Commit b54c4129 authored by Roman Zippel's avatar Roman Zippel Committed by Linus Torvalds

[PATCH] new kernel configuration 3/7

This adds the arch config files. (part 1)
parent ae10cf68
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/config-language.txt.
#
config ALPHA
bool
default y
help
The Alpha is a 64-bit general-purpose processor designed and
marketed by the Digital Equipment Corporation of blessed memory, now
Compaq. Alpha Linux dates from 1995-1996 and was the first non-x86
port. The Alpha Linux project has a home page at
<http://www.alphalinux.org/>.
config UID16
bool
config RWSEM_GENERIC_SPINLOCK
bool
config RWSEM_XCHGADD_ALGORITHM
bool
default y
config GENERIC_ISA_DMA
bool
default y
source "init/Kconfig"
menu "System setup"
choice
prompt "Alpha system type"
default ALPHA_GENERIC
config ALPHA_GENERIC
bool "Generic"
---help---
This is the system type of your hardware. A "generic" kernel will
run on any supported Alpha system. However, if you configure a
kernel for your specific system, it will be faster and smaller.
To find out what type of Alpha system you have, you may want to
check out the Linux/Alpha FAQ, accessible on the WWW from
<http://www.alphalinux.org/>. In summary:
Alcor/Alpha-XLT AS 600
Alpha-XL XL-233, XL-266
AlphaBook1 Alpha laptop
Avanti AS 200, AS 205, AS 250, AS 255, AS 300, AS 400
Cabriolet AlphaPC64, AlphaPCI64
DP264 DP264
EB164 EB164 21164 evaluation board
EB64+ EB64+ 21064 evaluation board
EB66 EB66 21066 evaluation board
EB66+ EB66+ 21066 evaluation board
Jensen DECpc 150, DEC 2000 model 300,
DEC 2000 model 500
LX164 AlphaPC164-LX
Miata Personal Workstation 433a, 433au, 500a,
500au, 600a, or 600au
Mikasa AS 1000
Noname AXPpci33, UDB (Multia)
Noritake AS 1000A, AS 600A, AS 800
PC164 AlphaPC164
Rawhide AS 1200, AS 4000, AS 4100
Ruffian RPX164-2, AlphaPC164-UX, AlphaPC164-BX
SX164 AlphaPC164-SX
Sable AS 2000, AS 2100
Shark DS 20L
Takara Takara
Titan Privateer
Wildfire AlphaServer GS 40/80/160/320
If you don't know what to do, choose "generic".
config ALPHA_ALCOR
bool "Alcor/Alpha-XLT"
help
For systems using the Digital ALCOR chipset: 5 chips (4, 64-bit data
slices (Data Switch, DSW) - 208-pin PQFP and 1 control (Control, I/O
Address, CIA) - a 383 pin plastic PGA). It provides a DRAM
controller (256-bit memory bus) and a PCI interface. It also does
all the work required to support an external Bcache and to maintain
memory coherence when a PCI device DMAs into (or out of) memory.
config ALPHA_XL
bool "Alpha-XL"
help
XL-233 and XL-266-based Alpha systems.
config ALPHA_BOOK1
bool "AlphaBook1"
help
Dec AlphaBook1/Burns Alpha-based laptops.
config ALPHA_AVANTI_CH
bool "Avanti"
config ALPHA_CABRIOLET
bool "Cabriolet"
help
Cabriolet AlphaPC64, AlphaPCI64 systems. Derived from EB64+ but now
baby-AT with Flash boot ROM, no on-board SCSI or Ethernet. 3 ISA
slots, 4 PCI slots (one pair are on a shared slot), uses plug-in
Bcache SIMMs. Requires power supply with 3.3V output.
config ALPHA_DP264
bool "DP264"
help
Various 21264 systems with the tsunami core logic chipset.
API Networks: 264DP, UP2000(+), CS20;
Compaq: DS10(E,L), XP900, XP1000, DS20(E), ES40.
config ALPHA_EB164
bool "EB164"
help
EB164 21164 evaluation board from DEC. Uses 21164 and ALCOR. Has
ISA and PCI expansion (3 ISA slots, 2 64-bit PCI slots (one is
shared with an ISA slot) and 2 32-bit PCI slots. Uses plus-in
Bcache SIMMs. I/O sub-system provides SuperI/O (2S, 1P, FD), KBD,
MOUSE (PS2 style), RTC/NVRAM. Boot ROM is Flash. PC-AT-sized
motherboard. Requires power supply with 3.3V output.
config ALPHA_EB64P_CH
bool "EB64+"
config ALPHA_EB66
bool "EB66"
help
A Digital DS group board. Uses 21066 or 21066A. I/O sub-system is
identical to EB64+. Baby PC-AT size. Runs from standard PC power
supply. The EB66 schematic was published as a marketing poster
advertising the 21066 as "the first microprocessor in the world with
embedded PCI".
config ALPHA_EB66P
bool "EB66+"
help
Later variant of the EB66 board.
config ALPHA_EIGER
bool "Eiger"
help
Apparently an obscure OEM single-board computer based on the
Typhoon/Tsunami chipset family. Information on it is scanty.
config ALPHA_JENSEN
bool "Jensen"
help
DEC PC 150 AXP (aka Jensen): This is a very old Digital system - one
of the first-generation Alpha systems. A number of these systems
seem to be available on the second- hand market. The Jensen is a
floor-standing tower system which originally used a 150MHz 21064 It
used programmable logic to interface a 486 EISA I/O bridge to the
CPU.
config ALPHA_LX164
bool "LX164"
help
A technical overview of this board is available at
<http://www.unix-ag.org/Linux-Alpha/Architectures/LX164.html>.
config ALPHA_MIATA
bool "Miata"
help
The Digital PersonalWorkStation (PWS 433a, 433au, 500a, 500au, 600a,
or 600au). There is an Installation HOWTO for this hardware at
<http://members.brabant.chello.nl/~s.vandereijk/miata.html>.
config ALPHA_MIKASA
bool "Mikasa"
help
AlphaServer 1000-based Alpha systems.
config ALPHA_NAUTILUS
bool "Nautilus"
help
Alpha systems based on the AMD 751 & ALI 1543C chipsets.
config ALPHA_NONAME_CH
bool "Noname"
config ALPHA_NORITAKE
bool "Noritake"
help
AlphaServer 1000A, AlphaServer 600A, and AlphaServer 800-based
systems.
config ALPHA_PC164
bool "PC164"
config ALPHA_P2K
bool "Platform2000"
config ALPHA_RAWHIDE
bool "Rawhide"
help
AlphaServer 1200, AlphaServer 4000 and AlphaServer 4100 machines.
See HOWTO at
<http://www.alphalinux.org/docs/rawhide/4100_install.shtml>.
config ALPHA_RUFFIAN
bool "Ruffian"
help
Samsung APC164UX. There is a page on known problems and workarounds
at <http://www.alphalinux.org/faq/FAQ-11.html>.
config ALPHA_RX164
bool "RX164"
config ALPHA_SX164
bool "SX164"
config ALPHA_SABLE
bool "Sable"
help
Digital AlphaServer 2000 and 2100-based systems.
config ALPHA_SHARK
bool "Shark"
config ALPHA_TAKARA
bool "Takara"
help
Alpha 11164-based OEM single-board computer.
config ALPHA_TITAN
bool "Titan"
config ALPHA_WILDFIRE
bool "Wildfire"
help
AlphaServer GS 40/80/160/320 SMP based on the EV67 core.
endchoice
# clear all implied options (don't want default values for those):
# Most of these machines have ISA slots; not exactly sure which don't,
# and this doesn't activate hordes of code, so do it always.
config ISA
bool
default y
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config EISA
bool
default y
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
config SBUS
bool
config MCA
bool
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
config PCI
bool
depends on !ALPHA_JENSEN
default y
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
config ALPHA_NONAME
bool
depends on ALPHA_BOOK1 || ALPHA_NONAME_CH
default y
help
The AXPpci33 (aka NoName), is based on the EB66 (includes the Multia
UDB). This design was produced by Digital's Technical OEM (TOEM)
group. It uses the 21066 processor running at 166MHz or 233MHz. It
is a baby-AT size, and runs from a standard PC power supply. It has
5 ISA slots and 3 PCI slots (one pair are a shared slot). There are
2 versions, with either PS/2 or large DIN connectors for the
keyboard.
config ALPHA_EV4
bool
depends on ALPHA_JENSEN || ALPHA_SABLE && !ALPHA_GAMMA || ALPHA_NORITAKE && !ALPHA_PRIMO || ALPHA_MIKASA && !ALPHA_PRIMO || ALPHA_CABRIOLET || ALPHA_AVANTI_CH || ALPHA_EB64P_CH || ALPHA_XL || ALPHA_NONAME || ALPHA_EB66 || ALPHA_EB66P || ALPHA_P2K
default y
config ALPHA_LCA
bool
depends on ALPHA_NONAME || ALPHA_EB66 || ALPHA_EB66P || ALPHA_P2K
default y
config ALPHA_APECS
bool
depends on !ALPHA_PRIMO && (ALPHA_NORITAKE || ALPHA_MIKASA) || ALPHA_CABRIOLET || ALPHA_AVANTI_CH || ALPHA_EB64P_CH || ALPHA_XL
default y
config ALPHA_EB64P
bool
depends on ALPHA_CABRIOLET || ALPHA_EB64P_CH
default y
help
Uses 21064 or 21064A and APECs. Has ISA and PCI expansion (3 ISA,
2 PCI, one pair are on a shared slot). Supports 36-bit DRAM SIMs.
ISA bus generated by Intel SaturnI/O PCI-ISA bridge. On-board SCSI
(NCR 810 on PCI) Ethernet (Digital 21040), KBD, MOUSE (PS2 style),
SuperI/O (2S, 1P, FD), RTC/NVRAM. Boot ROM is EPROM. PC-AT size.
Runs from standard PC power supply.
config ALPHA_EV5
bool
depends on ALPHA_RX164 || ALPHA_RAWHIDE || ALPHA_MIATA || ALPHA_LX164 || ALPHA_SX164 || ALPHA_RUFFIAN || ALPHA_SABLE && ALPHA_GAMMA || ALPHA_NORITAKE && ALPHA_PRIMO || ALPHA_MIKASA && ALPHA_PRIMO || ALPHA_PC164 || ALPHA_TAKARA || ALPHA_EB164 || ALPHA_ALCOR
default y
config ALPHA_CIA
bool
depends on ALPHA_MIATA || ALPHA_LX164 || ALPHA_SX164 || ALPHA_RUFFIAN || ALPHA_NORITAKE && ALPHA_PRIMO || ALPHA_MIKASA && ALPHA_PRIMO || ALPHA_PC164 || ALPHA_TAKARA || ALPHA_EB164 || ALPHA_ALCOR
default y
config ALPHA_EV56
bool "EV56 CPU (speed >= 366MHz)?" if ALPHA_ALCOR
default y if ALPHA_RX164 || ALPHA_MIATA || ALPHA_LX164 || ALPHA_SX164 || ALPHA_RUFFIAN || ALPHA_PC164 || ALPHA_TAKARA
config ALPHA_EV56
prompt "EV56 CPU (speed >= 333MHz)?"
depends on ALPHA_NORITAKE && ALPHA_PRIMO
config ALPHA_EV56
prompt "EV56 CPU (speed >= 400MHz)?"
depends on ALPHA_RAWHIDE
config ALPHA_PRIMO
bool "EV5 CPU daughtercard (model 5/xxx)?"
depends on ALPHA_NORITAKE || ALPHA_MIKASA
help
Say Y if you have an AS 1000 5/xxx or an AS 1000A 5/xxx.
config ALPHA_GAMMA
bool "EV5 CPU(s) (model 5/xxx)?"
depends on ALPHA_SABLE
help
Say Y if you have an AS 2000 5/xxx or an AS 2100 5/xxx.
config ALPHA_T2
bool
depends on ALPHA_SABLE
default y
config ALPHA_PYXIS
bool
depends on ALPHA_MIATA || ALPHA_LX164 || ALPHA_SX164 || ALPHA_RUFFIAN
default y
config ALPHA_EV6
bool
depends on ALPHA_NAUTILUS || ALPHA_WILDFIRE || ALPHA_TITAN || ALPHA_SHARK || ALPHA_DP264 || ALPHA_EIGER
default y
config ALPHA_TSUNAMI
bool
depends on ALPHA_SHARK || ALPHA_DP264 || ALPHA_EIGER
default y
config ALPHA_EV67
bool "EV67 (or later) CPU (speed > 600MHz)?" if ALPHA_DP264 || ALPHA_EIGER
default y if ALPHA_NAUTILUS || ALPHA_WILDFIRE || ALPHA_TITAN || ALPHA_SHARK
help
Is this a machine based on the EV67 core? If in doubt, select N here
and the machine will be treated as an EV6.
config ALPHA_MCPCIA
bool
depends on ALPHA_RAWHIDE
default y
config ALPHA_POLARIS
bool
depends on ALPHA_RX164
default y
config ALPHA_IRONGATE
bool
depends on ALPHA_NAUTILUS
default y
config ALPHA_SRM
bool "Use SRM as bootloader" if ALPHA_CABRIOLET || ALPHA_AVANTI_CH || ALPHA_EB64P || ALPHA_PC164 || ALPHA_TAKARA || ALPHA_EB164 || ALPHA_ALCOR || ALPHA_MIATA || ALPHA_LX164 || ALPHA_SX164 || ALPHA_NAUTILUS || ALPHA_NONAME
default y if ALPHA_JENSEN || ALPHA_MIKASA || ALPHA_SABLE || ALPHA_NORITAKE || ALPHA_DP264 || ALPHA_RAWHIDE || ALPHA_EIGER || ALPHA_WILDFIRE || ALPHA_TITAN || ALPHA_SHARK
---help---
There are two different types of booting firmware on Alphas: SRM,
which is command line driven, and ARC, which uses menus and arrow
keys. Details about the Linux/Alpha booting process are contained in
the Linux/Alpha FAQ, accessible on the WWW from
<http://www.alphalinux.org/>.
The usual way to load Linux on an Alpha machine is to use MILO
(a bootloader that lets you pass command line parameters to the
kernel just like lilo does for the x86 architecture) which can be
loaded either from ARC or can be installed directly as a permanent
firmware replacement from floppy (which requires changing a certain
jumper on the motherboard). If you want to do either of these, say N
here. If MILO doesn't work on your system (true for Jensen
motherboards), you can bypass it altogether and boot Linux directly
from an SRM console; say Y here in order to do that. Note that you
won't be able to boot from an IDE disk using SRM.
If unsure, say N.
config ALPHA_EISA
bool
depends on ALPHA_ALCOR || ALPHA_MIKASA || ALPHA_SABLE || ALPHA_NORITAKE || ALPHA_RAWHIDE
default y
config ALPHA_AVANTI
bool
depends on ALPHA_XL || ALPHA_AVANTI_CH
default y
help
Avanti AS 200, AS 205, AS 250, AS 255, AS 300, and AS 400-based
Alphas. Info at
<http://www.unix-ag.org/Linux-Alpha/Architectures/Avanti.html>.
config ALPHA_BROKEN_IRQ_MASK
bool
depends on ALPHA_GENERIC || ALPHA_PC164
default y
config SMP
bool "Symmetric multi-processing support"
depends on ALPHA_SABLE || ALPHA_RAWHIDE || ALPHA_DP264 || ALPHA_WILDFIRE || ALPHA_TITAN || ALPHA_GENERIC || ALPHA_SHARK
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
Note that if you say Y here and choose architecture "586" or
"Pentium" under "Processor family", the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the "PPro"
architecture may not work on all Pentium based boards.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
Management" code will be disabled if you say Y here.
See also the <file:Documentation/smp.tex>,
<file:Documentation/smp.txt>, <file:Documentation/i386/IO-APIC.txt>,
<file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
<http://www.linuxdoc.org/docs.html#howto>.
If you don't know what to do here, say N.
config HAVE_DEC_LOCK
bool
depends on SMP
default y
config NR_CPUS
int "Maximum number of CPUs (2-64)"
depends on SMP
default "64"
config DISCONTIGMEM
bool "Discontiguous Memory Support (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
Say Y to upport efficient handling of discontiguous physical memory,
for architectures which are either NUMA (Non-Uniform Memory Access)
or have huge holes in the physical address space for other reasons.
See <file:Documentation/vm/numa> for more.
config NUMA
bool "NUMA Support (EXPERIMENTAL)"
depends on DISCONTIGMEM
help
Say Y to compile the kernel to support NUMA (Non-Uniform Memory
Access). This option is for configuring high-end multiprocessor
server machines. If in doubt, say N.
# LARGE_VMALLOC is racy, if you *really* need it then fix it first
config ALPHA_LARGE_VMALLOC
bool
---help---
Process creation and other aspects of virtual memory management can
be streamlined if we restrict the kernel to one PGD for all vmalloc
allocations. This equates to about 8GB.
Under normal circumstances, this is so far and above what is needed
as to be laughable. However, there are certain applications (such
as benchmark-grade in-kernel web serving) that can make use of as
much vmalloc space as is available.
Say N unless you know you need gobs and gobs of vmalloc space.
source "drivers/pci/Kconfig"
config HOTPLUG
bool "Support for hot-pluggable devices"
---help---
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at <http://linux-hotplug.sourceforge.net/>) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
source "drivers/pcmcia/Kconfig"
choice
prompt "Kernel core (/proc/kcore) format"
depends on PROC_FS
default KCORE_ELF
config KCORE_ELF
bool "ELF"
---help---
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
config KCORE_AOUT
bool "A.OUT"
help
Not necessary unless you're using a very out-of-date binutils
version. You probably want KCORE_ELF.
endchoice
config SRM_ENV
tristate "SRM environment through procfs"
depends on PROC_FS
---help---
If you enable this option, a subdirectory inside /proc called
/proc/srm_environment will give you access to the all important
SRM environment variables (those which have a name) and also
to all others (by their internal number).
SRM is something like a BIOS for Alpha machines. There are some
other such BIOSes, like AlphaBIOS, which this driver cannot
support (hey, that's not SRM!).
Despite the fact that this driver doesn't work on all Alphas (but
only on those which have SRM as their firmware), it's save to
build it even if your particular machine doesn't know about SRM
(or if you intend to compile a generic kernel). It will simply
not create those subdirectory in /proc (and give you some warning,
of course).
This driver is also available as a module and will be called
srm_env.o then.
config BINFMT_AOUT
tristate "Kernel support for a.out (ECOFF) binaries"
---help---
A.out (Assembler.OUTput) is a set of formats for libraries and
executables used in the earliest versions of UNIX. Linux used the
a.out formats QMAGIC and ZMAGIC until they were replaced with the
ELF format.
As more and more programs are converted to ELF, the use for a.out
will gradually diminish. If you disable this option it will reduce
your kernel by one page. This is not much and by itself does not
warrant removing support. However its removal is a good idea if you
wish to ensure that absolutely none of your programs will use this
older executable format. If you don't know what to answer at this
point then answer Y. If someone told you "You need a kernel with
QMAGIC support" then you'll have to say Y here. You may answer M to
compile a.out support as a module and later load the module when you
want to use a program or library in a.out format. The module will be
called binfmt_aout.o. Saying M or N here is dangerous though,
because some crucial programs on your system might still be in A.OUT
format.
config OSF4_COMPAT
bool "OSF/1 v4 readv/writev compatibility"
depends on BINFMT_AOUT
help
Say Y if you are using OSF/1 binaries (like Netscape and Acrobat)
with v4 shared libraries freely available from Compaq. If you're
going to use shared libraries from Tru64 version 5.0 or later, say N.
config BINFMT_ELF
tristate "Kernel support for ELF binaries"
---help---
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
config BINFMT_MISC
tristate "Kernel support for MISC binaries"
---help---
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
config BINFMT_EM86
tristate "Kernel support for Linux/Intel ELF binaries"
---help---
Say Y here if you want to be able to execute Linux/Intel ELF
binaries just like native Alpha binaries on your Alpha machine. For
this to work, you need to have the emulator /usr/bin/em86 in place.
You can get the same functionality by saying N here and saying Y to
"Kernel support for MISC binaries".
You may answer M to compile the emulation support as a module and
later load the module when you want to use a Linux/Intel binary. The
module will be called binfmt_em86.o. If unsure, say Y.
source "drivers/parport/Kconfig"
endmenu
source "drivers/mtd/Kconfig"
source "drivers/pnp/Kconfig"
source "drivers/block/Kconfig"
source "drivers/md/Kconfig"
menu "ATA/ATAPI/MFM/RLL support"
config IDE
tristate "ATA/ATAPI/MFM/RLL support"
---help---
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
source "drivers/ide/Kconfig"
endmenu
menu "SCSI support"
config SCSI
tristate "SCSI support"
---help---
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
source "drivers/scsi/Kconfig"
endmenu
if PCI
source "drivers/message/fusion/Kconfig"
endif
source "net/Kconfig"
menu "Network device support"
depends on NET
config NETDEVICES
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
source "drivers/net/Kconfig"
source "drivers/atm/Kconfig"
endmenu
source "net/ax25/Kconfig"
source "drivers/isdn/Kconfig"
menu "Old CD-ROM drivers (not SCSI, not IDE)"
config CD_NO_IDESCSI
bool "Support non-SCSI/IDE/ATAPI CDROM drives"
---help---
If you have a CD-ROM drive that is neither SCSI nor IDE/ATAPI, say Y
here, otherwise N. Read the CD-ROM-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that the answer to this question doesn't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about these CD-ROM drives. If you are unsure what you
have, say Y and find out whether you have one of the following
drives.
For each of these drivers, a file Documentation/cdrom/{driver_name}
exists. Especially in cases where you do not know exactly which kind
of drive you have you should read there. Most of these drivers use a
file drivers/cdrom/{driver_name}.h where you can define your
interface parameters and switch some internal goodies.
All these CD-ROM drivers are also usable as a module ( = code which
can be inserted in and removed from the running kernel whenever you
want). If you want to compile them as module, say M instead of Y and
read <file:Documentation/modules.txt>.
If you want to use any of these CD-ROM drivers, you also have to
answer Y or M to "ISO 9660 CD-ROM file system support" below (this
answer will get "defaulted" for you if you enable any of the Linux
CD-ROM drivers).
source "drivers/cdrom/Kconfig"
endmenu
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
#source drivers/misc/Config.in
source "drivers/media/Kconfig"
source "fs/Kconfig"
menu "Console drivers"
depends on VT
config VGA_CONSOLE
bool "VGA text console"
help
Saying Y here will allow you to use Linux in text mode through a
display that complies with the generic VGA standard. Virtually
everyone wants that.
The program SVGATextMode can be used to utilize SVGA video cards to
their full potential in text mode. Download it from
<ftp://ibiblio.org/pub/Linux/utils/console/>.
Say Y.
# if [ "$CONFIG_PCI" = "y" -a "$CONFIG_VGA_CONSOLE" = "y" ]; then
# bool ' Allow VGA on any bus?' CONFIG_VGA_HOSE
# if [ "$CONFIG_VGA_HOSE" = "y" ]; then
# define_bool CONFIG_DUMMY_CONSOLE y
# fi
# fi
source "drivers/video/Kconfig"
config PCI_CONSOLE
bool
depends on FB
default y
endmenu
menu "Sound"
config SOUND
tristate "Sound card support"
---help---
If you have a sound card in your computer, i.e. if it can say more
than an occasional beep, say Y. Be sure to have all the information
about your sound card and its configuration down (I/O port,
interrupt and DMA channel), because you will be asked for it.
You want to read the Sound-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. General information about
the modular sound system is contained in the files
<file:Documentation/sound/Introduction>. The file
<file:Documentation/sound/README.OSS> contains some slightly
outdated but still useful information as well.
If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read
<http://www.roestock.demon.co.uk/isapnptools/>), then you need to
compile the sound card support as a module ( = code which can be
inserted in and removed from the running kernel whenever you want)
and load that module after the PnP configuration is finished. To do
this, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/sound/README.modules>; the module will be
called soundcore.o.
I'm told that even without a sound card, you can make your computer
say more than an occasional beep, by programming the PC speaker.
Kernel patches and supporting utilities to do that are in the pcsp
package, available at <ftp://ftp.infradead.org/pub/pcsp/>.
source "sound/Kconfig"
endmenu
source "drivers/usb/Kconfig"
source "net/bluetooth/Kconfig"
menu "Kernel hacking"
config ALPHA_LEGACY_START_ADDRESS
bool "Legacy kernel start address"
---help---
The 2.4 kernel changed the kernel start address from 0x310000
to 0x810000 to make room for the Wildfire's larger SRM console.
If you're using aboot 0.7 or later, the bootloader will examine the
ELF headers to determine where to transfer control. Unfortunately,
most older bootloaders -- APB or MILO -- hardcoded the kernel start
address rather than examining the ELF headers, and the result is a
hard lockup.
Say Y if you have a broken bootloader. Say N if you do not, or if
you wish to run on Wildfire.
config DEBUG_KERNEL
bool "Kernel debugging"
help
Say Y here if you are developing drivers or trying to debug and
identify kernel problems.
config MATHEMU
tristate "Kernel FP software completion" if DEBUG_KERNEL
default y if !DEBUG_KERNEL
help
This option is required for IEEE compliant floating point arithmetic
on the Alpha. The only time you would ever not say Y is to say M in
order to debug the code. Say Y unless you know what you are doing.
config DEBUG_SLAB
bool "Debug memory allocations"
depends on DEBUG_KERNEL
help
Say Y here to have the kernel do limited verification on memory
allocation as well as poisoning memory on free to catch use of freed
memory.
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on DEBUG_KERNEL
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
config DEBUG_SPINLOCK
bool "Spinlock debugging"
depends on DEBUG_KERNEL
help
Say Y here and build SMP to catch missing spinlock initialization
and certain other kinds of spinlock errors commonly made. This is
best used in conjunction with the NMI watchdog so that spinlock
deadlocks are also debuggable.
config DEBUG_RWLOCK
bool "Read-write spinlock debugging"
depends on DEBUG_KERNEL
help
If you say Y here then read-write lock processing will count how many
times it has tried to get the lock and issue an error message after
too many attempts. If you suspect a rwlock problem or a kernel
hacker asks for this option then say Y. Otherwise say N.
config DEBUG_SEMAPHORE
bool "Semaphore debugging"
depends on DEBUG_KERNEL
help
If you say Y here then semaphore processing will issue lots of
verbose debugging messages. If you suspect a semaphore problem or a
kernel hacker asks for this option then say Y. Otherwise say N.
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/config-language.txt.
#
mainmenu "Linux Kernel Configuration"
config ARM
bool
default y
help
The ARM series is a line of low-power-consumption RISC chip designs
licensed by ARM ltd and targeted at embedded applications and
handhelds such as the Compaq IPAQ. ARM-based PCs are no longer
manufactured, but legacy ARM-based PC hardware remains popular in
Europe. There is an ARM Linux project with a web page at
<http://www.arm.linux.org.uk/>.
config EISA
bool
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
config SBUS
bool
config MCA
bool
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
config UID16
bool
default y
config RWSEM_GENERIC_SPINLOCK
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
config GENERIC_BUST_SPINLOCK
bool
config GENERIC_ISA_DMA
bool
source "init/Kconfig"
menu "System Type"
choice
prompt "ARM system type"
default ARCH_RPC
config ARCH_ADIFCC
bool "ADIFCC-based"
config ARCH_ANAKIN
bool "Anakin"
---help---
The Anakin is a StrongArm based SA110 - 2 DIN Vehicle Telematics Platform.
64MB SDRAM - 4 Mb Flash - Compact Flash Interface - 1 MB VRAM
On board peripherals:
* Front display: 400x234 16 bit TFT touchscreen
* External independent second screen interface
* CAN controller SJA1000
* USB host controller
* 6 channel video codec with hardware overlay
* Smartcard reader
* IrDa
Modules interfaced over the Multi Media Extension slots:
* A communication card
Wavecom GPRS modem
uBlock GPS
Bosch DAB module
* An audio card ( 4 * 40W, AC97 Codec, I2S)
config ARCH_ARCA5K
bool "Archimedes/A5000"
help
This selects what ARM system you wish to build the kernel for. It
also selects to some extent the CPU type. If you are unsure what
to set this option to, please consult any information supplied with
your system.
config ARCH_CLPS7500
bool "Cirrus-CL-PS7500FE"
config ARCH_CLPS711X
bool "CLPS711x/EP721x-based"
config ARCH_CO285
bool "Co-EBSA285"
config ARCH_PXA
bool "PXA250/210-based"
config ARCH_EBSA110
bool "EBSA-110"
help
This is an evaluation board for the StrongARM processor available
from Digital. It has limited hardware on-board, including an onboard
Ethernet interface, two PCMCIA sockets, two serial ports and a
parallel port.
config ARCH_CAMELOT
bool "Epxa10db"
help
This enables support for Altera's Excalibur XA10 development board.
If you would like to build your kernel to run on one of these boards
then you must say 'Y' here. Otherwise say 'N'
config ARCH_FOOTBRIDGE
bool "FootBridge"
config ARCH_INTEGRATOR
bool "Integrator"
config ARCH_IOP310
bool "IOP310-based"
config ARCH_L7200
bool "LinkUp-L7200"
help
Say Y here if you intend to run this kernel on a LinkUp Systems
L7200 Software Development Board which uses an ARM720T processor.
Information on this board can be obtained at:
<http://www.linkupsys.com/>
If you have any questions or comments about the Linux kernel port
to this board, send e-mail to sjhill@cotw.com.
config ARCH_RPC
bool "RiscPC"
help
On the Acorn Risc-PC, Linux can support the internal IDE disk and
CD-ROM interface, serial and parallel port, and the floppy drive.
config ARCH_SA1100
bool "SA1100-based"
config ARCH_SHARK
bool "Shark"
endchoice
source "arch/arm/mach-arc/Kconfig"
source "arch/arm/mach-clps711x/Kconfig"
source "arch/arm/mach-epxa10db/Kconfig"
source "arch/arm/mach-footbridge/Kconfig"
source "arch/arm/mach-iop310/Kconfig"
source "arch/arm/mach-pxa/Kconfig"
source "arch/arm/mach-sa1100/Kconfig"
# Definitions to make life easier
config ARCH_ACORN
bool
depends on ARCH_ARCA5K || ARCH_RPC
default y
#####################################################################
# Footbridge support
config FOOTBRIDGE
bool
depends on ARCH_CO285 || ARCH_FOOTBRIDGE
default y
config FOOTBRIDGE_HOST
bool
depends on ARCH_CATS || ARCH_EBSA285_HOST || ARCH_NETWINDER || ARCH_PERSONAL_SERVER
default y
config FOOTBRIDGE_ADDIN
bool
depends on ARCH_CO285 || ARCH_EBSA285_ADDIN
default y
config ARCH_EBSA285
bool
depends on ARCH_EBSA285_HOST || ARCH_EBSA285_ADDIN
default y
#####################################################################
# SA1111 support
config SA1111
bool
depends on ASSABET_NEPONSET || SA1100_ADSBITSY || SA1100_BADGE4 || SA1100_CONSUS || SA1100_GRAPHICSMASTER || SA1100_JORNADA720 || ARCH_LUBBOCK || SA1100_PFS168 || SA1100_PT_SYSTEM3 || SA1100_XP860
default y
config FORCE_MAX_ZONEORDER
int
depends on ASSABET_NEPONSET || SA1100_ADSBITSY || SA1100_BADGE4 || SA1100_CONSUS || SA1100_GRAPHICSMASTER || SA1100_JORNADA720 || ARCH_LUBBOCK || SA1100_PFS168 || SA1100_PT_SYSTEM3 || SA1100_XP860
default "9"
comment "Processor Type"
# Figure out whether this system uses 26-bit or 32-bit CPUs.
config CPU_32
bool
depends on !ARCH_ARCA5K
default y
config CPU_26
bool
depends on ARCH_ARCA5K
default y
# Select CPU types depending on the architecture selected. This selects
# which CPUs we support in the kernel image, and the compiler instruction
# optimiser behaviour.
# ARM610
config CPU_ARM610
bool "Support ARM610 processor"
depends on ARCH_RPC
help
The ARM610 is the successor to the ARM3 processor
and was produced by VLSI Technology Inc.
Say Y if you want support for the ARM610 processor.
Otherwise, say N.
# ARM710
config CPU_ARM710
bool "Support ARM710 processor" if !ARCH_CLPS7500 && ARCH_RPC
default y if ARCH_CLPS7500
help
A 32-bit RISC microprocessor based on the ARM7 processor core
designed by Advanced RISC Machines Ltd. The ARM710 is the
successor to the ARM610 processor. It was released in
July 1994 by VLSI Technology Inc.
Say Y if you want support for the ARM710 processor.
Otherwise, say N.
# ARM720T
config CPU_ARM720T
bool "Support ARM720T processor" if !ARCH_CLPS711X && !ARCH_L7200 && !ARCH_CDB89712 && ARCH_INTEGRATOR
default y if ARCH_CLPS711X || ARCH_L7200 || ARCH_CDB89712
help
A 32-bit RISC processor with 8kByte Cache, Write Buffer and
MMU built around an ARM7TDMI core.
Say Y if you want support for the ARM720T processor.
Otherwise, say N.
# ARM920T
config CPU_ARM920T
bool "Support ARM920T processor"
depends on ARCH_INTEGRATOR
help
The ARM920T is licensed to be produced by numerous vendors,
and is used in the Maverick EP9312. More information at
<http://linuxdevices.com/products/PD2382866068.html>.
Say Y if you want support for the ARM920T processor.
Otherwise, say N.
# ARM922T
config CPU_ARM922T
bool
depends on ARCH_CAMELOT
default y
help
The ARM922T is a version of the ARM920T, but with smaller
instruction and data caches. It is used in Altera's
Excalibur XA device family.
Say Y if you want support for the ARM922T processor.
Otherwise, say N.
# ARM926T
config CPU_ARM926T
bool "Support ARM926T processor"
depends on ARCH_INTEGRATOR
help
This is a variant of the ARM920. It has slightly different
instruction sequences for cache and TLB operations. Curiously,
there is no documentation on it at the ARM corporate website.
Say Y if you want support for the ARM926T processor.
Otherwise, say N.
# ARM1020
config CPU_ARM1020
bool "Support ARM1020 processor"
depends on ARCH_INTEGRATOR
help
The ARM1020 is the cached version of the ARM10 processor,
with an addition of a floating-point unit.
Say Y if you want support for the ARM1020 processor.
Otherwise, say N.
# SA110
config CPU_SA110
bool "Support StrongARM(R) SA-110 processor" if !ARCH_EBSA110 && !FOOTBRIDGE && !ARCH_TBOX && !ARCH_SHARK && !ARCH_NEXUSPCI && !ARCH_ANAKIN && ARCH_RPC
default y if ARCH_EBSA110 || FOOTBRIDGE || ARCH_TBOX || ARCH_SHARK || ARCH_NEXUSPCI || ARCH_ANAKIN
help
The Intel StrongARM(R) SA-110 is a 32-bit microprocessor and
is available at five speeds ranging from 100 MHz to 233 MHz.
More information is available at
<http://developer.intel.com/design/strong/sa110.htm>.
Say Y if you want support for the SA-110 processor.
Otherwise, say N.
# SA1100
config CPU_SA1100
bool
depends on ARCH_SA1100
default y
# XScale
config CPU_XSCALE
bool
depends on ARCH_IOP310 || ARCH_ADIFCC || ARCH_PXA
default y
# Figure out what processor architecture version we should be using.
# This defines the compiler instruction set which depends on the machine type.
config CPU_32v3
bool
depends on ARCH_RPC || ARCH_CLPS7500
default y
config CPU_32v4
bool
depends on ARCH_EBSA110 || FOOTBRIDGE || ARCH_TBOX || ARCH_SHARK || ARCH_NEXUSPCI || ARCH_CLPS711X || ARCH_INTEGRATOR || ARCH_SA1100 || ARCH_L7200 || ARCH_ANAKIN || ARCH_CAMELOT
default y
config CPU_32v5
bool
depends on ARCH_IOP310 || ARCH_ADIFCC || ARCH_PXA
default y
comment "Processor Features"
config ARM_THUMB
bool "Support Thumb instructions (EXPERIMENTAL)"
depends on (CPU_ARM720T || CPU_ARM920T || CPU_ARM922T || CPU_ARM926T || CPU_ARM1020 || CPU_XSCALE) && EXPERIMENTAL
help
Say Y if you want to have kernel support for ARM Thumb instructions,
fault handlers, and system calls.
The Thumb instruction set is a compressed form of the standard ARM
instruction set resulting in smaller binaries at the expense of
slightly less efficient code.
If you don't know what this all is, saying Y is a safe choice.
config CPU_ICACHE_DISABLE
bool "Disable I-Cache"
depends on CPU_ARM920T || CPU_ARM922T || CPU_ARM926T || CPU_ARM1020
help
Say Y here to disable the processor instruction cache. Unless
you have a reason not to or are unsure, say N.
config CPU_DCACHE_DISABLE
bool "Disable D-Cache"
depends on CPU_ARM920T || CPU_ARM922T || CPU_ARM926T || CPU_ARM1020
help
Say Y here to disable the processor data cache. Unless
you have a reason not to or are unsure, say N.
config CPU_DCACHE_WRITETHROUGH
bool "Force write through D-cache"
depends on (CPU_ARM920T || CPU_ARM922T || CPU_ARM926T || CPU_ARM1020) && !CPU_DISABLE_DCACHE
help
Say Y here to use the data cache in writethough mode. Unless you
specifically require this or are unsure, say N.
config CPU_CACHE_ROUND_ROBIN
bool "Round robin I and D cache replacement algorithm"
depends on (CPU_ARM926T || CPU_ARM1020) && (!CPU_ICACHE_DISABLE || !CPU_DCACHE_DISABLE)
help
Say Y here to use the predictable round-robin cache replacement
policy. Unless you specifically require this or are unsure, say N.
config CPU_BPREDICT_DISABLE
bool "Disable branch prediction"
depends on CPU_ARM1020
help
Say Y here to disable branch prediction. If unsure, say N.
# bool 'Use XScale PMU as timer source' CONFIG_XSCALE_PMU_TIMER
config XSCALE_PMU
bool
depends on CPU_XSCALE && !XSCALE_PMU_TIMER
default y
endmenu
menu "General setup"
# Select various configuration options depending on the machine type
config DISCONTIGMEM
bool
depends on ARCH_EDB7211 || ARCH_SA1100
default y
help
Say Y to upport efficient handling of discontiguous physical memory,
for architectures which are either NUMA (Non-Uniform Memory Access)
or have huge holes in the physical address space for other reasons.
See <file:Documentation/vm/numa> for more.
# Now handle the bus types
config PCI
bool
default PCI_INTEGRATOR if !ARCH_FTVPCI && !ARCH_SHARK && !FOOTBRIDGE_HOST && !ARCH_IOP310 && ARCH_INTEGRATOR
default y if ARCH_FTVPCI || ARCH_SHARK || FOOTBRIDGE_HOST || ARCH_IOP310
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
config PCI_INTEGRATOR
bool "PCI support"
depends on !ARCH_FTVPCI && !ARCH_SHARK && !FOOTBRIDGE_HOST && !ARCH_IOP310 && ARCH_INTEGRATOR
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
# Select the host bridge type
config PCI_HOST_PLX90X0
bool
depends on PCI && ARCH_FTVPCI
default y
config PCI_HOST_VIA82C505
bool
depends on PCI && ARCH_SHARK
default y
config ISA
bool
depends on FOOTBRIDGE_HOST || ARCH_SHARK || ARCH_CLPS7500 || ARCH_EBSA110 || ARCH_CDB89712 || ARCH_EDB7211 || ARCH_SA1100
default y
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config ISA_DMA
bool
depends on FOOTBRIDGE_HOST || ARCH_SHARK
default y
config FIQ
bool
depends on ARCH_ACORN || ARCH_L7200
default y
# Compressed boot loader in ROM. Yes, we really want to ask about
# TEXT and BSS so we preserve their values in the config files.
config ZBOOT_ROM
bool "Compressed boot loader in ROM/flash"
help
Say Y here if you intend to execute your compressed kernel image (zImage)
directly from ROM or flash. If unsure, say N.
config ZBOOT_ROM_TEXT
hex "Compressed ROM boot loader base address"
default "0"
help
The base address for zImage. Unless you have special requirements, you
should not change this value.
config ZBOOT_ROM_BSS
hex "Compressed ROM boot loader BSS address"
default "0"
help
The base address of 64KiB of read/write memory, which must be available
while the decompressor is running. Unless you have special requirements,
you should not change this value.
config CPU_FREQ
bool "Support CPU clock change (EXPERIMENTAL)"
depends on (ARCH_SA1100 || ARCH_INTEGRATOR) && EXPERIMENTAL
help
CPU clock scaling allows you to change the clock speed of the
running CPU on the fly. This is a nice method to save battery power,
because the lower the clock speed, the less power the CPU
consumes. Note that this driver doesn't automatically change the CPU
clock speed, you need some userland tools (which still have to be
written) to implement the policy. If you don't understand what this
is all about, it's safe to say 'N'.
config CPU_FREQ_24_API
bool
depends on CPU_FREQ
default y
config CPU_FREQ_26_API
bool
depends on CPU_FREQ
default y
source "drivers/pci/Kconfig"
config HOTPLUG
bool "Support for hot-pluggable devices"
---help---
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at <http://linux-hotplug.sourceforge.net/>) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
source "drivers/pcmcia/Kconfig"
comment "At least one math emulation must be selected"
config FPE_NWFPE
tristate "NWFPE math emulation"
---help---
Say Y to include the NWFPE floating point emulator in the kernel.
This is necessary to run most binaries. Linux does not currently
support floating point hardware so you need to say Y here even if
your machine has an FPA or floating point co-processor podule.
It is also possible to say M to build the emulator as a module
(nwfpe.o) or indeed to leave it out altogether. However, unless you
know what you are doing this can easily render your machine
unbootable. Saying Y is the safe option.
You may say N here if you are going to load the Acorn FPEmulator
early in the bootup.
config FPE_FASTFPE
tristate "FastFPE math emulation (EXPERIMENTAL)"
depends on !CPU_26 && !CPU_32v3 && EXPERIMENTAL
---help---
Say Y here to include the FAST floating point emulator in the kernel.
This is an experimental much faster emulator which now also has full
precision for the mantissa. It does not support any exceptions.
It is very simple, and approximately 3-6 times faster than NWFPE.
It should be sufficient for most programs. It may be not suitable
for scientific calculations, but you have to check this for yourself.
If you do not feel you need a faster FP emulation you should better
choose NWFPE.
It is also possible to say M to build the emulator as a module
(fastfpe.o). But keep in mind that you should only load the FP
emulator early in the bootup. You should never change from NWFPE to
FASTFPE or vice versa in an active system!
choice
prompt "Kernel core (/proc/kcore) format"
default KCORE_ELF
config KCORE_ELF
bool "ELF"
---help---
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
config KCORE_AOUT
bool "A.OUT"
help
Not necessary unless you're using a very out-of-date binutils
version. You probably want KCORE_ELF.
endchoice
config BINFMT_AOUT
tristate "Kernel support for a.out binaries"
---help---
A.out (Assembler.OUTput) is a set of formats for libraries and
executables used in the earliest versions of UNIX. Linux used the
a.out formats QMAGIC and ZMAGIC until they were replaced with the
ELF format.
As more and more programs are converted to ELF, the use for a.out
will gradually diminish. If you disable this option it will reduce
your kernel by one page. This is not much and by itself does not
warrant removing support. However its removal is a good idea if you
wish to ensure that absolutely none of your programs will use this
older executable format. If you don't know what to answer at this
point then answer Y. If someone told you "You need a kernel with
QMAGIC support" then you'll have to say Y here. You may answer M to
compile a.out support as a module and later load the module when you
want to use a program or library in a.out format. The module will be
called binfmt_aout.o. Saying M or N here is dangerous though,
because some crucial programs on your system might still be in A.OUT
format.
config BINFMT_ELF
tristate "Kernel support for ELF binaries"
---help---
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
config BINFMT_MISC
tristate "Kernel support for MISC binaries"
---help---
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
config PM
bool "Power Management support"
---help---
"Power Management" means that parts of your computer are shut
off or put into a power conserving "sleep" mode if they are not
being used. There are two competing standards for doing this: APM
and ACPI. If you want to use either one, say Y here and then also
to the requisite support below.
Power Management is most important for battery powered laptop
computers; if you have a laptop, check out the Linux Laptop home
page on the WWW at
<http://www.cs.utexas.edu/users/kharker/linux-laptop/> and the
Battery Powered Linux mini-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that, even if you say N here, Linux on the x86 architecture
will issue the hlt instruction if nothing is to be done, thereby
sending the processor to sleep and saving power.
config PREEMPT
bool "Preemptible Kernel (EXPERIMENTAL)"
depends on CPU_32 && EXPERIMENTAL
help
This option reduces the latency of the kernel when reacting to
real-time or interactive events by allowing a low priority process to
be preempted even if it is in kernel mode executing a system call.
This allows applications to run more reliably even when the system is
under load.
Say Y here if you are building a kernel for a desktop, embedded
or real-time system. Say N if you are unsure.
config APM
tristate "Advanced Power Management Emulation"
depends on PM
---help---
APM is a BIOS specification for saving power using several different
techniques. This is mostly useful for battery powered laptops with
APM compliant BIOSes. If you say Y here, the system time will be
reset after a RESUME operation, the /proc/apm device will provide
battery status information, and user-space programs will receive
notification of APM "events" (e.g. battery status change).
If you select "Y" here, you can disable actual use of the APM
BIOS by passing the "apm=off" option to the kernel at boot time.
Note that the APM support is almost completely disabled for
machines with more than one CPU.
In order to use APM, you will need supporting software. For location
and more information, read <file:Documentation/pm.txt> and the
Battery Powered Linux mini-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver does not spin down disk drives (see the hdparm(8)
manpage ("man 8 hdparm") for that), and it doesn't turn off
VESA-compliant "green" monitors.
This driver does not support the TI 4000M TravelMate and the ACER
486/DX4/75 because they don't have compliant BIOSes. Many "green"
desktop machines also don't have compliant BIOSes, and this driver
may cause those machines to panic during the boot phase.
Generally, if you don't have a battery in your machine, there isn't
much point in using this driver and you should say N. If you get
random kernel OOPSes or reboots that don't seem to be related to
anything, try disabling/enabling this option (or disabling/enabling
APM in your BIOS).
Some other things you should try when experiencing seemingly random,
"weird" problems:
1) make sure that you have enough swap space and that it is
enabled.
2) pass the "no-hlt" option to the kernel
3) switch on floating point emulation in the kernel and pass
the "no387" option to the kernel
4) pass the "floppy=nodma" option to the kernel
5) pass the "mem=4M" option to the kernel (thereby disabling
all but the first 4 MB of RAM)
6) make sure that the CPU is not over clocked.
7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
8) disable the cache from your BIOS settings
9) install a fan for the video card or exchange video RAM
10) install a better fan for the CPU
11) exchange RAM chips
12) exchange the motherboard.
To compile this driver as a module ( = code which can be inserted in
and removed from the running kernel whenever you want), say M here
and read <file:Documentation/modules.txt>. The module will be called
apm.o.
config ARTHUR
tristate "RISC OS personality"
depends on CPU_32
help
Say Y here to include the kernel code necessary if you want to run
Acorn RISC OS/Arthur binaries under Linux. This code is still very
experimental; if this sounds frightening, say N and sleep in peace.
You can also say M here to compile this support as a module (which
will be called arthur.o).
config CMDLINE
string "Default kernel command string"
default ""
help
On some architectures (EBSA110 and CATS), there is currently no way
for the boot loader to pass arguments to the kernel. For these
architectures, you should supply some command-line options at build
time by entering them here. As a minimum, you should specify the
memory size and the root device (e.g., mem=64M root=/dev/nfs).
config LEDS
bool "Timer and CPU usage LEDs"
depends on ARCH_NETWINDER || ARCH_EBSA110 || ARCH_EBSA285 || ARCH_FTVPCI || ARCH_SHARK || ARCH_CO285 || ARCH_SA1100 || ARCH_LUBBOCK || ARCH_PXA_IDP || ARCH_INTEGRATOR || ARCH_CDB89712 || ARCH_P720T
help
If you say Y here, the LEDs on your machine will be used
to provide useful information about your current system status.
If you are compiling a kernel for a NetWinder or EBSA-285, you will
be able to select which LEDs are active using the options below. If
you are compiling a kernel for the EBSA-110 or the LART however, the
red LED will simply flash regularly to indicate that the system is
still functional. It is safe to say Y here if you have a CATS
system, but the driver will do nothing.
config LEDS_TIMER
bool "Timer LED" if LEDS && (ARCH_NETWINDER || ARCH_EBSA285 || ARCH_SHARK || ARCH_CO285 || ARCH_SA1100 || ARCH_LUBBOCK || ARCH_PXA_IDP || ARCH_INTEGRATOR || ARCH_P720T)
depends on ARCH_NETWINDER || ARCH_EBSA110 || ARCH_EBSA285 || ARCH_FTVPCI || ARCH_SHARK || ARCH_CO285 || ARCH_SA1100 || ARCH_LUBBOCK || ARCH_PXA_IDP || ARCH_INTEGRATOR || ARCH_CDB89712 || ARCH_P720T
default y if ARCH_EBSA110
help
If you say Y here, one of the system LEDs (the green one on the
NetWinder, the amber one on the EBSA285, or the red one on the LART)
will flash regularly to indicate that the system is still
operational. This is mainly useful to kernel hackers who are
debugging unstable kernels.
The LART uses the same LED for both Timer LED and CPU usage LED
functions. You may choose to use both, but the Timer LED function
will overrule the CPU usage LED.
config LEDS_CPU
bool "CPU usage LED"
depends on LEDS && (ARCH_NETWINDER || ARCH_EBSA285 || ARCH_SHARK || ARCH_CO285 || ARCH_SA1100 || ARCH_LUBBOCK || ARCH_PXA_IDP || ARCH_INTEGRATOR || ARCH_P720T)
help
If you say Y here, the red LED will be used to give a good real
time indication of CPU usage, by lighting whenever the idle task
is not currently executing.
The LART uses the same LED for both Timer LED and CPU usage LED
functions. You may choose to use both, but the Timer LED function
will overrule the CPU usage LED.
config ALIGNMENT_TRAP
bool
depends on CPU_32
default y
help
ARM processors can not fetch/store information which is not
naturally aligned on the bus, i.e., a 4 byte fetch must start at an
address divisible by 4. On 32-bit ARM processors, these non-aligned
fetch/store instructions will be emulated in software if you say
here, which has a severe performance impact. This is necessary for
correct operation of some network protocols. With an IP-only
configuration it is safe to say N, otherwise say Y.
endmenu
source "drivers/parport/Kconfig"
if ALIGNMENT_TRAP
source "drivers/mtd/Kconfig"
endif
source "drivers/pnp/Kconfig"
source "drivers/block/Kconfig"
source "drivers/md/Kconfig"
source "drivers/acorn/block/Kconfig"
source "net/Kconfig"
menu "Network device support"
depends on NET
config NETDEVICES
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
source "drivers/net/Kconfig"
endmenu
# source net/ax25/Config.in
source "net/irda/Kconfig"
source "net/ax25/Kconfig"
menu "ATA/ATAPI/MFM/RLL support"
config IDE
tristate "ATA/ATAPI/MFM/RLL support"
---help---
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
source "drivers/ide/Kconfig"
endmenu
menu "SCSI support"
config SCSI
tristate "SCSI support"
---help---
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
source "drivers/scsi/Kconfig"
endmenu
#if [ "$CONFIG_ARCH_CLPS711X" = "y" ]; then
# source drivers/ssi/Config.in
#fi
source "drivers/ieee1394/Kconfig"
source "drivers/message/i2o/Kconfig"
source "drivers/isdn/Kconfig"
#
# input before char - char/joystick depends on it. As does USB.
#
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
config KBDMOUSE
bool
depends on ARCH_ACORN && BUSMOUSE=y && !ARCH_RPC
default y
config RPCMOUSE
bool
depends on ARCH_ACORN && BUSMOUSE=y && ARCH_RPC
default y
source "drivers/media/Kconfig"
source "fs/Kconfig"
menu "Console drivers"
depends on VT
config VGA_CONSOLE
bool "VGA text console"
depends on !ARCH_ACORN && !ARCH_EBSA110
help
Saying Y here will allow you to use Linux in text mode through a
display that complies with the generic VGA standard. Virtually
everyone wants that.
The program SVGATextMode can be used to utilize SVGA video cards to
their full potential in text mode. Download it from
<ftp://ibiblio.org/pub/Linux/utils/console/>.
Say Y.
source "drivers/video/Kconfig"
endmenu
menu "Sound"
depends on ARCH_ACORN || ARCH_CLPS7500 || ARCH_TBOX || ARCH_SHARK || ARCH_SA1100 || PCI
config SOUND
tristate "Sound card support"
---help---
If you have a sound card in your computer, i.e. if it can say more
than an occasional beep, say Y. Be sure to have all the information
about your sound card and its configuration down (I/O port,
interrupt and DMA channel), because you will be asked for it.
You want to read the Sound-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. General information about
the modular sound system is contained in the files
<file:Documentation/sound/Introduction>. The file
<file:Documentation/sound/README.OSS> contains some slightly
outdated but still useful information as well.
If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read
<http://www.roestock.demon.co.uk/isapnptools/>), then you need to
compile the sound card support as a module ( = code which can be
inserted in and removed from the running kernel whenever you want)
and load that module after the PnP configuration is finished. To do
this, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/sound/README.modules>; the module will be
called soundcore.o.
I'm told that even without a sound card, you can make your computer
say more than an occasional beep, by programming the PC speaker.
Kernel patches and supporting utilities to do that are in the pcsp
package, available at <ftp://ftp.infradead.org/pub/pcsp/>.
source "sound/Kconfig"
endmenu
source "drivers/misc/Kconfig"
source "drivers/usb/Kconfig"
source "net/bluetooth/Kconfig"
menu "Kernel hacking"
# Always compile kernel with framepointer (until 2.4 real comes out)
# Bug reports aren't much use without this.
config NO_FRAME_POINTER
bool "Compile kernel without frame pointer"
help
If you say Y here, the resulting kernel will be slightly smaller and
faster. However, when a problem occurs with the kernel, the
information that is reported is severely limited. Most people
should say N here.
config DEBUG_USER
bool "Verbose user fault messages"
help
When a user program crashes due to an exception, the kernel can
print a brief message explaining what the problem was. This is
sometimes helpful for debugging but serves no purpose on a
production system. Most people should say N here.
config DEBUG_INFO
bool "Include debugging information in kernel binary"
help
Say Y here to include source-level debugging information in the
`vmlinux' binary image. This is handy if you want to use gdb or
addr2line to debug the kernel. It has no impact on the in-memory
footprint of the running kernel but it can increase the amount of
time and disk space needed for compilation of the kernel. If in
doubt say N.
config DEBUG_KERNEL
bool "Kernel debugging"
help
Say Y here if you are developing drivers or trying to debug and
identify kernel problems.
config DEBUG_SLAB
bool "Debug memory allocations"
depends on DEBUG_KERNEL
help
Say Y here to have the kernel do limited verification on memory
allocation as well as poisoning memory on free to catch use of freed
memory.
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on DEBUG_KERNEL
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
config DEBUG_SPINLOCK
bool "Spinlock debugging"
depends on DEBUG_KERNEL
help
Say Y here and build SMP to catch missing spinlock initialization
and certain other kinds of spinlock errors commonly made. This is
best used in conjunction with the NMI watchdog so that spinlock
deadlocks are also debuggable.
config DEBUG_WAITQ
bool "Wait queue debugging"
depends on DEBUG_KERNEL
config DEBUG_BUGVERBOSE
bool "Verbose BUG() reporting (adds 70K)"
depends on DEBUG_KERNEL
help
Say Y here to make BUG() panics output the file name and line number
of the BUG call as well as the EIP and oops trace. This aids
debugging but costs about 70-100K of memory.
config DEBUG_ERRORS
bool "Verbose kernel error messages"
depends on DEBUG_KERNEL
help
This option controls verbose debugging information which can be
printed when the kernel detects an internal error. This debugging
information is useful to kernel hackers when tracking down problems,
but mostly meaningless to other people. It's safe to say Y unless
you are concerned with the code size or don't want to see these
messages.
# These options are only for real kernel hackers who want to get their hands dirty.
config DEBUG_LL
bool "Kernel low-level debugging functions"
depends on DEBUG_KERNEL
help
Say Y here to include definitions of printascii, printchar, printhex
in the kernel. This is helpful if you are debugging code that
executes before the console is initialized.
config DEBUG_DC21285_PORT
bool "Kernel low-level debugging messages via footbridge serial port"
depends on DEBUG_LL && FOOTBRIDGE
help
Say Y here if you want the debug print routines to direct their
output to the serial port in the DC21285 (Footbridge). Saying N
will cause the debug messages to appear on the first 16550
serial port.
config DEBUG_CLPS711X_UART2
bool "Kernel low-level debugging messages via UART2"
depends on DEBUG_LL && ARCH_CLPS711X
help
Say Y here if you want the debug print routines to direct their
output to the second serial port on these devices. Saying N will
cause the debug messages to appear on the first serial port.
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
menu "Archimedes/A5000 Implementations"
# These architectures will be combined. However, until this
# is complete... Note that the ARC will take precedence over
# A5K
comment "Archimedes/A5000 Implementations (select only ONE)"
config ARCH_ARC
bool "Archimedes"
depends on ARCH_ARCA5K
help
The Acorn Archimedes was an personal computer based on an 8K ARM2
processor, released in 1987. It supported 512K of RAM and 2 800K
floppy disks. Picture and more detailed specifications at
<http://www.computingmuseum.com/museum/archi.htm>.
config ARCH_A5K
bool "A5000"
depends on ARCH_ARCA5K
help
Say Y here to to support the Acorn A5000. Linux can support the
internal IDE disk and CD-ROM interface, serial and parallel port,
and the floppy drive. Note that on some A5000s the floppy is
plugged into the wrong socket on the motherboard.
config PAGESIZE_16
bool "2MB physical memory"
depends on ARCH_ARCA5K
help
Say Y here if your Archimedes or A5000 system has only 2MB of
memory, otherwise say N. The resulting kernel will not run on a
machine with 4MB of memory.
endmenu
menu "CLPS711X/EP721X Implementations"
config ARCH_AUTCPU12
bool "AUTCPU12"
depends on ARCH_CLPS711X
help
Say Y if you intend to run the kernel on the autronix autcpu12
board. This board is based on a Cirrus Logic CS89712.
config ARCH_CDB89712
bool "CDB89712"
depends on ARCH_CLPS711X
help
This is an evaluation board from Cirrus for the CS89712 processor.
The board includes 2 serial ports, Ethernet, IRDA, and expansion
headers. It comes with 16 MB SDRAM and 8 MB flash ROM.
config ARCH_CEIVA
bool "CEIVA"
depends on ARCH_CLPS711X
help
Say Y here if you intend to run this kernel on the Ceiva/Polaroid
PhotoMax Digital Picture Frame.
config ARCH_CLEP7312
bool "CLEP7312"
depends on ARCH_CLPS711X
config ARCH_EDB7211
bool "EDB7211"
depends on ARCH_CLPS711X
help
Say Y here if you intend to run this kernel on a Cirrus Logic EDB-7211
evaluation board.
config ARCH_P720T
bool "P720T"
depends on ARCH_CLPS711X
help
Say Y here if you intend to run this kernel on the ARM Prospector
720T.
config ARCH_FORTUNET
bool "FORTUNET"
depends on ARCH_CLPS711X
# XXX Maybe these should indicate register compatibility
# instead of being mutually exclusive.
config ARCH_EP7211
bool
depends on ARCH_EDB7211
default y
config ARCH_EP7212
bool
depends on ARCH_P720T || ARCH_CEIVA
default y
config EP72XX_ROM_BOOT
bool "EP72xx ROM boot"
depends on ARCH_EP7211 || ARCH_EP7212
---help---
If you say Y here, your CLPS711x-based kernel will use the bootstrap
mode memory map instead of the normal memory map.
Processors derived from the Cirrus CLPS-711X core support two boot
modes. Normal mode boots from the external memory device at CS0.
Bootstrap mode rearranges parts of the memory map, placing an
internal 128 byte bootstrap ROM at CS0. This option performs the
address map changes required to support booting in this mode.
You almost surely want to say N here.
endmenu
menu "Epxa10db"
comment "PLD hotswap support"
depends on ARCH_CAMELOT
config PLD
bool
depends on ARCH_CAMELOT
default y
config PLD_HOTSWAP
bool "Support for PLD device hotplugging (experimental)"
depends on ARCH_CAMELOT && EXPERIMENTAL
help
This enables support for the dynamic loading and configuration of
compatible drivers when the contents of the PLD are changed. This
is still experimental and requires configuration tools which are
not yet generally available. Say N here. You must enable the kernel
module loader for this feature to work.
endmenu
menu "Footbridge Implementations"
config ARCH_CATS
bool "CATS"
depends on ARCH_FOOTBRIDGE
help
Say Y here if you intend to run this kernel on the CATS.
Saying N will reduce the size of the Footbridge kernel.
config ARCH_PERSONAL_SERVER
bool "Compaq Personal Server"
depends on ARCH_FOOTBRIDGE
---help---
Say Y here if you intend to run this kernel on the Compaq
Personal Server.
Saying N will reduce the size of the Footbridge kernel.
The Compaq Personal Server is not available for purchase.
There are no product plans beyond the current research
prototypes at this time. Information is available at:
<http://crl.research.compaq.com/projects/personalserver/>
If you have any questions or comments about the Compaq Personal
Server, send e-mail to skiff@crl.dec.com.
config ARCH_EBSA285_ADDIN
bool "EBSA285 (addin mode)"
depends on ARCH_FOOTBRIDGE
help
Say Y here if you intend to run this kernel on the EBSA285 card
in addin mode.
Saying N will reduce the size of the Footbridge kernel.
config ARCH_EBSA285_HOST
bool "EBSA285 (host mode)"
depends on ARCH_FOOTBRIDGE
help
Say Y here if you intend to run this kernel on the EBSA285 card
in host ("central function") mode.
Saying N will reduce the size of the Footbridge kernel.
config ARCH_NETWINDER
bool "NetWinder"
depends on ARCH_FOOTBRIDGE
help
Say Y here if you intend to run this kernel on the Rebel.COM
NetWinder. Information about this machine can be found at:
<http://www.netwinder.org/>
Saying N will reduce the size of the Footbridge kernel.
endmenu
menu "IOP310 Implementation Options"
config ARCH_IQ80310
bool "IQ80310"
depends on ARCH_IOP310
help
Say Y here if you want to run your kernel on the Intel IQ80310
evaluation kit for the IOP310 chipset.
comment "IOP310 Chipset Features"
config IOP310_AAU
bool "Support Intel 80312 Application Accelerator Unit (EXPERIMENTAL)"
depends on ARCH_IOP310 && EXPERIMENTAL
config IOP310_DMA
bool "Support Intel 80312 DMA (EXPERIMENTAL)"
depends on ARCH_IOP310 && EXPERIMENTAL
config IOP310_MU
bool "Support Intel 80312 Messaging Unit (EXPERIMENTAL)"
depends on ARCH_IOP310 && EXPERIMENTAL
config IOP310_PMON
bool "Support Intel 80312 Performance Monitor (EXPERIMENTAL)"
depends on ARCH_IOP310 && EXPERIMENTAL
endmenu
menu "Intel PXA250/210 Implementations"
config ARCH_LUBBOCK
bool "Intel DBPXA250 Development Platform"
depends on ARCH_PXA
config ARCH_PXA_IDP
bool "Accelent Xscale IDP"
depends on ARCH_PXA
endmenu
menu "SA11x0 Implementations"
config SA1100_ASSABET
bool "Assabet"
depends on ARCH_SA1100
help
Say Y here if you are using the Intel(R) StrongARM(R) SA-1110
Microprocessor Development Board (also known as the Assabet).
config ASSABET_NEPONSET
bool "Include support for Neponset"
depends on SA1100_ASSABET
help
Say Y here if you are using the Intel(R) StrongARM(R) SA-1110
Microprocessor Development Board (Assabet) with the SA-1111
Development Board (Nepon).
config SA1100_ADSBITSY
bool "ADS Bitsy"
depends on ARCH_SA1100
help
Say Y here if you are using Applied Data Systems Intel(R)
StrongARM(R) 1110 based Bitsy, 3 x 5 inches in size, Compaq - IPAQ -
like platform. See
<http://www.applieddata.net/products_bitsySpec.asp> for more
information.
config SA1100_BRUTUS
bool "Brutus"
depends on ARCH_SA1100
help
Say Y here if you are using the Intel(R) StrongARM(R) SA-1100
Microprocessor Development Board (also known as the Brutus).
config SA1100_CERF
bool "CerfBoard"
depends on ARCH_SA1100
help
The Intrinsyc CerfBoard is based on the StrongARM 1110.
More information is available at:
<http://www.intrinsyc.com/products/referenceplatforms/cerfboard.html>.
Say Y if configuring for an Intrinsyc CerfBoard.
Say N otherwise.
choice
prompt "Cerf Flash available"
depends on SA1100_CERF
default SA1100_CERF_FLASH_8MB
config SA1100_CERF_FLASH_8MB
bool "8MB"
config SA1100_CERF_FLASH_16MB
bool "16MB"
config SA1100_CERF_FLASH_32MB
bool "32MB"
endchoice
config SA1100_CERF_CPLD
bool "Cerf w/CPLD support (CerfPDA)"
depends on SA1100_CERF
help
Say Y here to support the Linux CerfPDA development kit from
Intrinsyc. This is a StrongARM-1110-based reference platform for
designing custom PDAs. Product info is at
<http://www.intrinsyc.com/products/referencedesigns/cerfpda.asp>.
config SA1100_H3100
bool "Compaq iPAQ H3100"
depends on ARCH_SA1100
help
Say Y here if you intend to run this kernel on the Compaq iPAQ
H3100 handheld computer. Information about this machine and the
Linux port to this machine can be found at:
<http://www.handhelds.org/Compaq/index.html#iPAQ_H3100>
<http://www.compaq.com/products/handhelds/pocketpc/>
config SA1100_H3600
bool "Compaq iPAQ H3600/H3700"
depends on ARCH_SA1100
help
Say Y here if you intend to run this kernel on the Compaq iPAQ
H3600 handheld computer. Information about this machine and the
Linux port to this machine can be found at:
<http://www.handhelds.org/Compaq/index.html#iPAQ_H3600>
<http://www.compaq.com/products/handhelds/pocketpc/>
config SA1100_H3800
bool "Compaq iPAQ H3800"
depends on ARCH_SA1100
help
Say Y here if you intend to run this kernel on the Compaq iPAQ H3800
series handheld computer. Information about this machine and the
Linux port to this machine can be found at:
<http://www.handhelds.org/Compaq/index.html#iPAQ_H3800>
<http://www.compaq.com/products/handhelds/pocketpc/>
config SA1100_H3XXX
bool
depends on SA1100_H3100 || SA1100_H3600 || SA1100_H3800
default y
#dep_bool ' Consus' CONFIG_SA1100_CONSUS $CONFIG_ARCH_SA1100
#dep_bool ' Empeg' CONFIG_SA1100_EMPEG $CONFIG_ARCH_SA1100
config SA1100_EXTENEX1
bool "Extenex HandHeld Theater (Squashtail)"
depends on ARCH_SA1100
config SA1100_EXTENEX1_16MB
bool "Support 16 MB of DRAM (not just 8)"
depends on SA1100_EXTENEX1
config SA1100_FLEXANET
bool "FlexaNet"
depends on ARCH_SA1100
help
Say Y here if you intend to run this kernel on the FlexaNet
handheld instruments. Information about this machine can be
found at: <http://www.flexanet.com/>.
config SA1100_FREEBIRD
bool "FreeBird-v1.1"
depends on ARCH_SA1100
help
Support the FreeBird board used in Coventive embedded products. See
Documentation/arm/SA1100/Freebird for more.
config SA1100_GRAPHICSCLIENT
bool "GraphicsClient Plus"
depends on ARCH_SA1100
help
Say Y here if you are using an Applied Data Systems Intel(R)
StrongARM(R) SA-1100 based Graphics Client SBC. See
<http://www.flatpanels.com/> for information on this system.
config SA1100_GRAPHICSMASTER
bool "GraphicsMaster"
depends on ARCH_SA1100
help
Say Y here if you are using an Applied Data Systems Intel(R)
StrongARM(R) SA-1100 based Graphics Master SBC with SA-1111
StrongARM companion chip. See
<http://www.applieddata.net/products_masterSpec.asp> for information
on this system.
config SA1100_BADGE4
bool "HP Labs BadgePAD 4"
depends on ARCH_SA1100
help
Say Y here if you want to build a kernel for the HP Laboratories
BadgePAD 4.
config SA1100_JORNADA720
bool "HP Jornada 720"
depends on ARCH_SA1100
help
Say Y here if you want to build a kernel for the HP Jornada 720
handheld computer. See <http://www.hp.com/jornada/products/720>
for details.
config SA1100_HUW_WEBPANEL
bool "HuW WebPanel"
depends on ARCH_SA1100
help
Say Y here to support the HuW Webpanel produced by Hoeft & Wessel
AG. English-language website is at
<http://www.hoeft-wessel.de/en.htm>; credits and build instructions
at Documentation/arm/SA1100/HUW_WEBPANEL.
config SA1100_ITSY
bool "Itsy"
depends on ARCH_SA1100
help
Say Y here if you are using the Compaq Itsy experimental pocket
computer. See <http://research.compaq.com/wrl/projects/itsy/> for
more information.
config SA1100_LART
bool "LART"
depends on ARCH_SA1100
help
Say Y here if you are using the Linux Advanced Radio Terminal
(also known as the LART). See <http://www.lart.tudelft.nl/> for
information on the LART.
config SA1100_NANOENGINE
bool "nanoEngine"
depends on ARCH_SA1100
help
The nanoEngine is a StrongARM 1110-based single board computer
from Bright Star Engineering. More information is available at:
<http://www.brightstareng.com/arm/nanoeng.htm>.
Say Y if configuring for a nanoEngine.
Say N otherwise.
config SA1100_OMNIMETER
bool "OmniMeter"
depends on ARCH_SA1100
help
Say Y here if you are using the inhand electronics OmniMeter. See
<http://www.inhandelectronics.com/html/omni1.html> for details.
config SA1100_PANGOLIN
bool "Pangolin"
depends on ARCH_SA1100
help
Pangolin is a StrongARM 1110-based evaluation platform produced
by Dialogue Technology. It has EISA slots for ease of configuration
with SDRAM/Flash memory card, USB/Serial/Audio card, Compact Flash
card, and TFT-LCD card.
Say Y if configuring for a Pangolin.
Say N otherwise.
config SA1100_PLEB
bool "PLEB"
depends on ARCH_SA1100
help
Say Y here if you are using a Portable Linux Embedded Board
(also known as PLEB). See <http://www.cse.unsw.edu.au/~pleb/>
for more information.
config SA1100_PT_SYSTEM3
bool "PT System 3"
depends on ARCH_SA1100
help
Say Y here if you intend to build a kernel suitable to run on
a Pruftechnik Digital Board. For more information see
<http://www.pruftechnik.com>
config SA1100_SHANNON
bool "Shannon"
depends on ARCH_SA1100
help
The Shannon (also known as a Tuxscreen, and also as a IS2630) was a
limited edition webphone produced by Philips. The Shannon is a SA1100
platform with a 640x480 LCD, touchscreen, CIR keyboard, PCMCIA slots,
and a telco interface.
config SA1100_SHERMAN
bool "Sherman"
depends on ARCH_SA1100
help
Say Y here to support the Blazie Engineering `Sherman' StrongARM
1110-based SBC, used primarily in assistance products for the
visually impaired. The company is now Freedom Scientific, with
a website at <http://www.freedomscientific.com/index.html>. The
Sherman product, however, appears to have been discontinued.
config SA1100_SIMPAD
bool "Simpad"
depends on ARCH_SA1100
help
The SIEMENS webpad SIMpad is based on the StrongARM 1110. There
are two different versions CL4 and SL4. CL4 has 32MB RAM and 16MB
FLASH. The SL4 version got 64 MB RAM and 32 MB FLASH and a
PCMCIA-Slot. The version for the Germany Telecom (DTAG) is the same
like CL4 in additional it has a PCMCIA-Slot. For more information
visit <http://www.my-siemens.com or www.siemens.ch>.
config SA1100_PFS168
bool "Tulsa"
depends on ARCH_SA1100
help
The Radisys Corp. PFS-168 (aka Tulsa) is an Intel® StrongArm® SA-1110 based
computer which includes the SA-1111 Microprocessor Companion Chip and other
custom I/O designed to add connectivity and multimedia features for vending
and business machine applications. Say Y here if you require support for
this target.
config SA1100_VICTOR
bool "Victor"
depends on ARCH_SA1100
help
Say Y here if you are using a Visu Aide Intel(R) StrongARM(R)
SA-1100 based Victor Digital Talking Book Reader. See
<http://www.visuaide.com/pagevictor.en.html> for information on
this system.
config SA1100_XP860
bool "XP860"
depends on ARCH_SA1100
help
:: Config help missing ::
:: 06 August 2002 ::
config SA1100_YOPY
bool "Yopy"
depends on ARCH_SA1100
help
Say Y here to support the Yopy PDA. Product information at
<http://www.yopy.com/>. See Documentation/arm/SA110/Yopy
for more.
config SA1100_STORK
bool "Stork"
depends on ARCH_SA1100
help
Say Y here if you intend to run this kernel on the Stork
handheld computer.
config SA1100_USB
tristate "SA1100 USB function support"
depends on ARCH_SA1100
config SA1100_USB_NETLINK
tristate "Support for SA11x0 USB network link function"
depends on SA1100_USB
config SA1100_USB_CHAR
tristate "Support for SA11x0 USB character device emulation"
depends on SA1100_USB
config H3600_SLEEVE
tristate "Compaq iPAQ Handheld sleeve support"
depends on SA1100_H3600
help
Choose this option to enable support for extension packs (sleeves)
for the Compaq iPAQ H3XXX series of handheld computers. This option
is required for the CF, PCMCIA, Bluetooth and GSM/GPRS extension
packs.
endmenu
#
# For a description of the syntax of this configuration file,
# see the Configure script.
#
mainmenu "Linux/CRIS Kernel Configuration"
config UID16
bool
default y
config RWSEM_GENERIC_SPINLOCK
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
source "init/Kconfig"
menu "General setup"
config BINFMT_ELF
tristate "Kernel support for ELF binaries"
---help---
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
config ETRAX_KGDB
bool "Use kernel gdb debugger"
---help---
The CRIS version of gdb can be used to remotely debug a running
Linux kernel via the serial debug port. Provided you have gdb-cris
installed, run gdb-cris vmlinux, then type
(gdb) set remotebaud 115200 <- kgdb uses 115200 as default
(gdb) target remote /dev/ttyS0 <- maybe you use another port
This should connect you to your booted kernel (or boot it now if you
didn't before). The kernel halts when it boots, waiting for gdb if
this option is turned on!
config ETRAX_WATCHDOG
bool "Enable Etrax100 watchdog"
help
Enable the built-in watchdog timer support on Etrax100 embedded
network computers.
config ETRAX_WATCHDOG_NICE_DOGGY
bool "Disable watchdog during Oops printouts"
depends on ETRAX_WATCHDOG
help
By enabling this you make sure that the watchdog does not bite while
printing oopses. Recommended for development systems but not for
production releases.
endmenu
menu "Hardware setup"
choice
prompt "Processor type"
default ETRAX100LX
config ETRAX100LX
bool "Etrax-100-LX-v1"
help
Support version 1 of the Etrax 100LX.
config ETRAX100LX_V2
bool "Etrax-100-LX-v2"
help
Support version 2 of the Etrax 100LX.
config SVINTO_SIM
bool "Etrax-100-LX-for-xsim-simulator"
help
Support the xsim ETRAX Simulator.
endchoice
# Etrax100 LX v1 has a MMU "feature" requiring a low mapping
config CRIS_LOW_MAP
bool
depends on ETRAX100LX
default y
config ETRAX_DRAM_VIRTUAL_BASE
hex
default "c0000000" if !ETRAX100LX
default "60000000" if ETRAX100LX
config ETRAX_DRAM_SIZE
int "DRAM size (dec, in MB)"
default "8"
help
Size of DRAM (decimal in MB) typically 2, 8 or 16.
config ETRAX_FLASH_BUSWIDTH
int "Buswidth of flash in bytes"
default "2"
help
Width in bytes of the Flash bus (1, 2 or 4). Is usually 2.
config ETRAX_ROOT_DEVICE
string "Root device name"
default "/dev/mtdblock3"
help
Specifies the device that should be mounted as root file system
when booting from flash. The axisflashmap driver adds an additional
mtd partition for the appended root file system image, so this option
should normally be the mtdblock device for the partition after the
last partition in the partition table.
choice
prompt "Product LED port"
default ETRAX_PA_LEDS
config ETRAX_PA_LEDS
bool "Port-PA-LEDs"
help
The Etrax network driver is responsible for flashing LED's when
packets arrive and are sent. It uses macros defined in
<file:include/asm-cris/io.h>, and those macros are defined after what
YOU choose in this option. The actual bits used are configured
separately. Select this if the LEDs are on port PA. Some products
put the leds on PB or a memory-mapped latch (CSP0) instead.
config ETRAX_PB_LEDS
bool "Port-PB-LEDs"
help
The Etrax network driver is responsible for flashing LED's when
packets arrive and are sent. It uses macros defined in
<file:include/asm-cris/io.h>, and those macros are defined after what
YOU choose in this option. The actual bits used are configured
separately. Select this if the LEDs are on port PB. Some products
put the leds on PA or a memory-mapped latch (CSP0) instead.
config ETRAX_CSP0_LEDS
bool "Port-CSP0-LEDs"
help
The Etrax network driver is responsible for flashing LED's when
packets arrive and are sent. It uses macros defined in
<file:include/asm-cris/io.h>, and those macros are defined after what
YOU choose in this option. The actual bits used are configured
separately. Select this if the LEDs are on a memory-mapped latch
using chip select CSP0, this is mapped at 0x90000000.
Some products put the leds on PA or PB instead.
config ETRAX_NO_LEDS
bool "None"
help
Select this option if you don't have any LED at all.
endchoice
config ETRAX_LED1G
int "First green LED bit"
depends on !ETRAX_NO_LEDS
default "2"
help
Bit to use for the first green LED.
Most Axis products use bit 2 here.
config ETRAX_LED1R
int "First red LED bit"
depends on !ETRAX_NO_LEDS
default "3"
help
Bit to use for the first red LED.
Most Axis products use bit 3 here.
For products with only one controllable LED,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED2G
int "Second green LED bit"
depends on !ETRAX_NO_LEDS
default "4"
help
Bit to use for the second green LED. The "Active" LED.
Most Axis products use bit 4 here.
For products with only one controllable LED,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED2R
int "Second red LED bit"
depends on !ETRAX_NO_LEDS
default "5"
help
Bit to use for the second red LED.
Most Axis products use bit 5 here.
For products with only one controllable LED,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED3G
int "Third green LED bit"
depends on !ETRAX_NO_LEDS
default "2"
help
Bit to use for the third green LED. The "Drive" LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED3R
int "Third red LED bit"
depends on !ETRAX_NO_LEDS
default "2"
help
Bit to use for the third red LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED4R
int "Fourth red LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the fourth red LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED4G
int "Fourth green LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the fourth green LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED5R
int "Fifth red LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the fifth red LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED5G
int "Fifth green LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the fifth green LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED6R
int "Sixth red LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the sixth red LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED6G
int "Sixth green LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the sixth green LED. The "Drive" LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED7R
int "Seventh red LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the seventh red LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED7G
int "Seventh green LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the seventh green LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED8Y
int "Eigth yellow LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the eighth yellow LED. The "Drive" LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED9Y
int "Ninth yellow LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the ninth yellow LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED10Y
int "Tenth yellow LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the tenth yellow LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED11Y
int "Eleventh yellow LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the eleventh yellow LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
config ETRAX_LED12R
int "Twelfth red LED bit"
depends on ETRAX_CSP0_LEDS
default "2"
help
Bit to use for the twelfth red LED.
For products with only one or two controllable LEDs,
set this to same as CONFIG_ETRAX_LED1G (normally 2).
choice
prompt "Product debug-port"
default ETRAX_DEBUG_PORT0
config ETRAX_DEBUG_PORT0
bool "Serial-0"
help
Choose a serial port for the ETRAX debug console. Default to
port 0.
config ETRAX_DEBUG_PORT1
bool "Serial-1"
help
Use serial port 1 for the console.
config ETRAX_DEBUG_PORT2
bool "Serial-2"
help
Use serial port 2 for the console.
config ETRAX_DEBUG_PORT3
bool "Serial-3"
help
Use serial port 3 for the console.
config ETRAX_DEBUG_PORT_NULL
bool "disabled"
help
Disable serial-port debugging.
endchoice
choice
prompt "Product rescue-port"
default ETRAX_RESCUE_SER0
config ETRAX_RESCUE_SER0
bool "Serial-0"
help
Select one of the four serial ports as a rescue port. The default
is port 0.
config ETRAX_RESCUE_SER1
bool "Serial-1"
help
Use serial port 1 as the rescue port.
config ETRAX_RESCUE_SER2
bool "Serial-2"
help
Use serial port 2 as the rescue port.
config ETRAX_RESCUE_SER3
bool "Serial-3"
help
Use serial port 3 as the rescue port.
endchoice
config ETRAX_DEF_R_WAITSTATES
hex "R_WAITSTATES"
default "95a6"
help
Waitstates for SRAM, Flash and peripherials (not DRAM). 95f8 is a
good choice for most Axis products...
config ETRAX_DEF_R_BUS_CONFIG
hex "R_BUS_CONFIG"
default "104"
help
Assorted bits controlling write mode, DMA burst length etc. 104 is
a good choice for most Axis products...
config ETRAX_SDRAM
bool "SDRAM support"
help
Enable this if you use SDRAM chips and configure
R_SDRAM_CONFIG and R_SDRAM_TIMING as well.
config ETRAX_DEF_R_DRAM_CONFIG
hex "R_DRAM_CONFIG"
depends on !ETRAX_SDRAM
default "1a200040"
help
The R_DRAM_CONFIG register specifies everything on how the DRAM
chips in the system are connected to the Etrax CPU. This is
different depending on the manufacturer, chip type and number of
chips. So this value often needs to be different for each Axis
product.
config ETRAX_DEF_R_DRAM_TIMING
hex "R_DRAM_TIMING"
depends on !ETRAX_SDRAM
default "5611"
help
Different DRAM chips have different speeds. Current Axis products
use 50ns DRAM chips which can use the timing: 5611.
config ETRAX_DEF_R_SDRAM_CONFIG
hex "R_SDRAM_CONFIG"
depends on ETRAX_SDRAM
default "d2fa7878"
help
The R_SDRAM_CONFIG register specifies everything on how the SDRAM
chips in the system are connected to the Etrax CPU. This is
different depending on the manufacturer, chip type and number of
chips. So this value often needs to be different for each Axis
product.
config ETRAX_DEF_R_SDRAM_TIMING
hex "R_SDRAM_TIMING"
depends on ETRAX_SDRAM
default "80004801"
help
Different SDRAM chips have different timing.
config ETRAX_DEF_R_PORT_PA_DIR
hex "R_PORT_PA_DIR"
default "1c"
help
Configures the direction of general port A bits. 1 is out, 0 is in.
This is often totally different depending on the product used.
There are some guidelines though - if you know that only LED's are
connected to port PA, then they are usually connected to bits 2-4
and you can therefore use 1c. On other boards which don't have the
LED's at the general ports, these bits are used for all kinds of
stuff. If you don't know what to use, it is always safe to put all
as inputs, although floating inputs isn't good.
config ETRAX_DEF_R_PORT_PA_DATA
hex "R_PORT_PA_DATA"
default "00"
help
Configures the initial data for the general port A bits. Most
products should use 00 here.
config ETRAX_DEF_R_PORT_PB_CONFIG
hex "R_PORT_PB_CONFIG"
default "00"
help
Configures the type of the general port B bits. 1 is chip select,
0 is port. Most products should use 00 here.
config ETRAX_DEF_R_PORT_PB_DIR
hex "R_PORT_PB_DIR"
default "00"
help
Configures the direction of general port B bits. 1 is out, 0 is in.
This is often totally different depending on the product used. Bits
0 and 1 on port PB are usually used for I2C communication, but the
kernel I2C driver sets the appropriate directions itself so you
don't need to take that into consideration when setting this option.
If you don't know what to use, it is always safe to put all as
inputs.
config ETRAX_DEF_R_PORT_PB_DATA
hex "R_PORT_PB_DATA"
default "ff"
help
Configures the initial data for the general port A bits. Most
products should use FF here.
config ETRAX_SOFT_SHUTDOWN
bool "Software Shutdown Support"
help
Enable this if Etrax is used with a power-supply that can be turned
off and on with PS_ON signal. Gives the possibility to detect
powerbutton and then do a power off after unmounting disks.
config ETRAX_SHUTDOWN_BIT
int "Shutdown bit on port CSP0"
depends on ETRAX_SOFT_SHUTDOWN
default "12"
help
Configure what pin on CSPO-port that is used for controlling power
supply.
config ETRAX_POWERBUTTON_BIT
int "Power button bit on port G"
depends on ETRAX_SOFT_SHUTDOWN
default "25"
help
Configure where power button is connected.
endmenu
# bring in Etrax built-in drivers
source "arch/cris/drivers/Kconfig"
# standard linux drivers
source "drivers/mtd/Kconfig"
source "drivers/parport/Kconfig"
source "drivers/pnp/Kconfig"
source "drivers/block/Kconfig"
source "drivers/md/Kconfig"
menu "ATA/IDE/MFM/RLL support"
config IDE
tristate "ATA/IDE/MFM/RLL support"
source "drivers/ide/Kconfig"
endmenu
menu "SCSI support"
config SCSI
tristate "SCSI support"
---help---
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
source "drivers/scsi/Kconfig"
endmenu
source "drivers/ieee1394/Kconfig"
source "drivers/message/i2o/Kconfig"
source "net/Kconfig"
menu "Network device support"
depends on NET
config NETDEVICES
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
source "drivers/net/Kconfig"
source "drivers/atm/Kconfig"
endmenu
source "net/ax25/Kconfig"
source "net/irda/Kconfig"
source "drivers/isdn/Kconfig"
source "drivers/telephony/Kconfig"
menu "Old CD-ROM drivers (not SCSI, not IDE)"
config CD_NO_IDESCSI
bool "Support non-SCSI/IDE/ATAPI CDROM drives"
---help---
If you have a CD-ROM drive that is neither SCSI nor IDE/ATAPI, say Y
here, otherwise N. Read the CD-ROM-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that the answer to this question doesn't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about these CD-ROM drives. If you are unsure what you
have, say Y and find out whether you have one of the following
drives.
For each of these drivers, a file Documentation/cdrom/{driver_name}
exists. Especially in cases where you do not know exactly which kind
of drive you have you should read there. Most of these drivers use a
file drivers/cdrom/{driver_name}.h where you can define your
interface parameters and switch some internal goodies.
All these CD-ROM drivers are also usable as a module ( = code which
can be inserted in and removed from the running kernel whenever you
want). If you want to compile them as module, say M instead of Y and
read <file:Documentation/modules.txt>.
If you want to use any of these CD-ROM drivers, you also have to
answer Y or M to "ISO 9660 CD-ROM file system support" below (this
answer will get "defaulted" for you if you enable any of the Linux
CD-ROM drivers).
source "drivers/cdrom/Kconfig"
endmenu
#
# input before char - char/joystick depends on it. As does USB.
#
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
#source drivers/misc/Config.in
source "drivers/media/Kconfig"
source "fs/Kconfig"
menu "Sound"
config SOUND
tristate "Sound card support"
---help---
If you have a sound card in your computer, i.e. if it can say more
than an occasional beep, say Y. Be sure to have all the information
about your sound card and its configuration down (I/O port,
interrupt and DMA channel), because you will be asked for it.
You want to read the Sound-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. General information about
the modular sound system is contained in the files
<file:Documentation/sound/Introduction>. The file
<file:Documentation/sound/README.OSS> contains some slightly
outdated but still useful information as well.
If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read
<http://www.roestock.demon.co.uk/isapnptools/>), then you need to
compile the sound card support as a module ( = code which can be
inserted in and removed from the running kernel whenever you want)
and load that module after the PnP configuration is finished. To do
this, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/sound/README.modules>; the module will be
called soundcore.o.
I'm told that even without a sound card, you can make your computer
say more than an occasional beep, by programming the PC speaker.
Kernel patches and supporting utilities to do that are in the pcsp
package, available at <ftp://ftp.infradead.org/pub/pcsp/>.
source "sound/Kconfig"
endmenu
source "drivers/usb/Kconfig"
menu "Kernel hacking"
#bool 'Debug kmalloc/kfree' CONFIG_DEBUG_MALLOC
config PROFILE
bool "Kernel profiling support"
config PROFILE_SHIFT
int "Profile shift count"
depends on PROFILE
default "2"
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
menu "Drivers for ETRAX 100LX built-in interfaces"
config ETRAX_ETHERNET
bool "Ethernet support"
help
This option enables the ETRAX 100LX built-in 10/100Mbit Ethernet
controller.
# this is just so that the user does not have to go into the
# normal ethernet driver section just to enable ethernetworking
config NET_ETHERNET
bool
depends on ETRAX_ETHERNET
default y
---help---
Ethernet (also called IEEE 802.3 or ISO 8802-2) is the most common
type of Local Area Network (LAN) in universities and companies.
Common varieties of Ethernet are: 10BASE-2 or Thinnet (10 Mbps over
coaxial cable, linking computers in a chain), 10BASE-T or twisted
pair (10 Mbps over twisted pair cable, linking computers to central
hubs), 10BASE-F (10 Mbps over optical fiber links, using hubs),
100BASE-TX (100 Mbps over two twisted pair cables, using hubs),
100BASE-T4 (100 Mbps over 4 standard voice-grade twisted pair
cables, using hubs), 100BASE-FX (100 Mbps over optical fiber links)
[the 100BASE varieties are also known as Fast Ethernet], and Gigabit
Ethernet (1 Gbps over optical fiber or short copper links).
If your Linux machine will be connected to an Ethernet and you have
an Ethernet network interface card (NIC) installed in your computer,
say Y here and read the Ethernet-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. You will then also have
to say Y to the driver for your particular NIC.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about Ethernet network cards. If unsure, say N.
choice
prompt "Network LED behavior"
depends on ETRAX_ETHERNET
default ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY
config ETRAX_NETWORK_LED_ON_WHEN_LINK
bool "LED_on_when_link"
help
Selecting LED_on_when_link will light the LED when there is a
connection and will flash off when there is activity.
Selecting LED_on_when_activity will light the LED only when
there is activity.
This setting will also affect the behaviour of other activity LEDs
e.g. Bluetooth.
config ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY
bool "LED_on_when_activity"
help
Selecting LED_on_when_link will light the LED when there is a
connection and will flash off when there is activity.
Selecting LED_on_when_activity will light the LED only when
there is activity.
This setting will also affect the behaviour of other activity LEDs
e.g. Bluetooth.
endchoice
config ETRAX_ETHERNET_LPSLAVE
bool "Etrax Ethernet slave support (over lp0/1)"
help
This option enables a slave ETRAX 100 or ETRAX 100LX, connected to a
master ETRAX 100 or ETRAX 100LX through par0 and par1, to act as an
Ethernet controller.
config ETRAX_ETHERNET_LPSLAVE_HAS_LEDS
bool "Slave has its own LEDs"
depends on ETRAX_ETHERNET_LPSLAVE
help
Enable if the slave has it's own LEDs.
config ETRAX_SERIAL
bool "Serial-port support"
help
Enables the ETRAX 100 serial driver for ser0 (ttyS0)
You probably want this enabled.
# bool ' Use fast timers for DMA flush and RS-485 timing' CONFIG_ETRAX_SERIAL_FAST_TIMER n
config ETRAX_SERIAL_FAST_TIMER
bool
help
Select this to have the serial DMAs flushed at a higher rate than
normally, possible by using the fast timer API, the timeout is
approx. 4 character times.
If unsure, say N.
config ETRAX_SERIAL_FLUSH_DMA_FAST
bool "Fast serial port DMA flush"
depends on ETRAX_SERIAL && !ETRAX_SERIAL_FAST_TIMER
help
Select this to have the serial DMAs flushed at a higher rate than
normally possible through a fast timer interrupt (currently at
15360 Hz).
If unsure, say N.
config ETRAX_SERIAL_RX_TIMEOUT_TICKS
int "Receive flush timeout (ticks) "
depends on ETRAX_SERIAL && !ETRAX_SERIAL_FAST_TIMER && !ETRAX100_SERIAL_FLUSH_DMA_FAST
default "5"
help
Number of timer ticks between flush of receive fifo (1 tick = 10ms).
Try 0-3 for low latency applications. Approx 5 for high load
applications (e.g. PPP). Maybe this should be more adaptive some
day...
config ETRAX_SERIAL_PORT0
bool "Serial port 0 enabled"
depends on ETRAX_SERIAL
help
Enables the ETRAX 100 serial driver for ser0 (ttyS0)
Normally you want this on, unless you use external DMA 1 that uses
the same DMA channels.
config ETRAX_SER0_DTR_RI_DSR_CD_ON_PB
bool "Ser0 DTR, RI, DSR, CD on PB"
depends on ETRAX_SERIAL_PORT0
help
Enables the status and control signals DTR, RI, DSR and CD on PB for
ser0.
config ETRAX_SER0_DTR_ON_PB_BIT
int "Ser0 DTR on PB bit"
depends on ETRAX_SER0_DTR_RI_DSR_CD_ON_PB
default "4"
help
Specify the pin of the PB port to carry the DTR signal for serial
port 0.
config ETRAX_SER0_RI_ON_PB_BIT
int "Ser0 RI on PB bit"
depends on ETRAX_SER0_DTR_RI_DSR_CD_ON_PB
default "5"
help
Specify the pin of the PB port to carry the RI signal for serial
port 0.
config ETRAX_SER0_DSR_ON_PB_BIT
int "Ser0 DSR on PB bit"
depends on ETRAX_SER0_DTR_RI_DSR_CD_ON_PB
default "6"
help
Specify the pin of the PB port to carry the DSR signal for serial
port 0.
config ETRAX_SER0_CD_ON_PB_BIT
int "Ser0 CD on PB bit"
depends on ETRAX_SER0_DTR_RI_DSR_CD_ON_PB
default "7"
help
Specify the pin of the PB port to carry the CD signal for serial
port 0.
config ETRAX_SERIAL_PORT1
bool "Serial port 1 enabled"
depends on ETRAX_SERIAL
help
Enables the ETRAX 100 serial driver for ser1 (ttyS1).
config ETRAX_SER1_DTR_RI_DSR_CD_ON_PB
bool "Ser1 DTR, RI, DSR, CD on PB"
depends on ETRAX_SERIAL_PORT1
help
Enables the status and control signals DTR, RI, DSR and CD on PB for
ser1.
config ETRAX_SER1_DTR_ON_PB_BIT
int "Ser1 DTR on PB bit"
depends on ETRAX_SER1_DTR_RI_DSR_CD_ON_PB
default "4"
help
Specify the pin of the PB port to carry the DTR signal for serial
port 1.
config ETRAX_SER1_RI_ON_PB_BIT
int "Ser1 RI on PB bit"
depends on ETRAX_SER1_DTR_RI_DSR_CD_ON_PB
default "5"
help
Specify the pin of the PB port to carry the RI signal for serial
port 1.
config ETRAX_SER1_DSR_ON_PB_BIT
int "Ser1 DSR on PB bit"
depends on ETRAX_SER1_DTR_RI_DSR_CD_ON_PB
default "6"
help
Specify the pin of the PB port to carry the DSR signal for serial
port 1.
config ETRAX_SER1_CD_ON_PB_BIT
int "Ser1 CD on PB bit"
depends on ETRAX_SER1_DTR_RI_DSR_CD_ON_PB
default "7"
help
Specify the pin of the PB port to carry the CD signal for serial
port 1.
comment "Make sure you dont have the same PB bits more than once!"
depends on ETRAX_SERIAL && ETRAX_SER0_DTR_RI_DSR_CD_ON_PB && ETRAX_SER1_DTR_RI_DSR_CD_ON_PB
config ETRAX_SERIAL_PORT2
bool "Serial port 2 enabled"
depends on ETRAX_SERIAL
help
Enables the ETRAX 100 serial driver for ser2 (ttyS2).
config ETRAX_SER2_DTR_RI_DSR_CD_ON_PA
bool "Ser2 DTR, RI, DSR, CD on PA"
depends on ETRAX_SERIAL_PORT2
help
Enables the status and control signals DTR, RI, DSR and CD on PA for
ser2.
config ETRAX_SER2_DTR_ON_PA_BIT
int "Ser2 DTR on PA bit"
depends on ETRAX_SER2_DTR_RI_DSR_CD_ON_PA
default "4"
help
Specify the pin of the PA port to carry the DTR signal for serial
port 2.
config ETRAX_SER2_RI_ON_PA_BIT
int "Ser2 RI on PA bit"
depends on ETRAX_SER2_DTR_RI_DSR_CD_ON_PA
default "5"
help
Specify the pin of the PA port to carry the RI signal for serial
port 2.
config ETRAX_SER2_DSR_ON_PA_BIT
int "Ser2 DSR on PA bit"
depends on ETRAX_SER2_DTR_RI_DSR_CD_ON_PA
default "6"
help
Specify the pin of the PA port to carry the DTR signal for serial
port 2.
config ETRAX_SER2_CD_ON_PA_BIT
int "Ser2 CD on PA bit"
depends on ETRAX_SER2_DTR_RI_DSR_CD_ON_PA
default "7"
help
Specify the pin of the PA port to carry the CD signal for serial
port 2.
config ETRAX_SERIAL_PORT3
bool "Serial port 3 enabled"
depends on ETRAX_SERIAL
help
Enables the ETRAX 100 serial driver for ser3 (ttyS3).
config ETRAX_RS485
bool "RS-485 support"
depends on ETRAX_SERIAL
help
Enables support for RS-485 serial communication. For a primer on
RS-485, see <http://www.hw.cz/english/docs/rs485/rs485.html>.
config ETRAX_RS485_ON_PA
bool "RS-485 mode on PA"
depends on ETRAX_RS485
help
Control Driver Output Enable on RS485 tranceiver using a pin on PA
port:
Axis 2400/2401 uses PA 3.
config ETRAX_RS485_ON_PA_BIT
int "RS-485 mode on PA bit"
depends on ETRAX_RS485_ON_PA
default "3"
help
Control Driver Output Enable on RS485 tranceiver using a this bit
on PA port.
config ETRAX_RS485_DISABLE_RECEIVER
bool "Disable serial receiver"
depends on ETRAX_RS485
help
It's necessary to disable the serial receiver to avoid serial
loopback. Not all products are able to do this in software only.
Axis 2400/2401 must disable receiver.
config ETRAX_SYNCHRONOUS_SERIAL
bool "Synchronous serial port support"
help
This option enables support for the ETRAX 100LX built-in
synchronous serial ports. These ports are used for continuous
streamed data like audio. The default setting is compatible
with the STA 013 MP3 decoder, but can easily be tuned to fit
any other audio encoder/decoder and SPI.
config ETRAX_SYNCHRONOUS_SERIAL_PORT0
bool "Synchronous serial port 0 enabled"
depends on ETRAX_SYNCHRONOUS_SERIAL
help
Enables the ETRAX 100LX synchronous serial port 0 (syncser0).
config ETRAX_SYNCHRONOUS_SERIAL0_DMA
bool "Synchronous serial port 0 uses DMA"
depends on ETRAX_SYNCHRONOUS_SERIAL_PORT0
help
Makes synchronous serial port 0 use DMA.
config ETRAX_SYNCHRONOUS_SERIAL_PORT1
bool "Synchronous serial port 1 enabled"
depends on ETRAX_SYNCHRONOUS_SERIAL
help
Enables the ETRAX 100LX synchronous serial port 1 (syncser1).
config ETRAX_SYNCHRONOUS_SERIAL1_DMA
bool "Synchronous serial port 1 uses DMA"
depends on ETRAX_SYNCHRONOUS_SERIAL_PORT1
help
Makes synchronous serial port 1 use DMA.
config ETRAX_PARPORT
bool "Parallel port support"
help
Say Y here to enable the ETRAX on-board parallel ports.
config ETRAX_PARALLEL_PORT0
bool "Parallel port 0 enabled"
depends on ETRAX_PARPORT
help
Say Y here to enable parallel port 0.
config ETRAX_PARALLEL_PORT1
bool "Parallel port 1 enabled"
depends on ETRAX_PARPORT
help
Say Y here to enable parallel port 1.
# here we define the CONFIG_'s necessary to enable parallel port support
config PARPORT
tristate
depends on ETRAX_PARPORT
default y
---help---
If you want to use devices connected to your machine's parallel port
(the connector at the computer with 25 holes), e.g. printer, ZIP
drive, PLIP link (Parallel Line Internet Protocol is mainly used to
create a mini network by connecting the parallel ports of two local
machines) etc., then you need to say Y here; please read
<file:Documentation/parport.txt> and
<file:drivers/parport/BUGS-parport>.
For extensive information about drivers for many devices attaching
to the parallel port see <http://www.torque.net/linux-pp.html> on
the WWW.
It is possible to share a single parallel port among several devices
and it is safe to compile all the corresponding drivers into the
kernel. If you want to compile parallel port support as a module
( = code which can be inserted in and removed from the running
kernel whenever you want), say M here and read
<file:Documentation/modules.txt>. The module will be called
parport.o. If you have more than one parallel port and want to
specify which port and IRQ to be used by this driver at module load
time, take a look at <file:Documentation/parport.txt>.
If unsure, say Y.
config PARPORT_1284
bool
depends on ETRAX_PARPORT
default y
help
If you have a printer that supports status readback or device ID, or
want to use a device that uses enhanced parallel port transfer modes
such as EPP and ECP, say Y here to enable advanced IEEE 1284
transfer modes. Also say Y if you want device ID information to
appear in /proc/sys/dev/parport/*/autoprobe*. It is safe to say N.
config PRINTER
tristate
depends on ETRAX_PARPORT
default y
---help---
If you intend to attach a printer to the parallel port of your Linux
box (as opposed to using a serial printer; if the connector at the
printer has 9 or 25 holes ["female"], then it's serial), say Y.
Also read the Printing-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
It is possible to share one parallel port among several devices
(e.g. printer and ZIP drive) and it is safe to compile the
corresponding drivers into the kernel. If you want to compile this
driver as a module however ( = code which can be inserted in and
removed from the running kernel whenever you want), say M here and
read <file:Documentation/modules.txt> and
<file:Documentation/parport.txt>. The module will be called lp.o.
If you have several parallel ports, you can specify which ports to
use with the "lp" kernel command line option. (Try "man bootparam"
or see the documentation of your boot loader (lilo or loadlin) about
how to pass options to the kernel at boot time.) The syntax of the
"lp" command line option can be found in <file:drivers/char/lp.c>.
If you have more than 8 printers, you need to increase the LP_NO
macro in lp.c and the PARPORT_MAX macro in parport.h.
config ETRAX_IDE
bool "ATA/IDE support"
help
Enable this to get support for ATA/IDE. You can't use parallel
ports or SCSI ports at the same time.
# here we should add the CONFIG_'s necessary to enable the basic
# general ide drivers so the common case does not need to go
# into that config submenu. enable disk and CD support. others
# need to go fiddle in the submenu..
config IDE
tristate
depends on ETRAX_IDE
default y
---help---
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
config BLK_DEV_IDE
tristate
depends on ETRAX_IDE
default y
---help---
If you say Y here, you will use the full-featured IDE driver to
control up to ten ATA/IDE interfaces, each being able to serve a
"master" and a "slave" device, for a total of up to twenty ATA/IDE
disk/cdrom/tape/floppy drives.
Useful information about large (>540 MB) IDE disks, multiple
interfaces, what to do if ATA/IDE devices are not automatically
detected, sound card ATA/IDE ports, module support, and other
topics, is contained in <file:Documentation/ide.txt>. For detailed
information about hard drives, consult the Disk-HOWTO and the
Multi-Disk-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
To fine-tune ATA/IDE drive/interface parameters for improved
performance, look for the hdparm package at
<ftp://ibiblio.org/pub/Linux/system/hardware/>.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt> and
<file:Documentation/ide.txt>. The module will be called ide-mod.o.
Do not compile this driver as a module if your root file system (the
one containing the directory /) is located on an IDE device.
If you have one or more IDE drives, say Y or M here. If your system
has no IDE drives, or if memory requirements are really tight, you
could say N here, and select the "Old hard disk driver" below
instead to save about 13 KB of memory in the kernel.
config BLK_DEV_IDEDISK
tristate
depends on ETRAX_IDE
default y
---help---
This will include enhanced support for MFM/RLL/IDE hard disks. If
you have a MFM/RLL/IDE disk, and there is no special reason to use
the old hard disk driver instead, say Y. If you have an SCSI-only
system, you can say N here.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide-disk.o. Do not compile this driver as a module
if your root file system (the one containing the directory /) is
located on the IDE disk. If unsure, say Y.
config BLK_DEV_IDECD
tristate
depends on ETRAX_IDE
default y
---help---
If you have a CD-ROM drive using the ATAPI protocol, say Y. ATAPI is
a newer protocol used by IDE CD-ROM and TAPE drives, similar to the
SCSI protocol. Most new CD-ROM drives use ATAPI, including the
NEC-260, Mitsumi FX400, Sony 55E, and just about all non-SCSI
double(2X) or better speed drives.
If you say Y here, the CD-ROM drive will be identified at boot time
along with other IDE devices, as "hdb" or "hdc", or something
similar (check the boot messages with dmesg). If this is your only
CD-ROM drive, you can say N to all other CD-ROM options, but be sure
to say Y or M to "ISO 9660 CD-ROM file system support".
Note that older versions of LILO (LInux LOader) cannot properly deal
with IDE/ATAPI CD-ROMs, so install LILO 16 or higher, available from
<ftp://brun.dyndns.org/pub/linux/lilo/>.
If you want to compile the driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide-cd.o.
config BLK_DEV_IDEDMA
bool
depends on ETRAX_IDE
default y
config ETRAX_IDE_DELAY
int "Delay for drives to regain consciousness"
depends on ETRAX_IDE
default "15"
help
Sets the time to wait for disks to regain consciousness after reset.
choice
prompt "IDE reset pin"
depends on ETRAX_IDE
default ETRAX_IDE_PB7_RESET
config ETRAX_IDE_PB7_RESET
bool "Port_PB_Bit_7"
help
Configures the pin used to reset the IDE bus.
config ETRAX_IDE_G27_RESET
bool "Port_G_Bit_27"
help
Configures the pin used to reset the IDE bus.
config ETRAX_IDE_CSE1_16_RESET
bool "Port_CSE1_Bit_16"
config ETRAX_IDE_CSP0_8_RESET
bool "Port_CSP0_Bit_08"
help
Configures the pin used to reset the IDE bus.
endchoice
config ETRAX_AXISFLASHMAP
bool "Axis flash-map support"
help
This option enables MTD mapping of flash devices. Needed to use
flash memories. If unsure, say Y.
config ETRAX_PTABLE_SECTOR
int "Byte-offset of partition table sector"
depends on ETRAX_AXISFLASHMAP
default "65536"
help
Byte-offset of the partition table in the first flash chip.
The default value is 64kB and should not be changed unless
you know exactly what you are doing. The only valid reason
for changing this is when the flash block size is bigger
than 64kB (e.g. when using two parallel 16 bit flashes).
# here we define the CONFIG_'s necessary to enable MTD support
# for the flash
config MTD
tristate
depends on ETRAX_AXISFLASHMAP
default y
help
Memory Technology Devices are flash, RAM and similar chips, often
used for solid state file systems on embedded devices. This option
will provide the generic support for MTD drivers to register
themselves with the kernel and for potential users of MTD devices
to enumerate the devices which are present and obtain a handle on
them. It will also allow you to select individual drivers for
particular hardware and users of MTD devices. If unsure, say N.
config MTD_CFI
tristate
depends on ETRAX_AXISFLASHMAP
default y
help
The Common Flash Interface specification was developed by Intel,
AMD and other flash manufactures that provides a universal method
for probing the capabilities of flash devices. If you wish to
support any device that is CFI-compliant, you need to enable this
option. Visit <http://www.amd.com/products/nvd/overview/cfi.html>
for more information on CFI.
config MTD_CFI_AMDSTD
tristate
depends on ETRAX_AXISFLASHMAP
default y
help
The Common Flash Interface defines a number of different command
sets which a CFI-compliant chip may claim to implement. This code
provides support for one of those command sets, used on chips
chips including the AMD Am29LV320.
config MTD_AMDSTD
tristate
depends on ETRAX_AXISFLASHMAP
default y
help
This option enables support for flash chips using AMD-compatible
commands, including some which are not CFI-compatible and hence
cannot be used with the CONFIG_MTD_CFI_AMDSTD option.
It also works on AMD compatible chips that do conform to CFI.
config MTD_CHAR
tristate
depends on ETRAX_AXISFLASHMAP
default y
help
This provides a character device for each MTD device present in
the system, allowing the user to read and write directly to the
memory chips, and also use ioctl() to obtain information about
the device, or to erase parts of it.
config MTD_BLOCK
tristate
depends on ETRAX_AXISFLASHMAP
default y
---help---
Although most flash chips have an erase size too large to be useful
as block devices, it is possible to use MTD devices which are based
on RAM chips in this manner. This block device is a user of MTD
devices performing that function.
At the moment, it is also required for the Journalling Flash File
System(s) to obtain a handle on the MTD device when it's mounted
(although JFFS and JFFS2 don't actually use any of the functionality
of the mtdblock device).
Later, it may be extended to perform read/erase/modify/write cycles
on flash chips to emulate a smaller block size. Needless to say,
this is very unsafe, but could be useful for file systems which are
almost never written to.
You do not need this option for use with the DiskOnChip devices. For
those, enable NFTL support (CONFIG_NFTL) instead.
config MTD_PARTITIONS
tristate
depends on ETRAX_AXISFLASHMAP
default y
help
If you have a device which needs to divide its flash chip(s) up
into multiple 'partitions', each of which appears to the user as
a separate MTD device, you require this option to be enabled. If
unsure, say 'Y'.
Note, however, that you don't need this option for the DiskOnChip
devices. Partitioning on NFTL 'devices' is a different - that's the
'normal' form of partitioning used on a block device.
config ETRAX_I2C
bool "I2C support"
help
Enables an I2C driver on PB0 and PB1 on ETRAX100.
EXAMPLE usage:
i2c_arg = I2C_WRITEARG(STA013_WRITE_ADDR, reg, val);
ioctl(fd, _IO(ETRAXI2C_IOCTYPE, I2C_WRITEREG), i2c_arg);
i2c_arg = I2C_READARG(STA013_READ_ADDR, reg);
val = ioctl(fd, _IO(ETRAXI2C_IOCTYPE, I2C_READREG), i2c_arg);
# this is true for most products since PB-I2C seems to be somewhat
# flawed..
config ETRAX_I2C_USES_PB_NOT_PB_I2C
bool "I2C uses PB not PB-I2C"
depends on ETRAX_I2C
help
Select whether to use the special I2C mode in the PB I/O register or
not. This option needs to be selected in order to use some drivers
that access the I2C I/O pins directly instead of going through the
I2C driver, like the DS1302 realtime-clock driver. If you are
uncertain, choose Y here.
config ETRAX_I2C_EEPROM
bool "I2C EEPROM (non-volatile RAM) support"
help
Enables I2C EEPROM (non-volatile RAM) on PB0 and PB1 using the I2C
driver. Select size option: Probed, 2k, 8k, 16k.
(Probing works for 2k and 8k but not that well for 16k)
choice
prompt "EEPROM size"
depends on ETRAX_I2C_EEPROM
default ETRAX_I2C_EEPROM_PROBE
config ETRAX_I2C_EEPROM_PROBE
bool "Probed"
help
Specifies size or auto probe of the EEPROM size.
Options: Probed, 2k, 8k, 16k.
(Probing works for 2k and 8k but not that well for 16k)
config ETRAX_I2C_EEPROM_2KB
bool "2kB"
help
Use a 2kB EEPROM.
config ETRAX_I2C_EEPROM_8KB
bool "8kB"
help
Use a 8kB EEPROM.
config ETRAX_I2C_EEPROM_16KB
bool "16kB"
help
Use a 16kB EEPROM.
endchoice
config ETRAX_GPIO
bool "GPIO support"
---help---
Enables the Etrax general port device (major 120, minors 0 and 1).
You can use this driver to access the general port bits. It supports
these ioctl's:
#include <linux/etraxgpio.h>
fd = open("/dev/gpioa", O_RDWR); // or /dev/gpiob
ioctl(fd, _IO(ETRAXGPIO_IOCTYPE, IO_SETBITS), bits_to_set);
ioctl(fd, _IO(ETRAXGPIO_IOCTYPE, IO_CLRBITS), bits_to_clear);
val = ioctl(fd, _IO(ETRAXGPIO_IOCTYPE, IO_READBITS), NULL);
Remember that you need to setup the port directions appropriately in
the General configuration.
config ETRAX_PA_BUTTON_BITMASK
hex "PA-buttons bitmask"
depends on ETRAX_GPIO
default "02"
help
This is a bitmask with information about what bits on PA that
are used for buttons.
Most products has a so called TEST button on PA1, if that's true
use 02 here.
Use 00 if there are no buttons on PA.
If the bitmask is <> 00 a button driver will be included in the gpio
driver. Etrax general I/O support must be enabled.
config ETRAX_PA_CHANGEABLE_DIR
hex "PA user changeable dir mask"
depends on ETRAX_GPIO
default "00"
help
This is a bitmask with information of what bits in PA that a user
can change direction on using ioctl's.
Bit set = changeable.
You probably want 00 here.
config ETRAX_PA_CHANGEABLE_BITS
hex "PA user changeable bits mask"
depends on ETRAX_GPIO
default "FF"
help
This is a bitmask with information of what bits in PA that a user
can change change the value on using ioctl's.
Bit set = changeable.
You probably want 00 here.
config ETRAX_PB_CHANGEABLE_DIR
hex "PB user changeable dir mask"
depends on ETRAX_GPIO
default "00"
help
This is a bitmask with information of what bits in PB that a user
can change direction on using ioctl's.
Bit set = changeable.
You probably want 00 here.
config ETRAX_PB_CHANGEABLE_BITS
hex "PB user changeable bits mask"
depends on ETRAX_GPIO
default "FF"
help
This is a bitmask with information of what bits in PB that a user
can change the value on using ioctl's.
Bit set = changeable.
You probably want 00 here.
#bool 'ARTPEC-1 support' CONFIG_JULIETTE
#
#if [ "$CONFIG_JULIETTE" = "y" ]; then
# source arch/cris/drivers/juliette/Config.in
#fi
config ETRAX_USB_HOST
bool "USB host"
help
This option enables the host functionality of the ETRAX 100LX
built-in USB controller. In host mode the controller is designed
for CTRL and BULK traffic only, INTR traffic may work as well
however (depending on the requirements of timeliness).
config USB
tristate
depends on ETRAX_USB_HOST
default y
---help---
Universal Serial Bus (USB) is a specification for a serial bus
subsystem which offers higher speeds and more features than the
traditional PC serial port. The bus supplies power to peripherals
and allows for hot swapping. Up to 127 USB peripherals can be
connected to a single USB port in a tree structure. The USB port is
the root of the tree, the peripherals are the leaves and the inner
nodes are special USB devices called hubs. Many newer PC's have USB
ports and newer peripherals such as scanners, keyboards, mice,
modems, and printers support the USB protocol and can be connected
to the PC via those ports.
Say Y here if your computer has a USB port and you want to use USB
devices. You then need to say Y to at least one of "UHCI support"
or "OHCI support" below (the type of interface that the USB hardware
in your computer provides to the operating system) and then choose
from among the drivers for USB peripherals. You may want to check
out the information provided in <file:Documentation/usb/> and
especially the links given in <file:Documentation/usb/usb-help.txt>.
This code is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called usbcore.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config ETRAX_USB_HOST_PORT1
bool "USB port 1 enabled"
depends on ETRAX_USB_HOST
help
This option enables port 1 of the ETRAX 100LX USB root hub (RH).
config ETRAX_USB_HOST_PORT2
bool "USB port 2 enabled"
depends on ETRAX_USB_HOST
help
This option enables port 2 of the ETRAX 100LX USB root hub (RH).
config ETRAX_DS1302
bool "DS1302 Real Time Clock support"
help
Enables the driver for the DS1302 Real-Time Clock battery-backed
chip on some products. The kernel reads the time when booting, and
the date can be set using ioctl(fd, RTC_SET_TIME, &rt) with rt a
rtc_time struct (see <file:include/asm-cris/rtc.h>) on the /dev/rtc
device, major 121. You can check the time with cat /proc/rtc, but
normal time reading should be done using libc function time and
friends.
config ETRAX_DS1302_RST_ON_GENERIC_PORT
bool "DS1302 RST on Generic Port"
depends on ETRAX_DS1302
help
If your product has the RST signal line for the DS1302 RTC on the
Generic Port then say Y here, otherwise leave it as N in which
case the RST signal line is assumed to be connected to Port PB
(just like the SCL and SDA lines).
config ETRAX_DS1302_RSTBIT
int "DS1302 RST bit number"
depends on ETRAX_DS1302
default "2"
help
This is the bit number for the RST signal line of the DS1302 RTC on
the selected port. If you have selected the generic port then it
should be bit 27, otherwise your best bet is bit 5.
config ETRAX_DS1302_SCLBIT
int "DS1302 SCL bit number"
depends on ETRAX_DS1302
default "1"
help
This is the bit number for the SCL signal line of the DS1302 RTC on
Port PB. This is probably best left at 3.
config ETRAX_DS1302_SDABIT
int "DS1302 SDA bit number"
depends on ETRAX_DS1302
default "0"
help
This is the bit number for the SDA signal line of the DS1302 RTC on
Port PB. This is probably best left at 2.
endmenu
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/config-language.txt.
#
mainmenu "Linux Kernel Configuration"
config X86
bool
default y
help
This is Linux's home port. Linux was originally native to the Intel
386, and runs on all the later x86 processors including the Intel
486, 586, Pentiums, and various instruction-set-compatible chips by
AMD, Cyrix, and others.
config SBUS
bool
config UID16
bool
default y
config GENERIC_ISA_DMA
bool
default y
source "init/Kconfig"
menu "Processor type and features"
choice
prompt "Processor family"
default M686
config M386
bool "386"
---help---
This is the processor type of your CPU. This information is used for
optimizing purposes. In order to compile a kernel that can run on
all x86 CPU types (albeit not optimally fast), you can specify
"386" here.
The kernel will not necessarily run on earlier architectures than
the one you have chosen, e.g. a Pentium optimized kernel will run on
a PPro, but not necessarily on a i486.
Here are the settings recommended for greatest speed:
- "386" for the AMD/Cyrix/Intel 386DX/DXL/SL/SLC/SX, Cyrix/TI
486DLC/DLC2, UMC 486SX-S and NexGen Nx586. Only "386" kernels
will run on a 386 class machine.
- "486" for the AMD/Cyrix/IBM/Intel 486DX/DX2/DX4 or
SL/SLC/SLC2/SLC3/SX/SX2 and UMC U5D or U5S.
- "586" for generic Pentium CPUs lacking the TSC
(time stamp counter) register.
- "Pentium-Classic" for the Intel Pentium.
- "Pentium-MMX" for the Intel Pentium MMX.
- "Pentium-Pro" for the Intel Pentium Pro/Celeron/Pentium II.
- "Pentium-III" for the Intel Pentium III
and Celerons based on the Coppermine core.
- "Pentium-4" for the Intel Pentium 4.
- "K6" for the AMD K6, K6-II and K6-III (aka K6-3D).
- "Athlon" for the AMD K7 family (Athlon/Duron/Thunderbird).
- "Crusoe" for the Transmeta Crusoe series.
- "Winchip-C6" for original IDT Winchip.
- "Winchip-2" for IDT Winchip 2.
- "Winchip-2A" for IDT Winchips with 3dNow! capabilities.
- "CyrixIII/VIA C3" for VIA Cyrix III or VIA C3.
If you don't know what to do, choose "386".
config M486
bool "486"
help
Select this for a x486 processor, ether Intel or one of the
compatible processors from AMD, Cyrix, IBM, or Intel. Includes DX,
DX2, and DX4 variants; also SL/SLC/SLC2/SLC3/SX/SX2 and UMC U5D or
U5S.
config M586
bool "586/K5/5x86/6x86/6x86MX"
help
Select this for an x586 or x686 processor such as the AMD K5, the
Intel 5x86 or 6x86, or the Intel 6x86MX. This choice does not
assume the RDTSC (Read Time Stamp Counter) instruction.
config M586TSC
bool "Pentium-Classic"
help
Select this for a Pentium Classic processor with the RDTSC (Read
Time Stamp Counter) instruction for benchmarking.
config M586MMX
bool "Pentium-MMX"
help
Select this for a Pentium with the MMX graphics/multimedia
extended instructions.
config M686
bool "Pentium-Pro/Celeron/Pentium-II"
help
Select this for a Pro/Celeron/Pentium II. This enables the use of
Pentium Pro extended instructions, and disables the init-time guard
against the f00f bug found in earlier Pentiums.
config MPENTIUMIII
bool "Pentium-III/Celeron(Coppermine)"
help
Select this for Intel chips based on the Pentium-III and
Celeron-Coppermine core. Enables use of some extended prefetch
instructions, in addition to the Pentium II extensions.
config MPENTIUM4
bool "Pentium-4"
help
Select this for Intel Pentium 4 chips. Presently these are
treated almost like Pentium IIIs, but with a different cache
shift.
config MK6
bool "K6/K6-II/K6-III"
help
Select this for an AMD K6-family processor. Enables use of
some extended instructions, and passes appropriate optimization
flags to GCC.
config MK7
bool "Athlon/Duron/K7"
help
Select this for an AMD Athlon K7-family processor. Enables use of
some extended instructions, and passes appropriate optimization
flags to GCC.
config MELAN
bool "Elan"
config MCRUSOE
bool "Crusoe"
help
Select this for Transmeta Crusoe processor. Treats the processor
like a 586 with TSC, and sets some GCC optimization flags (like a
Pentium Pro with no alignment requirements).
config MWINCHIPC6
bool "Winchip-C6"
help
Select this for a IDT Winchip C6 chip. Linux and GCC
treat this chip as a 586TSC with some extended instructions
and alignment requirements.
config MWINCHIP2
bool "Winchip-2"
help
Select this for a IDT Winchip-2. Linux and GCC
treat this chip as a 586TSC with some extended instructions
and alignment requirements.
config MWINCHIP3D
bool "Winchip-2A/Winchip-3"
help
Select this for a IDT Winchip-2A or 3. Linux and GCC
treat this chip as a 586TSC with some extended instructions
and alignment reqirements. Development kernels also enable
out of order memory stores for this CPU, which can increase
performance of some operations.
config MCYRIXIII
bool "CyrixIII/VIA-C3"
help
Select this for a Cyrix III or C3 chip. Presently Linux and GCC
treat this chip as a generic 586. Whilst the CPU is 686 class,
it lacks the cmov extension which gcc assumes is present when
generating 686 code.
endchoice
#
# Define implied options from the CPU selection here
#
config X86_CMPXCHG
bool
depends on !M386
default y
config X86_XADD
bool
depends on !M386
default y
config X86_L1_CACHE_SHIFT
int
default "5" if MWINCHIP3D || MWINCHIP2 || MWINCHIPC6 || MCRUSOE || MCYRIXIII || MK6 || MPENTIUMIII || M686 || M586MMX || M586TSC || M586
default "4" if MELAN || M486 || M386
default "6" if MK7
default "7" if MPENTIUM4
config RWSEM_GENERIC_SPINLOCK
bool
depends on M386
default y
config RWSEM_XCHGADD_ALGORITHM
bool
depends on !M386
default y
config X86_PPRO_FENCE
bool
depends on M686 || M586MMX || M586TSC || M586 || M486 || M386
default y
config X86_F00F_BUG
bool
depends on M586MMX || M586TSC || M586 || M486 || M386
default y
config X86_WP_WORKS_OK
bool
depends on !M386
default y
config X86_INVLPG
bool
depends on !M386
default y
config X86_BSWAP
bool
depends on !M386
default y
config X86_POPAD_OK
bool
depends on !M386
default y
config X86_USE_STRING_486
bool
depends on MELAN || M586MMX || M586TSC || M586 || M486
default y
config X86_ALIGNMENT_16
bool
depends on MWINCHIP3D || MWINCHIP2 || MWINCHIPC6 || MCYRIXIII || MELAN || MK6 || M586MMX || M586TSC || M586 || M486
default y
config X86_TSC
bool
depends on MWINCHIP3D || MWINCHIP2 || MCRUSOE || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMIII || M686 || M586MMX || M586TSC
default y
config X86_GOOD_APIC
bool
depends on MK7 || MPENTIUM4 || MPENTIUMIII || M686 || M586MMX
default y
config X86_USE_PPRO_CHECKSUM
bool
depends on MWINCHIP3D || MWINCHIP2 || MWINCHIPC6 || MCYRIXIII || MK7 || MK6 || MPENTIUM4 || MPENTIUMIII || M686
default y
config X86_USE_3DNOW
bool
depends on MCYRIXIII || MK7
default y
config X86_OOSTORE
bool
depends on MWINCHIP3D || MWINCHIP2 || MWINCHIPC6
default y
config HUGETLB_PAGE
bool "Huge TLB Page Support"
help
This enables support for huge pages. User space applications
can make use of this support with the sys_alloc_hugepages and
sys_free_hugepages system calls. If your applications are
huge page aware and your processor (Pentium or later for x86)
supports this, then say Y here.
Otherwise, say N.
config SMP
bool "Symmetric multi-processing support"
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
Note that if you say Y here and choose architecture "586" or
"Pentium" under "Processor family", the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the "PPro"
architecture may not work on all Pentium based boards.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
Management" code will be disabled if you say Y here.
See also the <file:Documentation/smp.tex>,
<file:Documentation/smp.txt>, <file:Documentation/i386/IO-APIC.txt>,
<file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
<http://www.linuxdoc.org/docs.html#howto>.
If you don't know what to do here, say N.
config PREEMPT
bool "Preemptible Kernel"
help
This option reduces the latency of the kernel when reacting to
real-time or interactive events by allowing a low priority process to
be preempted even if it is in kernel mode executing a system call.
This allows applications to run more reliably even when the system is
under load.
Say Y here if you are building a kernel for a desktop, embedded
or real-time system. Say N if you are unsure.
config X86_UP_APIC
bool "Local APIC support on uniprocessors" if !SMP
default y if SMP
---help---
A local APIC (Advanced Programmable Interrupt Controller) is an
integrated interrupt controller in the CPU. If you have a single-CPU
system which has a processor with a local APIC, you can say Y here to
enable and use it. If you say Y here even though your machine doesn't
have a local APIC, then the kernel will still run with no slowdown at
all. The local APIC supports CPU-generated self-interrupts (timer,
performance counters), and the NMI watchdog which detects hard lockups.
If you have a system with several CPUs, you do not need to say Y
here: the local APIC will be used automatically.
config X86_UP_IOAPIC
bool "IO-APIC support on uniprocessors"
depends on !SMP && X86_UP_APIC
help
An IO-APIC (I/O Advanced Programmable Interrupt Controller) is an
SMP-capable replacement for PC-style interrupt controllers. Most
SMP systems and a small number of uniprocessor systems have one.
If you have a single-CPU system with an IO-APIC, you can say Y here
to use it. If you say Y here even though your machine doesn't have
an IO-APIC, then the kernel will still run with no slowdown at all.
If you have a system with several CPUs, you do not need to say Y
here: the IO-APIC will be used automatically.
config X86_LOCAL_APIC
bool
depends on !SMP && X86_UP_APIC
default y
config X86_IO_APIC
bool
depends on !SMP && X86_UP_IOAPIC
default y
config NR_CPUS
int "Maximum number of CPUs (2-32)"
depends on SMP
default "32"
help
This allows you to specify the maximum number of CPUs which this
kernel will support. The maximum supported value is 32 and the
minimum value which makes sense is 2.
This is purely to save memory - each supported CPU adds
approximately eight kilobytes to the kernel image.
config X86_NUMA
bool "Multi-node NUMA system support"
depends on SMP
#Platform Choices
config X86_NUMAQ
bool "Multiquad (IBM/Sequent) NUMAQ support"
depends on X86_NUMA
help
This option is used for getting Linux to run on a (IBM/Sequent) NUMA
multiquad box. This changes the way that processors are bootstrapped,
and uses Clustered Logical APIC addressing mode instead of Flat Logical.
You will need a new lynxer.elf file to flash your firmware with - send
email to Martin.Bligh@us.ibm.com
config X86_SUMMIT
bool "IBM x440 (Summit/EXA) support"
depends on X86_NUMA
help
This option is needed for IBM systems that use the Summit/EXA chipset.
In particular, it is needed for the x440.
If you don't have one of these computers, you should say N here.
config CLUSTERED_APIC
bool
depends on X86_NUMA && (X86_NUMAQ || X86_SUMMIT)
default y
# Common NUMA Features
config NUMA
bool "Numa Memory Allocation Support"
depends on X86_NUMAQ
config DISCONTIGMEM
bool
depends on NUMA
default y
config HAVE_ARCH_BOOTMEM_NODE
bool
depends on NUMA
default y
config X86_MCE
bool "Machine Check Exception"
---help---
Machine Check Exception support allows the processor to notify the
kernel if it detects a problem (e.g. overheating, component failure).
The action the kernel takes depends on the severity of the problem,
ranging from a warning message on the console, to halting the machine.
Your processor must be a Pentium or newer to support this - check the
flags in /proc/cpuinfo for mce. Note that some older Pentium systems
have a design flaw which leads to false MCE events - hence MCE is
disabled on all P5 processors, unless explicitly enabled with "mce"
as a boot argument. Similarly, if MCE is built in and creates a
problem on some new non-standard machine, you can boot with "nomce"
to disable it. MCE support simply ignores non-MCE processors like
the 386 and 486, so nearly everyone can say Y here.
config X86_MCE_NONFATAL
bool "Check for non-fatal errors on Athlon/Duron"
depends on X86_MCE
help
Enabling this feature starts a timer that triggers every 5 seconds which
will look at the machine check registers to see if anything happened.
Non-fatal problems automatically get corrected (but still logged).
Disable this if you don't want to see these messages.
Seeing the messages this option prints out may be indicative of dying hardware,
or out-of-spec (ie, overclocked) hardware.
This option only does something on hardware with Intel P6 style MCE.
(Pentium Pro and above, AMD Athlon/Duron)
config X86_MCE_P4THERMAL
bool "check for P4 thermal throttling interrupt."
depends on X86_MCE && X86_UP_APIC
help
Enabling this feature will cause a message to be printed when the P4
enters thermal throttling.
config CPU_FREQ
bool "CPU Frequency scaling"
help
Clock scaling allows you to change the clock speed of CPUs on the
fly. This is a nice method to save battery power on notebooks,
because the lower the clock speed, the less power the CPU consumes.
For more information, take a look at linux/Documentation/cpufreq or
at <http://www.brodo.de/cpufreq/>
If in doubt, say N.
config CPU_FREQ_24_API
bool "/proc/sys/cpu/ interface (2.4.)"
depends on CPU_FREQ
---help---
This enables the /proc/sys/cpu/ sysctl interface for controlling
CPUFreq, as known from the 2.4.-kernel patches for CPUFreq. Note
that some drivers do not support this interface or offer less
functionality.
If you say N here, you'll be able to control CPUFreq using the
new /proc/cpufreq interface.
For details, take a look at linux/Documentation/cpufreq.
If in doubt, say N.
config CPU_FREQ_26_API
bool
depends on CPU_FREQ && !CPU_FREQ_24_API
default y
config X86_POWERNOW_K6
tristate "AMD Mobile K6-2/K6-3 PowerNow!"
depends on CPU_FREQ
help
This adds the CPUFreq driver for mobile AMD K6-2+ and mobile
AMD K6-3+ processors.
For details, take a look at linux/Documentation/cpufreq.
If in doubt, say N.
config ELAN_CPUFREQ
tristate "AMD Elan"
depends on CPU_FREQ && MELAN
---help---
This adds the CPUFreq driver for AMD Elan SC400 and SC410
processors.
You need to specify the processor maximum speed as boot
parameter: elanfreq=maxspeed (in kHz) or as module
parameter "max_freq".
For details, take a look at linux/Documentation/cpufreq.
If in doubt, say N.
config X86_LONGHAUL
tristate "VIA Cyrix III Longhaul"
depends on CPU_FREQ
help
This adds the CPUFreq driver for VIA Samuel/CyrixIII,
VIA Cyrix Samuel/C3, VIA Cyrix Ezra and VIA Cyrix Ezra-T
processors.
For details, take a look at linux/Documentation/cpufreq.
If in doubt, say N.
config X86_SPEEDSTEP
tristate "Intel Speedstep"
depends on CPU_FREQ
help
This adds the CPUFreq driver for certain mobile Intel Pentium III
(Coppermine), all mobile Intel Pentium III-M (Tulatin) and all
mobile Intel Pentium 4 P4-Ms.
For details, take a look at linux/Documentation/cpufreq.
If in doubt, say N.
config X86_P4_CLOCKMOD
tristate "Intel Pentium 4 clock modulation"
depends on CPU_FREQ
help
This adds the CPUFreq driver for Intel Pentium 4 / XEON
processors.
For details, take a look at linux/Documentation/cpufreq.
If in doubt, say N.
config X86_LONGRUN
tristate "Transmeta LongRun"
depends on CPU_FREQ && !CPU_FREQ_24_API
help
This adds the CPUFreq driver for Transmeta Crusoe processors which
support LongRun.
For details, take a look at linux/Documentation/cpufreq.
If in doubt, say N.
config TOSHIBA
tristate "Toshiba Laptop support"
---help---
This adds a driver to safely access the System Management Mode of
the CPU on Toshiba portables with a genuine Toshiba BIOS. It does
not work on models with a Pheonix BIOS. The System Management Mode
is used to set the BIOS and power saving options on Toshiba portables.
For information on utilities to make use of this driver see the
Toshiba Linux utilities web site at:
<http://www.buzzard.org.uk/toshiba/>.
Say Y if you intend to run this kernel on a Toshiba portable.
Say N otherwise.
config I8K
tristate "Dell laptop support"
---help---
This adds a driver to safely access the System Management Mode
of the CPU on the Dell Inspiron 8000. The System Management Mode
is used to read cpu temperature and cooling fan status and to
control the fans on the I8K portables.
This driver has been tested only on the Inspiron 8000 but it may
also work with other Dell laptops. You can force loading on other
models by passing the parameter `force=1' to the module. Use at
your own risk.
For information on utilities to make use of this driver see the
I8K Linux utilities web site at:
<http://www.debian.org/~dz/i8k/>
Say Y if you intend to run this kernel on a Dell Inspiron 8000.
Say N otherwise.
config MICROCODE
tristate "/dev/cpu/microcode - Intel IA32 CPU microcode support"
---help---
If you say Y here and also to "/dev file system support" in the
'File systems' section, you will be able to update the microcode on
Intel processors in the IA32 family, e.g. Pentium Pro, Pentium II,
Pentium III, Pentium 4, Xeon etc. You will obviously need the
actual microcode binary data itself which is not shipped with the
Linux kernel.
For latest news and information on obtaining all the required
ingredients for this driver, check:
<http://www.urbanmyth.org/microcode/>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called microcode.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>. If
you use modprobe or kmod you may also want to add the line
'alias char-major-10-184 microcode' to your /etc/modules.conf file.
config X86_MSR
tristate "/dev/cpu/*/msr - Model-specific register support"
help
This device gives privileged processes access to the x86
Model-Specific Registers (MSRs). It is a character device with
major 202 and minors 0 to 31 for /dev/cpu/0/msr to /dev/cpu/31/msr.
MSR accesses are directed to a specific CPU on multi-processor
systems.
config X86_CPUID
tristate "/dev/cpu/*/cpuid - CPU information support"
help
This device gives processes access to the x86 CPUID instruction to
be executed on a specific processor. It is a character device
with major 203 and minors 0 to 31 for /dev/cpu/0/cpuid to
/dev/cpu/31/cpuid.
config EDD
tristate "BIOS Enhanced Disk Drive calls determine boot disk (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
Say Y or M here if you want to enable BIOS Enhanced Disk Drive
Services real mode BIOS calls to determine which disk
BIOS tries boot from. This information is then exported via driverfs.
This option is experimental, but believed to be safe,
and most disk controller BIOS vendors do not yet implement this feature.
choice
prompt "High Memory Support"
default NOHIGHMEM
config NOHIGHMEM
bool "off"
---help---
Linux can use up to 64 Gigabytes of physical memory on x86 systems.
However, the address space of 32-bit x86 processors is only 4
Gigabytes large. That means that, if you have a large amount of
physical memory, not all of it can be "permanently mapped" by the
kernel. The physical memory that's not permanently mapped is called
"high memory".
If you are compiling a kernel which will never run on a machine with
more than 1 Gigabyte total physical RAM, answer "off" here (default
choice and suitable for most users). This will result in a "3GB/1GB"
split: 3GB are mapped so that each process sees a 3GB virtual memory
space and the remaining part of the 4GB virtual memory space is used
by the kernel to permanently map as much physical memory as
possible.
If the machine has between 1 and 4 Gigabytes physical RAM, then
answer "4GB" here.
If more than 4 Gigabytes is used then answer "64GB" here. This
selection turns Intel PAE (Physical Address Extension) mode on.
PAE implements 3-level paging on IA32 processors. PAE is fully
supported by Linux, PAE mode is implemented on all recent Intel
processors (Pentium Pro and better). NOTE: If you say "64GB" here,
then the kernel will not boot on CPUs that don't support PAE!
The actual amount of total physical memory will either be
auto detected or can be forced by using a kernel command line option
such as "mem=256M". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If unsure, say "off".
config HIGHMEM4G
bool "4GB"
help
Select this if you have a 32-bit processor and between 1 and 4
gigabytes of physical RAM.
config HIGHMEM64G
bool "64GB"
help
Select this if you have a 32-bit processor and more than 4
gigabytes of physical RAM.
endchoice
config HIGHMEM
bool
depends on HIGHMEM64G || HIGHMEM4G
default y
config X86_PAE
bool
depends on HIGHMEM64G
default y
config HIGHPTE
bool "Allocate 3rd-level pagetables from highmem"
depends on HIGHMEM4G || HIGHMEM64G
help
The VM uses one page table entry for each page of physical memory.
For systems with a lot of RAM, this can be wasteful of precious
low memory. Setting this option will put user-space page table
entries in high memory.
config MATH_EMULATION
bool "Math emulation"
---help---
Linux can emulate a math coprocessor (used for floating point
operations) if you don't have one. 486DX and Pentium processors have
a math coprocessor built in, 486SX and 386 do not, unless you added
a 487DX or 387, respectively. (The messages during boot time can
give you some hints here ["man dmesg"].) Everyone needs either a
coprocessor or this emulation.
If you don't have a math coprocessor, you need to say Y here; if you
say Y here even though you have a coprocessor, the coprocessor will
be used nevertheless. (This behavior can be changed with the kernel
command line option "no387", which comes handy if your coprocessor
is broken. Try "man bootparam" or see the documentation of your boot
loader (lilo or loadlin) about how to pass options to the kernel at
boot time.) This means that it is a good idea to say Y here if you
intend to use this kernel on different machines.
More information about the internals of the Linux math coprocessor
emulation can be found in <file:arch/i386/math-emu/README>.
If you are not sure, say Y; apart from resulting in a 66 KB bigger
kernel, it won't hurt.
config MTRR
bool "MTRR (Memory Type Range Register) support"
---help---
On Intel P6 family processors (Pentium Pro, Pentium II and later)
the Memory Type Range Registers (MTRRs) may be used to control
processor access to memory ranges. This is most useful if you have
a video (VGA) card on a PCI or AGP bus. Enabling write-combining
allows bus write transfers to be combined into a larger transfer
before bursting over the PCI/AGP bus. This can increase performance
of image write operations 2.5 times or more. Saying Y here creates a
/proc/mtrr file which may be used to manipulate your processor's
MTRRs. Typically the X server should use this.
This code has a reasonably generic interface so that similar
control registers on other processors can be easily supported
as well:
The Cyrix 6x86, 6x86MX and M II processors have Address Range
Registers (ARRs) which provide a similar functionality to MTRRs. For
these, the ARRs are used to emulate the MTRRs.
The AMD K6-2 (stepping 8 and above) and K6-3 processors have two
MTRRs. The Centaur C6 (WinChip) has 8 MCRs, allowing
write-combining. All of these processors are supported by this code
and it makes sense to say Y here if you have one of them.
Saying Y here also fixes a problem with buggy SMP BIOSes which only
set the MTRRs for the boot CPU and not for the secondary CPUs. This
can lead to all sorts of problems, so it's good to say Y here.
You can safely say Y even if your machine doesn't have MTRRs, you'll
just add about 9 KB to your kernel.
See <file:Documentation/mtrr.txt> for more information.
config HAVE_DEC_LOCK
bool
depends on (SMP || PREEMPT) && X86_CMPXCHG
default y
endmenu
menu "Power management options (ACPI, APM)"
source "drivers/acpi/Kconfig"
config PM
bool "Power Management support"
---help---
"Power Management" means that parts of your computer are shut
off or put into a power conserving "sleep" mode if they are not
being used. There are two competing standards for doing this: APM
and ACPI. If you want to use either one, say Y here and then also
to the requisite support below.
Power Management is most important for battery powered laptop
computers; if you have a laptop, check out the Linux Laptop home
page on the WWW at
<http://www.cs.utexas.edu/users/kharker/linux-laptop/> and the
Battery Powered Linux mini-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that, even if you say N here, Linux on the x86 architecture
will issue the hlt instruction if nothing is to be done, thereby
sending the processor to sleep and saving power.
config APM
tristate "Advanced Power Management BIOS support"
depends on PM
---help---
APM is a BIOS specification for saving power using several different
techniques. This is mostly useful for battery powered laptops with
APM compliant BIOSes. If you say Y here, the system time will be
reset after a RESUME operation, the /proc/apm device will provide
battery status information, and user-space programs will receive
notification of APM "events" (e.g. battery status change).
If you select "Y" here, you can disable actual use of the APM
BIOS by passing the "apm=off" option to the kernel at boot time.
Note that the APM support is almost completely disabled for
machines with more than one CPU.
In order to use APM, you will need supporting software. For location
and more information, read <file:Documentation/pm.txt> and the
Battery Powered Linux mini-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver does not spin down disk drives (see the hdparm(8)
manpage ("man 8 hdparm") for that), and it doesn't turn off
VESA-compliant "green" monitors.
This driver does not support the TI 4000M TravelMate and the ACER
486/DX4/75 because they don't have compliant BIOSes. Many "green"
desktop machines also don't have compliant BIOSes, and this driver
may cause those machines to panic during the boot phase.
Generally, if you don't have a battery in your machine, there isn't
much point in using this driver and you should say N. If you get
random kernel OOPSes or reboots that don't seem to be related to
anything, try disabling/enabling this option (or disabling/enabling
APM in your BIOS).
Some other things you should try when experiencing seemingly random,
"weird" problems:
1) make sure that you have enough swap space and that it is
enabled.
2) pass the "no-hlt" option to the kernel
3) switch on floating point emulation in the kernel and pass
the "no387" option to the kernel
4) pass the "floppy=nodma" option to the kernel
5) pass the "mem=4M" option to the kernel (thereby disabling
all but the first 4 MB of RAM)
6) make sure that the CPU is not over clocked.
7) read the sig11 FAQ at <http://www.bitwizard.nl/sig11/>
8) disable the cache from your BIOS settings
9) install a fan for the video card or exchange video RAM
10) install a better fan for the CPU
11) exchange RAM chips
12) exchange the motherboard.
To compile this driver as a module ( = code which can be inserted in
and removed from the running kernel whenever you want), say M here
and read <file:Documentation/modules.txt>. The module will be called
apm.o.
config APM_IGNORE_USER_SUSPEND
bool "Ignore USER SUSPEND"
depends on APM
help
This option will ignore USER SUSPEND requests. On machines with a
compliant APM BIOS, you want to say N. However, on the NEC Versa M
series notebooks, it is necessary to say Y because of a BIOS bug.
config APM_DO_ENABLE
bool "Enable PM at boot time"
depends on APM
---help---
Enable APM features at boot time. From page 36 of the APM BIOS
specification: "When disabled, the APM BIOS does not automatically
power manage devices, enter the Standby State, enter the Suspend
State, or take power saving steps in response to CPU Idle calls."
This driver will make CPU Idle calls when Linux is idle (unless this
feature is turned off -- see "Do CPU IDLE calls", below). This
should always save battery power, but more complicated APM features
will be dependent on your BIOS implementation. You may need to turn
this option off if your computer hangs at boot time when using APM
support, or if it beeps continuously instead of suspending. Turn
this off if you have a NEC UltraLite Versa 33/C or a Toshiba
T400CDT. This is off by default since most machines do fine without
this feature.
config APM_CPU_IDLE
bool "Make CPU Idle calls when idle"
depends on APM
help
Enable calls to APM CPU Idle/CPU Busy inside the kernel's idle loop.
On some machines, this can activate improved power savings, such as
a slowed CPU clock rate, when the machine is idle. These idle calls
are made after the idle loop has run for some length of time (e.g.,
333 mS). On some machines, this will cause a hang at boot time or
whenever the CPU becomes idle. (On machines with more than one CPU,
this option does nothing.)
config APM_DISPLAY_BLANK
bool "Enable console blanking using APM"
depends on APM
help
Enable console blanking using the APM. Some laptops can use this to
turn off the LCD backlight when the screen blanker of the Linux
virtual console blanks the screen. Note that this is only used by
the virtual console screen blanker, and won't turn off the backlight
when using the X Window system. This also doesn't have anything to
do with your VESA-compliant power-saving monitor. Further, this
option doesn't work for all laptops -- it might not turn off your
backlight at all, or it might print a lot of errors to the console,
especially if you are using gpm.
config APM_RTC_IS_GMT
bool "RTC stores time in GMT"
depends on APM
help
Say Y here if your RTC (Real Time Clock a.k.a. hardware clock)
stores the time in GMT (Greenwich Mean Time). Say N if your RTC
stores localtime.
It is in fact recommended to store GMT in your RTC, because then you
don't have to worry about daylight savings time changes. The only
reason not to use GMT in your RTC is if you also run a broken OS
that doesn't understand GMT.
config APM_ALLOW_INTS
bool "Allow interrupts during APM BIOS calls"
depends on APM
help
Normally we disable external interrupts while we are making calls to
the APM BIOS as a measure to lessen the effects of a badly behaving
BIOS implementation. The BIOS should reenable interrupts if it
needs to. Unfortunately, some BIOSes do not -- especially those in
many of the newer IBM Thinkpads. If you experience hangs when you
suspend, try setting this to Y. Otherwise, say N.
config APM_REAL_MODE_POWER_OFF
bool "Use real mode APM BIOS call to power off"
depends on APM
help
Use real mode APM BIOS calls to switch off the computer. This is
a work-around for a number of buggy BIOSes. Switch this option on if
your computer crashes instead of powering off properly.
endmenu
menu "Bus options (PCI, PCMCIA, EISA, MCA, ISA)"
# Visual Workstation support is utterly broken.
# If you want to see it working mail an VW540 to hch@infradead.org 8)
#bool 'SGI Visual Workstation support' CONFIG_VISWS
config X86_VISWS_APIC
bool
depends on VISWS
default y
config X86_LOCAL_APIC
bool
depends on !VISWS && SMP || VISWS
default y
config PCI
bool "PCI support" if !VISWS
default y if VISWS
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
config X86_IO_APIC
bool
depends on !VISWS && SMP
default y
choice
prompt "PCI access mode"
depends on !VISWS && PCI
default PCI_GOANY
config PCI_GOBIOS
bool "BIOS"
---help---
On PCI systems, the BIOS can be used to detect the PCI devices and
determine their configuration. However, some old PCI motherboards
have BIOS bugs and may crash if this is done. Also, some embedded
PCI-based systems don't have any BIOS at all. Linux can also try to
detect the PCI hardware directly without using the BIOS.
With this option, you can specify how Linux should detect the PCI
devices. If you choose "BIOS", the BIOS will be used, if you choose
"Direct", the BIOS won't be used, and if you choose "Any", the
kernel will try the direct access method and falls back to the BIOS
if that doesn't work. If unsure, go with the default, which is
"Any".
config PCI_GODIRECT
bool "Direct"
config PCI_GOANY
bool "Any"
endchoice
config PCI_BIOS
bool
depends on !VISWS && PCI && (PCI_GOBIOS || PCI_GOANY)
default y
config PCI_DIRECT
bool
depends on !VISWS && PCI && (PCI_GODIRECT || PCI_GOANY)
default y
config SCx200
tristate "NatSemi SCx200 support"
help
This provides basic support for the National Semiconductor SCx200
processor. Right now this is just a driver for the GPIO pins.
If you don't know what to do here, say N.
This support is also available as a module. If compiled as a
module, it will be called scx200.o.
source "drivers/pci/Kconfig"
config ISA
bool "ISA support"
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config EISA
bool "EISA support"
depends on ISA
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
config MCA
bool "MCA support"
depends on !VISWS
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
config HOTPLUG
bool "Support for hot-pluggable devices"
---help---
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at <http://linux-hotplug.sourceforge.net/>) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
source "drivers/pcmcia/Kconfig"
source "drivers/hotplug/Kconfig"
endmenu
menu "Executable file formats"
choice
prompt "Kernel core (/proc/kcore) format"
depends on PROC_FS
default KCORE_ELF
config KCORE_ELF
bool "ELF"
---help---
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
config KCORE_AOUT
bool "A.OUT"
help
Not necessary unless you're using a very out-of-date binutils
version. You probably want KCORE_ELF.
endchoice
config BINFMT_AOUT
tristate "Kernel support for a.out binaries"
---help---
A.out (Assembler.OUTput) is a set of formats for libraries and
executables used in the earliest versions of UNIX. Linux used the
a.out formats QMAGIC and ZMAGIC until they were replaced with the
ELF format.
As more and more programs are converted to ELF, the use for a.out
will gradually diminish. If you disable this option it will reduce
your kernel by one page. This is not much and by itself does not
warrant removing support. However its removal is a good idea if you
wish to ensure that absolutely none of your programs will use this
older executable format. If you don't know what to answer at this
point then answer Y. If someone told you "You need a kernel with
QMAGIC support" then you'll have to say Y here. You may answer M to
compile a.out support as a module and later load the module when you
want to use a program or library in a.out format. The module will be
called binfmt_aout.o. Saying M or N here is dangerous though,
because some crucial programs on your system might still be in A.OUT
format.
config BINFMT_ELF
tristate "Kernel support for ELF binaries"
---help---
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
config BINFMT_MISC
tristate "Kernel support for MISC binaries"
---help---
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
endmenu
source "drivers/mtd/Kconfig"
source "drivers/parport/Kconfig"
source "drivers/pnp/Kconfig"
source "drivers/block/Kconfig"
menu "ATA/ATAPI/MFM/RLL device support"
config IDE
tristate "ATA/ATAPI/MFM/RLL device support"
---help---
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
source "drivers/ide/Kconfig"
endmenu
menu "SCSI device support"
config SCSI
tristate "SCSI device support"
---help---
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
source "drivers/scsi/Kconfig"
endmenu
menu "Old CD-ROM drivers (not SCSI, not IDE)"
depends on ISA
config CD_NO_IDESCSI
bool "Support non-SCSI/IDE/ATAPI CDROM drives"
---help---
If you have a CD-ROM drive that is neither SCSI nor IDE/ATAPI, say Y
here, otherwise N. Read the CD-ROM-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that the answer to this question doesn't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about these CD-ROM drives. If you are unsure what you
have, say Y and find out whether you have one of the following
drives.
For each of these drivers, a file Documentation/cdrom/{driver_name}
exists. Especially in cases where you do not know exactly which kind
of drive you have you should read there. Most of these drivers use a
file drivers/cdrom/{driver_name}.h where you can define your
interface parameters and switch some internal goodies.
All these CD-ROM drivers are also usable as a module ( = code which
can be inserted in and removed from the running kernel whenever you
want). If you want to compile them as module, say M instead of Y and
read <file:Documentation/modules.txt>.
If you want to use any of these CD-ROM drivers, you also have to
answer Y or M to "ISO 9660 CD-ROM file system support" below (this
answer will get "defaulted" for you if you enable any of the Linux
CD-ROM drivers).
source "drivers/cdrom/Kconfig"
endmenu
source "drivers/md/Kconfig"
source "drivers/message/fusion/Kconfig"
source "drivers/ieee1394/Kconfig"
source "drivers/message/i2o/Kconfig"
source "net/Kconfig"
menu "Network device support"
depends on NET
config NETDEVICES
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
source "drivers/net/Kconfig"
source "drivers/atm/Kconfig"
endmenu
source "net/ax25/Kconfig"
source "net/irda/Kconfig"
source "drivers/isdn/Kconfig"
source "drivers/telephony/Kconfig"
#
# input before char - char/joystick depends on it. As does USB.
#
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
#source drivers/misc/Config.in
source "drivers/media/Kconfig"
source "fs/Kconfig"
menu "Console drivers"
depends on VT
config VGA_CONSOLE
bool "VGA text console"
help
Saying Y here will allow you to use Linux in text mode through a
display that complies with the generic VGA standard. Virtually
everyone wants that.
The program SVGATextMode can be used to utilize SVGA video cards to
their full potential in text mode. Download it from
<ftp://ibiblio.org/pub/Linux/utils/console/>.
Say Y.
config VIDEO_SELECT
bool "Video mode selection support"
---help---
This enables support for text mode selection on kernel startup. If
you want to take advantage of some high-resolution text mode your
card's BIOS offers, but the traditional Linux utilities like
SVGATextMode don't, you can say Y here and set the mode using the
"vga=" option from your boot loader (lilo or loadlin) or set
"vga=ask" which brings up a video mode menu on kernel startup. (Try
"man bootparam" or see the documentation of your boot loader about
how to pass options to the kernel.)
Read the file <file:Documentation/svga.txt> for more information
about the Video mode selection support. If unsure, say N.
if EXPERIMENTAL
config MDA_CONSOLE
tristate "MDA text console (dual-headed) (EXPERIMENTAL)"
---help---
Say Y here if you have an old MDA or monochrome Hercules graphics
adapter in your system acting as a second head ( = video card). You
will then be able to use two monitors with your Linux system. Do not
say Y here if your MDA card is the primary card in your system; the
normal VGA driver will handle it.
This driver is also available as a module ( = code which can be
inserted and removed from the running kernel whenever you want).
The module will be called mdacon.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
If unsure, say N.
source "drivers/video/Kconfig"
endif
endmenu
menu "Sound"
config SOUND
tristate "Sound card support"
---help---
If you have a sound card in your computer, i.e. if it can say more
than an occasional beep, say Y. Be sure to have all the information
about your sound card and its configuration down (I/O port,
interrupt and DMA channel), because you will be asked for it.
You want to read the Sound-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. General information about
the modular sound system is contained in the files
<file:Documentation/sound/Introduction>. The file
<file:Documentation/sound/README.OSS> contains some slightly
outdated but still useful information as well.
If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read
<http://www.roestock.demon.co.uk/isapnptools/>), then you need to
compile the sound card support as a module ( = code which can be
inserted in and removed from the running kernel whenever you want)
and load that module after the PnP configuration is finished. To do
this, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/sound/README.modules>; the module will be
called soundcore.o.
I'm told that even without a sound card, you can make your computer
say more than an occasional beep, by programming the PC speaker.
Kernel patches and supporting utilities to do that are in the pcsp
package, available at <ftp://ftp.infradead.org/pub/pcsp/>.
source "sound/Kconfig"
endmenu
source "drivers/usb/Kconfig"
source "net/bluetooth/Kconfig"
source "arch/i386/oprofile/Kconfig"
menu "Kernel hacking"
config SOFTWARE_SUSPEND
bool "Software Suspend (EXPERIMENTAL)"
depends on EXPERIMENTAL && PM
---help---
Enable the possibilty of suspendig machine. It doesn't need APM.
You may suspend your machine by 'swsusp' or 'shutdown -z <time>'
(patch for sysvinit needed).
It creates an image which is saved in your active swaps. By the next
booting the, pass 'resume=/path/to/your/swap/file' and kernel will
detect the saved image, restore the memory from
it and then it continues to run as before you've suspended.
If you don't want the previous state to continue use the 'noresume'
kernel option. However note that your partitions will be fsck'd and
you must re-mkswap your swap partitions/files.
Right now you may boot without resuming and then later resume but
in meantime you cannot use those swap partitions/files which were
involved in suspending. Also in this case there is a risk that buffers
on disk won't match with saved ones.
SMP is supported ``as-is''. There's a code for it but doesn't work.
There have been problems reported relating SCSI.
This option is about getting stable. However there is still some
absence of features.
For more information take a look at Documentation/swsusp.txt.
config DEBUG_KERNEL
bool "Kernel debugging"
help
Say Y here if you are developing drivers or trying to debug and
identify kernel problems.
config DEBUG_STACKOVERFLOW
bool "Check for stack overflows"
depends on DEBUG_KERNEL
config DEBUG_SLAB
bool "Debug memory allocations"
depends on DEBUG_KERNEL
help
Say Y here to have the kernel do limited verification on memory
allocation as well as poisoning memory on free to catch use of freed
memory.
config DEBUG_IOVIRT
bool "Memory mapped I/O debugging"
depends on DEBUG_KERNEL
help
Say Y here to get warned whenever an attempt is made to do I/O on
obviously invalid addresses such as those generated when ioremap()
calls are forgotten. Memory mapped I/O will go through an extra
check to catch access to unmapped ISA addresses, an access method
that can still be used by old drivers that are being ported from
2.0/2.2.
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on DEBUG_KERNEL
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
config DEBUG_SPINLOCK
bool "Spinlock debugging"
depends on DEBUG_KERNEL
help
Say Y here and build SMP to catch missing spinlock initialization
and certain other kinds of spinlock errors commonly made. This is
best used in conjunction with the NMI watchdog so that spinlock
deadlocks are also debuggable.
config DEBUG_HIGHMEM
bool "Highmem debugging"
depends on DEBUG_KERNEL && HIGHMEM
help
This options enables addition error checking for high memory systems.
Disable for production systems.
config KALLSYMS
bool "Load all symbols for debugging/kksymoops"
depends on DEBUG_KERNEL
help
Say Y here to let the kernel print out symbolic crash information and
symbolic stack backtraces. This increases the size of the kernel
somewhat, as all symbols have to be loaded into the kernel image.
config X86_EXTRA_IRQS
bool
depends on X86_LOCAL_APIC
default y
config X86_FIND_SMP_CONFIG
bool
depends on X86_LOCAL_APIC
default y
config X86_MPPARSE
bool
depends on X86_LOCAL_APIC
default y
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
config X86_SMP
bool
depends on SMP
default y
config X86_HT
bool
depends on SMP
default y
config X86_BIOS_REBOOT
bool
default y
menu "Profiling support"
depends on EXPERIMENTAL
config PROFILING
bool "Profiling support (EXPERIMENTAL)"
help
Say Y here to enable the extended profiling support mechanisms used
by profilers such as OProfile.
config OPROFILE
tristate "OProfile system profiling (EXPERIMENTAL)"
depends on PROFILING
help
OProfile is a profiling system capable of profiling the
whole system, include the kernel, kernel modules, libraries,
and applications.
If unsure, say N.
endmenu
mainmenu "IA-64 Linux Kernel Configuration"
source "init/Kconfig"
menu "Processor type and features"
config IA64
bool
default y
help
The Itanium is Intel's 64-bit successor to the 32-bit X86 line. As
of early 2001 it is not yet in widespread production use. The Linux
IA-64 project has a home page at <http://www.linuxia64.org/>.
config ISA
bool
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config EISA
bool
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
config MCA
bool
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
config SBUS
bool
config RWSEM_GENERIC_SPINLOCK
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
choice
prompt "IA-64 processor type"
default ITANIUM
config ITANIUM
bool "Itanium"
help
Select your IA64 processor type. The default is Intel Itanium.
config MCKINLEY
bool "Itanium-2"
help
Select this to configure for an Itanium 2 (McKinley) processor.
endchoice
choice
prompt "IA-64 system type"
default IA64_GENERIC
config IA64_GENERIC
bool "generic"
---help---
This selects the system type of your hardware. A "generic" kernel
will run on any supported IA-64 system. However, if you configure
a kernel for your specific system, it will be faster and smaller.
To find out what type of IA-64 system you have, you may want to
check the IA-64 Linux web site at <http://www.linux-ia64.org/>.
As of the time of this writing, most hardware is DIG compliant,
so the "DIG-compliant" option is usually the right choice.
HP-simulator For the HP simulator
(<http://software.hp.com/ia64linux/>).
HP-zx1 For HP zx1 platforms.
SN1-simulator For the SGI SN1 simulator.
DIG-compliant For DIG ("Developer's Interface Guide") compliant
systems.
If you don't know what to do, choose "generic".
config IA64_DIG
bool "DIG-compliant"
config IA64_HP_SIM
bool "HP-simulator"
config IA64_HP_ZX1
bool "HP-zx1"
help
Build a kernel that runs on HP zx1-based systems. This adds support
for the zx1 IOMMU and makes root bus bridges appear in PCI config space
(required for zx1 agpgart support).
config IA64_SGI_SN1
bool "SGI-SN1"
config IA64_SGI_SN2
bool "SGI-SN2"
endchoice
choice
prompt "Kernel page size"
default IA64_PAGE_SIZE_16KB
config IA64_PAGE_SIZE_4KB
bool "4KB"
---help---
This lets you select the page size of the kernel. For best IA-64
performance, a page size of 8KB or 16KB is recommended. For best
IA-32 compatibility, a page size of 4KB should be selected (the vast
majority of IA-32 binaries work perfectly fine with a larger page
size). For Itanium systems, do NOT chose a page size larger than
16KB.
4KB For best IA-32 compatibility
8KB For best IA-64 performance
16KB For best IA-64 performance
64KB Not for Itanium.
If you don't know what to do, choose 8KB.
config IA64_PAGE_SIZE_8KB
bool "8KB"
config IA64_PAGE_SIZE_16KB
bool "16KB"
config IA64_PAGE_SIZE_64KB
depends on !ITANIUM
bool "64KB"
endchoice
config ACPI
bool
depends on !IA64_HP_SIM
default y
---help---
ACPI/OSPM support for Linux is currently under development. As such,
this support is preliminary and EXPERIMENTAL. Configuring ACPI
support enables kernel interfaces that allow higher level software
(OSPM) to manipulate ACPI defined hardware and software interfaces,
including the evaluation of ACPI control methods. If unsure, choose
N here. Note, this option will enlarge your kernel by about 120K.
This support requires an ACPI compliant platform (hardware/firmware).
If both ACPI and Advanced Power Management (APM) support are
configured, whichever is loaded first shall be used.
This code DOES NOT currently provide a complete OSPM implementation
-- it has not yet reached APM's level of functionality. When fully
implemented, Linux ACPI/OSPM will provide a more robust functional
replacement for legacy configuration and power management
interfaces, including the Plug-and-Play BIOS specification (PnP
BIOS), the Multi-Processor Specification (MPS), and the Advanced
Power Management specification (APM).
Linux support for ACPI/OSPM is based on Intel Corporation's ACPI
Component Architecture (ACPI CA). The latest ACPI CA source code,
documentation, debug builds, and implementation status information
can be downloaded from:
<http://developer.intel.com/technology/iapc/acpi/downloads.htm>.
The ACPI Sourceforge project may also be of interest:
<http://sf.net/projects/acpi/>
config ACPI_EFI
bool
depends on !IA64_HP_SIM
default y
config ACPI_INTERPRETER
bool
depends on !IA64_HP_SIM
default y
config ACPI_KERNEL_CONFIG
bool
depends on !IA64_HP_SIM
default y
help
If you say `Y' here, Linux's ACPI support will use the
hardware-level system descriptions found on IA64 machines.
config IA64_BRL_EMU
bool
depends on ITANIUM
default y
config ITANIUM_BSTEP_SPECIFIC
bool "Enable Itanium B-step specific code"
depends on ITANIUM
help
Select this option to build a kernel for an Itanium prototype system
with a B-step CPU. You have a B-step CPU if the "revision" field in
/proc/cpuinfo has a value in the range from 1 to 4.
# align cache-sensitive data to 128 bytes
config IA64_L1_CACHE_SHIFT
int
default "7" if MCKINLEY || ITANIUM && IA64_SGI_SN1
default "6" if ITANIUM && !IA64_SGI_SN1
# align cache-sensitive data to 64 bytes
config MCKINLEY_ASTEP_SPECIFIC
bool "Enable McKinley A-step specific code"
depends on MCKINLEY
help
Select this option to build a kernel for an IA64 McKinley system
with any A-stepping CPU.
config MCKINLEY_A0_SPECIFIC
bool "Enable McKinley A0/A1-step specific code"
depends on MCKINLEY_ASTEP_SPECIFIC
help
Select this option to build a kernel for an IA64 McKinley system
with an A0 or A1 stepping CPU.
config NUMA
bool "Enable NUMA support" if IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
default y if IA64_SGI_SN1 || IA64_SGI_SN2
help
Say Y to compile the kernel to support NUMA (Non-Uniform Memory
Access). This option is for configuring high-end multiprocessor
server machines. If in doubt, say N.
config DISCONTIGMEM
bool
depends on IA64_SGI_SN1 || IA64_SGI_SN2 || (IA64_GENERIC || IA64_DIG || IA64_HP_ZX1) && NUMA
default y
help
Say Y to upport efficient handling of discontiguous physical memory,
for architectures which are either NUMA (Non-Uniform Memory Access)
or have huge holes in the physical address space for other reasons.
See <file:Documentation/vm/numa> for more.
config IA64_MCA
bool "Enable IA-64 Machine Check Abort" if IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
default y if IA64_SGI_SN1 || IA64_SGI_SN2
help
Say Y here to enable machine check support for IA-64. If you're
unsure, answer Y.
config PM
bool
depends on IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
default y
---help---
"Power Management" means that parts of your computer are shut
off or put into a power conserving "sleep" mode if they are not
being used. There are two competing standards for doing this: APM
and ACPI. If you want to use either one, say Y here and then also
to the requisite support below.
Power Management is most important for battery powered laptop
computers; if you have a laptop, check out the Linux Laptop home
page on the WWW at
<http://www.cs.utexas.edu/users/kharker/linux-laptop/> and the
Battery Powered Linux mini-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that, even if you say N here, Linux on the x86 architecture
will issue the hlt instruction if nothing is to be done, thereby
sending the processor to sleep and saving power.
config IOSAPIC
bool
depends on IA64_GENERIC || IA64_DIG || IA64_HP_ZX1
default y
config IA64_SGI_SN
bool
depends on IA64_SGI_SN1 || IA64_SGI_SN2
default y
config IA64_SGI_SN_DEBUG
bool "Enable extra debugging code"
depends on IA64_SGI_SN1 || IA64_SGI_SN2
help
Turns on extra debugging code in the SGI SN (Scalable NUMA) platform
for IA64. Unless you are debugging problems on an SGI SN IA64 box,
say N.
config IA64_SGI_SN_SIM
bool "Enable SGI Medusa Simulator Support"
depends on IA64_SGI_SN1 || IA64_SGI_SN2
help
If you are compiling a kernel that will run under SGI's IA64
simulator (Medusa) then say Y, otherwise say N.
config IA64_SGI_AUTOTEST
bool "Enable autotest (llsc). Option to run cache test instead of booting"
depends on IA64_SGI_SN1 || IA64_SGI_SN2
help
Build a kernel used for hardware validation. If you include the
keyword "autotest" on the boot command line, the kernel does NOT boot.
Instead, it starts all cpus and runs cache coherency tests instead.
If unsure, say N.
config SERIAL_SGI_L1_PROTOCOL
bool "Enable protocol mode for the L1 console"
depends on IA64_SGI_SN1 || IA64_SGI_SN2
help
Uses protocol mode instead of raw mode for the level 1 console on the
SGI SN (Scalable NUMA) platform for IA64. If you are compiling for
an SGI SN box then Y is the recommended value, otherwise say N.
config PERCPU_IRQ
bool
depends on IA64_SGI_SN1 || IA64_SGI_SN2
default y
config PCIBA
tristate "PCIBA support"
depends on IA64_SGI_SN1 || IA64_SGI_SN2
help
IRIX PCIBA-inspired user mode PCI interface for the SGI SN (Scalable
NUMA) platform for IA64. Unless you are compiling a kernel for an
SGI SN IA64 box, say N.
# On IA-64, we always want an ELF /proc/kcore.
config KCORE_ELF
bool
default y
---help---
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
config FORCE_MAX_ZONEORDER
int
default "18"
config HUGETLB_PAGE
bool "IA-64 Huge TLB Page Support"
choice
prompt "IA-64 Huge TLB Page Size"
depends on HUGETLB_PAGE
default HUGETLB_PAGE_SIZE_16MB
config HUGETLB_PAGE_SIZE_4GB
depends on MCKINLEY
bool "4GB"
config HUGETLB_PAGE_SIZE_256MB
bool "256MB"
config HUGETLB_PAGE_SIZE_64MB
bool "64MB"
config HUGETLB_PAGE_SIZE_16MB
bool "16MB"
config HUGETLB_PAGE_SIZE_4MB
bool "4MB"
config HUGETLB_PAGE_SIZE_1MB
bool "1MB"
config HUGETLB_PAGE_SIZE_256KB
bool "256KB"
endchoice
config SMP
bool "SMP support"
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
Note that if you say Y here and choose architecture "586" or
"Pentium" under "Processor family", the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the "PPro"
architecture may not work on all Pentium based boards.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
Management" code will be disabled if you say Y here.
See also the <file:Documentation/smp.tex>,
<file:Documentation/smp.txt>, <file:Documentation/i386/IO-APIC.txt>,
<file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
<http://www.linuxdoc.org/docs.html#howto>.
If you don't know what to do here, say N.
config IA32_SUPPORT
bool "Support running of Linux/x86 binaries"
help
IA64 processors can run IA32 (that is, x86) binaries by emulating
the IA32 instruction set. Say Y here to build in kernel support for
this. If in doubt, say Y.
config PERFMON
bool "Performance monitor support"
help
Selects whether support for the IA-64 performance monitor hardware
is included in the kernel. This makes some kernel data-structures a
little bigger and slows down execution a bit, but it is still
usually a good idea to turn this on. If you're unsure, say N.
config IA64_PALINFO
tristate "/proc/pal support"
help
If you say Y here, you are able to get PAL (Processor Abstraction
Layer) information in /proc/pal. This contains useful information
about the processors in your systems, such as cache and TLB sizes
and the PAL firmware version in use.
To use this option, you have to check that the "/proc file system
support" (CONFIG_PROC_FS) is enabled, too.
config EFI_VARS
tristate "/proc/efi/vars support"
help
If you say Y here, you are able to get EFI (Extensible Firmware
Interface) variable information in /proc/efi/vars. You may read,
write, create, and destroy EFI variables through this interface.
To use this option, you have to check that the "/proc file system
support" (CONFIG_PROC_FS) is enabled, too.
config NR_CPUS
int "Maximum number of CPUs (2-64)"
depends on SMP
default "64"
config BINFMT_ELF
tristate "Kernel support for ELF binaries"
---help---
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
config BINFMT_MISC
tristate "Kernel support for MISC binaries"
---help---
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
if !IA64_HP_SIM
source "drivers/acpi/Kconfig"
config PCI
bool "PCI support"
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
source "drivers/pci/Kconfig"
config HOTPLUG
bool "Support for hot-pluggable devices"
---help---
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at <http://linux-hotplug.sourceforge.net/>) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
source "drivers/hotplug/Kconfig"
source "drivers/pcmcia/Kconfig"
source "drivers/parport/Kconfig"
endif
endmenu
if !IA64_HP_SIM
source "drivers/mtd/Kconfig"
source "drivers/pnp/Kconfig"
source "drivers/block/Kconfig"
source "drivers/ieee1394/Kconfig"
source "drivers/message/i2o/Kconfig"
source "drivers/md/Kconfig"
source "drivers/message/fusion/Kconfig"
menu "ATA/ATAPI/MFM/RLL support"
config IDE
tristate "ATA/ATAPI/MFM/RLL support"
---help---
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
source "drivers/ide/Kconfig"
endmenu
endif
menu "SCSI support"
config SCSI
tristate "SCSI support"
---help---
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
source "drivers/scsi/Kconfig"
endmenu
source "net/Kconfig"
if !IA64_HP_SIM
menu "Network device support"
depends on NET
config NETDEVICES
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
source "drivers/net/Kconfig"
endmenu
source "net/ax25/Kconfig"
source "drivers/isdn/Kconfig"
menu "CD-ROM drivers (not for SCSI or IDE/ATAPI drives)"
config CD_NO_IDESCSI
bool "Support non-SCSI/IDE/ATAPI CDROM drives"
---help---
If you have a CD-ROM drive that is neither SCSI nor IDE/ATAPI, say Y
here, otherwise N. Read the CD-ROM-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that the answer to this question doesn't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about these CD-ROM drives. If you are unsure what you
have, say Y and find out whether you have one of the following
drives.
For each of these drivers, a file Documentation/cdrom/{driver_name}
exists. Especially in cases where you do not know exactly which kind
of drive you have you should read there. Most of these drivers use a
file drivers/cdrom/{driver_name}.h where you can define your
interface parameters and switch some internal goodies.
All these CD-ROM drivers are also usable as a module ( = code which
can be inserted in and removed from the running kernel whenever you
want). If you want to compile them as module, say M instead of Y and
read <file:Documentation/modules.txt>.
If you want to use any of these CD-ROM drivers, you also have to
answer Y or M to "ISO 9660 CD-ROM file system support" below (this
answer will get "defaulted" for you if you enable any of the Linux
CD-ROM drivers).
source "drivers/cdrom/Kconfig"
endmenu
#
# input before char - char/joystick depends on it. As does USB.
#
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
#source drivers/misc/Config.in
source "drivers/media/Kconfig"
endif
menu "Block devices"
depends on IA64_HP_SIM
config BLK_DEV_LOOP
tristate "Loopback device support"
config BLK_DEV_NBD
tristate "Network block device support"
depends on NET
config BLK_DEV_RAM
tristate "RAM disk support"
config BLK_DEV_RAM_SIZE
int "Default RAM disk size"
depends on BLK_DEV_RAM
default "4096"
endmenu
source "fs/Kconfig"
if !IA64_HP_SIM
menu "Console drivers"
depends on VT
config VGA_CONSOLE
bool "VGA text console"
help
Saying Y here will allow you to use Linux in text mode through a
display that complies with the generic VGA standard. Virtually
everyone wants that.
The program SVGATextMode can be used to utilize SVGA video cards to
their full potential in text mode. Download it from
<ftp://ibiblio.org/pub/Linux/utils/console/>.
Say Y.
source "drivers/video/Kconfig"
config PCI_CONSOLE
bool
depends on FB
default y
endmenu
menu "Sound"
config SOUND
tristate "Sound card support"
---help---
If you have a sound card in your computer, i.e. if it can say more
than an occasional beep, say Y. Be sure to have all the information
about your sound card and its configuration down (I/O port,
interrupt and DMA channel), because you will be asked for it.
You want to read the Sound-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. General information about
the modular sound system is contained in the files
<file:Documentation/sound/Introduction>. The file
<file:Documentation/sound/README.OSS> contains some slightly
outdated but still useful information as well.
If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read
<http://www.roestock.demon.co.uk/isapnptools/>), then you need to
compile the sound card support as a module ( = code which can be
inserted in and removed from the running kernel whenever you want)
and load that module after the PnP configuration is finished. To do
this, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/sound/README.modules>; the module will be
called soundcore.o.
I'm told that even without a sound card, you can make your computer
say more than an occasional beep, by programming the PC speaker.
Kernel patches and supporting utilities to do that are in the pcsp
package, available at <ftp://ftp.infradead.org/pub/pcsp/>.
source "sound/Kconfig"
endmenu
source "drivers/usb/Kconfig"
source "lib/Kconfig"
source "net/bluetooth/Kconfig"
endif
source "arch/ia64/hp/sim/Kconfig"
menu "Kernel hacking"
choice
prompt "Physical memory granularity"
default IA64_GRANULE_64MB
config IA64_GRANULE_16MB
bool "16MB"
help
IA64 identity-mapped regions use a large page size called "granules".
Select "16MB" for a small granule size.
Select "64MB" for a large granule size. This is the current default.
config IA64_GRANULE_64MB
bool "64MB"
endchoice
config DEBUG_KERNEL
bool "Kernel debugging"
help
Say Y here if you are developing drivers or trying to debug and
identify kernel problems.
config KALLSYMS
bool "Load all symbols for debugging/kksymoops"
depends on DEBUG_KERNEL
help
Say Y here to let the kernel print out symbolic crash information and
symbolic stack backtraces. This increases the size of the kernel
somewhat, as all symbols have to be loaded into the kernel image.
config IA64_PRINT_HAZARDS
bool "Print possible IA64 hazards to console"
depends on DEBUG_KERNEL
help
Selecting this option prints more information for Illegal Dependency
Faults, that is, for Read after Write, Write after Write or Write
after Read violations. This option is ignored if you are compiling
for an Itanium A step processor (CONFIG_ITANIUM_ASTEP_SPECIFIC). If
you're unsure, select Y.
config DISABLE_VHPT
bool "Disable VHPT"
depends on DEBUG_KERNEL
help
The Virtual Hash Page Table (VHPT) enhances virtual address
translation performance. Normally you want the VHPT active but you
can select this option to disable the VHPT for debugging. If you're
unsure, answer N.
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on DEBUG_KERNEL
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
config IA64_EARLY_PRINTK
bool "Early printk support"
depends on DEBUG_KERNEL
help
Selecting this option uses the VGA screen for printk() output before
the consoles are initialised. It is useful for debugging problems
early in the boot process, but only if you have a VGA screen
attached. If you're unsure, select N.
config IA64_EARLY_PRINTK_UART
bool "Early printk on MMIO serial port"
depends on IA64_EARLY_PRINTK
config IA64_EARLY_PRINTK_UART_BASE
hex "UART MMIO base address"
depends on IA64_EARLY_PRINTK_UART
default "ff5e0000"
config IA64_EARLY_PRINTK_VGA
bool "Early printk on VGA"
depends on IA64_EARLY_PRINTK
config DEBUG_SLAB
bool "Debug memory allocations"
depends on DEBUG_KERNEL
help
Say Y here to have the kernel do limited verification on memory
allocation as well as poisoning memory on free to catch use of freed
memory.
config DEBUG_SPINLOCK
bool "Spinlock debugging"
depends on DEBUG_KERNEL
help
Say Y here and build SMP to catch missing spinlock initialization
and certain other kinds of spinlock errors commonly made. This is
best used in conjunction with the NMI watchdog so that spinlock
deadlocks are also debuggable.
config IA64_DEBUG_CMPXCHG
bool "Turn on compare-and-exchange bug checking (slow!)"
depends on DEBUG_KERNEL
help
Selecting this option turns on bug checking for the IA64
compare-and-exchange instructions. This is slow! Itaniums
from step B3 or later don't have this problem. If you're unsure,
select N.
config IA64_DEBUG_IRQ
bool "Turn on irq debug checks (slow!)"
depends on DEBUG_KERNEL
help
Selecting this option turns on bug checking for the IA64 irq_save
and restore instructions. It's useful for tracking down spinlock
problems, but slow! If you're unsure, select N.
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
menu "HP Simulator drivers"
depends on IA64_HP_SIM || IA64_GENERIC
config HP_SIMETH
bool "Simulated Ethernet "
config HP_SIMSERIAL
bool "Simulated serial driver support"
config HP_SIMSCSI
bool "Simulated SCSI disk"
depends on SCSI
endmenu
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/config-language.txt.
#
config M68K
bool
default y
config UID16
bool
default y
config RWSEM_GENERIC_SPINLOCK
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
config GENERIC_ISA_DMA
bool
default y
mainmenu "Linux/68k Kernel Configuration"
source "init/Kconfig"
menu "Platform dependent setup"
config EISA
bool
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
config MCA
bool
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
config PCMCIA
tristate
---help---
Say Y here if you want to attach PCMCIA- or PC-cards to your Linux
computer. These are credit-card size devices such as network cards,
modems or hard drives often used with laptops computers. There are
actually two varieties of these cards: the older 16 bit PCMCIA cards
and the newer 32 bit CardBus cards. If you want to use CardBus
cards, you need to say Y here and also to "CardBus support" below.
To use your PC-cards, you will need supporting software from David
Hinds' pcmcia-cs package (see the file <file:Documentation/Changes>
for location). Please also read the PCMCIA-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
When compiled this way, there will be modules called pcmcia_core.o
and ds.o. If you want to compile it as a module, say M here and
read <file:Documentation/modules.txt>.
config AMIGA
bool "Amiga support"
help
This option enables support for the Amiga series of computers. If
you plan to use this kernel on an Amiga, say Y here and browse the
material available in <file:Documentation/m68k>; otherwise say N.
config ATARI
bool "Atari support"
help
This option enables support for the 68000-based Atari series of
computers (including the TT, Falcon and Medusa). If you plan to use
this kernel on an Atari, say Y here and browse the material
available in <file:Documentation/m68k>; otherwise say N.
config HADES
bool "Hades support"
depends on ATARI
help
This option enables support for the Hades Atari clone. If you plan
to use this kernel on a Hades, say Y here; otherwise say N.
config PCI
bool
depends on HADES
default y
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
config MAC
bool "Macintosh support"
help
This option enables support for the Apple Macintosh series of
computers (yes, there is experimental support now, at least for part
of the series).
Say N unless you're willing to code the remaining necessary support.
;)
config NUBUS
bool
depends on MAC
default y
config M68K_L2_CACHE
bool
depends on MAC
default y
config APOLLO
bool "Apollo support"
help
Say Y here if you want to run Linux on an MC680x0-based Apollo
Domain workstation such as the DN3500.
config VME
bool "VME (Motorola and BVM) support"
help
Say Y here if you want to build a kernel for a 680x0 based VME
board. Boards currently supported include Motorola boards MVME147,
MVME162, MVME166, MVME167, MVME172, and MVME177. BVME4000 and
BVME6000 boards from BVM Ltd are also supported.
config MVME147
bool "MVME147 support"
depends on VME
help
Say Y to include support for early Motorola VME boards. This will
build a kernel which can run on MVME147 single-board computers. If
you select this option you will have to select the appropriate
drivers for SCSI, Ethernet and serial ports later on.
config MVME16x
bool "MVME162, 166 and 167 support"
depends on VME
help
Say Y to include support for Motorola VME boards. This will build a
kernel which can run on MVME162, MVME166, MVME167, MVME172, and
MVME177 boards. If you select this option you will have to select
the appropriate drivers for SCSI, Ethernet and serial ports later
on.
config BVME6000
bool "BVME4000 and BVME6000 support"
depends on VME
help
Say Y to include support for VME boards from BVM Ltd. This will
build a kernel which can run on BVME4000 and BVME6000 boards. If
you select this option you will have to select the appropriate
drivers for SCSI, Ethernet and serial ports later on.
config HP300
bool "HP9000/300 support"
help
This option enables support for the HP9000/300 series of
workstations. Support for these machines is still very experimental.
If you plan to try to use the kernel on such a machine say Y here.
Everybody else says N.
config DIO
bool "DIO bus support"
depends on HP300
help
Say Y here to enable support for the "DIO" expansion bus used in
HP300 machines. If you are using such a system you almost certainly
want this.
config SUN3X
bool "Sun3x support"
help
This option enables support for the Sun 3x series of workstations.
Be warned that this support is very experimental. You will also want
to say Y to 68020 support and N to the other processors below.
General Linux information on the Sun 3x series (now discontinued)
is at <http://www.angelfire.com/ca2/tech68k/sun3.html>.
If you don't want to compile a kernel for a Sun 3x, say N.
config SUN3
bool "Sun3 support"
help
This option enables support for the Sun 3 series of workstations.
Currently, only the Sun 3/80 is supported within the Sun 3x family.
You will also want to enable 68030 support. General Linux
information on the Sun 3x series (now discontinued) is at
<http://www.angelfire.com/ca2/tech68k/sun3.html>.
If you don't want to compile a kernel for a Sun 3, say N.
config Q40
bool "Q40/Q60 support"
help
The Q40 is a Motorola 68040-based successor to the Sinclair QL
manufactured in Germany. There is an official Q40 home page at
<http://www.q40.de/>. This option enables support for the Q40 and
Q60. Select your CPU below. For 68LC060 don't forget to enable FPU
emulation.
comment "Processor type"
config M68020
bool "68020 support"
help
If you anticipate running this kernel on a computer with a MC68020
processor, say Y. Otherwise, say N. Note that the 68020 requires a
68851 MMU (Memory Management Unit) to run Linux/m68k, except on the
Sun 3, which provides its own version.
config M68030
bool "68030 support"
help
If you anticipate running this kernel on a computer with a MC68030
processor, say Y. Otherwise, say N. Note that a MC68EC030 will not
work, as it does not include an MMU (Memory Management Unit).
config M68040
bool "68040 support"
help
If you anticipate running this kernel on a computer with a MC68LC040
or MC68040 processor, say Y. Otherwise, say N. Note that an
MC68EC040 will not work, as it does not include an MMU (Memory
Management Unit).
config M68060
bool "68060 support"
help
If you anticipate running this kernel on a computer with a MC68060
processor, say Y. Otherwise, say N.
config M68KFPU_EMU
bool "Math emulation support (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
At some point in the future, this will cause floating-point math
instructions to be emulated by the kernel on machines that lack a
floating-point math coprocessor. Thrill-seekers and chronically
sleep-deprived psychotic hacker types can say Y now, everyone else
should probably wait a while.
config M68KFPU_EMU_EXTRAPREC
bool "Math emulation extra precision"
depends on M68KFPU_EMU
help
The fpu uses normally a few bit more during calculations for
correct rounding, the emulator can (often) do the same but this
extra calculation can cost quite some time, so you can disable
it here. The emulator will then "only" calculate with a 64 bit
mantissa and round slightly incorrect, what is more then enough
for normal usage.
config M68KFPU_EMU_ONLY
bool "Math emulation only kernel"
depends on M68KFPU_EMU
help
This option prevents any floating-point instructions from being
compiled into the kernel, thereby the kernel doesn't save any
floating point context anymore during task switches, so this
kernel will only be usable on machines without a floating-point
math coprocessor. This makes the kernel a bit faster as no tests
needs to be executed whether a floating-point instruction in the
kernel should be executed or not.
config ADVANCED
bool "Advanced configuration options"
---help---
This gives you access to some advanced options for the CPU. The
defaults should be fine for most users, but these options may make
it possible for you to improve performance somewhat if you know what
you are doing.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about these options.
Most users should say N to this question.
config RMW_INSNS
bool "Use read-modify-write instructions"
depends on ADVANCED
---help---
This allows to use certain instructions that work with indivisible
read-modify-write bus cycles. While this is faster than the
workaround of disabling interrupts, it can conflict with DMA
( = direct memory access) on many Amiga systems, and it is also said
to destabilize other machines. It is very likely that this will
cause serious problems on any Amiga or Atari Medusa if set. The only
configuration where it should work are 68030-based Ataris, where it
apparently improves performance. But you've been warned! Unless you
really know what you are doing, say N. Try Y only if you're quite
adventurous.
config SINGLE_MEMORY_CHUNK
bool "Use one physical chunk of memory only"
depends on ADVANCED && !SUN3
help
Ignore all but the first contiguous chunk of physical memory for VM
purposes. This will save a few bytes kernel size and may speed up
some operations. Say N if not sure.
config 060_WRITETHROUGH
bool "Use write-through caching for 68060 supervisor accesses"
depends on ADVANCED && M68060
---help---
The 68060 generally uses copyback caching of recently accessed data.
Copyback caching means that memory writes will be held in an on-chip
cache and only written back to memory some time later. Saying Y
here will force supervisor (kernel) accesses to use writethrough
caching. Writethrough caching means that data is written to memory
straight away, so that cache and memory data always agree.
Writethrough caching is less efficient, but is needed for some
drivers on 68060 based systems where the 68060 bus snooping signal
is hardwired on. The 53c710 SCSI driver is known to suffer from
this problem.
endmenu
menu "General setup"
choice
prompt "Kernel core (/proc/kcore) format"
depends on PROC_FS
default KCORE_ELF
config KCORE_ELF
bool "ELF"
---help---
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
config KCORE_AOUT
bool "A.OUT"
help
Not necessary unless you're using a very out-of-date binutils
version. You probably want KCORE_ELF.
endchoice
config BINFMT_AOUT
tristate "Kernel support for a.out binaries"
---help---
A.out (Assembler.OUTput) is a set of formats for libraries and
executables used in the earliest versions of UNIX. Linux used the
a.out formats QMAGIC and ZMAGIC until they were replaced with the
ELF format.
As more and more programs are converted to ELF, the use for a.out
will gradually diminish. If you disable this option it will reduce
your kernel by one page. This is not much and by itself does not
warrant removing support. However its removal is a good idea if you
wish to ensure that absolutely none of your programs will use this
older executable format. If you don't know what to answer at this
point then answer Y. If someone told you "You need a kernel with
QMAGIC support" then you'll have to say Y here. You may answer M to
compile a.out support as a module and later load the module when you
want to use a program or library in a.out format. The module will be
called binfmt_aout.o. Saying M or N here is dangerous though,
because some crucial programs on your system might still be in A.OUT
format.
config BINFMT_ELF
tristate "Kernel support for ELF binaries"
---help---
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
config BINFMT_MISC
tristate "Kernel support for MISC binaries"
---help---
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
config ZORRO
bool "Amiga Zorro (AutoConfig) bus support"
depends on AMIGA
help
This enables support for the Zorro bus in the Amiga. If you have
expansion cards in your Amiga that conform to the Amiga
AutoConfig(tm) specification, say Y, otherwise N. Note that even
expansion cards that do not fit in the Zorro slots but fit in e.g.
the CPU slot may fall in this category, so you have to say Y to let
Linux use these.
config AMIGA_PCMCIA
bool "Amiga 1200/600 PCMCIA support (EXPERIMENTAL)"
depends on AMIGA && EXPERIMENTAL
help
Include support in the kernel for pcmcia on Amiga 1200 and Amiga
600. If you intend to use pcmcia cards say Y; otherwise say N.
config STRAM_SWAP
bool "Support for ST-RAM as swap space"
depends on ATARI
---help---
Some Atari 68k macines (including the 520STF and 1020STE) divide
their addressible memory into ST and TT sections. The TT section
(up to 512MB) is the main memory; the ST section (up to 4MB) is
accessible to the built-in graphics board, runs slower, and is
present mainly for backward compatibility with older machines.
This enables support for using (parts of) ST-RAM as swap space,
instead of as normal system memory. This can first enhance system
performance if you have lots of alternate RAM (compared to the size
of ST-RAM), because executable code always will reside in faster
memory. ST-RAM will remain as ultra-fast swap space. On the other
hand, it allows much improved dynamic allocations of ST-RAM buffers
for device driver modules (e.g. floppy, ACSI, SLM printer, DMA
sound). The probability that such allocations at module load time
fail is drastically reduced.
config STRAM_PROC
bool "ST-RAM statistics in /proc"
depends on ATARI
help
Say Y here to report ST-RAM usage statistics in /proc/stram. See
the help for CONFIG_STRAM_SWAP for discussion of ST-RAM and its
uses.
config HEARTBEAT
bool "Use power LED as a heartbeat" if AMIGA || ATARI || Q40
default y if !AMIGA && !ATARI && !Q40 && HP300
help
Use the power-on LED on your machine as a load meter. The exact
behavior is platform-dependent, but normally the flash frequency is
a hyperbolic function of the 5-minute load average.
# We have a dedicated heartbeat LED. :-)
config PROC_HARDWARE
bool "/proc/hardware support"
help
Say Y here to support the /proc/hardware file, which gives you
access to information about the machine you're running on,
including the model, CPU, MMU, clock speed, BogoMIPS rating,
and memory size.
config PARPORT
tristate "Parallel port support (EXPERIMENTAL)"
depends on EXPERIMENTAL
---help---
If you want to use devices connected to your machine's parallel port
(the connector at the computer with 25 holes), e.g. printer, ZIP
drive, PLIP link (Parallel Line Internet Protocol is mainly used to
create a mini network by connecting the parallel ports of two local
machines) etc., then you need to say Y here; please read
<file:Documentation/parport.txt> and
<file:drivers/parport/BUGS-parport>.
For extensive information about drivers for many devices attaching
to the parallel port see <http://www.torque.net/linux-pp.html> on
the WWW.
It is possible to share a single parallel port among several devices
and it is safe to compile all the corresponding drivers into the
kernel. If you want to compile parallel port support as a module
( = code which can be inserted in and removed from the running
kernel whenever you want), say M here and read
<file:Documentation/modules.txt>. The module will be called
parport.o. If you have more than one parallel port and want to
specify which port and IRQ to be used by this driver at module load
time, take a look at <file:Documentation/parport.txt>.
If unsure, say Y.
config PARPORT_AMIGA
tristate "Amiga builtin port"
depends on AMIGA && PARPORT
help
Say Y here if you need support for the parallel port hardware on
Amiga machines. This code is also available as a module (say M),
called parport_amiga.o. If in doubt, saying N is the safe plan.
config PARPORT_MFC3
tristate "Multiface III parallel port"
depends on ZORRO && PARPORT
help
Say Y here if you need parallel port support for the MFC3 card.
This code is also available as a module (say M), called
parport_mfc3.o. If in doubt, saying N is the safe plan.
config PARPORT_PC
bool
depends on Q40 && PARPORT
default y
---help---
You should say Y here if you have a PC-style parallel port. All IBM
PC compatible computers and some Alphas have PC-style parallel
ports.
This code is also available as a module. If you want to compile it
as a module ( = code which can be inserted in and removed from the
running kernel whenever you want), say M here and read
<file:Documentation/modules.txt>. The module will be called
parport_pc.o.
If unsure, say Y.
config PARPORT_ATARI
tristate "Atari builtin port"
depends on ATARI && PARPORT
help
Say Y here if you need support for the parallel port hardware on
Atari machines. This code is also available as a module (say M),
called parport_atari.o. If in doubt, saying N is the safe plan.
config PRINTER
tristate "Parallel printer support"
depends on PARPORT
---help---
If you intend to attach a printer to the parallel port of your Linux
box (as opposed to using a serial printer; if the connector at the
printer has 9 or 25 holes ["female"], then it's serial), say Y.
Also read the Printing-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
It is possible to share one parallel port among several devices
(e.g. printer and ZIP drive) and it is safe to compile the
corresponding drivers into the kernel. If you want to compile this
driver as a module however ( = code which can be inserted in and
removed from the running kernel whenever you want), say M here and
read <file:Documentation/modules.txt> and
<file:Documentation/parport.txt>. The module will be called lp.o.
If you have several parallel ports, you can specify which ports to
use with the "lp" kernel command line option. (Try "man bootparam"
or see the documentation of your boot loader (lilo or loadlin) about
how to pass options to the kernel at boot time.) The syntax of the
"lp" command line option can be found in <file:drivers/char/lp.c>.
If you have more than 8 printers, you need to increase the LP_NO
macro in lp.c and the PARPORT_MAX macro in parport.h.
config PARPORT_1284
bool "IEEE 1284 transfer modes"
depends on PRINTER
help
If you have a printer that supports status readback or device ID, or
want to use a device that uses enhanced parallel port transfer modes
such as EPP and ECP, say Y here to enable advanced IEEE 1284
transfer modes. Also say Y if you want device ID information to
appear in /proc/sys/dev/parport/*/autoprobe*. It is safe to say N.
config ISA
bool
depends on Q40 || AMIGA_PCMCIA || GG2
default y
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
source "drivers/pci/Kconfig"
source "drivers/zorro/Kconfig"
if Q40
source "drivers/pnp/Kconfig"
endif
endmenu
source "drivers/mtd/Kconfig"
source "drivers/block/Kconfig"
source "drivers/md/Kconfig"
if MAC
source "drivers/input/Kconfig"
endif
menu "ATA/ATAPI/MFM/RLL device support"
config IDE
tristate "ATA/ATAPI/MFM/RLL device support"
---help---
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
source "drivers/ide/Kconfig"
endmenu
menu "SCSI device support"
config SCSI
tristate "SCSI device support"
---help---
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
comment "SCSI support type (disk, tape, CD-ROM)"
depends on SCSI
config BLK_DEV_SD
tristate "SCSI disk support"
depends on SCSI
---help---
If you want to use a SCSI hard disk or the SCSI or parallel port
version of the IOMEGA ZIP drive under Linux, say Y and read the
SCSI-HOWTO, the Disk-HOWTO and the Multi-Disk-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. This is NOT for SCSI
CD-ROMs.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called sd_mod.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. Do not compile this driver as a
module if your root file system (the one containing the directory /)
is located on a SCSI disk. In this case, do not compile the driver
for your SCSI host adapter (below) as a module either.
config SD_EXTRA_DEVS
int "Maximum number of SCSI disks that can be loaded as modules"
depends on BLK_DEV_SD
default "40"
---help---
This controls the amount of additional space allocated in tables for
drivers that are loaded as modules after the kernel is booted. In
the event that the SCSI core itself was loaded as a module, this
value is the number of additional disks that can be loaded after the
first host driver is loaded.
Admittedly this isn't pretty, but there are tons of race conditions
involved with resizing the internal arrays on the fly. Someday this
flag will go away, and everything will work automatically.
If you don't understand what's going on, go with the default.
config CHR_DEV_ST
tristate "SCSI tape support"
depends on SCSI
---help---
If you want to use a SCSI tape drive under Linux, say Y and read the
SCSI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, and
<file:drivers/scsi/README.st> in the kernel source. This is NOT for
SCSI CD-ROMs.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called st.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>.
config ST_EXTRA_DEVS
int "Maximum number of SCSI tapes that can be loaded as modules"
depends on CHR_DEV_ST
default "2"
---help---
This controls the amount of additional space allocated in tables for
drivers that are loaded as modules after the kernel is booted. In
the event that the SCSI core itself was loaded as a module, this
value is the number of additional tapes that can be loaded after the
first host driver is loaded.
Admittedly this isn't pretty, but there are tons of race conditions
involved with resizing the internal arrays on the fly. Someday this
flag will go away, and everything will work automatically.
If you don't understand what's going on, go with the default.
config BLK_DEV_SR
tristate "SCSI CDROM support"
depends on SCSI
---help---
If you want to use a SCSI CD-ROM under Linux, say Y and read the
SCSI-HOWTO and the CD-ROM-HOWTO at
<http://www.linuxdoc.org/docs.html#howto>. Also make sure to say Y
or M to "ISO 9660 CD-ROM file system support" later.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called sr_mod.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>.
config BLK_DEV_SR_VENDOR
bool "Enable vendor-specific extensions (for SCSI CDROM)"
depends on BLK_DEV_SR
help
This enables the usage of vendor specific SCSI commands. This is
required to support multisession CDs with old NEC/TOSHIBA cdrom
drives (and HP Writers). If you have such a drive and get the first
session only, try saying Y here; everybody else says N.
config SR_EXTRA_DEVS
int "Maximum number of CDROM devices that can be loaded as modules"
depends on BLK_DEV_SR
default "2"
---help---
This controls the amount of additional space allocated in tables for
drivers that are loaded as modules after the kernel is booted. In
the event that the SCSI core itself was loaded as a module, this
value is the number of additional CD-ROMs that can be loaded after
the first host driver is loaded.
Admittedly this isn't pretty, but there are tons of race conditions
involved with resizing the internal arrays on the fly. Someday this
flag will go away, and everything will work automatically.
If you don't understand what's going on, go with the default.
config CHR_DEV_SG
tristate "SCSI generic support"
depends on SCSI
---help---
If you want to use SCSI scanners, synthesizers or CD-writers or just
about anything having "SCSI" in its name other than hard disks,
CD-ROMs or tapes, say Y here. These won't be supported by the kernel
directly, so you need some additional software which knows how to
talk to these devices using the SCSI protocol:
For scanners, look at SANE (<http://www.mostang.com/sane/>). For CD
writer software look at Cdrtools
(<http://www.fokus.gmd.de/research/cc/glone/employees/joerg.schilling/private/cdrecord.html>)
and for burning a "disk at once": CDRDAO
(<http://cdrdao.sourceforge.net/>). Cdparanoia is a high
quality digital reader of audio CDs (<http://www.xiph.org/paranoia/>).
For other devices, it's possible that you'll have to write the
driver software yourself. Please read the file
<file:Documentation/scsi-generic.txt> for more information.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. The module will be called sg.o. If unsure,
say N.
comment "Some SCSI devices (e.g. CD jukebox) support multiple LUNs"
depends on SCSI
config SCSI_MULTI_LUN
bool "Probe all LUNs on each SCSI device"
depends on SCSI
help
If you have a SCSI device that supports more than one LUN (Logical
Unit Number), e.g. a CD jukebox, and only one LUN is detected, you
can say Y here to force the SCSI driver to probe for multiple LUNs.
A SCSI device with multiple LUNs acts logically like multiple SCSI
devices. The vast majority of SCSI devices have only one LUN, and
so most people can say N here and should in fact do so, because it
is safer.
config SCSI_CONSTANTS
bool "Verbose SCSI error reporting (kernel size +=12K)"
depends on SCSI
help
The error messages regarding your SCSI hardware will be easier to
understand if you say Y here; it will enlarge your kernel by about
12 KB. If in doubt, say Y.
config SCSI_LOGGING
bool "SCSI logging facility"
depends on SCSI
---help---
This turns on a logging facility that can be used to debug a number
of SCSI related problems.
If you say Y here, no logging output will appear by default, but you
can enable logging by saying Y to "/proc file system support" and
"Sysctl support" below and executing the command
echo "scsi log token [level]" > /proc/scsi/scsi
at boot time after the /proc file system has been mounted.
There are a number of things that can be used for 'token' (you can
find them in the source: <file:drivers/scsi/scsi.c>), and this
allows you to select the types of information you want, and the
level allows you to select the level of verbosity.
If you say N here, it may be harder to track down some types of SCSI
problems. If you say Y here your kernel will be somewhat larger, but
there should be no noticeable performance impact as long as you have
logging turned off.
menu "SCSI low-level drivers"
depends on SCSI!=n
config A3000_SCSI
tristate "A3000 WD33C93A support"
depends on AMIGA && SCSI
help
If you have an Amiga 3000 and have SCSI devices connected to the
built-in SCSI controller, say Y. Otherwise, say N. This driver is
also available as a module ( = code which can be inserted in and
removed from the running kernel whenever you want). The module is
called wd33c93.o. If you want to compile it as a module, say M here
and read <file:Documentation/modules.txt>.
config A4000T_SCSI
bool "A4000T SCSI support (EXPERIMENTAL)"
depends on AMIGA && EXPERIMENTAL
help
Support for the NCR53C710 SCSI controller on the Amiga 4000T.
config A2091_SCSI
tristate "A2091 WD33C93A support"
depends on ZORRO && SCSI
help
If you have a Commodore A2091 SCSI controller, say Y. Otherwise,
say N. This driver is also available as a module ( = code which can
be inserted in and removed from the running kernel whenever you
want). The module is called wd33c93.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
config GVP11_SCSI
tristate "GVP Series II WD33C93A support"
depends on ZORRO && SCSI
---help---
If you have a Great Valley Products Series II SCSI controller,
answer Y. Also say Y if you have a later model of GVP SCSI
controller (such as the GVP A4008 or a Combo board). Otherwise,
answer N. This driver does NOT work for the T-Rex series of
accelerators from TekMagic and GVP-M.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you
want). The module will be called gvp11.o. If you want to compile it
as a module, say M here and read <file:Documentation/modules.txt>.
config CYBERSTORM_SCSI
tristate "CyberStorm SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga with an original (MkI) Phase5 Cyberstorm
accelerator board and the optional Cyberstorm SCSI controller,
answer Y. Otherwise, say N.
config CYBERSTORMII_SCSI
tristate "CyberStorm Mk II SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga with a Phase5 Cyberstorm MkII accelerator board
and the optional Cyberstorm SCSI controller, say Y. Otherwise,
answer N.
config BLZ2060_SCSI
tristate "Blizzard 2060 SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga with a Phase5 Blizzard 2060 accelerator board
and want to use the onboard SCSI controller, say Y. Otherwise,
answer N.
config BLZ1230_SCSI
tristate "Blizzard 1230IV/1260 SCSI support"
depends on ZORRO && SCSI
help
If you have an Amiga 1200 with a Phase5 Blizzard 1230IV or Blizzard
1260 accelerator, and the optional SCSI module, say Y. Otherwise,
say N.
config FASTLANE_SCSI
tristate "Fastlane SCSI support"
depends on ZORRO && SCSI
help
If you have the Phase5 Fastlane Z3 SCSI controller, or plan to use
one in the near future, say Y to this question. Otherwise, say N.
config A4091_SCSI
bool "A4091 SCSI support (EXPERIMENTAL)"
depends on ZORRO && EXPERIMENTAL
help
Support for the NCR53C710 chip on the Amiga 4091 Z3 SCSI2 controller
(1993). Very obscure -- the 4091 was part of an Amiga 4000 upgrade
plan at the time the Amiga business was sold to DKB.
config WARPENGINE_SCSI
bool "WarpEngine SCSI support (EXPERIMENTAL)"
depends on ZORRO && EXPERIMENTAL
help
Support for MacroSystem Development's WarpEngine Amiga SCSI-2
controller. Info at
<http://www.lysator.liu.se/amiga/ar/guide/ar310.guide?FEATURE5>.
config BLZ603EPLUS_SCSI
bool "Blizzard PowerUP 603e+ SCSI (EXPERIMENTAL)"
depends on ZORRO && EXPERIMENTAL
help
If you have an Amiga 1200 with a Phase5 Blizzard PowerUP 603e+
accelerator, say Y. Otherwise, say N.
config OKTAGON_SCSI
tristate "BSC Oktagon SCSI support (EXPERIMENTAL)"
depends on ZORRO && EXPERIMENTAL && SCSI
help
If you have the BSC Oktagon SCSI disk controller for the Amiga, say
Y to this question. If you're in doubt about whether you have one,
see the picture at
<http://amiga.multigraph.com/photos/oktagon.html>.
# bool 'Cyberstorm Mk III SCSI support (EXPERIMENTAL)' CONFIG_CYBERSTORMIII_SCSI
# bool 'GVP Turbo 040/060 SCSI support (EXPERIMENTAL)' CONFIG_GVP_TURBO_SCSI
config ATARI_SCSI
tristate "Atari native SCSI support"
depends on ATARI && SCSI
---help---
If you have an Atari with built-in NCR5380 SCSI controller (TT,
Falcon, ...) say Y to get it supported. Of course also, if you have
a compatible SCSI controller (e.g. for Medusa). This driver is also
available as a module ( = code which can be inserted in and removed
from the running kernel whenever you want). The module is called
atari_scsi.o. If you want to compile it as a module, say M here and
read <file:Documentation/modules.txt>. This driver supports both
styles of NCR integration into the system: the TT style (separate
DMA), and the Falcon style (via ST-DMA, replacing ACSI). It does
NOT support other schemes, like in the Hades (without DMA).
config ATARI_SCSI_TOSHIBA_DELAY
bool "Long delays for Toshiba CD-ROMs"
depends on ATARI_SCSI
help
This option increases the delay after a SCSI arbitration to
accommodate some flaky Toshiba CD-ROM drives. Say Y if you intend to
use a Toshiba CD-ROM drive; otherwise, the option is not needed and
would impact performance a bit, so say N.
config ATARI_SCSI_RESET_BOOT
bool "Reset SCSI-devices at boottime"
depends on ATARI_SCSI
help
Reset the devices on your Atari whenever it boots. This makes the
boot process fractionally longer but may assist recovery from errors
that leave the devices with SCSI operations partway completed.
config TT_DMA_EMUL
bool "Hades SCSI DMA emulator"
depends on ATARI_SCSI && HADES
help
This option enables code which emulates the TT SCSI DMA chip on the
Hades. This increases the SCSI transfer rates at least ten times
compared to PIO transfers.
config MAC_SCSI
bool "Macintosh NCR5380 SCSI"
depends on MAC
help
This is the NCR 5380 SCSI controller included on most of the 68030
based Macintoshes. If you have one of these say Y and read the
SCSI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
config SCSI_MAC_ESP
tristate "Macintosh NCR53c9[46] SCSI"
depends on MAC && SCSI
help
This is the NCR 53c9x SCSI controller found on most of the 68040
based Macintoshes. If you have one of these say Y and read the
SCSI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called mac_esp.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
# dep_tristate 'SCSI debugging host adapter' CONFIG_SCSI_DEBUG $CONFIG_SCSI
config MVME147_SCSI
bool "WD33C93 SCSI driver for MVME147"
depends on MVME147
help
Support for the on-board SCSI controller on the Motorola MVME147
single-board computer.
config MVME16x_SCSI
bool "NCR53C710 SCSI driver for MVME16x"
depends on MVME16x
help
The Motorola MVME162, 166, 167, 172 and 177 boards use the NCR53C710
SCSI controller chip. Almost everyone using one of these boards
will want to say Y to this question.
config BVME6000_SCSI
bool "NCR53C710 SCSI driver for BVME6000"
depends on BVME6000
help
The BVME4000 and BVME6000 boards from BVM Ltd use the NCR53C710
SCSI controller chip. Almost everyone using one of these boards
will want to say Y to this question.
config SUN3_SCSI
tristate "Sun3 NCR5380 SCSI"
depends on SUN3 && SCSI
help
This option will enable support for the OBIO (onboard io) NCR5380
SCSI controller found in the Sun 3/50 and 3/60. Note that this
driver does not provide support for VME SCSI boards.
General Linux information on the Sun 3 series (now discontinued)
is at <http://www.angelfire.com/ca2/tech68k/sun3.html>.
config SUN3X_ESP
bool "Sun3x ESP SCSI"
depends on SUN3X
help
The ESP was an on-board SCSI controller used on Sun 3/80
machines. Say Y here to compile in support for it.
endmenu
endmenu
source "net/Kconfig"
menu "Network device support"
depends on NET
config NETDEVICES
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
#
# Network device configuration
#
config DUMMY
tristate "Dummy net driver support"
depends on NETDEVICES
---help---
This is essentially a bit-bucket device (i.e. traffic you send to
this device is consigned into oblivion) with a configurable IP
address. It is most commonly used in order to make your currently
inactive SLIP address seem like a real address for local programs.
If you use SLIP or PPP, you might want to say Y here. Since this
thing often comes in handy, the default is Y. It won't enlarge your
kernel either. What a deal. Read about it in the Network
Administrator's Guide, available from
<http://www.linuxdoc.org/docs.html#guide>.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called dummy.o. If you want to use more than one dummy
device at a time, you need to compile this driver as a module.
Instead of 'dummy', the devices will then be called 'dummy0',
'dummy1' etc.
config SLIP
tristate "SLIP (serial line) support"
depends on NETDEVICES
---help---
Say Y if you intend to use SLIP or CSLIP (compressed SLIP) to
connect to your Internet service provider or to connect to some
other local Unix box or if you want to configure your Linux box as a
Slip/CSlip server for other people to dial in. SLIP (Serial Line
Internet Protocol) is a protocol used to send Internet traffic over
serial connections such as telephone lines or null modem cables;
nowadays, the protocol PPP is more commonly used for this same
purpose.
Normally, your access provider has to support SLIP in order for you
to be able to use it, but there is now a SLIP emulator called SLiRP
around (available from
<ftp://ibiblio.org/pub/Linux/system/network/serial/>) which
allows you to use SLIP over a regular dial up shell connection. If
you plan to use SLiRP, make sure to say Y to CSLIP, below. The
NET-3-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, explains how to
configure SLIP. Note that you don't need this option if you just
want to run term (term is a program which gives you almost full
Internet connectivity if you have a regular dial up shell account on
some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>). SLIP
support will enlarge your kernel by about 4 KB. If unsure, say N.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt> as well as
<file:Documentation/networking/net-modules.txt>. The module will be
called slip.o.
config SLIP_COMPRESSED
bool "CSLIP compressed headers"
depends on SLIP
---help---
This protocol is faster than SLIP because it uses compression on the
TCP/IP headers (not on the data itself), but it has to be supported
on both ends. Ask your access provider if you are not sure and
answer Y, just in case. You will still be able to use plain SLIP. If
you plan to use SLiRP, the SLIP emulator (available from
<ftp://ibiblio.org/pub/Linux/system/network/serial/>) which
allows you to use SLIP over a regular dial up shell connection, you
definitely want to say Y here. The NET-3-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, explains how to configure
CSLIP. This won't enlarge your kernel.
config SLIP_SMART
bool "Keepalive and linefill"
depends on SLIP
help
Adds additional capabilities to the SLIP driver to support the
RELCOM line fill and keepalive monitoring. Ideal on poor quality
analogue lines.
config SLIP_MODE_SLIP6
bool "Six bit SLIP encapsulation"
depends on SLIP
help
Just occasionally you may need to run IP over hostile serial
networks that don't pass all control characters or are only seven
bit. Saying Y here adds an extra mode you can use with SLIP:
"slip6". In this mode, SLIP will only send normal ASCII symbols over
the serial device. Naturally, this has to be supported at the other
end of the link as well. It's good enough, for example, to run IP
over the async ports of a Camtec JNT Pad. If unsure, say N.
config PPP
tristate "PPP (point-to-point protocol) support"
depends on NETDEVICES
---help---
PPP (Point to Point Protocol) is a newer and better SLIP. It serves
the same purpose: sending Internet traffic over telephone (and other
serial) lines. Ask your access provider if they support it, because
otherwise you can't use it; most Internet access providers these
days support PPP rather than SLIP.
To use PPP, you need an additional program called pppd as described
in the PPP-HOWTO, available at
<http://www.linuxdoc.org/docs.html#howto>. Make sure that you have
the version of pppd recommended in <file:Documentation/Changes>.
The PPP option enlarges your kernel by about 16 KB.
There are actually two versions of PPP: the traditional PPP for
asynchronous lines, such as regular analog phone lines, and
synchronous PPP which can be used over digital ISDN lines for
example. If you want to use PPP over phone lines or other
asynchronous serial lines, you need to say Y (or M) here and also to
the next option, "PPP support for async serial ports". For PPP over
synchronous lines, you should say Y (or M) here and to "Support
synchronous PPP", below.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
If you said Y to "Version information on all symbols" above, then
you cannot compile the PPP driver into the kernel; you can then only
compile it as a module. The module will be called ppp_generic.o.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt> as well as
<file:Documentation/networking/net-modules.txt>.
config PPP_MULTILINK
bool "PPP multilink support (EXPERIMENTAL)"
depends on PPP && EXPERIMENTAL
config PPP_FILTER
bool "PPP filtering"
depends on PPP && FILTER
config PPP_ASYNC
tristate "PPP support for async serial ports"
depends on PPP
config PPP_SYNC_TTY
tristate "PPP support for sync tty ports"
depends on PPP
config PPP_DEFLATE
tristate "PPP Deflate compression"
depends on PPP
config PPP_BSDCOMP
tristate "PPP BSD-Compress compression"
depends on PPP
config PPPOE
tristate "PPP over Ethernet (EXPERIMENTAL)"
depends on EXPERIMENTAL && PPP
config EQUALIZER
tristate "EQL (serial line load balancing) support"
depends on NETDEVICES
---help---
If you have two serial connections to some other computer (this
usually requires two modems and two telephone lines) and you use
SLIP (the protocol for sending Internet traffic over telephone
lines) or PPP (a better SLIP) on them, you can make them behave like
one double speed connection using this driver. Naturally, this has
to be supported at the other end as well, either with a similar EQL
Linux driver or with a Livingston Portmaster 2e.
Say Y if you want this and read
<file:Documentation/networking/eql.txt>. You may also want to read
section 6.2 of the NET-3-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called eql.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>. If
unsure, say N.
config ARIADNE
tristate "Ariadne support"
depends on NETDEVICES && ZORRO
help
If you have a Village Tronic Ariadne Ethernet adapter, say Y.
Otherwise, say N.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you
want). The module is called ariadne.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
config ARIADNE2
tristate "Ariadne II support"
depends on NETDEVICES && ZORRO
help
This driver is for the Village Tronic Ariadne II and the Individual
Computers X-Surf Ethernet cards. If you have such a card, say Y.
Otherwise, say N.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called ariadne2.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
config A2065
tristate "A2065 support"
depends on NETDEVICES && ZORRO
help
If you have a Commodore A2065 Ethernet adapter, say Y. Otherwise,
say N.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you
want). The module is called a2065.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config HYDRA
tristate "Hydra support"
depends on NETDEVICES && ZORRO
help
If you have a Hydra Ethernet adapter, say Y. Otherwise, say N.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you
want). The module is called hydra.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config APNE
tristate "PCMCIA NE2000 support"
depends on NETDEVICES && AMIGA_PCMCIA
help
If you have a PCMCIA NE2000 compatible adapter, say Y. Otherwise,
say N.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you
want). The module is called apne.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config APOLLO_ELPLUS
tristate "Apollo 3c505 support"
depends on NETDEVICES && APOLLO
help
Say Y or M here if your Apollo has a 3Com 3c505 ISA Ethernet card.
If you don't have one made for Apollos, you can use one from a PC,
except that your Apollo won't be able to boot from it (because the
code in the ROM will be for a PC).
config MAC8390
bool "Macintosh NS 8390 based ethernet cards"
depends on NETDEVICES && MAC
help
If you want to include a driver to support Nubus or LC-PDS
Ethernet cards using an NS8390 chipset or its equivalent, say Y
and read the Ethernet-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
config MACSONIC
tristate "Macintosh SONIC based ethernet (onboard, NuBus, LC, CS)"
depends on NETDEVICES && MAC
---help---
Support for NatSemi SONIC based Ethernet devices. This includes
the onboard Ethernet in many Quadras as well as some LC-PDS,
a few Nubus and all known Comm Slot Ethernet cards. If you have
one of these say Y and read the Ethernet-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt> as well as
<file:Documentation/networking/net-modules.txt>. This module will
be called macsonic.o.
config SMC9194
tristate "Macintosh SMC 9194 based ethernet cards"
depends on NETDEVICES && MAC
---help---
This is support for the SMC9xxx based Ethernet cards. Choose this
option if you have a DELL laptop with the docking station, or
another SMC9192/9194 based chipset. Say Y if you want it compiled
into the kernel, and read the file
<file:Documentation/networking/smc9.txt> and the Ethernet-HOWTO,
available from <http://www.linuxdoc.org/docs.html#howto>.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called smc9194.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/networking/net-modules.txt>.
config MAC89x0
tristate "Macintosh CS89x0 based ethernet cards"
depends on NETDEVICES && MAC
---help---
Support for CS89x0 chipset based Ethernet cards. If you have a
Nubus or LC-PDS network (Ethernet) card of this type, say Y and
read the Ethernet-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt> as well as
<file:Documentation/networking/net-modules.txt>. This module will
be called mac89x0.o.
config MACMACE
bool "Macintosh (AV) onboard MACE ethernet (EXPERIMENTAL)"
depends on NETDEVICES && MAC && EXPERIMENTAL
help
Support for the onboard AMD 79C940 MACE Ethernet controller used in
the 660AV and 840AV Macintosh. If you have one of these Macintoshes
say Y and read the Ethernet-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
config MVME147_NET
tristate "MVME147 (Lance) Ethernet support"
depends on NETDEVICES && MVME147
help
Support for the on-board Ethernet interface on the Motorola MVME147
single-board computer. Say Y here to include the
driver for this chip in your kernel. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
config MVME16x_NET
tristate "MVME16x Ethernet support"
depends on NETDEVICES && MVME16x
help
This is the driver for the Ethernet interface on the Motorola
MVME162, 166, 167, 172 and 177 boards. Say Y here to include the
driver for this chip in your kernel. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
config BVME6000_NET
tristate "BVME6000 Ethernet support"
depends on NETDEVICES && BVME6000
help
This is the driver for the Ethernet interface on BVME4000 and
BVME6000 VME boards. Say Y here to include the driver for this chip
in your kernel. If you want to compile it as a module, say M here
and read <file:Documentation/modules.txt>.
config ATARILANCE
tristate "Atari Lance support"
depends on NETDEVICES && ATARI
help
Say Y to include support for several Atari Ethernet adapters based
on the AMD Lance chipset: RieblCard (with or without battery), or
PAMCard VME (also the version by Rhotron, with different addresses).
config ATARI_BIONET
tristate "BioNet-100 support"
depends on NETDEVICES && ATARI && ATARI_ACSI!=n
help
Say Y to include support for BioData's BioNet-100 Ethernet adapter
for the ACSI port. The driver works (has to work...) with a polled
I/O scheme, so it's rather slow :-(
config ATARI_PAMSNET
tristate "PAMsNet support"
depends on NETDEVICES && ATARI && ATARI_ACSI!=n
help
Say Y to include support for the PAMsNet Ethernet adapter for the
ACSI port ("ACSI node"). The driver works (has to work...) with a
polled I/O scheme, so it's rather slow :-(
config SUN3LANCE
tristate "Sun3/Sun3x on-board LANCE support"
depends on NETDEVICES && (SUN3 || SUN3X)
help
Most Sun3 and Sun3x motherboards (including the 3/50, 3/60 and 3/80)
featured an AMD Lance 10Mbit Ethernet controller on board; say Y
here to compile in the Linux driver for this and enable Ethernet.
General Linux information on the Sun 3 and 3x series (now
discontinued) is at
<http://www.angelfire.com/ca2/tech68k/sun3.html>.
If you're not building a kernel for a Sun 3, say N.
config SUN3_82586
tristate "Sun3 on-board Intel 82586 support"
depends on NETDEVICES && SUN3
help
This driver enables support for the on-board Intel 82586 based
Ethernet adapter found on Sun 3/1xx and 3/2xx motherboards. Note
that this driver does not support 82586-based adapters on additional
VME boards.
config HPLANCE
bool "HP on-board LANCE support"
depends on NETDEVICES && HP300
help
If you want to use the builtin "LANCE" Ethernet controller on an
HP300 machine, say Y here.
config PLIP
tristate "PLIP (parallel port) support"
depends on NETDEVICES && Q40 && PARPORT
---help---
PLIP (Parallel Line Internet Protocol) is used to create a
reasonably fast mini network consisting of two (or, rarely, more)
local machines. A PLIP link from a Linux box is a popular means to
install a Linux distribution on a machine which doesn't have a
CD-ROM drive (a minimal system has to be transferred with floppies
first). The kernels on both machines need to have this PLIP option
enabled for this to work.
The PLIP driver has two modes, mode 0 and mode 1. The parallel
ports (the connectors at the computers with 25 holes) are connected
with "null printer" or "Turbo Laplink" cables which can transmit 4
bits at a time (mode 0) or with special PLIP cables, to be used on
bidirectional parallel ports only, which can transmit 8 bits at a
time (mode 1); you can find the wiring of these cables in
<file:Documentation/networking/PLIP.txt>. The cables can be up to
15m long. Mode 0 works also if one of the machines runs DOS/Windows
and has some PLIP software installed, e.g. the Crynwr PLIP packet
driver (<http://oak.oakland.edu/simtel.net/msdos/pktdrvr-pre.html>)
and winsock or NCSA's telnet.
If you want to use PLIP, say Y and read the PLIP mini-HOWTO as well
as the NET-3-HOWTO, both available from
<http://www.linuxdoc.org/docs.html#howto>. Note that the PLIP
protocol has been changed and this PLIP driver won't work together
with the PLIP support in Linux versions 1.0.x. This option enlarges
your kernel by about 8 KB.
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt> as well as
<file:Documentation/networking/net-modules.txt>. The module will be
called plip.o. If unsure, say Y or M, in case you buy a laptop
later.
config NE2000
tristate "NE2000/NE1000 support"
depends on NETDEVICES && Q40 && m
---help---
If you have a network (Ethernet) card of this type, say Y and read
the Ethernet-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. Many Ethernet cards
without a specific driver are compatible with NE2000.
If you have a PCI NE2000 card however, say N here and Y to "PCI
NE2000 support", above. If you have a NE2000 card and are running on
an MCA system (a bus system used on some IBM PS/2 computers and
laptops), say N here and Y to "NE/2 (ne2000 MCA version) support",
below.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called ne.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/networking/net-modules.txt>.
endmenu
menu "Character devices"
config SERIAL
tristate "Q40 Standard/generic serial support" if Q40
default DN_SERIAL if APOLLO
---help---
This selects whether you want to include the driver for the standard
serial ports. The standard answer is Y. People who might say N
here are those that are setting up dedicated Ethernet WWW/FTP
servers, or users that have one of the various bus mice instead of a
serial mouse and don't intend to use their machine's standard serial
port for anything. (Note that the Cyclades and Stallion multi
serial port drivers do not need this driver built in for them to
work.)
If you want to compile this driver as a module, say M here and read
<file:Documentation/modules.txt>. The module will be called
serial.o.
[WARNING: Do not compile this driver as a module if you are using
non-standard serial ports, since the configuration information will
be lost when the driver is unloaded. This limitation may be lifted
in the future.]
BTW1: If you have a mouseman serial mouse which is not recognized by
the X window system, try running gpm first.
BTW2: If you intend to use a software modem (also called Winmodem)
under Linux, forget it. These modems are crippled and require
proprietary drivers which are only available under Windows.
Most people will say Y or M here, so that they can use serial mice,
modems and similar devices connecting to the standard serial ports.
config SERIAL_EXTENDED
bool "Extended dumb serial driver options"
depends on SERIAL=y
help
If you wish to use any non-standard features of the standard "dumb"
driver, say Y here. This includes HUB6 support, shared serial
interrupts, special multiport support, support for more than the
four COM 1/2/3/4 boards, etc.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about serial driver options. If unsure, say N.
config SERIAL_MANY_PORTS
bool "Support more than 4 serial ports"
depends on SERIAL_EXTENDED
help
Say Y here if you have dumb serial boards other than the four
standard COM 1/2/3/4 ports. This may happen if you have an AST
FourPort, Accent Async, Boca (read the Boca mini-HOWTO, available
from <http://www.linuxdoc.org/docs.html#howto>), or other custom
serial port hardware which acts similar to standard serial port
hardware. If you only use the standard COM 1/2/3/4 ports, you can
say N here to save some memory. You can also say Y if you have an
"intelligent" multiport card such as Cyclades, Digiboards, etc.
config SERIAL_SHARE_IRQ
bool "Support for sharing serial interrupts"
depends on SERIAL_EXTENDED
help
Some serial boards have hardware support which allows multiple dumb
serial ports on the same board to share a single IRQ. To enable
support for this in the serial driver, say Y here.
config SERIAL_MULTIPORT
bool "Support special multiport boards"
depends on SERIAL_EXTENDED
help
Some multiport serial ports have special ports which are used to
signal when there are any serial ports on the board which need
servicing. Say Y here to enable the serial driver to take advantage
of those special I/O ports.
config HUB6
bool "Support the Bell Technologies HUB6 card"
depends on SERIAL_EXTENDED
help
Say Y here to enable support in the dumb serial driver to support
the HUB6 card.
config VT
bool "Virtual terminal"
---help---
If you say Y here, you will get support for terminal devices with
display and keyboard devices. These are called "virtual" because you
can run several virtual terminals (also called virtual consoles) on
one physical terminal. This is rather useful, for example one
virtual terminal can collect system messages and warnings, another
one can be used for a text-mode user session, and a third could run
an X session, all in parallel. Switching between virtual terminals
is done with certain key combinations, usually Alt-<function key>.
The setterm command ("man setterm") can be used to change the
properties (such as colors or beeping) of a virtual terminal. The
man page console_codes(4) ("man console_codes") contains the special
character sequences that can be used to change those properties
directly. The fonts used on virtual terminals can be changed with
the setfont ("man setfont") command and the key bindings are defined
with the loadkeys ("man loadkeys") command.
You need at least one virtual terminal device in order to make use
of your keyboard and monitor. Therefore, only people configuring an
embedded system would want to say N here in order to save some
memory; the only way to log into such a system is then via a serial
or network connection.
If unsure, say Y, or else you won't be able to do much with your new
shiny Linux system :-)
config VT_CONSOLE
bool "Support for console on virtual terminal"
depends on VT
---help---
The system console is the device which receives all kernel messages
and warnings and which allows logins in single user mode. If you
answer Y here, a virtual terminal (the device used to interact with
a physical terminal) can be used as system console. This is the most
common mode of operations, so you should say Y here unless you want
the kernel messages be output only to a serial port (in which case
you should say Y to "Console on serial port", below).
If you do say Y here, by default the currently visible virtual
terminal (/dev/tty0) will be used as system console. You can change
that with a kernel command line option such as "console=tty3" which
would use the third virtual terminal as system console. (Try "man
bootparam" or see the documentation of your boot loader (lilo or
loadlin) about how to pass options to the kernel at boot time.)
If unsure, say Y.
config NVRAM
bool
depends on ATARI
default y
---help---
If you say Y here and create a character special file /dev/nvram
with major number 10 and minor number 144 using mknod ("man mknod"),
you get read and write access to the 50 bytes of non-volatile memory
in the real time clock (RTC), which is contained in every PC and
most Ataris.
This memory is conventionally called "CMOS RAM" on PCs and "NVRAM"
on Ataris. /dev/nvram may be used to view settings there, or to
change them (with some utility). It could also be used to frequently
save a few bits of very important data that may not be lost over
power-off and for which writing to disk is too insecure. Note
however that most NVRAM space in a PC belongs to the BIOS and you
should NEVER idly tamper with it. See Ralf Brown's interrupt list
for a guide to the use of CMOS bytes by your BIOS.
On Atari machines, /dev/nvram is always configured and does not need
to be selected.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called nvram.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config AMIGAMOUSE
tristate "Amiga mouse support"
depends on AMIGA
help
If you want to be able to use an Amiga mouse in Linux, say Y.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module is called amigamouse.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config BUSMOUSE
bool
depends on SUN3X_ZS || ATARI && VT && ATARIMOUSE || AMIGA && AMIGAMOUSE
default y
---help---
Say Y here if your machine has a bus mouse as opposed to a serial
mouse. Most people have a regular serial MouseSystem or
Microsoft mouse (made by Logitech) that plugs into a COM port
(rectangular with 9 or 25 pins). These people say N here.
If you have a laptop, you either have to check the documentation or
experiment a bit to find out whether the trackball is a serial mouse
or not; it's best to say Y here for you.
This is the generic bus mouse driver code. If you have a bus mouse,
you will have to say Y here and also to the specific driver for your
mouse below.
This code is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called busmouse.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config ATARIMOUSE
tristate "Atari mouse support"
depends on ATARI && VT
help
If you want to be able to use an Atari mouse in Linux, say Y.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module is called atarimouse.o. If you want to compile it as a
module, say M here and read <file:Documentation/modules.txt>.
config ATARI_MFPSER
tristate "Atari MFP serial support"
depends on ATARI
---help---
If you like to use the MFP serial ports ("Modem1", "Serial1") under
Linux, say Y. The driver equally supports all kinds of MFP serial
ports and automatically detects whether Serial1 is available.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>.
Note for Falcon users: You also have an MFP port, it's just not
wired to the outside... But you could use the port under Linux.
config ATARI_SCC
tristate "Atari SCC serial support"
depends on ATARI
---help---
If you have serial ports based on a Zilog SCC chip (Modem2, Serial2,
LAN) and like to use them under Linux, say Y. All built-in SCC's are
supported (TT, MegaSTE, Falcon), and also the ST-ESCC. If you have
two connectors for channel A (Serial2 and LAN), they are visible as
two separate devices.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>.
config ATARI_SCC_DMA
bool "Atari SCC serial DMA support"
depends on ATARI_SCC
help
This enables DMA support for receiving data on channel A of the SCC.
If you have a TT you may say Y here and read
drivers/char/atari_SCC.README. All other users should say N here,
because only the TT has SCC-DMA, even if your machine keeps claiming
so at boot time.
config ATARI_MIDI
tristate "Atari MIDI serial support"
depends on ATARI
help
If you want to use your Atari's MIDI port in Linux, say Y.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you
want). If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>.
config ATARI_DSP56K
tristate "Atari DSP56k support (EXPERIMENTAL)"
depends on ATARI && EXPERIMENTAL
help
If you want to be able to use the DSP56001 in Falcons, say Y. This
driver is still experimental, and if you don't know what it is, or
if you don't have this processor, just say N.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>.
config AMIGA_BUILTIN_SERIAL
tristate "Amiga builtin serial support"
depends on AMIGA
help
If you want to use your Amiga's built-in serial port in Linux,
answer Y.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you
want). If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>.
config WHIPPET_SERIAL
tristate "Hisoft Whippet PCMCIA serial support"
depends on AMIGA_PCMCIA
help
HiSoft has a web page at <http://www.hisoft.co.uk/>, but there
is no listing for the Whippet in their Amiga section.
config MULTIFACE_III_TTY
tristate "Multiface Card III serial support"
depends on AMIGA
help
If you want to use a Multiface III card's serial port in Linux,
answer Y.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>.
config A2232
tristate "Commodore A2232 serial support (EXPERIMENTAL)"
depends on AMIGA && EXPERIMENTAL
---help---
This option supports the 2232 7-port serial card shipped with the
Amiga 2000 and other Zorro-bus machines, dating from 1989. At
a max of 19,200 bps, the ports are served by a 6551 ACIA UART chip
each, plus a 8520 CIA, and a master 6502 CPU and buffer as well. The
ports were connected with 8 pin DIN connectors on the card bracket,
for which 8 pin to DB25 adapters were supplied. The card also had
jumpers internally to toggle various pinning configurations.
This driver can be built as a module; but then "generic_serial.o"
will also be built as a module. This has to be loaded before
"ser_a2232.o". If you want to do this, answer M here and read
"<file:Documentation/modules.txt>".
config GVPIOEXT
tristate "GVP IO-Extender support"
depends on PARPORT=n && ZORRO
help
If you want to use a GVP IO-Extender serial card in Linux, say Y.
Otherwise, say N.
config GVPIOEXT_LP
tristate "GVP IO-Extender parallel printer support"
depends on GVPIOEXT
help
Say Y to enable driving a printer from the parallel port on your
GVP IO-Extender card, N otherwise.
config GVPIOEXT_PLIP
tristate "GVP IO-Extender PLIP support"
depends on GVPIOEXT
help
Say Y to enable doing IP over the parallel port on your GVP
IO-Extender card, N otherwise.
config MAC_SCC
tristate "Macintosh serial support"
depends on MAC
config ADB
bool "Apple Desktop Bus (ADB) support"
depends on MAC
help
Apple Desktop Bus (ADB) support is for support of devices which
are connected to an ADB port. ADB devices tend to have 4 pins.
If you have an Apple Macintosh prior to the iMac, or a
"Blue and White G3", you probably want to say Y here. Otherwise
say N.
config ADB_MACII
bool "Include Mac II ADB driver"
depends on ADB
help
Say Y here if want your kernel to support Macintosh systems that use
the Mac II style ADB. This includes the II, IIx, IIcx, SE/30, IIci,
Quadra 610, Quadra 650, Quadra 700, Quadra 800, Centris 610 and
Centris 650.
config ADB_MACIISI
bool "Include Mac IIsi ADB driver"
depends on ADB
help
Say Y here if want your kernel to support Macintosh systems that use
the Mac IIsi style ADB. This includes the IIsi, IIvi, IIvx, Classic
II, LC, LC II, LC III, Performa 460, and the Performa 600.
config ADB_CUDA
bool "Include CUDA ADB driver"
depends on ADB
help
This provides support for CUDA based Power Macintosh systems. This
includes most OldWorld PowerMacs, the first generation iMacs, the
Blue&White G3 and the Yikes G4 (PCI Graphics). All later models
should use CONFIG_ADB_PMU instead.
If unsure say Y.
config ADB_IOP
bool "Include IOP (IIfx/Quadra 9x0) ADB driver"
depends on ADB
help
The I/O Processor (IOP) is an Apple custom IC designed to provide
intelligent support for I/O controllers. It is described at
<http://www.angelfire.com/ca2/dev68k/iopdesc.html> to enable direct
support for it, say 'Y' here.
config ADB_PMU68K
bool "Include PMU (Powerbook) ADB driver"
depends on ADB
help
Say Y here if want your kernel to support the m68k based Powerbooks.
This includes the PowerBook 140, PowerBook 145, PowerBook 150,
PowerBook 160, PowerBook 165, PowerBook 165c, PowerBook 170,
PowerBook 180, PowerBook, 180c, PowerBook 190cs, PowerBook 520,
PowerBook Duo 210, PowerBook Duo 230, PowerBook Duo 250,
PowerBook Duo 270c, PowerBook Duo 280 and PowerBook Duo 280c.
config INPUT_ADBHID
bool "Use input layer for ADB devices"
depends on MAC && INPUT=y
---help---
Say Y here if you want to have ADB (Apple Desktop Bus) HID devices
such as keyboards, mice, joysticks, or graphic tablets handled by
the input layer. If you say Y here, make sure to say Y to the
corresponding drivers "Keyboard support" (CONFIG_INPUT_KEYBDEV),
"Mouse Support" (CONFIG_INPUT_MOUSEDEV) and "Event interface
support" (CONFIG_INPUT_EVDEV) as well.
If you say N here, you still have the option of using the old ADB
keyboard and mouse drivers.
If unsure, say Y.
config MAC_HID
bool
depends on INPUT_ADBHID
default y
config MAC_ADBKEYCODES
bool "Support for ADB raw keycodes"
depends on INPUT_ADBHID
help
This provides support for sending raw ADB keycodes to console
devices. This is the default up to 2.4.0, but in future this may be
phased out in favor of generic Linux keycodes. If you say Y here,
you can dynamically switch via the
/proc/sys/dev/mac_hid/keyboard_sends_linux_keycodes
sysctl and with the "keyboard_sends_linux_keycodes=" kernel
argument.
If unsure, say Y here.
config MAC_EMUMOUSEBTN
bool "Support for mouse button 2+3 emulation"
depends on INPUT_ADBHID
help
This provides generic support for emulating the 2nd and 3rd mouse
button with keypresses. If you say Y here, the emulation is still
disabled by default. The emulation is controlled by these sysctl
entries:
/proc/sys/dev/mac_hid/mouse_button_emulation
/proc/sys/dev/mac_hid/mouse_button2_keycode
/proc/sys/dev/mac_hid/mouse_button3_keycode
config ADB_KEYBOARD
bool "Support for ADB keyboard (old driver)"
depends on MAC && !INPUT_ADBHID
help
This option allows you to use an ADB keyboard attached to your
machine. Note that this disables any other (ie. PS/2) keyboard
support, even if your machine is physically capable of using both at
the same time.
If you use an ADB keyboard (4 pin connector), say Y here.
If you use a PS/2 keyboard (6 pin connector), say N here.
config HPDCA
tristate "HP DCA serial support"
depends on DIO
help
If you want to use the internal "DCA" serial ports on an HP300
machine, say Y here.
config SUN3X_ZS
bool "Sun3/3x builtin serial support"
depends on SUN3 || SUN3X
help
ZS refers to a type of asynchronous serial port built in to the Sun3
and Sun3x workstations; if you have a Sun 3, you probably have
these. Say 'Y' to support ZS ports directly. This option must be
enabled in order to support the
keyboard and mouse ports.
config SUN_KEYBOARD
bool
depends on SUN3X_ZS
default y
help
Say Y here to support the keyboard found on Sun 3 and 3x
workstations. It can also be used support Sun Type-5 keyboards
through an adaptor. See
<http://www.suse.cz/development/input/adapters.html> and
<http://sourceforge.net/projects/linuxconsole/> for details on the
latter.
config SUN_MOUSE
bool
depends on SUN3X_ZS
default y
config SBUS
bool
depends on SUN3X_ZS
default y
config SBUSCHAR
bool
depends on SUN3X_ZS
default y
config SUN_SERIAL
bool
depends on SUN3X_ZS
default y
config MVME147_SCC
bool "SCC support for MVME147 serial ports"
depends on MVME147
help
This is the driver for the serial ports on the Motorola MVME147
boards. Everyone using one of these boards should say Y here.
config SERIAL167
bool "CD2401 support for MVME166/7 serial ports"
depends on MVME16x
help
This is the driver for the serial ports on the Motorola MVME166,
167, and 172 boards. Everyone using one of these boards should say
Y here.
config MVME162_SCC
bool "SCC support for MVME162 serial ports"
depends on MVME16x
help
This is the driver for the serial ports on the Motorola MVME162 and
172 boards. Everyone using one of these boards should say Y here.
config BVME6000_SCC
bool "SCC support for BVME6000 serial ports"
depends on BVME6000
help
This is the driver for the serial ports on the BVME4000 and BVME6000
boards from BVM Ltd. Everyone using one of these boards should say
Y here.
config DN_SERIAL
bool "Support for DN serial port (dummy)"
depends on APOLLO
config SERIAL_CONSOLE
bool "Support for serial port console"
depends on (AMIGA || ATARI || MAC || HP300 || SUN3 || SUN3X || VME || APOLLO) && (ATARI_MFPSER=y || ATARI_SCC=y || ATARI_MIDI=y || MAC_SCC=y || AMIGA_BUILTIN_SERIAL=y || GVPIOEXT=y || MULTIFACE_III_TTY=y || HPDCA=y || SUN3X_ZS || SERIAL=y || MVME147_SCC || SERIAL167 || MVME162_SCC || BVME6000_SCC || DN_SERIAL)
---help---
If you say Y here, it will be possible to use a serial port as the
system console (the system console is the device which receives all
kernel messages and warnings and which allows logins in single user
mode). This could be useful if some terminal or printer is connected
to that serial port.
Even if you say Y here, the currently visible virtual console
(/dev/tty0) will still be used as the system console by default, but
you can alter that using a kernel command line option such as
"console=ttyS1". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If you don't have a VGA card installed and you say Y here, the
kernel will automatically use the first serial line, /dev/ttyS0, as
system console.
If unsure, say N.
config USERIAL
bool "Support for user serial device modules"
config WATCHDOG
bool "Watchdog Timer Support"
---help---
If you say Y here (and to one of the following options) and create a
character special file /dev/watchdog with major number 10 and minor
number 130 using mknod ("man mknod"), you will get a watchdog, i.e.:
subsequently opening the file and then failing to write to it for
longer than 1 minute will result in rebooting the machine. This
could be useful for a networked machine that needs to come back
online as fast as possible after a lock-up. There's both a watchdog
implementation entirely in software (which can sometimes fail to
reboot the machine) and a driver for hardware watchdog boards, which
are more robust and can also keep track of the temperature inside
your computer. For details, read <file:Documentation/watchdog.txt>
in the kernel source.
The watchdog is usually used together with the watchdog daemon
which is available from
<ftp://ibiblio.org/pub/Linux/system/daemons/watchdog/>. This daemon can
also monitor NFS connections and can reboot the machine when the process
table is full.
If unsure, say N.
config WATCHDOG_NOWAYOUT
bool "Disable watchdog shutdown on close"
depends on WATCHDOG
help
The default watchdog behaviour (which you get if you say N here) is
to stop the timer if the process managing it closes the file
/dev/watchdog. It's always remotely possible that this process might
get killed. If you say Y here, the watchdog cannot be stopped once
it has been started.
config SOFT_WATCHDOG
bool "Software watchdog"
depends on WATCHDOG
help
A software monitoring watchdog. This will fail to reboot your system
from some situations that the hardware watchdog will recover
from. Equally it's a lot cheaper to install.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. The module will be called
softdog.o.
config RTC
bool "Enhanced Real Time Clock Support"
depends on ATARI
---help---
If you say Y here and create a character special file /dev/rtc with
major number 10 and minor number 135 using mknod ("man mknod"), you
will get access to the real time clock (or hardware clock) built
into your computer.
Every PC has such a clock built in. It can be used to generate
signals from as low as 1Hz up to 8192Hz, and can also be used
as a 24 hour alarm. It reports status information via the file
/proc/driver/rtc and its behaviour is set by various ioctls on
/dev/rtc.
If you run Linux on a multiprocessor machine and said Y to
"Symmetric Multi Processing" above, you should say Y here to read
and set the RTC in an SMP compatible fashion.
If you think you have a use for such a device (such as periodic data
sampling), then say Y here, and read <file:Documentation/rtc.txt>
for details.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module is called rtc.o. If you want to compile it as a module,
say M here and read <file:Documentation/modules.txt>.
config GEN_RTC
tristate "Generic /dev/rtc emulation" if !SUN3
depends on !ATARI
default y if SUN3
config UNIX98_PTYS
bool "Unix98 PTY support"
---help---
A pseudo terminal (PTY) is a software device consisting of two
halves: a master and a slave. The slave device behaves identical to
a physical terminal; the master device is used by a process to
read data from and write data to the slave, thereby emulating a
terminal. Typical programs for the master side are telnet servers
and xterms.
Linux has traditionally used the BSD-like names /dev/ptyxx for
masters and /dev/ttyxx for slaves of pseudo terminals. This scheme
has a number of problems. The GNU C library glibc 2.1 and later,
however, supports the Unix98 naming standard: in order to acquire a
pseudo terminal, a process opens /dev/ptmx; the number of the pseudo
terminal is then made available to the process and the pseudo
terminal slave can be accessed as /dev/pts/<number>. What was
traditionally /dev/ttyp2 will then be /dev/pts/2, for example.
The entries in /dev/pts/ are created on the fly by a virtual
file system; therefore, if you say Y here you should say Y to
"/dev/pts file system for Unix98 PTYs" as well.
If you want to say Y here, you need to have the C library glibc 2.1
or later (equal to libc-6.1, check with "ls -l /lib/libc.so.*").
Read the instructions in <file:Documentation/Changes> pertaining to
pseudo terminals. It's safe to say N.
config UNIX98_PTY_COUNT
int "Maximum number of Unix98 PTYs in use (0-2048)"
depends on UNIX98_PTYS
default "256"
help
The maximum number of Unix98 PTYs that can be used at any one time.
The default is 256, and should be enough for desktop systems. Server
machines which support incoming telnet/rlogin/ssh connections and/or
serve several X terminals may want to increase this: every incoming
connection and every xterm uses up one PTY.
When not in use, each additional set of 256 PTYs occupy
approximately 8 KB of kernel memory on 32-bit architectures.
endmenu
menu "Sound support"
config SOUND
tristate "Sound card support"
source "sound/oss/dmasound/Kconfig"
endmenu
source "fs/Kconfig"
menu "Console drivers"
depends on VT
source "drivers/video/Kconfig"
endmenu
menu "Kernel hacking"
config DEBUG_KERNEL
bool "Kernel debugging"
config MAGIC_SYSRQ
bool "Magic SysRq key"
depends on DEBUG_KERNEL
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
config DEBUG_SLAB
bool "Debug memory allocations"
depends on DEBUG_KERNEL
config DEBUG_BUGVERBOSE
bool "Verbose BUG() reporting"
depends on DEBUG_KERNEL
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
#
# For a description of the syntax of this configuration file,
# see Documentation/kbuild/config-language.txt.
#
config MIPS
bool
default y
config SMP
bool
---help---
This enables support for systems with more than one CPU. If you have
a system with only one CPU, like most personal computers, say N. If
you have a system with more than one CPU, say Y.
If you say N here, the kernel will run on single and multiprocessor
machines, but will use only one CPU of a multiprocessor machine. If
you say Y here, the kernel will run on many, but not all,
singleprocessor machines. On a singleprocessor machine, the kernel
will run faster if you say N here.
Note that if you say Y here and choose architecture "586" or
"Pentium" under "Processor family", the kernel will not work on 486
architectures. Similarly, multiprocessor kernels for the "PPro"
architecture may not work on all Pentium based boards.
People using multiprocessor machines who say Y here should also say
Y to "Enhanced Real Time Clock Support", below. The "Advanced Power
Management" code will be disabled if you say Y here.
See also the <file:Documentation/smp.tex>,
<file:Documentation/smp.txt>, <file:Documentation/i386/IO-APIC.txt>,
<file:Documentation/nmi_watchdog.txt> and the SMP-HOWTO available at
<http://www.linuxdoc.org/docs.html#howto>.
If you don't know what to do here, say N.
config GENERIC_ISA_DMA
bool
default y
mainmenu "Linux Kernel Configuration"
source "init/Kconfig"
menu "Machine selection"
config ACER_PICA_61
bool "Support for Acer PICA 1 chipset (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This is a machine with a R4400 133/150 MHz CPU. To compile a Linux
kernel that runs on these, say Y here. For details about Linux on
the MIPS architecture, check out the Linux/MIPS FAQ on the WWW at
<http://oss.sgi.com/mips/>.
config ALGOR_P4032
bool "Support for Algorithmics P4032 (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This is an evaluation board of the British company Algorithmics.
The board uses the R4300 and a R5230 CPUs. For more information
about this board see <http://www.algor.co.uk/>.
config BAGET_MIPS
bool "Support for BAGET MIPS series (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This enables support for the Baget, a Russian embedded system. For
more details about the Baget see the Linux/MIPS FAQ on
<http://oss.sgi.com/mips/>.
config DECSTATION
bool "Support for DECstations (EXPERIMENTAL)"
depends on EXPERIMENTAL
---help---
This enables support for DEC's MIPS based workstations. For details
see the Linux/MIPS FAQ on <http://oss.sgi.com/mips/> and the
DECstation porting pages on <http://decstation.unix-ag.org/>.
If you have one of the following DECstation Models you definitely
want to choose R4xx0 for the CPU Type:
DECstation 5000/50
DECstation 5000/150
DECstation 5000/260
DECsystem 5900/260
otherwise choose R3000.
config DDB5074
bool "Support for NEC DDB Vrc-5074 (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This enables support for the VR5000-based NEC DDB Vrc-5074
evaluation board.
config MIPS_EV96100
bool "Support for Galileo EV96100 Evaluation board (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This is an evaluation board based on the Galielo GT-96100 LAN/WAN
communications controllers containing a MIPS R5000 compatible core
running at 83MHz. Their website is <http://www.galileot.com/>. Say Y
here if you wish to build a kernel for this platform.
config MIPS_EV64120
bool "Support for Galileo EV64120 Evaluation board (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This is an evaluation board based on the Galileo GT-64120
single-chip system controller that contains a MIPS R5000 compatible
core running at 75/100MHz. Their website is located at
<http://www.galileot.com/>. Say Y here if you wish to build a
kernel for this platform.
config EVB_PCI1
bool "Enable Second PCI (PCI1)"
depends on MIPS_EV64120
choice
prompt "Galileo Chip Clock"
depends on MIPS_EV64120
config SYSCLK_75
bool "75"
config SYSCLK_83
bool "83.3"
config SYSCLK_100_1
bool "100"
endchoice
config MIPS_ATLAS
bool "Support for MIPS Atlas board (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This enables support for the QED R5231-based MIPS Atlas evaluation
board.
config MIPS_MALTA
bool "Support for MIPS Malta board (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
This enables support for the VR5000-based MIPS Malta evaluation
board.
config NINO
bool "Support for Philips Nino (EXPERIMENTAL)"
depends on EXPERIMENTAL
help
Say Y here to select a kernel for the Philips Nino Palm PC. The
website at <http://www.realitydiluted.com/projects/nino/index.html>
will have more information.
choice
prompt "Nino Model Number"
depends on NINO
config NINO_4MB
bool "Model-300/301/302/319"
help
Say Y here to build a kernel specifically for Nino Palm PCs with
4MB of memory. These include models 300/301/302/319.
config NINO_8MB
bool "Model-200/210/312/320/325/350/390"
help
Say Y here to build a kernel specifically for Nino Palm PCs with
8MB of memory. These include models 200/210/312/320/325/350/390.
config NINO_16MB
bool "Model-500/510"
help
Say Y here to build a kernel specifically for Nino 500/501 color
Palm PCs from Philips (INCOMPLETE).
endchoice
config MIPS_MAGNUM_4000
bool "Support for Mips Magnum 4000"
help
This is a machine with a R4000 100 MHz CPU. To compile a Linux
kernel that runs on these, say Y here. For details about Linux on
the MIPS architecture, check out the Linux/MIPS FAQ on the WWW at
<http://oss.sgi.com/mips/>.
config MOMENCO_OCELOT
bool "Support for Momentum Ocelot board"
help
The Ocelot is a MIPS-based Single Board Computer (SBC) made by
Momentum Computer <http://www.momenco.com/>.
config DDB5476
bool "Support for NEC DDB Vrc-5476"
help
This enables support for the R5432-based NEC DDB Vrc-5476
evaluation board.
Features : kernel debugging, serial terminal, NFS root fs, on-board
ether port (Need an additional patch at <http://linux.junsun.net/>),
USB, AC97, PCI, PCI VGA card & framebuffer console, IDE controller,
PS2 keyboard, PS2 mouse, etc.
config DDB5477
bool "Support for NEC DDB Vrc-5477"
help
This enables support for the R5432-based NEC DDB Vrc-5477
evaluation board.
Features : kernel debugging, serial terminal, NFS root fs, on-board
ether port (Need an additional patch at <http://linux.junsun.net/>),
USB, AC97, PCI, etc.
config OLIVETTI_M700
bool "Support for Olivetti M700-10"
help
This is a machine with a R4000 100 MHz CPU. To compile a Linux
kernel that runs on these, say Y here. For details about Linux on
the MIPS architecture, check out the Linux/MIPS FAQ on the WWW at
<http://oss.sgi.com/mips/>.
config SGI_IP22
bool "Support for SGI IP22"
help
This are the SGI Indy, Challenge S and Indigo2, as well as certain
OEM variants like the Tandem CMN B006S. To compile a Linux kernel
that runs on these, say Y here.
config SNI_RM200_PCI
bool "Support for SNI RM200 PCI"
help
The SNI RM200 PCI was a MIPS-based platform manufactured by Siemens
Nixdorf Informationssysteme (SNI), parent company of Pyramid
Technology and now in turn merged with Fujitsu. Say Y here to
support this machine type.
config MIPS_ITE8172
bool "Support for ITE 8172G board"
help
Ths is an evaluation board made by ITE <http://www.ite.com.tw/>
with ATX form factor that utilizes a MIPS R5000 to work with its
ITE8172G companion internet appliance chip. The MIPS core can be
either a NEC Vr5432 or QED RM5231. Say Y here if you wish to build
a kernel for this platform.
config IT8172_REVC
bool "Support for older IT8172 (Rev C)"
depends on MIPS_ITE8172
help
Say Y here to support the older, Revision C version of the Integrated
Technology Express, Inc. ITE8172 SBC. Vendor page at
<http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the
board at <http://www.mvista.com/allies/semiconductor/ite.html>.
config QTRONIX_KEYBOARD
bool "Enable Qtronix 990P Keyboard Support"
depends on MIPS_IVR || MIPS_ITE8172
help
Images of Qtronix keyboards are at
<http://www.qtronix.com/keyboard.html>.
config IT8172_CIR
bool
depends on QTRONIX_KEYBOARD && (MIPS_IVR || MIPS_ITE8172)
default y
config PC_KEYB
bool "Enable PS2 Keyboard Support" if MIPS_ITE8172 && !QTRONIX_KEYBOARD
default y if NINO || MIPS_ITE8172 || DDB5476 || DDB5074 || SNI_RM200_PCI || SGI_IP22 || ACER_PICA_61 || MIPS_MAGNUM_4000 || OLIVETTI_M700
config IT8172_SCR0
bool "Enable Smart Card Reader 0 Support "
depends on MIPS_IVR || MIPS_ITE8172
help
Say Y here to support smart-card reader 0 (SCR0) on the Integrated
Technology Express, Inc. ITE8172 SBC. Vendor page at
<http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the
board at <http://www.mvista.com/allies/semiconductor/ite.html>.
config IT8172_SCR1
bool "Enable Smart Card Reader 1 Support "
depends on MIPS_ITE8172
help
Say Y here to support smart-card reader 1 (SCR1) on the Integrated
Technology Express, Inc. ITE8172 SBC. Vendor page at
<http://www.ite.com.tw/ia/brief_it8172bsp.htm>; picture of the
board at <http://www.mvista.com/allies/semiconductor/ite.html>.
config MIPS_IVR
bool "Support for Globespan IVR board"
help
This is an evaluation board built by Globespan to showcase thir
iVR (Internet Video Recorder) design. It utilizes a QED RM5231
R5000 MIPS core. More information can be found out their website
located at <http://www.globespan.net/products/product4.html>P. Say Y
here if you wish to build a kernel for this platform.
config MIPS_PB1000
bool "Support for Alchemy Semi PB1000 board"
help
This is an evaluation board built by Alchemy Semiconducttor to
showcase their Au1000 Internet Edge Processor. It is SOC design
containing a MIPS32 core running at 266/400/500MHz with many
integrated peripherals. Further information can be found at their
website, <http://www.alchemysemi.com/>. Say Y here if you wish to
build a kernel for this platform.
config RWSEM_GENERIC_SPINLOCK
bool
default y
config RWSEM_XCHGADD_ALGORITHM
bool
#
# Select some configuration options automatically for certain systems.
#
config ISA
bool
depends on DDB5476 || DDB5074 || SNI_RM200_PCI || ACER_PICA_61 || MIPS_MAGNUM_4000 || OLIVETTI_M700
default y
help
Find out whether you have ISA slots on your motherboard. ISA is the
name of a bus system, i.e. the way the CPU talks to the other stuff
inside your box. Other bus systems are PCI, EISA, MicroChannel
(MCA) or VESA. ISA is an older system, now being displaced by PCI;
newer boards don't support it. If you have ISA, say Y, otherwise N.
config EISA
bool
depends on ISA
default y
---help---
The Extended Industry Standard Architecture (EISA) bus was
developed as an open alternative to the IBM MicroChannel bus.
The EISA bus provided some of the features of the IBM MicroChannel
bus while maintaining backward compatibility with cards made for
the older ISA bus. The EISA bus saw limited use between 1988 and
1995 when it was made obsolete by the PCI bus.
Say Y here if you are building a kernel for an EISA-based machine.
Otherwise, say N.
config PCI
bool
depends on MIPS_IVR || MIPS_ITE8172 || DDB5477 || DDB5476 || DDB5074 || SNI_RM200_PCI || MOMENCO_OCELOT || MIPS_MALTA || MIPS_ATLAS || ALGOR_P4032 || MIPS_EV64120 || MIPS_EV96100
default y
help
Find out whether you have a PCI motherboard. PCI is the name of a
bus system, i.e. the way the CPU talks to the other stuff inside
your box. Other bus systems are ISA, EISA, MicroChannel (MCA) or
VESA. If you have PCI, say Y, otherwise N.
The PCI-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>, contains valuable
information about which PCI hardware does work under Linux and which
doesn't.
config MCA
bool
help
MicroChannel Architecture is found in some IBM PS/2 machines and
laptops. It is a bus system similar to PCI or ISA. See
<file:Documentation/mca.txt> (and especially the web page given
there) before attempting to build an MCA bus kernel.
config SBUS
bool
config I8259
bool
depends on DDB5074 || SNI_RM200_PCI || MIPS_MALTA || ACER_PICA_61 || MIPS_MAGNUM_4000 || OLIVETTI_M700
default y
config MIPS_GT96100
bool
depends on MIPS_EV96100
default y
help
Say Y here to support the Galileo Technology GT96100 communications
controller card. There is a web page at <http://www.galileot.com/>.
config SWAP_IO_SPACE
bool
depends on MOMENCO_OCELOT || MIPS_MALTA || MIPS_ATLAS || MIPS_EV96100
default y
config NEW_PCI
bool
depends on MIPS_ITE8172 || MIPS_EV96100
default y
config PCI_AUTO
bool
depends on MIPS_ITE8172 || MIPS_EV96100
default y
config MIPS_GT64120
bool
depends on MIPS_EV64120
default y
config OLD_TIME_C
bool
depends on DDB5074 || SNI_RM200_PCI || SGI_IP22 || MOMENCO_OCELOT || ACER_PICA_61 || MIPS_MAGNUM_4000 || OLIVETTI_M700 || ALGOR_P4032 || MIPS_EV64120
default y
config ARC32
bool
depends on SNI_RM200_PCI || SGI_IP22 || ACER_PICA_61 || MIPS_MAGNUM_4000 || OLIVETTI_M700
default y
config FB
bool
depends on MIPS_MAGNUM_4000 || OLIVETTI_M700
default y
---help---
The frame buffer device provides an abstraction for the graphics
hardware. It represents the frame buffer of some video hardware and
allows application software to access the graphics hardware through
a well-defined interface, so the software doesn't need to know
anything about the low-level (hardware register) stuff.
Frame buffer devices work identically across the different
architectures supported by Linux and make the implementation of
application programs easier and more portable; at this point, an X
server exists which uses the frame buffer device exclusively.
On several non-X86 architectures, the frame buffer device is the
only way to use the graphics hardware.
The device is accessed through special device nodes, usually located
in the /dev directory, i.e. /dev/fb*.
You need an utility program called fbset to make full use of frame
buffer devices. Please read <file:Documentation/fb/framebuffer.txt>
and the Framebuffer-HOWTO at
<http://www.tahallah.demon.co.uk/programming/prog.html> for more
information.
Say Y here and to the driver for your graphics board below if you
are compiling a kernel for a non-x86 architecture.
If you are compiling for the x86 architecture, you can say Y if you
want to play with it, but it is not essential. Please note that
running graphical applications that directly touch the hardware
(e.g. an accelerated X server) and that are not frame buffer
device-aware may cause unexpected results. If unsure, say N.
config FB_G364
bool
depends on MIPS_MAGNUM_4000 || OLIVETTI_M700
default y
config MIPS_JAZZ
bool
depends on ACER_PICA_61 || MIPS_MAGNUM_4000 || OLIVETTI_M700
default y
config ROTTEN_IRQ
bool
depends on DDB5476 || DDB5074 || SNI_RM200_PCI || ACER_PICA_61
default y
config HAVE_STD_PC_SERIAL_PORT
bool
depends on DDB5476 || DDB5074 || MIPS_MALTA
default y
config NEW_IRQ
bool
depends on MIPS_PB1000 || DDB5477 || SGI_IP22 || MOMENCO_OCELOT || MIPS_MALTA
default y
config SYSCLK_100_2
bool
depends on MOMENCO_OCELOT
default y
config BOARD_SCACHE
bool
depends on SGI_IP22
default y
config SGI
bool
depends on SGI_IP22
default y
config NEW_TIME_C
bool
depends on DDB5477 || DDB5476
default y
config CPU_LITTLE_ENDIAN
bool
depends on DDB5477
default y
help
Some MIPS machines can be configured for either little or big endian
byte order. These modes require different kernels. Say Y if your
machine is little endian, N if it's a big endian machine.
config IT8712
bool
depends on MIPS_ITE8172
default y
config MIPS_AU1000
bool
depends on MIPS_PB1000
default y
config SYSCLK_100
bool
depends on SYSCLK_100_1 || SYSCLK_100_2
default y
endmenu
menu "CPU selection"
choice
prompt "CPU type"
default CPU_R4X00
config CPU_R3000
bool "R3000"
---help---
Please make sure to pick the right CPU type. Linux/MIPS is not
designed to be generic, i.e. Kernels compiled for R3000 CPUs will
*not* work on R4000 machines and vice versa. However, since most
of the supported machines have an R4000 (or similar) CPU, R4x00
might be a safe bet. If the resulting kernel does not work,
try to recompile with R3000.
R3000 MIPS Technologies R3000-series processors,
including the 3041, 3051, and 3081.
R6000 MIPS Technologies R6000-series processors,
including the 64474, 64475, 64574 and 64575.
R4300 MIPS Technologies R4300-series processors.
R4x00 MIPS Technologies R4000-series processors other than 4300,
including the 4640, 4650, and 4700.
R5000 MIPS Technologies R5000-series processors other than the
Nevada.
R52xx MIPS Technologies R52xx-series ("Nevada") processors.
R10000 MIPS Technologies R10000-series processors.
config CPU_R6000
bool "R6000"
help
MIPS Technologies R6000-series processors, including the 64474,
64475, 64574 and 64575.
config CPU_VR41XX
bool "R41xx"
help
The options selects support for the NEC VR41xx series of processors.
Only choose this option if you have one of these processors as a
kernel built with this option will not run on any other type of
processor or vice versa.
config CPU_R4300
bool "R4300"
help
MIPS Technologies R4300-series processors.
config CPU_R4X00
bool "R4x00"
help
MIPS Technologies R4000-series processors other than 4300, including
the 4640, 4650, and 4700.
config CPU_R5000
bool "R5000"
help
MIPS Technologies R5000-series processors other than the Nevada.
config CPU_R5432
bool "R5432"
config CPU_RM7000
bool "RM7000"
config CPU_NEVADA
bool "R52xx"
help
MIPS Technologies R52x0-series ("Nevada") processors.
config CPU_R10000
bool "R10000"
help
MIPS Technologies R10000-series processors.
config CPU_SB1
bool "SB1"
config CPU_MIPS32
bool "MIPS32"
config CPU_MIPS64
bool "MIPS64"
endchoice
config CPU_ADVANCED
bool "Override CPU Options"
help
Saying yes here allows you to select support for various features
your CPU may or may not have. Most people should say N here.
config CPU_HAS_LLSC
bool "ll/sc Instructions available" if CPU_ADVANCED
default y if !CPU_ADVANCED && !CPU_R3000 && !CPU_VR41XX
help
MIPS R4000 series and later provide the Load Linked (ll)
and Store Conditional (sc) instructions. More information is
available at <http://www.go-ecs.com/mips/miptek1.htm>.
Say Y here if your CPU has the ll and sc instructions. Say Y here
for better performance, N if you don't know. You must say Y here
for multiprocessor machines.
config CPU_HAS_LLDSCD
bool "lld/scd Instructions available" if CPU_ADVANCED
default y if !CPU_ADVANCED && !CPU_R3000 && !CPU_VR41XX && !CPU_MIPS32
help
Say Y here if your CPU has the lld and scd instructions, the 64-bit
equivalents of ll and sc. Say Y here for better performance, N if
you don't know. You must say Y here for multiprocessor machines.
config CPU_HAS_WB
bool "Writeback Buffer available" if CPU_ADVANCED
default y if !CPU_ADVANCED && (CPU_R3000 || CPU_VR41XX) && CONFIG_DECSTATION=y
help
Say N here for slightly better performance. You must say Y here for
machines which require flushing of write buffers in software. Saying
Y is the safe option; N may result in kernel malfunction and crashes.
endmenu
menu "General setup"
config CPU_LITTLE_ENDIAN
bool "Generate little endian code" if !DECSTATION && !DDB5074 && !DDB5476 && !NINO
default y if DECSTATION || DDB5074 || DDB5476 || NINO
config KCORE_ELF
bool
depends on PROC_FS
default y
---help---
If you enabled support for /proc file system then the file
/proc/kcore will contain the kernel core image. This can be used
in gdb:
$ cd /usr/src/linux ; gdb vmlinux /proc/kcore
You have two choices here: ELF and A.OUT. Selecting ELF will make
/proc/kcore appear in ELF core format as defined by the Executable
and Linking Format specification. Selecting A.OUT will choose the
old "a.out" format which may be necessary for some old versions
of binutils or on some architectures.
This is especially useful if you have compiled the kernel with the
"-g" option to preserve debugging information. It is mainly used
for examining kernel data structures on the live kernel so if you
don't understand what this means or are not a kernel hacker, just
leave it at its default value ELF.
config ELF_KERNEL
bool
default y
config BINFMT_IRIX
bool "Include IRIX binary compatibility"
depends on !CPU_LITTLE_ENDIAN
config FORWARD_KEYBOARD
bool "Include forward keyboard"
depends on !CPU_LITTLE_ENDIAN
config ARC_CONSOLE
bool "ARC console support"
depends on ARC32
config BINFMT_AOUT
bool
---help---
A.out (Assembler.OUTput) is a set of formats for libraries and
executables used in the earliest versions of UNIX. Linux used the
a.out formats QMAGIC and ZMAGIC until they were replaced with the
ELF format.
As more and more programs are converted to ELF, the use for a.out
will gradually diminish. If you disable this option it will reduce
your kernel by one page. This is not much and by itself does not
warrant removing support. However its removal is a good idea if you
wish to ensure that absolutely none of your programs will use this
older executable format. If you don't know what to answer at this
point then answer Y. If someone told you "You need a kernel with
QMAGIC support" then you'll have to say Y here. You may answer M to
compile a.out support as a module and later load the module when you
want to use a program or library in a.out format. The module will be
called binfmt_aout.o. Saying M or N here is dangerous though,
because some crucial programs on your system might still be in A.OUT
format.
config BINFMT_ELF
bool
default y
---help---
ELF (Executable and Linkable Format) is a format for libraries and
executables used across different architectures and operating
systems. Saying Y here will enable your kernel to run ELF binaries
and enlarge it by about 13 KB. ELF support under Linux has now all
but replaced the traditional Linux a.out formats (QMAGIC and ZMAGIC)
because it is portable (this does *not* mean that you will be able
to run executables from different architectures or operating systems
however) and makes building run-time libraries very easy. Many new
executables are distributed solely in ELF format. You definitely
want to say Y here.
Information about ELF is contained in the ELF HOWTO available from
<http://www.linuxdoc.org/docs.html#howto>.
If you find that after upgrading from Linux kernel 1.2 and saying Y
here, you still can't run any ELF binaries (they just crash), then
you'll have to install the newest ELF runtime libraries, including
ld.so (check the file <file:Documentation/Changes> for location and
latest version).
If you want to compile this as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called binfmt_elf.o. Saying M or N here is dangerous because
some crucial programs on your system might be in ELF format.
config BINFMT_MISC
tristate "Kernel support for MISC binaries"
---help---
If you say Y here, it will be possible to plug wrapper-driven binary
formats into the kernel. You will like this especially when you use
programs that need an interpreter to run like Java, Python or
Emacs-Lisp. It's also useful if you often run DOS executables under
the Linux DOS emulator DOSEMU (read the DOSEMU-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>). Once you have
registered such a binary class with the kernel, you can start one of
those programs simply by typing in its name at a shell prompt; Linux
will automatically feed it to the correct interpreter.
You can do other nice things, too. Read the file
<file:Documentation/binfmt_misc.txt> to learn how to use this
feature, and <file:Documentation/java.txt> for information about how
to include Java support.
You must say Y to "/proc file system support" (CONFIG_PROC_FS) to
use this part of the kernel.
You may say M here for module support and later load the module when
you have use for it; the module is called binfmt_misc.o. If you
don't know what to answer at this point, say Y.
source "drivers/pci/Kconfig"
config HOTPLUG
bool "Support for hot-pluggable devices"
---help---
Say Y here if you want to plug devices into your computer while
the system is running, and be able to use them quickly. In many
cases, the devices can likewise be unplugged at any time too.
One well known example of this is PCMCIA- or PC-cards, credit-card
size devices such as network cards, modems or hard drives which are
plugged into slots found on all modern laptop computers. Another
example, used on modern desktops as well as laptops, is USB.
Enable HOTPLUG and KMOD, and build a modular kernel. Get agent
software (at <http://linux-hotplug.sourceforge.net/>) and install it.
Then your kernel will automatically call out to a user mode "policy
agent" (/sbin/hotplug) to load modules and set up software needed
to use devices as you hotplug them.
source "drivers/pcmcia/Kconfig"
config TC
bool "TURBOchannel support"
depends on DECSTATION
help
TurboChannel is a DEC (now Compaq) bus for Alpha and MIPS processors.
Documentation on writing device drivers for TurboChannel is available at:
<http://www.cs.arizona.edu/computer.help/policy/DIGITAL_unix/AA-PS3HD-TET1_html/TITLE.html>.
# if [ "$CONFIG_TC" = "y" ]; then
# bool ' Access.Bus support' CONFIG_ACCESSBUS
# fi
endmenu
if ISA
source "drivers/pnp/Kconfig"
endif
source "drivers/mtd/Kconfig"
source "drivers/parport/Kconfig"
source "drivers/block/Kconfig"
source "drivers/md/Kconfig"
menu "ATA/ATAPI/MFM/RLL support"
depends on !SGI_IP22 && !DECSTATION
config IDE
tristate "ATA/ATAPI/MFM/RLL support"
---help---
If you say Y here, your kernel will be able to manage low cost mass
storage units such as ATA/(E)IDE and ATAPI units. The most common
cases are IDE hard drives and ATAPI CD-ROM drives.
If your system is pure SCSI and doesn't use these interfaces, you
can say N here.
Integrated Disk Electronics (IDE aka ATA-1) is a connecting standard
for mass storage units such as hard disks. It was designed by
Western Digital and Compaq Computer in 1984. It was then named
ST506. Quite a number of disks use the IDE interface.
AT Attachment (ATA) is the superset of the IDE specifications.
ST506 was also called ATA-1.
Fast-IDE is ATA-2 (also named Fast ATA), Enhanced IDE (EIDE) is
ATA-3. It provides support for larger disks (up to 8.4GB by means of
the LBA standard), more disks (4 instead of 2) and for other mass
storage units such as tapes and cdrom. UDMA/33 (aka UltraDMA/33) is
ATA-4 and provides faster (and more CPU friendly) transfer modes
than previous PIO (Programmed processor Input/Output) from previous
ATA/IDE standards by means of fast DMA controllers.
ATA Packet Interface (ATAPI) is a protocol used by EIDE tape and
CD-ROM drives, similar in many respects to the SCSI protocol.
SMART IDE (Self Monitoring, Analysis and Reporting Technology) was
designed in order to prevent data corruption and disk crash by
detecting pre hardware failure conditions (heat, access time, and
the like...). Disks built since June 1995 may follow this standard.
The kernel itself don't manage this; however there are quite a
number of user programs such as smart that can query the status of
SMART parameters disk.
If you want to compile this driver as a module ( = code which can be
inserted in and removed from the running kernel whenever you want),
say M here and read <file:Documentation/modules.txt>. The module
will be called ide.o.
For further information, please read <file:Documentation/ide.txt>.
If unsure, say Y.
source "drivers/ide/Kconfig"
endmenu
menu "SCSI support"
config SCSI
tristate "SCSI support"
---help---
If you want to use a SCSI hard disk, SCSI tape drive, SCSI CD-ROM or
any other SCSI device under Linux, say Y and make sure that you know
the name of your SCSI host adapter (the card inside your computer
that "speaks" the SCSI protocol, also called SCSI controller),
because you will be asked for it.
You also need to say Y here if you want support for the parallel
port version of the 100 MB IOMEGA ZIP drive.
This driver is also available as a module ( = code which can be
inserted in and removed from the running kernel whenever you want).
The module will be called scsi_mod.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt> and
<file:Documentation/scsi.txt>. However, do not compile this as a
module if your root file system (the one containing the directory /)
is located on a SCSI device.
source "drivers/scsi/Kconfig"
endmenu
if !DECSTATION" && !SGI_IP22
source "drivers/message/i2o/Kconfig"
endif
source "net/Kconfig"
menu "Network device support"
depends on NET
config NETDEVICES
bool "Network device support"
---help---
You can say N here if you don't intend to connect your Linux box to
any other computer at all or if all your connections will be over a
telephone line with a modem either via UUCP (UUCP is a protocol to
forward mail and news between unix hosts over telephone lines; read
the UUCP-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>) or dialing up a shell
account or a BBS, even using term (term is a program which gives you
almost full Internet connectivity if you have a regular dial up
shell account on some Internet connected Unix computer. Read
<http://www.bart.nl/~patrickr/term-howto/Term-HOWTO.html>).
You'll have to say Y if your computer contains a network card that
you want to use under Linux (make sure you know its name because you
will be asked for it and read the Ethernet-HOWTO (especially if you
plan to use more than one network card under Linux)) or if you want
to use SLIP (Serial Line Internet Protocol is the protocol used to
send Internet traffic over telephone lines or null modem cables) or
CSLIP (compressed SLIP) or PPP (Point to Point Protocol, a better
and newer replacement for SLIP) or PLIP (Parallel Line Internet
Protocol is mainly used to create a mini network by connecting the
parallel ports of two local machines) or AX.25/KISS (protocol for
sending Internet traffic over amateur radio links).
Make sure to read the NET-3-HOWTO. Eventually, you will have to read
Olaf Kirch's excellent and free book "Network Administrator's
Guide", to be found in <http://www.linuxdoc.org/docs.html#guide>. If
unsure, say Y.
source "drivers/net/Kconfig"
source "drivers/atm/Kconfig"
endmenu
source "net/ax25/Kconfig"
source "net/irda/Kconfig"
source "drivers/isdn/Kconfig"
source "drivers/telephony/Kconfig"
menu "Old CD-ROM drivers (not SCSI, not IDE)"
config CD_NO_IDESCSI
bool "Support non-SCSI/IDE/ATAPI CDROM drives"
---help---
If you have a CD-ROM drive that is neither SCSI nor IDE/ATAPI, say Y
here, otherwise N. Read the CD-ROM-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
Note that the answer to this question doesn't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about these CD-ROM drives. If you are unsure what you
have, say Y and find out whether you have one of the following
drives.
For each of these drivers, a file Documentation/cdrom/{driver_name}
exists. Especially in cases where you do not know exactly which kind
of drive you have you should read there. Most of these drivers use a
file drivers/cdrom/{driver_name}.h where you can define your
interface parameters and switch some internal goodies.
All these CD-ROM drivers are also usable as a module ( = code which
can be inserted in and removed from the running kernel whenever you
want). If you want to compile them as module, say M instead of Y and
read <file:Documentation/modules.txt>.
If you want to use any of these CD-ROM drivers, you also have to
answer Y or M to "ISO 9660 CD-ROM file system support" below (this
answer will get "defaulted" for you if you enable any of the Linux
CD-ROM drivers).
source "drivers/cdrom/Kconfig"
endmenu
source "drivers/input/Kconfig"
source "drivers/char/Kconfig"
source "drivers/media/Kconfig"
menu "DECStation Character devices"
depends on DECSTATION
config VT
bool "Virtual terminal"
config VT_CONSOLE
bool "Support for console on virtual terminal"
depends on VT
config SERIAL
tristate "Standard/generic (dumb) serial support"
---help---
This selects whether you want to include the driver for the standard
serial ports. The standard answer is Y. People who might say N
here are those that are setting up dedicated Ethernet WWW/FTP
servers, or users that have one of the various bus mice instead of a
serial mouse and don't intend to use their machine's standard serial
port for anything. (Note that the Cyclades and Stallion multi
serial port drivers do not need this driver built in for them to
work.)
If you want to compile this driver as a module, say M here and read
<file:Documentation/modules.txt>. The module will be called
serial.o.
[WARNING: Do not compile this driver as a module if you are using
non-standard serial ports, since the configuration information will
be lost when the driver is unloaded. This limitation may be lifted
in the future.]
BTW1: If you have a mouseman serial mouse which is not recognized by
the X window system, try running gpm first.
BTW2: If you intend to use a software modem (also called Winmodem)
under Linux, forget it. These modems are crippled and require
proprietary drivers which are only available under Windows.
Most people will say Y or M here, so that they can use serial mice,
modems and similar devices connecting to the standard serial ports.
config DZ
bool "DZ11 Serial Support"
depends on SERIAL=y
help
DZ11-family serial controllers for VAXstations, including the
DC7085, M7814, and M7819.
config ZS
bool "Z85C30 Serial Support"
depends on SERIAL=y && TC
help
Documentation on the Zilog 85C350 serial communications controller
is downloadable at <http://www.zilog.com/pdfs/serial/z85c30.pdf>.
config SERIAL_CONSOLE
bool "Support for console on serial port"
depends on SERIAL=y
---help---
If you say Y here, it will be possible to use a serial port as the
system console (the system console is the device which receives all
kernel messages and warnings and which allows logins in single user
mode). This could be useful if some terminal or printer is connected
to that serial port.
Even if you say Y here, the currently visible virtual console
(/dev/tty0) will still be used as the system console by default, but
you can alter that using a kernel command line option such as
"console=ttyS1". (Try "man bootparam" or see the documentation of
your boot loader (lilo or loadlin) about how to pass options to the
kernel at boot time.)
If you don't have a VGA card installed and you say Y here, the
kernel will automatically use the first serial line, /dev/ttyS0, as
system console.
If unsure, say N.
config UNIX98_PTYS
bool "Unix98 PTY support"
config UNIX98_PTY_COUNT
int "Maximum number of Unix98 PTYs in use (0-2048)"
depends on UNIX98_PTYS
default "256"
# if [ "$CONFIG_ACCESSBUS" = "y" ]; then
# bool 'MAXINE Access.Bus mouse (VSXXX-BB/GB) support' CONFIG_DTOP_MOUSE
# fi
config RTC
tristate "Enhanced Real Time Clock Support"
endmenu
menu "SGI Character devices"
depends on SGI_IP22
config VT
bool "Virtual terminal"
config VT_CONSOLE
bool "Support for console on virtual terminal"
depends on VT
config SGI_NEWPORT_CONSOLE
tristate "SGI Newport Console support"
depends on VT
help
Say Y here if you want the console on the Newport aka XL graphics
card of your Indy. Most people say Y here.
config DUMMY_CONSOLE
bool
depends on VT && SGI_NEWPORT_CONSOLE!=y
default y
config FONT_8x16
bool
depends on VT && SGI_NEWPORT_CONSOLE=y
default y
help
This is the "high resolution" font for the VGA frame buffer (the one
provided by the VGA text console 80x25 mode.
If unsure, say Y.
config PSMOUSE
bool "PS/2 mouse support (aka \"auxiliary device\")"
---help---
The PS/2 mouse connects to a special mouse port that looks much like
the keyboard port (small circular connector with 6 pins). This way,
the mouse does not use any serial ports. This port can also be used
for other input devices like light pens, tablets, keypads. Compaq,
AST and IBM all use this as their mouse port on currently shipping
machines. The trackballs of some laptops are PS/2 mice also. In
particular, the C&T 82C710 mouse on TI Travelmates is a PS/2 mouse.
Although PS/2 mice are not technically bus mice, they are explained
in detail in the Busmouse-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>.
When using a PS/2 mouse, you can get problems if you want to use the
mouse both on the Linux console and under X. Using the "-R" option
of the Linux mouse managing program gpm (available from
<ftp://gnu.systemy.it/pub/gpm/>) solves this problem, or you can get
the "mconv2" utility from <ftp://ibiblio.org/pub/Linux/system/mouse/>.
config MOUSE
bool
depends on PSMOUSE
default y
---help---
This is for machines with a mouse which is neither a serial nor a
bus mouse. Examples are PS/2 mice (such as the track balls on some
laptops) and some digitizer pads. Most people have a regular serial
MouseSystem or Microsoft mouse (made by Logitech) that plugs into a
COM port (rectangular with 9 or 25 pins). These people say N here.
If you have something else, read the Busmouse-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. This HOWTO contains
information about all non-serial mice, not just bus mice.
If you have a laptop, you either have to check the documentation or
experiment a bit to find out whether the trackball is a serial mouse
or not; it's best to say Y here for you.
Note that the answer to this question won't directly affect the
kernel: saying N will just cause the configurator to skip all
the questions about non-serial mice. If unsure, say Y.
config UNIX98_PTYS
bool "Unix98 PTY support"
config UNIX98_PTY_COUNT
int "Maximum number of Unix98 PTYs in use (0-2048)"
depends on UNIX98_PTYS
default "256"
endmenu
source "fs/Kconfig"
menu "Console drivers"
depends on VT
config VGA_CONSOLE
bool "VGA text console"
help
Saying Y here will allow you to use Linux in text mode through a
display that complies with the generic VGA standard. Virtually
everyone wants that.
The program SVGATextMode can be used to utilize SVGA video cards to
their full potential in text mode. Download it from
<ftp://ibiblio.org/pub/Linux/utils/console/>.
Say Y.
if EXPERIMENTAL
config MDA_CONSOLE
tristate "MDA text console (dual-headed) (EXPERIMENTAL)"
---help---
Say Y here if you have an old MDA or monochrome Hercules graphics
adapter in your system acting as a second head ( = video card). You
will then be able to use two monitors with your Linux system. Do not
say Y here if your MDA card is the primary card in your system; the
normal VGA driver will handle it.
This driver is also available as a module ( = code which can be
inserted and removed from the running kernel whenever you want).
The module will be called mdacon.o. If you want to compile it as
a module, say M here and read <file:Documentation/modules.txt>.
If unsure, say N.
source "drivers/video/Kconfig"
endif
endmenu
menu "Sound"
depends on !DECSTATION
config SOUND
tristate "Sound card support"
---help---
If you have a sound card in your computer, i.e. if it can say more
than an occasional beep, say Y. Be sure to have all the information
about your sound card and its configuration down (I/O port,
interrupt and DMA channel), because you will be asked for it.
You want to read the Sound-HOWTO, available from
<http://www.linuxdoc.org/docs.html#howto>. General information about
the modular sound system is contained in the files
<file:Documentation/sound/Introduction>. The file
<file:Documentation/sound/README.OSS> contains some slightly
outdated but still useful information as well.
If you have a PnP sound card and you want to configure it at boot
time using the ISA PnP tools (read
<http://www.roestock.demon.co.uk/isapnptools/>), then you need to
compile the sound card support as a module ( = code which can be
inserted in and removed from the running kernel whenever you want)
and load that module after the PnP configuration is finished. To do
this, say M here and read <file:Documentation/modules.txt> as well
as <file:Documentation/sound/README.modules>; the module will be
called soundcore.o.
I'm told that even without a sound card, you can make your computer
say more than an occasional beep, by programming the PC speaker.
Kernel patches and supporting utilities to do that are in the pcsp
package, available at <ftp://ftp.infradead.org/pub/pcsp/>.
source "sound/Kconfig"
endmenu
source "drivers/sgi/Kconfig"
source "drivers/usb/Kconfig"
menu "Kernel hacking"
config CROSSCOMPILE
bool "Are you using a crosscompiler"
help
Say Y here if you are compiling the kernel on a different
architecture than the one it is intended to run on.
config REMOTE_DEBUG
bool "Remote GDB kernel debugging"
depends on SERIAL=y || AU1000_UART
help
If you say Y here, it will be possible to remotely debug the MIPS
kernel using gdb. This enlarges your kernel image disk size by
several megabytes and requires a machine with more than 16 MB,
better 32 MB RAM to avoid excessive linking time. This is only
useful for kernel hackers. If unsure, say N.
config GDB_CONSOLE
bool "Console output to GDB"
depends on REMOTE_DEBUG
help
If you are using GDB for remote debugging over a serial port and
would like kernel messages to be formatted into GDB $O packets so
that GDB prints them as program output, say 'Y'.
config LL_DEBUG
bool "Low-level debugging"
depends on SERIAL=y
help
Enable low-level debugging assertion macros in the kernel code.
Currently used only by the time services code in the MIPS port.
Don't turn this on unless you know what you are doing.
config MAGIC_SYSRQ
bool "Magic SysRq key"
help
If you say Y here, you will have some control over the system even
if the system crashes for example during kernel debugging (e.g., you
will be able to flush the buffer cache to disk, reboot the system
immediately or dump some status information). This is accomplished
by pressing various keys while holding SysRq (Alt+PrintScreen). It
also works on a serial console (on PC hardware at least), if you
send a BREAK and then within 5 seconds a command keypress. The
keys are documented in <file:Documentation/sysrq.txt>. Don't say Y
unless you really know what this hack does.
config MIPS_UNCACHED
bool "Run uncached"
depends on !SMP
help
If you say Y here there kernel will disable all CPU caches. This will
reduce the system's performance dramatically but can help finding
otherwise hard to track bugs. It can also useful if you're doing
hardware debugging with a logic analyzer and need to see all traffic
on the bus.
config NR_CPUS
int "Maximum number of CPUs (2-32)"
depends on SMP
default "32"
endmenu
source "security/Kconfig"
source "crypto/Kconfig"
source "lib/Kconfig"
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment