9 +244,19 @@ static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
*/ */
static void stmmac_enable_eee_mode(struct stmmac_priv *priv) static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
{ {
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
/* check if all TX queues have the work finished */
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
if (tx_q->dirty_tx != tx_q->cur_tx)
return; /* still unfinished work */
}
/* Check and enter in LPI mode */ /* Check and enter in LPI mode */
if ((priv->dirty_tx == priv->cur_tx) && if (!priv->tx_path_in_lpi_mode)
(priv->tx_path_in_lpi_mode == false))
priv->hw->mac->set_eee_mode(priv->hw, priv->hw->mac->set_eee_mode(priv->hw,
priv->plat->en_tx_lpi_clockgating); priv->plat->en_tx_lpi_clockgating);
} }
...@@ -891,20 +913,40 @@ static int stmmac_init_phy(struct net_device *dev) ...@@ -891,20 +913,40 @@ static int stmmac_init_phy(struct net_device *dev)
static void stmmac_display_rings(struct stmmac_priv *priv) static void stmmac_display_rings(struct stmmac_priv *priv)
{ {
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
void *head_rx, *head_tx; void *head_rx, *head_tx;
u32 queue;
if (priv->extend_desc) { /* Display RX rings */
head_rx = (void *)priv->dma_erx; for (queue = 0; queue < rx_cnt; queue++) {
head_tx = (void *)priv->dma_etx; struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
} else {
head_rx = (void *)priv->dma_rx; pr_info("\tRX Queue %d rings\n", queue);
head_tx = (void *)priv->dma_tx;
if (priv->extend_desc)
head_rx = (void *)rx_q->dma_erx;
else
head_rx = (void *)rx_q->dma_rx;
/* Display Rx ring */
priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true);
} }
/* Display Rx ring */ /* Display TX rings */
priv->hw->desc->display_ring(head_rx, DMA_RX_SIZE, true); for (queue = 0; queue < tx_cnt; queue++) {
/* Display Tx ring */ struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
pr_info("\tTX Queue %d rings\n", queue);
if (priv->extend_desc)
head_tx = (void *)tx_q->dma_etx;
else
head_tx = (void *)tx_q->dma_tx;
/* Display Tx ring */
priv->hw->desc->display_ring(head_tx, DMA_TX_SIZE, false);
}
} }
static int stmmac_set_bfsize(int mtu, int bufsize) static int stmmac_set_bfsize(int mtu, int bufsize)
...@@ -924,48 +966,86 @@ static int stmmac_set_bfsize(int mtu, int bufsize) ...@@ -924,48 +966,86 @@ static int stmmac_set_bfsize(int mtu, int bufsize)
} }
/** /**
* stmmac_clear_descriptors - clear descriptors * stmmac_clear_rx_descriptors - clear the descriptors of a RX queue
* @priv: driver private structure * @priv: driver private structure
* Description: this function is called to clear the tx and rx descriptors * @queue: RX queue index
* Description: this function is called to clear the RX descriptors
* in case of both basic and extended descriptors are used. * in case of both basic and extended descriptors are used.
*/ */
static void stmmac_clear_descriptors(struct stmmac_priv *priv) static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv, u32 queue)
{ {
int i; struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
u32 i = 0;
/* Clear the Rx/Tx descriptors */ /* Clear the RX descriptors */
for (i = 0; i < DMA_RX_SIZE; i++) for (i = 0; i < DMA_RX_SIZE; i++)
if (priv->extend_desc) if (priv->extend_desc)
priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic, priv->hw->desc->init_rx_desc(&rx_q->dma_erx[i].basic,
priv->use_riwt, priv->mode, priv->use_riwt, priv->mode,
(i == DMA_RX_SIZE - 1)); (i == DMA_RX_SIZE - 1));
else else
priv->hw->desc->init_rx_desc(&priv->dma_rx[i], priv->hw->desc->init_rx_desc(&rx_q->dma_rx[i],
priv->use_riwt, priv->mode, priv->use_riwt, priv->mode,
(i == DMA_RX_SIZE - 1)); (i == DMA_RX_SIZE - 1));
}
/**
* stmmac_clear_tx_descriptors - clear the descriptors of a TX queue
* @priv: driver private structure
* @queue: TX queue index
* Description: this function is called to clear the TX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
u32 i = 0;
/* Clear the TX descriptors */
for (i = 0; i < DMA_TX_SIZE; i++) for (i = 0; i < DMA_TX_SIZE; i++)
if (priv->extend_desc) if (priv->extend_desc)
priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, priv->hw->desc->init_tx_desc(&tx_q->dma_etx[i].basic,
priv->mode, priv->mode,
(i == DMA_TX_SIZE - 1)); (i == DMA_TX_SIZE - 1));
else else
priv->hw->desc->init_tx_desc(&priv->dma_tx[i], priv->hw->desc->init_tx_desc(&tx_q->dma_tx[i],
priv->mode, priv->mode,
(i == DMA_TX_SIZE - 1)); (i == DMA_TX_SIZE - 1));
} }
/**
* stmmac_clear_descriptors - clear descriptors
* @priv: driver private structure
* Description: this function is called to clear the tx and rx descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_descriptors(struct stmmac_priv *priv)
{
u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_queue_cnt; queue++)
stmmac_clear_rx_descriptors(priv, queue);
for (queue = 0; queue < tx_queue_cnt; queue++)
stmmac_clear_tx_descriptors(priv, queue);
}
/** /**
* stmmac_init_rx_buffers - init the RX descriptor buffer. * stmmac_init_rx_buffers - init the RX descriptor buffer.
* @priv: driver private structure * @priv: driver private structure
* @p: descriptor pointer * @p: descriptor pointer
* @i: descriptor index * @i: descriptor index
* @flags: gfp flag. * @flags: gfp flag.
* @queue: RX queue index
* Description: this function is called to allocate a receive buffer, perform * Description: this function is called to allocate a receive buffer, perform
* the DMA mapping and init the descriptor. * the DMA mapping and init the descriptor.
*/ */
static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
int i, gfp_t flags) int i, gfp_t flags, u32 queue)
{ {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
struct sk_buff *skb; struct sk_buff *skb;
skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags); skb = __netdev_alloc_skb_ip_align(priv->dev, priv->dma_buf_sz, flags);
...@@ -974,20 +1054,20 @@ static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, ...@@ -974,20 +1054,20 @@ static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
"%s: Rx init fails; skb is NULL\n", __func__); "%s: Rx init fails; skb is NULL\n", __func__);
return -ENOMEM; return -ENOMEM;
} }
priv->rx_skbuff[i] = skb; rx_q->rx_skbuff[i] = skb;
priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data, rx_q->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
priv->dma_buf_sz, priv->dma_buf_sz,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
if (dma_mapping_error(priv->device, priv->rx_skbuff_dma[i])) { if (dma_mapping_error(priv->device, rx_q->rx_skbuff_dma[i])) {
netdev_err(priv->dev, "%s: DMA mapping error\n", __func__); netdev_err(priv->dev, "%s: DMA mapping error\n", __func__);
dev_kfree_skb_any(skb); dev_kfree_skb_any(skb);
return -EINVAL; return -EINVAL;
} }
if (priv->synopsys_id >= DWMAC_CORE_4_00) if (priv->synopsys_id >= DWMAC_CORE_4_00)
p->des0 = cpu_to_le32(priv->rx_skbuff_dma[i]); p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
else else
p->des2 = cpu_to_le32(priv->rx_skbuff_dma[i]); p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[i]);
if ((priv->hw->mode->init_desc3) && if ((priv->hw->mode->init_desc3) &&
(priv->dma_buf_sz == BUF_SIZE_16KiB)) (priv->dma_buf_sz == BUF_SIZE_16KiB))
...@@ -996,30 +1076,136 @@ static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p, ...@@ -996,30 +1076,136 @@ static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
return 0; return 0;
} }
static void stmmac_free_rx_buffers(struct stmmac_priv *priv, int i) /**
* stmmac_free_rx_buffers - free RX buffers.
* @priv: driver private structure
* @queue: RX queue index
* @i: buffer index
*/
static void stmmac_free_rx_buffers(struct stmmac_priv *priv, u32 queue, int i)
{ {
if (priv->rx_skbuff[i]) { struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
if (rx_q->rx_skbuff[i]) {
dma_unmap_single(priv->device, rx_q->rx_skbuff_dma[i],
priv->dma_buf_sz, DMA_FROM_DEVICE); priv->dma_buf_sz, DMA_FROM_DEVICE);
dev_kfree_skb_any(priv->rx_skbuff[i]); dev_kfree_skb_any(rx_q->rx_skbuff[i]);
} }
priv->rx_skbuff[i] = NULL; rx_q->rx_skbuff[i] = NULL;
} }
/** /**
* init_dma_desc_rings - init the RX/TX descriptor rings * stmmac_free_tx_buffers - free RX buffers.
* @priv: driver private structure
* @queue: RX queue index
* @i: buffer index
*/
static void stmmac_free_tx_buffers(struct stmmac_priv *priv, u32 queue, u32 i)
{
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
if (tx_q->tx_skbuff_dma[i].buf) {
if (tx_q->tx_skbuff_dma[i].map_as_page)
dma_unmap_page(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
else
dma_unmap_single(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
}
if (tx_q->tx_skbuff[i]) {
dev_kfree_skb_any(tx_q->tx_skbuff[i]);
tx_q->tx_skbuff[i] = NULL;
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
}
}
/**
* init_tx_dma_desc_rings - init the TX descriptor rings
* @dev: net device structure
* Description: this function initializes the DMA TX descriptors
* and allocates the socket buffers. It suppors the chained and ring
* modes.
*/
static int init_tx_dma_desc_rings(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
int i = 0;
for (queue = 0; queue < tx_queue_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
netif_dbg(priv, probe, priv->dev,
"(%s) dma_tx_phy=0x%08x\n", __func__,
(u32)tx_q->dma_tx_phy);
/* Setup the chained descriptor addresses */
if (priv->mode == STMMAC_CHAIN_MODE) {
if (priv->extend_desc)
priv->hw->mode->init(tx_q->dma_etx,
tx_q->dma_tx_phy,
DMA_TX_SIZE, 1);
else
priv->hw->mode->init(tx_q->dma_tx,
tx_q->dma_tx_phy,
DMA_TX_SIZE, 0);
}
for (i = 0; i < DMA_TX_SIZE; i++) {
struct dma_desc *p;
if (priv->extend_desc)
p = &((tx_q->dma_etx + i)->basic);
else
p = tx_q->dma_tx + i;
if (priv->synopsys_id >= DWMAC_CORE_4_00) {
p->des0 = 0;
p->des1 = 0;
p->des2 = 0;
p->des3 = 0;
} else {
p->des2 = 0;
}
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
tx_q->tx_skbuff_dma[i].len = 0;
tx_q->tx_skbuff_dma[i].last_segment = false;
tx_q->tx_skbuff[i] = NULL;
}
tx_q->dirty_tx = 0;
tx_q->cur_tx = 0;
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
}
return 0;
}
/**
* init_rx_dma_desc_rings - init the RX descriptor rings
* @dev: net device structure * @dev: net device structure
* @flags: gfp flag. * @flags: gfp flag.
* Description: this function initializes the DMA RX/TX descriptors * Description: this function initializes the DMA RX descriptors
* and allocates the socket buffers. It supports the chained and ring * and allocates the socket buffers. It suppors the chained and ring
* modes. * modes.
*/ */
static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) static int init_rx_dma_desc_rings(struct net_device *dev, gfp_t flags)
{ {
int i;
struct stmmac_priv *priv = netdev_priv(dev); struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
unsigned int bfsize = 0; unsigned int bfsize = 0;
int ret = -ENOMEM; int ret = -ENOMEM;
u32 queue;
int i;
if (priv->hw->mode->set_16kib_bfsize) if (priv->hw->mode->set_16kib_bfsize)
bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu); bfsize = priv->hw->mode->set_16kib_bfsize(dev->mtu);
...@@ -1029,235 +1215,350 @@ static int init_dma_desc_rings(struct net_device *dev, gfp_t flags) ...@@ -1029,235 +1215,350 @@ static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
priv->dma_buf_sz = bfsize; priv->dma_buf_sz = bfsize;
netif_dbg(priv, probe, priv->dev,
"(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n",
__func__, (u32)priv->dma_rx_phy, (u32)priv->dma_tx_phy);
/* RX INITIALIZATION */ /* RX INITIALIZATION */
netif_dbg(priv, probe, priv->dev, netif_dbg(priv, probe, priv->dev,
"SKB addresses:\nskb\t\tskb data\tdma data\n"); "SKB addresses:\nskb\t\tskb data\tdma data\n");
for (i = 0; i < DMA_RX_SIZE; i++) { for (queue = 0; queue < rx_count; queue++) {
struct dma_desc *p; struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
if (priv->extend_desc)
p = &((priv->dma_erx + i)->basic);
else
p = priv->dma_rx + i;
ret = stmmac_init_rx_buffers(priv, p, i, flags); netif_dbg(priv, probe, priv->dev,
if (ret) "(%s) dma_rx_phy=0x%08x\n", __func__,
goto err_init_rx_buffers; (u32)rx_q->dma_rx_phy);
netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n", for (i = 0; i < DMA_RX_SIZE; i++) {
priv->rx_skbuff[i], priv->rx_skbuff[i]->data, struct dma_desc *p;
(unsigned int)priv->rx_skbuff_dma[i]);
}
priv->cur_rx = 0;
priv->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
buf_sz = bfsize;
/* Setup the chained descriptor addresses */ if (priv->extend_desc)
if (priv->mode == STMMAC_CHAIN_MODE) { p = &((rx_q->dma_erx + i)->basic);
if (priv->extend_desc) { else
priv->hw->mode->init(priv->dma_erx, priv->dma_rx_phy, p = rx_q->dma_rx + i;
DMA_RX_SIZE, 1);
priv->hw->mode->init(priv->dma_etx, priv->dma_tx_phy, ret = stmmac_init_rx_buffers(priv, p, i, flags, queue);
DMA_TX_SIZE, 1); if (ret)
} else { goto err_init_rx_buffers;
priv->hw->mode->init(priv->dma_rx, priv->dma_rx_phy,
DMA_RX_SIZE, 0); netif_dbg(priv, probe, priv->dev, "[%p]\t[%p]\t[%x]\n",
priv->hw->mode->init(priv->dma_tx, priv->dma_tx_phy, rx_q->rx_skbuff[i],
DMA_TX_SIZE, 0); rx_q->rx_skbuff[i]->data,
(unsigned int)rx_q->rx_skbuff_dma[i]);
} }
}
/* TX INITIALIZATION */ rx_q->cur_rx = 0;
for (i = 0; i < DMA_TX_SIZE; i++) { rx_q->dirty_rx = (unsigned int)(i - DMA_RX_SIZE);
struct dma_desc *p;
if (priv->extend_desc)
p = &((priv->dma_etx + i)->basic);
else
p = priv->dma_tx + i;
if (priv->synopsys_id >= DWMAC_CORE_4_00) { stmmac_clear_rx_descriptors(priv, queue);
p->des0 = 0;
p->des1 = 0; if (priv->mode == STMMAC_CHAIN_MODE) {
p->des2 = 0; if (priv->extend_desc)
p->des3 = 0; priv->hw->mode->init(rx_q->dma_erx,
} else { rx_q->dma_rx_phy,
p->des2 = 0; DMA_RX_SIZE, 1);
else
priv->hw->mode->init(rx_q->dma_rx,
rx_q->dma_rx_phy,
DMA_RX_SIZE, 0);
} }
}
priv->tx_skbuff_dma[i].buf = 0; buf_sz = bfsize;
priv->tx_skbuff_dma[i].map_as_page = false;
priv->tx_skbuff_dma[i].len = 0; return 0;
priv->tx_skbuff_dma[i].last_segment = false;
priv->tx_skbuff[i] = NULL; err_init_rx_buffers:
while (queue-- >= 0) {
while (--i >= 0)
stmmac_free_rx_buffers(priv, queue, i);
i = DMA_RX_SIZE;
} }
priv->dirty_tx = 0; return ret;
priv->cur_tx = 0; }
netdev_reset_queue(priv->dev);
stmmac_clear_descriptors(priv); /**
* init_dma_desc_rings - init the RX/TX descriptor rings
* @dev: net device structure
* @flags: gfp flag.
* Description: this function initializes the DMA RX/TX descriptors
* and allocates the socket buffers. It suppors the chained and ring
* modes.
*/
static int init_dma_desc_rings(struct net_device *dev, gfp_t flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret = init_rx_dma_desc_rings(dev, flags);
if (ret)
return ret;
ret = init_tx_dma_desc_rings(dev);
if (netif_msg_hw(priv)) if (netif_msg_hw(priv))
stmmac_display_rings(priv); stmmac_display_rings(priv);
return 0;
err_init_rx_buffers:
while (--i >= 0)
stmmac_free_rx_buffers(priv, i);
return ret; return ret;
} }
static void dma_free_rx_skbufs(struct stmmac_priv *priv) static void dma_free_rx_skbufs(struct stmmac_priv *priv, u32 queue)
{ {
int i; int i;
for (i = 0; i < DMA_RX_SIZE; i++) for (i = 0; i < DMA_RX_SIZE; i++)
stmmac_free_rx_buffers(priv, i); stmmac_free_rx_buffers(priv, queue, i);
} }
static void dma_free_tx_skbufs(struct stmmac_priv *priv) static void dma_free_tx_skbufs(struct stmmac_priv *priv, u32 queue)
{ {
int i; int i;
for (i = 0; i < DMA_TX_SIZE; i++) { for (i = 0; i < DMA_TX_SIZE; i++)
if (priv->tx_skbuff_dma[i].buf) { stmmac_free_tx_buffers(priv, queue, i);
if (priv->tx_skbuff_dma[i].map_as_page) }
dma_unmap_page(priv->device,
priv->tx_skbuff_dma[i].buf, /**
priv->tx_skbuff_dma[i].len, * free_rx_dma_desc_resources - free RX DMA resources
DMA_TO_DEVICE); * @priv: driver private structure
else */
dma_unmap_single(priv->device, static void free_rx_dma_desc_resources(struct stmmac_priv *priv)
priv->tx_skbuff_dma[i].buf, {
priv->tx_skbuff_dma[i].len, u32 rx_count = priv->plat->rx_queues_to_use;
DMA_TO_DEVICE); u32 queue = 0;
}
if (!priv->rx_queue)
return;
/* Free RX queue resources */
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
if (!rx_q)
break;
/* Release the DMA RX socket buffers */
dma_free_rx_skbufs(priv, queue);
kfree(rx_q->rx_skbuff);
kfree(rx_q->rx_skbuff_dma);
if (!priv->extend_desc)
dma_free_coherent(priv->device,
DMA_RX_SIZE * sizeof(struct dma_desc),
rx_q->dma_rx,
rx_q->dma_rx_phy);
else
dma_free_coherent(priv->device, DMA_RX_SIZE *
sizeof(struct dma_extended_desc),
rx_q->dma_erx,
rx_q->dma_rx_phy);
}
kfree(priv->rx_queue);
}
/**
* free_tx_dma_desc_resources - free TX DMA resources
* @priv: driver private structure
*/
static void free_tx_dma_desc_resources(struct stmmac_priv *priv)
{
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue = 0;
if (!priv->tx_queue)
return;
/* Free TX queue resources */
for (queue = 0; queue < tx_count; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
if (!tx_q)
break;
/* Release the DMA TX socket buffers */
dma_free_tx_skbufs(priv, queue);
kfree(tx_q->tx_skbuff);
kfree(tx_q->tx_skbuff_dma);
if (!priv->extend_desc)
dma_free_coherent(priv->device,
DMA_TX_SIZE * sizeof(struct dma_desc),
tx_q->dma_tx,
tx_q->dma_tx_phy);
else
dma_free_coherent(priv->device, DMA_TX_SIZE *
sizeof(struct dma_extended_desc),
tx_q->dma_etx,
tx_q->dma_tx_phy);
}
kfree(priv->tx_queue);
}
if (priv->tx_skbuff[i]) { /**
dev_kfree_skb_any(priv->tx_skbuff[i]); * free_dma_desc_resources - free All DMA resources
priv->tx_skbuff[i] = NULL; * @priv: driver private structure
priv->tx_skbuff_dma[i].buf = 0; */
priv->tx_skbuff_dma[i].map_as_page = false; static void free_dma_desc_resources(struct stmmac_priv *priv)
{
free_rx_dma_desc_resources(priv);
free_tx_dma_desc_resources(priv);
}
/**
* alloc_rx_dma_desc_resources - alloc RX resources.
* @priv: private structure
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for RX paths. It pre-allocates the
* RX socket buffer in order to allow zero-copy mechanism.
*/
static int alloc_rx_dma_desc_resources(struct stmmac_priv *priv)
{
u32 rx_count = priv->plat->rx_queues_to_use;
int ret = -ENOMEM;
u32 queue = 0;
/* Allocate RX queues array */
priv->rx_queue = kmalloc_array(rx_count,
sizeof(struct stmmac_rx_queue),
GFP_KERNEL);
if (!priv->rx_queue) {
kfree(priv->rx_queue);
return -ENOMEM;
}
/* RX queues buffers and DMA */
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
rx_q->queue_index = queue;
rx_q->priv_data = priv;
rx_q->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE,
sizeof(dma_addr_t),
GFP_KERNEL);
if (!rx_q->rx_skbuff_dma)
goto err_dma_buffers;
rx_q->rx_skbuff = kmalloc_array(DMA_RX_SIZE,
sizeof(struct sk_buff *),
GFP_KERNEL);
if (!rx_q->rx_skbuff)
goto err_dma_buffers;
if (priv->extend_desc) {
rx_q->dma_erx = dma_zalloc_coherent(priv->device,
(DMA_RX_SIZE * sizeof(struct dma_extended_desc)),
&rx_q->dma_rx_phy, GFP_KERNEL);
if (!rx_q->dma_erx)
goto err_dma_buffers;
} else {
rx_q->dma_rx = dma_zalloc_coherent(priv->device,
(DMA_RX_SIZE * sizeof(struct dma_desc)),
&rx_q->dma_rx_phy, GFP_KERNEL);
if (!rx_q->dma_rx)
goto err_dma_buffers;
} }
} }
return 0;
err_dma_buffers:
free_rx_dma_desc_resources(priv);
return ret;
} }
/** /**
* alloc_dma_desc_resources - alloc TX/RX resources. * alloc_tx_dma_desc_resources - alloc TX resources.
* @priv: private structure * @priv: private structure
* Description: according to which descriptor can be used (extend or basic) * Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of * this function allocates the resources for TX paths.
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/ */
static int alloc_dma_desc_resources(struct stmmac_priv *priv) static int alloc_tx_dma_desc_resources(struct stmmac_priv *priv)
{ {
u32 tx_count = priv->plat->tx_queues_to_use;
int ret = -ENOMEM; int ret = -ENOMEM;
u32 queue = 0;
priv->rx_skbuff_dma = kmalloc_array(DMA_RX_SIZE, sizeof(dma_addr_t), /* Allocate TX queues array */
GFP_KERNEL); priv->tx_queue = kmalloc_array(tx_count,
if (!priv->rx_skbuff_dma) sizeof(struct stmmac_tx_queue),
GFP_KERNEL);
if (!priv->tx_queue)
return -ENOMEM; return -ENOMEM;
priv->rx_skbuff = kmalloc_array(DMA_RX_SIZE, sizeof(struct sk_buff *), /* TX queues buffers and DMA */
GFP_KERNEL); for (queue = 0; queue < tx_count; queue++) {
if (!priv->rx_skbuff) struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
goto err_rx_skbuff;
tx_q->queue_index = queue;
priv->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE, tx_q->priv_data = priv;
sizeof(*priv->tx_skbuff_dma),
GFP_KERNEL);
if (!priv->tx_skbuff_dma)
goto err_tx_skbuff_dma;
priv->tx_skbuff = kmalloc_array(DMA_TX_SIZE, sizeof(struct sk_buff *),
GFP_KERNEL);
if (!priv->tx_skbuff)
goto err_tx_skbuff;
if (priv->extend_desc) {
priv->dma_erx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE *
sizeof(struct
dma_extended_desc),
&priv->dma_rx_phy,
GFP_KERNEL);
if (!priv->dma_erx)
goto err_dma;
priv->dma_etx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE * tx_q->tx_skbuff_dma = kmalloc_array(DMA_TX_SIZE,
sizeof(struct sizeof(struct stmmac_tx_info),
dma_extended_desc), GFP_KERNEL);
&priv->dma_tx_phy,
if (!tx_q->tx_skbuff_dma)
goto err_dma_buffers;
tx_q->tx_skbuff = kmalloc_array(DMA_TX_SIZE,
sizeof(struct sk_buff *),
GFP_KERNEL); GFP_KERNEL);
if (!priv->dma_etx) { if (!tx_q->tx_skbuff)
dma_free_coherent(priv->device, DMA_RX_SIZE * goto err_dma_buffers;
sizeof(struct dma_extended_desc),
priv->dma_erx, priv->dma_rx_phy); if (priv->extend_desc) {
goto err_dma; tx_q->dma_etx =
} dma_zalloc_coherent(priv->device,
} else { (DMA_TX_SIZE * sizeof(struct dma_extended_desc)),
priv->dma_rx = dma_zalloc_coherent(priv->device, DMA_RX_SIZE * &tx_q->dma_tx_phy, GFP_KERNEL);
sizeof(struct dma_desc),
&priv->dma_rx_phy, if (!tx_q->dma_etx)
GFP_KERNEL); goto err_dma_buffers;
if (!priv->dma_rx) } else {
goto err_dma; tx_q->dma_tx =
dma_zalloc_coherent(priv->device,
priv->dma_tx = dma_zalloc_coherent(priv->device, DMA_TX_SIZE * (DMA_TX_SIZE * sizeof(struct dma_desc)),
sizeof(struct dma_desc), &tx_q->dma_tx_phy, GFP_KERNEL);
&priv->dma_tx_phy,
GFP_KERNEL); if (!tx_q->dma_tx)
if (!priv->dma_tx) { goto err_dma_buffers;
dma_free_coherent(priv->device, DMA_RX_SIZE *
sizeof(struct dma_desc),
priv->dma_rx, priv->dma_rx_phy);
goto err_dma;
} }
} }
return 0; return 0;
err_dma: err_dma_buffers:
kfree(priv->tx_skbuff); free_tx_dma_desc_resources(priv);
err_tx_skbuff:
kfree(priv->tx_skbuff_dma);
err_tx_skbuff_dma:
kfree(priv->rx_skbuff);
err_rx_skbuff:
kfree(priv->rx_skbuff_dma);
return ret; return ret;
} }
static void free_dma_desc_resources(struct stmmac_priv *priv) /**
* alloc_dma_desc_resources - alloc TX/RX resources.
* @priv: private structure
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int alloc_dma_desc_resources(struct stmmac_priv *priv)
{ {
/* Release the DMA TX/RX socket buffers */ int ret = 0;
dma_free_rx_skbufs(priv);
dma_free_tx_skbufs(priv); ret = alloc_tx_dma_desc_resources(priv);
if (ret)
/* Free DMA regions of consistent memory previously allocated */ return ret;
if (!priv->extend_desc) {
dma_free_coherent(priv->device, ret = alloc_rx_dma_desc_resources(priv);
DMA_TX_SIZE * sizeof(struct dma_desc),
priv->dma_tx, priv->dma_tx_phy); return ret;
dma_free_coherent(priv->device,
DMA_RX_SIZE * sizeof(struct dma_desc),
priv->dma_rx, priv->dma_rx_phy);
} else {
dma_free_coherent(priv->device, DMA_TX_SIZE *
sizeof(struct dma_extended_desc),
priv->dma_etx, priv->dma_tx_phy);
dma_free_coherent(priv->device, DMA_RX_SIZE *
sizeof(struct dma_extended_desc),
priv->dma_erx, priv->dma_rx_phy);
}
kfree(priv->rx_skbuff_dma);
kfree(priv->rx_skbuff);
kfree(priv->tx_skbuff_dma);
kfree(priv->tx_skbuff);
} }
/** /**
...@@ -1421,26 +1722,28 @@ static void stmmac_dma_operation_mode(struct stmmac_priv *priv) ...@@ -1421,26 +1722,28 @@ static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
/** /**
* stmmac_tx_clean - to manage the transmission completion * stmmac_tx_clean - to manage the transmission completion
* @priv: driver private structure * @priv: driver private structure
* @queue: TX queue index
* Description: it reclaims the transmit resources after transmission completes. * Description: it reclaims the transmit resources after transmission completes.
*/ */
static void stmmac_tx_clean(struct stmmac_priv *priv) static void stmmac_tx_clean(struct stmmac_priv *priv, u32 queue)
{ {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
unsigned int bytes_compl = 0, pkts_compl = 0; unsigned int bytes_compl = 0, pkts_compl = 0;
unsigned int entry = priv->dirty_tx; unsigned int entry = tx_q->dirty_tx;
netif_tx_lock(priv->dev); netif_tx_lock(priv->dev);
priv->xstats.tx_clean++; priv->xstats.tx_clean++;
while (entry != priv->cur_tx) { while (entry != tx_q->cur_tx) {
struct sk_buff *skb = priv->tx_skbuff[entry]; struct sk_buff *skb = tx_q->tx_skbuff[entry];
struct dma_desc *p; struct dma_desc *p;
int status; int status;
if (priv->extend_desc) if (priv->extend_desc)
p = (struct dma_desc *)(priv->dma_etx + entry); p = (struct dma_desc *)(tx_q->dma_etx + entry);
else else
p = priv->dma_tx + entry; p = tx_q->dma_tx + entry;
status = priv->hw->desc->tx_status(&priv->dev->stats, status = priv->hw->desc->tx_status(&priv->dev->stats,
&priv->xstats, p, &priv->xstats, p,
...@@ -1461,48 +1764,50 @@ static void stmmac_tx_clean(struct stmmac_priv *priv) ...@@ -1461,48 +1764,50 @@ static void stmmac_tx_clean(struct stmmac_priv *priv)
stmmac_get_tx_hwtstamp(priv, p, skb); stmmac_get_tx_hwtstamp(priv, p, skb);
} }
if (likely(priv->tx_skbuff_dma[entry].buf)) { if (likely(tx_q->tx_skbuff_dma[entry].buf)) {
if (priv->tx_skbuff_dma[entry].map_as_page) if (tx_q->tx_skbuff_dma[entry].map_as_page)
dma_unmap_page(priv->device, dma_unmap_page(priv->device,
priv->tx_skbuff_dma[entry].buf, tx_q->tx_skbuff_dma[entry].buf,
priv->tx_skbuff_dma[entry].len, tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE); DMA_TO_DEVICE);
else else
dma_unmap_single(priv->device, dma_unmap_single(priv->device,
priv->tx_skbuff_dma[entry].buf, tx_q->tx_skbuff_dma[entry].buf,
priv->tx_skbuff_dma[entry].len, tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE); DMA_TO_DEVICE);
priv->tx_skbuff_dma[entry].buf = 0; tx_q->tx_skbuff_dma[entry].buf = 0;
priv->tx_skbuff_dma[entry].len = 0; tx_q->tx_skbuff_dma[entry].len = 0;
priv->tx_skbuff_dma[entry].map_as_page = false; tx_q->tx_skbuff_dma[entry].map_as_page = false;
} }
if (priv->hw->mode->clean_desc3) if (priv->hw->mode->clean_desc3)
priv->hw->mode->clean_desc3(priv, p); priv->hw->mode->clean_desc3(tx_q, p);
priv->tx_skbuff_dma[entry].last_segment = false; tx_q->tx_skbuff_dma[entry].last_segment = false;
priv->tx_skbuff_dma[entry].is_jumbo = false; tx_q->tx_skbuff_dma[entry].is_jumbo = false;
if (likely(skb != NULL)) { if (likely(skb != NULL)) {
pkts_compl++; pkts_compl++;
bytes_compl += skb->len; bytes_compl += skb->len;
dev_consume_skb_any(skb); dev_consume_skb_any(skb);
priv->tx_skbuff[entry] = NULL; tx_q->tx_skbuff[entry] = NULL;
} }
priv->hw->desc->release_tx_desc(p, priv->mode); priv->hw->desc->release_tx_desc(p, priv->mode);
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
} }
priv->dirty_tx = entry; tx_q->dirty_tx = entry;
netdev_completed_queue(priv->dev, pkts_compl, bytes_compl); netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
pkts_compl, bytes_compl);
if (unlikely(netif_queue_stopped(priv->dev) && if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
stmmac_tx_avail(priv) > STMMAC_TX_THRESH)) { queue))) &&
stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH) {
netif_dbg(priv, tx_done, priv->dev, netif_dbg(priv, tx_done, priv->dev,
"%s: restart transmit\n", __func__); "%s: restart transmit\n", __func__);
netif_wake_queue(priv->dev); netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
} }
if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) { if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
...@@ -1525,33 +1830,36 @@ static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv, u32 chan) ...@@ -1525,33 +1830,36 @@ static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv, u32 chan)
/** /**
* stmmac_tx_err - to manage the tx error * stmmac_tx_err - to manage the tx error
* @priv: driver private structure * @priv: driver private structure
* @chan: channel index * @queue: queue index
* Description: it cleans the descriptors and restarts the transmission * Description: it cleans the descriptors and restarts the transmission
* in case of transmission errors. * in case of transmission errors.
*/ */
static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan) static void stmmac_tx_err(struct stmmac_priv *priv, u32 queue)
{ {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
u32 chan = queue;
int i; int i;
netif_stop_queue(priv->dev);
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
stmmac_stop_tx_dma(priv, chan); stmmac_stop_tx_dma(priv, chan);
dma_free_tx_skbufs(priv); dma_free_tx_skbufs(priv, queue);
for (i = 0; i < DMA_TX_SIZE; i++) for (i = 0; i < DMA_TX_SIZE; i++)
if (priv->extend_desc) if (priv->extend_desc)
priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic, priv->hw->desc->init_tx_desc(&tx_q->dma_etx[i].basic,
priv->mode, priv->mode,
(i == DMA_TX_SIZE - 1)); (i == DMA_TX_SIZE - 1));
else else
priv->hw->desc->init_tx_desc(&priv->dma_tx[i], priv->hw->desc->init_tx_desc(&tx_q->dma_tx[i],
priv->mode, priv->mode,
(i == DMA_TX_SIZE - 1)); (i == DMA_TX_SIZE - 1));
priv->dirty_tx = 0; tx_q->dirty_tx = 0;
priv->cur_tx = 0; tx_q->cur_tx = 0;
netdev_reset_queue(priv->dev); netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
stmmac_start_tx_dma(priv, chan); stmmac_start_tx_dma(priv, chan);
priv->dev->stats.tx_errors++; priv->dev->stats.tx_errors++;
netif_wake_queue(priv->dev); netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
} }
/** /**
...@@ -1596,12 +1904,14 @@ static void stmmac_dma_interrupt(struct stmmac_priv *priv) ...@@ -1596,12 +1904,14 @@ static void stmmac_dma_interrupt(struct stmmac_priv *priv)
u32 chan; u32 chan;
for (chan = 0; chan < tx_channel_count; chan++) { for (chan = 0; chan < tx_channel_count; chan++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[chan];
status = priv->hw->dma->dma_interrupt(priv->ioaddr, status = priv->hw->dma->dma_interrupt(priv->ioaddr,
&priv->xstats, chan); &priv->xstats, chan);
if (likely((status & handle_rx)) || (status & handle_tx)) { if (likely((status & handle_rx)) || (status & handle_tx)) {
if (likely(napi_schedule_prep(&priv->napi))) { if (likely(napi_schedule_prep(&rx_q->napi))) {
stmmac_disable_dma_irq(priv, chan); stmmac_disable_dma_irq(priv, chan);
__napi_schedule(&priv->napi); __napi_schedule(&rx_q->napi);
} }
} }
...@@ -1734,6 +2044,8 @@ static int stmmac_init_dma_engine(struct stmmac_priv *priv) ...@@ -1734,6 +2044,8 @@ static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{ {
u32 rx_channels_count = priv->plat->rx_queues_to_use; u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use; u32 tx_channels_count = priv->plat->tx_queues_to_use;
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
u32 dummy_dma_rx_phy = 0; u32 dummy_dma_rx_phy = 0;
u32 dummy_dma_tx_phy = 0; u32 dummy_dma_tx_phy = 0;
u32 chan = 0; u32 chan = 0;
...@@ -1761,36 +2073,43 @@ static int stmmac_init_dma_engine(struct stmmac_priv *priv) ...@@ -1761,36 +2073,43 @@ static int stmmac_init_dma_engine(struct stmmac_priv *priv)
/* DMA RX Channel Configuration */ /* DMA RX Channel Configuration */
for (chan = 0; chan < rx_channels_count; chan++) { for (chan = 0; chan < rx_channels_count; chan++) {
rx_q = &priv->rx_queue[chan];
priv->hw->dma->init_rx_chan(priv->ioaddr, priv->hw->dma->init_rx_chan(priv->ioaddr,
priv->plat->dma_cfg, priv->plat->dma_cfg,
priv->dma_rx_phy, chan); rx_q->dma_rx_phy, chan);
priv->rx_tail_addr = priv->dma_rx_phy + rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(DMA_RX_SIZE * sizeof(struct dma_desc)); (DMA_RX_SIZE * sizeof(struct dma_desc));
priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
priv->rx_tail_addr, rx_q->rx_tail_addr,
chan); chan);
} }
/* DMA TX Channel Configuration */ /* DMA TX Channel Configuration */
for (chan = 0; chan < tx_channels_count; chan++) { for (chan = 0; chan < tx_channels_count; chan++) {
tx_q = &priv->tx_queue[chan];
priv->hw->dma->init_chan(priv->ioaddr, priv->hw->dma->init_chan(priv->ioaddr,
priv->plat->dma_cfg, priv->plat->dma_cfg,
chan); chan);
priv->hw->dma->init_tx_chan(priv->ioaddr, priv->hw->dma->init_tx_chan(priv->ioaddr,
priv->plat->dma_cfg, priv->plat->dma_cfg,
priv->dma_tx_phy, chan); tx_q->dma_tx_phy, chan);
priv->tx_tail_addr = priv->dma_tx_phy + tx_q->tx_tail_addr = tx_q->dma_tx_phy +
(DMA_TX_SIZE * sizeof(struct dma_desc)); (DMA_TX_SIZE * sizeof(struct dma_desc));
priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->hw->dma->set_tx_tail_ptr(priv->ioaddr,
priv->tx_tail_addr, tx_q->tx_tail_addr,
chan); chan);
} }
} else { } else {
rx_q = &priv->rx_queue[chan];
tx_q = &priv->tx_queue[chan];
priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg, priv->hw->dma->init(priv->ioaddr, priv->plat->dma_cfg,
priv->dma_tx_phy, priv->dma_rx_phy, atds); tx_q->dma_tx_phy, rx_q->dma_rx_phy, atds);
} }
if (priv->plat->axi && priv->hw->dma->axi) if (priv->plat->axi && priv->hw->dma->axi)
...@@ -1808,8 +2127,70 @@ static int stmmac_init_dma_engine(struct stmmac_priv *priv) ...@@ -1808,8 +2127,70 @@ static int stmmac_init_dma_engine(struct stmmac_priv *priv)
static void stmmac_tx_timer(unsigned long data) static void stmmac_tx_timer(unsigned long data)
{ {
struct stmmac_priv *priv = (struct stmmac_priv *)data; struct stmmac_priv *priv = (struct stmmac_priv *)data;
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 queue;
/* let's scan all the tx queues */
for (queue = 0; queue < tx_queues_count; queue++)
stmmac_tx_clean(priv, queue);
}
/**
* stmmac_stop_all_queues - Stop all queues
* @priv: driver private structure
*/
static void stmmac_stop_all_queues(struct stmmac_priv *priv)
{
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < tx_queues_cnt; queue++)
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
/**
* stmmac_start_all_queues - Start all queues
* @priv: driver private structure
*/
static void stmmac_start_all_queues(struct stmmac_priv *priv)
{
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 queue;
stmmac_tx_clean(priv); for (queue = 0; queue < tx_queues_cnt; queue++)
netif_tx_start_queue(netdev_get_tx_queue(priv->dev, queue));
}
/**
* stmmac_disable_all_queues - Disable all queues
* @priv: driver private structure
*/
static void stmmac_disable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_queues_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
napi_disable(&rx_q->napi);
}
}
/**
* stmmac_enable_all_queues - Enable all queues
* @priv: driver private structure
*/
static void stmmac_enable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_queues_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
napi_enable(&rx_q->napi);
}
} }
/** /**
...@@ -2098,23 +2479,8 @@ static int stmmac_open(struct net_device *dev) ...@@ -2098,23 +2479,8 @@ static int stmmac_open(struct net_device *dev)
memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats)); memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
priv->xstats.threshold = tc; priv->xstats.threshold = tc;
priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
priv->rx_copybreak = STMMAC_RX_COPYBREAK; priv->rx_copybreak = STMMAC_RX_COPYBREAK;
ret = alloc_dma_desc_resources(priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
__func__);
goto dma_desc_error;
}
ret = init_dma_desc_rings(dev, GFP_KERNEL);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
__func__);
goto init_error;
}
ret = stmmac_hw_setup(dev, true); ret = stmmac_hw_setup(dev, true);
if (ret < 0) { if (ret < 0) {
netdev_err(priv->dev, "%s: Hw setup failed\n", __func__); netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
...@@ -2160,8 +2526,8 @@ static int stmmac_open(struct net_device *dev) ...@@ -2160,8 +2526,8 @@ static int stmmac_open(struct net_device *dev)
} }
} }
napi_enable(&priv->napi); stmmac_enable_all_queues(priv);
netif_start_queue(dev); stmmac_start_all_queues(priv);
return 0; return 0;
...@@ -2178,7 +2544,7 @@ static int stmmac_open(struct net_device *dev) ...@@ -2178,7 +2544,7 @@ static int stmmac_open(struct net_device *dev)
stmmac_hw_teardown(dev); stmmac_hw_teardown(dev);
init_error: init_error:
free_dma_desc_resources(priv); free_dma_desc_resources(priv);
dma_desc_error:
if (dev->phydev) if (dev->phydev)
phy_disconnect(dev->phydev); phy_disconnect(dev->phydev);
...@@ -2204,9 +2570,9 @@ static int stmmac_release(struct net_device *dev) ...@@ -2204,9 +2570,9 @@ static int stmmac_release(struct net_device *dev)
phy_disconnect(dev->phydev); phy_disconnect(dev->phydev);
} }
netif_stop_queue(dev); stmmac_stop_all_queues(priv);
napi_disable(&priv->napi); stmmac_disable_all_queues(priv);
del_timer_sync(&priv->txtimer); del_timer_sync(&priv->txtimer);
...@@ -2243,22 +2609,24 @@ static int stmmac_release(struct net_device *dev) ...@@ -2243,22 +2609,24 @@ static int stmmac_release(struct net_device *dev)
* @des: buffer start address * @des: buffer start address
* @total_len: total length to fill in descriptors * @total_len: total length to fill in descriptors
* @last_segmant: condition for the last descriptor * @last_segmant: condition for the last descriptor
* @queue: TX queue index
* Description: * Description:
* This function fills descriptor and request new descriptors according to * This function fills descriptor and request new descriptors according to
* buffer length to fill * buffer length to fill
*/ */
static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des, static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
int total_len, bool last_segment) int total_len, bool last_segment, u32 queue)
{ {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
struct dma_desc *desc; struct dma_desc *desc;
int tmp_len;
u32 buff_size; u32 buff_size;
int tmp_len;
tmp_len = total_len; tmp_len = total_len;
while (tmp_len > 0) { while (tmp_len > 0) {
priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE); tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
desc = priv->dma_tx + priv->cur_tx; desc = tx_q->dma_tx + tx_q->cur_tx;
desc->des0 = cpu_to_le32(des + (total_len - tmp_len)); desc->des0 = cpu_to_le32(des + (total_len - tmp_len));
buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ? buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
...@@ -2302,23 +2670,27 @@ static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des, ...@@ -2302,23 +2670,27 @@ static void stmmac_tso_allocator(struct stmmac_priv *priv, unsigned int des,
*/ */
static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
{ {
u32 pay_len, mss; struct dma_desc *desc, *first, *mss_desc = NULL;
int tmp_pay_len = 0;
struct stmmac_priv *priv = netdev_priv(dev); struct stmmac_priv *priv = netdev_priv(dev);
u32 queue = skb_get_queue_mapping(skb);
int nfrags = skb_shinfo(skb)->nr_frags; int nfrags = skb_shinfo(skb)->nr_frags;
unsigned int first_entry, des; unsigned int first_entry, des;
struct dma_desc *desc, *first, *mss_desc = NULL; struct stmmac_tx_queue *tx_q;
int tmp_pay_len = 0;
u32 pay_len, mss;
u8 proto_hdr_len; u8 proto_hdr_len;
int i; int i;
tx_q = &priv->tx_queue[queue];
/* Compute header lengths */ /* Compute header lengths */
proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); proto_hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
/* Desc availability based on threshold should be enough safe */ /* Desc availability based on threshold should be enough safe */
if (unlikely(stmmac_tx_avail(priv) < if (unlikely(stmmac_tx_avail(priv, queue) <
(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) { (((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
if (!netif_queue_stopped(dev)) { if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_stop_queue(dev); netif_tx_stop_queue(netdev_get_tx_queue(dev, queue));
/* This is a hard error, log it. */ /* This is a hard error, log it. */
netdev_err(priv->dev, netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n", "%s: Tx Ring full when queue awake\n",
...@@ -2333,10 +2705,10 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2333,10 +2705,10 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
/* set new MSS value if needed */ /* set new MSS value if needed */
if (mss != priv->mss) { if (mss != priv->mss) {
mss_desc = priv->dma_tx + priv->cur_tx; mss_desc = tx_q->dma_tx + tx_q->cur_tx;
priv->hw->desc->set_mss(mss_desc, mss); priv->hw->desc->set_mss(mss_desc, mss);
priv->mss = mss; priv->mss = mss;
priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE); tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
} }
if (netif_msg_tx_queued(priv)) { if (netif_msg_tx_queued(priv)) {
...@@ -2346,9 +2718,9 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2346,9 +2718,9 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
skb->data_len); skb->data_len);
} }
first_entry = priv->cur_tx; first_entry = tx_q->cur_tx;
desc = priv->dma_tx + first_entry; desc = tx_q->dma_tx + first_entry;
first = desc; first = desc;
/* first descriptor: fill Headers on Buf1 */ /* first descriptor: fill Headers on Buf1 */
...@@ -2357,9 +2729,9 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2357,9 +2729,9 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
if (dma_mapping_error(priv->device, des)) if (dma_mapping_error(priv->device, des))
goto dma_map_err; goto dma_map_err;
priv->tx_skbuff_dma[first_entry].buf = des; tx_q->tx_skbuff_dma[first_entry].buf = des;
priv->tx_skbuff_dma[first_entry].len = skb_headlen(skb); tx_q->tx_skbuff_dma[first_entry].len = skb_headlen(skb);
priv->tx_skbuff[first_entry] = skb; tx_q->tx_skbuff[first_entry] = skb;
first->des0 = cpu_to_le32(des); first->des0 = cpu_to_le32(des);
...@@ -2370,7 +2742,7 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2370,7 +2742,7 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
/* If needed take extra descriptors to fill the remaining payload */ /* If needed take extra descriptors to fill the remaining payload */
tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE; tmp_pay_len = pay_len - TSO_MAX_BUFF_SIZE;
stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0)); stmmac_tso_allocator(priv, des, tmp_pay_len, (nfrags == 0), queue);
/* Prepare fragments */ /* Prepare fragments */
for (i = 0; i < nfrags; i++) { for (i = 0; i < nfrags; i++) {
...@@ -2383,22 +2755,22 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2383,22 +2755,22 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
goto dma_map_err; goto dma_map_err;
stmmac_tso_allocator(priv, des, skb_frag_size(frag), stmmac_tso_allocator(priv, des, skb_frag_size(frag),
(i == nfrags - 1)); (i == nfrags - 1), queue);
priv->tx_skbuff_dma[priv->cur_tx].buf = des; tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
priv->tx_skbuff_dma[priv->cur_tx].len = skb_frag_size(frag); tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
priv->tx_skbuff[priv->cur_tx] = NULL; tx_q->tx_skbuff[tx_q->cur_tx] = NULL;
priv->tx_skbuff_dma[priv->cur_tx].map_as_page = true; tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
} }
priv->tx_skbuff_dma[priv->cur_tx].last_segment = true; tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
priv->cur_tx = STMMAC_GET_ENTRY(priv->cur_tx, DMA_TX_SIZE); tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, DMA_TX_SIZE);
if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__); __func__);
netif_stop_queue(dev); netif_tx_stop_queue(netdev_get_tx_queue(dev, queue));
} }
dev->stats.tx_bytes += skb->len; dev->stats.tx_bytes += skb->len;
...@@ -2430,7 +2802,7 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2430,7 +2802,7 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
priv->hw->desc->prepare_tso_tx_desc(first, 1, priv->hw->desc->prepare_tso_tx_desc(first, 1,
proto_hdr_len, proto_hdr_len,
pay_len, pay_len,
1, priv->tx_skbuff_dma[first_entry].last_segment, 1, tx_q->tx_skbuff_dma[first_entry].last_segment,
tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len)); tcp_hdrlen(skb) / 4, (skb->len - proto_hdr_len));
/* If context desc is used to change MSS */ /* If context desc is used to change MSS */
...@@ -2445,20 +2817,20 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2445,20 +2817,20 @@ static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
if (netif_msg_pktdata(priv)) { if (netif_msg_pktdata(priv)) {
pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n", pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
__func__, priv->cur_tx, priv->dirty_tx, first_entry, __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
priv->cur_tx, first, nfrags); tx_q->cur_tx, first, nfrags);
priv->hw->desc->display_ring((void *)priv->dma_tx, DMA_TX_SIZE, priv->hw->desc->display_ring((void *)tx_q->dma_tx, DMA_TX_SIZE,
0); 0);
pr_info(">>> frame to be transmitted: "); pr_info(">>> frame to be transmitted: ");
print_pkt(skb->data, skb_headlen(skb)); print_pkt(skb->data, skb_headlen(skb));
} }
netdev_sent_queue(dev, skb->len); netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr, priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, tx_q->tx_tail_addr,
STMMAC_CHAN0); queue);
return NETDEV_TX_OK; return NETDEV_TX_OK;
...@@ -2482,21 +2854,25 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2482,21 +2854,25 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
struct stmmac_priv *priv = netdev_priv(dev); struct stmmac_priv *priv = netdev_priv(dev);
unsigned int nopaged_len = skb_headlen(skb); unsigned int nopaged_len = skb_headlen(skb);
int i, csum_insertion = 0, is_jumbo = 0; int i, csum_insertion = 0, is_jumbo = 0;
u32 queue = skb_get_queue_mapping(skb);
int nfrags = skb_shinfo(skb)->nr_frags; int nfrags = skb_shinfo(skb)->nr_frags;
unsigned int entry, first_entry; unsigned int entry, first_entry;
struct dma_desc *desc, *first; struct dma_desc *desc, *first;
struct stmmac_tx_queue *tx_q;
unsigned int enh_desc; unsigned int enh_desc;
unsigned int des; unsigned int des;
tx_q = &priv->tx_queue[queue];
/* Manage oversized TCP frames for GMAC4 device */ /* Manage oversized TCP frames for GMAC4 device */
if (skb_is_gso(skb) && priv->tso) { if (skb_is_gso(skb) && priv->tso) {
if (ip_hdr(skb)->protocol == IPPROTO_TCP) if (ip_hdr(skb)->protocol == IPPROTO_TCP)
return stmmac_tso_xmit(skb, dev); return stmmac_tso_xmit(skb, dev);
} }
if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) { if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
if (!netif_queue_stopped(dev)) { if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_stop_queue(dev); netif_tx_stop_queue(netdev_get_tx_queue(dev, queue));
/* This is a hard error, log it. */ /* This is a hard error, log it. */
netdev_err(priv->dev, netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n", "%s: Tx Ring full when queue awake\n",
...@@ -2508,19 +2884,19 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2508,19 +2884,19 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
if (priv->tx_path_in_lpi_mode) if (priv->tx_path_in_lpi_mode)
stmmac_disable_eee_mode(priv); stmmac_disable_eee_mode(priv);
entry = priv->cur_tx; entry = tx_q->cur_tx;
first_entry = entry; first_entry = entry;
csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL); csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
if (likely(priv->extend_desc)) if (likely(priv->extend_desc))
desc = (struct dma_desc *)(priv->dma_etx + entry); desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else else
desc = priv->dma_tx + entry; desc = tx_q->dma_tx + entry;
first = desc; first = desc;
priv->tx_skbuff[first_entry] = skb; tx_q->tx_skbuff[first_entry] = skb;
enh_desc = priv->plat->enh_desc; enh_desc = priv->plat->enh_desc;
/* To program the descriptors according to the size of the frame */ /* To program the descriptors according to the size of the frame */
...@@ -2529,7 +2905,7 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2529,7 +2905,7 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
if (unlikely(is_jumbo) && likely(priv->synopsys_id < if (unlikely(is_jumbo) && likely(priv->synopsys_id <
DWMAC_CORE_4_00)) { DWMAC_CORE_4_00)) {
entry = priv->hw->mode->jumbo_frm(priv, skb, csum_insertion); entry = priv->hw->mode->jumbo_frm(tx_q, skb, csum_insertion);
if (unlikely(entry < 0)) if (unlikely(entry < 0))
goto dma_map_err; goto dma_map_err;
} }
...@@ -2542,26 +2918,26 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2542,26 +2918,26 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
if (likely(priv->extend_desc)) if (likely(priv->extend_desc))
desc = (struct dma_desc *)(priv->dma_etx + entry); desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else else
desc = priv->dma_tx + entry; desc = tx_q->dma_tx + entry;
des = skb_frag_dma_map(priv->device, frag, 0, len, des = skb_frag_dma_map(priv->device, frag, 0, len,
DMA_TO_DEVICE); DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des)) if (dma_mapping_error(priv->device, des))
goto dma_map_err; /* should reuse desc w/o issues */ goto dma_map_err; /* should reuse desc w/o issues */
priv->tx_skbuff[entry] = NULL; tx_q->tx_skbuff[entry] = NULL;
priv->tx_skbuff_dma[entry].buf = des; tx_q->tx_skbuff_dma[entry].buf = des;
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
desc->des0 = cpu_to_le32(des); desc->des0 = cpu_to_le32(des);
else else
desc->des2 = cpu_to_le32(des); desc->des2 = cpu_to_le32(des);
priv->tx_skbuff_dma[entry].map_as_page = true; tx_q->tx_skbuff_dma[entry].map_as_page = true;
priv->tx_skbuff_dma[entry].len = len; tx_q->tx_skbuff_dma[entry].len = len;
priv->tx_skbuff_dma[entry].last_segment = last_segment; tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
/* Prepare the descriptor and set the own bit too */ /* Prepare the descriptor and set the own bit too */
priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion, priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
...@@ -2570,20 +2946,20 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2570,20 +2946,20 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE); entry = STMMAC_GET_ENTRY(entry, DMA_TX_SIZE);
priv->cur_tx = entry; tx_q->cur_tx = entry;
if (netif_msg_pktdata(priv)) { if (netif_msg_pktdata(priv)) {
void *tx_head; void *tx_head;
netdev_dbg(priv->dev, netdev_dbg(priv->dev,
"%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d", "%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
__func__, priv->cur_tx, priv->dirty_tx, first_entry, __func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
entry, first, nfrags); entry, first, nfrags);
if (priv->extend_desc) if (priv->extend_desc)
tx_head = (void *)priv->dma_etx; tx_head = (void *)tx_q->dma_etx;
else else
tx_head = (void *)priv->dma_tx; tx_head = (void *)tx_q->dma_tx;
priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false); priv->hw->desc->display_ring(tx_head, DMA_TX_SIZE, false);
...@@ -2591,10 +2967,10 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2591,10 +2967,10 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
print_pkt(skb->data, skb->len); print_pkt(skb->data, skb->len);
} }
if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) { if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n", netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__); __func__);
netif_stop_queue(dev); netif_tx_stop_queue(netdev_get_tx_queue(dev, queue));
} }
dev->stats.tx_bytes += skb->len; dev->stats.tx_bytes += skb->len;
...@@ -2629,14 +3005,14 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2629,14 +3005,14 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
if (dma_mapping_error(priv->device, des)) if (dma_mapping_error(priv->device, des))
goto dma_map_err; goto dma_map_err;
priv->tx_skbuff_dma[first_entry].buf = des; tx_q->tx_skbuff_dma[first_entry].buf = des;
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00))
first->des0 = cpu_to_le32(des); first->des0 = cpu_to_le32(des);
else else
first->des2 = cpu_to_le32(des); first->des2 = cpu_to_le32(des);
priv->tx_skbuff_dma[first_entry].len = nopaged_len; tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
priv->tx_skbuff_dma[first_entry].last_segment = last_segment; tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en)) { priv->hwts_tx_en)) {
...@@ -2657,13 +3033,13 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev) ...@@ -2657,13 +3033,13 @@ static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
dma_wmb(); dma_wmb();
} }
netdev_sent_queue(dev, skb->len); netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
if (priv->synopsys_id < DWMAC_CORE_4_00) if (priv->synopsys_id < DWMAC_CORE_4_00)
priv->hw->dma->enable_dma_transmission(priv->ioaddr); priv->hw->dma->enable_dma_transmission(priv->ioaddr);
else else
priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, priv->tx_tail_addr, priv->hw->dma->set_tx_tail_ptr(priv->ioaddr, tx_q->tx_tail_addr,
STMMAC_CHAN0); queue);
return NETDEV_TX_OK; return NETDEV_TX_OK;
...@@ -2691,9 +3067,9 @@ static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb) ...@@ -2691,9 +3067,9 @@ static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
} }
static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv) static inline int stmmac_rx_threshold_count(struct stmmac_rx_queue *rx_q)
{ {
if (priv->rx_zeroc_thresh < STMMAC_RX_THRESH) if (rx_q->rx_zeroc_thresh < STMMAC_RX_THRESH)
return 0; return 0;
return 1; return 1;
...@@ -2702,30 +3078,32 @@ static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv) ...@@ -2702,30 +3078,32 @@ static inline int stmmac_rx_threshold_count(struct stmmac_priv *priv)
/** /**
* stmmac_rx_refill - refill used skb preallocated buffers * stmmac_rx_refill - refill used skb preallocated buffers
* @priv: driver private structure * @priv: driver private structure
* @queue: RX queue index
* Description : this is to reallocate the skb for the reception process * Description : this is to reallocate the skb for the reception process
* that is based on zero-copy. * that is based on zero-copy.
*/ */
static inline void stmmac_rx_refill(struct stmmac_priv *priv) static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
{ {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
int dirty = stmmac_rx_dirty(priv, queue);
unsigned int entry = rx_q->dirty_rx;
int bfsize = priv->dma_buf_sz; int bfsize = priv->dma_buf_sz;
unsigned int entry = priv->dirty_rx;
int dirty = stmmac_rx_dirty(priv);
while (dirty-- > 0) { while (dirty-- > 0) {
struct dma_desc *p; struct dma_desc *p;
if (priv->extend_desc) if (priv->extend_desc)
p = (struct dma_desc *)(priv->dma_erx + entry); p = (struct dma_desc *)(rx_q->dma_erx + entry);
else else
p = priv->dma_rx + entry; p = rx_q->dma_rx + entry;
if (likely(priv->rx_skbuff[entry] == NULL)) { if (!rx_q->rx_skbuff[entry]) {
struct sk_buff *skb; struct sk_buff *skb;
skb = netdev_alloc_skb_ip_align(priv->dev, bfsize); skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
if (unlikely(!skb)) { if (unlikely(!skb)) {
/* so for a while no zero-copy! */ /* so for a while no zero-copy! */
priv->rx_zeroc_thresh = STMMAC_RX_THRESH; rx_q->rx_zeroc_thresh = STMMAC_RX_THRESH;
if (unlikely(net_ratelimit())) if (unlikely(net_ratelimit()))
dev_err(priv->device, dev_err(priv->device,
"fail to alloc skb entry %d\n", "fail to alloc skb entry %d\n",
...@@ -2733,28 +3111,28 @@ static inline void stmmac_rx_refill(struct stmmac_priv *priv) ...@@ -2733,28 +3111,28 @@ static inline void stmmac_rx_refill(struct stmmac_priv *priv)
break; break;
} }
priv->rx_skbuff[entry] = skb; rx_q->rx_skbuff[entry] = skb;
priv->rx_skbuff_dma[entry] = rx_q->rx_skbuff_dma[entry] =
dma_map_single(priv->device, skb->data, bfsize, dma_map_single(priv->device, skb->data, bfsize,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
if (dma_mapping_error(priv->device, if (dma_mapping_error(priv->device,
priv->rx_skbuff_dma[entry])) { rx_q->rx_skbuff_dma[entry])) {
netdev_err(priv->dev, "Rx DMA map failed\n"); netdev_err(priv->dev, "Rx DMA map failed\n");
dev_kfree_skb(skb); dev_kfree_skb(skb);
break; break;
} }
if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) { if (unlikely(priv->synopsys_id >= DWMAC_CORE_4_00)) {
p->des0 = cpu_to_le32(priv->rx_skbuff_dma[entry]); p->des0 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
p->des1 = 0; p->des1 = 0;
} else { } else {
p->des2 = cpu_to_le32(priv->rx_skbuff_dma[entry]); p->des2 = cpu_to_le32(rx_q->rx_skbuff_dma[entry]);
} }
if (priv->hw->mode->refill_desc3) if (priv->hw->mode->refill_desc3)
priv->hw->mode->refill_desc3(priv, p); priv->hw->mode->refill_desc3(rx_q, p);
if (priv->rx_zeroc_thresh > 0) if (rx_q->rx_zeroc_thresh > 0)
priv->rx_zeroc_thresh--; rx_q->rx_zeroc_thresh--;
netif_dbg(priv, rx_status, priv->dev, netif_dbg(priv, rx_status, priv->dev,
"refill entry #%d\n", entry); "refill entry #%d\n", entry);
...@@ -2770,7 +3148,7 @@ static inline void stmmac_rx_refill(struct stmmac_priv *priv) ...@@ -2770,7 +3148,7 @@ static inline void stmmac_rx_refill(struct stmmac_priv *priv)
entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE); entry = STMMAC_GET_ENTRY(entry, DMA_RX_SIZE);
} }
priv->dirty_rx = entry; rx_q->dirty_rx = entry;
} }
/** /**
...@@ -2780,21 +3158,22 @@ static inline void stmmac_rx_refill(struct stmmac_priv *priv) ...@@ -2780,21 +3158,22 @@ static inline void stmmac_rx_refill(struct stmmac_priv *priv)
* Description : this the function called by the napi poll method. * Description : this the function called by the napi poll method.
* It gets all the frames inside the ring. * It gets all the frames inside the ring.
*/ */
static int stmmac_rx(struct stmmac_priv *priv, int limit) static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
{ {
unsigned int entry = priv->cur_rx; struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
unsigned int entry = rx_q->cur_rx;
int coe = priv->hw->rx_csum;
unsigned int next_entry; unsigned int next_entry;
unsigned int count = 0; unsigned int count = 0;
int coe = priv->hw->rx_csum;
if (netif_msg_rx_status(priv)) { if (netif_msg_rx_status(priv)) {
void *rx_head; void *rx_head;
netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__); netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
if (priv->extend_desc) if (priv->extend_desc)
rx_head = (void *)priv->dma_erx; rx_head = (void *)rx_q->dma_erx;
else else
rx_head = (void *)priv->dma_rx; rx_head = (void *)rx_q->dma_rx;
priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true); priv->hw->desc->display_ring(rx_head, DMA_RX_SIZE, true);
} }
...@@ -2804,9 +3183,9 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2804,9 +3183,9 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
struct dma_desc *np; struct dma_desc *np;
if (priv->extend_desc) if (priv->extend_desc)
p = (struct dma_desc *)(priv->dma_erx + entry); p = (struct dma_desc *)(rx_q->dma_erx + entry);
else else
p = priv->dma_rx + entry; p = rx_q->dma_rx + entry;
/* read the status of the incoming frame */ /* read the status of the incoming frame */
status = priv->hw->desc->rx_status(&priv->dev->stats, status = priv->hw->desc->rx_status(&priv->dev->stats,
...@@ -2817,20 +3196,20 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2817,20 +3196,20 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
count++; count++;
priv->cur_rx = STMMAC_GET_ENTRY(priv->cur_rx, DMA_RX_SIZE); rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx, DMA_RX_SIZE);
next_entry = priv->cur_rx; next_entry = rx_q->cur_rx;
if (priv->extend_desc) if (priv->extend_desc)
np = (struct dma_desc *)(priv->dma_erx + next_entry); np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
else else
np = priv->dma_rx + next_entry; np = rx_q->dma_rx + next_entry;
prefetch(np); prefetch(np);
if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status)) if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
priv->hw->desc->rx_extended_status(&priv->dev->stats, priv->hw->desc->rx_extended_status(&priv->dev->stats,
&priv->xstats, &priv->xstats,
priv->dma_erx + rx_q->dma_erx +
entry); entry);
if (unlikely(status == discard_frame)) { if (unlikely(status == discard_frame)) {
priv->dev->stats.rx_errors++; priv->dev->stats.rx_errors++;
...@@ -2840,9 +3219,9 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2840,9 +3219,9 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
* them in stmmac_rx_refill() function so that * them in stmmac_rx_refill() function so that
* device can reuse it. * device can reuse it.
*/ */
priv->rx_skbuff[entry] = NULL; rx_q->rx_skbuff[entry] = NULL;
dma_unmap_single(priv->device, dma_unmap_single(priv->device,
priv->rx_skbuff_dma[entry], rx_q->rx_skbuff_dma[entry],
priv->dma_buf_sz, priv->dma_buf_sz,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
} }
...@@ -2890,7 +3269,7 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2890,7 +3269,7 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
*/ */
if (unlikely(!priv->plat->has_gmac4 && if (unlikely(!priv->plat->has_gmac4 &&
((frame_len < priv->rx_copybreak) || ((frame_len < priv->rx_copybreak) ||
stmmac_rx_threshold_count(priv)))) { stmmac_rx_threshold_count(rx_q)))) {
skb = netdev_alloc_skb_ip_align(priv->dev, skb = netdev_alloc_skb_ip_align(priv->dev,
frame_len); frame_len);
if (unlikely(!skb)) { if (unlikely(!skb)) {
...@@ -2902,21 +3281,21 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2902,21 +3281,21 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
} }
dma_sync_single_for_cpu(priv->device, dma_sync_single_for_cpu(priv->device,
priv->rx_skbuff_dma rx_q->rx_skbuff_dma
[entry], frame_len, [entry], frame_len,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
skb_copy_to_linear_data(skb, skb_copy_to_linear_data(skb,
priv-> rx_q->
rx_skbuff[entry]->data, rx_skbuff[entry]->data,
frame_len); frame_len);
skb_put(skb, frame_len); skb_put(skb, frame_len);
dma_sync_single_for_device(priv->device, dma_sync_single_for_device(priv->device,
priv->rx_skbuff_dma rx_q->rx_skbuff_dma
[entry], frame_len, [entry], frame_len,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
} else { } else {
skb = priv->rx_skbuff[entry]; skb = rx_q->rx_skbuff[entry];
if (unlikely(!skb)) { if (unlikely(!skb)) {
netdev_err(priv->dev, netdev_err(priv->dev,
"%s: Inconsistent Rx chain\n", "%s: Inconsistent Rx chain\n",
...@@ -2925,12 +3304,12 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2925,12 +3304,12 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
break; break;
} }
prefetch(skb->data - NET_IP_ALIGN); prefetch(skb->data - NET_IP_ALIGN);
priv->rx_skbuff[entry] = NULL; rx_q->rx_skbuff[entry] = NULL;
priv->rx_zeroc_thresh++; rx_q->rx_zeroc_thresh++;
skb_put(skb, frame_len); skb_put(skb, frame_len);
dma_unmap_single(priv->device, dma_unmap_single(priv->device,
priv->rx_skbuff_dma[entry], rx_q->rx_skbuff_dma[entry],
priv->dma_buf_sz, priv->dma_buf_sz,
DMA_FROM_DEVICE); DMA_FROM_DEVICE);
} }
...@@ -2952,7 +3331,7 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2952,7 +3331,7 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
else else
skb->ip_summed = CHECKSUM_UNNECESSARY; skb->ip_summed = CHECKSUM_UNNECESSARY;
napi_gro_receive(&priv->napi, skb); napi_gro_receive(&rx_q->napi, skb);
priv->dev->stats.rx_packets++; priv->dev->stats.rx_packets++;
priv->dev->stats.rx_bytes += frame_len; priv->dev->stats.rx_bytes += frame_len;
...@@ -2960,7 +3339,7 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2960,7 +3339,7 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
entry = next_entry; entry = next_entry;
} }
stmmac_rx_refill(priv); stmmac_rx_refill(priv, queue);
priv->xstats.rx_pkt_n += count; priv->xstats.rx_pkt_n += count;
...@@ -2977,14 +3356,22 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit) ...@@ -2977,14 +3356,22 @@ static int stmmac_rx(struct stmmac_priv *priv, int limit)
*/ */
static int stmmac_poll(struct napi_struct *napi, int budget) static int stmmac_poll(struct napi_struct *napi, int budget)
{ {
struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi); struct stmmac_rx_queue *rx_q =
int work_done = 0; container_of(napi, struct stmmac_rx_queue, napi);
u32 chan = STMMAC_CHAN0; struct stmmac_priv *priv = rx_q->priv_data;
u32 tx_count = priv->dma_cap.number_tx_queues;
u32 chan = rx_q->queue_index;
u32 work_done = 0;
u32 queue = 0;
priv->xstats.napi_poll++; priv->xstats.napi_poll++;
stmmac_tx_clean(priv); /* check all the queues */
for (queue = 0; queue < tx_count; queue++)
stmmac_tx_clean(priv, queue);
/* Process RX packets from this queue */
work_done = stmmac_rx(priv, budget, rx_q->queue_index);
work_done = stmmac_rx(priv, budget);
if (work_done < budget) { if (work_done < budget) {
napi_complete_done(napi, work_done); napi_complete_done(napi, work_done);
stmmac_enable_dma_irq(priv, chan); stmmac_enable_dma_irq(priv, chan);
...@@ -3003,10 +3390,12 @@ static int stmmac_poll(struct napi_struct *napi, int budget) ...@@ -3003,10 +3390,12 @@ static int stmmac_poll(struct napi_struct *napi, int budget)
static void stmmac_tx_timeout(struct net_device *dev) static void stmmac_tx_timeout(struct net_device *dev)
{ {
struct stmmac_priv *priv = netdev_priv(dev); struct stmmac_priv *priv = netdev_priv(dev);
u32 chan = STMMAC_CHAN0; u32 tx_count = priv->plat->tx_queues_to_use;
u32 chan;
/* Clear Tx resources and restart transmitting again */ /* Clear Tx resources and restart transmitting again */
stmmac_tx_err(priv, chan); for (chan = 0; chan < tx_count; chan++)
stmmac_tx_err(priv, chan);
} }
/** /**
...@@ -3145,6 +3534,9 @@ static irqreturn_t stmmac_interrupt(int irq, void *dev_id) ...@@ -3145,6 +3534,9 @@ static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
if (priv->synopsys_id >= DWMAC_CORE_4_00) { if (priv->synopsys_id >= DWMAC_CORE_4_00) {
for (queue = 0; queue < queues_count; queue++) { for (queue = 0; queue < queues_count; queue++) {
struct stmmac_rx_queue *rx_q =
&priv->rx_queue[queue];
status |= status |=
priv->hw->mac->host_mtl_irq_status(priv->hw, priv->hw->mac->host_mtl_irq_status(priv->hw,
queue); queue);
...@@ -3152,7 +3544,7 @@ static irqreturn_t stmmac_interrupt(int irq, void *dev_id) ...@@ -3152,7 +3544,7 @@ static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
if (status & CORE_IRQ_MTL_RX_OVERFLOW && if (status & CORE_IRQ_MTL_RX_OVERFLOW &&
priv->hw->dma->set_rx_tail_ptr) priv->hw->dma->set_rx_tail_ptr)
priv->hw->dma->set_rx_tail_ptr(priv->ioaddr, priv->hw->dma->set_rx_tail_ptr(priv->ioaddr,
priv->rx_tail_addr, rx_q->rx_tail_addr,
queue); queue);
} }
} }
...@@ -3252,17 +3644,40 @@ static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v) ...@@ -3252,17 +3644,40 @@ static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
{ {
struct net_device *dev = seq->private; struct net_device *dev = seq->private;
struct stmmac_priv *priv = netdev_priv(dev); struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
if (priv->extend_desc) { for (queue = 0; queue < rx_count; queue++) {
seq_printf(seq, "Extended RX descriptor ring:\n"); struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
sysfs_display_ring((void *)priv->dma_erx, DMA_RX_SIZE, 1, seq);
seq_printf(seq, "Extended TX descriptor ring:\n"); seq_printf(seq, "RX Queue %d:\n", queue);
sysfs_display_ring((void *)priv->dma_etx, DMA_TX_SIZE, 1, seq);
} else { if (priv->extend_desc) {
seq_printf(seq, "RX descriptor ring:\n"); seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)priv->dma_rx, DMA_RX_SIZE, 0, seq); sysfs_display_ring((void *)rx_q->dma_erx,
seq_printf(seq, "TX descriptor ring:\n"); DMA_RX_SIZE, 1, seq);
sysfs_display_ring((void *)priv->dma_tx, DMA_TX_SIZE, 0, seq); } else {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)rx_q->dma_rx,
DMA_RX_SIZE, 0, seq);
}
}
for (queue = 0; queue < tx_count; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
seq_printf(seq, "TX Queue %d:\n", queue);
if (priv->extend_desc) {
seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_etx,
DMA_TX_SIZE, 1, seq);
} else {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_tx,
DMA_TX_SIZE, 0, seq);
}
} }
return 0; return 0;
...@@ -3545,11 +3960,14 @@ int stmmac_dvr_probe(struct device *device, ...@@ -3545,11 +3960,14 @@ int stmmac_dvr_probe(struct device *device,
struct plat_stmmacenet_data *plat_dat, struct plat_stmmacenet_data *plat_dat,
struct stmmac_resources *res) struct stmmac_resources *res)
{ {
int ret = 0;
struct net_device *ndev = NULL; struct net_device *ndev = NULL;
struct stmmac_priv *priv; struct stmmac_priv *priv;
int ret = 0;
u32 queue;
ndev = alloc_etherdev(sizeof(struct stmmac_priv)); ndev = alloc_etherdev_mqs(sizeof(struct stmmac_priv),
MTL_MAX_TX_QUEUES,
MTL_MAX_RX_QUEUES);
if (!ndev) if (!ndev)
return -ENOMEM; return -ENOMEM;
...@@ -3591,6 +4009,12 @@ int stmmac_dvr_probe(struct device *device, ...@@ -3591,6 +4009,12 @@ int stmmac_dvr_probe(struct device *device,
if (ret) if (ret)
goto error_hw_init; goto error_hw_init;
/* Configure real RX and TX queues */
ndev->real_num_rx_queues = priv->plat->rx_queues_to_use;
ndev->real_num_tx_queues = priv->plat->tx_queues_to_use;
priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
ndev->netdev_ops = &stmmac_netdev_ops; ndev->netdev_ops = &stmmac_netdev_ops;
ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
...@@ -3640,7 +4064,26 @@ int stmmac_dvr_probe(struct device *device, ...@@ -3640,7 +4064,26 @@ int stmmac_dvr_probe(struct device *device,
"Enable RX Mitigation via HW Watchdog Timer\n"); "Enable RX Mitigation via HW Watchdog Timer\n");
} }
netif_napi_add(ndev, &priv->napi, stmmac_poll, 64); ret = alloc_dma_desc_resources(priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
__func__);
goto init_dma_error;
}
ret = init_dma_desc_rings(priv->dev, GFP_KERNEL);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
__func__);
goto init_dma_error;
}
for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
netif_napi_add(ndev, &rx_q->napi, stmmac_poll,
(64 * priv->plat->rx_queues_to_use));
}
spin_lock_init(&priv->lock); spin_lock_init(&priv->lock);
...@@ -3685,7 +4128,13 @@ int stmmac_dvr_probe(struct device *device, ...@@ -3685,7 +4128,13 @@ int stmmac_dvr_probe(struct device *device,
priv->hw->pcs != STMMAC_PCS_RTBI) priv->hw->pcs != STMMAC_PCS_RTBI)
stmmac_mdio_unregister(ndev); stmmac_mdio_unregister(ndev);
error_mdio_register: error_mdio_register:
netif_napi_del(&priv->napi); for (queue = 0; queue < priv->plat->rx_queues_to_use; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
netif_napi_del(&rx_q->napi);
}
init_dma_error:
free_dma_desc_resources(priv);
error_hw_init: error_hw_init:
free_netdev(ndev); free_netdev(ndev);
...@@ -3747,9 +4196,9 @@ int stmmac_suspend(struct device *dev) ...@@ -3747,9 +4196,9 @@ int stmmac_suspend(struct device *dev)
spin_lock_irqsave(&priv->lock, flags); spin_lock_irqsave(&priv->lock, flags);
netif_device_detach(ndev); netif_device_detach(ndev);
netif_stop_queue(ndev); stmmac_stop_all_queues(priv);
napi_disable(&priv->napi); stmmac_disable_all_queues(priv);
/* Stop TX/RX DMA */ /* Stop TX/RX DMA */
stmmac_stop_all_dma(priv); stmmac_stop_all_dma(priv);
...@@ -3774,6 +4223,31 @@ int stmmac_suspend(struct device *dev) ...@@ -3774,6 +4223,31 @@ int stmmac_suspend(struct device *dev)
} }
EXPORT_SYMBOL_GPL(stmmac_suspend); EXPORT_SYMBOL_GPL(stmmac_suspend);
/**
* stmmac_reset_queues_param - reset queue parameters
* @dev: device pointer
*/
static void stmmac_reset_queues_param(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &priv->rx_queue[queue];
rx_q->cur_rx = 0;
rx_q->dirty_rx = 0;
}
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->tx_queue[queue];
tx_q->cur_tx = 0;
tx_q->dirty_tx = 0;
}
}
/** /**
* stmmac_resume - resume callback * stmmac_resume - resume callback
* @dev: device pointer * @dev: device pointer
...@@ -3814,10 +4288,8 @@ int stmmac_resume(struct device *dev) ...@@ -3814,10 +4288,8 @@ int stmmac_resume(struct device *dev)
spin_lock_irqsave(&priv->lock, flags); spin_lock_irqsave(&priv->lock, flags);
priv->cur_rx = 0; stmmac_reset_queues_param(priv);
priv->dirty_rx = 0;
priv->dirty_tx = 0;
priv->cur_tx = 0;
/* reset private mss value to force mss context settings at /* reset private mss value to force mss context settings at
* next tso xmit (only used for gmac4). * next tso xmit (only used for gmac4).
*/ */
...@@ -3829,9 +4301,9 @@ int stmmac_resume(struct device *dev) ...@@ -3829,9 +4301,9 @@ int stmmac_resume(struct device *dev)
stmmac_init_tx_coalesce(priv); stmmac_init_tx_coalesce(priv);
stmmac_set_rx_mode(ndev); stmmac_set_rx_mode(ndev);
napi_enable(&priv->napi); stmmac_enable_all_queues(priv);
netif_start_queue(ndev); stmmac_start_all_queues(priv);
spin_unlock_irqrestore(&priv->lock, flags); spin_unlock_irqrestore(&priv->lock, flags);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment