Commit b1106618 authored by Jeff Garzik's avatar Jeff Garzik

Merge pobox.com:/spare/repo/netdev-2.6/e1000

into pobox.com:/spare/repo/netdev-2.6/ALL
parents edf609bc fa88c854
......@@ -49,6 +49,7 @@
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/string.h>
#include <linux/pagemap.h>
......@@ -63,6 +64,7 @@
#include <linux/udp.h>
#include <net/pkt_sched.h>
#include <linux/list.h>
#include <linux/rtnetlink.h>
#include <linux/reboot.h>
#ifdef NETIF_F_TSO
#include <net/checksum.h>
......@@ -77,6 +79,8 @@
#define BAR_1 1
#define BAR_5 5
#define INTEL_E1000_ETHERNET_DEVICE(device_id) {\
PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
struct e1000_adapter;
......@@ -98,11 +102,12 @@ struct e1000_adapter;
#define E1000_MAX_INTR 10
/* How many descriptors for TX and RX ? */
/* TX/RX descriptor defines */
#define E1000_DEFAULT_TXD 256
#define E1000_MAX_TXD 256
#define E1000_MIN_TXD 80
#define E1000_MAX_82544_TXD 4096
#define E1000_DEFAULT_RXD 256
#define E1000_MAX_RXD 256
#define E1000_MIN_RXD 80
......@@ -123,14 +128,11 @@ struct e1000_adapter;
#define E1000_TX_HEAD_ADDR_SHIFT 7
#define E1000_PBA_TX_MASK 0xFFFF0000
/* Flow Control High-Watermark: 5688 bytes below Rx FIFO size */
#define E1000_FC_HIGH_DIFF 0x1638
/* Flow Control Low-Watermark: 5696 bytes below Rx FIFO size */
#define E1000_FC_LOW_DIFF 0x1640
/* Flow Control Watermarks */
#define E1000_FC_HIGH_DIFF 0x1638 /* High: 5688 bytes below Rx FIFO size */
#define E1000_FC_LOW_DIFF 0x1640 /* Low: 5696 bytes below Rx FIFO size */
/* Flow Control Pause Time: 858 usec */
#define E1000_FC_PAUSE_TIME 0x0680
#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
/* How many Tx Descriptors do we need to call netif_wake_queue ? */
#define E1000_TX_QUEUE_WAKE 16
......@@ -153,9 +155,9 @@ struct e1000_adapter;
struct e1000_buffer {
struct sk_buff *skb;
uint64_t dma;
unsigned long length;
unsigned long time_stamp;
unsigned int next_to_watch;
uint16_t length;
uint16_t next_to_watch;
};
struct e1000_desc_ring {
......@@ -202,7 +204,7 @@ struct e1000_adapter {
spinlock_t stats_lock;
atomic_t irq_sem;
struct work_struct tx_timeout_task;
uint8_t fc_autoneg;
uint8_t fc_autoneg;
struct timer_list blink_timer;
unsigned long led_status;
......
......@@ -88,9 +88,9 @@ static const struct e1000_stats e1000_gstrings_stats[] = {
{ "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
{ "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
{ "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) },
{ "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
{ "rx_long_byte_count", E1000_STAT(stats.gorcl) }
{ "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }
};
#define E1000_STATS_LEN \
sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
......@@ -170,7 +170,8 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
ecmd->duplex = -1;
}
ecmd->autoneg = (hw->autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
return 0;
}
......@@ -192,6 +193,7 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
if(netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_reset(adapter);
e1000_up(adapter);
} else
e1000_reset(adapter);
......@@ -199,12 +201,13 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
return 0;
}
static void
static void
e1000_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev->priv;
struct e1000_hw *hw = &adapter->hw;
pause->autoneg =
(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
......@@ -218,9 +221,9 @@ e1000_get_pauseparam(struct net_device *netdev,
}
}
static int
static int
e1000_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *pause)
struct ethtool_pauseparam *pause)
{
struct e1000_adapter *adapter = netdev->priv;
struct e1000_hw *hw = &adapter->hw;
......@@ -271,7 +274,7 @@ e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
e1000_reset(adapter);
return 0;
}
static uint32_t
e1000_get_tx_csum(struct net_device *netdev)
{
......@@ -337,7 +340,7 @@ e1000_get_regs_len(struct net_device *netdev)
static void
e1000_get_regs(struct net_device *netdev,
struct ethtool_regs *regs, void *p)
struct ethtool_regs *regs, void *p)
{
struct e1000_adapter *adapter = netdev->priv;
struct e1000_hw *hw = &adapter->hw;
......@@ -418,6 +421,10 @@ e1000_get_regs(struct net_device *netdev,
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
if(hw->mac_type >= e1000_82540 &&
hw->media_type == e1000_media_type_copper) {
regs_buff[26] = E1000_READ_REG(hw, MANC);
}
}
static int
......@@ -438,7 +445,7 @@ e1000_get_eeprom(struct net_device *netdev,
int ret_val = 0;
uint16_t i;
if(eeprom->len == 0)
if(eeprom->len == 0)
return -EINVAL;
eeprom->magic = hw->vendor_id | (hw->device_id << 16);
......@@ -446,9 +453,9 @@ e1000_get_eeprom(struct net_device *netdev,
first_word = eeprom->offset >> 1;
last_word = (eeprom->offset + eeprom->len - 1) >> 1;
eeprom_buff = kmalloc(sizeof(uint16_t) *
eeprom_buff = kmalloc(sizeof(uint16_t) *
(last_word - first_word + 1), GFP_KERNEL);
if (!eeprom_buff)
if(!eeprom_buff)
return -ENOMEM;
if(hw->eeprom.type == e1000_eeprom_spi)
......@@ -466,9 +473,8 @@ e1000_get_eeprom(struct net_device *netdev,
for (i = 0; i < last_word - first_word + 1; i++)
le16_to_cpus(&eeprom_buff[i]);
memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset%2),
eeprom->len);
memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
eeprom->len);
kfree(eeprom_buff);
return ret_val;
......@@ -520,6 +526,7 @@ e1000_set_eeprom(struct net_device *netdev,
le16_to_cpus(&eeprom_buff[i]);
memcpy(ptr, bytes, eeprom->len);
for (i = 0; i < last_word - first_word + 1; i++)
eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
......@@ -575,17 +582,16 @@ static int
e1000_set_ringparam(struct net_device *netdev,
struct ethtool_ringparam *ring)
{
int err;
struct e1000_adapter *adapter = netdev->priv;
e1000_mac_type mac_type = adapter->hw.mac_type;
struct e1000_desc_ring *txdr = &adapter->tx_ring;
struct e1000_desc_ring *rxdr = &adapter->rx_ring;
struct e1000_desc_ring tx_old, tx_new;
struct e1000_desc_ring rx_old, rx_new;
struct e1000_desc_ring tx_old, tx_new, rx_old, rx_new;
int err;
tx_old = adapter->tx_ring;
rx_old = adapter->rx_ring;
if(netif_running(adapter->netdev))
e1000_down(adapter);
......@@ -600,15 +606,15 @@ e1000_set_ringparam(struct net_device *netdev,
E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
if(netif_running(adapter->netdev)) {
/* try to get new resources before deleting old */
/* Try to get new resources before deleting old */
if((err = e1000_setup_rx_resources(adapter)))
goto err_setup_rx;
if((err = e1000_setup_tx_resources(adapter)))
goto err_setup_tx;
/* save the new, restore the old in order to free it,
* then restore the new back again */
* then restore the new back again */
rx_new = adapter->rx_ring;
tx_new = adapter->tx_ring;
adapter->rx_ring = rx_old;
......@@ -620,6 +626,7 @@ e1000_set_ringparam(struct net_device *netdev,
if((err = e1000_up(adapter)))
return err;
}
return 0;
err_setup_tx:
e1000_free_rx_resources(adapter);
......@@ -766,13 +773,15 @@ static int
e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
{
struct net_device *netdev = adapter->netdev;
uint32_t icr, mask, i=0;
uint32_t icr, mask, i=0, shared_int = TRUE;
uint32_t irq = adapter->pdev->irq;
*data = 0;
/* Hook up test interrupt handler just for this test */
if(request_irq(adapter->pdev->irq, &e1000_test_intr, SA_SHIRQ,
netdev->name, netdev)) {
if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
shared_int = FALSE;
} else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, netdev->name, netdev)){
*data = 1;
return -1;
}
......@@ -802,20 +811,22 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
/* Interrupt to test */
mask = 1 << i;
/* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, mask);
E1000_WRITE_REG(&adapter->hw, ICS, mask);
msec_delay(10);
if(adapter->test_icr & mask) {
*data = 3;
break;
if(!shared_int) {
/* Disable the interrupt to be reported in
* the cause register and then force the same
* interrupt and see if one gets posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, mask);
E1000_WRITE_REG(&adapter->hw, ICS, mask);
msec_delay(10);
if(adapter->test_icr & mask) {
*data = 3;
break;
}
}
/* Enable the interrupt to be reported in
......@@ -834,20 +845,22 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
break;
}
/* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, ~mask);
E1000_WRITE_REG(&adapter->hw, ICS, ~mask);
msec_delay(10);
if(!shared_int) {
/* Disable the other interrupts to be reported in
* the cause register and then force the other
* interrupts and see if any get posted. If
* an interrupt was posted to the bus, the
* test failed.
*/
adapter->test_icr = 0;
E1000_WRITE_REG(&adapter->hw, IMC, ~mask);
E1000_WRITE_REG(&adapter->hw, ICS, ~mask);
msec_delay(10);
if(adapter->test_icr) {
*data = 5;
break;
if(adapter->test_icr) {
*data = 5;
break;
}
}
}
......@@ -856,7 +869,7 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
msec_delay(10);
/* Unhook test interrupt handler */
free_irq(adapter->pdev->irq, netdev);
free_irq(irq, netdev);
return *data;
}
......@@ -1021,7 +1034,7 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
return 0;
err_nomem:
err_nomem:
e1000_free_desc_rings(adapter);
return ret_val;
}
......@@ -1312,15 +1325,15 @@ e1000_run_loopback_test(struct e1000_adapter *adapter)
for(i = 0; i < 64; i++) {
e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1024);
pci_dma_sync_single(pdev, txdr->buffer_info[i].dma,
txdr->buffer_info[i].length,
PCI_DMA_TODEVICE);
pci_dma_sync_single_for_device(pdev, txdr->buffer_info[i].dma,
txdr->buffer_info[i].length,
PCI_DMA_TODEVICE);
}
E1000_WRITE_REG(&adapter->hw, TDT, i);
msec_delay(200);
pci_dma_sync_single(pdev, rxdr->buffer_info[0].dma,
pci_dma_sync_single_for_cpu(pdev, rxdr->buffer_info[0].dma,
rxdr->buffer_info[0].length, PCI_DMA_FROMDEVICE);
return e1000_check_lbtest_frame(rxdr->buffer_info[0].skb, 1024);
......@@ -1357,7 +1370,7 @@ e1000_diag_test_count(struct net_device *netdev)
}
static void
e1000_diag_test(struct net_device *netdev,
e1000_diag_test(struct net_device *netdev,
struct ethtool_test *eth_test, uint64_t *data)
{
struct e1000_adapter *adapter = netdev->priv;
......@@ -1368,7 +1381,7 @@ e1000_diag_test(struct net_device *netdev,
/* save speed, duplex, autoneg settings */
uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
uint8_t autoneg = adapter->hw.autoneg;
/* Link test performed before hardware reset so autoneg doesn't
......@@ -1396,10 +1409,11 @@ e1000_diag_test(struct net_device *netdev,
if(e1000_loopback_test(adapter, &data[3]))
eth_test->flags |= ETH_TEST_FL_FAILED;
/* restore Autoneg/speed/duplex settings */
/* restore speed, duplex, autoneg settings */
adapter->hw.autoneg_advertised = autoneg_advertised;
adapter->hw.forced_speed_duplex = forced_speed_duplex;
adapter->hw.autoneg = autoneg;
adapter->hw.forced_speed_duplex = forced_speed_duplex;
adapter->hw.autoneg = autoneg;
e1000_reset(adapter);
if(if_running)
e1000_up(adapter);
......@@ -1427,6 +1441,7 @@ e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
wol->supported = 0;
wol->wolopts = 0;
return;
......@@ -1469,6 +1484,7 @@ e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
return wol->wolopts ? -EOPNOTSUPP : 0;
case E1000_DEV_ID_82546EB_FIBER:
......@@ -1571,8 +1587,8 @@ e1000_get_ethtool_stats(struct net_device *netdev,
e1000_update_stats(adapter);
for(i = 0; i < E1000_STATS_LEN; i++) {
char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
data[i] = (e1000_gstrings_stats[i].sizeof_stat == sizeof(uint64_t))
? *(uint64_t *)p : *(uint32_t *)p;
data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
}
}
......
......@@ -251,6 +251,7 @@ e1000_set_mac_type(struct e1000_hw *hw)
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
hw->mac_type = e1000_82541_rev_2;
break;
......@@ -920,7 +921,8 @@ e1000_setup_copper_link(struct e1000_hw *hw)
if(ret_val)
return ret_val;
if(hw->mac_type == e1000_82545_rev_3) {
if((hw->mac_type == e1000_82545_rev_3) ||
(hw->mac_type == e1000_82546_rev_3)) {
ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
phy_data |= 0x00000008;
ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
......@@ -3057,16 +3059,6 @@ e1000_init_eeprom_params(struct e1000_hw *hw)
}
break;
default:
eeprom->type = e1000_eeprom_spi;
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
break;
}
......@@ -3453,7 +3445,6 @@ e1000_read_eeprom(struct e1000_hw *hw,
uint32_t i = 0;
DEBUGFUNC("e1000_read_eeprom");
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
......@@ -5224,3 +5215,4 @@ e1000_enable_mng_pass_thru(struct e1000_hw *hw)
}
return FALSE;
}
......@@ -357,11 +357,11 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active);
#define E1000_DEV_ID_82547GI 0x1075
#define E1000_DEV_ID_82541GI 0x1076
#define E1000_DEV_ID_82541GI_MOBILE 0x1077
#define E1000_DEV_ID_82541GI_LF 0x107C
#define E1000_DEV_ID_82546GB_COPPER 0x1079
#define E1000_DEV_ID_82546GB_FIBER 0x107A
#define E1000_DEV_ID_82546GB_SERDES 0x107B
#define E1000_DEV_ID_82547EI 0x1019
#define NODE_ADDRESS_SIZE 6
#define ETH_LENGTH_OF_ADDRESS 6
......@@ -1043,7 +1043,6 @@ struct e1000_hw {
#define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */
#define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */
/* Register Bit Masks */
/* Device Control */
#define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */
......
......@@ -27,73 +27,69 @@
*******************************************************************************/
#include "e1000.h"
#include <linux/rtnetlink.h>
/* Change Log
* 5.3.12 6/7/04
* - kcompat NETIF_MSG for older kernels (2.4.9) <sean.p.mcdermott@intel.com>
* - if_mii support and associated kcompat for older kernels
* - More errlogging support from Jon Mason <jonmason@us.ibm.com>
* - Fix TSO issues on PPC64 machines -- Jon Mason <jonmason@us.ibm.com>
*
* 5.2.51 5/14/04
* o set default configuration to 'NAPI disabled'. NAPI enabled driver
* causes kernel panic when the interface is shutdown while data is being
* transferred.
* 5.2.47 5/04/04
* o fixed ethtool -t implementation
* 5.2.45 4/29/04
* o fixed ethtool -e implementation
* o Support for ethtool ops [Stephen Hemminger (shemminger@osdl.org)]
* 5.2.42 4/26/04
* o Added support for the DPRINTK macro for enhanced error logging. Some
* parts of the patch were supplied by Jon Mason.
* o Move the register_netdevice() donw in the probe routine due to a
* loading/unloading test issue.
* o Added a long RX byte count the the extra ethtool data members for BER
* testing purposes.
* 5.2.39 3/12/04
* 5.3.11 6/4/04
* - ethtool register dump reads MANC register conditionally.
*
* 5.3.10 6/1/04
*/
char e1000_driver_name[] = "e1000";
char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
char e1000_driver_version[] = "5.2.52-k4";
#ifndef CONFIG_E1000_NAPI
#define DRIVERNAPI
#else
#define DRIVERNAPI "-NAPI"
#endif
char e1000_driver_version[] = "5.3.19-k2"DRIVERNAPI;
char e1000_copyright[] = "Copyright (c) 1999-2004 Intel Corporation.";
/* e1000_pci_tbl - PCI Device ID Table
*
* Wildcard entries (PCI_ANY_ID) should come last
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
* Macro expands to...
* {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
*/
static struct pci_device_id e1000_pci_tbl[] = {
{0x8086, 0x1000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1008, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x100C, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x100D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x100E, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x100F, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1010, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1012, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1013, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1015, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1016, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1017, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1018, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x101D, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x101E, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1026, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1027, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1028, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1075, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1076, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1077, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1078, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x1079, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x107A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
{0x8086, 0x107B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
INTEL_E1000_ETHERNET_DEVICE(0x1000),
INTEL_E1000_ETHERNET_DEVICE(0x1001),
INTEL_E1000_ETHERNET_DEVICE(0x1004),
INTEL_E1000_ETHERNET_DEVICE(0x1008),
INTEL_E1000_ETHERNET_DEVICE(0x1009),
INTEL_E1000_ETHERNET_DEVICE(0x100C),
INTEL_E1000_ETHERNET_DEVICE(0x100D),
INTEL_E1000_ETHERNET_DEVICE(0x100E),
INTEL_E1000_ETHERNET_DEVICE(0x100F),
INTEL_E1000_ETHERNET_DEVICE(0x1010),
INTEL_E1000_ETHERNET_DEVICE(0x1011),
INTEL_E1000_ETHERNET_DEVICE(0x1012),
INTEL_E1000_ETHERNET_DEVICE(0x1013),
INTEL_E1000_ETHERNET_DEVICE(0x1015),
INTEL_E1000_ETHERNET_DEVICE(0x1016),
INTEL_E1000_ETHERNET_DEVICE(0x1017),
INTEL_E1000_ETHERNET_DEVICE(0x1018),
INTEL_E1000_ETHERNET_DEVICE(0x1019),
INTEL_E1000_ETHERNET_DEVICE(0x101D),
INTEL_E1000_ETHERNET_DEVICE(0x101E),
INTEL_E1000_ETHERNET_DEVICE(0x1026),
INTEL_E1000_ETHERNET_DEVICE(0x1027),
INTEL_E1000_ETHERNET_DEVICE(0x1028),
INTEL_E1000_ETHERNET_DEVICE(0x1075),
INTEL_E1000_ETHERNET_DEVICE(0x1076),
INTEL_E1000_ETHERNET_DEVICE(0x1077),
INTEL_E1000_ETHERNET_DEVICE(0x1078),
INTEL_E1000_ETHERNET_DEVICE(0x1079),
INTEL_E1000_ETHERNET_DEVICE(0x107A),
INTEL_E1000_ETHERNET_DEVICE(0x107B),
INTEL_E1000_ETHERNET_DEVICE(0x107C),
/* required last entry */
{0,}
};
......@@ -172,7 +168,7 @@ static int e1000_resume(struct pci_dev *pdev);
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void e1000_netpoll (struct net_device *dev);
static void e1000_netpoll (struct net_device *netdev);
#endif
struct notifier_block e1000_notifier_reboot = {
......@@ -185,7 +181,6 @@ struct notifier_block e1000_notifier_reboot = {
extern void e1000_check_options(struct e1000_adapter *adapter);
static struct pci_driver e1000_driver = {
.name = e1000_driver_name,
.id_table = e1000_pci_tbl,
......@@ -202,7 +197,7 @@ MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL");
static int debug = 3;
static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
......@@ -256,6 +251,14 @@ e1000_up(struct e1000_adapter *adapter)
/* hardware has been reset, we need to reload some things */
/* Reset the PHY if it was previously powered down */
if(adapter->hw.media_type == e1000_media_type_copper) {
uint16_t mii_reg;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
if(mii_reg & MII_CR_POWER_DOWN)
e1000_phy_reset(&adapter->hw);
}
e1000_set_multi(netdev);
e1000_restore_vlan(adapter);
......@@ -294,6 +297,15 @@ e1000_down(struct e1000_adapter *adapter)
e1000_reset(adapter);
e1000_clean_tx_ring(adapter);
e1000_clean_rx_ring(adapter);
/* If WoL is not enabled
* Power down the PHY so no link is implied when interface is down */
if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) {
uint16_t mii_reg;
e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
}
}
void
......@@ -323,10 +335,10 @@ e1000_reset(struct e1000_adapter *adapter)
E1000_WRITE_REG(&adapter->hw, PBA, pba);
/* flow control settings */
adapter->hw.fc_high_water =
(pba << E1000_PBA_BYTES_SHIFT) - E1000_FC_HIGH_DIFF;
adapter->hw.fc_low_water =
(pba << E1000_PBA_BYTES_SHIFT) - E1000_FC_LOW_DIFF;
adapter->hw.fc_high_water = (pba << E1000_PBA_BYTES_SHIFT) -
E1000_FC_HIGH_DIFF;
adapter->hw.fc_low_water = (pba << E1000_PBA_BYTES_SHIFT) -
E1000_FC_LOW_DIFF;
adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
adapter->hw.fc_send_xon = 1;
adapter->hw.fc = adapter->hw.original_fc;
......@@ -334,7 +346,8 @@ e1000_reset(struct e1000_adapter *adapter)
e1000_reset_hw(&adapter->hw);
if(adapter->hw.mac_type >= e1000_82544)
E1000_WRITE_REG(&adapter->hw, WUC, 0);
e1000_init_hw(&adapter->hw);
if(e1000_init_hw(&adapter->hw))
DPRINTK(PROBE, ERR, "Hardware Error\n");
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
......@@ -410,8 +423,8 @@ e1000_probe(struct pci_dev *pdev,
adapter->msg_enable = (1 << debug) - 1;
rtnl_lock();
/* we need to set the name early since the DPRINTK macro needs it set */
if (dev_alloc_name(netdev, netdev->name) < 0)
/* we need to set the name early for the DPRINTK macro */
if(dev_alloc_name(netdev, netdev->name) < 0)
goto err_free_unlock;
mmio_start = pci_resource_start(pdev, BAR_0);
......@@ -476,7 +489,6 @@ e1000_probe(struct pci_dev *pdev,
}
#ifdef NETIF_F_TSO
#ifdef BROKEN_ON_NON_IA_ARCHS
/* Disbaled for now until root-cause is found for
* hangs reported against non-IA archs. TSO can be
* enabled using ethtool -K eth<x> tso on */
......@@ -484,11 +496,10 @@ e1000_probe(struct pci_dev *pdev,
(adapter->hw.mac_type != e1000_82547))
netdev->features |= NETIF_F_TSO;
#endif
#endif
if(pci_using_dac)
netdev->features |= NETIF_F_HIGHDMA;
adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
/* before reading the EEPROM, reset the controller to
......@@ -506,10 +517,12 @@ e1000_probe(struct pci_dev *pdev,
/* copy the MAC address out of the EEPROM */
e1000_read_mac_addr(&adapter->hw);
if (e1000_read_mac_addr(&adapter->hw))
DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
if(!is_valid_ether_addr(netdev->dev_addr)) {
DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
err = -EIO;
goto err_eeprom;
}
......@@ -569,10 +582,9 @@ e1000_probe(struct pci_dev *pdev,
adapter->wol |= E1000_WUFC_MAG;
/* reset the hardware with the new settings */
e1000_reset(adapter);
/* since we are holding the rtnl lock already, call the no-lock version */
/* We're already holding the rtnl lock; call the no-lock version */
if((err = register_netdevice(netdev)))
goto err_register;
......@@ -663,7 +675,7 @@ e1000_sw_init(struct e1000_adapter *adapter)
/* identify the MAC */
if (e1000_set_mac_type(hw)) {
if(e1000_set_mac_type(hw)) {
DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
return -EIO;
}
......@@ -672,19 +684,19 @@ e1000_sw_init(struct e1000_adapter *adapter)
e1000_init_eeprom_params(hw);
if((hw->mac_type == e1000_82541) ||
(hw->mac_type == e1000_82547) ||
(hw->mac_type == e1000_82541_rev_2) ||
(hw->mac_type == e1000_82547_rev_2))
switch(hw->mac_type) {
default:
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
hw->phy_init_script = 1;
break;
}
e1000_set_media_type(hw);
if(hw->mac_type < e1000_82543)
hw->report_tx_early = 0;
else
hw->report_tx_early = 1;
hw->wait_autoneg_complete = FALSE;
hw->tbi_compatibility_en = TRUE;
hw->adaptive_ifs = TRUE;
......@@ -736,7 +748,7 @@ e1000_open(struct net_device *netdev)
if((err = e1000_up(adapter)))
goto err_up;
return 0;
return E1000_SUCCESS;
err_up:
e1000_free_rx_resources(adapter);
......@@ -788,8 +800,10 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter)
int size;
size = sizeof(struct e1000_buffer) * txdr->count;
txdr->buffer_info = kmalloc(size, GFP_KERNEL);
txdr->buffer_info = vmalloc(size);
if(!txdr->buffer_info) {
DPRINTK(PROBE, ERR,
"Unble to Allocate Memory for the Transmit descriptor ring\n");
return -ENOMEM;
}
memset(txdr->buffer_info, 0, size);
......@@ -801,7 +815,9 @@ e1000_setup_tx_resources(struct e1000_adapter *adapter)
txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
if(!txdr->desc) {
kfree(txdr->buffer_info);
DPRINTK(PROBE, ERR,
"Unble to Allocate Memory for the Transmit descriptor ring\n");
vfree(txdr->buffer_info);
return -ENOMEM;
}
memset(txdr->desc, 0, txdr->size);
......@@ -878,10 +894,10 @@ e1000_configure_tx(struct e1000_adapter *adapter)
adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
E1000_TXD_CMD_IFCS;
if(adapter->hw.report_tx_early == 1)
adapter->txd_cmd |= E1000_TXD_CMD_RS;
else
if(adapter->hw.mac_type < e1000_82543)
adapter->txd_cmd |= E1000_TXD_CMD_RPS;
else
adapter->txd_cmd |= E1000_TXD_CMD_RS;
/* Cache if we're 82544 running in PCI-X because we'll
* need this to apply a workaround later in the send path. */
......@@ -905,8 +921,10 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter)
int size;
size = sizeof(struct e1000_buffer) * rxdr->count;
rxdr->buffer_info = kmalloc(size, GFP_KERNEL);
rxdr->buffer_info = vmalloc(size);
if(!rxdr->buffer_info) {
DPRINTK(PROBE, ERR,
"Unble to Allocate Memory for the Recieve descriptor ring\n");
return -ENOMEM;
}
memset(rxdr->buffer_info, 0, size);
......@@ -919,7 +937,9 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter)
rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
if(!rxdr->desc) {
kfree(rxdr->buffer_info);
DPRINTK(PROBE, ERR,
"Unble to Allocate Memory for the Recieve descriptor ring\n");
vfree(rxdr->buffer_info);
return -ENOMEM;
}
memset(rxdr->desc, 0, rxdr->size);
......@@ -953,7 +973,9 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
else
rctl &= ~E1000_RCTL_SBP;
/* Setup buffer sizes */
rctl &= ~(E1000_RCTL_SZ_4096);
rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE);
switch (adapter->rx_buffer_len) {
case E1000_RXBUFFER_2048:
default:
......@@ -961,13 +983,13 @@ e1000_setup_rctl(struct e1000_adapter *adapter)
rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE);
break;
case E1000_RXBUFFER_4096:
rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
rctl |= E1000_RCTL_SZ_4096;
break;
case E1000_RXBUFFER_8192:
rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
rctl |= E1000_RCTL_SZ_8192;
break;
case E1000_RXBUFFER_16384:
rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE;
rctl |= E1000_RCTL_SZ_16384;
break;
}
......@@ -989,13 +1011,11 @@ e1000_configure_rx(struct e1000_adapter *adapter)
uint32_t rctl;
uint32_t rxcsum;
/* make sure receives are disabled while setting up the descriptors */
/* disable receives while setting up the descriptors */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
/* set the Receive Delay Timer Register */
E1000_WRITE_REG(&adapter->hw, RDTR, adapter->rx_int_delay);
if(adapter->hw.mac_type >= e1000_82540) {
......@@ -1006,7 +1026,6 @@ e1000_configure_rx(struct e1000_adapter *adapter)
}
/* Setup the Base and Length of the Rx Descriptor Ring */
E1000_WRITE_REG(&adapter->hw, RDBAL, (rdba & 0x00000000ffffffffULL));
E1000_WRITE_REG(&adapter->hw, RDBAH, (rdba >> 32));
......@@ -1025,7 +1044,6 @@ e1000_configure_rx(struct e1000_adapter *adapter)
}
/* Enable Receives */
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
}
......@@ -1043,7 +1061,7 @@ e1000_free_tx_resources(struct e1000_adapter *adapter)
e1000_clean_tx_ring(adapter);
kfree(adapter->tx_ring.buffer_info);
vfree(adapter->tx_ring.buffer_info);
adapter->tx_ring.buffer_info = NULL;
pci_free_consistent(pdev, adapter->tx_ring.size,
......@@ -1073,9 +1091,9 @@ e1000_clean_tx_ring(struct e1000_adapter *adapter)
if(buffer_info->skb) {
pci_unmap_page(pdev,
buffer_info->dma,
buffer_info->length,
PCI_DMA_TODEVICE);
buffer_info->dma,
buffer_info->length,
PCI_DMA_TODEVICE);
dev_kfree_skb(buffer_info->skb);
......@@ -1112,7 +1130,7 @@ e1000_free_rx_resources(struct e1000_adapter *adapter)
e1000_clean_rx_ring(adapter);
kfree(rx_ring->buffer_info);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
......@@ -1141,12 +1159,11 @@ e1000_clean_rx_ring(struct e1000_adapter *adapter)
if(buffer_info->skb) {
pci_unmap_single(pdev,
buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
buffer_info->dma,
buffer_info->length,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(buffer_info->skb);
buffer_info->skb = NULL;
}
}
......@@ -1312,7 +1329,8 @@ e1000_set_multi(struct net_device *netdev)
e1000_leave_82542_rst(adapter);
}
/* need to wait a few seconds after link up to get diagnostic information from the phy */
/* Need to wait a few seconds after link up to get diagnostic information from
* the phy */
static void
e1000_update_phy_info(unsigned long data)
......@@ -1420,7 +1438,7 @@ e1000_watchdog(unsigned long data)
adapter->tpt_old = adapter->stats.tpt;
adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
adapter->colc_old = adapter->stats.colc;
adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
adapter->gorcl_old = adapter->stats.gorcl;
adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
......@@ -1477,8 +1495,9 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
#ifdef NETIF_F_TSO
struct e1000_context_desc *context_desc;
unsigned int i;
uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
uint32_t cmd_length = 0;
uint16_t ipcse, tucse, mss;
uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
if(skb_shinfo(skb)->tso_size) {
hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
......@@ -1497,6 +1516,10 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
tucse = 0;
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
(skb->len - (hdr_len)));
i = adapter->tx_ring.next_to_use;
context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
......@@ -1508,10 +1531,7 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb)
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
context_desc->cmd_and_length = cpu_to_le32(
E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP |
(skb->len - (hdr_len)));
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
if(++i == adapter->tx_ring.count) i = 0;
adapter->tx_ring.next_to_use = i;
......@@ -1528,22 +1548,21 @@ e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
{
struct e1000_context_desc *context_desc;
unsigned int i;
uint8_t css, cso;
uint8_t css;
if(skb->ip_summed == CHECKSUM_HW) {
if(likely(skb->ip_summed == CHECKSUM_HW)) {
css = skb->h.raw - skb->data;
cso = (skb->h.raw + skb->csum) - skb->data;
i = adapter->tx_ring.next_to_use;
context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i);
context_desc->upper_setup.tcp_fields.tucss = css;
context_desc->upper_setup.tcp_fields.tucso = cso;
context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
context_desc->upper_setup.tcp_fields.tucse = 0;
context_desc->tcp_seg_setup.data = 0;
context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
if(++i == adapter->tx_ring.count) i = 0;
if(unlikely(++i == adapter->tx_ring.count)) i = 0;
adapter->tx_ring.next_to_use = i;
return TRUE;
......@@ -1567,7 +1586,6 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
unsigned int f;
len -= skb->data_len;
i = tx_ring->next_to_use;
while(len) {
......@@ -1576,14 +1594,14 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
#ifdef NETIF_F_TSO
/* Workaround for premature desc write-backs
* in TSO mode. Append 4-byte sentinel desc */
if(mss && !nr_frags && size == len && size > 8)
if(unlikely(mss && !nr_frags && size == len && size > 8))
size -= 4;
#endif
/* Workaround for potential 82544 hang in PCI-X. Avoid
* terminating buffers within evenly-aligned dwords. */
if(adapter->pcix_82544 &&
if(unlikely(adapter->pcix_82544 &&
!((unsigned long)(skb->data + offset + size - 1) & 4) &&
size > 4)
size > 4))
size -= 4;
buffer_info->length = size;
......@@ -1597,7 +1615,7 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
len -= size;
offset += size;
count++;
if(++i == tx_ring->count) i = 0;
if(unlikely(++i == tx_ring->count)) i = 0;
}
for(f = 0; f < nr_frags; f++) {
......@@ -1613,15 +1631,15 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
#ifdef NETIF_F_TSO
/* Workaround for premature desc write-backs
* in TSO mode. Append 4-byte sentinel desc */
if(mss && f == (nr_frags-1) && size == len && size > 8)
if(unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
size -= 4;
#endif
/* Workaround for potential 82544 hang in PCI-X.
* Avoid terminating buffers within evenly-aligned
* dwords. */
if(adapter->pcix_82544 &&
if(unlikely(adapter->pcix_82544 &&
!((unsigned long)(frag->page+offset+size-1) & 4) &&
size > 4)
size > 4))
size -= 4;
buffer_info->length = size;
......@@ -1636,13 +1654,14 @@ e1000_tx_map(struct e1000_adapter *adapter, struct sk_buff *skb,
len -= size;
offset += size;
count++;
if(++i == tx_ring->count) i = 0;
if(unlikely(++i == tx_ring->count)) i = 0;
}
}
i = (i == 0) ? tx_ring->count - 1 : i - 1;
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[first].next_to_watch = i;
return count;
}
......@@ -1655,18 +1674,18 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
unsigned int i;
if(tx_flags & E1000_TX_FLAGS_TSO) {
if(likely(tx_flags & E1000_TX_FLAGS_TSO)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_TSE;
txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8;
}
if(tx_flags & E1000_TX_FLAGS_CSUM) {
if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
if(tx_flags & E1000_TX_FLAGS_VLAN) {
if(unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
txd_lower |= E1000_TXD_CMD_VLE;
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
}
......@@ -1680,7 +1699,7 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags)
tx_desc->lower.data =
cpu_to_le32(txd_lower | buffer_info->length);
tx_desc->upper.data = cpu_to_le32(txd_upper);
if(++i == tx_ring->count) i = 0;
if(unlikely(++i == tx_ring->count)) i = 0;
}
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
......@@ -1733,7 +1752,7 @@ e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
return 0;
}
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
#define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
static int
e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
{
......@@ -1741,22 +1760,23 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
unsigned int tx_flags = 0;
unsigned long flags;
unsigned int len = skb->len;
int count = 0;
unsigned int mss = 0;
unsigned long flags;
unsigned int nr_frags = 0;
unsigned int mss = 0;
int count = 0;
unsigned int f;
nr_frags = skb_shinfo(skb)->nr_frags;
len -= skb->data_len;
if(skb->len <= 0) {
if(unlikely(skb->len <= 0)) {
dev_kfree_skb_any(skb);
return 0;
}
#ifdef NETIF_F_TSO
mss = skb_shinfo(skb)->tso_size;
/* The controller does a simple calculation to
/* The controller does a simple calculation to
* make sure there is enough room in the FIFO before
* initiating the DMA for each buffer. The calc is:
* 4 = ceil(buffer len/mss). To make sure we don't
......@@ -1766,57 +1786,60 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
max_per_txd = min(mss << 2, max_per_txd);
max_txd_pwr = fls(max_per_txd) - 1;
}
if((mss) || (skb->ip_summed == CHECKSUM_HW))
count++;
count++; /*for sentinel desc*/
count++; /* for sentinel desc */
#else
if(skb->ip_summed == CHECKSUM_HW)
count++;
#endif
count += TXD_USE_COUNT(len, max_txd_pwr);
if(adapter->pcix_82544)
count++;
nr_frags = skb_shinfo(skb)->nr_frags;
for(f = 0; f < nr_frags; f++)
count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
max_txd_pwr);
max_txd_pwr);
if(adapter->pcix_82544)
count += nr_frags;
spin_lock_irqsave(&adapter->tx_lock, flags);
/* need: count + 2 desc gap to keep tail from touching
/* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time */
if(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2 ) {
if(E1000_DESC_UNUSED(&adapter->tx_ring) < count + 2) {
netif_stop_queue(netdev);
spin_unlock_irqrestore(&adapter->tx_lock, flags);
return 1;
}
spin_unlock_irqrestore(&adapter->tx_lock, flags);
if(adapter->hw.mac_type == e1000_82547) {
if(e1000_82547_fifo_workaround(adapter, skb)) {
if(unlikely(adapter->hw.mac_type == e1000_82547)) {
if(unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
netif_stop_queue(netdev);
mod_timer(&adapter->tx_fifo_stall_timer, jiffies);
return 1;
}
}
if(adapter->vlgrp && vlan_tx_tag_present(skb)) {
if(unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
tx_flags |= E1000_TX_FLAGS_VLAN;
tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
}
first = adapter->tx_ring.next_to_use;
if(e1000_tso(adapter, skb))
if(likely(e1000_tso(adapter, skb)))
tx_flags |= E1000_TX_FLAGS_TSO;
else if(e1000_tx_csum(adapter, skb))
else if(likely(e1000_tx_csum(adapter, skb)))
tx_flags |= E1000_TX_FLAGS_CSUM;
e1000_tx_queue(adapter,
e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
e1000_tx_queue(adapter,
e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss),
tx_flags);
netdev->trans_start = jiffies;
......@@ -1843,10 +1866,8 @@ e1000_tx_timeout_task(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev->priv;
netif_device_detach(netdev);
e1000_down(adapter);
e1000_up(adapter);
netif_device_attach(netdev);
}
/**
......@@ -1905,7 +1926,6 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu)
}
if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) {
e1000_down(adapter);
e1000_up(adapter);
}
......@@ -1951,8 +1971,6 @@ e1000_update_stats(struct e1000_adapter *adapter)
adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
/* the rest of the counters are only modified here */
adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
adapter->stats.mpc += E1000_READ_REG(hw, MPC);
adapter->stats.scc += E1000_READ_REG(hw, SCC);
......@@ -2076,7 +2094,7 @@ e1000_irq_disable(struct e1000_adapter *adapter)
static inline void
e1000_irq_enable(struct e1000_adapter *adapter)
{
if(atomic_dec_and_test(&adapter->irq_sem)) {
if(likely(atomic_dec_and_test(&adapter->irq_sem))) {
E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
E1000_WRITE_FLUSH(&adapter->hw);
}
......@@ -2095,21 +2113,21 @@ e1000_intr(int irq, void *data, struct pt_regs *regs)
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev->priv;
struct e1000_hw *hw = &adapter->hw;
uint32_t icr = E1000_READ_REG(&adapter->hw, ICR);
uint32_t icr = E1000_READ_REG(hw, ICR);
#ifndef CONFIG_E1000_NAPI
unsigned int i;
#endif
if(!icr)
if(unlikely(!icr))
return IRQ_NONE; /* Not our interrupt */
if(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
if(unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
hw->get_link_status = 1;
mod_timer(&adapter->watchdog_timer, jiffies);
}
#ifdef CONFIG_E1000_NAPI
if(netif_rx_schedule_prep(netdev)) {
if(likely(netif_rx_schedule_prep(netdev))) {
/* Disable interrupts and register for poll. The flush
of the posted write is intentionally left out.
......@@ -2121,8 +2139,8 @@ e1000_intr(int irq, void *data, struct pt_regs *regs)
}
#else
for(i = 0; i < E1000_MAX_INTR; i++)
if(!e1000_clean_rx_irq(adapter) &
!e1000_clean_tx_irq(adapter))
if(unlikely(!e1000_clean_rx_irq(adapter) &
!e1000_clean_tx_irq(adapter)))
break;
#endif
......@@ -2140,15 +2158,18 @@ e1000_clean(struct net_device *netdev, int *budget)
{
struct e1000_adapter *adapter = netdev->priv;
int work_to_do = min(*budget, netdev->quota);
int tx_cleaned;
int work_done = 0;
e1000_clean_tx_irq(adapter);
tx_cleaned = e1000_clean_tx_irq(adapter);
e1000_clean_rx_irq(adapter, &work_done, work_to_do);
*budget -= work_done;
netdev->quota -= work_done;
if(work_done < work_to_do || !netif_running(netdev)) {
/* if no Rx and Tx cleanup work was done, exit the polling mode */
if(!tx_cleaned || (work_done < work_to_do) ||
!netif_running(netdev)) {
netif_rx_complete(netdev);
e1000_irq_enable(adapter);
return 0;
......@@ -2156,8 +2177,8 @@ e1000_clean(struct net_device *netdev, int *budget)
return (work_done >= work_to_do);
}
#endif
#endif
/**
* e1000_clean_tx_irq - Reclaim resources after transmit completes
* @adapter: board private structure
......@@ -2174,31 +2195,25 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
unsigned int i, eop;
boolean_t cleaned = FALSE;
i = tx_ring->next_to_clean;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
while(eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
for(cleaned = FALSE; !cleaned; ) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
if(buffer_info->dma) {
if(likely(buffer_info->dma)) {
pci_unmap_page(pdev,
buffer_info->dma,
buffer_info->length,
PCI_DMA_TODEVICE);
buffer_info->dma = 0;
}
if(buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
......@@ -2207,7 +2222,7 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
tx_desc->upper.data = 0;
cleaned = (i == eop);
if(++i == tx_ring->count) i = 0;
if(unlikely(++i == tx_ring->count)) i = 0;
}
eop = tx_ring->buffer_info[i].next_to_watch;
......@@ -2218,7 +2233,8 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
spin_lock(&adapter->tx_lock);
if(cleaned && netif_queue_stopped(netdev) && netif_carrier_ok(netdev))
if(unlikely(cleaned && netif_queue_stopped(netdev) &&
netif_carrier_ok(netdev)))
netif_wake_queue(netdev);
spin_unlock(&adapter->tx_lock);
......@@ -2227,7 +2243,7 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter)
}
/**
* e1000_clean_rx_irq - Send received data up the network stack,
* e1000_clean_rx_irq - Send received data up the network stack
* @adapter: board private structure
**/
......@@ -2256,14 +2272,11 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
while(rx_desc->status & E1000_RXD_STAT_DD) {
buffer_info = &rx_ring->buffer_info[i];
#ifdef CONFIG_E1000_NAPI
if(*work_done >= work_to_do)
break;
(*work_done)++;
#endif
cleaned = TRUE;
pci_unmap_single(pdev,
......@@ -2274,49 +2287,28 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
skb = buffer_info->skb;
length = le16_to_cpu(rx_desc->length);
if(!(rx_desc->status & E1000_RXD_STAT_EOP)) {
if(unlikely(!(rx_desc->status & E1000_RXD_STAT_EOP))) {
/* All receives must fit into a single buffer */
E1000_DBG("%s: Receive packet consumed multiple buffers\n",
netdev->name);
E1000_DBG("%s: Receive packet consumed multiple"
" buffers\n", netdev->name);
dev_kfree_skb_irq(skb);
rx_desc->status = 0;
buffer_info->skb = NULL;
if(++i == rx_ring->count) i = 0;
rx_desc = E1000_RX_DESC(*rx_ring, i);
continue;
goto next_desc;
}
if(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
if(unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
last_byte = *(skb->data + length - 1);
if(TBI_ACCEPT(&adapter->hw, rx_desc->status,
rx_desc->errors, length, last_byte)) {
spin_lock_irqsave(&adapter->stats_lock, flags);
e1000_tbi_adjust_stats(&adapter->hw,
&adapter->stats,
length, skb->data);
spin_unlock_irqrestore(&adapter->stats_lock,
flags);
length--;
} else {
dev_kfree_skb_irq(skb);
rx_desc->status = 0;
buffer_info->skb = NULL;
if(++i == rx_ring->count) i = 0;
rx_desc = E1000_RX_DESC(*rx_ring, i);
continue;
goto next_desc;
}
}
......@@ -2328,17 +2320,19 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
skb->protocol = eth_type_trans(skb, netdev);
#ifdef CONFIG_E1000_NAPI
if(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP)) {
if(unlikely(adapter->vlgrp &&
(rx_desc->status & E1000_RXD_STAT_VP))) {
vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->special &
E1000_RXD_SPC_VLAN_MASK));
le16_to_cpu(rx_desc->special &
E1000_RXD_SPC_VLAN_MASK));
} else {
netif_receive_skb(skb);
}
#else /* CONFIG_E1000_NAPI */
if(adapter->vlgrp && (rx_desc->status & E1000_RXD_STAT_VP)) {
if(unlikely(adapter->vlgrp &&
(rx_desc->status & E1000_RXD_STAT_VP))) {
vlan_hwaccel_rx(skb, adapter->vlgrp,
le16_to_cpu(rx_desc->special &
le16_to_cpu(rx_desc->special &
E1000_RXD_SPC_VLAN_MASK));
} else {
netif_rx(skb);
......@@ -2346,10 +2340,10 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter)
#endif /* CONFIG_E1000_NAPI */
netdev->last_rx = jiffies;
next_desc:
rx_desc->status = 0;
buffer_info->skb = NULL;
if(++i == rx_ring->count) i = 0;
if(unlikely(++i == rx_ring->count)) i = 0;
rx_desc = E1000_RX_DESC(*rx_ring, i);
}
......@@ -2381,11 +2375,9 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
buffer_info = &rx_ring->buffer_info[i];
while(!buffer_info->skb) {
rx_desc = E1000_RX_DESC(*rx_ring, i);
skb = dev_alloc_skb(adapter->rx_buffer_len + NET_IP_ALIGN);
if(!skb) {
if(unlikely(!skb)) {
/* Better luck next round */
break;
}
......@@ -2400,15 +2392,15 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
buffer_info->skb = skb;
buffer_info->length = adapter->rx_buffer_len;
buffer_info->dma =
pci_map_single(pdev,
skb->data,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
buffer_info->dma = pci_map_single(pdev,
skb->data,
adapter->rx_buffer_len,
PCI_DMA_FROMDEVICE);
rx_desc = E1000_RX_DESC(*rx_ring, i);
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
if((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i) {
if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) {
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
......@@ -2418,7 +2410,7 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter)
E1000_WRITE_REG(&adapter->hw, RDT, i);
}
if(++i == rx_ring->count) i = 0;
if(unlikely(++i == rx_ring->count)) i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
......@@ -2537,22 +2529,24 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
return -EFAULT;
mii_reg = data->val_in;
if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
data->val_in))
mii_reg))
return -EIO;
if (adapter->hw.phy_type == e1000_phy_m88) {
switch (data->reg_num) {
case PHY_CTRL:
if(data->val_in & MII_CR_AUTO_NEG_EN) {
if(mii_reg & MII_CR_POWER_DOWN)
break;
if(mii_reg & MII_CR_AUTO_NEG_EN) {
adapter->hw.autoneg = 1;
adapter->hw.autoneg_advertised = 0x2F;
} else {
if (data->val_in & 0x40)
if (mii_reg & 0x40)
spddplx = SPEED_1000;
else if (data->val_in & 0x2000)
else if (mii_reg & 0x2000)
spddplx = SPEED_100;
else
spddplx = SPEED_10;
spddplx += (data->val_in & 0x100)
spddplx += (mii_reg & 0x100)
? FULL_DUPLEX :
HALF_DUPLEX;
retval = e1000_set_spd_dplx(adapter,
......@@ -2572,6 +2566,18 @@ e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
return -EIO;
break;
}
} else {
switch (data->reg_num) {
case PHY_CTRL:
if(mii_reg & MII_CR_POWER_DOWN)
break;
if(netif_running(adapter->netdev)) {
e1000_down(adapter);
e1000_up(adapter);
} else
e1000_reset(adapter);
break;
}
}
break;
default:
......@@ -2593,11 +2599,11 @@ e1000_rx_checksum(struct e1000_adapter *adapter,
struct sk_buff *skb)
{
/* 82543 or newer only */
if((adapter->hw.mac_type < e1000_82543) ||
if(unlikely((adapter->hw.mac_type < e1000_82543) ||
/* Ignore Checksum bit is set */
(rx_desc->status & E1000_RXD_STAT_IXSM) ||
/* TCP Checksum has not been calculated */
(!(rx_desc->status & E1000_RXD_STAT_TCPCS))) {
(!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) {
skb->ip_summed = CHECKSUM_NONE;
return;
}
......@@ -2609,7 +2615,7 @@ e1000_rx_checksum(struct e1000_adapter *adapter,
skb->ip_summed = CHECKSUM_NONE;
adapter->hw_csum_err++;
} else {
/* TCP checksum is good */
/* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
adapter->hw_csum_good++;
}
......@@ -2620,7 +2626,8 @@ e1000_pci_set_mwi(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
pci_set_mwi(adapter->pdev);
int ret;
ret = pci_set_mwi(adapter->pdev);
}
void
......@@ -2670,26 +2677,22 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
if(grp) {
/* enable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
ctrl |= E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
/* enable VLAN receive filtering */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl |= E1000_RCTL_VFE;
rctl &= ~E1000_RCTL_CFIEN;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
} else {
/* disable VLAN tag insert/strip */
ctrl = E1000_READ_REG(&adapter->hw, CTRL);
ctrl &= ~E1000_CTRL_VME;
E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
/* disable VLAN filtering */
rctl = E1000_READ_REG(&adapter->hw, RCTL);
rctl &= ~E1000_RCTL_VFE;
E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
......@@ -2705,7 +2708,6 @@ e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
uint32_t vfta, index;
/* add VID to filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
vfta |= (1 << (vid & 0x1F));
......@@ -2725,8 +2727,7 @@ e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
e1000_irq_enable(adapter);
/* remove VID from filter table*/
/* remove VID from filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
vfta &= ~(1 << (vid & 0x1F));
......@@ -2772,6 +2773,8 @@ e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
DPRINTK(PROBE, ERR,
"Unsupported Speed/Duplexity configuration\n");
return -EINVAL;
}
return 0;
......@@ -2865,6 +2868,8 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state)
}
}
pci_disable_device(pdev);
state = (state > 0) ? 3 : 0;
pci_set_power_state(pdev, state);
......@@ -2879,6 +2884,7 @@ e1000_resume(struct pci_dev *pdev)
struct e1000_adapter *adapter = netdev->priv;
uint32_t manc;
pci_enable_device(pdev);
pci_set_power_state(pdev, 0);
pci_restore_state(pdev, adapter->pci_state);
......@@ -2910,12 +2916,12 @@ e1000_resume(struct pci_dev *pdev)
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void e1000_netpoll (struct net_device *dev)
static void
e1000_netpoll (struct net_device *netdev)
{
struct e1000_adapter *adapter = dev->priv;
struct e1000_adapter *adapter = netdev->priv;
disable_irq(adapter->pdev->irq);
e1000_intr (adapter->pdev->irq, dev, NULL);
e1000_intr(adapter->pdev->irq, netdev, NULL);
enable_irq(adapter->pdev->irq);
}
#endif
......
......@@ -235,7 +235,7 @@ struct e1000_option {
static int __devinit
e1000_validate_option(int *value, struct e1000_option *opt,
struct e1000_adapter *adapter)
struct e1000_adapter *adapter)
{
if(*value == OPTION_UNSET) {
*value = opt->def;
......@@ -256,7 +256,7 @@ e1000_validate_option(int *value, struct e1000_option *opt,
case range_option:
if(*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
DPRINTK(PROBE, INFO,
"%s set to %i\n", opt->name, *value);
"%s set to %i\n", opt->name, *value);
return 0;
}
break;
......@@ -449,8 +449,7 @@ e1000_check_options(struct e1000_adapter *adapter)
DPRINTK(PROBE, INFO, "%s turned off\n", opt.name);
break;
case 1:
DPRINTK(PROBE, INFO,
"%s set to dynamic mode\n", opt.name);
DPRINTK(PROBE, INFO, "%s set to dynamic mode\n", opt.name);
break;
default:
e1000_validate_option(&adapter->itr, &opt, adapter);
......@@ -493,8 +492,9 @@ e1000_check_fiber_options(struct e1000_adapter *adapter)
"parameter ignored\n");
}
if((AutoNeg[bd] != OPTION_UNSET) && (AutoNeg[bd] != 0x20)) {
DPRINTK(PROBE, INFO, "AutoNeg other than Full/1000 is "
"not valid for fiber adapters, parameter ignored\n");
DPRINTK(PROBE, INFO, "AutoNeg other than 1000/Full is "
"not valid for fiber adapters, "
"parameter ignored\n");
}
}
......@@ -611,24 +611,24 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
break;
case HALF_DUPLEX:
DPRINTK(PROBE, INFO, "Half Duplex specified without Speed\n");
DPRINTK(PROBE, INFO,
"Using Autonegotiation at Half Duplex only\n");
DPRINTK(PROBE, INFO, "Using Autonegotiation at "
"Half Duplex only\n");
adapter->hw.autoneg = adapter->fc_autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
ADVERTISE_100_HALF;
break;
case FULL_DUPLEX:
DPRINTK(PROBE, INFO, "Full Duplex specified without Speed\n");
DPRINTK(PROBE, INFO,
"Using Autonegotiation at Full Duplex only\n");
DPRINTK(PROBE, INFO, "Using Autonegotiation at "
"Full Duplex only\n");
adapter->hw.autoneg = adapter->fc_autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_10_FULL |
ADVERTISE_100_FULL |
ADVERTISE_1000_FULL;
break;
case SPEED_10:
DPRINTK(PROBE, INFO,
"10 Mbps Speed specified without Duplex\n");
DPRINTK(PROBE, INFO, "10 Mbps Speed specified "
"without Duplex\n");
DPRINTK(PROBE, INFO, "Using Autonegotiation at 10 Mbps only\n");
adapter->hw.autoneg = adapter->fc_autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_10_HALF |
......@@ -647,10 +647,10 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
adapter->hw.autoneg_advertised = 0;
break;
case SPEED_100:
DPRINTK(PROBE, INFO,
"100 Mbps Speed specified without Duplex\n");
DPRINTK(PROBE, INFO,
"Using Autonegotiation at 100 Mbps only\n");
DPRINTK(PROBE, INFO, "100 Mbps Speed specified "
"without Duplex\n");
DPRINTK(PROBE, INFO, "Using Autonegotiation at "
"100 Mbps only\n");
adapter->hw.autoneg = adapter->fc_autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_100_HALF |
ADVERTISE_100_FULL;
......@@ -668,10 +668,11 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
adapter->hw.autoneg_advertised = 0;
break;
case SPEED_1000:
DPRINTK(PROBE, INFO, "1000 Mbps Speed specified without "
"Duplex\n");
DPRINTK(PROBE, INFO,
"1000 Mbps Speed specified without Duplex\n");
DPRINTK(PROBE, INFO,
"Using Autonegotiation at 1000 Mbps Full Duplex only\n");
"Using Autonegotiation at 1000 Mbps "
"Full Duplex only\n");
adapter->hw.autoneg = adapter->fc_autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
break;
......@@ -679,7 +680,8 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
DPRINTK(PROBE, INFO,
"Half Duplex is not supported at 1000 Mbps\n");
DPRINTK(PROBE, INFO,
"Using Autonegotiation at 1000 Mbps Full Duplex only\n");
"Using Autonegotiation at 1000 Mbps "
"Full Duplex only\n");
adapter->hw.autoneg = adapter->fc_autoneg = 1;
adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
break;
......@@ -696,8 +698,8 @@ e1000_check_copper_options(struct e1000_adapter *adapter)
/* Speed, AutoNeg and MDI/MDI-X must all play nice */
if (e1000_validate_mdi_setting(&(adapter->hw)) < 0) {
DPRINTK(PROBE, INFO,
"Speed, AutoNeg and MDI-X specifications are "
"incompatible. Setting MDI-X to a compatible value.\n");
"Speed, AutoNeg and MDI-X specifications are "
"incompatible. Setting MDI-X to a compatible value.\n");
}
}
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment