Commit b5a07f07 authored by Kevin Curtis's avatar Kevin Curtis Committed by Linus Torvalds

[netdrvr wan] farsync driver update

1) Provides support for new FarSync cards T1U, T2U, T4U and TE1
2) Provides support for an E1 interface
3) Provides support for a variant of X.21 that allows transmit and
receive clocks
4) Provide a raw socket interface directly to the data from the line.
5) Improves performance with less time in interrupts and more in BH's
parent 3d61e387
/* /*
* FarSync X21 driver for Linux (generic HDLC version) * FarSync WAN driver for Linux (2.6.x kernel version)
* *
* Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards * Actually sync driver for X.21, V.35 and V.24 on FarSync T-series cards
* *
* Copyright (C) 2001 FarSite Communications Ltd. * Copyright (C) 2001-2004 FarSite Communications Ltd.
* www.farsite.co.uk * www.farsite.co.uk
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
...@@ -12,10 +12,12 @@ ...@@ -12,10 +12,12 @@
* 2 of the License, or (at your option) any later version. * 2 of the License, or (at your option) any later version.
* *
* Author: R.J.Dunlop <bob.dunlop@farsite.co.uk> * Author: R.J.Dunlop <bob.dunlop@farsite.co.uk>
* Maintainer: Kevin Curtis <kevin.curtis@farsite.co.uk>
*/ */
#include <linux/module.h> #include <linux/module.h>
#include <linux/kernel.h> #include <linux/kernel.h>
#include <linux/version.h>
#include <linux/pci.h> #include <linux/pci.h>
#include <linux/ioport.h> #include <linux/ioport.h>
#include <linux/init.h> #include <linux/init.h>
...@@ -25,29 +27,26 @@ ...@@ -25,29 +27,26 @@
#include "farsync.h" #include "farsync.h"
/* /*
* Module info * Module info
*/ */
MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>"); MODULE_AUTHOR("R.J.Dunlop <bob.dunlop@farsite.co.uk>");
MODULE_DESCRIPTION("FarSync T-Series X21 driver. FarSite Communications Ltd."); MODULE_DESCRIPTION("FarSync T-Series WAN driver. FarSite Communications Ltd.");
MODULE_PARM(fst_txq_low, "i");
MODULE_PARM(fst_txq_high, "i");
MODULE_PARM(fst_max_reads, "i");
MODULE_PARM(fst_excluded_cards, "i");
MODULE_PARM(fst_excluded_list, "0-32i");
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
/* Driver configuration and global parameters /* Driver configuration and global parameters
* ========================================== * ==========================================
*/ */
/* Number of ports (per card) supported /* Number of ports (per card) and cards supported
*/ */
#define FST_MAX_PORTS 4 #define FST_MAX_PORTS 4
#define FST_MAX_CARDS 32
/* PCI vendor and device IDs
*/
#define FSC_PCI_VENDOR_ID 0x1619 /* FarSite Communications Ltd */
#define T2P_PCI_DEVICE_ID 0x0400 /* T2P X21 2 port card */
#define T4P_PCI_DEVICE_ID 0x0440 /* T4P X21 4 port card */
/* Default parameters for the link /* Default parameters for the link
*/ */
...@@ -56,18 +55,34 @@ MODULE_LICENSE("GPL"); ...@@ -56,18 +55,34 @@ MODULE_LICENSE("GPL");
* this down assuming a slower line I * this down assuming a slower line I
* guess. * guess.
*/ */
#define FST_TXQ_DEPTH 16 /* This one is for the buffering
* of frames on the way down to the card
* so that we can keep the card busy
* and maximise throughput
*/
#define FST_HIGH_WATER_MARK 12 /* Point at which we flow control
* network layer */
#define FST_LOW_WATER_MARK 8 /* Point at which we remove flow
* control from network layer */
#define FST_MAX_MTU 8000 /* Huge but possible */ #define FST_MAX_MTU 8000 /* Huge but possible */
#define FST_DEF_MTU 1500 /* Common sane value */ #define FST_DEF_MTU 1500 /* Common sane value */
#define FST_TX_TIMEOUT (2*HZ) #define FST_TX_TIMEOUT (2*HZ)
#ifdef ARPHRD_RAWHDLC #ifdef ARPHRD_RAWHDLC
#define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */ #define ARPHRD_MYTYPE ARPHRD_RAWHDLC /* Raw frames */
#else #else
#define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */ #define ARPHRD_MYTYPE ARPHRD_HDLC /* Cisco-HDLC (keepalives etc) */
#endif #endif
/*
* Modules parameters and associated varaibles
*/
int fst_txq_low = FST_LOW_WATER_MARK;
int fst_txq_high = FST_HIGH_WATER_MARK;
int fst_max_reads = 7;
int fst_excluded_cards = 0;
int fst_excluded_list[FST_MAX_CARDS];
/* Card shared memory layout /* Card shared memory layout
* ========================= * =========================
...@@ -84,7 +99,7 @@ MODULE_LICENSE("GPL"); ...@@ -84,7 +99,7 @@ MODULE_LICENSE("GPL");
* be used to check that we have not got out of step with the firmware * be used to check that we have not got out of step with the firmware
* contained in the .CDE files. * contained in the .CDE files.
*/ */
#define SMC_VERSION 11 #define SMC_VERSION 24
#define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */ #define FST_MEMSIZE 0x100000 /* Size of card memory (1Mb) */
...@@ -105,7 +120,6 @@ MODULE_LICENSE("GPL"); ...@@ -105,7 +120,6 @@ MODULE_LICENSE("GPL");
/* Interrupt retry time in milliseconds */ /* Interrupt retry time in milliseconds */
#define INT_RETRY_TIME 2 #define INT_RETRY_TIME 2
/* The Am186CH/CC processors support a SmartDMA mode using circular pools /* The Am186CH/CC processors support a SmartDMA mode using circular pools
* of buffer descriptors. The structure is almost identical to that used * of buffer descriptors. The structure is almost identical to that used
* in the LANCE Ethernet controllers. Details available as PDF from the * in the LANCE Ethernet controllers. Details available as PDF from the
...@@ -157,8 +171,7 @@ struct rxdesc { /* Receive descriptor */ ...@@ -157,8 +171,7 @@ struct rxdesc { /* Receive descriptor */
#define RX_STP 0x02 /* Rx: start of packet */ #define RX_STP 0x02 /* Rx: start of packet */
#define RX_ENP 0x01 /* Rx: end of packet */ #define RX_ENP 0x01 /* Rx: end of packet */
/* Interrupts from the card are caused by various events which are presented
/* Interrupts from the card are caused by various events and these are presented
* in a circular buffer as several events may be processed on one physical int * in a circular buffer as several events may be processed on one physical int
*/ */
#define MAX_CIRBUFF 32 #define MAX_CIRBUFF 32
...@@ -190,15 +203,58 @@ struct cirbuff { ...@@ -190,15 +203,58 @@ struct cirbuff {
#define TXC_UNDF 0x2A #define TXC_UNDF 0x2A
#define TXD_UNDF 0x2B #define TXD_UNDF 0x2B
#define F56_INT 0x2C
#define M32_INT 0x2D
#define TE1_ALMA 0x30
/* Port physical configuration. See farsync.h for field values */ /* Port physical configuration. See farsync.h for field values */
struct port_cfg { struct port_cfg {
u16 lineInterface; /* Physical interface type */ u16 lineInterface; /* Physical interface type */
u8 x25op; /* Unused at present */ u8 x25op; /* Unused at present */
u8 internalClock; /* 1 => internal clock, 0 => external */ u8 internalClock; /* 1 => internal clock, 0 => external */
u8 transparentMode; /* 1 => on, 0 => off */
u8 invertClock; /* 0 => normal, 1 => inverted */
u8 padBytes[6]; /* Padding */
u32 lineSpeed; /* Speed in bps */ u32 lineSpeed; /* Speed in bps */
}; };
/* TE1 port physical configuration */
struct su_config {
u32 dataRate;
u8 clocking;
u8 framing;
u8 structure;
u8 interface;
u8 coding;
u8 lineBuildOut;
u8 equalizer;
u8 transparentMode;
u8 loopMode;
u8 range;
u8 txBufferMode;
u8 rxBufferMode;
u8 startingSlot;
u8 losThreshold;
u8 enableIdleCode;
u8 idleCode;
u8 spare[44];
};
/* TE1 Status */
struct su_status {
u32 receiveBufferDelay;
u32 framingErrorCount;
u32 codeViolationCount;
u32 crcErrorCount;
u32 lineAttenuation;
u8 portStarted;
u8 lossOfSignal;
u8 receiveRemoteAlarm;
u8 alarmIndicationSignal;
u8 spare[40];
};
/* Finally sling all the above together into the shared memory structure. /* Finally sling all the above together into the shared memory structure.
* Sorry it's a hodge podge of arrays, structures and unused bits, it's been * Sorry it's a hodge podge of arrays, structures and unused bits, it's been
* evolving under NT for some time so I guess we're stuck with it. * evolving under NT for some time so I guess we're stuck with it.
...@@ -256,14 +312,14 @@ struct fst_shared { ...@@ -256,14 +312,14 @@ struct fst_shared {
u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */ u16 portMailbox[FST_MAX_PORTS][2]; /* command, modifier */
u16 cardMailbox[4]; /* Not used */ u16 cardMailbox[4]; /* Not used */
/* Number of times that card thinks the host has /* Number of times the card thinks the host has
* missed an interrupt by not acknowledging * missed an interrupt by not acknowledging
* within 2mS (I guess NT has problems) * within 2mS (I guess NT has problems)
*/ */
u32 interruptRetryCount; u32 interruptRetryCount;
/* Driver private data used as an ID. We'll not /* Driver private data used as an ID. We'll not
* use this on Linux I'd rather keep such things * use this as I'd rather keep such things
* in main memory rather than on the PCI bus * in main memory rather than on the PCI bus
*/ */
u32 portHandle[FST_MAX_PORTS]; u32 portHandle[FST_MAX_PORTS];
...@@ -290,9 +346,12 @@ struct fst_shared { ...@@ -290,9 +346,12 @@ struct fst_shared {
u16 portScheduleOffset; u16 portScheduleOffset;
struct su_config suConfig; /* TE1 Bits */
struct su_status suStatus;
u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of u32 endOfSmcSignature; /* endOfSmcSignature MUST be the last member of
* the structure and marks the end of the shared * the structure and marks the end of shared
* memory. Adapter code initializes its value as * memory. Adapter code initializes it as
* END_SIG. * END_SIG.
*/ */
}; };
...@@ -309,6 +368,40 @@ struct fst_shared { ...@@ -309,6 +368,40 @@ struct fst_shared {
#define ABORTTX 5 /* Abort the transmitter for a port */ #define ABORTTX 5 /* Abort the transmitter for a port */
#define SETV24O 6 /* Set V24 outputs */ #define SETV24O 6 /* Set V24 outputs */
/* PLX Chip Register Offsets */
#define CNTRL_9052 0x50 /* Control Register */
#define CNTRL_9054 0x6c /* Control Register */
#define INTCSR_9052 0x4c /* Interrupt control/status register */
#define INTCSR_9054 0x68 /* Interrupt control/status register */
/* 9054 DMA Registers */
/*
* Note that we will be using DMA Channel 0 for copying rx data
* and Channel 1 for copying tx data
*/
#define DMAMODE0 0x80
#define DMAPADR0 0x84
#define DMALADR0 0x88
#define DMASIZ0 0x8c
#define DMADPR0 0x90
#define DMAMODE1 0x94
#define DMAPADR1 0x98
#define DMALADR1 0x9c
#define DMASIZ1 0xa0
#define DMADPR1 0xa4
#define DMACSR0 0xa8
#define DMACSR1 0xa9
#define DMAARB 0xac
#define DMATHR 0xb0
#define DMADAC0 0xb4
#define DMADAC1 0xb8
#define DMAMARBR 0xac
#define FST_MIN_DMA_LEN 64
#define FST_RX_DMA_INT 0x01
#define FST_TX_DMA_INT 0x02
#define FST_CARD_INT 0x04
/* Larger buffers are positioned in memory at offset BFM_BASE */ /* Larger buffers are positioned in memory at offset BFM_BASE */
struct buf_window { struct buf_window {
...@@ -317,26 +410,33 @@ struct buf_window { ...@@ -317,26 +410,33 @@ struct buf_window {
}; };
/* Calculate offset of a buffer object within the shared memory window */ /* Calculate offset of a buffer object within the shared memory window */
#define BUF_OFFSET(X) offsetof(struct buf_window, X) #define BUF_OFFSET(X) ((unsigned int)&(((struct buf_window *)BFM_BASE)->X))
#pragma pack() #pragma pack()
/* Device driver private information /* Device driver private information
* ================================= * =================================
*/ */
/* Per port (line or channel) information /* Per port (line or channel) information
*/ */
struct fst_port_info { struct fst_port_info {
struct net_device *dev; struct net_device *dev; /* Device struct - must be first */
struct fst_card_info *card; /* Card we're associated with */ struct fst_card_info *card; /* Card we're associated with */
int index; /* Port index on the card */ int index; /* Port index on the card */
int hwif; /* Line hardware (lineInterface copy) */ int hwif; /* Line hardware (lineInterface copy) */
int run; /* Port is running */ int run; /* Port is running */
int mode; /* Normal or FarSync raw */
int rxpos; /* Next Rx buffer to use */ int rxpos; /* Next Rx buffer to use */
int txpos; /* Next Tx buffer to use */ int txpos; /* Next Tx buffer to use */
int txipos; /* Next Tx buffer to check for free */ int txipos; /* Next Tx buffer to check for free */
int txcnt; /* Count of Tx buffers in use */ int start; /* Indication of start/stop to network */
/*
* A sixteen entry transmit queue
*/
int txqs; /* index to get next buffer to tx */
int txqe; /* index to queue next packet */
struct sk_buff *txq[FST_TXQ_DEPTH]; /* The queue */
int rxqdepth;
}; };
/* Per card information /* Per card information
...@@ -353,7 +453,25 @@ struct fst_card_info { ...@@ -353,7 +453,25 @@ struct fst_card_info {
spinlock_t card_lock; /* Lock for SMP access */ spinlock_t card_lock; /* Lock for SMP access */
unsigned short pci_conf; /* PCI card config in I/O space */ unsigned short pci_conf; /* PCI card config in I/O space */
/* Per port info */ /* Per port info */
struct fst_port_info ports[ FST_MAX_PORTS ]; struct fst_port_info ports[FST_MAX_PORTS];
struct pci_dev *device; /* Information about the pci device */
int card_no; /* Inst of the card on the system */
int family; /* TxP or TxU */
int dmarx_in_progress;
int dmatx_in_progress;
unsigned long int_count;
unsigned long int_time_ave;
void *rx_dma_handle_host;
dma_addr_t rx_dma_handle_card;
void *tx_dma_handle_host;
dma_addr_t tx_dma_handle_card;
struct sk_buff *dma_skb_rx;
struct fst_port_info *dma_port_rx;
struct fst_port_info *dma_port_tx;
int dma_len_rx;
int dma_len_tx;
int dma_txpos;
int dma_rxpos;
}; };
/* Convert an HDLC device pointer into a port info pointer and similar */ /* Convert an HDLC device pointer into a port info pointer and similar */
...@@ -380,7 +498,6 @@ struct fst_card_info { ...@@ -380,7 +498,6 @@ struct fst_card_info {
#define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E)) #define FST_WRW(C,E,W) writew ((W), (C)->mem + WIN_OFFSET(E))
#define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E)) #define FST_WRL(C,E,L) writel ((L), (C)->mem + WIN_OFFSET(E))
/* /*
* Debug support * Debug support
*/ */
...@@ -399,30 +516,151 @@ static int fst_debug_mask = { FST_DEBUG }; ...@@ -399,30 +516,151 @@ static int fst_debug_mask = { FST_DEBUG };
printk ( KERN_DEBUG FST_NAME ": " fmt, ## A ) printk ( KERN_DEBUG FST_NAME ": " fmt, ## A )
#else #else
# define dbg(X...) /* NOP */ #define dbg(X...) /* NOP */
#endif #endif
/* Printing short cuts /* Printing short cuts
*/ */
#define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A ) #define printk_err(fmt,A...) printk ( KERN_ERR FST_NAME ": " fmt, ## A )
#define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A ) #define printk_warn(fmt,A...) printk ( KERN_WARNING FST_NAME ": " fmt, ## A )
#define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A ) #define printk_info(fmt,A...) printk ( KERN_INFO FST_NAME ": " fmt, ## A )
/* /*
* PCI ID lookup table * PCI ID lookup table
*/ */
static struct pci_device_id fst_pci_dev_id[] = { static struct pci_device_id fst_pci_dev_id[] __devinitdata = {
{ FSC_PCI_VENDOR_ID, T2P_PCI_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, 0, 0, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2P, PCI_ANY_ID,
FST_TYPE_T2P }, PCI_ANY_ID, 0, 0, FST_TYPE_T2P},
{ FSC_PCI_VENDOR_ID, T4P_PCI_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID, 0, 0,
FST_TYPE_T4P }, {PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4P, PCI_ANY_ID,
{ 0, } /* End */ PCI_ANY_ID, 0, 0, FST_TYPE_T4P},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T1U, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T1U},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T2U, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T2U},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_T4U, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_T4U},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
{PCI_VENDOR_ID_FARSITE, PCI_DEVICE_ID_FARSITE_TE1C, PCI_ANY_ID,
PCI_ANY_ID, 0, 0, FST_TYPE_TE1},
{0,} /* End */
}; };
MODULE_DEVICE_TABLE ( pci, fst_pci_dev_id ); MODULE_DEVICE_TABLE(pci, fst_pci_dev_id);
/*
* Device Driver Work Queues
*
* So that we don't spend too much time processing events in the
* Interrupt Service routine, we will declare a work queue per Card
* and make the ISR schedule a task in the queue for later execution.
* In the 2.4 Kernel we used to use the immediate queue for BH's
* Now that they are gone, tasklets seem to be much better than work
* queues.
*/
static void do_bottom_half_tx(struct fst_card_info *card);
static void do_bottom_half_rx(struct fst_card_info *card);
static void fst_process_tx_work_q(unsigned long work_q);
static void fst_process_int_work_q(unsigned long work_q);
DECLARE_TASKLET(fst_tx_task, fst_process_tx_work_q, 0);
DECLARE_TASKLET(fst_int_task, fst_process_int_work_q, 0);
struct fst_card_info *fst_card_array[FST_MAX_CARDS];
spinlock_t fst_work_q_lock;
u64 fst_work_txq;
u64 fst_work_intq;
static void
fst_q_work_item(u64 * queue, int card_index)
{
unsigned long flags;
u64 mask;
/*
* Grab the queue exclusively
*/
spin_lock_irqsave(&fst_work_q_lock, flags);
/*
* Making an entry in the queue is simply a matter of setting
* a bit for the card indicating that there is work to do in the
* bottom half for the card. Note the limitation of 64 cards.
* That ought to be enough
*/
mask = 1 << card_index;
*queue |= mask;
spin_unlock_irqrestore(&fst_work_q_lock, flags);
}
static void
fst_process_tx_work_q(unsigned long /*void **/work_q)
{
unsigned long flags;
u64 work_txq;
int i;
/*
* Grab the queue exclusively
*/
dbg(DBG_TX, "fst_process_tx_work_q\n");
spin_lock_irqsave(&fst_work_q_lock, flags);
work_txq = fst_work_txq;
fst_work_txq = 0;
spin_unlock_irqrestore(&fst_work_q_lock, flags);
/*
* Call the bottom half for each card with work waiting
*/
for (i = 0; i < FST_MAX_CARDS; i++) {
if (work_txq & 0x01) {
if (fst_card_array[i] != NULL) {
dbg(DBG_TX, "Calling tx bh for card %d\n", i);
do_bottom_half_tx(fst_card_array[i]);
}
}
work_txq = work_txq >> 1;
}
}
static void
fst_process_int_work_q(unsigned long /*void **/work_q)
{
unsigned long flags;
u64 work_intq;
int i;
/*
* Grab the queue exclusively
*/
dbg(DBG_INTR, "fst_process_int_work_q\n");
spin_lock_irqsave(&fst_work_q_lock, flags);
work_intq = fst_work_intq;
fst_work_intq = 0;
spin_unlock_irqrestore(&fst_work_q_lock, flags);
/*
* Call the bottom half for each card with work waiting
*/
for (i = 0; i < FST_MAX_CARDS; i++) {
if (work_intq & 0x01) {
if (fst_card_array[i] != NULL) {
dbg(DBG_INTR,
"Calling rx & tx bh for card %d\n", i);
do_bottom_half_rx(fst_card_array[i]);
do_bottom_half_tx(fst_card_array[i]);
}
}
work_intq = work_intq >> 1;
}
}
/* Card control functions /* Card control functions
* ====================== * ======================
...@@ -432,52 +670,296 @@ MODULE_DEVICE_TABLE ( pci, fst_pci_dev_id ); ...@@ -432,52 +670,296 @@ MODULE_DEVICE_TABLE ( pci, fst_pci_dev_id );
* Used to be a simple write to card control space but a glitch in the latest * Used to be a simple write to card control space but a glitch in the latest
* AMD Am186CH processor means that we now have to do it by asserting and de- * AMD Am186CH processor means that we now have to do it by asserting and de-
* asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register * asserting the PLX chip PCI Adapter Software Reset. Bit 30 in CNTRL register
* at offset 0x50. * at offset 9052_CNTRL. Note the updates for the TXU.
*/ */
static inline void static inline void
fst_cpureset ( struct fst_card_info *card ) fst_cpureset(struct fst_card_info *card)
{ {
unsigned char interrupt_line_register;
unsigned long j = jiffies + 1;
unsigned int regval; unsigned int regval;
regval = inl ( card->pci_conf + 0x50 ); if (card->family == FST_FAMILY_TXU) {
if (pci_read_config_byte
(card->device, PCI_INTERRUPT_LINE, &interrupt_line_register)) {
dbg(DBG_ASS,
"Error in reading interrupt line register\n");
}
/*
* Assert PLX software reset and Am186 hardware reset
* and then deassert the PLX software reset but 186 still in reset
*/
outw(0x440f, card->pci_conf + CNTRL_9054 + 2);
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
/*
* We are delaying here to allow the 9054 to reset itself
*/
j = jiffies + 1;
while (jiffies < j)
/* Do nothing */ ;
outw(0x240f, card->pci_conf + CNTRL_9054 + 2);
/*
* We are delaying here to allow the 9054 to reload its eeprom
*/
j = jiffies + 1;
while (jiffies < j)
/* Do nothing */ ;
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
if (pci_write_config_byte
(card->device, PCI_INTERRUPT_LINE, interrupt_line_register)) {
dbg(DBG_ASS,
"Error in writing interrupt line register\n");
}
} else {
regval = inl(card->pci_conf + CNTRL_9052);
outl ( regval | 0x40000000, card->pci_conf + 0x50 ); outl(regval | 0x40000000, card->pci_conf + CNTRL_9052);
outl ( regval & ~0x40000000, card->pci_conf + 0x50 ); outl(regval & ~0x40000000, card->pci_conf + CNTRL_9052);
}
} }
/* Release the processor from reset /* Release the processor from reset
*/ */
static inline void static inline void
fst_cpurelease ( struct fst_card_info *card ) fst_cpurelease(struct fst_card_info *card)
{ {
(void) readb ( card->ctlmem ); if (card->family == FST_FAMILY_TXU) {
/*
* Force posted writes to complete
*/
(void) readb(card->mem);
/*
* Release LRESET DO = 1
* Then release Local Hold, DO = 1
*/
outw(0x040e, card->pci_conf + CNTRL_9054 + 2);
outw(0x040f, card->pci_conf + CNTRL_9054 + 2);
} else {
(void) readb(card->ctlmem);
}
} }
/* Clear the cards interrupt flag /* Clear the cards interrupt flag
*/ */
static inline void static inline void
fst_clear_intr ( struct fst_card_info *card ) fst_clear_intr(struct fst_card_info *card)
{ {
if (card->family == FST_FAMILY_TXU) {
(void) readb(card->ctlmem);
} else {
/* Poke the appropriate PLX chip register (same as enabling interrupts) /* Poke the appropriate PLX chip register (same as enabling interrupts)
*/ */
outw ( 0x0543, card->pci_conf + 0x4C ); outw(0x0543, card->pci_conf + INTCSR_9052);
}
}
/* Enable card interrupts
*/
static inline void
fst_enable_intr(struct fst_card_info *card)
{
if (card->family == FST_FAMILY_TXU) {
outl(0x0f0c0900, card->pci_conf + INTCSR_9054);
} else {
outw(0x0543, card->pci_conf + INTCSR_9052);
}
} }
/* Disable card interrupts /* Disable card interrupts
*/ */
static inline void static inline void
fst_disable_intr ( struct fst_card_info *card ) fst_disable_intr(struct fst_card_info *card)
{
if (card->family == FST_FAMILY_TXU) {
outl(0x00000000, card->pci_conf + INTCSR_9054);
} else {
outw(0x0000, card->pci_conf + INTCSR_9052);
}
}
/* Process the result of trying to pass a recieved frame up the stack
*/
static void
fst_process_rx_status(int rx_status, char *name)
{
switch (rx_status) {
case NET_RX_SUCCESS:
{
/*
* Nothing to do here
*/
break;
}
case NET_RX_CN_LOW:
{
dbg(DBG_ASS, "%s: Receive Low Congestion\n", name);
break;
}
case NET_RX_CN_MOD:
{
dbg(DBG_ASS, "%s: Receive Moderate Congestion\n", name);
break;
}
case NET_RX_CN_HIGH:
{
dbg(DBG_ASS, "%s: Receive High Congestion\n", name);
break;
}
case NET_RX_DROP:
{
dbg(DBG_ASS, "%s: Received packet dropped\n", name);
break;
}
}
}
/* Initilaise DMA for PLX 9054
*/
static inline void
fst_init_dma(struct fst_card_info *card)
{ {
outw ( 0x0000, card->pci_conf + 0x4C ); /*
* This is only required for the PLX 9054
*/
if (card->family == FST_FAMILY_TXU) {
pci_set_master(card->device);
outl(0x00020441, card->pci_conf + DMAMODE0);
outl(0x00020441, card->pci_conf + DMAMODE1);
outl(0x0, card->pci_conf + DMATHR);
}
} }
/* Tx dma complete interrupt
*/
static void
fst_tx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
int len, int txpos)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/*
* Everything is now set, just tell the card to go
*/
dbg(DBG_TX, "fst_tx_dma_complete\n");
FST_WRB(card, txDescrRing[port->index][txpos].bits,
DMA_OWN | TX_STP | TX_ENP);
stats->tx_packets++;
stats->tx_bytes += len;
dev->trans_start = jiffies;
}
/* Rx dma complete interrupt
*/
static void
fst_rx_dma_complete(struct fst_card_info *card, struct fst_port_info *port,
int len, struct sk_buff *skb, int rxp)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
int pi;
int rx_status;
dbg(DBG_TX, "fst_rx_dma_complete\n");
pi = port->index;
memcpy(skb_put(skb, len), card->rx_dma_handle_host, len);
/* Reset buffer descriptor */
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
/* Update stats */
stats->rx_packets++;
stats->rx_bytes += len;
/* Push upstream */
dbg(DBG_RX, "Pushing the frame up the stack\n");
skb->mac.raw = skb->data;
skb->dev = dev;
if (port->mode == FST_RAW) {
/*
* Mark it for our own raw sockets interface
*/
skb->protocol = htons(ETH_P_CUST);
skb->pkt_type = PACKET_HOST;
} else {
skb->protocol = hdlc_type_trans(skb, skb->dev);
}
rx_status = netif_rx(skb);
fst_process_rx_status(rx_status, port_to_dev(port)->name);
if (rx_status == NET_RX_DROP)
stats->rx_dropped++;
dev->last_rx = jiffies;
}
/*
* Receive a frame through the DMA
*/
static inline void
fst_rx_dma(struct fst_card_info *card, unsigned char *skb,
unsigned char *mem, int len)
{
/*
* This routine will setup the DMA and start it
*/
dbg(DBG_RX, "In fst_rx_dma %p %p %d\n", skb, mem, len);
if (card->dmarx_in_progress) {
dbg(DBG_ASS, "In fst_rx_dma while dma in progress\n");
}
outl((unsigned long) skb, card->pci_conf + DMAPADR0); /* Copy to here */
outl((unsigned long) mem, card->pci_conf + DMALADR0); /* from here */
outl(len, card->pci_conf + DMASIZ0); /* for this length */
outl(0x00000000c, card->pci_conf + DMADPR0); /* In this direction */
/*
* We use the dmarx_in_progress flag to flag the channel as busy
*/
card->dmarx_in_progress = 1;
outb(0x03, card->pci_conf + DMACSR0); /* Start the transfer */
}
/*
* Send a frame through the DMA
*/
static inline void
fst_tx_dma(struct fst_card_info *card, unsigned char *skb,
unsigned char *mem, int len)
{
/*
* This routine will setup the DMA and start it.
*/
dbg(DBG_TX, "In fst_tx_dma %p %p %d\n", skb, mem, len);
if (card->dmatx_in_progress) {
dbg(DBG_ASS, "In fst_tx_dma while dma in progress\n");
}
outl((unsigned long) skb, card->pci_conf + DMAPADR1); /* Copy from here */
outl((unsigned long) mem, card->pci_conf + DMALADR1); /* to here */
outl(len, card->pci_conf + DMASIZ1); /* for this length */
outl(0x000000004, card->pci_conf + DMADPR1); /* In this direction */
/*
* We use the dmatx_in_progress to flag the channel as busy
*/
card->dmatx_in_progress = 1;
outb(0x03, card->pci_conf + DMACSR1); /* Start the transfer */
}
/* Issue a Mailbox command for a port. /* Issue a Mailbox command for a port.
* Note we issue them on a fire and forget basis, not expecting to see an * Note we issue them on a fire and forget basis, not expecting to see an
* error and not waiting for completion. * error and not waiting for completion.
*/ */
static void static void
fst_issue_cmd ( struct fst_port_info *port, unsigned short cmd ) fst_issue_cmd(struct fst_port_info *port, unsigned short cmd)
{ {
struct fst_card_info *card; struct fst_card_info *card;
unsigned short mbval; unsigned short mbval;
...@@ -485,75 +967,68 @@ fst_issue_cmd ( struct fst_port_info *port, unsigned short cmd ) ...@@ -485,75 +967,68 @@ fst_issue_cmd ( struct fst_port_info *port, unsigned short cmd )
int safety; int safety;
card = port->card; card = port->card;
spin_lock_irqsave ( &card->card_lock, flags ); spin_lock_irqsave(&card->card_lock, flags);
mbval = FST_RDW ( card, portMailbox[port->index][0]); mbval = FST_RDW(card, portMailbox[port->index][0]);
safety = 0; safety = 0;
/* Wait for any previous command to complete */ /* Wait for any previous command to complete */
while ( mbval > NAK ) while (mbval > NAK) {
{ spin_unlock_irqrestore(&card->card_lock, flags);
spin_unlock_irqrestore ( &card->card_lock, flags ); schedule_timeout(1);
schedule_timeout ( 1 ); spin_lock_irqsave(&card->card_lock, flags);
spin_lock_irqsave ( &card->card_lock, flags );
if ( ++safety > 1000 ) if (++safety > 2000) {
{ printk_err("Mailbox safety timeout\n");
printk_err ("Mailbox safety timeout\n");
break; break;
} }
mbval = FST_RDW ( card, portMailbox[port->index][0]); mbval = FST_RDW(card, portMailbox[port->index][0]);
} }
if ( safety > 0 ) if (safety > 0) {
{ dbg(DBG_CMD, "Mailbox clear after %d jiffies\n", safety);
dbg ( DBG_CMD,"Mailbox clear after %d jiffies\n", safety );
} }
if ( mbval == NAK ) if (mbval == NAK) {
{ dbg(DBG_CMD, "issue_cmd: previous command was NAK'd\n");
dbg ( DBG_CMD,"issue_cmd: previous command was NAK'd\n");
} }
FST_WRW ( card, portMailbox[port->index][0], cmd ); FST_WRW(card, portMailbox[port->index][0], cmd);
if ( cmd == ABORTTX || cmd == STARTPORT ) if (cmd == ABORTTX || cmd == STARTPORT) {
{
port->txpos = 0; port->txpos = 0;
port->txipos = 0; port->txipos = 0;
port->txcnt = 0; port->start = 0;
} }
spin_unlock_irqrestore ( &card->card_lock, flags ); spin_unlock_irqrestore(&card->card_lock, flags);
} }
/* Port output signals control /* Port output signals control
*/ */
static inline void static inline void
fst_op_raise ( struct fst_port_info *port, unsigned int outputs ) fst_op_raise(struct fst_port_info *port, unsigned int outputs)
{ {
outputs |= FST_RDL ( port->card, v24OpSts[port->index]); outputs |= FST_RDL(port->card, v24OpSts[port->index]);
FST_WRL ( port->card, v24OpSts[port->index], outputs ); FST_WRL(port->card, v24OpSts[port->index], outputs);
if ( port->run ) if (port->run)
fst_issue_cmd ( port, SETV24O ); fst_issue_cmd(port, SETV24O);
} }
static inline void static inline void
fst_op_lower ( struct fst_port_info *port, unsigned int outputs ) fst_op_lower(struct fst_port_info *port, unsigned int outputs)
{ {
outputs = ~outputs & FST_RDL ( port->card, v24OpSts[port->index]); outputs = ~outputs & FST_RDL(port->card, v24OpSts[port->index]);
FST_WRL ( port->card, v24OpSts[port->index], outputs ); FST_WRL(port->card, v24OpSts[port->index], outputs);
if ( port->run ) if (port->run)
fst_issue_cmd ( port, SETV24O ); fst_issue_cmd(port, SETV24O);
} }
/* /*
* Setup port Rx buffers * Setup port Rx buffers
*/ */
static void static void
fst_rx_config ( struct fst_port_info *port ) fst_rx_config(struct fst_port_info *port)
{ {
int i; int i;
int pi; int pi;
...@@ -563,28 +1038,25 @@ fst_rx_config ( struct fst_port_info *port ) ...@@ -563,28 +1038,25 @@ fst_rx_config ( struct fst_port_info *port )
pi = port->index; pi = port->index;
card = port->card; card = port->card;
spin_lock_irqsave ( &card->card_lock, flags ); spin_lock_irqsave(&card->card_lock, flags);
for ( i = 0 ; i < NUM_RX_BUFFER ; i++ ) for (i = 0; i < NUM_RX_BUFFER; i++) {
{ offset = BUF_OFFSET(rxBuffer[pi][i][0]);
offset = BUF_OFFSET ( rxBuffer[pi][i][0]);
FST_WRW ( card, rxDescrRing[pi][i].ladr, (u16) offset ); FST_WRW(card, rxDescrRing[pi][i].ladr, (u16) offset);
FST_WRB ( card, rxDescrRing[pi][i].hadr, (u8)( offset >> 16 )); FST_WRB(card, rxDescrRing[pi][i].hadr, (u8) (offset >> 16));
FST_WRW ( card, rxDescrRing[pi][i].bcnt, FST_WRW(card, rxDescrRing[pi][i].bcnt, cnv_bcnt(LEN_RX_BUFFER));
cnv_bcnt ( LEN_RX_BUFFER )); FST_WRW(card, rxDescrRing[pi][i].mcnt, LEN_RX_BUFFER);
FST_WRW ( card, rxDescrRing[pi][i].mcnt, 0 ); FST_WRB(card, rxDescrRing[pi][i].bits, DMA_OWN);
FST_WRB ( card, rxDescrRing[pi][i].bits, DMA_OWN );
} }
port->rxpos = 0; port->rxpos = 0;
spin_unlock_irqrestore ( &card->card_lock, flags ); spin_unlock_irqrestore(&card->card_lock, flags);
} }
/* /*
* Setup port Tx buffers * Setup port Tx buffers
*/ */
static void static void
fst_tx_config ( struct fst_port_info *port ) fst_tx_config(struct fst_port_info *port)
{ {
int i; int i;
int pi; int pi;
...@@ -594,238 +1066,564 @@ fst_tx_config ( struct fst_port_info *port ) ...@@ -594,238 +1066,564 @@ fst_tx_config ( struct fst_port_info *port )
pi = port->index; pi = port->index;
card = port->card; card = port->card;
spin_lock_irqsave ( &card->card_lock, flags ); spin_lock_irqsave(&card->card_lock, flags);
for ( i = 0 ; i < NUM_TX_BUFFER ; i++ ) for (i = 0; i < NUM_TX_BUFFER; i++) {
{ offset = BUF_OFFSET(txBuffer[pi][i][0]);
offset = BUF_OFFSET ( txBuffer[pi][i][0]);
FST_WRW ( card, txDescrRing[pi][i].ladr, (u16) offset ); FST_WRW(card, txDescrRing[pi][i].ladr, (u16) offset);
FST_WRB ( card, txDescrRing[pi][i].hadr, (u8)( offset >> 16 )); FST_WRB(card, txDescrRing[pi][i].hadr, (u8) (offset >> 16));
FST_WRW ( card, txDescrRing[pi][i].bcnt, 0 ); FST_WRW(card, txDescrRing[pi][i].bcnt, 0);
FST_WRB ( card, txDescrRing[pi][i].bits, 0 ); FST_WRB(card, txDescrRing[pi][i].bits, 0);
} }
port->txpos = 0; port->txpos = 0;
port->txipos = 0; port->txipos = 0;
port->txcnt = 0; port->start = 0;
spin_unlock_irqrestore ( &card->card_lock, flags ); spin_unlock_irqrestore(&card->card_lock, flags);
} }
/* TE1 Alarm change interrupt event
*/
static void
fst_intr_te1_alarm(struct fst_card_info *card, struct fst_port_info *port)
{
u8 los;
u8 rra;
u8 ais;
los = FST_RDB(card, suStatus.lossOfSignal);
rra = FST_RDB(card, suStatus.receiveRemoteAlarm);
ais = FST_RDB(card, suStatus.alarmIndicationSignal);
if (los) {
/*
* Lost the link
*/
if (netif_carrier_ok(port_to_dev(port))) {
dbg(DBG_INTR, "Net carrier off\n");
netif_carrier_off(port_to_dev(port));
}
} else {
/*
* Link available
*/
if (!netif_carrier_ok(port_to_dev(port))) {
dbg(DBG_INTR, "Net carrier on\n");
netif_carrier_on(port_to_dev(port));
}
}
if (los)
dbg(DBG_INTR, "Assert LOS Alarm\n");
else
dbg(DBG_INTR, "De-assert LOS Alarm\n");
if (rra)
dbg(DBG_INTR, "Assert RRA Alarm\n");
else
dbg(DBG_INTR, "De-assert RRA Alarm\n");
if (ais)
dbg(DBG_INTR, "Assert AIS Alarm\n");
else
dbg(DBG_INTR, "De-assert AIS Alarm\n");
}
/* Control signal change interrupt event /* Control signal change interrupt event
*/ */
static irqreturn_t static void
fst_intr_ctlchg ( struct fst_card_info *card, struct fst_port_info *port ) fst_intr_ctlchg(struct fst_card_info *card, struct fst_port_info *port)
{ {
int signals; int signals;
signals = FST_RDL ( card, v24DebouncedSts[port->index]); signals = FST_RDL(card, v24DebouncedSts[port->index]);
if ( signals & (( port->hwif == X21 ) ? IPSTS_INDICATE : IPSTS_DCD )) if (signals & (((port->hwif == X21) || (port->hwif == X21D))
{ ? IPSTS_INDICATE : IPSTS_DCD)) {
if ( ! netif_carrier_ok ( port_to_dev ( port ))) if (!netif_carrier_ok(port_to_dev(port))) {
{ dbg(DBG_INTR, "DCD active\n");
dbg ( DBG_INTR,"DCD active\n"); netif_carrier_on(port_to_dev(port));
netif_carrier_on ( port_to_dev ( port ));
} }
} else {
if (netif_carrier_ok(port_to_dev(port))) {
dbg(DBG_INTR, "DCD lost\n");
netif_carrier_off(port_to_dev(port));
} }
else
{
if ( netif_carrier_ok ( port_to_dev ( port )))
{
dbg ( DBG_INTR,"DCD lost\n");
netif_carrier_off ( port_to_dev ( port ));
} }
}
/* Log Rx Errors
*/
static void
fst_log_rx_error(struct fst_card_info *card, struct fst_port_info *port,
unsigned char dmabits, int rxp, unsigned short len)
{
struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev);
/*
* Increment the appropriate error counter
*/
stats->rx_errors++;
if (dmabits & RX_OFLO) {
stats->rx_fifo_errors++;
dbg(DBG_ASS, "Rx fifo error on card %d port %d buffer %d\n",
card->card_no, port->index, rxp);
}
if (dmabits & RX_CRC) {
stats->rx_crc_errors++;
dbg(DBG_ASS, "Rx crc error on card %d port %d\n",
card->card_no, port->index);
}
if (dmabits & RX_FRAM) {
stats->rx_frame_errors++;
dbg(DBG_ASS, "Rx frame error on card %d port %d\n",
card->card_no, port->index);
}
if (dmabits == (RX_STP | RX_ENP)) {
stats->rx_length_errors++;
dbg(DBG_ASS, "Rx length error (%d) on card %d port %d\n",
len, card->card_no, port->index);
} }
return IRQ_HANDLED;
} }
/* Rx Error Recovery
*/
static void
fst_recover_rx_error(struct fst_card_info *card, struct fst_port_info *port,
unsigned char dmabits, int rxp, unsigned short len)
{
int i;
int pi;
pi = port->index;
/*
* Discard buffer descriptors until we see the start of the
* next frame. Note that for long frames this could be in
* a subsequent interrupt.
*/
i = 0;
while ((dmabits & (DMA_OWN | RX_STP)) == 0) {
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
rxp = (rxp+1) % NUM_RX_BUFFER;
if (++i > NUM_RX_BUFFER) {
dbg(DBG_ASS, "intr_rx: Discarding more bufs"
" than we have\n");
break;
}
dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
dbg(DBG_ASS, "DMA Bits of next buffer was %x\n", dmabits);
}
dbg(DBG_ASS, "There were %d subsequent buffers in error\n", i);
/* Discard the terminal buffer */
if (!(dmabits & DMA_OWN)) {
FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
rxp = (rxp+1) % NUM_RX_BUFFER;
}
port->rxpos = rxp;
return;
}
/* Rx complete interrupt /* Rx complete interrupt
*/ */
static void static void
fst_intr_rx ( struct fst_card_info *card, struct fst_port_info *port ) fst_intr_rx(struct fst_card_info *card, struct fst_port_info *port)
{ {
unsigned char dmabits; unsigned char dmabits;
int pi; int pi;
int rxp; int rxp;
int rx_status;
unsigned short len; unsigned short len;
struct sk_buff *skb; struct sk_buff *skb;
struct net_device *dev = port_to_dev(port); struct net_device *dev = port_to_dev(port);
struct net_device_stats *stats = hdlc_stats(dev); struct net_device_stats *stats = hdlc_stats(dev);
int i;
/* Check we have a buffer to process */ /* Check we have a buffer to process */
pi = port->index; pi = port->index;
rxp = port->rxpos; rxp = port->rxpos;
dmabits = FST_RDB ( card, rxDescrRing[pi][rxp].bits ); dmabits = FST_RDB(card, rxDescrRing[pi][rxp].bits);
if ( dmabits & DMA_OWN ) if (dmabits & DMA_OWN) {
{ dbg(DBG_RX | DBG_INTR, "intr_rx: No buffer port %d pos %d\n",
dbg ( DBG_RX | DBG_INTR,"intr_rx: No buffer port %d pos %d\n", pi, rxp);
pi, rxp ); return;
}
if (card->dmarx_in_progress) {
return; return;
} }
/* Get buffer length */ /* Get buffer length */
len = FST_RDW ( card, rxDescrRing[pi][rxp].mcnt ); len = FST_RDW(card, rxDescrRing[pi][rxp].mcnt);
/* Discard the CRC */ /* Discard the CRC */
len -= 2; len -= 2;
if (len == 0) {
/* Check buffer length and for other errors. We insist on one packet /*
* in one buffer. This simplifies things greatly and since we've * This seems to happen on the TE1 interface sometimes
* allocated 8K it shouldn't be a real world limitation * so throw the frame away and log the event.
*/ */
dbg ( DBG_RX,"intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, printk_err("Frame received with 0 length. Card %d Port %d\n",
len ); card->card_no, port->index);
if ( dmabits != ( RX_STP | RX_ENP ) || len > LEN_RX_BUFFER - 2 ) /* Return descriptor to card */
{ FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
stats->rx_errors++;
/* Update error stats and discard buffer */ rxp = (rxp+1) % NUM_RX_BUFFER;
if ( dmabits & RX_OFLO ) port->rxpos = rxp;
{ return;
stats->rx_fifo_errors++;
}
if ( dmabits & RX_CRC )
{
stats->rx_crc_errors++;
}
if ( dmabits & RX_FRAM )
{
stats->rx_frame_errors++;
}
if ( dmabits == ( RX_STP | RX_ENP ))
{
stats->rx_length_errors++;
} }
/* Discard buffer descriptors until we see the end of packet /* Check buffer length and for other errors. We insist on one packet
* marker * in one buffer. This simplifies things greatly and since we've
* allocated 8K it shouldn't be a real world limitation
*/ */
i = 0; dbg(DBG_RX, "intr_rx: %d,%d: flags %x len %d\n", pi, rxp, dmabits, len);
while (( dmabits & ( DMA_OWN | RX_ENP )) == 0 ) if (dmabits != (RX_STP | RX_ENP) || len > LEN_RX_BUFFER - 2) {
{ fst_log_rx_error(card, port, dmabits, rxp, len);
FST_WRB ( card, rxDescrRing[pi][rxp].bits, DMA_OWN ); fst_recover_rx_error(card, port, dmabits, rxp, len);
if ( ++rxp >= NUM_RX_BUFFER )
rxp = 0;
if ( ++i > NUM_RX_BUFFER )
{
dbg ( DBG_ASS,"intr_rx: Discarding more bufs"
" than we have\n");
break;
}
dmabits = FST_RDB ( card, rxDescrRing[pi][rxp].bits );
}
/* Discard the terminal buffer */
if ( ! ( dmabits & DMA_OWN ))
{
FST_WRB ( card, rxDescrRing[pi][rxp].bits, DMA_OWN );
if ( ++rxp >= NUM_RX_BUFFER )
rxp = 0;
}
port->rxpos = rxp;
return; return;
} }
/* Allocate SKB */ /* Allocate SKB */
if (( skb = dev_alloc_skb ( len )) == NULL ) if ((skb = dev_alloc_skb(len)) == NULL) {
{ dbg(DBG_RX, "intr_rx: can't allocate buffer\n");
dbg ( DBG_RX,"intr_rx: can't allocate buffer\n");
stats->rx_dropped++; stats->rx_dropped++;
/* Return descriptor to card */ /* Return descriptor to card */
FST_WRB ( card, rxDescrRing[pi][rxp].bits, DMA_OWN ); FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
if ( ++rxp >= NUM_RX_BUFFER ) rxp = (rxp+1) % NUM_RX_BUFFER;
port->rxpos = 0;
else
port->rxpos = rxp; port->rxpos = rxp;
return; return;
} }
memcpy_fromio ( skb_put ( skb, len ), /*
card->mem + BUF_OFFSET ( rxBuffer[pi][rxp][0]), * We know the length we need to receive, len.
len ); * It's not worth using the DMA for reads of less than
* FST_MIN_DMA_LEN
*/
if ((len < FST_MIN_DMA_LEN) || (card->family == FST_FAMILY_TXP)) {
memcpy_fromio(skb_put(skb, len),
card->mem + BUF_OFFSET(rxBuffer[pi][rxp][0]),
len);
/* Reset buffer descriptor */ /* Reset buffer descriptor */
FST_WRB ( card, rxDescrRing[pi][rxp].bits, DMA_OWN ); FST_WRB(card, rxDescrRing[pi][rxp].bits, DMA_OWN);
if ( ++rxp >= NUM_RX_BUFFER )
port->rxpos = 0; /* Update stats */
else stats->rx_packets++;
stats->rx_bytes += len;
/* Push upstream */
dbg(DBG_RX, "Pushing frame up the stack\n");
skb->mac.raw = skb->data;
skb->dev = dev;
if (port->mode == FST_RAW) {
/*
* Mark it for our own raw sockets interface
*/
skb->protocol = htons(ETH_P_CUST);
skb->pkt_type = PACKET_HOST;
} else {
skb->protocol = hdlc_type_trans(skb, skb->dev);
}
rx_status = netif_rx(skb);
fst_process_rx_status(rx_status, port_to_dev(port)->name);
if (rx_status == NET_RX_DROP) {
stats->rx_dropped++;
}
dev->last_rx = jiffies;
} else {
card->dma_skb_rx = skb;
card->dma_port_rx = port;
card->dma_len_rx = len;
card->dma_rxpos = rxp;
fst_rx_dma(card, (char *) card->rx_dma_handle_card,
(char *) BUF_OFFSET(rxBuffer[pi][rxp][0]), len);
}
if (rxp != port->rxpos) {
dbg(DBG_ASS, "About to increment rxpos by more than 1\n");
dbg(DBG_ASS, "rxp = %d rxpos = %d\n", rxp, port->rxpos);
}
rxp = (rxp+1) % NUM_RX_BUFFER;
port->rxpos = rxp; port->rxpos = rxp;
}
/*
* The bottom halfs to the ISR
*
*/
static void
do_bottom_half_tx(struct fst_card_info *card)
{
struct fst_port_info *port;
int pi;
int txq_length;
struct sk_buff *skb;
unsigned long flags;
struct net_device *dev;
struct net_device_stats *stats;
/* Update stats */ /*
stats->rx_packets++; * Find a free buffer for the transmit
stats->rx_bytes += len; * Step through each port on this card
*/
/* Push upstream */ dbg(DBG_TX, "do_bottom_half_tx\n");
skb->mac.raw = skb->data; for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
skb->dev = dev; if (!port->run)
skb->protocol = hdlc_type_trans(skb, skb->dev); continue;
netif_rx ( skb );
dev->last_rx = jiffies; dev = port_to_dev(port);
stats = hdlc_stats(dev);
while (!
(FST_RDB(card, txDescrRing[pi][port->txpos].bits) &
DMA_OWN)
&& !(card->dmatx_in_progress)) {
/*
* There doesn't seem to be a txdone event per-se
* We seem to have to deduce it, by checking the DMA_OWN
* bit on the next buffer we think we can use
*/
spin_lock_irqsave(&card->card_lock, flags);
if ((txq_length = port->txqe - port->txqs) < 0) {
/*
* This is the case where one has wrapped and the
* maths gives us a negative number
*/
txq_length = txq_length + FST_TXQ_DEPTH;
}
spin_unlock_irqrestore(&card->card_lock, flags);
if (txq_length > 0) {
/*
* There is something to send
*/
spin_lock_irqsave(&card->card_lock, flags);
skb = port->txq[port->txqs];
port->txqs++;
if (port->txqs == FST_TXQ_DEPTH) {
port->txqs = 0;
}
spin_unlock_irqrestore(&card->card_lock, flags);
/*
* copy the data and set the required indicators on the
* card.
*/
FST_WRW(card, txDescrRing[pi][port->txpos].bcnt,
cnv_bcnt(skb->len));
if ((skb->len < FST_MIN_DMA_LEN)
|| (card->family == FST_FAMILY_TXP)) {
/* Enqueue the packet with normal io */
memcpy_toio(card->mem +
BUF_OFFSET(txBuffer[pi]
[port->
txpos][0]),
skb->data, skb->len);
FST_WRB(card,
txDescrRing[pi][port->txpos].
bits,
DMA_OWN | TX_STP | TX_ENP);
stats->tx_packets++;
stats->tx_bytes += skb->len;
dev->trans_start = jiffies;
} else {
/* Or do it through dma */
memcpy(card->tx_dma_handle_host,
skb->data, skb->len);
card->dma_port_tx = port;
card->dma_len_tx = skb->len;
card->dma_txpos = port->txpos;
fst_tx_dma(card,
(char *) card->
tx_dma_handle_card,
(char *)
BUF_OFFSET(txBuffer[pi]
[port->txpos][0]),
skb->len);
}
if (++port->txpos >= NUM_TX_BUFFER)
port->txpos = 0;
/*
* If we have flow control on, can we now release it?
*/
if (port->start) {
if (txq_length < fst_txq_low) {
netif_wake_queue(port_to_dev
(port));
port->start = 0;
}
}
dev_kfree_skb(skb);
} else {
/*
* Nothing to send so break out of the while loop
*/
break;
}
}
}
} }
static void
do_bottom_half_rx(struct fst_card_info *card)
{
struct fst_port_info *port;
int pi;
int rx_count = 0;
/* Check for rx completions on all ports on this card */
dbg(DBG_RX, "do_bottom_half_rx\n");
for (pi = 0, port = card->ports; pi < card->nports; pi++, port++) {
if (!port->run)
continue;
while (!(FST_RDB(card, rxDescrRing[pi][port->rxpos].bits)
& DMA_OWN) && !(card->dmarx_in_progress)) {
if (rx_count > fst_max_reads) {
/*
* Don't spend forever in receive processing
* Schedule another event
*/
fst_q_work_item(&fst_work_intq, card->card_no);
tasklet_schedule(&fst_int_task);
break; /* Leave the loop */
}
fst_intr_rx(card, port);
rx_count++;
}
}
}
/* /*
* The interrupt service routine * The interrupt service routine
* Dev_id is our fst_card_info pointer * Dev_id is our fst_card_info pointer
*/ */
static irqreturn_t irqreturn_t
fst_intr ( int irq, void *dev_id, struct pt_regs *regs ) fst_intr(int irq, void *dev_id, struct pt_regs *regs)
{ {
struct fst_card_info *card; struct fst_card_info *card;
struct fst_port_info *port; struct fst_port_info *port;
int rdidx; /* Event buffer indices */ int rdidx; /* Event buffer indices */
int wridx; int wridx;
int event; /* Actual event for processing */ int event; /* Actual event for processing */
int pi; unsigned int dma_intcsr = 0;
unsigned int do_card_interrupt;
unsigned int int_retry_count;
if (( card = dev_id ) == NULL ) if ((card = dev_id) == NULL) {
{ dbg(DBG_INTR, "intr: spurious %d\n", irq);
dbg ( DBG_INTR,"intr: spurious %d\n", irq );
return IRQ_NONE; return IRQ_NONE;
} }
dbg ( DBG_INTR,"intr: %d %p\n", irq, card ); /*
* Check to see if the interrupt was for this card
* return if not
* Note that the call to clear the interrupt is important
*/
dbg(DBG_INTR, "intr: %d %p\n", irq, card);
if (card->state != FST_RUNNING) {
printk_err
("Interrupt received for card %d in a non running state (%d)\n",
card->card_no, card->state);
spin_lock ( &card->card_lock ); /*
* It is possible to really be running, i.e. we have re-loaded
* a running card
* Clear and reprime the interrupt source
*/
fst_clear_intr(card);
return IRQ_HANDLED;
}
/* Clear and reprime the interrupt source */ /* Clear and reprime the interrupt source */
fst_clear_intr ( card ); fst_clear_intr(card);
/*
* Is the interrupt for this card (handshake == 1)
*/
do_card_interrupt = 0;
if (FST_RDB(card, interruptHandshake) == 1) {
do_card_interrupt += FST_CARD_INT;
/* Set the software acknowledge */ /* Set the software acknowledge */
FST_WRB ( card, interruptHandshake, 0xEE ); FST_WRB(card, interruptHandshake, 0xEE);
}
if (card->family == FST_FAMILY_TXU) {
/*
* Is it a DMA Interrupt
*/
dma_intcsr = inl(card->pci_conf + INTCSR_9054);
if (dma_intcsr & 0x00200000) {
/*
* DMA Channel 0 (Rx transfer complete)
*/
dbg(DBG_RX, "DMA Rx xfer complete\n");
outb(0x8, card->pci_conf + DMACSR0);
fst_rx_dma_complete(card, card->dma_port_rx,
card->dma_len_rx, card->dma_skb_rx,
card->dma_rxpos);
card->dmarx_in_progress = 0;
do_card_interrupt += FST_RX_DMA_INT;
}
if (dma_intcsr & 0x00400000) {
/*
* DMA Channel 1 (Tx transfer complete)
*/
dbg(DBG_TX, "DMA Tx xfer complete\n");
outb(0x8, card->pci_conf + DMACSR1);
fst_tx_dma_complete(card, card->dma_port_tx,
card->dma_len_tx, card->dma_txpos);
card->dmatx_in_progress = 0;
do_card_interrupt += FST_TX_DMA_INT;
}
}
/* Drain the event queue */ /*
rdidx = FST_RDB ( card, interruptEvent.rdindex ); * Have we been missing Interrupts
wridx = FST_RDB ( card, interruptEvent.wrindex ); */
while ( rdidx != wridx ) int_retry_count = FST_RDL(card, interruptRetryCount);
{ if (int_retry_count) {
event = FST_RDB ( card, interruptEvent.evntbuff[rdidx]); dbg(DBG_ASS, "Card %d int_retry_count is %d\n",
card->card_no, int_retry_count);
FST_WRL(card, interruptRetryCount, 0);
}
if (!do_card_interrupt) {
return IRQ_HANDLED;
}
/* Scehdule the bottom half of the ISR */
fst_q_work_item(&fst_work_intq, card->card_no);
tasklet_schedule(&fst_int_task);
/* Drain the event queue */
rdidx = FST_RDB(card, interruptEvent.rdindex) & 0x1f;
wridx = FST_RDB(card, interruptEvent.wrindex) & 0x1f;
while (rdidx != wridx) {
event = FST_RDB(card, interruptEvent.evntbuff[rdidx]);
port = &card->ports[event & 0x03]; port = &card->ports[event & 0x03];
dbg ( DBG_INTR,"intr: %x\n", event ); dbg(DBG_INTR, "Processing Interrupt event: %x\n", event);
switch (event) {
case TE1_ALMA:
dbg(DBG_INTR, "TE1 Alarm intr\n");
if (port->run)
fst_intr_te1_alarm(card, port);
break;
switch ( event )
{
case CTLA_CHG: case CTLA_CHG:
case CTLB_CHG: case CTLB_CHG:
case CTLC_CHG: case CTLC_CHG:
case CTLD_CHG: case CTLD_CHG:
if ( port->run ) if (port->run)
fst_intr_ctlchg ( card, port ); fst_intr_ctlchg(card, port);
break; break;
case ABTA_SENT: case ABTA_SENT:
case ABTB_SENT: case ABTB_SENT:
case ABTC_SENT: case ABTC_SENT:
case ABTD_SENT: case ABTD_SENT:
dbg ( DBG_TX,"Abort complete port %d\n", event & 0x03 ); dbg(DBG_TX, "Abort complete port %d\n", port->index);
break; break;
case TXA_UNDF: case TXA_UNDF:
...@@ -835,95 +1633,65 @@ fst_intr ( int irq, void *dev_id, struct pt_regs *regs ) ...@@ -835,95 +1633,65 @@ fst_intr ( int irq, void *dev_id, struct pt_regs *regs )
/* Difficult to see how we'd get this given that we /* Difficult to see how we'd get this given that we
* always load up the entire packet for DMA. * always load up the entire packet for DMA.
*/ */
dbg ( DBG_TX,"Tx underflow port %d\n", event & 0x03 ); dbg(DBG_TX, "Tx underflow port %d\n", port->index);
hdlc_stats(port_to_dev(port))->tx_errors++; hdlc_stats(port_to_dev(port))->tx_errors++;
hdlc_stats(port_to_dev(port))->tx_fifo_errors++; hdlc_stats(port_to_dev(port))->tx_fifo_errors;
dbg(DBG_ASS, "Tx underflow on card %d port %d\n",
card->card_no, port->index);
break; break;
case INIT_CPLT: case INIT_CPLT:
dbg ( DBG_INIT,"Card init OK intr\n"); dbg(DBG_INIT, "Card init OK intr\n");
break; break;
case INIT_FAIL: case INIT_FAIL:
dbg ( DBG_INIT,"Card init FAILED intr\n"); dbg(DBG_INIT, "Card init FAILED intr\n");
card->state = FST_IFAILED; card->state = FST_IFAILED;
break; break;
default: default:
printk_err ("intr: unknown card event code. ignored\n"); printk_err("intr: unknown card event %d. ignored\n",
event);
break; break;
} }
/* Bump and wrap the index */ /* Bump and wrap the index */
if ( ++rdidx >= MAX_CIRBUFF ) if (++rdidx >= MAX_CIRBUFF)
rdidx = 0; rdidx = 0;
} }
FST_WRB ( card, interruptEvent.rdindex, rdidx ); FST_WRB(card, interruptEvent.rdindex, rdidx);
for ( pi = 0, port = card->ports ; pi < card->nports ; pi++, port++ )
{
if ( ! port->run )
continue;
/* Check for rx completions */
while ( ! ( FST_RDB ( card, rxDescrRing[pi][port->rxpos].bits )
& DMA_OWN ))
{
fst_intr_rx ( card, port );
}
/* Check for Tx completions */
while ( port->txcnt > 0 && ! ( FST_RDB ( card,
txDescrRing[pi][port->txipos].bits ) & DMA_OWN ))
{
--port->txcnt;
if ( ++port->txipos >= NUM_TX_BUFFER )
port->txipos = 0;
netif_wake_queue ( port_to_dev ( port ));
}
}
spin_unlock ( &card->card_lock );
return IRQ_HANDLED; return IRQ_HANDLED;
} }
/* Check that the shared memory configuration is one that we can handle /* Check that the shared memory configuration is one that we can handle
* and that some basic parameters are correct * and that some basic parameters are correct
*/ */
static void static void
check_started_ok ( struct fst_card_info *card ) check_started_ok(struct fst_card_info *card)
{ {
int i; int i;
/* Check structure version and end marker */ /* Check structure version and end marker */
if ( FST_RDW ( card, smcVersion ) != SMC_VERSION ) if (FST_RDW(card, smcVersion) != SMC_VERSION) {
{ printk_err("Bad shared memory version %d expected %d\n",
printk_err ("Bad shared memory version %d expected %d\n", FST_RDW(card, smcVersion), SMC_VERSION);
FST_RDW ( card, smcVersion ), SMC_VERSION );
card->state = FST_BADVERSION; card->state = FST_BADVERSION;
return; return;
} }
if ( FST_RDL ( card, endOfSmcSignature ) != END_SIG ) if (FST_RDL(card, endOfSmcSignature) != END_SIG) {
{ printk_err("Missing shared memory signature\n");
printk_err ("Missing shared memory signature\n");
card->state = FST_BADVERSION; card->state = FST_BADVERSION;
return; return;
} }
/* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */ /* Firmware status flag, 0x00 = initialising, 0x01 = OK, 0xFF = fail */
if (( i = FST_RDB ( card, taskStatus )) == 0x01 ) if ((i = FST_RDB(card, taskStatus)) == 0x01) {
{
card->state = FST_RUNNING; card->state = FST_RUNNING;
} } else if (i == 0xFF) {
else if ( i == 0xFF ) printk_err("Firmware initialisation failed. Card halted\n");
{
printk_err ("Firmware initialisation failed. Card halted\n");
card->state = FST_HALTED; card->state = FST_HALTED;
return; return;
} } else if (i != 0x00) {
else if ( i != 0x00 ) printk_err("Unknown firmware status 0x%x\n", i);
{
printk_err ("Unknown firmware status 0x%x\n", i );
card->state = FST_HALTED; card->state = FST_HALTED;
return; return;
} }
...@@ -932,52 +1700,113 @@ check_started_ok ( struct fst_card_info *card ) ...@@ -932,52 +1700,113 @@ check_started_ok ( struct fst_card_info *card )
* number we assumed at card detection. Should never happen with * number we assumed at card detection. Should never happen with
* existing firmware etc so we just report it for the moment. * existing firmware etc so we just report it for the moment.
*/ */
if ( FST_RDL ( card, numberOfPorts ) != card->nports ) if (FST_RDL(card, numberOfPorts) != card->nports) {
{ printk_warn("Port count mismatch on card %d."
printk_warn ("Port count mismatch." " Firmware thinks %d we say %d\n", card->card_no,
" Firmware thinks %d we say %d\n", FST_RDL(card, numberOfPorts), card->nports);
FST_RDL ( card, numberOfPorts ), card->nports );
} }
} }
static int static int
set_conf_from_info ( struct fst_card_info *card, struct fst_port_info *port, set_conf_from_info(struct fst_card_info *card, struct fst_port_info *port,
struct fstioc_info *info ) struct fstioc_info *info)
{ {
int err; int err;
unsigned char my_framing;
/* Set things according to the user set valid flags. /* Set things according to the user set valid flags
* Several of the old options have been invalidated/replaced by the * Several of the old options have been invalidated/replaced by the
* generic HDLC package. * generic hdlc package.
*/ */
err = 0; err = 0;
if ( info->valid & FSTVAL_PROTO ) if (info->valid & FSTVAL_PROTO) {
err = -EINVAL; if (info->proto == FST_RAW)
if ( info->valid & FSTVAL_CABLE ) port->mode = FST_RAW;
else
port->mode = FST_GEN_HDLC;
}
if (info->valid & FSTVAL_CABLE)
err = -EINVAL; err = -EINVAL;
if ( info->valid & FSTVAL_SPEED )
if (info->valid & FSTVAL_SPEED)
err = -EINVAL; err = -EINVAL;
if ( info->valid & FSTVAL_MODE ) if (info->valid & FSTVAL_PHASE)
FST_WRW ( card, cardMode, info->cardMode ); FST_WRB(card, portConfig[port->index].invertClock,
info->invertClock);
if (info->valid & FSTVAL_MODE)
FST_WRW(card, cardMode, info->cardMode);
if (info->valid & FSTVAL_TE1) {
FST_WRL(card, suConfig.dataRate, info->lineSpeed);
FST_WRB(card, suConfig.clocking, info->clockSource);
my_framing = FRAMING_E1;
if (info->framing == E1)
my_framing = FRAMING_E1;
if (info->framing == T1)
my_framing = FRAMING_T1;
if (info->framing == J1)
my_framing = FRAMING_J1;
FST_WRB(card, suConfig.framing, my_framing);
FST_WRB(card, suConfig.structure, info->structure);
FST_WRB(card, suConfig.interface, info->interface);
FST_WRB(card, suConfig.coding, info->coding);
FST_WRB(card, suConfig.lineBuildOut, info->lineBuildOut);
FST_WRB(card, suConfig.equalizer, info->equalizer);
FST_WRB(card, suConfig.transparentMode, info->transparentMode);
FST_WRB(card, suConfig.loopMode, info->loopMode);
FST_WRB(card, suConfig.range, info->range);
FST_WRB(card, suConfig.txBufferMode, info->txBufferMode);
FST_WRB(card, suConfig.rxBufferMode, info->rxBufferMode);
FST_WRB(card, suConfig.startingSlot, info->startingSlot);
FST_WRB(card, suConfig.losThreshold, info->losThreshold);
if (info->idleCode)
FST_WRB(card, suConfig.enableIdleCode, 1);
else
FST_WRB(card, suConfig.enableIdleCode, 0);
FST_WRB(card, suConfig.idleCode, info->idleCode);
#if FST_DEBUG
if (info->valid & FSTVAL_TE1) {
printk("Setting TE1 data\n");
printk("Line Speed = %d\n", info->lineSpeed);
printk("Start slot = %d\n", info->startingSlot);
printk("Clock source = %d\n", info->clockSource);
printk("Framing = %d\n", my_framing);
printk("Structure = %d\n", info->structure);
printk("interface = %d\n", info->interface);
printk("Coding = %d\n", info->coding);
printk("Line build out = %d\n", info->lineBuildOut);
printk("Equaliser = %d\n", info->equalizer);
printk("Transparent mode = %d\n",
info->transparentMode);
printk("Loop mode = %d\n", info->loopMode);
printk("Range = %d\n", info->range);
printk("Tx Buffer mode = %d\n", info->txBufferMode);
printk("Rx Buffer mode = %d\n", info->rxBufferMode);
printk("LOS Threshold = %d\n", info->losThreshold);
printk("Idle Code = %d\n", info->idleCode);
}
#endif
}
#if FST_DEBUG #if FST_DEBUG
if ( info->valid & FSTVAL_DEBUG ) if (info->valid & FSTVAL_DEBUG) {
fst_debug_mask = info->debug; fst_debug_mask = info->debug;
}
#endif #endif
return err; return err;
} }
static void static void
gather_conf_info ( struct fst_card_info *card, struct fst_port_info *port, gather_conf_info(struct fst_card_info *card, struct fst_port_info *port,
struct fstioc_info *info ) struct fstioc_info *info)
{ {
int i; int i;
memset ( info, 0, sizeof ( struct fstioc_info )); memset(info, 0, sizeof (struct fstioc_info));
i = port->index; i = port->index;
info->kernelVersion = LINUX_VERSION_CODE;
info->nports = card->nports; info->nports = card->nports;
info->type = card->type; info->type = card->type;
info->state = card->state; info->state = card->state;
...@@ -990,58 +1819,132 @@ gather_conf_info ( struct fst_card_info *card, struct fst_port_info *port, ...@@ -990,58 +1819,132 @@ gather_conf_info ( struct fst_card_info *card, struct fst_port_info *port,
/* Only mark information as valid if card is running. /* Only mark information as valid if card is running.
* Copy the data anyway in case it is useful for diagnostics * Copy the data anyway in case it is useful for diagnostics
*/ */
info->valid info->valid = ((card->state == FST_RUNNING) ? FSTVAL_ALL : FSTVAL_CARD)
= (( card->state == FST_RUNNING ) ? FSTVAL_ALL : FSTVAL_CARD )
#if FST_DEBUG #if FST_DEBUG
| FSTVAL_DEBUG | FSTVAL_DEBUG
#endif #endif
; ;
info->lineInterface = FST_RDW ( card, portConfig[i].lineInterface ); info->lineInterface = FST_RDW(card, portConfig[i].lineInterface);
info->internalClock = FST_RDB ( card, portConfig[i].internalClock ); info->internalClock = FST_RDB(card, portConfig[i].internalClock);
info->lineSpeed = FST_RDL ( card, portConfig[i].lineSpeed ); info->lineSpeed = FST_RDL(card, portConfig[i].lineSpeed);
info->v24IpSts = FST_RDL ( card, v24IpSts[i] ); info->invertClock = FST_RDB(card, portConfig[i].invertClock);
info->v24OpSts = FST_RDL ( card, v24OpSts[i] ); info->v24IpSts = FST_RDL(card, v24IpSts[i]);
info->clockStatus = FST_RDW ( card, clockStatus[i] ); info->v24OpSts = FST_RDL(card, v24OpSts[i]);
info->cableStatus = FST_RDW ( card, cableStatus ); info->clockStatus = FST_RDW(card, clockStatus[i]);
info->cardMode = FST_RDW ( card, cardMode ); info->cableStatus = FST_RDW(card, cableStatus);
info->smcFirmwareVersion = FST_RDL ( card, smcFirmwareVersion ); info->cardMode = FST_RDW(card, cardMode);
info->smcFirmwareVersion = FST_RDL(card, smcFirmwareVersion);
/*
* The T2U can report cable presence for both A or B
* in bits 0 and 1 of cableStatus. See which port we are and
* do the mapping.
*/
if (card->family == FST_FAMILY_TXU) {
if (port->index == 0) {
/*
* Port A
*/
info->cableStatus = info->cableStatus & 1;
} else {
/*
* Port B
*/
info->cableStatus = info->cableStatus >> 1;
info->cableStatus = info->cableStatus & 1;
}
}
/*
* Some additional bits if we are TE1
*/
if (card->type == FST_TYPE_TE1) {
info->lineSpeed = FST_RDL(card, suConfig.dataRate);
info->clockSource = FST_RDB(card, suConfig.clocking);
info->framing = FST_RDB(card, suConfig.framing);
info->structure = FST_RDB(card, suConfig.structure);
info->interface = FST_RDB(card, suConfig.interface);
info->coding = FST_RDB(card, suConfig.coding);
info->lineBuildOut = FST_RDB(card, suConfig.lineBuildOut);
info->equalizer = FST_RDB(card, suConfig.equalizer);
info->loopMode = FST_RDB(card, suConfig.loopMode);
info->range = FST_RDB(card, suConfig.range);
info->txBufferMode = FST_RDB(card, suConfig.txBufferMode);
info->rxBufferMode = FST_RDB(card, suConfig.rxBufferMode);
info->startingSlot = FST_RDB(card, suConfig.startingSlot);
info->losThreshold = FST_RDB(card, suConfig.losThreshold);
if (FST_RDB(card, suConfig.enableIdleCode))
info->idleCode = FST_RDB(card, suConfig.idleCode);
else
info->idleCode = 0;
info->receiveBufferDelay =
FST_RDL(card, suStatus.receiveBufferDelay);
info->framingErrorCount =
FST_RDL(card, suStatus.framingErrorCount);
info->codeViolationCount =
FST_RDL(card, suStatus.codeViolationCount);
info->crcErrorCount = FST_RDL(card, suStatus.crcErrorCount);
info->lineAttenuation = FST_RDL(card, suStatus.lineAttenuation);
info->lossOfSignal = FST_RDB(card, suStatus.lossOfSignal);
info->receiveRemoteAlarm =
FST_RDB(card, suStatus.receiveRemoteAlarm);
info->alarmIndicationSignal =
FST_RDB(card, suStatus.alarmIndicationSignal);
}
} }
static int static int
fst_set_iface ( struct fst_card_info *card, struct fst_port_info *port, fst_set_iface(struct fst_card_info *card, struct fst_port_info *port,
struct ifreq *ifr ) struct ifreq *ifr)
{ {
sync_serial_settings sync; sync_serial_settings sync;
int i; int i;
if (copy_from_user (&sync, ifr->ifr_settings.ifs_ifsu.sync, if (ifr->ifr_settings.size != sizeof (sync)) {
sizeof (sync))) return -ENOMEM;
}
if (copy_from_user
(&sync, ifr->ifr_settings.ifs_ifsu.sync, sizeof (sync))) {
return -EFAULT; return -EFAULT;
}
if ( sync.loopback ) if (sync.loopback)
return -EINVAL; return -EINVAL;
i = port->index; i = port->index;
switch (ifr->ifr_settings.type) switch (ifr->ifr_settings.type) {
{
case IF_IFACE_V35: case IF_IFACE_V35:
FST_WRW ( card, portConfig[i].lineInterface, V35 ); FST_WRW(card, portConfig[i].lineInterface, V35);
port->hwif = V35; port->hwif = V35;
break; break;
case IF_IFACE_V24: case IF_IFACE_V24:
FST_WRW ( card, portConfig[i].lineInterface, V24 ); FST_WRW(card, portConfig[i].lineInterface, V24);
port->hwif = V24; port->hwif = V24;
break; break;
case IF_IFACE_X21: case IF_IFACE_X21:
FST_WRW ( card, portConfig[i].lineInterface, X21 ); FST_WRW(card, portConfig[i].lineInterface, X21);
port->hwif = X21; port->hwif = X21;
break; break;
case IF_IFACE_X21D:
FST_WRW(card, portConfig[i].lineInterface, X21D);
port->hwif = X21D;
break;
case IF_IFACE_T1:
FST_WRW(card, portConfig[i].lineInterface, T1);
port->hwif = T1;
break;
case IF_IFACE_E1:
FST_WRW(card, portConfig[i].lineInterface, E1);
port->hwif = E1;
break;
case IF_IFACE_SYNC_SERIAL: case IF_IFACE_SYNC_SERIAL:
break; break;
...@@ -1049,26 +1952,25 @@ fst_set_iface ( struct fst_card_info *card, struct fst_port_info *port, ...@@ -1049,26 +1952,25 @@ fst_set_iface ( struct fst_card_info *card, struct fst_port_info *port,
return -EINVAL; return -EINVAL;
} }
switch ( sync.clock_type ) switch (sync.clock_type) {
{
case CLOCK_EXT: case CLOCK_EXT:
FST_WRB ( card, portConfig[i].internalClock, EXTCLK ); FST_WRB(card, portConfig[i].internalClock, EXTCLK);
break; break;
case CLOCK_INT: case CLOCK_INT:
FST_WRB ( card, portConfig[i].internalClock, INTCLK ); FST_WRB(card, portConfig[i].internalClock, INTCLK);
break; break;
default: default:
return -EINVAL; return -EINVAL;
} }
FST_WRL ( card, portConfig[i].lineSpeed, sync.clock_rate ); FST_WRL(card, portConfig[i].lineSpeed, sync.clock_rate);
return 0; return 0;
} }
static int static int
fst_get_iface ( struct fst_card_info *card, struct fst_port_info *port, fst_get_iface(struct fst_card_info *card, struct fst_port_info *port,
struct ifreq *ifr ) struct ifreq *ifr)
{ {
sync_serial_settings sync; sync_serial_settings sync;
int i; int i;
...@@ -1077,41 +1979,51 @@ fst_get_iface ( struct fst_card_info *card, struct fst_port_info *port, ...@@ -1077,41 +1979,51 @@ fst_get_iface ( struct fst_card_info *card, struct fst_port_info *port,
* if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be * if nothing is set as IF_IFACE_SYNC_SERIAL implies it can't be
* changed * changed
*/ */
switch ( port->hwif ) switch (port->hwif) {
{ case E1:
ifr->ifr_settings.type = IF_IFACE_E1;
break;
case T1:
ifr->ifr_settings.type = IF_IFACE_T1;
break;
case V35: case V35:
ifr->ifr_settings.type = IF_IFACE_V35; ifr->ifr_settings.type = IF_IFACE_V35;
break; break;
case V24: case V24:
ifr->ifr_settings.type = IF_IFACE_V24; ifr->ifr_settings.type = IF_IFACE_V24;
break; break;
case X21D:
ifr->ifr_settings.type = IF_IFACE_X21D;
break;
case X21: case X21:
default: default:
ifr->ifr_settings.type = IF_IFACE_X21; ifr->ifr_settings.type = IF_IFACE_X21;
break; break;
} }
if (ifr->ifr_settings.size == 0) {
if (ifr->ifr_settings.size < sizeof(sync)) { return 0; /* only type requested */
ifr->ifr_settings.size = sizeof(sync); /* data size wanted */ }
return -ENOBUFS; if (ifr->ifr_settings.size < sizeof (sync)) {
return -ENOMEM;
} }
i = port->index; i = port->index;
sync.clock_rate = FST_RDL ( card, portConfig[i].lineSpeed ); sync.clock_rate = FST_RDL(card, portConfig[i].lineSpeed);
/* Lucky card and linux use same encoding here */ /* Lucky card and linux use same encoding here */
sync.clock_type = FST_RDB ( card, portConfig[i].internalClock ); sync.clock_type = FST_RDB(card, portConfig[i].internalClock) ==
INTCLK ? CLOCK_INT : CLOCK_EXT;
sync.loopback = 0; sync.loopback = 0;
if (copy_to_user (ifr->ifr_settings.ifs_ifsu.sync, &sync, if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &sync, sizeof (sync))) {
sizeof(sync)))
return -EFAULT; return -EFAULT;
}
ifr->ifr_settings.size = sizeof (sync);
return 0; return 0;
} }
static int static int
fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd ) fst_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{ {
struct fst_card_info *card; struct fst_card_info *card;
struct fst_port_info *port; struct fst_port_info *port;
...@@ -1119,23 +2031,22 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd ) ...@@ -1119,23 +2031,22 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd )
struct fstioc_info info; struct fstioc_info info;
unsigned long flags; unsigned long flags;
dbg ( DBG_IOCTL,"ioctl: %x, %p\n", cmd, ifr->ifr_data ); dbg(DBG_IOCTL, "ioctl: %x, %p\n", cmd, ifr->ifr_data);
port = dev_to_port ( dev ); port = dev_to_port(dev);
card = port->card; card = port->card;
if ( !capable ( CAP_NET_ADMIN )) if (!capable(CAP_NET_ADMIN))
return -EPERM; return -EPERM;
switch ( cmd ) switch (cmd) {
{
case FSTCPURESET: case FSTCPURESET:
fst_cpureset ( card ); fst_cpureset(card);
card->state = FST_RESET; card->state = FST_RESET;
return 0; return 0;
case FSTCPURELEASE: case FSTCPURELEASE:
fst_cpurelease ( card ); fst_cpurelease(card);
card->state = FST_STARTING; card->state = FST_STARTING;
return 0; return 0;
...@@ -1144,22 +2055,19 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd ) ...@@ -1144,22 +2055,19 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd )
/* First copy in the header with the length and offset of data /* First copy in the header with the length and offset of data
* to write * to write
*/ */
if ( ifr->ifr_data == NULL ) if (ifr->ifr_data == NULL) {
{
return -EINVAL; return -EINVAL;
} }
if ( copy_from_user ( &wrthdr, ifr->ifr_data, if (copy_from_user(&wrthdr, ifr->ifr_data,
sizeof ( struct fstioc_write ))) sizeof (struct fstioc_write))) {
{
return -EFAULT; return -EFAULT;
} }
/* Sanity check the parameters. We don't support partial writes /* Sanity check the parameters. We don't support partial writes
* when going over the top * when going over the top
*/ */
if ( wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE if (wrthdr.size > FST_MEMSIZE || wrthdr.offset > FST_MEMSIZE
|| wrthdr.size + wrthdr.offset > FST_MEMSIZE ) || wrthdr.size + wrthdr.offset > FST_MEMSIZE) {
{
return -ENXIO; return -ENXIO;
} }
...@@ -1167,18 +2075,16 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd ) ...@@ -1167,18 +2075,16 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd )
* This will probably break on some architectures. * This will probably break on some architectures.
* I'll fix it when I have something to test on. * I'll fix it when I have something to test on.
*/ */
if ( copy_from_user ( card->mem + wrthdr.offset, if (copy_from_user(card->mem + wrthdr.offset,
ifr->ifr_data + sizeof ( struct fstioc_write ), ifr->ifr_data + sizeof (struct fstioc_write),
wrthdr.size )) wrthdr.size)) {
{
return -EFAULT; return -EFAULT;
} }
/* Writes to the memory of a card in the reset state constitute /* Writes to the memory of a card in the reset state constitute
* a download * a download
*/ */
if ( card->state == FST_RESET ) if (card->state == FST_RESET) {
{
card->state = FST_DOWNLOAD; card->state = FST_DOWNLOAD;
} }
return 0; return 0;
...@@ -1188,250 +2094,302 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd ) ...@@ -1188,250 +2094,302 @@ fst_ioctl ( struct net_device *dev, struct ifreq *ifr, int cmd )
/* If card has just been started check the shared memory config /* If card has just been started check the shared memory config
* version and marker * version and marker
*/ */
if ( card->state == FST_STARTING ) if (card->state == FST_STARTING) {
{ check_started_ok(card);
check_started_ok ( card );
/* If everything checked out enable card interrupts */ /* If everything checked out enable card interrupts */
if ( card->state == FST_RUNNING ) if (card->state == FST_RUNNING) {
{ spin_lock_irqsave(&card->card_lock, flags);
spin_lock_irqsave ( &card->card_lock, flags ); fst_enable_intr(card);
fst_clear_intr ( card ); FST_WRB(card, interruptHandshake, 0xEE);
FST_WRB ( card, interruptHandshake, 0xEE ); spin_unlock_irqrestore(&card->card_lock, flags);
spin_unlock_irqrestore ( &card->card_lock,
flags );
} }
} }
if ( ifr->ifr_data == NULL ) if (ifr->ifr_data == NULL) {
{
return -EINVAL; return -EINVAL;
} }
gather_conf_info ( card, port, &info ); gather_conf_info(card, port, &info);
if ( copy_to_user ( ifr->ifr_data, &info, sizeof ( info ))) if (copy_to_user(ifr->ifr_data, &info, sizeof (info))) {
{
return -EFAULT; return -EFAULT;
} }
return 0; return 0;
case FSTSETCONF: case FSTSETCONF:
/* Most of the setting have been moved to the generic ioctls /*
* this just covers debug and board ident mode now * Most of the settings have been moved to the generic ioctls
* this just covers debug and board ident now
*/ */
if ( copy_from_user ( &info, ifr->ifr_data, sizeof ( info )))
{ if (card->state != FST_RUNNING) {
printk_err
("Attempt to configure card %d in non-running state (%d)\n",
card->card_no, card->state);
return -EIO;
}
if (copy_from_user(&info, ifr->ifr_data, sizeof (info))) {
return -EFAULT; return -EFAULT;
} }
return set_conf_from_info ( card, port, &info ); return set_conf_from_info(card, port, &info);
case SIOCWANDEV: case SIOCWANDEV:
switch (ifr->ifr_settings.type) switch (ifr->ifr_settings.type) {
{
case IF_GET_IFACE: case IF_GET_IFACE:
return fst_get_iface ( card, port, ifr ); return fst_get_iface(card, port, ifr);
case IF_IFACE_SYNC_SERIAL: case IF_IFACE_SYNC_SERIAL:
case IF_IFACE_V35: case IF_IFACE_V35:
case IF_IFACE_V24: case IF_IFACE_V24:
case IF_IFACE_X21: case IF_IFACE_X21:
return fst_set_iface ( card, port, ifr ); case IF_IFACE_X21D:
case IF_IFACE_T1:
case IF_IFACE_E1:
return fst_set_iface(card, port, ifr);
case IF_PROTO_RAW:
port->mode = FST_RAW;
return 0;
case IF_GET_PROTO:
if (port->mode == FST_RAW) {
ifr->ifr_settings.type = IF_PROTO_RAW;
return 0;
}
return hdlc_ioctl(dev, ifr, cmd);
default: default:
return hdlc_ioctl ( dev, ifr, cmd ); port->mode = FST_GEN_HDLC;
dbg(DBG_IOCTL, "Passing this type to hdlc %x\n",
ifr->ifr_settings.type);
return hdlc_ioctl(dev, ifr, cmd);
} }
default: default:
/* Not one of ours. Pass through to HDLC package */ /* Not one of ours. Pass through to HDLC package */
return hdlc_ioctl ( dev, ifr, cmd ); return hdlc_ioctl(dev, ifr, cmd);
} }
} }
static void static void
fst_openport ( struct fst_port_info *port ) fst_openport(struct fst_port_info *port)
{ {
int signals; int signals;
int txq_length;
/* Only init things if card is actually running. This allows open to /* Only init things if card is actually running. This allows open to
* succeed for downloads etc. * succeed for downloads etc.
*/ */
if ( port->card->state == FST_RUNNING ) if (port->card->state == FST_RUNNING) {
{ if (port->run) {
if ( port->run ) dbg(DBG_OPEN, "open: found port already running\n");
{
dbg ( DBG_OPEN,"open: found port already running\n");
fst_issue_cmd ( port, STOPPORT ); fst_issue_cmd(port, STOPPORT);
port->run = 0; port->run = 0;
} }
fst_rx_config ( port ); fst_rx_config(port);
fst_tx_config ( port ); fst_tx_config(port);
fst_op_raise ( port, OPSTS_RTS | OPSTS_DTR ); fst_op_raise(port, OPSTS_RTS | OPSTS_DTR);
fst_issue_cmd ( port, STARTPORT ); fst_issue_cmd(port, STARTPORT);
port->run = 1; port->run = 1;
signals = FST_RDL ( port->card, v24DebouncedSts[port->index]); signals = FST_RDL(port->card, v24DebouncedSts[port->index]);
if ( signals & (( port->hwif == X21 ) ? IPSTS_INDICATE if (signals & (((port->hwif == X21) || (port->hwif == X21D))
: IPSTS_DCD )) ? IPSTS_INDICATE : IPSTS_DCD))
netif_carrier_on ( port_to_dev ( port )); netif_carrier_on(port_to_dev(port));
else else
netif_carrier_off ( port_to_dev ( port )); netif_carrier_off(port_to_dev(port));
txq_length = port->txqe - port->txqs;
port->txqe = 0;
port->txqs = 0;
} }
} }
static void static void
fst_closeport ( struct fst_port_info *port ) fst_closeport(struct fst_port_info *port)
{ {
if ( port->card->state == FST_RUNNING ) if (port->card->state == FST_RUNNING) {
{ if (port->run) {
if ( port->run )
{
port->run = 0; port->run = 0;
fst_op_lower ( port, OPSTS_RTS | OPSTS_DTR ); fst_op_lower(port, OPSTS_RTS | OPSTS_DTR);
fst_issue_cmd ( port, STOPPORT ); fst_issue_cmd(port, STOPPORT);
} } else {
else dbg(DBG_OPEN, "close: port not running\n");
{
dbg ( DBG_OPEN,"close: port not running\n");
} }
} }
} }
static int static int
fst_open ( struct net_device *dev ) fst_open(struct net_device *dev)
{ {
int err; int err;
struct fst_port_info *port;
port = dev_to_port(dev);
if (!try_module_get(THIS_MODULE))
return -EBUSY;
err = hdlc_open (dev); if (port->mode != FST_RAW) {
if ( err ) err = hdlc_open(dev);
if (err)
return err; return err;
}
fst_openport ( dev_to_port ( dev )); fst_openport(port);
netif_wake_queue ( dev ); netif_wake_queue(dev);
return 0; return 0;
} }
static int static int
fst_close ( struct net_device *dev ) fst_close(struct net_device *dev)
{ {
netif_stop_queue ( dev ); struct fst_port_info *port;
fst_closeport ( dev_to_port ( dev )); struct fst_card_info *card;
hdlc_close ( dev ); unsigned char tx_dma_done;
unsigned char rx_dma_done;
port = dev_to_port(dev);
card = port->card;
tx_dma_done = inb(card->pci_conf + DMACSR1);
rx_dma_done = inb(card->pci_conf + DMACSR0);
dbg(DBG_OPEN,
"Port Close: tx_dma_in_progress = %d (%x) rx_dma_in_progress = %d (%x)\n",
card->dmatx_in_progress, tx_dma_done, card->dmarx_in_progress,
rx_dma_done);
netif_stop_queue(dev);
fst_closeport(dev_to_port(dev));
if (port->mode != FST_RAW) {
hdlc_close(dev);
}
module_put(THIS_MODULE);
return 0; return 0;
} }
static int static int
fst_attach ( struct net_device *dev, unsigned short encoding, unsigned short parity ) fst_attach(struct net_device *dev, unsigned short encoding, unsigned short parity)
{ {
/* Setting currently fixed in FarSync card so we check and forget */ /*
if ( encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT ) * Setting currently fixed in FarSync card so we check and forget
*/
if (encoding != ENCODING_NRZ || parity != PARITY_CRC16_PR1_CCITT)
return -EINVAL; return -EINVAL;
return 0; return 0;
} }
static void static void
fst_tx_timeout ( struct net_device *dev ) fst_tx_timeout(struct net_device *dev)
{ {
struct fst_port_info *port; struct fst_port_info *port;
struct fst_card_info *card;
struct net_device_stats *stats = hdlc_stats(dev); struct net_device_stats *stats = hdlc_stats(dev);
dbg ( DBG_INTR | DBG_TX,"tx_timeout\n"); port = dev_to_port(dev);
card = port->card;
port = dev_to_port ( dev );
stats->tx_errors++; stats->tx_errors++;
stats->tx_aborted_errors++; stats->tx_aborted_errors++;
dbg(DBG_ASS, "Tx timeout card %d port %d\n",
if ( port->txcnt > 0 ) card->card_no, port->index);
fst_issue_cmd ( port, ABORTTX ); fst_issue_cmd(port, ABORTTX);
dev->trans_start = jiffies; dev->trans_start = jiffies;
netif_wake_queue ( dev ); netif_wake_queue(dev);
port->start = 0;
} }
static int static int
fst_start_xmit ( struct sk_buff *skb, struct net_device *dev ) fst_start_xmit(struct sk_buff *skb, struct net_device *dev)
{ {
struct net_device_stats *stats = hdlc_stats(dev);
struct fst_card_info *card; struct fst_card_info *card;
struct fst_port_info *port; struct fst_port_info *port;
unsigned char dmabits; struct net_device_stats *stats = hdlc_stats(dev);
unsigned long flags; unsigned long flags;
int pi; int txq_length;
int txp;
port = dev_to_port ( dev ); port = dev_to_port(dev);
card = port->card; card = port->card;
dbg(DBG_TX, "fst_start_xmit: length = %d\n", skb->len);
/* Drop packet with error if we don't have carrier */ /* Drop packet with error if we don't have carrier */
if ( ! netif_carrier_ok ( dev )) if (!netif_carrier_ok(dev)) {
{ dev_kfree_skb(skb);
dev_kfree_skb ( skb );
stats->tx_errors++; stats->tx_errors++;
stats->tx_carrier_errors++; stats->tx_carrier_errors++;
dbg(DBG_ASS,
"Tried to transmit but no carrier on card %d port %d\n",
card->card_no, port->index);
return 0; return 0;
} }
/* Drop it if it's too big! MTU failure ? */ /* Drop it if it's too big! MTU failure ? */
if ( skb->len > LEN_TX_BUFFER ) if (skb->len > LEN_TX_BUFFER) {
{ dbg(DBG_ASS, "Packet too large %d vs %d\n", skb->len,
dbg ( DBG_TX,"Packet too large %d vs %d\n", skb->len, LEN_TX_BUFFER);
LEN_TX_BUFFER ); dev_kfree_skb(skb);
dev_kfree_skb ( skb );
stats->tx_errors++; stats->tx_errors++;
return 0; return 0;
} }
/* Check we have a buffer */ /*
pi = port->index; * We are always going to queue the packet
spin_lock_irqsave ( &card->card_lock, flags ); * so that the bottom half is the only place we tx from
txp = port->txpos; * Check there is room in the port txq
dmabits = FST_RDB ( card, txDescrRing[pi][txp].bits ); */
if ( dmabits & DMA_OWN ) spin_lock_irqsave(&card->card_lock, flags);
{ if ((txq_length = port->txqe - port->txqs) < 0) {
spin_unlock_irqrestore ( &card->card_lock, flags ); /*
dbg ( DBG_TX,"Out of Tx buffers\n"); * This is the case where the next free has wrapped but the
dev_kfree_skb ( skb ); * last used hasn't
*/
txq_length = txq_length + FST_TXQ_DEPTH;
}
spin_unlock_irqrestore(&card->card_lock, flags);
if (txq_length > fst_txq_high) {
/*
* We have got enough buffers in the pipeline. Ask the network
* layer to stop sending frames down
*/
netif_stop_queue(dev);
port->start = 1; /* I'm using this to signal stop sent up */
}
if (txq_length == FST_TXQ_DEPTH - 1) {
/*
* This shouldn't have happened but such is life
*/
dev_kfree_skb(skb);
stats->tx_errors++; stats->tx_errors++;
dbg(DBG_ASS, "Tx queue overflow card %d port %d\n",
card->card_no, port->index);
return 0; return 0;
} }
if ( ++port->txpos >= NUM_TX_BUFFER )
port->txpos = 0;
if ( ++port->txcnt >= NUM_TX_BUFFER ) /*
netif_stop_queue ( dev ); * queue the buffer
/* Release the card lock before we copy the data as we now have
* exclusive access to the buffer.
*/ */
spin_unlock_irqrestore ( &card->card_lock, flags ); spin_lock_irqsave(&card->card_lock, flags);
port->txq[port->txqe] = skb;
/* Enqueue the packet */ port->txqe++;
memcpy_toio ( card->mem + BUF_OFFSET ( txBuffer[pi][txp][0]), if (port->txqe == FST_TXQ_DEPTH)
skb->data, skb->len ); port->txqe = 0;
FST_WRW ( card, txDescrRing[pi][txp].bcnt, cnv_bcnt ( skb->len )); spin_unlock_irqrestore(&card->card_lock, flags);
FST_WRB ( card, txDescrRing[pi][txp].bits, DMA_OWN | TX_STP | TX_ENP );
stats->tx_packets++; /* Scehdule the bottom half which now does transmit processing */
stats->tx_bytes += skb->len; fst_q_work_item(&fst_work_txq, card->card_no);
tasklet_schedule(&fst_tx_task);
dev_kfree_skb ( skb );
dev->trans_start = jiffies;
return 0; return 0;
} }
/* /*
* Card setup having checked hardware resources. * Card setup having checked hardware resources.
* Should be pretty bizarre if we get an error here (kernel memory * Should be pretty bizarre if we get an error here (kernel memory
...@@ -1442,11 +2400,15 @@ fst_start_xmit ( struct sk_buff *skb, struct net_device *dev ) ...@@ -1442,11 +2400,15 @@ fst_start_xmit ( struct sk_buff *skb, struct net_device *dev )
static char *type_strings[] __devinitdata = { static char *type_strings[] __devinitdata = {
"no hardware", /* Should never be seen */ "no hardware", /* Should never be seen */
"FarSync T2P", "FarSync T2P",
"FarSync T4P" "FarSync T4P",
"FarSync T1U",
"FarSync T2U",
"FarSync T4U",
"FarSync TE1"
}; };
static void __devinit static void __devinit
fst_init_card ( struct fst_card_info *card ) fst_init_card(struct fst_card_info *card)
{ {
int i; int i;
int err; int err;
...@@ -1455,7 +2417,7 @@ fst_init_card ( struct fst_card_info *card ) ...@@ -1455,7 +2417,7 @@ fst_init_card ( struct fst_card_info *card )
* firmware detects something different later (should never happen) * firmware detects something different later (should never happen)
* we'll have to revise it in some way then. * we'll have to revise it in some way then.
*/ */
for ( i = 0 ; i < card->nports ; i++ ) { for (i = 0; i < card->nports; i++) {
err = register_hdlc_device(card->ports[i].dev); err = register_hdlc_device(card->ports[i].dev);
if (err < 0) { if (err < 0) {
int j; int j;
...@@ -1470,60 +2432,118 @@ fst_init_card ( struct fst_card_info *card ) ...@@ -1470,60 +2432,118 @@ fst_init_card ( struct fst_card_info *card )
} }
} }
printk ( KERN_INFO "%s-%s: %s IRQ%d, %d ports\n", printk_info("%s-%s: %s IRQ%d, %d ports\n",
port_to_dev(&card->ports[0])->name, port_to_dev(&card->ports[0])->name,
port_to_dev(&card->ports[card->nports-1])->name, port_to_dev(&card->ports[card->nports - 1])->name,
type_strings[card->type], card->irq, card->nports ); type_strings[card->type], card->irq, card->nports);
} }
/* /*
* Initialise card when detected. * Initialise card when detected.
* Returns 0 to indicate success, or errno otherwise. * Returns 0 to indicate success, or errno otherwise.
*/ */
static int __devinit static int __devinit
fst_add_one ( struct pci_dev *pdev, const struct pci_device_id *ent ) fst_add_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{ {
static int firsttime_done = 0; static int firsttime_done = 0;
static int no_of_cards_added = 0;
struct fst_card_info *card; struct fst_card_info *card;
int err = 0; int err = 0;
int i; int i;
if ( ! firsttime_done ) if (!firsttime_done) {
{ printk_info("FarSync WAN driver " FST_USER_VERSION
printk ( KERN_INFO "FarSync X21 driver " FST_USER_VERSION " (c) 2001-2004 FarSite Communications Ltd.\n");
" (c) 2001 FarSite Communications Ltd.\n");
firsttime_done = 1; firsttime_done = 1;
dbg(DBG_ASS, "The value of debug mask is %x\n", fst_debug_mask);
}
/*
* We are going to be clever and allow certain cards not to be
* configured. An exclude list can be provided in /etc/modules.conf
*/
if (fst_excluded_cards != 0) {
/*
* There are cards to exclude
*
*/
for (i = 0; i < fst_excluded_cards; i++) {
if ((pdev->devfn) >> 3 == fst_excluded_list[i]) {
printk_info("FarSync PCI device %d not assigned\n",
(pdev->devfn) >> 3);
return -EBUSY;
}
}
} }
/* Allocate driver private data */ /* Allocate driver private data */
card = kmalloc ( sizeof ( struct fst_card_info ), GFP_KERNEL); card = kmalloc(sizeof (struct fst_card_info), GFP_KERNEL);
if (card == NULL) if (card == NULL) {
{ printk_err("FarSync card found but insufficient memory for"
printk_err ("FarSync card found but insufficient memory for"
" driver storage\n"); " driver storage\n");
return -ENOMEM; return -ENOMEM;
} }
memset ( card, 0, sizeof ( struct fst_card_info )); memset(card, 0, sizeof (struct fst_card_info));
/* Try to enable the device */ /* Try to enable the device */
if (( err = pci_enable_device ( pdev )) != 0 ) if ((err = pci_enable_device(pdev)) != 0) {
{ printk_err("Failed to enable card. Err %d\n", -err);
printk_err ("Failed to enable card. Err %d\n", -err ); kfree(card);
goto error_free_card; return err;
} }
/* Record info we need*/ if ((err = pci_request_regions(pdev, "FarSync")) !=0) {
card->irq = pdev->irq; printk_err("Failed to allocate regions. Err %d\n", -err);
card->pci_conf = pci_resource_start ( pdev, 1 ); pci_disable_device(pdev);
card->phys_mem = pci_resource_start ( pdev, 2 ); kfree(card);
card->phys_ctlmem = pci_resource_start ( pdev, 3 ); return err;
}
/* Get virtual addresses of memory regions */
card->pci_conf = pci_resource_start(pdev, 1);
card->phys_mem = pci_resource_start(pdev, 2);
card->phys_ctlmem = pci_resource_start(pdev, 3);
if ((card->mem = ioremap(card->phys_mem, FST_MEMSIZE)) == NULL) {
printk_err("Physical memory remap failed\n");
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(card);
return -ENODEV;
}
if ((card->ctlmem = ioremap(card->phys_ctlmem, 0x10)) == NULL) {
printk_err("Control memory remap failed\n");
pci_release_regions(pdev);
pci_disable_device(pdev);
kfree(card);
return -ENODEV;
}
dbg(DBG_PCI, "kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
/* Register the interrupt handler */
if (request_irq(pdev->irq, fst_intr, SA_SHIRQ, FST_DEV_NAME, card)) {
printk_err("Unable to register interrupt %d\n", card->irq);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENODEV;
}
/* Record info we need */
card->irq = pdev->irq;
card->type = ent->driver_data; card->type = ent->driver_data;
card->nports = ( ent->driver_data == FST_TYPE_T2P ) ? 2 : 4; card->family = ((ent->driver_data == FST_TYPE_T2P) ||
(ent->driver_data == FST_TYPE_T4P))
? FST_FAMILY_TXP : FST_FAMILY_TXU;
if ((ent->driver_data == FST_TYPE_T1U) ||
(ent->driver_data == FST_TYPE_TE1))
card->nports = 1;
else
card->nports = ((ent->driver_data == FST_TYPE_T2P) ||
(ent->driver_data == FST_TYPE_T2U)) ? 2 : 4;
card->state = FST_UNINIT; card->state = FST_UNINIT;
spin_lock_init ( &card->card_lock ); spin_lock_init ( &card->card_lock );
for ( i = 0 ; i < card->nports ; i++ ) { for ( i = 0 ; i < card->nports ; i++ ) {
...@@ -1533,7 +2553,13 @@ fst_add_one ( struct pci_dev *pdev, const struct pci_device_id *ent ) ...@@ -1533,7 +2553,13 @@ fst_add_one ( struct pci_dev *pdev, const struct pci_device_id *ent )
while (i--) while (i--)
free_netdev(card->ports[i].dev); free_netdev(card->ports[i].dev);
printk_err ("FarSync: out of memory\n"); printk_err ("FarSync: out of memory\n");
goto error_free_card; free_irq(card->irq, card);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENODEV;
} }
card->ports[i].dev = dev; card->ports[i].dev = dev;
card->ports[i].card = card; card->ports[i].card = card;
...@@ -1564,128 +2590,95 @@ fst_add_one ( struct pci_dev *pdev, const struct pci_device_id *ent ) ...@@ -1564,128 +2590,95 @@ fst_add_one ( struct pci_dev *pdev, const struct pci_device_id *ent )
hdlc->xmit = fst_start_xmit; hdlc->xmit = fst_start_xmit;
} }
dbg ( DBG_PCI,"type %d nports %d irq %d\n", card->type, card->device = pdev;
card->nports, card->irq );
dbg ( DBG_PCI,"conf %04x mem %08x ctlmem %08x\n",
card->pci_conf, card->phys_mem, card->phys_ctlmem );
/* Check we can get access to the memory and I/O regions */
if ( ! request_region ( card->pci_conf, 0x80,"PLX config regs"))
{
printk_err ("Unable to get config I/O @ 0x%04X\n",
card->pci_conf );
err = -ENODEV;
goto error_free_ports;
}
if ( ! request_mem_region ( card->phys_mem, FST_MEMSIZE,"Shared RAM"))
{
printk_err ("Unable to get main memory @ 0x%08X\n",
card->phys_mem );
err = -ENODEV;
goto error_release_io;
}
if ( ! request_mem_region ( card->phys_ctlmem, 0x10,"Control memory"))
{
printk_err ("Unable to get control memory @ 0x%08X\n",
card->phys_ctlmem );
err = -ENODEV;
goto error_release_mem;
}
/* Get virtual addresses of memory regions */ dbg(DBG_PCI, "type %d nports %d irq %d\n", card->type,
if (( card->mem = ioremap ( card->phys_mem, FST_MEMSIZE )) == NULL ) card->nports, card->irq);
{ dbg(DBG_PCI, "conf %04x mem %08x ctlmem %08x\n",
printk_err ("Physical memory remap failed\n"); card->pci_conf, card->phys_mem, card->phys_ctlmem);
err = -ENODEV;
goto error_release_ctlmem;
}
if (( card->ctlmem = ioremap ( card->phys_ctlmem, 0x10 )) == NULL )
{
printk_err ("Control memory remap failed\n");
err = -ENODEV;
goto error_unmap_mem;
}
dbg ( DBG_PCI,"kernel mem %p, ctlmem %p\n", card->mem, card->ctlmem);
/* Reset the card's processor */ /* Reset the card's processor */
fst_cpureset ( card ); fst_cpureset(card);
card->state = FST_RESET; card->state = FST_RESET;
/* Register the interrupt handler */ /* Initialise DMA (if required) */
if ( request_irq ( card->irq, fst_intr, SA_SHIRQ, FST_DEV_NAME, card )) fst_init_dma(card);
{
printk_err ("Unable to register interrupt %d\n", card->irq );
err = -ENODEV;
goto error_unmap_ctlmem;
}
/* Record driver data for later use */ /* Record driver data for later use */
pci_set_drvdata(pdev, card); pci_set_drvdata(pdev, card);
/* Remainder of card setup */ /* Remainder of card setup */
fst_init_card ( card ); fst_card_array[no_of_cards_added] = card;
card->card_no = no_of_cards_added++; /* Record instance and bump it */
fst_init_card(card);
if (card->family == FST_FAMILY_TXU) {
/*
* Allocate a dma buffer for transmit and receives
*/
card->rx_dma_handle_host =
pci_alloc_consistent(card->device, FST_MAX_MTU,
&card->rx_dma_handle_card);
if (card->rx_dma_handle_host == NULL) {
printk_err("Could not allocate rx dma buffer\n");
fst_disable_intr(card);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENOMEM;
}
card->tx_dma_handle_host =
pci_alloc_consistent(card->device, FST_MAX_MTU,
&card->tx_dma_handle_card);
if (card->tx_dma_handle_host == NULL) {
printk_err("Could not allocate tx dma buffer\n");
fst_disable_intr(card);
pci_release_regions(pdev);
pci_disable_device(pdev);
iounmap(card->ctlmem);
iounmap(card->mem);
kfree(card);
return -ENOMEM;
}
}
return 0; /* Success */ return 0; /* Success */
/* Failure. Release resources */
error_unmap_ctlmem:
iounmap ( card->ctlmem );
error_unmap_mem:
iounmap ( card->mem );
error_release_ctlmem:
release_mem_region ( card->phys_ctlmem, 0x10 );
error_release_mem:
release_mem_region ( card->phys_mem, FST_MEMSIZE );
error_release_io:
release_region ( card->pci_conf, 0x80 );
error_free_ports:
for (i = 0; i < card->nports; i++)
free_netdev(card->ports[i].dev);
error_free_card:
kfree ( card );
return err;
} }
/* /*
* Cleanup and close down a card * Cleanup and close down a card
*/ */
static void __devexit static void __devexit
fst_remove_one ( struct pci_dev *pdev ) fst_remove_one(struct pci_dev *pdev)
{ {
struct fst_card_info *card; struct fst_card_info *card;
int i; int i;
card = pci_get_drvdata(pdev); card = pci_get_drvdata(pdev);
for ( i = 0 ; i < card->nports ; i++ ) for (i = 0; i < card->nports; i++) {
{
struct net_device *dev = port_to_dev(&card->ports[i]); struct net_device *dev = port_to_dev(&card->ports[i]);
unregister_hdlc_device(dev); unregister_hdlc_device(dev);
} }
fst_disable_intr ( card ); fst_disable_intr(card);
free_irq ( card->irq, card ); free_irq(card->irq, card);
iounmap ( card->ctlmem );
iounmap ( card->mem );
release_mem_region ( card->phys_ctlmem, 0x10 ); iounmap(card->ctlmem);
release_mem_region ( card->phys_mem, FST_MEMSIZE ); iounmap(card->mem);
release_region ( card->pci_conf, 0x80 ); pci_release_regions(pdev);
if (card->family == FST_FAMILY_TXU) {
for (i = 0; i < card->nports; i++) /*
free_netdev(card->ports[i].dev); * Free dma buffers
*/
kfree ( card ); pci_free_consistent(card->device, FST_MAX_MTU,
card->rx_dma_handle_host,
card->rx_dma_handle_card);
pci_free_consistent(card->device, FST_MAX_MTU,
card->tx_dma_handle_host,
card->tx_dma_handle_card);
}
fst_card_array[card->card_no] = NULL;
} }
static struct pci_driver fst_driver = { static struct pci_driver fst_driver = {
...@@ -1700,15 +2693,20 @@ static struct pci_driver fst_driver = { ...@@ -1700,15 +2693,20 @@ static struct pci_driver fst_driver = {
static int __init static int __init
fst_init(void) fst_init(void)
{ {
return pci_module_init ( &fst_driver ); int i;
for (i = 0; i < FST_MAX_CARDS; i++)
fst_card_array[i] = NULL;
spin_lock_init(&fst_work_q_lock);
return pci_module_init(&fst_driver);
} }
static void __exit static void __exit
fst_cleanup_module(void) fst_cleanup_module(void)
{ {
pci_unregister_driver ( &fst_driver ); printk_info("FarSync WAN driver unloading\n");
pci_unregister_driver(&fst_driver);
} }
module_init ( fst_init ); module_init(fst_init);
module_exit ( fst_cleanup_module ); module_exit(fst_cleanup_module);
...@@ -32,8 +32,13 @@ ...@@ -32,8 +32,13 @@
* A short common prefix is useful for routines within the driver to avoid * A short common prefix is useful for routines within the driver to avoid
* conflict with other similar drivers and I chosen to use "fst_" for this * conflict with other similar drivers and I chosen to use "fst_" for this
* purpose (FarSite T-series). * purpose (FarSite T-series).
*
* Finally the device driver needs a short network interface name. Since
* "hdlc" is already in use I've chosen the even less informative "sync"
* for the present.
*/ */
#define FST_NAME "fst" /* In debug/info etc */ #define FST_NAME "fst" /* In debug/info etc */
#define FST_NDEV_NAME "sync" /* For net interface */
#define FST_DEV_NAME "farsync" /* For misc interfaces */ #define FST_DEV_NAME "farsync" /* For misc interfaces */
...@@ -45,7 +50,7 @@ ...@@ -45,7 +50,7 @@
* have individual versions (or IDs) that move much faster than the * have individual versions (or IDs) that move much faster than the
* the release version as individual updates are tracked. * the release version as individual updates are tracked.
*/ */
#define FST_USER_VERSION "0.09" #define FST_USER_VERSION "1.04"
/* Ioctl call command values /* Ioctl call command values
...@@ -100,6 +105,7 @@ struct fstioc_info { ...@@ -100,6 +105,7 @@ struct fstioc_info {
unsigned int state; /* State of card */ unsigned int state; /* State of card */
unsigned int index; /* Index of port ioctl was issued on */ unsigned int index; /* Index of port ioctl was issued on */
unsigned int smcFirmwareVersion; unsigned int smcFirmwareVersion;
unsigned long kernelVersion; /* What Kernel version we are working with */
unsigned short lineInterface; /* Physical interface type */ unsigned short lineInterface; /* Physical interface type */
unsigned char proto; /* Line protocol */ unsigned char proto; /* Line protocol */
unsigned char internalClock; /* 1 => internal clock, 0 => external */ unsigned char internalClock; /* 1 => internal clock, 0 => external */
...@@ -110,6 +116,31 @@ struct fstioc_info { ...@@ -110,6 +116,31 @@ struct fstioc_info {
unsigned short cableStatus; /* lsb: 0=> present, 1=> absent */ unsigned short cableStatus; /* lsb: 0=> present, 1=> absent */
unsigned short cardMode; /* lsb: LED id mode */ unsigned short cardMode; /* lsb: LED id mode */
unsigned short debug; /* Debug flags */ unsigned short debug; /* Debug flags */
unsigned char transparentMode; /* Not used always 0 */
unsigned char invertClock; /* Invert clock feature for syncing */
unsigned char startingSlot; /* Time slot to use for start of tx */
unsigned char clockSource; /* External or internal */
unsigned char framing; /* E1, T1 or J1 */
unsigned char structure; /* unframed, double, crc4, f4, f12, */
/* f24 f72 */
unsigned char interface; /* rj48c or bnc */
unsigned char coding; /* hdb3 b8zs */
unsigned char lineBuildOut; /* 0, -7.5, -15, -22 */
unsigned char equalizer; /* short or lon haul settings */
unsigned char loopMode; /* various loopbacks */
unsigned char range; /* cable lengths */
unsigned char txBufferMode; /* tx elastic buffer depth */
unsigned char rxBufferMode; /* rx elastic buffer depth */
unsigned char losThreshold; /* Attenuation on LOS signal */
unsigned char idleCode; /* Value to send as idle timeslot */
unsigned int receiveBufferDelay; /* delay thro rx buffer timeslots */
unsigned int framingErrorCount; /* framing errors */
unsigned int codeViolationCount; /* code violations */
unsigned int crcErrorCount; /* CRC errors */
int lineAttenuation; /* in dB*/
unsigned short lossOfSignal;
unsigned short receiveRemoteAlarm;
unsigned short alarmIndicationSignal;
}; };
/* "valid" bitmask */ /* "valid" bitmask */
...@@ -131,13 +162,23 @@ struct fstioc_info { ...@@ -131,13 +162,23 @@ struct fstioc_info {
*/ */
#define FSTVAL_PROTO 0x00000200 /* proto */ #define FSTVAL_PROTO 0x00000200 /* proto */
#define FSTVAL_MODE 0x00000400 /* cardMode */ #define FSTVAL_MODE 0x00000400 /* cardMode */
#define FSTVAL_PHASE 0x00000800 /* Clock phase */
#define FSTVAL_TE1 0x00001000 /* T1E1 Configuration */
#define FSTVAL_DEBUG 0x80000000 /* debug */ #define FSTVAL_DEBUG 0x80000000 /* debug */
#define FSTVAL_ALL 0x000007FF /* Note: does not include DEBUG flag */ #define FSTVAL_ALL 0x00001FFF /* Note: does not include DEBUG flag */
/* "type" */ /* "type" */
#define FST_TYPE_NONE 0 /* Probably should never happen */ #define FST_TYPE_NONE 0 /* Probably should never happen */
#define FST_TYPE_T2P 1 /* T2P X21 2 port card */ #define FST_TYPE_T2P 1 /* T2P X21 2 port card */
#define FST_TYPE_T4P 2 /* T4P X21 4 port card */ #define FST_TYPE_T4P 2 /* T4P X21 4 port card */
#define FST_TYPE_T1U 3 /* T1U X21 1 port card */
#define FST_TYPE_T2U 4 /* T2U X21 2 port card */
#define FST_TYPE_T4U 5 /* T4U X21 4 port card */
#define FST_TYPE_TE1 6 /* T1E1 X21 1 port card */
/* "family" */
#define FST_FAMILY_TXP 0 /* T2P or T4P */
#define FST_FAMILY_TXU 1 /* T1U or T2U or T4U */
/* "state" */ /* "state" */
#define FST_UNINIT 0 /* Raw uninitialised state following #define FST_UNINIT 0 /* Raw uninitialised state following
...@@ -155,6 +196,10 @@ struct fstioc_info { ...@@ -155,6 +196,10 @@ struct fstioc_info {
#define V24 1 #define V24 1
#define X21 2 #define X21 2
#define V35 3 #define V35 3
#define X21D 4
#define T1 5
#define E1 6
#define J1 7
/* "proto" */ /* "proto" */
#define FST_HDLC 1 /* Cisco compatible HDLC */ #define FST_HDLC 1 /* Cisco compatible HDLC */
...@@ -187,6 +232,97 @@ struct fstioc_info { ...@@ -187,6 +232,97 @@ struct fstioc_info {
/* "cardMode" bitmask */ /* "cardMode" bitmask */
#define CARD_MODE_IDENTIFY 0x0001 #define CARD_MODE_IDENTIFY 0x0001
/*
* Constants for T1/E1 configuration
*/
/*
* Clock source
*/
#define CLOCKING_SLAVE 0
#define CLOCKING_MASTER 1
/*
* Framing
*/
#define FRAMING_E1 0
#define FRAMING_J1 1
#define FRAMING_T1 2
/*
* Structure
*/
#define STRUCTURE_UNFRAMED 0
#define STRUCTURE_E1_DOUBLE 1
#define STRUCTURE_E1_CRC4 2
#define STRUCTURE_E1_CRC4M 3
#define STRUCTURE_T1_4 4
#define STRUCTURE_T1_12 5
#define STRUCTURE_T1_24 6
#define STRUCTURE_T1_72 7
/*
* Interface
*/
#define INTERFACE_RJ48C 0
#define INTERFACE_BNC 1
/*
* Coding
*/
#define CODING_HDB3 0
#define CODING_NRZ 1
#define CODING_CMI 2
#define CODING_CMI_HDB3 3
#define CODING_CMI_B8ZS 4
#define CODING_AMI 5
#define CODING_AMI_ZCS 6
#define CODING_B8ZS 7
/*
* Line Build Out
*/
#define LBO_0dB 0
#define LBO_7dB5 1
#define LBO_15dB 2
#define LBO_22dB5 3
/*
* Range for long haul t1 > 655ft
*/
#define RANGE_0_133_FT 0
#define RANGE_0_40_M RANGE_0_133_FT
#define RANGE_133_266_FT 1
#define RANGE_40_81_M RANGE_133_266_FT
#define RANGE_266_399_FT 2
#define RANGE_81_122_M RANGE_266_399_FT
#define RANGE_399_533_FT 3
#define RANGE_122_162_M RANGE_399_533_FT
#define RANGE_533_655_FT 4
#define RANGE_162_200_M RANGE_533_655_FT
/*
* Receive Equaliser
*/
#define EQUALIZER_SHORT 0
#define EQUALIZER_LONG 1
/*
* Loop modes
*/
#define LOOP_NONE 0
#define LOOP_LOCAL 1
#define LOOP_PAYLOAD_EXC_TS0 2
#define LOOP_PAYLOAD_INC_TS0 3
#define LOOP_REMOTE 4
/*
* Buffer modes
*/
#define BUFFER_2_FRAME 0
#define BUFFER_1_FRAME 1
#define BUFFER_96_BIT 2
#define BUFFER_NONE 3
/* Debug support /* Debug support
* *
......
...@@ -63,6 +63,7 @@ ...@@ -63,6 +63,7 @@
#define IF_IFACE_T1 0x1003 /* T1 telco serial interface */ #define IF_IFACE_T1 0x1003 /* T1 telco serial interface */
#define IF_IFACE_E1 0x1004 /* E1 telco serial interface */ #define IF_IFACE_E1 0x1004 /* E1 telco serial interface */
#define IF_IFACE_SYNC_SERIAL 0x1005 /* can't be set by software */ #define IF_IFACE_SYNC_SERIAL 0x1005 /* can't be set by software */
#define IF_IFACE_X21D 0x1006 /* X.21 Dual Clocking (FarSite) */
/* For definitions see hdlc.h */ /* For definitions see hdlc.h */
#define IF_PROTO_HDLC 0x2000 /* raw HDLC protocol */ #define IF_PROTO_HDLC 0x2000 /* raw HDLC protocol */
...@@ -77,6 +78,7 @@ ...@@ -77,6 +78,7 @@
#define IF_PROTO_FR_DEL_ETH_PVC 0x2009 /* Delete FR Ethernet-bridged PVC */ #define IF_PROTO_FR_DEL_ETH_PVC 0x2009 /* Delete FR Ethernet-bridged PVC */
#define IF_PROTO_FR_PVC 0x200A /* for reading PVC status */ #define IF_PROTO_FR_PVC 0x200A /* for reading PVC status */
#define IF_PROTO_FR_ETH_PVC 0x200B #define IF_PROTO_FR_ETH_PVC 0x200B
#define IF_PROTO_RAW 0x200C /* RAW Socket */
/* /*
......
...@@ -1886,6 +1886,15 @@ ...@@ -1886,6 +1886,15 @@
#define PCI_DEVICE_ID_MACROLINK_MCCR8 0x2000 #define PCI_DEVICE_ID_MACROLINK_MCCR8 0x2000
#define PCI_DEVICE_ID_MACROLINK_MCCR 0x2001 #define PCI_DEVICE_ID_MACROLINK_MCCR 0x2001
#define PCI_VENDOR_ID_FARSITE 0x1619
#define PCI_DEVICE_ID_FARSITE_T2P 0x0400
#define PCI_DEVICE_ID_FARSITE_T4P 0x0440
#define PCI_DEVICE_ID_FARSITE_T1U 0x0610
#define PCI_DEVICE_ID_FARSITE_T2U 0x0620
#define PCI_DEVICE_ID_FARSITE_T4U 0x0640
#define PCI_DEVICE_ID_FARSITE_TE1 0x1610
#define PCI_DEVICE_ID_FARSITE_TE1C 0x1612
#define PCI_VENDOR_ID_ALTIMA 0x173b #define PCI_VENDOR_ID_ALTIMA 0x173b
#define PCI_DEVICE_ID_ALTIMA_AC1000 0x03e8 #define PCI_DEVICE_ID_ALTIMA_AC1000 0x03e8
#define PCI_DEVICE_ID_ALTIMA_AC1001 0x03e9 #define PCI_DEVICE_ID_ALTIMA_AC1001 0x03e9
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment