Commit b7af27bf authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching

Pull livepatching updates from Jiri Kosina:

 - support for something we call 'atomic replace', and allows for much
   better handling of cumulative patches (which is something very useful
   for distros), from Jason Baron with help of Petr Mladek and Joe
   Lawrence

 - improvement of handling of tasks blocking finalization, from Miroslav
   Benes

 - update of MAINTAINERS file to reflect move towards group
   maintainership

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching: (22 commits)
  livepatch/selftests: use "$@" to preserve argument list
  livepatch: Module coming and going callbacks can proceed with all listed patches
  livepatch: Proper error handling in the shadow variables selftest
  livepatch: return -ENOMEM on ptr_id() allocation failure
  livepatch: Introduce klp_for_each_patch macro
  livepatch: core: Return EOPNOTSUPP instead of ENOSYS
  selftests/livepatch: add DYNAMIC_DEBUG config dependency
  livepatch: samples: non static warnings fix
  livepatch: update MAINTAINERS
  livepatch: Remove signal sysfs attribute
  livepatch: Send a fake signal periodically
  selftests/livepatch: introduce tests
  livepatch: Remove ordering (stacking) of the livepatches
  livepatch: Atomic replace and cumulative patches documentation
  livepatch: Remove Nop structures when unused
  livepatch: Add atomic replace
  livepatch: Use lists to manage patches, objects and functions
  livepatch: Simplify API by removing registration step
  livepatch: Don't block the removal of patches loaded after a forced transition
  livepatch: Consolidate klp_free functions
  ...
parents 851ca779 f9d13814
...@@ -33,18 +33,6 @@ Description: ...@@ -33,18 +33,6 @@ Description:
An attribute which indicates whether the patch is currently in An attribute which indicates whether the patch is currently in
transition. transition.
What: /sys/kernel/livepatch/<patch>/signal
Date: Nov 2017
KernelVersion: 4.15.0
Contact: live-patching@vger.kernel.org
Description:
A writable attribute that allows administrator to affect the
course of an existing transition. Writing 1 sends a fake
signal to all remaining blocking tasks. The fake signal
means that no proper signal is delivered (there is no data in
signal pending structures). Tasks are interrupted or woken up,
and forced to change their patched state.
What: /sys/kernel/livepatch/<patch>/force What: /sys/kernel/livepatch/<patch>/force
Date: Nov 2017 Date: Nov 2017
KernelVersion: 4.15.0 KernelVersion: 4.15.0
......
...@@ -118,488 +118,9 @@ similar change to their hw_features value. (Client functions of the ...@@ -118,488 +118,9 @@ similar change to their hw_features value. (Client functions of the
value may need to be updated accordingly.) value may need to be updated accordingly.)
Test cases Other Examples
========== ==============
What follows is not an exhaustive test suite of every possible livepatch
pre/post-(un)patch combination, but a selection that demonstrates a few
important concepts. Each test case uses the kernel modules located in
the samples/livepatch/ and assumes that no livepatches are loaded at the
beginning of the test.
Test 1
------
Test a combination of loading a kernel module and a livepatch that
patches a function in the first module. (Un)load the target module
before the livepatch module:
- load target module
- load livepatch
- disable livepatch
- unload target module
- unload livepatch
First load a target module:
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 34.475708] livepatch_callbacks_mod: livepatch_callbacks_mod_init
On livepatch enable, before the livepatch transition starts, pre-patch
callbacks are executed for vmlinux and livepatch_callbacks_mod (those
klp_objects currently loaded). After klp_objects are patched according
to the klp_patch, their post-patch callbacks run and the transition
completes:
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 36.503719] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 36.504213] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 36.504238] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 36.504721] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 36.505849] livepatch: 'livepatch_callbacks_demo': starting patching transition
[ 37.727133] livepatch: 'livepatch_callbacks_demo': completing patching transition
[ 37.727232] livepatch_callbacks_demo: post_patch_callback: vmlinux
[ 37.727860] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 37.728792] livepatch: 'livepatch_callbacks_demo': patching complete
Similarly, on livepatch disable, pre-patch callbacks run before the
unpatching transition starts. klp_objects are reverted, post-patch
callbacks execute and the transition completes:
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 38.510209] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
[ 38.510234] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
[ 38.510982] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 38.512209] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 39.711132] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 39.711210] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 39.711779] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 39.712735] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko
% rmmod samples/livepatch/livepatch-callbacks-mod.ko
[ 42.534183] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
Test 2
------
This test is similar to the previous test, but (un)load the livepatch
module before the target kernel module. This tests the livepatch core's
module_coming handler:
- load livepatch
- load target module
- disable livepatch
- unload livepatch
- unload target module
On livepatch enable, only pre/post-patch callbacks are executed for
currently loaded klp_objects, in this case, vmlinux:
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 44.553328] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 44.553997] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 44.554049] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 44.554845] livepatch: 'livepatch_callbacks_demo': starting patching transition
[ 45.727128] livepatch: 'livepatch_callbacks_demo': completing patching transition
[ 45.727212] livepatch_callbacks_demo: post_patch_callback: vmlinux
[ 45.727961] livepatch: 'livepatch_callbacks_demo': patching complete
When a targeted module is subsequently loaded, only its pre/post-patch
callbacks are executed:
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 46.560845] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
[ 46.561988] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 46.563452] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 46.565495] livepatch_callbacks_mod: livepatch_callbacks_mod_init
On livepatch disable, all currently loaded klp_objects' (vmlinux and
livepatch_callbacks_mod) pre/post-unpatch callbacks are executed:
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 48.568885] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
[ 48.568910] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
[ 48.569441] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 48.570502] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 49.759091] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 49.759171] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 49.759742] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 49.760690] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko
% rmmod samples/livepatch/livepatch-callbacks-mod.ko
[ 52.592283] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
Test 3
------
Test loading the livepatch after a targeted kernel module, then unload
the kernel module before disabling the livepatch. This tests the
livepatch core's module_going handler:
- load target module
- load livepatch
- unload target module
- disable livepatch
- unload livepatch
First load a target module, then the livepatch:
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 54.607948] livepatch_callbacks_mod: livepatch_callbacks_mod_init
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 56.613919] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 56.614411] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 56.614436] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 56.614818] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 56.615656] livepatch: 'livepatch_callbacks_demo': starting patching transition
[ 57.759070] livepatch: 'livepatch_callbacks_demo': completing patching transition
[ 57.759147] livepatch_callbacks_demo: post_patch_callback: vmlinux
[ 57.759621] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_LIVE] Normal state
[ 57.760307] livepatch: 'livepatch_callbacks_demo': patching complete
When a target module is unloaded, the livepatch is only reverted from
that klp_object (livepatch_callbacks_mod). As such, only its pre and
post-unpatch callbacks are executed when this occurs:
% rmmod samples/livepatch/livepatch-callbacks-mod.ko
[ 58.623409] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
[ 58.623903] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
[ 58.624658] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
[ 58.625305] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
When the livepatch is disabled, pre and post-unpatch callbacks are run
for the remaining klp_object, vmlinux:
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 60.638420] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
[ 60.638444] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
[ 60.638996] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 61.727088] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 61.727165] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 61.727985] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko
Test 4
------
This test is similar to the previous test, however the livepatch is
loaded first. This tests the livepatch core's module_coming and
module_going handlers:
- load livepatch
- load target module
- unload target module
- disable livepatch
- unload livepatch
First load the livepatch:
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 64.661552] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 64.662147] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 64.662175] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 64.662850] livepatch: 'livepatch_callbacks_demo': starting patching transition
[ 65.695056] livepatch: 'livepatch_callbacks_demo': completing patching transition
[ 65.695147] livepatch_callbacks_demo: post_patch_callback: vmlinux
[ 65.695561] livepatch: 'livepatch_callbacks_demo': patching complete
When a targeted kernel module is subsequently loaded, only its
pre/post-patch callbacks are executed:
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 66.669196] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
[ 66.669882] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 66.670744] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 66.672873] livepatch_callbacks_mod: livepatch_callbacks_mod_init
When the target module is unloaded, the livepatch is only reverted from
the livepatch_callbacks_mod klp_object. As such, only pre and
post-unpatch callbacks are executed when this occurs:
% rmmod samples/livepatch/livepatch-callbacks-mod.ko
[ 68.680065] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
[ 68.680688] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
[ 68.681452] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
[ 68.682094] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 70.689225] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
[ 70.689256] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
[ 70.689882] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 71.711080] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 71.711481] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 71.711988] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko
Test 5
------
A simple test of loading a livepatch without one of its patch target
klp_objects ever loaded (livepatch_callbacks_mod):
- load livepatch
- disable livepatch
- unload livepatch
Load the livepatch:
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 74.711081] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 74.711595] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 74.711639] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 74.712272] livepatch: 'livepatch_callbacks_demo': starting patching transition
[ 75.743137] livepatch: 'livepatch_callbacks_demo': completing patching transition
[ 75.743219] livepatch_callbacks_demo: post_patch_callback: vmlinux
[ 75.743867] livepatch: 'livepatch_callbacks_demo': patching complete
As expected, only pre/post-(un)patch handlers are executed for vmlinux:
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 76.716254] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
[ 76.716278] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
[ 76.716666] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 77.727089] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 77.727194] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 77.727907] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko Sample livepatch modules demonstrating the callback API can be found in
samples/livepatch/ directory. These samples were modified for use in
kselftests and can be found in the lib/livepatch directory.
Test 6
------
Test a scenario where a vmlinux pre-patch callback returns a non-zero
status (ie, failure):
- load target module
- load livepatch -ENODEV
- unload target module
First load a target module:
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 80.740520] livepatch_callbacks_mod: livepatch_callbacks_mod_init
Load the livepatch module, setting its 'pre_patch_ret' value to -19
(-ENODEV). When its vmlinux pre-patch callback executed, this status
code will propagate back to the module-loading subsystem. The result is
that the insmod command refuses to load the livepatch module:
% insmod samples/livepatch/livepatch-callbacks-demo.ko pre_patch_ret=-19
[ 82.747326] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 82.747743] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 82.747767] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 82.748237] livepatch: pre-patch callback failed for object 'vmlinux'
[ 82.748637] livepatch: failed to enable patch 'livepatch_callbacks_demo'
[ 82.749059] livepatch: 'livepatch_callbacks_demo': canceling transition, going to unpatch
[ 82.749060] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 82.749868] livepatch: 'livepatch_callbacks_demo': unpatching complete
[ 82.765809] insmod: ERROR: could not insert module samples/livepatch/livepatch-callbacks-demo.ko: No such device
% rmmod samples/livepatch/livepatch-callbacks-mod.ko
[ 84.774238] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
Test 7
------
Similar to the previous test, setup a livepatch such that its vmlinux
pre-patch callback returns success. However, when a targeted kernel
module is later loaded, have the livepatch return a failing status code:
- load livepatch
- setup -ENODEV
- load target module
- disable livepatch
- unload livepatch
Load the livepatch, notice vmlinux pre-patch callback succeeds:
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 86.787845] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 86.788325] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 86.788427] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 86.788821] livepatch: 'livepatch_callbacks_demo': starting patching transition
[ 87.711069] livepatch: 'livepatch_callbacks_demo': completing patching transition
[ 87.711143] livepatch_callbacks_demo: post_patch_callback: vmlinux
[ 87.711886] livepatch: 'livepatch_callbacks_demo': patching complete
Set a trap so subsequent pre-patch callbacks to this livepatch will
return -ENODEV:
% echo -19 > /sys/module/livepatch_callbacks_demo/parameters/pre_patch_ret
The livepatch pre-patch callback for subsequently loaded target modules
will return failure, so the module loader refuses to load the kernel
module. Notice that no post-patch or pre/post-unpatch callbacks are
executed for this klp_object:
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 90.796976] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
[ 90.797834] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 90.798900] livepatch: pre-patch callback failed for object 'livepatch_callbacks_mod'
[ 90.799652] livepatch: patch 'livepatch_callbacks_demo' failed for module 'livepatch_callbacks_mod', refusing to load module 'livepatch_callbacks_mod'
[ 90.819737] insmod: ERROR: could not insert module samples/livepatch/livepatch-callbacks-mod.ko: No such device
However, pre/post-unpatch callbacks run for the vmlinux klp_object:
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 92.823547] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
[ 92.823573] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
[ 92.824331] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 93.727128] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 93.727327] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 93.727861] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko
Test 8
------
Test loading multiple targeted kernel modules. This test-case is
mainly for comparing with the next test-case.
- load busy target module (0s sleep),
- load livepatch
- load target module
- unload target module
- disable livepatch
- unload livepatch
- unload busy target module
Load a target "busy" kernel module which kicks off a worker function
that immediately exits:
% insmod samples/livepatch/livepatch-callbacks-busymod.ko sleep_secs=0
[ 96.910107] livepatch_callbacks_busymod: livepatch_callbacks_mod_init
[ 96.910600] livepatch_callbacks_busymod: busymod_work_func, sleeping 0 seconds ...
[ 96.913024] livepatch_callbacks_busymod: busymod_work_func exit
Proceed with loading the livepatch and another ordinary target module,
notice that the post-patch callbacks are executed and the transition
completes quickly:
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 98.917892] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 98.918426] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 98.918453] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 98.918955] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
[ 98.923835] livepatch: 'livepatch_callbacks_demo': starting patching transition
[ 99.743104] livepatch: 'livepatch_callbacks_demo': completing patching transition
[ 99.743156] livepatch_callbacks_demo: post_patch_callback: vmlinux
[ 99.743679] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
[ 99.744616] livepatch: 'livepatch_callbacks_demo': patching complete
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 100.930955] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
[ 100.931668] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 100.932645] livepatch_callbacks_demo: post_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 100.934125] livepatch_callbacks_mod: livepatch_callbacks_mod_init
% rmmod samples/livepatch/livepatch-callbacks-mod.ko
[ 102.942805] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
[ 102.943640] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
[ 102.944585] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
[ 102.945455] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 104.953815] livepatch: 'livepatch_callbacks_demo': initializing unpatching transition
[ 104.953838] livepatch_callbacks_demo: pre_unpatch_callback: vmlinux
[ 104.954431] livepatch_callbacks_demo: pre_unpatch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
[ 104.955426] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 106.719073] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 106.722633] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 106.723282] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
[ 106.724279] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko
% rmmod samples/livepatch/livepatch-callbacks-busymod.ko
[ 108.975660] livepatch_callbacks_busymod: livepatch_callbacks_mod_exit
Test 9
------
A similar test as the previous one, but force the "busy" kernel module
to do longer work.
The livepatching core will refuse to patch a task that is currently
executing a to-be-patched function -- the consistency model stalls the
current patch transition until this safety-check is met. Test a
scenario where one of a livepatch's target klp_objects sits on such a
function for a long time. Meanwhile, load and unload other target
kernel modules while the livepatch transition is in progress.
- load busy target module (30s sleep)
- load livepatch
- load target module
- unload target module
- disable livepatch
- unload livepatch
- unload busy target module
Load the "busy" kernel module, this time make it do 30 seconds worth of
work:
% insmod samples/livepatch/livepatch-callbacks-busymod.ko sleep_secs=30
[ 110.993362] livepatch_callbacks_busymod: livepatch_callbacks_mod_init
[ 110.994059] livepatch_callbacks_busymod: busymod_work_func, sleeping 30 seconds ...
Meanwhile, the livepatch is loaded. Notice that the patch transition
does not complete as the targeted "busy" module is sitting on a
to-be-patched function:
% insmod samples/livepatch/livepatch-callbacks-demo.ko
[ 113.000309] livepatch: enabling patch 'livepatch_callbacks_demo'
[ 113.000764] livepatch: 'livepatch_callbacks_demo': initializing patching transition
[ 113.000791] livepatch_callbacks_demo: pre_patch_callback: vmlinux
[ 113.001289] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
[ 113.005208] livepatch: 'livepatch_callbacks_demo': starting patching transition
Load a second target module (this one is an ordinary idle kernel
module). Note that *no* post-patch callbacks will be executed while the
livepatch is still in transition:
% insmod samples/livepatch/livepatch-callbacks-mod.ko
[ 115.012740] livepatch: applying patch 'livepatch_callbacks_demo' to loading module 'livepatch_callbacks_mod'
[ 115.013406] livepatch_callbacks_demo: pre_patch_callback: livepatch_callbacks_mod -> [MODULE_STATE_COMING] Full formed, running module_init
[ 115.015315] livepatch_callbacks_mod: livepatch_callbacks_mod_init
Request an unload of the simple kernel module. The patch is still
transitioning, so its pre-unpatch callbacks are skipped:
% rmmod samples/livepatch/livepatch-callbacks-mod.ko
[ 117.022626] livepatch_callbacks_mod: livepatch_callbacks_mod_exit
[ 117.023376] livepatch: reverting patch 'livepatch_callbacks_demo' on unloading module 'livepatch_callbacks_mod'
[ 117.024533] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_mod -> [MODULE_STATE_GOING] Going away
Finally the livepatch is disabled. Since none of the patch's
klp_object's post-patch callbacks executed, the remaining klp_object's
pre-unpatch callbacks are skipped:
% echo 0 > /sys/kernel/livepatch/livepatch_callbacks_demo/enabled
[ 119.035408] livepatch: 'livepatch_callbacks_demo': reversing transition from patching to unpatching
[ 119.035485] livepatch: 'livepatch_callbacks_demo': starting unpatching transition
[ 119.711166] livepatch: 'livepatch_callbacks_demo': completing unpatching transition
[ 119.714179] livepatch_callbacks_demo: post_unpatch_callback: vmlinux
[ 119.714653] livepatch_callbacks_demo: post_unpatch_callback: livepatch_callbacks_busymod -> [MODULE_STATE_LIVE] Normal state
[ 119.715437] livepatch: 'livepatch_callbacks_demo': unpatching complete
% rmmod samples/livepatch/livepatch-callbacks-demo.ko
% rmmod samples/livepatch/livepatch-callbacks-busymod.ko
[ 141.279111] livepatch_callbacks_busymod: busymod_work_func exit
[ 141.279760] livepatch_callbacks_busymod: livepatch_callbacks_mod_exit
===================================
Atomic Replace & Cumulative Patches
===================================
There might be dependencies between livepatches. If multiple patches need
to do different changes to the same function(s) then we need to define
an order in which the patches will be installed. And function implementations
from any newer livepatch must be done on top of the older ones.
This might become a maintenance nightmare. Especially when more patches
modified the same function in different ways.
An elegant solution comes with the feature called "Atomic Replace". It allows
creation of so called "Cumulative Patches". They include all wanted changes
from all older livepatches and completely replace them in one transition.
Usage
-----
The atomic replace can be enabled by setting "replace" flag in struct klp_patch,
for example:
static struct klp_patch patch = {
.mod = THIS_MODULE,
.objs = objs,
.replace = true,
};
All processes are then migrated to use the code only from the new patch.
Once the transition is finished, all older patches are automatically
disabled.
Ftrace handlers are transparently removed from functions that are no
longer modified by the new cumulative patch.
As a result, the livepatch authors might maintain sources only for one
cumulative patch. It helps to keep the patch consistent while adding or
removing various fixes or features.
Users could keep only the last patch installed on the system after
the transition to has finished. It helps to clearly see what code is
actually in use. Also the livepatch might then be seen as a "normal"
module that modifies the kernel behavior. The only difference is that
it can be updated at runtime without breaking its functionality.
Features
--------
The atomic replace allows:
+ Atomically revert some functions in a previous patch while
upgrading other functions.
+ Remove eventual performance impact caused by core redirection
for functions that are no longer patched.
+ Decrease user confusion about dependencies between livepatches.
Limitations:
------------
+ Once the operation finishes, there is no straightforward way
to reverse it and restore the replaced patches atomically.
A good practice is to set .replace flag in any released livepatch.
Then re-adding an older livepatch is equivalent to downgrading
to that patch. This is safe as long as the livepatches do _not_ do
extra modifications in (un)patching callbacks or in the module_init()
or module_exit() functions, see below.
Also note that the replaced patch can be removed and loaded again
only when the transition was not forced.
+ Only the (un)patching callbacks from the _new_ cumulative livepatch are
executed. Any callbacks from the replaced patches are ignored.
In other words, the cumulative patch is responsible for doing any actions
that are necessary to properly replace any older patch.
As a result, it might be dangerous to replace newer cumulative patches by
older ones. The old livepatches might not provide the necessary callbacks.
This might be seen as a limitation in some scenarios. But it makes life
easier in many others. Only the new cumulative livepatch knows what
fixes/features are added/removed and what special actions are necessary
for a smooth transition.
In any case, it would be a nightmare to think about the order of
the various callbacks and their interactions if the callbacks from all
enabled patches were called.
+ There is no special handling of shadow variables. Livepatch authors
must create their own rules how to pass them from one cumulative
patch to the other. Especially that they should not blindly remove
them in module_exit() functions.
A good practice might be to remove shadow variables in the post-unpatch
callback. It is called only when the livepatch is properly disabled.
...@@ -12,12 +12,12 @@ Table of Contents: ...@@ -12,12 +12,12 @@ Table of Contents:
4. Livepatch module 4. Livepatch module
4.1. New functions 4.1. New functions
4.2. Metadata 4.2. Metadata
4.3. Livepatch module handling
5. Livepatch life-cycle 5. Livepatch life-cycle
5.1. Registration 5.1. Loading
5.2. Enabling 5.2. Enabling
5.3. Disabling 5.3. Replacing
5.4. Unregistration 5.4. Disabling
5.5. Removing
6. Sysfs 6. Sysfs
7. Limitations 7. Limitations
...@@ -143,9 +143,9 @@ without HAVE_RELIABLE_STACKTRACE are not considered fully supported by ...@@ -143,9 +143,9 @@ without HAVE_RELIABLE_STACKTRACE are not considered fully supported by
the kernel livepatching. the kernel livepatching.
The /sys/kernel/livepatch/<patch>/transition file shows whether a patch The /sys/kernel/livepatch/<patch>/transition file shows whether a patch
is in transition. Only a single patch (the topmost patch on the stack) is in transition. Only a single patch can be in transition at a given
can be in transition at a given time. A patch can remain in transition time. A patch can remain in transition indefinitely, if any of the tasks
indefinitely, if any of the tasks are stuck in the initial patch state. are stuck in the initial patch state.
A transition can be reversed and effectively canceled by writing the A transition can be reversed and effectively canceled by writing the
opposite value to the /sys/kernel/livepatch/<patch>/enabled file while opposite value to the /sys/kernel/livepatch/<patch>/enabled file while
...@@ -158,12 +158,11 @@ If a patch is in transition, this file shows 0 to indicate the task is ...@@ -158,12 +158,11 @@ If a patch is in transition, this file shows 0 to indicate the task is
unpatched and 1 to indicate it's patched. Otherwise, if no patch is in unpatched and 1 to indicate it's patched. Otherwise, if no patch is in
transition, it shows -1. Any tasks which are blocking the transition transition, it shows -1. Any tasks which are blocking the transition
can be signaled with SIGSTOP and SIGCONT to force them to change their can be signaled with SIGSTOP and SIGCONT to force them to change their
patched state. This may be harmful to the system though. patched state. This may be harmful to the system though. Sending a fake signal
/sys/kernel/livepatch/<patch>/signal attribute provides a better alternative. to all remaining blocking tasks is a better alternative. No proper signal is
Writing 1 to the attribute sends a fake signal to all remaining blocking actually delivered (there is no data in signal pending structures). Tasks are
tasks. No proper signal is actually delivered (there is no data in signal interrupted or woken up, and forced to change their patched state. The fake
pending structures). Tasks are interrupted or woken up, and forced to change signal is automatically sent every 15 seconds.
their patched state.
Administrator can also affect a transition through Administrator can also affect a transition through
/sys/kernel/livepatch/<patch>/force attribute. Writing 1 there clears /sys/kernel/livepatch/<patch>/force attribute. Writing 1 there clears
...@@ -298,117 +297,110 @@ into three levels: ...@@ -298,117 +297,110 @@ into three levels:
see the "Consistency model" section. see the "Consistency model" section.
4.3. Livepatch module handling
------------------------------
The usual behavior is that the new functions will get used when
the livepatch module is loaded. For this, the module init() function
has to register the patch (struct klp_patch) and enable it. See the
section "Livepatch life-cycle" below for more details about these
two operations.
Module removal is only safe when there are no users of the underlying
functions. This is the reason why the force feature permanently disables
the removal. The forced tasks entered the functions but we cannot say
that they returned back. Therefore it cannot be decided when the
livepatch module can be safely removed. When the system is successfully
transitioned to a new patch state (patched/unpatched) without being
forced it is guaranteed that no task sleeps or runs in the old code.
5. Livepatch life-cycle 5. Livepatch life-cycle
======================= =======================
Livepatching defines four basic operations that define the life cycle of each Livepatching can be described by five basic operations:
live patch: registration, enabling, disabling and unregistration. There are loading, enabling, replacing, disabling, removing.
several reasons why it is done this way.
First, the patch is applied only when all patched symbols for already Where the replacing and the disabling operations are mutually
loaded objects are found. The error handling is much easier if this exclusive. They have the same result for the given patch but
check is done before particular functions get redirected. not for the system.
Second, it might take some time until the entire system is migrated with
the hybrid consistency model being used. The patch revert might block
the livepatch module removal for too long. Therefore it is useful to
revert the patch using a separate operation that might be called
explicitly. But it does not make sense to remove all information until
the livepatch module is really removed.
5.1. Loading
------------
5.1. Registration The only reasonable way is to enable the patch when the livepatch kernel
----------------- module is being loaded. For this, klp_enable_patch() has to be called
in the module_init() callback. There are two main reasons:
Each patch first has to be registered using klp_register_patch(). This makes First, only the module has an easy access to the related struct klp_patch.
the patch known to the livepatch framework. Also it does some preliminary
computing and checks.
In particular, the patch is added into the list of known patches. The Second, the error code might be used to refuse loading the module when
addresses of the patched functions are found according to their names. the patch cannot get enabled.
The special relocations, mentioned in the section "New functions", are
applied. The relevant entries are created under
/sys/kernel/livepatch/<name>. The patch is rejected when any operation
fails.
5.2. Enabling 5.2. Enabling
------------- -------------
Registered patches might be enabled either by calling klp_enable_patch() or The livepatch gets enabled by calling klp_enable_patch() from
by writing '1' to /sys/kernel/livepatch/<name>/enabled. The system will the module_init() callback. The system will start using the new
start using the new implementation of the patched functions at this stage. implementation of the patched functions at this stage.
When a patch is enabled, livepatch enters into a transition state where First, the addresses of the patched functions are found according to their
tasks are converging to the patched state. This is indicated by a value names. The special relocations, mentioned in the section "New functions",
of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks have are applied. The relevant entries are created under
been patched, the 'transition' value changes to '0'. For more /sys/kernel/livepatch/<name>. The patch is rejected when any above
information about this process, see the "Consistency model" section. operation fails.
If an original function is patched for the first time, a function Second, livepatch enters into a transition state where tasks are converging
specific struct klp_ops is created and an universal ftrace handler is to the patched state. If an original function is patched for the first
registered. time, a function specific struct klp_ops is created and an universal
ftrace handler is registered[*]. This stage is indicated by a value of '1'
in /sys/kernel/livepatch/<name>/transition. For more information about
this process, see the "Consistency model" section.
Functions might be patched multiple times. The ftrace handler is registered Finally, once all tasks have been patched, the 'transition' value changes
only once for the given function. Further patches just add an entry to the to '0'.
list (see field `func_stack`) of the struct klp_ops. The last added
entry is chosen by the ftrace handler and becomes the active function
replacement.
Note that the patches might be enabled in a different order than they were [*] Note that functions might be patched multiple times. The ftrace handler
registered. is registered only once for a given function. Further patches just add
an entry to the list (see field `func_stack`) of the struct klp_ops.
The right implementation is selected by the ftrace handler, see
the "Consistency model" section.
That said, it is highly recommended to use cumulative livepatches
because they help keeping the consistency of all changes. In this case,
functions might be patched two times only during the transition period.
5.3. Disabling
5.3. Replacing
-------------- --------------
Enabled patches might get disabled either by calling klp_disable_patch() or All enabled patches might get replaced by a cumulative patch that
by writing '0' to /sys/kernel/livepatch/<name>/enabled. At this stage has the .replace flag set.
either the code from the previously enabled patch or even the original
code gets used. Once the new patch is enabled and the 'transition' finishes then
all the functions (struct klp_func) associated with the replaced
patches are removed from the corresponding struct klp_ops. Also
the ftrace handler is unregistered and the struct klp_ops is
freed when the related function is not modified by the new patch
and func_stack list becomes empty.
See Documentation/livepatch/cumulative-patches.txt for more details.
When a patch is disabled, livepatch enters into a transition state where
tasks are converging to the unpatched state. This is indicated by a
value of '1' in /sys/kernel/livepatch/<name>/transition. Once all tasks
have been unpatched, the 'transition' value changes to '0'. For more
information about this process, see the "Consistency model" section.
Here all the functions (struct klp_func) associated with the to-be-disabled 5.4. Disabling
--------------
Enabled patches might get disabled by writing '0' to
/sys/kernel/livepatch/<name>/enabled.
First, livepatch enters into a transition state where tasks are converging
to the unpatched state. The system starts using either the code from
the previously enabled patch or even the original one. This stage is
indicated by a value of '1' in /sys/kernel/livepatch/<name>/transition.
For more information about this process, see the "Consistency model"
section.
Second, once all tasks have been unpatched, the 'transition' value changes
to '0'. All the functions (struct klp_func) associated with the to-be-disabled
patch are removed from the corresponding struct klp_ops. The ftrace handler patch are removed from the corresponding struct klp_ops. The ftrace handler
is unregistered and the struct klp_ops is freed when the func_stack list is unregistered and the struct klp_ops is freed when the func_stack list
becomes empty. becomes empty.
Patches must be disabled in exactly the reverse order in which they were Third, the sysfs interface is destroyed.
enabled. It makes the problem and the implementation much easier.
5.4. Unregistration
-------------------
Disabled patches might be unregistered by calling klp_unregister_patch(). 5.5. Removing
This can be done only when the patch is disabled and the code is no longer -------------
used. It must be called before the livepatch module gets unloaded.
At this stage, all the relevant sys-fs entries are removed and the patch Module removal is only safe when there are no users of functions provided
is removed from the list of known patches. by the module. This is the reason why the force feature permanently
disables the removal. Only when the system is successfully transitioned
to a new patch state (patched/unpatched) without being forced it is
guaranteed that no task sleeps or runs in the old code.
6. Sysfs 6. Sysfs
...@@ -418,8 +410,8 @@ Information about the registered patches can be found under ...@@ -418,8 +410,8 @@ Information about the registered patches can be found under
/sys/kernel/livepatch. The patches could be enabled and disabled /sys/kernel/livepatch. The patches could be enabled and disabled
by writing there. by writing there.
/sys/kernel/livepatch/<patch>/signal and /sys/kernel/livepatch/<patch>/force /sys/kernel/livepatch/<patch>/force attributes allow administrator to affect a
attributes allow administrator to affect a patching operation. patching operation.
See Documentation/ABI/testing/sysfs-kernel-livepatch for more details. See Documentation/ABI/testing/sysfs-kernel-livepatch for more details.
......
...@@ -8967,10 +8967,10 @@ F: drivers/platform/x86/hp_accel.c ...@@ -8967,10 +8967,10 @@ F: drivers/platform/x86/hp_accel.c
LIVE PATCHING LIVE PATCHING
M: Josh Poimboeuf <jpoimboe@redhat.com> M: Josh Poimboeuf <jpoimboe@redhat.com>
M: Jessica Yu <jeyu@kernel.org>
M: Jiri Kosina <jikos@kernel.org> M: Jiri Kosina <jikos@kernel.org>
M: Miroslav Benes <mbenes@suse.cz> M: Miroslav Benes <mbenes@suse.cz>
R: Petr Mladek <pmladek@suse.com> M: Petr Mladek <pmladek@suse.com>
R: Joe Lawrence <joe.lawrence@redhat.com>
S: Maintained S: Maintained
F: kernel/livepatch/ F: kernel/livepatch/
F: include/linux/livepatch.h F: include/linux/livepatch.h
...@@ -8979,8 +8979,9 @@ F: arch/x86/kernel/livepatch.c ...@@ -8979,8 +8979,9 @@ F: arch/x86/kernel/livepatch.c
F: Documentation/livepatch/ F: Documentation/livepatch/
F: Documentation/ABI/testing/sysfs-kernel-livepatch F: Documentation/ABI/testing/sysfs-kernel-livepatch
F: samples/livepatch/ F: samples/livepatch/
F: tools/testing/selftests/livepatch/
L: live-patching@vger.kernel.org L: live-patching@vger.kernel.org
T: git git://git.kernel.org/pub/scm/linux/kernel/git/jikos/livepatching.git T: git git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching.git
LLC (802.2) LLC (802.2)
L: netdev@vger.kernel.org L: netdev@vger.kernel.org
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/ftrace.h> #include <linux/ftrace.h>
#include <linux/completion.h> #include <linux/completion.h>
#include <linux/list.h>
#if IS_ENABLED(CONFIG_LIVEPATCH) #if IS_ENABLED(CONFIG_LIVEPATCH)
...@@ -40,11 +41,14 @@ ...@@ -40,11 +41,14 @@
* @new_func: pointer to the patched function code * @new_func: pointer to the patched function code
* @old_sympos: a hint indicating which symbol position the old function * @old_sympos: a hint indicating which symbol position the old function
* can be found (optional) * can be found (optional)
* @old_addr: the address of the function being patched * @old_func: pointer to the function being patched
* @kobj: kobject for sysfs resources * @kobj: kobject for sysfs resources
* @node: list node for klp_object func_list
* @stack_node: list node for klp_ops func_stack list * @stack_node: list node for klp_ops func_stack list
* @old_size: size of the old function * @old_size: size of the old function
* @new_size: size of the new function * @new_size: size of the new function
* @kobj_added: @kobj has been added and needs freeing
* @nop: temporary patch to use the original code again; dyn. allocated
* @patched: the func has been added to the klp_ops list * @patched: the func has been added to the klp_ops list
* @transition: the func is currently being applied or reverted * @transition: the func is currently being applied or reverted
* *
...@@ -77,10 +81,13 @@ struct klp_func { ...@@ -77,10 +81,13 @@ struct klp_func {
unsigned long old_sympos; unsigned long old_sympos;
/* internal */ /* internal */
unsigned long old_addr; void *old_func;
struct kobject kobj; struct kobject kobj;
struct list_head node;
struct list_head stack_node; struct list_head stack_node;
unsigned long old_size, new_size; unsigned long old_size, new_size;
bool kobj_added;
bool nop;
bool patched; bool patched;
bool transition; bool transition;
}; };
...@@ -115,8 +122,12 @@ struct klp_callbacks { ...@@ -115,8 +122,12 @@ struct klp_callbacks {
* @funcs: function entries for functions to be patched in the object * @funcs: function entries for functions to be patched in the object
* @callbacks: functions to be executed pre/post (un)patching * @callbacks: functions to be executed pre/post (un)patching
* @kobj: kobject for sysfs resources * @kobj: kobject for sysfs resources
* @func_list: dynamic list of the function entries
* @node: list node for klp_patch obj_list
* @mod: kernel module associated with the patched object * @mod: kernel module associated with the patched object
* (NULL for vmlinux) * (NULL for vmlinux)
* @kobj_added: @kobj has been added and needs freeing
* @dynamic: temporary object for nop functions; dynamically allocated
* @patched: the object's funcs have been added to the klp_ops list * @patched: the object's funcs have been added to the klp_ops list
*/ */
struct klp_object { struct klp_object {
...@@ -127,7 +138,11 @@ struct klp_object { ...@@ -127,7 +138,11 @@ struct klp_object {
/* internal */ /* internal */
struct kobject kobj; struct kobject kobj;
struct list_head func_list;
struct list_head node;
struct module *mod; struct module *mod;
bool kobj_added;
bool dynamic;
bool patched; bool patched;
}; };
...@@ -135,35 +150,54 @@ struct klp_object { ...@@ -135,35 +150,54 @@ struct klp_object {
* struct klp_patch - patch structure for live patching * struct klp_patch - patch structure for live patching
* @mod: reference to the live patch module * @mod: reference to the live patch module
* @objs: object entries for kernel objects to be patched * @objs: object entries for kernel objects to be patched
* @list: list node for global list of registered patches * @replace: replace all actively used patches
* @list: list node for global list of actively used patches
* @kobj: kobject for sysfs resources * @kobj: kobject for sysfs resources
* @obj_list: dynamic list of the object entries
* @kobj_added: @kobj has been added and needs freeing
* @enabled: the patch is enabled (but operation may be incomplete) * @enabled: the patch is enabled (but operation may be incomplete)
* @forced: was involved in a forced transition
* @free_work: patch cleanup from workqueue-context
* @finish: for waiting till it is safe to remove the patch module * @finish: for waiting till it is safe to remove the patch module
*/ */
struct klp_patch { struct klp_patch {
/* external */ /* external */
struct module *mod; struct module *mod;
struct klp_object *objs; struct klp_object *objs;
bool replace;
/* internal */ /* internal */
struct list_head list; struct list_head list;
struct kobject kobj; struct kobject kobj;
struct list_head obj_list;
bool kobj_added;
bool enabled; bool enabled;
bool forced;
struct work_struct free_work;
struct completion finish; struct completion finish;
}; };
#define klp_for_each_object(patch, obj) \ #define klp_for_each_object_static(patch, obj) \
for (obj = patch->objs; obj->funcs || obj->name; obj++) for (obj = patch->objs; obj->funcs || obj->name; obj++)
#define klp_for_each_func(obj, func) \ #define klp_for_each_object_safe(patch, obj, tmp_obj) \
list_for_each_entry_safe(obj, tmp_obj, &patch->obj_list, node)
#define klp_for_each_object(patch, obj) \
list_for_each_entry(obj, &patch->obj_list, node)
#define klp_for_each_func_static(obj, func) \
for (func = obj->funcs; \ for (func = obj->funcs; \
func->old_name || func->new_func || func->old_sympos; \ func->old_name || func->new_func || func->old_sympos; \
func++) func++)
int klp_register_patch(struct klp_patch *); #define klp_for_each_func_safe(obj, func, tmp_func) \
int klp_unregister_patch(struct klp_patch *); list_for_each_entry_safe(func, tmp_func, &obj->func_list, node)
#define klp_for_each_func(obj, func) \
list_for_each_entry(func, &obj->func_list, node)
int klp_enable_patch(struct klp_patch *); int klp_enable_patch(struct klp_patch *);
int klp_disable_patch(struct klp_patch *);
void arch_klp_init_object_loaded(struct klp_patch *patch, void arch_klp_init_object_loaded(struct klp_patch *patch,
struct klp_object *obj); struct klp_object *obj);
......
...@@ -45,7 +45,12 @@ ...@@ -45,7 +45,12 @@
*/ */
DEFINE_MUTEX(klp_mutex); DEFINE_MUTEX(klp_mutex);
static LIST_HEAD(klp_patches); /*
* Actively used patches: enabled or in transition. Note that replaced
* or disabled patches are not listed even though the related kernel
* module still can be loaded.
*/
LIST_HEAD(klp_patches);
static struct kobject *klp_root_kobj; static struct kobject *klp_root_kobj;
...@@ -82,20 +87,43 @@ static void klp_find_object_module(struct klp_object *obj) ...@@ -82,20 +87,43 @@ static void klp_find_object_module(struct klp_object *obj)
mutex_unlock(&module_mutex); mutex_unlock(&module_mutex);
} }
static bool klp_is_patch_registered(struct klp_patch *patch) static bool klp_initialized(void)
{
return !!klp_root_kobj;
}
static struct klp_func *klp_find_func(struct klp_object *obj,
struct klp_func *old_func)
{ {
struct klp_patch *mypatch; struct klp_func *func;
list_for_each_entry(mypatch, &klp_patches, list) klp_for_each_func(obj, func) {
if (mypatch == patch) if ((strcmp(old_func->old_name, func->old_name) == 0) &&
return true; (old_func->old_sympos == func->old_sympos)) {
return func;
}
}
return false; return NULL;
} }
static bool klp_initialized(void) static struct klp_object *klp_find_object(struct klp_patch *patch,
struct klp_object *old_obj)
{ {
return !!klp_root_kobj; struct klp_object *obj;
klp_for_each_object(patch, obj) {
if (klp_is_module(old_obj)) {
if (klp_is_module(obj) &&
strcmp(old_obj->name, obj->name) == 0) {
return obj;
}
} else if (!klp_is_module(obj)) {
return obj;
}
}
return NULL;
} }
struct klp_find_arg { struct klp_find_arg {
...@@ -278,170 +306,6 @@ static int klp_write_object_relocations(struct module *pmod, ...@@ -278,170 +306,6 @@ static int klp_write_object_relocations(struct module *pmod,
return ret; return ret;
} }
static int __klp_disable_patch(struct klp_patch *patch)
{
struct klp_object *obj;
if (WARN_ON(!patch->enabled))
return -EINVAL;
if (klp_transition_patch)
return -EBUSY;
/* enforce stacking: only the last enabled patch can be disabled */
if (!list_is_last(&patch->list, &klp_patches) &&
list_next_entry(patch, list)->enabled)
return -EBUSY;
klp_init_transition(patch, KLP_UNPATCHED);
klp_for_each_object(patch, obj)
if (obj->patched)
klp_pre_unpatch_callback(obj);
/*
* Enforce the order of the func->transition writes in
* klp_init_transition() and the TIF_PATCH_PENDING writes in
* klp_start_transition(). In the rare case where klp_ftrace_handler()
* is called shortly after klp_update_patch_state() switches the task,
* this ensures the handler sees that func->transition is set.
*/
smp_wmb();
klp_start_transition();
klp_try_complete_transition();
patch->enabled = false;
return 0;
}
/**
* klp_disable_patch() - disables a registered patch
* @patch: The registered, enabled patch to be disabled
*
* Unregisters the patched functions from ftrace.
*
* Return: 0 on success, otherwise error
*/
int klp_disable_patch(struct klp_patch *patch)
{
int ret;
mutex_lock(&klp_mutex);
if (!klp_is_patch_registered(patch)) {
ret = -EINVAL;
goto err;
}
if (!patch->enabled) {
ret = -EINVAL;
goto err;
}
ret = __klp_disable_patch(patch);
err:
mutex_unlock(&klp_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(klp_disable_patch);
static int __klp_enable_patch(struct klp_patch *patch)
{
struct klp_object *obj;
int ret;
if (klp_transition_patch)
return -EBUSY;
if (WARN_ON(patch->enabled))
return -EINVAL;
/* enforce stacking: only the first disabled patch can be enabled */
if (patch->list.prev != &klp_patches &&
!list_prev_entry(patch, list)->enabled)
return -EBUSY;
/*
* A reference is taken on the patch module to prevent it from being
* unloaded.
*/
if (!try_module_get(patch->mod))
return -ENODEV;
pr_notice("enabling patch '%s'\n", patch->mod->name);
klp_init_transition(patch, KLP_PATCHED);
/*
* Enforce the order of the func->transition writes in
* klp_init_transition() and the ops->func_stack writes in
* klp_patch_object(), so that klp_ftrace_handler() will see the
* func->transition updates before the handler is registered and the
* new funcs become visible to the handler.
*/
smp_wmb();
klp_for_each_object(patch, obj) {
if (!klp_is_object_loaded(obj))
continue;
ret = klp_pre_patch_callback(obj);
if (ret) {
pr_warn("pre-patch callback failed for object '%s'\n",
klp_is_module(obj) ? obj->name : "vmlinux");
goto err;
}
ret = klp_patch_object(obj);
if (ret) {
pr_warn("failed to patch object '%s'\n",
klp_is_module(obj) ? obj->name : "vmlinux");
goto err;
}
}
klp_start_transition();
klp_try_complete_transition();
patch->enabled = true;
return 0;
err:
pr_warn("failed to enable patch '%s'\n", patch->mod->name);
klp_cancel_transition();
return ret;
}
/**
* klp_enable_patch() - enables a registered patch
* @patch: The registered, disabled patch to be enabled
*
* Performs the needed symbol lookups and code relocations,
* then registers the patched functions with ftrace.
*
* Return: 0 on success, otherwise error
*/
int klp_enable_patch(struct klp_patch *patch)
{
int ret;
mutex_lock(&klp_mutex);
if (!klp_is_patch_registered(patch)) {
ret = -EINVAL;
goto err;
}
ret = __klp_enable_patch(patch);
err:
mutex_unlock(&klp_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(klp_enable_patch);
/* /*
* Sysfs Interface * Sysfs Interface
* *
...@@ -449,11 +313,11 @@ EXPORT_SYMBOL_GPL(klp_enable_patch); ...@@ -449,11 +313,11 @@ EXPORT_SYMBOL_GPL(klp_enable_patch);
* /sys/kernel/livepatch/<patch> * /sys/kernel/livepatch/<patch>
* /sys/kernel/livepatch/<patch>/enabled * /sys/kernel/livepatch/<patch>/enabled
* /sys/kernel/livepatch/<patch>/transition * /sys/kernel/livepatch/<patch>/transition
* /sys/kernel/livepatch/<patch>/signal
* /sys/kernel/livepatch/<patch>/force * /sys/kernel/livepatch/<patch>/force
* /sys/kernel/livepatch/<patch>/<object> * /sys/kernel/livepatch/<patch>/<object>
* /sys/kernel/livepatch/<patch>/<object>/<function,sympos> * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
*/ */
static int __klp_disable_patch(struct klp_patch *patch);
static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count) const char *buf, size_t count)
...@@ -470,40 +334,32 @@ static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, ...@@ -470,40 +334,32 @@ static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
mutex_lock(&klp_mutex); mutex_lock(&klp_mutex);
if (!klp_is_patch_registered(patch)) {
/*
* Module with the patch could either disappear meanwhile or is
* not properly initialized yet.
*/
ret = -EINVAL;
goto err;
}
if (patch->enabled == enabled) { if (patch->enabled == enabled) {
/* already in requested state */ /* already in requested state */
ret = -EINVAL; ret = -EINVAL;
goto err; goto out;
} }
if (patch == klp_transition_patch) { /*
* Allow to reverse a pending transition in both ways. It might be
* necessary to complete the transition without forcing and breaking
* the system integrity.
*
* Do not allow to re-enable a disabled patch.
*/
if (patch == klp_transition_patch)
klp_reverse_transition(); klp_reverse_transition();
} else if (enabled) { else if (!enabled)
ret = __klp_enable_patch(patch);
if (ret)
goto err;
} else {
ret = __klp_disable_patch(patch); ret = __klp_disable_patch(patch);
if (ret) else
goto err; ret = -EINVAL;
}
out:
mutex_unlock(&klp_mutex); mutex_unlock(&klp_mutex);
return count; if (ret)
err:
mutex_unlock(&klp_mutex);
return ret; return ret;
return count;
} }
static ssize_t enabled_show(struct kobject *kobj, static ssize_t enabled_show(struct kobject *kobj,
...@@ -525,35 +381,6 @@ static ssize_t transition_show(struct kobject *kobj, ...@@ -525,35 +381,6 @@ static ssize_t transition_show(struct kobject *kobj,
patch == klp_transition_patch); patch == klp_transition_patch);
} }
static ssize_t signal_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count)
{
struct klp_patch *patch;
int ret;
bool val;
ret = kstrtobool(buf, &val);
if (ret)
return ret;
if (!val)
return count;
mutex_lock(&klp_mutex);
patch = container_of(kobj, struct klp_patch, kobj);
if (patch != klp_transition_patch) {
mutex_unlock(&klp_mutex);
return -EINVAL;
}
klp_send_signals();
mutex_unlock(&klp_mutex);
return count;
}
static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
const char *buf, size_t count) const char *buf, size_t count)
{ {
...@@ -585,97 +412,304 @@ static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, ...@@ -585,97 +412,304 @@ static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
static struct kobj_attribute signal_kobj_attr = __ATTR_WO(signal);
static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
static struct attribute *klp_patch_attrs[] = { static struct attribute *klp_patch_attrs[] = {
&enabled_kobj_attr.attr, &enabled_kobj_attr.attr,
&transition_kobj_attr.attr, &transition_kobj_attr.attr,
&signal_kobj_attr.attr,
&force_kobj_attr.attr, &force_kobj_attr.attr,
NULL NULL
}; };
static void klp_kobj_release_patch(struct kobject *kobj) static void klp_free_object_dynamic(struct klp_object *obj)
{ {
struct klp_patch *patch; kfree(obj->name);
kfree(obj);
patch = container_of(kobj, struct klp_patch, kobj);
complete(&patch->finish);
} }
static struct kobj_type klp_ktype_patch = { static struct klp_object *klp_alloc_object_dynamic(const char *name)
.release = klp_kobj_release_patch,
.sysfs_ops = &kobj_sysfs_ops,
.default_attrs = klp_patch_attrs,
};
static void klp_kobj_release_object(struct kobject *kobj)
{ {
} struct klp_object *obj;
static struct kobj_type klp_ktype_object = { obj = kzalloc(sizeof(*obj), GFP_KERNEL);
.release = klp_kobj_release_object, if (!obj)
.sysfs_ops = &kobj_sysfs_ops, return NULL;
};
static void klp_kobj_release_func(struct kobject *kobj) if (name) {
{ obj->name = kstrdup(name, GFP_KERNEL);
} if (!obj->name) {
kfree(obj);
return NULL;
}
}
static struct kobj_type klp_ktype_func = { INIT_LIST_HEAD(&obj->func_list);
.release = klp_kobj_release_func, obj->dynamic = true;
.sysfs_ops = &kobj_sysfs_ops,
};
/* return obj;
* Free all functions' kobjects in the array up to some limit. When limit is }
* NULL, all kobjects are freed.
*/
static void klp_free_funcs_limited(struct klp_object *obj,
struct klp_func *limit)
{
struct klp_func *func;
for (func = obj->funcs; func->old_name && func != limit; func++) static void klp_free_func_nop(struct klp_func *func)
kobject_put(&func->kobj); {
kfree(func->old_name);
kfree(func);
} }
/* Clean up when a patched object is unloaded */ static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
static void klp_free_object_loaded(struct klp_object *obj) struct klp_object *obj)
{ {
struct klp_func *func; struct klp_func *func;
obj->mod = NULL; func = kzalloc(sizeof(*func), GFP_KERNEL);
if (!func)
klp_for_each_func(obj, func) return NULL;
func->old_addr = 0;
} if (old_func->old_name) {
func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
if (!func->old_name) {
kfree(func);
return NULL;
}
}
/*
* func->new_func is same as func->old_func. These addresses are
* set when the object is loaded, see klp_init_object_loaded().
*/
func->old_sympos = old_func->old_sympos;
func->nop = true;
return func;
}
static int klp_add_object_nops(struct klp_patch *patch,
struct klp_object *old_obj)
{
struct klp_object *obj;
struct klp_func *func, *old_func;
obj = klp_find_object(patch, old_obj);
if (!obj) {
obj = klp_alloc_object_dynamic(old_obj->name);
if (!obj)
return -ENOMEM;
list_add_tail(&obj->node, &patch->obj_list);
}
klp_for_each_func(old_obj, old_func) {
func = klp_find_func(obj, old_func);
if (func)
continue;
func = klp_alloc_func_nop(old_func, obj);
if (!func)
return -ENOMEM;
list_add_tail(&func->node, &obj->func_list);
}
return 0;
}
/* /*
* Free all objects' kobjects in the array up to some limit. When limit is * Add 'nop' functions which simply return to the caller to run
* NULL, all kobjects are freed. * the original function. The 'nop' functions are added to a
* patch to facilitate a 'replace' mode.
*/ */
static void klp_free_objects_limited(struct klp_patch *patch, static int klp_add_nops(struct klp_patch *patch)
struct klp_object *limit) {
struct klp_patch *old_patch;
struct klp_object *old_obj;
klp_for_each_patch(old_patch) {
klp_for_each_object(old_patch, old_obj) {
int err;
err = klp_add_object_nops(patch, old_obj);
if (err)
return err;
}
}
return 0;
}
static void klp_kobj_release_patch(struct kobject *kobj)
{
struct klp_patch *patch;
patch = container_of(kobj, struct klp_patch, kobj);
complete(&patch->finish);
}
static struct kobj_type klp_ktype_patch = {
.release = klp_kobj_release_patch,
.sysfs_ops = &kobj_sysfs_ops,
.default_attrs = klp_patch_attrs,
};
static void klp_kobj_release_object(struct kobject *kobj)
{ {
struct klp_object *obj; struct klp_object *obj;
for (obj = patch->objs; obj->funcs && obj != limit; obj++) { obj = container_of(kobj, struct klp_object, kobj);
klp_free_funcs_limited(obj, NULL);
if (obj->dynamic)
klp_free_object_dynamic(obj);
}
static struct kobj_type klp_ktype_object = {
.release = klp_kobj_release_object,
.sysfs_ops = &kobj_sysfs_ops,
};
static void klp_kobj_release_func(struct kobject *kobj)
{
struct klp_func *func;
func = container_of(kobj, struct klp_func, kobj);
if (func->nop)
klp_free_func_nop(func);
}
static struct kobj_type klp_ktype_func = {
.release = klp_kobj_release_func,
.sysfs_ops = &kobj_sysfs_ops,
};
static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
{
struct klp_func *func, *tmp_func;
klp_for_each_func_safe(obj, func, tmp_func) {
if (nops_only && !func->nop)
continue;
list_del(&func->node);
/* Might be called from klp_init_patch() error path. */
if (func->kobj_added) {
kobject_put(&func->kobj);
} else if (func->nop) {
klp_free_func_nop(func);
}
}
}
/* Clean up when a patched object is unloaded */
static void klp_free_object_loaded(struct klp_object *obj)
{
struct klp_func *func;
obj->mod = NULL;
klp_for_each_func(obj, func) {
func->old_func = NULL;
if (func->nop)
func->new_func = NULL;
}
}
static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
{
struct klp_object *obj, *tmp_obj;
klp_for_each_object_safe(patch, obj, tmp_obj) {
__klp_free_funcs(obj, nops_only);
if (nops_only && !obj->dynamic)
continue;
list_del(&obj->node);
/* Might be called from klp_init_patch() error path. */
if (obj->kobj_added) {
kobject_put(&obj->kobj); kobject_put(&obj->kobj);
} else if (obj->dynamic) {
klp_free_object_dynamic(obj);
}
} }
} }
static void klp_free_patch(struct klp_patch *patch) static void klp_free_objects(struct klp_patch *patch)
{
__klp_free_objects(patch, false);
}
static void klp_free_objects_dynamic(struct klp_patch *patch)
{
__klp_free_objects(patch, true);
}
/*
* This function implements the free operations that can be called safely
* under klp_mutex.
*
* The operation must be completed by calling klp_free_patch_finish()
* outside klp_mutex.
*/
void klp_free_patch_start(struct klp_patch *patch)
{ {
klp_free_objects_limited(patch, NULL);
if (!list_empty(&patch->list)) if (!list_empty(&patch->list))
list_del(&patch->list); list_del(&patch->list);
klp_free_objects(patch);
}
/*
* This function implements the free part that must be called outside
* klp_mutex.
*
* It must be called after klp_free_patch_start(). And it has to be
* the last function accessing the livepatch structures when the patch
* gets disabled.
*/
static void klp_free_patch_finish(struct klp_patch *patch)
{
/*
* Avoid deadlock with enabled_store() sysfs callback by
* calling this outside klp_mutex. It is safe because
* this is called when the patch gets disabled and it
* cannot get enabled again.
*/
if (patch->kobj_added) {
kobject_put(&patch->kobj);
wait_for_completion(&patch->finish);
}
/* Put the module after the last access to struct klp_patch. */
if (!patch->forced)
module_put(patch->mod);
}
/*
* The livepatch might be freed from sysfs interface created by the patch.
* This work allows to wait until the interface is destroyed in a separate
* context.
*/
static void klp_free_patch_work_fn(struct work_struct *work)
{
struct klp_patch *patch =
container_of(work, struct klp_patch, free_work);
klp_free_patch_finish(patch);
} }
static int klp_init_func(struct klp_object *obj, struct klp_func *func) static int klp_init_func(struct klp_object *obj, struct klp_func *func)
{ {
if (!func->old_name || !func->new_func) int ret;
if (!func->old_name)
return -EINVAL;
/*
* NOPs get the address later. The patched module must be loaded,
* see klp_init_object_loaded().
*/
if (!func->new_func && !func->nop)
return -EINVAL; return -EINVAL;
if (strlen(func->old_name) >= KSYM_NAME_LEN) if (strlen(func->old_name) >= KSYM_NAME_LEN)
...@@ -690,9 +724,13 @@ static int klp_init_func(struct klp_object *obj, struct klp_func *func) ...@@ -690,9 +724,13 @@ static int klp_init_func(struct klp_object *obj, struct klp_func *func)
* object. If the user selects 0 for old_sympos, then 1 will be used * object. If the user selects 0 for old_sympos, then 1 will be used
* since a unique symbol will be the first occurrence. * since a unique symbol will be the first occurrence.
*/ */
return kobject_init_and_add(&func->kobj, &klp_ktype_func, ret = kobject_init_and_add(&func->kobj, &klp_ktype_func,
&obj->kobj, "%s,%lu", func->old_name, &obj->kobj, "%s,%lu", func->old_name,
func->old_sympos ? func->old_sympos : 1); func->old_sympos ? func->old_sympos : 1);
if (!ret)
func->kobj_added = true;
return ret;
} }
/* Arches may override this to finish any remaining arch-specific tasks */ /* Arches may override this to finish any remaining arch-specific tasks */
...@@ -721,11 +759,11 @@ static int klp_init_object_loaded(struct klp_patch *patch, ...@@ -721,11 +759,11 @@ static int klp_init_object_loaded(struct klp_patch *patch,
klp_for_each_func(obj, func) { klp_for_each_func(obj, func) {
ret = klp_find_object_symbol(obj->name, func->old_name, ret = klp_find_object_symbol(obj->name, func->old_name,
func->old_sympos, func->old_sympos,
&func->old_addr); (unsigned long *)&func->old_func);
if (ret) if (ret)
return ret; return ret;
ret = kallsyms_lookup_size_offset(func->old_addr, ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
&func->old_size, NULL); &func->old_size, NULL);
if (!ret) { if (!ret) {
pr_err("kallsyms size lookup failed for '%s'\n", pr_err("kallsyms size lookup failed for '%s'\n",
...@@ -733,6 +771,9 @@ static int klp_init_object_loaded(struct klp_patch *patch, ...@@ -733,6 +771,9 @@ static int klp_init_object_loaded(struct klp_patch *patch,
return -ENOENT; return -ENOENT;
} }
if (func->nop)
func->new_func = func->old_func;
ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
&func->new_size, NULL); &func->new_size, NULL);
if (!ret) { if (!ret) {
...@@ -751,9 +792,6 @@ static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) ...@@ -751,9 +792,6 @@ static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
int ret; int ret;
const char *name; const char *name;
if (!obj->funcs)
return -EINVAL;
if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
return -EINVAL; return -EINVAL;
...@@ -767,122 +805,191 @@ static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) ...@@ -767,122 +805,191 @@ static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
&patch->kobj, "%s", name); &patch->kobj, "%s", name);
if (ret) if (ret)
return ret; return ret;
obj->kobj_added = true;
klp_for_each_func(obj, func) { klp_for_each_func(obj, func) {
ret = klp_init_func(obj, func); ret = klp_init_func(obj, func);
if (ret) if (ret)
goto free; return ret;
} }
if (klp_is_object_loaded(obj)) { if (klp_is_object_loaded(obj))
ret = klp_init_object_loaded(patch, obj); ret = klp_init_object_loaded(patch, obj);
if (ret)
goto free;
}
return 0;
free:
klp_free_funcs_limited(obj, func);
kobject_put(&obj->kobj);
return ret; return ret;
} }
static int klp_init_patch(struct klp_patch *patch) static int klp_init_patch_early(struct klp_patch *patch)
{ {
struct klp_object *obj; struct klp_object *obj;
int ret; struct klp_func *func;
if (!patch->objs) if (!patch->objs)
return -EINVAL; return -EINVAL;
mutex_lock(&klp_mutex); INIT_LIST_HEAD(&patch->list);
INIT_LIST_HEAD(&patch->obj_list);
patch->kobj_added = false;
patch->enabled = false; patch->enabled = false;
patch->forced = false;
INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
init_completion(&patch->finish); init_completion(&patch->finish);
klp_for_each_object_static(patch, obj) {
if (!obj->funcs)
return -EINVAL;
INIT_LIST_HEAD(&obj->func_list);
obj->kobj_added = false;
list_add_tail(&obj->node, &patch->obj_list);
klp_for_each_func_static(obj, func) {
func->kobj_added = false;
list_add_tail(&func->node, &obj->func_list);
}
}
if (!try_module_get(patch->mod))
return -ENODEV;
return 0;
}
static int klp_init_patch(struct klp_patch *patch)
{
struct klp_object *obj;
int ret;
ret = kobject_init_and_add(&patch->kobj, &klp_ktype_patch, ret = kobject_init_and_add(&patch->kobj, &klp_ktype_patch,
klp_root_kobj, "%s", patch->mod->name); klp_root_kobj, "%s", patch->mod->name);
if (ret) { if (ret)
mutex_unlock(&klp_mutex); return ret;
patch->kobj_added = true;
if (patch->replace) {
ret = klp_add_nops(patch);
if (ret)
return ret; return ret;
} }
klp_for_each_object(patch, obj) { klp_for_each_object(patch, obj) {
ret = klp_init_object(patch, obj); ret = klp_init_object(patch, obj);
if (ret) if (ret)
goto free; return ret;
} }
list_add_tail(&patch->list, &klp_patches); list_add_tail(&patch->list, &klp_patches);
mutex_unlock(&klp_mutex);
return 0; return 0;
}
static int __klp_disable_patch(struct klp_patch *patch)
{
struct klp_object *obj;
free: if (WARN_ON(!patch->enabled))
klp_free_objects_limited(patch, obj); return -EINVAL;
mutex_unlock(&klp_mutex); if (klp_transition_patch)
return -EBUSY;
kobject_put(&patch->kobj); klp_init_transition(patch, KLP_UNPATCHED);
wait_for_completion(&patch->finish);
return ret; klp_for_each_object(patch, obj)
} if (obj->patched)
klp_pre_unpatch_callback(obj);
/** /*
* klp_unregister_patch() - unregisters a patch * Enforce the order of the func->transition writes in
* @patch: Disabled patch to be unregistered * klp_init_transition() and the TIF_PATCH_PENDING writes in
* * klp_start_transition(). In the rare case where klp_ftrace_handler()
* Frees the data structures and removes the sysfs interface. * is called shortly after klp_update_patch_state() switches the task,
* * this ensures the handler sees that func->transition is set.
* Return: 0 on success, otherwise error
*/ */
int klp_unregister_patch(struct klp_patch *patch) smp_wmb();
klp_start_transition();
patch->enabled = false;
klp_try_complete_transition();
return 0;
}
static int __klp_enable_patch(struct klp_patch *patch)
{ {
struct klp_object *obj;
int ret; int ret;
mutex_lock(&klp_mutex); if (klp_transition_patch)
return -EBUSY;
if (!klp_is_patch_registered(patch)) { if (WARN_ON(patch->enabled))
ret = -EINVAL; return -EINVAL;
if (!patch->kobj_added)
return -EINVAL;
pr_notice("enabling patch '%s'\n", patch->mod->name);
klp_init_transition(patch, KLP_PATCHED);
/*
* Enforce the order of the func->transition writes in
* klp_init_transition() and the ops->func_stack writes in
* klp_patch_object(), so that klp_ftrace_handler() will see the
* func->transition updates before the handler is registered and the
* new funcs become visible to the handler.
*/
smp_wmb();
klp_for_each_object(patch, obj) {
if (!klp_is_object_loaded(obj))
continue;
ret = klp_pre_patch_callback(obj);
if (ret) {
pr_warn("pre-patch callback failed for object '%s'\n",
klp_is_module(obj) ? obj->name : "vmlinux");
goto err; goto err;
} }
if (patch->enabled) { ret = klp_patch_object(obj);
ret = -EBUSY; if (ret) {
pr_warn("failed to patch object '%s'\n",
klp_is_module(obj) ? obj->name : "vmlinux");
goto err; goto err;
} }
}
klp_free_patch(patch); klp_start_transition();
patch->enabled = true;
mutex_unlock(&klp_mutex); klp_try_complete_transition();
kobject_put(&patch->kobj);
wait_for_completion(&patch->finish);
return 0; return 0;
err: err:
mutex_unlock(&klp_mutex); pr_warn("failed to enable patch '%s'\n", patch->mod->name);
klp_cancel_transition();
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(klp_unregister_patch);
/** /**
* klp_register_patch() - registers a patch * klp_enable_patch() - enable the livepatch
* @patch: Patch to be registered * @patch: patch to be enabled
* *
* Initializes the data structure associated with the patch and * Initializes the data structure associated with the patch, creates the sysfs
* creates the sysfs interface. * interface, performs the needed symbol lookups and code relocations,
* registers the patched functions with ftrace.
* *
* There is no need to take the reference on the patch module here. It is done * This function is supposed to be called from the livepatch module_init()
* later when the patch is enabled. * callback.
* *
* Return: 0 on success, otherwise error * Return: 0 on success, otherwise error
*/ */
int klp_register_patch(struct klp_patch *patch) int klp_enable_patch(struct klp_patch *patch)
{ {
int ret;
if (!patch || !patch->mod) if (!patch || !patch->mod)
return -EINVAL; return -EINVAL;
...@@ -897,12 +1004,91 @@ int klp_register_patch(struct klp_patch *patch) ...@@ -897,12 +1004,91 @@ int klp_register_patch(struct klp_patch *patch)
if (!klp_have_reliable_stack()) { if (!klp_have_reliable_stack()) {
pr_err("This architecture doesn't have support for the livepatch consistency model.\n"); pr_err("This architecture doesn't have support for the livepatch consistency model.\n");
return -ENOSYS; return -EOPNOTSUPP;
}
mutex_lock(&klp_mutex);
ret = klp_init_patch_early(patch);
if (ret) {
mutex_unlock(&klp_mutex);
return ret;
} }
return klp_init_patch(patch); ret = klp_init_patch(patch);
if (ret)
goto err;
ret = __klp_enable_patch(patch);
if (ret)
goto err;
mutex_unlock(&klp_mutex);
return 0;
err:
klp_free_patch_start(patch);
mutex_unlock(&klp_mutex);
klp_free_patch_finish(patch);
return ret;
}
EXPORT_SYMBOL_GPL(klp_enable_patch);
/*
* This function removes replaced patches.
*
* We could be pretty aggressive here. It is called in the situation where
* these structures are no longer accessible. All functions are redirected
* by the klp_transition_patch. They use either a new code or they are in
* the original code because of the special nop function patches.
*
* The only exception is when the transition was forced. In this case,
* klp_ftrace_handler() might still see the replaced patch on the stack.
* Fortunately, it is carefully designed to work with removed functions
* thanks to RCU. We only have to keep the patches on the system. Also
* this is handled transparently by patch->module_put.
*/
void klp_discard_replaced_patches(struct klp_patch *new_patch)
{
struct klp_patch *old_patch, *tmp_patch;
klp_for_each_patch_safe(old_patch, tmp_patch) {
if (old_patch == new_patch)
return;
old_patch->enabled = false;
klp_unpatch_objects(old_patch);
klp_free_patch_start(old_patch);
schedule_work(&old_patch->free_work);
}
}
/*
* This function removes the dynamically allocated 'nop' functions.
*
* We could be pretty aggressive. NOPs do not change the existing
* behavior except for adding unnecessary delay by the ftrace handler.
*
* It is safe even when the transition was forced. The ftrace handler
* will see a valid ops->func_stack entry thanks to RCU.
*
* We could even free the NOPs structures. They must be the last entry
* in ops->func_stack. Therefore unregister_ftrace_function() is called.
* It does the same as klp_synchronize_transition() to make sure that
* nobody is inside the ftrace handler once the operation finishes.
*
* IMPORTANT: It must be called right after removing the replaced patches!
*/
void klp_discard_nops(struct klp_patch *new_patch)
{
klp_unpatch_objects_dynamic(klp_transition_patch);
klp_free_objects_dynamic(klp_transition_patch);
} }
EXPORT_SYMBOL_GPL(klp_register_patch);
/* /*
* Remove parts of patches that touch a given kernel module. The list of * Remove parts of patches that touch a given kernel module. The list of
...@@ -915,7 +1101,7 @@ static void klp_cleanup_module_patches_limited(struct module *mod, ...@@ -915,7 +1101,7 @@ static void klp_cleanup_module_patches_limited(struct module *mod,
struct klp_patch *patch; struct klp_patch *patch;
struct klp_object *obj; struct klp_object *obj;
list_for_each_entry(patch, &klp_patches, list) { klp_for_each_patch(patch) {
if (patch == limit) if (patch == limit)
break; break;
...@@ -923,12 +1109,6 @@ static void klp_cleanup_module_patches_limited(struct module *mod, ...@@ -923,12 +1109,6 @@ static void klp_cleanup_module_patches_limited(struct module *mod,
if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
continue; continue;
/*
* Only unpatch the module if the patch is enabled or
* is in transition.
*/
if (patch->enabled || patch == klp_transition_patch) {
if (patch != klp_transition_patch) if (patch != klp_transition_patch)
klp_pre_unpatch_callback(obj); klp_pre_unpatch_callback(obj);
...@@ -937,7 +1117,6 @@ static void klp_cleanup_module_patches_limited(struct module *mod, ...@@ -937,7 +1117,6 @@ static void klp_cleanup_module_patches_limited(struct module *mod,
klp_unpatch_object(obj); klp_unpatch_object(obj);
klp_post_unpatch_callback(obj); klp_post_unpatch_callback(obj);
}
klp_free_object_loaded(obj); klp_free_object_loaded(obj);
break; break;
...@@ -962,7 +1141,7 @@ int klp_module_coming(struct module *mod) ...@@ -962,7 +1141,7 @@ int klp_module_coming(struct module *mod)
*/ */
mod->klp_alive = true; mod->klp_alive = true;
list_for_each_entry(patch, &klp_patches, list) { klp_for_each_patch(patch) {
klp_for_each_object(patch, obj) { klp_for_each_object(patch, obj) {
if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
continue; continue;
...@@ -976,13 +1155,6 @@ int klp_module_coming(struct module *mod) ...@@ -976,13 +1155,6 @@ int klp_module_coming(struct module *mod)
goto err; goto err;
} }
/*
* Only patch the module if the patch is enabled or is
* in transition.
*/
if (!patch->enabled && patch != klp_transition_patch)
break;
pr_notice("applying patch '%s' to loading module '%s'\n", pr_notice("applying patch '%s' to loading module '%s'\n",
patch->mod->name, obj->mod->name); patch->mod->name, obj->mod->name);
......
...@@ -5,6 +5,17 @@ ...@@ -5,6 +5,17 @@
#include <linux/livepatch.h> #include <linux/livepatch.h>
extern struct mutex klp_mutex; extern struct mutex klp_mutex;
extern struct list_head klp_patches;
#define klp_for_each_patch_safe(patch, tmp_patch) \
list_for_each_entry_safe(patch, tmp_patch, &klp_patches, list)
#define klp_for_each_patch(patch) \
list_for_each_entry(patch, &klp_patches, list)
void klp_free_patch_start(struct klp_patch *patch);
void klp_discard_replaced_patches(struct klp_patch *new_patch);
void klp_discard_nops(struct klp_patch *new_patch);
static inline bool klp_is_object_loaded(struct klp_object *obj) static inline bool klp_is_object_loaded(struct klp_object *obj)
{ {
......
...@@ -34,7 +34,7 @@ ...@@ -34,7 +34,7 @@
static LIST_HEAD(klp_ops); static LIST_HEAD(klp_ops);
struct klp_ops *klp_find_ops(unsigned long old_addr) struct klp_ops *klp_find_ops(void *old_func)
{ {
struct klp_ops *ops; struct klp_ops *ops;
struct klp_func *func; struct klp_func *func;
...@@ -42,7 +42,7 @@ struct klp_ops *klp_find_ops(unsigned long old_addr) ...@@ -42,7 +42,7 @@ struct klp_ops *klp_find_ops(unsigned long old_addr)
list_for_each_entry(ops, &klp_ops, node) { list_for_each_entry(ops, &klp_ops, node) {
func = list_first_entry(&ops->func_stack, struct klp_func, func = list_first_entry(&ops->func_stack, struct klp_func,
stack_node); stack_node);
if (func->old_addr == old_addr) if (func->old_func == old_func)
return ops; return ops;
} }
...@@ -118,7 +118,15 @@ static void notrace klp_ftrace_handler(unsigned long ip, ...@@ -118,7 +118,15 @@ static void notrace klp_ftrace_handler(unsigned long ip,
} }
} }
/*
* NOPs are used to replace existing patches with original code.
* Do nothing! Setting pc would cause an infinite loop.
*/
if (func->nop)
goto unlock;
klp_arch_set_pc(regs, (unsigned long)func->new_func); klp_arch_set_pc(regs, (unsigned long)func->new_func);
unlock: unlock:
preempt_enable_notrace(); preempt_enable_notrace();
} }
...@@ -142,17 +150,18 @@ static void klp_unpatch_func(struct klp_func *func) ...@@ -142,17 +150,18 @@ static void klp_unpatch_func(struct klp_func *func)
if (WARN_ON(!func->patched)) if (WARN_ON(!func->patched))
return; return;
if (WARN_ON(!func->old_addr)) if (WARN_ON(!func->old_func))
return; return;
ops = klp_find_ops(func->old_addr); ops = klp_find_ops(func->old_func);
if (WARN_ON(!ops)) if (WARN_ON(!ops))
return; return;
if (list_is_singular(&ops->func_stack)) { if (list_is_singular(&ops->func_stack)) {
unsigned long ftrace_loc; unsigned long ftrace_loc;
ftrace_loc = klp_get_ftrace_location(func->old_addr); ftrace_loc =
klp_get_ftrace_location((unsigned long)func->old_func);
if (WARN_ON(!ftrace_loc)) if (WARN_ON(!ftrace_loc))
return; return;
...@@ -174,17 +183,18 @@ static int klp_patch_func(struct klp_func *func) ...@@ -174,17 +183,18 @@ static int klp_patch_func(struct klp_func *func)
struct klp_ops *ops; struct klp_ops *ops;
int ret; int ret;
if (WARN_ON(!func->old_addr)) if (WARN_ON(!func->old_func))
return -EINVAL; return -EINVAL;
if (WARN_ON(func->patched)) if (WARN_ON(func->patched))
return -EINVAL; return -EINVAL;
ops = klp_find_ops(func->old_addr); ops = klp_find_ops(func->old_func);
if (!ops) { if (!ops) {
unsigned long ftrace_loc; unsigned long ftrace_loc;
ftrace_loc = klp_get_ftrace_location(func->old_addr); ftrace_loc =
klp_get_ftrace_location((unsigned long)func->old_func);
if (!ftrace_loc) { if (!ftrace_loc) {
pr_err("failed to find location for function '%s'\n", pr_err("failed to find location for function '%s'\n",
func->old_name); func->old_name);
...@@ -236,17 +246,28 @@ static int klp_patch_func(struct klp_func *func) ...@@ -236,17 +246,28 @@ static int klp_patch_func(struct klp_func *func)
return ret; return ret;
} }
void klp_unpatch_object(struct klp_object *obj) static void __klp_unpatch_object(struct klp_object *obj, bool nops_only)
{ {
struct klp_func *func; struct klp_func *func;
klp_for_each_func(obj, func) klp_for_each_func(obj, func) {
if (nops_only && !func->nop)
continue;
if (func->patched) if (func->patched)
klp_unpatch_func(func); klp_unpatch_func(func);
}
if (obj->dynamic || !nops_only)
obj->patched = false; obj->patched = false;
} }
void klp_unpatch_object(struct klp_object *obj)
{
__klp_unpatch_object(obj, false);
}
int klp_patch_object(struct klp_object *obj) int klp_patch_object(struct klp_object *obj)
{ {
struct klp_func *func; struct klp_func *func;
...@@ -267,11 +288,21 @@ int klp_patch_object(struct klp_object *obj) ...@@ -267,11 +288,21 @@ int klp_patch_object(struct klp_object *obj)
return 0; return 0;
} }
void klp_unpatch_objects(struct klp_patch *patch) static void __klp_unpatch_objects(struct klp_patch *patch, bool nops_only)
{ {
struct klp_object *obj; struct klp_object *obj;
klp_for_each_object(patch, obj) klp_for_each_object(patch, obj)
if (obj->patched) if (obj->patched)
klp_unpatch_object(obj); __klp_unpatch_object(obj, nops_only);
}
void klp_unpatch_objects(struct klp_patch *patch)
{
__klp_unpatch_objects(patch, false);
}
void klp_unpatch_objects_dynamic(struct klp_patch *patch)
{
__klp_unpatch_objects(patch, true);
} }
...@@ -10,7 +10,7 @@ ...@@ -10,7 +10,7 @@
* struct klp_ops - structure for tracking registered ftrace ops structs * struct klp_ops - structure for tracking registered ftrace ops structs
* *
* A single ftrace_ops is shared between all enabled replacement functions * A single ftrace_ops is shared between all enabled replacement functions
* (klp_func structs) which have the same old_addr. This allows the switch * (klp_func structs) which have the same old_func. This allows the switch
* between function versions to happen instantaneously by updating the klp_ops * between function versions to happen instantaneously by updating the klp_ops
* struct's func_stack list. The winner is the klp_func at the top of the * struct's func_stack list. The winner is the klp_func at the top of the
* func_stack (front of the list). * func_stack (front of the list).
...@@ -25,10 +25,11 @@ struct klp_ops { ...@@ -25,10 +25,11 @@ struct klp_ops {
struct ftrace_ops fops; struct ftrace_ops fops;
}; };
struct klp_ops *klp_find_ops(unsigned long old_addr); struct klp_ops *klp_find_ops(void *old_func);
int klp_patch_object(struct klp_object *obj); int klp_patch_object(struct klp_object *obj);
void klp_unpatch_object(struct klp_object *obj); void klp_unpatch_object(struct klp_object *obj);
void klp_unpatch_objects(struct klp_patch *patch); void klp_unpatch_objects(struct klp_patch *patch);
void klp_unpatch_objects_dynamic(struct klp_patch *patch);
#endif /* _LIVEPATCH_PATCH_H */ #endif /* _LIVEPATCH_PATCH_H */
...@@ -29,11 +29,13 @@ ...@@ -29,11 +29,13 @@
#define MAX_STACK_ENTRIES 100 #define MAX_STACK_ENTRIES 100
#define STACK_ERR_BUF_SIZE 128 #define STACK_ERR_BUF_SIZE 128
#define SIGNALS_TIMEOUT 15
struct klp_patch *klp_transition_patch; struct klp_patch *klp_transition_patch;
static int klp_target_state = KLP_UNDEFINED; static int klp_target_state = KLP_UNDEFINED;
static bool klp_forced = false; static unsigned int klp_signals_cnt;
/* /*
* This work can be performed periodically to finish patching or unpatching any * This work can be performed periodically to finish patching or unpatching any
...@@ -87,6 +89,11 @@ static void klp_complete_transition(void) ...@@ -87,6 +89,11 @@ static void klp_complete_transition(void)
klp_transition_patch->mod->name, klp_transition_patch->mod->name,
klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
klp_discard_replaced_patches(klp_transition_patch);
klp_discard_nops(klp_transition_patch);
}
if (klp_target_state == KLP_UNPATCHED) { if (klp_target_state == KLP_UNPATCHED) {
/* /*
* All tasks have transitioned to KLP_UNPATCHED so we can now * All tasks have transitioned to KLP_UNPATCHED so we can now
...@@ -136,13 +143,6 @@ static void klp_complete_transition(void) ...@@ -136,13 +143,6 @@ static void klp_complete_transition(void)
pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name, pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
klp_target_state == KLP_PATCHED ? "patching" : "unpatching"); klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
/*
* klp_forced set implies unbounded increase of module's ref count if
* the module is disabled/enabled in a loop.
*/
if (!klp_forced && klp_target_state == KLP_UNPATCHED)
module_put(klp_transition_patch->mod);
klp_target_state = KLP_UNDEFINED; klp_target_state = KLP_UNDEFINED;
klp_transition_patch = NULL; klp_transition_patch = NULL;
} }
...@@ -224,11 +224,11 @@ static int klp_check_stack_func(struct klp_func *func, ...@@ -224,11 +224,11 @@ static int klp_check_stack_func(struct klp_func *func,
* Check for the to-be-patched function * Check for the to-be-patched function
* (the previous func). * (the previous func).
*/ */
ops = klp_find_ops(func->old_addr); ops = klp_find_ops(func->old_func);
if (list_is_singular(&ops->func_stack)) { if (list_is_singular(&ops->func_stack)) {
/* original function */ /* original function */
func_addr = func->old_addr; func_addr = (unsigned long)func->old_func;
func_size = func->old_size; func_size = func->old_size;
} else { } else {
/* previously patched function */ /* previously patched function */
...@@ -347,6 +347,47 @@ static bool klp_try_switch_task(struct task_struct *task) ...@@ -347,6 +347,47 @@ static bool klp_try_switch_task(struct task_struct *task)
} }
/*
* Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
* Kthreads with TIF_PATCH_PENDING set are woken up.
*/
static void klp_send_signals(void)
{
struct task_struct *g, *task;
if (klp_signals_cnt == SIGNALS_TIMEOUT)
pr_notice("signaling remaining tasks\n");
read_lock(&tasklist_lock);
for_each_process_thread(g, task) {
if (!klp_patch_pending(task))
continue;
/*
* There is a small race here. We could see TIF_PATCH_PENDING
* set and decide to wake up a kthread or send a fake signal.
* Meanwhile the task could migrate itself and the action
* would be meaningless. It is not serious though.
*/
if (task->flags & PF_KTHREAD) {
/*
* Wake up a kthread which sleeps interruptedly and
* still has not been migrated.
*/
wake_up_state(task, TASK_INTERRUPTIBLE);
} else {
/*
* Send fake signal to all non-kthread tasks which are
* still not migrated.
*/
spin_lock_irq(&task->sighand->siglock);
signal_wake_up(task, 0);
spin_unlock_irq(&task->sighand->siglock);
}
}
read_unlock(&tasklist_lock);
}
/* /*
* Try to switch all remaining tasks to the target patch state by walking the * Try to switch all remaining tasks to the target patch state by walking the
* stacks of sleeping tasks and looking for any to-be-patched or * stacks of sleeping tasks and looking for any to-be-patched or
...@@ -359,6 +400,7 @@ void klp_try_complete_transition(void) ...@@ -359,6 +400,7 @@ void klp_try_complete_transition(void)
{ {
unsigned int cpu; unsigned int cpu;
struct task_struct *g, *task; struct task_struct *g, *task;
struct klp_patch *patch;
bool complete = true; bool complete = true;
WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED); WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
...@@ -396,6 +438,10 @@ void klp_try_complete_transition(void) ...@@ -396,6 +438,10 @@ void klp_try_complete_transition(void)
put_online_cpus(); put_online_cpus();
if (!complete) { if (!complete) {
if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
klp_send_signals();
klp_signals_cnt++;
/* /*
* Some tasks weren't able to be switched over. Try again * Some tasks weren't able to be switched over. Try again
* later and/or wait for other methods like kernel exit * later and/or wait for other methods like kernel exit
...@@ -407,7 +453,18 @@ void klp_try_complete_transition(void) ...@@ -407,7 +453,18 @@ void klp_try_complete_transition(void)
} }
/* we're done, now cleanup the data structures */ /* we're done, now cleanup the data structures */
patch = klp_transition_patch;
klp_complete_transition(); klp_complete_transition();
/*
* It would make more sense to free the patch in
* klp_complete_transition() but it is called also
* from klp_cancel_transition().
*/
if (!patch->enabled) {
klp_free_patch_start(patch);
schedule_work(&patch->free_work);
}
} }
/* /*
...@@ -446,6 +503,8 @@ void klp_start_transition(void) ...@@ -446,6 +503,8 @@ void klp_start_transition(void)
if (task->patch_state != klp_target_state) if (task->patch_state != klp_target_state)
set_tsk_thread_flag(task, TIF_PATCH_PENDING); set_tsk_thread_flag(task, TIF_PATCH_PENDING);
} }
klp_signals_cnt = 0;
} }
/* /*
...@@ -568,47 +627,6 @@ void klp_copy_process(struct task_struct *child) ...@@ -568,47 +627,6 @@ void klp_copy_process(struct task_struct *child)
/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */ /* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
} }
/*
* Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
* Kthreads with TIF_PATCH_PENDING set are woken up. Only admin can request this
* action currently.
*/
void klp_send_signals(void)
{
struct task_struct *g, *task;
pr_notice("signaling remaining tasks\n");
read_lock(&tasklist_lock);
for_each_process_thread(g, task) {
if (!klp_patch_pending(task))
continue;
/*
* There is a small race here. We could see TIF_PATCH_PENDING
* set and decide to wake up a kthread or send a fake signal.
* Meanwhile the task could migrate itself and the action
* would be meaningless. It is not serious though.
*/
if (task->flags & PF_KTHREAD) {
/*
* Wake up a kthread which sleeps interruptedly and
* still has not been migrated.
*/
wake_up_state(task, TASK_INTERRUPTIBLE);
} else {
/*
* Send fake signal to all non-kthread tasks which are
* still not migrated.
*/
spin_lock_irq(&task->sighand->siglock);
signal_wake_up(task, 0);
spin_unlock_irq(&task->sighand->siglock);
}
}
read_unlock(&tasklist_lock);
}
/* /*
* Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
* existing transition to finish. * existing transition to finish.
...@@ -620,6 +638,7 @@ void klp_send_signals(void) ...@@ -620,6 +638,7 @@ void klp_send_signals(void)
*/ */
void klp_force_transition(void) void klp_force_transition(void)
{ {
struct klp_patch *patch;
struct task_struct *g, *task; struct task_struct *g, *task;
unsigned int cpu; unsigned int cpu;
...@@ -633,5 +652,6 @@ void klp_force_transition(void) ...@@ -633,5 +652,6 @@ void klp_force_transition(void)
for_each_possible_cpu(cpu) for_each_possible_cpu(cpu)
klp_update_patch_state(idle_task(cpu)); klp_update_patch_state(idle_task(cpu));
klp_forced = true; klp_for_each_patch(patch)
patch->forced = true;
} }
...@@ -11,7 +11,6 @@ void klp_cancel_transition(void); ...@@ -11,7 +11,6 @@ void klp_cancel_transition(void);
void klp_start_transition(void); void klp_start_transition(void);
void klp_try_complete_transition(void); void klp_try_complete_transition(void);
void klp_reverse_transition(void); void klp_reverse_transition(void);
void klp_send_signals(void);
void klp_force_transition(void); void klp_force_transition(void);
#endif /* _LIVEPATCH_TRANSITION_H */ #endif /* _LIVEPATCH_TRANSITION_H */
...@@ -1985,6 +1985,28 @@ config TEST_MEMCAT_P ...@@ -1985,6 +1985,28 @@ config TEST_MEMCAT_P
If unsure, say N. If unsure, say N.
config TEST_LIVEPATCH
tristate "Test livepatching"
default n
depends on DYNAMIC_DEBUG
depends on LIVEPATCH
depends on m
help
Test kernel livepatching features for correctness. The tests will
load test modules that will be livepatched in various scenarios.
To run all the livepatching tests:
make -C tools/testing/selftests TARGETS=livepatch run_tests
Alternatively, individual tests may be invoked:
tools/testing/selftests/livepatch/test-callbacks.sh
tools/testing/selftests/livepatch/test-livepatch.sh
tools/testing/selftests/livepatch/test-shadow-vars.sh
If unsure, say N.
config TEST_OBJAGG config TEST_OBJAGG
tristate "Perform selftest on object aggreration manager" tristate "Perform selftest on object aggreration manager"
default n default n
...@@ -1993,7 +2015,6 @@ config TEST_OBJAGG ...@@ -1993,7 +2015,6 @@ config TEST_OBJAGG
Enable this option to test object aggregation manager on boot Enable this option to test object aggregation manager on boot
(or module load). (or module load).
If unsure, say N.
endif # RUNTIME_TESTING_MENU endif # RUNTIME_TESTING_MENU
......
...@@ -78,6 +78,8 @@ obj-$(CONFIG_TEST_DEBUG_VIRTUAL) += test_debug_virtual.o ...@@ -78,6 +78,8 @@ obj-$(CONFIG_TEST_DEBUG_VIRTUAL) += test_debug_virtual.o
obj-$(CONFIG_TEST_MEMCAT_P) += test_memcat_p.o obj-$(CONFIG_TEST_MEMCAT_P) += test_memcat_p.o
obj-$(CONFIG_TEST_OBJAGG) += test_objagg.o obj-$(CONFIG_TEST_OBJAGG) += test_objagg.o
obj-$(CONFIG_TEST_LIVEPATCH) += livepatch/
ifeq ($(CONFIG_DEBUG_KOBJECT),y) ifeq ($(CONFIG_DEBUG_KOBJECT),y)
CFLAGS_kobject.o += -DDEBUG CFLAGS_kobject.o += -DDEBUG
CFLAGS_kobject_uevent.o += -DDEBUG CFLAGS_kobject_uevent.o += -DDEBUG
......
# SPDX-License-Identifier: GPL-2.0
#
# Makefile for livepatch test code.
obj-$(CONFIG_TEST_LIVEPATCH) += test_klp_atomic_replace.o \
test_klp_callbacks_demo.o \
test_klp_callbacks_demo2.o \
test_klp_callbacks_busy.o \
test_klp_callbacks_mod.o \
test_klp_livepatch.o \
test_klp_shadow_vars.o
# Target modules to be livepatched require CC_FLAGS_FTRACE
CFLAGS_test_klp_callbacks_busy.o += $(CC_FLAGS_FTRACE)
CFLAGS_test_klp_callbacks_mod.o += $(CC_FLAGS_FTRACE)
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/livepatch.h>
static int replace;
module_param(replace, int, 0644);
MODULE_PARM_DESC(replace, "replace (default=0)");
#include <linux/seq_file.h>
static int livepatch_meminfo_proc_show(struct seq_file *m, void *v)
{
seq_printf(m, "%s: %s\n", THIS_MODULE->name,
"this has been live patched");
return 0;
}
static struct klp_func funcs[] = {
{
.old_name = "meminfo_proc_show",
.new_func = livepatch_meminfo_proc_show,
}, {}
};
static struct klp_object objs[] = {
{
/* name being NULL means vmlinux */
.funcs = funcs,
}, {}
};
static struct klp_patch patch = {
.mod = THIS_MODULE,
.objs = objs,
/* set .replace in the init function below for demo purposes */
};
static int test_klp_atomic_replace_init(void)
{
patch.replace = replace;
return klp_enable_patch(&patch);
}
static void test_klp_atomic_replace_exit(void)
{
}
module_init(test_klp_atomic_replace_init);
module_exit(test_klp_atomic_replace_exit);
MODULE_LICENSE("GPL");
MODULE_INFO(livepatch, "Y");
MODULE_AUTHOR("Joe Lawrence <joe.lawrence@redhat.com>");
MODULE_DESCRIPTION("Livepatch test: atomic replace");
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
static int sleep_secs;
module_param(sleep_secs, int, 0644);
MODULE_PARM_DESC(sleep_secs, "sleep_secs (default=0)");
static void busymod_work_func(struct work_struct *work);
static DECLARE_DELAYED_WORK(work, busymod_work_func);
static void busymod_work_func(struct work_struct *work)
{
pr_info("%s, sleeping %d seconds ...\n", __func__, sleep_secs);
msleep(sleep_secs * 1000);
pr_info("%s exit\n", __func__);
}
static int test_klp_callbacks_busy_init(void)
{
pr_info("%s\n", __func__);
schedule_delayed_work(&work,
msecs_to_jiffies(1000 * 0));
return 0;
}
static void test_klp_callbacks_busy_exit(void)
{
cancel_delayed_work_sync(&work);
pr_info("%s\n", __func__);
}
module_init(test_klp_callbacks_busy_init);
module_exit(test_klp_callbacks_busy_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Joe Lawrence <joe.lawrence@redhat.com>");
MODULE_DESCRIPTION("Livepatch test: busy target module");
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/livepatch.h>
static int pre_patch_ret;
module_param(pre_patch_ret, int, 0644);
MODULE_PARM_DESC(pre_patch_ret, "pre_patch_ret (default=0)");
static const char *const module_state[] = {
[MODULE_STATE_LIVE] = "[MODULE_STATE_LIVE] Normal state",
[MODULE_STATE_COMING] = "[MODULE_STATE_COMING] Full formed, running module_init",
[MODULE_STATE_GOING] = "[MODULE_STATE_GOING] Going away",
[MODULE_STATE_UNFORMED] = "[MODULE_STATE_UNFORMED] Still setting it up",
};
static void callback_info(const char *callback, struct klp_object *obj)
{
if (obj->mod)
pr_info("%s: %s -> %s\n", callback, obj->mod->name,
module_state[obj->mod->state]);
else
pr_info("%s: vmlinux\n", callback);
}
/* Executed on object patching (ie, patch enablement) */
static int pre_patch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
return pre_patch_ret;
}
/* Executed on object unpatching (ie, patch disablement) */
static void post_patch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
}
/* Executed on object unpatching (ie, patch disablement) */
static void pre_unpatch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
}
/* Executed on object unpatching (ie, patch disablement) */
static void post_unpatch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
}
static void patched_work_func(struct work_struct *work)
{
pr_info("%s\n", __func__);
}
static struct klp_func no_funcs[] = {
{}
};
static struct klp_func busymod_funcs[] = {
{
.old_name = "busymod_work_func",
.new_func = patched_work_func,
}, {}
};
static struct klp_object objs[] = {
{
.name = NULL, /* vmlinux */
.funcs = no_funcs,
.callbacks = {
.pre_patch = pre_patch_callback,
.post_patch = post_patch_callback,
.pre_unpatch = pre_unpatch_callback,
.post_unpatch = post_unpatch_callback,
},
}, {
.name = "test_klp_callbacks_mod",
.funcs = no_funcs,
.callbacks = {
.pre_patch = pre_patch_callback,
.post_patch = post_patch_callback,
.pre_unpatch = pre_unpatch_callback,
.post_unpatch = post_unpatch_callback,
},
}, {
.name = "test_klp_callbacks_busy",
.funcs = busymod_funcs,
.callbacks = {
.pre_patch = pre_patch_callback,
.post_patch = post_patch_callback,
.pre_unpatch = pre_unpatch_callback,
.post_unpatch = post_unpatch_callback,
},
}, { }
};
static struct klp_patch patch = {
.mod = THIS_MODULE,
.objs = objs,
};
static int test_klp_callbacks_demo_init(void)
{
return klp_enable_patch(&patch);
}
static void test_klp_callbacks_demo_exit(void)
{
}
module_init(test_klp_callbacks_demo_init);
module_exit(test_klp_callbacks_demo_exit);
MODULE_LICENSE("GPL");
MODULE_INFO(livepatch, "Y");
MODULE_AUTHOR("Joe Lawrence <joe.lawrence@redhat.com>");
MODULE_DESCRIPTION("Livepatch test: livepatch demo");
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/livepatch.h>
static int replace;
module_param(replace, int, 0644);
MODULE_PARM_DESC(replace, "replace (default=0)");
static const char *const module_state[] = {
[MODULE_STATE_LIVE] = "[MODULE_STATE_LIVE] Normal state",
[MODULE_STATE_COMING] = "[MODULE_STATE_COMING] Full formed, running module_init",
[MODULE_STATE_GOING] = "[MODULE_STATE_GOING] Going away",
[MODULE_STATE_UNFORMED] = "[MODULE_STATE_UNFORMED] Still setting it up",
};
static void callback_info(const char *callback, struct klp_object *obj)
{
if (obj->mod)
pr_info("%s: %s -> %s\n", callback, obj->mod->name,
module_state[obj->mod->state]);
else
pr_info("%s: vmlinux\n", callback);
}
/* Executed on object patching (ie, patch enablement) */
static int pre_patch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
return 0;
}
/* Executed on object unpatching (ie, patch disablement) */
static void post_patch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
}
/* Executed on object unpatching (ie, patch disablement) */
static void pre_unpatch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
}
/* Executed on object unpatching (ie, patch disablement) */
static void post_unpatch_callback(struct klp_object *obj)
{
callback_info(__func__, obj);
}
static struct klp_func no_funcs[] = {
{ }
};
static struct klp_object objs[] = {
{
.name = NULL, /* vmlinux */
.funcs = no_funcs,
.callbacks = {
.pre_patch = pre_patch_callback,
.post_patch = post_patch_callback,
.pre_unpatch = pre_unpatch_callback,
.post_unpatch = post_unpatch_callback,
},
}, { }
};
static struct klp_patch patch = {
.mod = THIS_MODULE,
.objs = objs,
/* set .replace in the init function below for demo purposes */
};
static int test_klp_callbacks_demo2_init(void)
{
patch.replace = replace;
return klp_enable_patch(&patch);
}
static void test_klp_callbacks_demo2_exit(void)
{
}
module_init(test_klp_callbacks_demo2_init);
module_exit(test_klp_callbacks_demo2_exit);
MODULE_LICENSE("GPL");
MODULE_INFO(livepatch, "Y");
MODULE_AUTHOR("Joe Lawrence <joe.lawrence@redhat.com>");
MODULE_DESCRIPTION("Livepatch test: livepatch demo2");
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
static int test_klp_callbacks_mod_init(void)
{
pr_info("%s\n", __func__);
return 0;
}
static void test_klp_callbacks_mod_exit(void)
{
pr_info("%s\n", __func__);
}
module_init(test_klp_callbacks_mod_init);
module_exit(test_klp_callbacks_mod_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Joe Lawrence <joe.lawrence@redhat.com>");
MODULE_DESCRIPTION("Livepatch test: target module");
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/livepatch.h>
#include <linux/seq_file.h>
static int livepatch_cmdline_proc_show(struct seq_file *m, void *v)
{
seq_printf(m, "%s: %s\n", THIS_MODULE->name,
"this has been live patched");
return 0;
}
static struct klp_func funcs[] = {
{
.old_name = "cmdline_proc_show",
.new_func = livepatch_cmdline_proc_show,
}, { }
};
static struct klp_object objs[] = {
{
/* name being NULL means vmlinux */
.funcs = funcs,
}, { }
};
static struct klp_patch patch = {
.mod = THIS_MODULE,
.objs = objs,
};
static int test_klp_livepatch_init(void)
{
return klp_enable_patch(&patch);
}
static void test_klp_livepatch_exit(void)
{
}
module_init(test_klp_livepatch_init);
module_exit(test_klp_livepatch_exit);
MODULE_LICENSE("GPL");
MODULE_INFO(livepatch, "Y");
MODULE_AUTHOR("Seth Jennings <sjenning@redhat.com>");
MODULE_DESCRIPTION("Livepatch test: livepatch module");
// SPDX-License-Identifier: GPL-2.0
// Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/livepatch.h>
#include <linux/slab.h>
/*
* Keep a small list of pointers so that we can print address-agnostic
* pointer values. Use a rolling integer count to differentiate the values.
* Ironically we could have used the shadow variable API to do this, but
* let's not lean too heavily on the very code we're testing.
*/
static LIST_HEAD(ptr_list);
struct shadow_ptr {
void *ptr;
int id;
struct list_head list;
};
static void free_ptr_list(void)
{
struct shadow_ptr *sp, *tmp_sp;
list_for_each_entry_safe(sp, tmp_sp, &ptr_list, list) {
list_del(&sp->list);
kfree(sp);
}
}
static int ptr_id(void *ptr)
{
struct shadow_ptr *sp;
static int count;
list_for_each_entry(sp, &ptr_list, list) {
if (sp->ptr == ptr)
return sp->id;
}
sp = kmalloc(sizeof(*sp), GFP_ATOMIC);
if (!sp)
return -ENOMEM;
sp->ptr = ptr;
sp->id = count++;
list_add(&sp->list, &ptr_list);
return sp->id;
}
/*
* Shadow variable wrapper functions that echo the function and arguments
* to the kernel log for testing verification. Don't display raw pointers,
* but use the ptr_id() value instead.
*/
static void *shadow_get(void *obj, unsigned long id)
{
void *ret = klp_shadow_get(obj, id);
pr_info("klp_%s(obj=PTR%d, id=0x%lx) = PTR%d\n",
__func__, ptr_id(obj), id, ptr_id(ret));
return ret;
}
static void *shadow_alloc(void *obj, unsigned long id, size_t size,
gfp_t gfp_flags, klp_shadow_ctor_t ctor,
void *ctor_data)
{
void *ret = klp_shadow_alloc(obj, id, size, gfp_flags, ctor,
ctor_data);
pr_info("klp_%s(obj=PTR%d, id=0x%lx, size=%zx, gfp_flags=%pGg), ctor=PTR%d, ctor_data=PTR%d = PTR%d\n",
__func__, ptr_id(obj), id, size, &gfp_flags, ptr_id(ctor),
ptr_id(ctor_data), ptr_id(ret));
return ret;
}
static void *shadow_get_or_alloc(void *obj, unsigned long id, size_t size,
gfp_t gfp_flags, klp_shadow_ctor_t ctor,
void *ctor_data)
{
void *ret = klp_shadow_get_or_alloc(obj, id, size, gfp_flags, ctor,
ctor_data);
pr_info("klp_%s(obj=PTR%d, id=0x%lx, size=%zx, gfp_flags=%pGg), ctor=PTR%d, ctor_data=PTR%d = PTR%d\n",
__func__, ptr_id(obj), id, size, &gfp_flags, ptr_id(ctor),
ptr_id(ctor_data), ptr_id(ret));
return ret;
}
static void shadow_free(void *obj, unsigned long id, klp_shadow_dtor_t dtor)
{
klp_shadow_free(obj, id, dtor);
pr_info("klp_%s(obj=PTR%d, id=0x%lx, dtor=PTR%d)\n",
__func__, ptr_id(obj), id, ptr_id(dtor));
}
static void shadow_free_all(unsigned long id, klp_shadow_dtor_t dtor)
{
klp_shadow_free_all(id, dtor);
pr_info("klp_%s(id=0x%lx, dtor=PTR%d)\n",
__func__, id, ptr_id(dtor));
}
/* Shadow variable constructor - remember simple pointer data */
static int shadow_ctor(void *obj, void *shadow_data, void *ctor_data)
{
int **shadow_int = shadow_data;
*shadow_int = ctor_data;
pr_info("%s: PTR%d -> PTR%d\n",
__func__, ptr_id(shadow_int), ptr_id(ctor_data));
return 0;
}
static void shadow_dtor(void *obj, void *shadow_data)
{
pr_info("%s(obj=PTR%d, shadow_data=PTR%d)\n",
__func__, ptr_id(obj), ptr_id(shadow_data));
}
static int test_klp_shadow_vars_init(void)
{
void *obj = THIS_MODULE;
int id = 0x1234;
size_t size = sizeof(int *);
gfp_t gfp_flags = GFP_KERNEL;
int var1, var2, var3, var4;
int **sv1, **sv2, **sv3, **sv4;
void *ret;
ptr_id(NULL);
ptr_id(&var1);
ptr_id(&var2);
ptr_id(&var3);
ptr_id(&var4);
/*
* With an empty shadow variable hash table, expect not to find
* any matches.
*/
ret = shadow_get(obj, id);
if (!ret)
pr_info(" got expected NULL result\n");
/*
* Allocate a few shadow variables with different <obj> and <id>.
*/
sv1 = shadow_alloc(obj, id, size, gfp_flags, shadow_ctor, &var1);
if (!sv1)
return -ENOMEM;
sv2 = shadow_alloc(obj + 1, id, size, gfp_flags, shadow_ctor, &var2);
if (!sv2)
return -ENOMEM;
sv3 = shadow_alloc(obj, id + 1, size, gfp_flags, shadow_ctor, &var3);
if (!sv3)
return -ENOMEM;
/*
* Verify we can find our new shadow variables and that they point
* to expected data.
*/
ret = shadow_get(obj, id);
if (!ret)
return -EINVAL;
if (ret == sv1 && *sv1 == &var1)
pr_info(" got expected PTR%d -> PTR%d result\n",
ptr_id(sv1), ptr_id(*sv1));
ret = shadow_get(obj + 1, id);
if (!ret)
return -EINVAL;
if (ret == sv2 && *sv2 == &var2)
pr_info(" got expected PTR%d -> PTR%d result\n",
ptr_id(sv2), ptr_id(*sv2));
ret = shadow_get(obj, id + 1);
if (!ret)
return -EINVAL;
if (ret == sv3 && *sv3 == &var3)
pr_info(" got expected PTR%d -> PTR%d result\n",
ptr_id(sv3), ptr_id(*sv3));
/*
* Allocate or get a few more, this time with the same <obj>, <id>.
* The second invocation should return the same shadow var.
*/
sv4 = shadow_get_or_alloc(obj + 2, id, size, gfp_flags, shadow_ctor, &var4);
if (!sv4)
return -ENOMEM;
ret = shadow_get_or_alloc(obj + 2, id, size, gfp_flags, shadow_ctor, &var4);
if (!ret)
return -EINVAL;
if (ret == sv4 && *sv4 == &var4)
pr_info(" got expected PTR%d -> PTR%d result\n",
ptr_id(sv4), ptr_id(*sv4));
/*
* Free the <obj=*, id> shadow variables and check that we can no
* longer find them.
*/
shadow_free(obj, id, shadow_dtor); /* sv1 */
ret = shadow_get(obj, id);
if (!ret)
pr_info(" got expected NULL result\n");
shadow_free(obj + 1, id, shadow_dtor); /* sv2 */
ret = shadow_get(obj + 1, id);
if (!ret)
pr_info(" got expected NULL result\n");
shadow_free(obj + 2, id, shadow_dtor); /* sv4 */
ret = shadow_get(obj + 2, id);
if (!ret)
pr_info(" got expected NULL result\n");
/*
* We should still find an <id+1> variable.
*/
ret = shadow_get(obj, id + 1);
if (!ret)
return -EINVAL;
if (ret == sv3 && *sv3 == &var3)
pr_info(" got expected PTR%d -> PTR%d result\n",
ptr_id(sv3), ptr_id(*sv3));
/*
* Free all the <id+1> variables, too.
*/
shadow_free_all(id + 1, shadow_dtor); /* sv3 */
ret = shadow_get(obj, id);
if (!ret)
pr_info(" shadow_get() got expected NULL result\n");
free_ptr_list();
return 0;
}
static void test_klp_shadow_vars_exit(void)
{
}
module_init(test_klp_shadow_vars_init);
module_exit(test_klp_shadow_vars_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Joe Lawrence <joe.lawrence@redhat.com>");
MODULE_DESCRIPTION("Livepatch test: shadow variables");
...@@ -195,22 +195,11 @@ static struct klp_patch patch = { ...@@ -195,22 +195,11 @@ static struct klp_patch patch = {
static int livepatch_callbacks_demo_init(void) static int livepatch_callbacks_demo_init(void)
{ {
int ret; return klp_enable_patch(&patch);
ret = klp_register_patch(&patch);
if (ret)
return ret;
ret = klp_enable_patch(&patch);
if (ret) {
WARN_ON(klp_unregister_patch(&patch));
return ret;
}
return 0;
} }
static void livepatch_callbacks_demo_exit(void) static void livepatch_callbacks_demo_exit(void)
{ {
WARN_ON(klp_unregister_patch(&patch));
} }
module_init(livepatch_callbacks_demo_init); module_init(livepatch_callbacks_demo_init);
......
...@@ -69,22 +69,11 @@ static struct klp_patch patch = { ...@@ -69,22 +69,11 @@ static struct klp_patch patch = {
static int livepatch_init(void) static int livepatch_init(void)
{ {
int ret; return klp_enable_patch(&patch);
ret = klp_register_patch(&patch);
if (ret)
return ret;
ret = klp_enable_patch(&patch);
if (ret) {
WARN_ON(klp_unregister_patch(&patch));
return ret;
}
return 0;
} }
static void livepatch_exit(void) static void livepatch_exit(void)
{ {
WARN_ON(klp_unregister_patch(&patch));
} }
module_init(livepatch_init); module_init(livepatch_init);
......
...@@ -71,7 +71,7 @@ static int shadow_leak_ctor(void *obj, void *shadow_data, void *ctor_data) ...@@ -71,7 +71,7 @@ static int shadow_leak_ctor(void *obj, void *shadow_data, void *ctor_data)
return 0; return 0;
} }
struct dummy *livepatch_fix1_dummy_alloc(void) static struct dummy *livepatch_fix1_dummy_alloc(void)
{ {
struct dummy *d; struct dummy *d;
void *leak; void *leak;
...@@ -113,7 +113,7 @@ static void livepatch_fix1_dummy_leak_dtor(void *obj, void *shadow_data) ...@@ -113,7 +113,7 @@ static void livepatch_fix1_dummy_leak_dtor(void *obj, void *shadow_data)
__func__, d, *shadow_leak); __func__, d, *shadow_leak);
} }
void livepatch_fix1_dummy_free(struct dummy *d) static void livepatch_fix1_dummy_free(struct dummy *d)
{ {
void **shadow_leak; void **shadow_leak;
...@@ -157,25 +157,13 @@ static struct klp_patch patch = { ...@@ -157,25 +157,13 @@ static struct klp_patch patch = {
static int livepatch_shadow_fix1_init(void) static int livepatch_shadow_fix1_init(void)
{ {
int ret; return klp_enable_patch(&patch);
ret = klp_register_patch(&patch);
if (ret)
return ret;
ret = klp_enable_patch(&patch);
if (ret) {
WARN_ON(klp_unregister_patch(&patch));
return ret;
}
return 0;
} }
static void livepatch_shadow_fix1_exit(void) static void livepatch_shadow_fix1_exit(void)
{ {
/* Cleanup any existing SV_LEAK shadow variables */ /* Cleanup any existing SV_LEAK shadow variables */
klp_shadow_free_all(SV_LEAK, livepatch_fix1_dummy_leak_dtor); klp_shadow_free_all(SV_LEAK, livepatch_fix1_dummy_leak_dtor);
WARN_ON(klp_unregister_patch(&patch));
} }
module_init(livepatch_shadow_fix1_init); module_init(livepatch_shadow_fix1_init);
......
...@@ -50,7 +50,7 @@ struct dummy { ...@@ -50,7 +50,7 @@ struct dummy {
unsigned long jiffies_expire; unsigned long jiffies_expire;
}; };
bool livepatch_fix2_dummy_check(struct dummy *d, unsigned long jiffies) static bool livepatch_fix2_dummy_check(struct dummy *d, unsigned long jiffies)
{ {
int *shadow_count; int *shadow_count;
...@@ -78,7 +78,7 @@ static void livepatch_fix2_dummy_leak_dtor(void *obj, void *shadow_data) ...@@ -78,7 +78,7 @@ static void livepatch_fix2_dummy_leak_dtor(void *obj, void *shadow_data)
__func__, d, *shadow_leak); __func__, d, *shadow_leak);
} }
void livepatch_fix2_dummy_free(struct dummy *d) static void livepatch_fix2_dummy_free(struct dummy *d)
{ {
void **shadow_leak; void **shadow_leak;
int *shadow_count; int *shadow_count;
...@@ -129,25 +129,13 @@ static struct klp_patch patch = { ...@@ -129,25 +129,13 @@ static struct klp_patch patch = {
static int livepatch_shadow_fix2_init(void) static int livepatch_shadow_fix2_init(void)
{ {
int ret; return klp_enable_patch(&patch);
ret = klp_register_patch(&patch);
if (ret)
return ret;
ret = klp_enable_patch(&patch);
if (ret) {
WARN_ON(klp_unregister_patch(&patch));
return ret;
}
return 0;
} }
static void livepatch_shadow_fix2_exit(void) static void livepatch_shadow_fix2_exit(void)
{ {
/* Cleanup any existing SV_COUNTER shadow variables */ /* Cleanup any existing SV_COUNTER shadow variables */
klp_shadow_free_all(SV_COUNTER, NULL); klp_shadow_free_all(SV_COUNTER, NULL);
WARN_ON(klp_unregister_patch(&patch));
} }
module_init(livepatch_shadow_fix2_init); module_init(livepatch_shadow_fix2_init);
......
...@@ -96,15 +96,15 @@ MODULE_DESCRIPTION("Buggy module for shadow variable demo"); ...@@ -96,15 +96,15 @@ MODULE_DESCRIPTION("Buggy module for shadow variable demo");
* Keep a list of all the dummies so we can clean up any residual ones * Keep a list of all the dummies so we can clean up any residual ones
* on module exit * on module exit
*/ */
LIST_HEAD(dummy_list); static LIST_HEAD(dummy_list);
DEFINE_MUTEX(dummy_list_mutex); static DEFINE_MUTEX(dummy_list_mutex);
struct dummy { struct dummy {
struct list_head list; struct list_head list;
unsigned long jiffies_expire; unsigned long jiffies_expire;
}; };
noinline struct dummy *dummy_alloc(void) static __used noinline struct dummy *dummy_alloc(void)
{ {
struct dummy *d; struct dummy *d;
void *leak; void *leak;
...@@ -129,7 +129,7 @@ noinline struct dummy *dummy_alloc(void) ...@@ -129,7 +129,7 @@ noinline struct dummy *dummy_alloc(void)
return d; return d;
} }
noinline void dummy_free(struct dummy *d) static __used noinline void dummy_free(struct dummy *d)
{ {
pr_info("%s: dummy @ %p, expired = %lx\n", pr_info("%s: dummy @ %p, expired = %lx\n",
__func__, d, d->jiffies_expire); __func__, d, d->jiffies_expire);
...@@ -137,7 +137,8 @@ noinline void dummy_free(struct dummy *d) ...@@ -137,7 +137,8 @@ noinline void dummy_free(struct dummy *d)
kfree(d); kfree(d);
} }
noinline bool dummy_check(struct dummy *d, unsigned long jiffies) static __used noinline bool dummy_check(struct dummy *d,
unsigned long jiffies)
{ {
return time_after(jiffies, d->jiffies_expire); return time_after(jiffies, d->jiffies_expire);
} }
......
...@@ -22,6 +22,7 @@ TARGETS += ir ...@@ -22,6 +22,7 @@ TARGETS += ir
TARGETS += kcmp TARGETS += kcmp
TARGETS += kvm TARGETS += kvm
TARGETS += lib TARGETS += lib
TARGETS += livepatch
TARGETS += membarrier TARGETS += membarrier
TARGETS += memfd TARGETS += memfd
TARGETS += memory-hotplug TARGETS += memory-hotplug
......
# SPDX-License-Identifier: GPL-2.0
TEST_GEN_PROGS := \
test-livepatch.sh \
test-callbacks.sh \
test-shadow-vars.sh
include ../lib.mk
====================
Livepatch Self Tests
====================
This is a small set of sanity tests for the kernel livepatching.
The test suite loads and unloads several test kernel modules to verify
livepatch behavior. Debug information is logged to the kernel's message
buffer and parsed for expected messages. (Note: the tests will clear
the message buffer between individual tests.)
Config
------
Set these config options and their prerequisites:
CONFIG_LIVEPATCH=y
CONFIG_TEST_LIVEPATCH=m
Running the tests
-----------------
Test kernel modules are built as part of lib/ (make modules) and need to
be installed (make modules_install) as the test scripts will modprobe
them.
To run the livepatch selftests, from the top of the kernel source tree:
% make -C tools/testing/selftests TARGETS=livepatch run_tests
Adding tests
------------
See the common functions.sh file for the existing collection of utility
functions, most importantly set_dynamic_debug() and check_result(). The
latter function greps the kernel's ring buffer for "livepatch:" and
"test_klp" strings, so tests be sure to include one of those strings for
result comparison. Other utility functions include general module
loading and livepatch loading helpers (waiting for patch transitions,
sysfs entries, etc.)
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
# Shell functions for the rest of the scripts.
MAX_RETRIES=600
RETRY_INTERVAL=".1" # seconds
# log(msg) - write message to kernel log
# msg - insightful words
function log() {
echo "$1" > /dev/kmsg
}
# die(msg) - game over, man
# msg - dying words
function die() {
log "ERROR: $1"
echo "ERROR: $1" >&2
exit 1
}
# set_dynamic_debug() - setup kernel dynamic debug
# TODO - push and pop this config?
function set_dynamic_debug() {
cat << EOF > /sys/kernel/debug/dynamic_debug/control
file kernel/livepatch/* +p
func klp_try_switch_task -p
EOF
}
# loop_until(cmd) - loop a command until it is successful or $MAX_RETRIES,
# sleep $RETRY_INTERVAL between attempts
# cmd - command and its arguments to run
function loop_until() {
local cmd="$*"
local i=0
while true; do
eval "$cmd" && return 0
[[ $((i++)) -eq $MAX_RETRIES ]] && return 1
sleep $RETRY_INTERVAL
done
}
function is_livepatch_mod() {
local mod="$1"
if [[ $(modinfo "$mod" | awk '/^livepatch:/{print $NF}') == "Y" ]]; then
return 0
fi
return 1
}
function __load_mod() {
local mod="$1"; shift
local msg="% modprobe $mod $*"
log "${msg%% }"
ret=$(modprobe "$mod" "$@" 2>&1)
if [[ "$ret" != "" ]]; then
die "$ret"
fi
# Wait for module in sysfs ...
loop_until '[[ -e "/sys/module/$mod" ]]' ||
die "failed to load module $mod"
}
# load_mod(modname, params) - load a kernel module
# modname - module name to load
# params - module parameters to pass to modprobe
function load_mod() {
local mod="$1"; shift
is_livepatch_mod "$mod" &&
die "use load_lp() to load the livepatch module $mod"
__load_mod "$mod" "$@"
}
# load_lp_nowait(modname, params) - load a kernel module with a livepatch
# but do not wait on until the transition finishes
# modname - module name to load
# params - module parameters to pass to modprobe
function load_lp_nowait() {
local mod="$1"; shift
is_livepatch_mod "$mod" ||
die "module $mod is not a livepatch"
__load_mod "$mod" "$@"
# Wait for livepatch in sysfs ...
loop_until '[[ -e "/sys/kernel/livepatch/$mod" ]]' ||
die "failed to load module $mod (sysfs)"
}
# load_lp(modname, params) - load a kernel module with a livepatch
# modname - module name to load
# params - module parameters to pass to modprobe
function load_lp() {
local mod="$1"; shift
load_lp_nowait "$mod" "$@"
# Wait until the transition finishes ...
loop_until 'grep -q '^0$' /sys/kernel/livepatch/$mod/transition' ||
die "failed to complete transition"
}
# load_failing_mod(modname, params) - load a kernel module, expect to fail
# modname - module name to load
# params - module parameters to pass to modprobe
function load_failing_mod() {
local mod="$1"; shift
local msg="% modprobe $mod $*"
log "${msg%% }"
ret=$(modprobe "$mod" "$@" 2>&1)
if [[ "$ret" == "" ]]; then
die "$mod unexpectedly loaded"
fi
log "$ret"
}
# unload_mod(modname) - unload a kernel module
# modname - module name to unload
function unload_mod() {
local mod="$1"
# Wait for module reference count to clear ...
loop_until '[[ $(cat "/sys/module/$mod/refcnt") == "0" ]]' ||
die "failed to unload module $mod (refcnt)"
log "% rmmod $mod"
ret=$(rmmod "$mod" 2>&1)
if [[ "$ret" != "" ]]; then
die "$ret"
fi
# Wait for module in sysfs ...
loop_until '[[ ! -e "/sys/module/$mod" ]]' ||
die "failed to unload module $mod (/sys/module)"
}
# unload_lp(modname) - unload a kernel module with a livepatch
# modname - module name to unload
function unload_lp() {
unload_mod "$1"
}
# disable_lp(modname) - disable a livepatch
# modname - module name to unload
function disable_lp() {
local mod="$1"
log "% echo 0 > /sys/kernel/livepatch/$mod/enabled"
echo 0 > /sys/kernel/livepatch/"$mod"/enabled
# Wait until the transition finishes and the livepatch gets
# removed from sysfs...
loop_until '[[ ! -e "/sys/kernel/livepatch/$mod" ]]' ||
die "failed to disable livepatch $mod"
}
# set_pre_patch_ret(modname, pre_patch_ret)
# modname - module name to set
# pre_patch_ret - new pre_patch_ret value
function set_pre_patch_ret {
local mod="$1"; shift
local ret="$1"
log "% echo $ret > /sys/module/$mod/parameters/pre_patch_ret"
echo "$ret" > /sys/module/"$mod"/parameters/pre_patch_ret
# Wait for sysfs value to hold ...
loop_until '[[ $(cat "/sys/module/$mod/parameters/pre_patch_ret") == "$ret" ]]' ||
die "failed to set pre_patch_ret parameter for $mod module"
}
# check_result() - verify dmesg output
# TODO - better filter, out of order msgs, etc?
function check_result {
local expect="$*"
local result
result=$(dmesg | grep -v 'tainting' | grep -e 'livepatch:' -e 'test_klp' | sed 's/^\[[ 0-9.]*\] //')
if [[ "$expect" == "$result" ]] ; then
echo "ok"
else
echo -e "not ok\n\n$(diff -upr --label expected --label result <(echo "$expect") <(echo "$result"))\n"
die "livepatch kselftest(s) failed"
fi
}
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
. $(dirname $0)/functions.sh
MOD_LIVEPATCH=test_klp_callbacks_demo
MOD_LIVEPATCH2=test_klp_callbacks_demo2
MOD_TARGET=test_klp_callbacks_mod
MOD_TARGET_BUSY=test_klp_callbacks_busy
set_dynamic_debug
# TEST: target module before livepatch
#
# Test a combination of loading a kernel module and a livepatch that
# patches a function in the first module. Load the target module
# before the livepatch module. Unload them in the same order.
#
# - On livepatch enable, before the livepatch transition starts,
# pre-patch callbacks are executed for vmlinux and $MOD_TARGET (those
# klp_objects currently loaded). After klp_objects are patched
# according to the klp_patch, their post-patch callbacks run and the
# transition completes.
#
# - Similarly, on livepatch disable, pre-patch callbacks run before the
# unpatching transition starts. klp_objects are reverted, post-patch
# callbacks execute and the transition completes.
echo -n "TEST: target module before livepatch ... "
dmesg -C
load_mod $MOD_TARGET
load_lp $MOD_LIVEPATCH
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
unload_mod $MOD_TARGET
check_result "% modprobe $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_init
% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
$MOD_LIVEPATCH: post_patch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': patching complete
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
$MOD_LIVEPATCH: pre_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH
% rmmod $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_exit"
# TEST: module_coming notifier
#
# This test is similar to the previous test, but (un)load the livepatch
# module before the target kernel module. This tests the livepatch
# core's module_coming handler.
#
# - On livepatch enable, only pre/post-patch callbacks are executed for
# currently loaded klp_objects, in this case, vmlinux.
#
# - When a targeted module is subsequently loaded, only its
# pre/post-patch callbacks are executed.
#
# - On livepatch disable, all currently loaded klp_objects' (vmlinux and
# $MOD_TARGET) pre/post-unpatch callbacks are executed.
echo -n "TEST: module_coming notifier ... "
dmesg -C
load_lp $MOD_LIVEPATCH
load_mod $MOD_TARGET
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
unload_mod $MOD_TARGET
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': patching complete
% modprobe $MOD_TARGET
livepatch: applying patch '$MOD_LIVEPATCH' to loading module '$MOD_TARGET'
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
$MOD_LIVEPATCH: post_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
$MOD_TARGET: ${MOD_TARGET}_init
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
$MOD_LIVEPATCH: pre_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH
% rmmod $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_exit"
# TEST: module_going notifier
#
# Test loading the livepatch after a targeted kernel module, then unload
# the kernel module before disabling the livepatch. This tests the
# livepatch core's module_going handler.
#
# - First load a target module, then the livepatch.
#
# - When a target module is unloaded, the livepatch is only reverted
# from that klp_object ($MOD_TARGET). As such, only its pre and
# post-unpatch callbacks are executed when this occurs.
#
# - When the livepatch is disabled, pre and post-unpatch callbacks are
# run for the remaining klp_object, vmlinux.
echo -n "TEST: module_going notifier ... "
dmesg -C
load_mod $MOD_TARGET
load_lp $MOD_LIVEPATCH
unload_mod $MOD_TARGET
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
check_result "% modprobe $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_init
% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
$MOD_LIVEPATCH: post_patch_callback: $MOD_TARGET -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': patching complete
% rmmod $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_exit
$MOD_LIVEPATCH: pre_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_GOING] Going away
livepatch: reverting patch '$MOD_LIVEPATCH' on unloading module '$MOD_TARGET'
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_GOING] Going away
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH"
# TEST: module_coming and module_going notifiers
#
# This test is similar to the previous test, however the livepatch is
# loaded first. This tests the livepatch core's module_coming and
# module_going handlers.
#
# - First load the livepatch.
#
# - When a targeted kernel module is subsequently loaded, only its
# pre/post-patch callbacks are executed.
#
# - When the target module is unloaded, the livepatch is only reverted
# from the $MOD_TARGET klp_object. As such, only pre and
# post-unpatch callbacks are executed when this occurs.
echo -n "TEST: module_coming and module_going notifiers ... "
dmesg -C
load_lp $MOD_LIVEPATCH
load_mod $MOD_TARGET
unload_mod $MOD_TARGET
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': patching complete
% modprobe $MOD_TARGET
livepatch: applying patch '$MOD_LIVEPATCH' to loading module '$MOD_TARGET'
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
$MOD_LIVEPATCH: post_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
$MOD_TARGET: ${MOD_TARGET}_init
% rmmod $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_exit
$MOD_LIVEPATCH: pre_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_GOING] Going away
livepatch: reverting patch '$MOD_LIVEPATCH' on unloading module '$MOD_TARGET'
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_GOING] Going away
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH"
# TEST: target module not present
#
# A simple test of loading a livepatch without one of its patch target
# klp_objects ever loaded ($MOD_TARGET).
#
# - Load the livepatch.
#
# - As expected, only pre/post-(un)patch handlers are executed for
# vmlinux.
echo -n "TEST: target module not present ... "
dmesg -C
load_lp $MOD_LIVEPATCH
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': patching complete
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH"
# TEST: pre-patch callback -ENODEV
#
# Test a scenario where a vmlinux pre-patch callback returns a non-zero
# status (ie, failure).
#
# - First load a target module.
#
# - Load the livepatch module, setting its 'pre_patch_ret' value to -19
# (-ENODEV). When its vmlinux pre-patch callback executes, this
# status code will propagate back to the module-loading subsystem.
# The result is that the insmod command refuses to load the livepatch
# module.
echo -n "TEST: pre-patch callback -ENODEV ... "
dmesg -C
load_mod $MOD_TARGET
load_failing_mod $MOD_LIVEPATCH pre_patch_ret=-19
unload_mod $MOD_TARGET
check_result "% modprobe $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_init
% modprobe $MOD_LIVEPATCH pre_patch_ret=-19
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
test_klp_callbacks_demo: pre_patch_callback: vmlinux
livepatch: pre-patch callback failed for object 'vmlinux'
livepatch: failed to enable patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': canceling patching transition, going to unpatch
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
livepatch: '$MOD_LIVEPATCH': unpatching complete
modprobe: ERROR: could not insert '$MOD_LIVEPATCH': No such device
% rmmod $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_exit"
# TEST: module_coming + pre-patch callback -ENODEV
#
# Similar to the previous test, setup a livepatch such that its vmlinux
# pre-patch callback returns success. However, when a targeted kernel
# module is later loaded, have the livepatch return a failing status
# code.
#
# - Load the livepatch, vmlinux pre-patch callback succeeds.
#
# - Set a trap so subsequent pre-patch callbacks to this livepatch will
# return -ENODEV.
#
# - The livepatch pre-patch callback for subsequently loaded target
# modules will return failure, so the module loader refuses to load
# the kernel module. No post-patch or pre/post-unpatch callbacks are
# executed for this klp_object.
#
# - Pre/post-unpatch callbacks are run for the vmlinux klp_object.
echo -n "TEST: module_coming + pre-patch callback -ENODEV ... "
dmesg -C
load_lp $MOD_LIVEPATCH
set_pre_patch_ret $MOD_LIVEPATCH -19
load_failing_mod $MOD_TARGET
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': patching complete
% echo -19 > /sys/module/$MOD_LIVEPATCH/parameters/pre_patch_ret
% modprobe $MOD_TARGET
livepatch: applying patch '$MOD_LIVEPATCH' to loading module '$MOD_TARGET'
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
livepatch: pre-patch callback failed for object '$MOD_TARGET'
livepatch: patch '$MOD_LIVEPATCH' failed for module '$MOD_TARGET', refusing to load module '$MOD_TARGET'
modprobe: ERROR: could not insert '$MOD_TARGET': No such device
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH"
# TEST: multiple target modules
#
# Test loading multiple targeted kernel modules. This test-case is
# mainly for comparing with the next test-case.
#
# - Load a target "busy" kernel module which kicks off a worker function
# that immediately exits.
#
# - Proceed with loading the livepatch and another ordinary target
# module. Post-patch callbacks are executed and the transition
# completes quickly.
echo -n "TEST: multiple target modules ... "
dmesg -C
load_mod $MOD_TARGET_BUSY sleep_secs=0
# give $MOD_TARGET_BUSY::busymod_work_func() a chance to run
sleep 5
load_lp $MOD_LIVEPATCH
load_mod $MOD_TARGET
unload_mod $MOD_TARGET
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
unload_mod $MOD_TARGET_BUSY
check_result "% modprobe $MOD_TARGET_BUSY sleep_secs=0
$MOD_TARGET_BUSY: ${MOD_TARGET_BUSY}_init
$MOD_TARGET_BUSY: busymod_work_func, sleeping 0 seconds ...
$MOD_TARGET_BUSY: busymod_work_func exit
% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET_BUSY -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
$MOD_LIVEPATCH: post_patch_callback: $MOD_TARGET_BUSY -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': patching complete
% modprobe $MOD_TARGET
livepatch: applying patch '$MOD_LIVEPATCH' to loading module '$MOD_TARGET'
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
$MOD_LIVEPATCH: post_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
$MOD_TARGET: ${MOD_TARGET}_init
% rmmod $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_exit
$MOD_LIVEPATCH: pre_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_GOING] Going away
livepatch: reverting patch '$MOD_LIVEPATCH' on unloading module '$MOD_TARGET'
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_GOING] Going away
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
$MOD_LIVEPATCH: pre_unpatch_callback: $MOD_TARGET_BUSY -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET_BUSY -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH
% rmmod $MOD_TARGET_BUSY
$MOD_TARGET_BUSY: ${MOD_TARGET_BUSY}_exit"
# TEST: busy target module
#
# A similar test as the previous one, but force the "busy" kernel module
# to do longer work.
#
# The livepatching core will refuse to patch a task that is currently
# executing a to-be-patched function -- the consistency model stalls the
# current patch transition until this safety-check is met. Test a
# scenario where one of a livepatch's target klp_objects sits on such a
# function for a long time. Meanwhile, load and unload other target
# kernel modules while the livepatch transition is in progress.
#
# - Load the "busy" kernel module, this time make it do 10 seconds worth
# of work.
#
# - Meanwhile, the livepatch is loaded. Notice that the patch
# transition does not complete as the targeted "busy" module is
# sitting on a to-be-patched function.
#
# - Load a second target module (this one is an ordinary idle kernel
# module). Note that *no* post-patch callbacks will be executed while
# the livepatch is still in transition.
#
# - Request an unload of the simple kernel module. The patch is still
# transitioning, so its pre-unpatch callbacks are skipped.
#
# - Finally the livepatch is disabled. Since none of the patch's
# klp_object's post-patch callbacks executed, the remaining
# klp_object's pre-unpatch callbacks are skipped.
echo -n "TEST: busy target module ... "
dmesg -C
load_mod $MOD_TARGET_BUSY sleep_secs=10
load_lp_nowait $MOD_LIVEPATCH
# Don't wait for transition, load $MOD_TARGET while the transition
# is still stalled in $MOD_TARGET_BUSY::busymod_work_func()
sleep 5
load_mod $MOD_TARGET
unload_mod $MOD_TARGET
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
unload_mod $MOD_TARGET_BUSY
check_result "% modprobe $MOD_TARGET_BUSY sleep_secs=10
$MOD_TARGET_BUSY: ${MOD_TARGET_BUSY}_init
$MOD_TARGET_BUSY: busymod_work_func, sleeping 10 seconds ...
% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET_BUSY -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': starting patching transition
% modprobe $MOD_TARGET
livepatch: applying patch '$MOD_LIVEPATCH' to loading module '$MOD_TARGET'
$MOD_LIVEPATCH: pre_patch_callback: $MOD_TARGET -> [MODULE_STATE_COMING] Full formed, running module_init
$MOD_TARGET: ${MOD_TARGET}_init
% rmmod $MOD_TARGET
$MOD_TARGET: ${MOD_TARGET}_exit
livepatch: reverting patch '$MOD_LIVEPATCH' on unloading module '$MOD_TARGET'
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET -> [MODULE_STATE_GOING] Going away
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': reversing transition from patching to unpatching
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
$MOD_LIVEPATCH: post_unpatch_callback: $MOD_TARGET_BUSY -> [MODULE_STATE_LIVE] Normal state
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH
% rmmod $MOD_TARGET_BUSY
$MOD_TARGET_BUSY: busymod_work_func exit
$MOD_TARGET_BUSY: ${MOD_TARGET_BUSY}_exit"
# TEST: multiple livepatches
#
# Test loading multiple livepatches. This test-case is mainly for comparing
# with the next test-case.
#
# - Load and unload two livepatches, pre and post (un)patch callbacks
# execute as each patch progresses through its (un)patching
# transition.
echo -n "TEST: multiple livepatches ... "
dmesg -C
load_lp $MOD_LIVEPATCH
load_lp $MOD_LIVEPATCH2
disable_lp $MOD_LIVEPATCH2
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH2
unload_lp $MOD_LIVEPATCH
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': patching complete
% modprobe $MOD_LIVEPATCH2
livepatch: enabling patch '$MOD_LIVEPATCH2'
livepatch: '$MOD_LIVEPATCH2': initializing patching transition
$MOD_LIVEPATCH2: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': starting patching transition
livepatch: '$MOD_LIVEPATCH2': completing patching transition
$MOD_LIVEPATCH2: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': patching complete
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH2/enabled
livepatch: '$MOD_LIVEPATCH2': initializing unpatching transition
$MOD_LIVEPATCH2: pre_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': starting unpatching transition
livepatch: '$MOD_LIVEPATCH2': completing unpatching transition
$MOD_LIVEPATCH2: post_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': unpatching complete
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
$MOD_LIVEPATCH: pre_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
$MOD_LIVEPATCH: post_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH2
% rmmod $MOD_LIVEPATCH"
# TEST: atomic replace
#
# Load multiple livepatches, but the second as an 'atomic-replace'
# patch. When the latter loads, the original livepatch should be
# disabled and *none* of its pre/post-unpatch callbacks executed. On
# the other hand, when the atomic-replace livepatch is disabled, its
# pre/post-unpatch callbacks *should* be executed.
#
# - Load and unload two livepatches, the second of which has its
# .replace flag set true.
#
# - Pre and post patch callbacks are executed for both livepatches.
#
# - Once the atomic replace module is loaded, only its pre and post
# unpatch callbacks are executed.
echo -n "TEST: atomic replace ... "
dmesg -C
load_lp $MOD_LIVEPATCH
load_lp $MOD_LIVEPATCH2 replace=1
disable_lp $MOD_LIVEPATCH2
unload_lp $MOD_LIVEPATCH2
unload_lp $MOD_LIVEPATCH
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
$MOD_LIVEPATCH: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
$MOD_LIVEPATCH: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH': patching complete
% modprobe $MOD_LIVEPATCH2 replace=1
livepatch: enabling patch '$MOD_LIVEPATCH2'
livepatch: '$MOD_LIVEPATCH2': initializing patching transition
$MOD_LIVEPATCH2: pre_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': starting patching transition
livepatch: '$MOD_LIVEPATCH2': completing patching transition
$MOD_LIVEPATCH2: post_patch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': patching complete
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH2/enabled
livepatch: '$MOD_LIVEPATCH2': initializing unpatching transition
$MOD_LIVEPATCH2: pre_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': starting unpatching transition
livepatch: '$MOD_LIVEPATCH2': completing unpatching transition
$MOD_LIVEPATCH2: post_unpatch_callback: vmlinux
livepatch: '$MOD_LIVEPATCH2': unpatching complete
% rmmod $MOD_LIVEPATCH2
% rmmod $MOD_LIVEPATCH"
exit 0
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
. $(dirname $0)/functions.sh
MOD_LIVEPATCH=test_klp_livepatch
MOD_REPLACE=test_klp_atomic_replace
set_dynamic_debug
# TEST: basic function patching
# - load a livepatch that modifies the output from /proc/cmdline and
# verify correct behavior
# - unload the livepatch and make sure the patch was removed
echo -n "TEST: basic function patching ... "
dmesg -C
load_lp $MOD_LIVEPATCH
if [[ "$(cat /proc/cmdline)" != "$MOD_LIVEPATCH: this has been live patched" ]] ; then
echo -e "FAIL\n\n"
die "livepatch kselftest(s) failed"
fi
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
if [[ "$(cat /proc/cmdline)" == "$MOD_LIVEPATCH: this has been live patched" ]] ; then
echo -e "FAIL\n\n"
die "livepatch kselftest(s) failed"
fi
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
livepatch: '$MOD_LIVEPATCH': patching complete
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH"
# TEST: multiple livepatches
# - load a livepatch that modifies the output from /proc/cmdline and
# verify correct behavior
# - load another livepatch and verify that both livepatches are active
# - unload the second livepatch and verify that the first is still active
# - unload the first livepatch and verify none are active
echo -n "TEST: multiple livepatches ... "
dmesg -C
load_lp $MOD_LIVEPATCH
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
load_lp $MOD_REPLACE replace=0
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
disable_lp $MOD_REPLACE
unload_lp $MOD_REPLACE
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
disable_lp $MOD_LIVEPATCH
unload_lp $MOD_LIVEPATCH
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
livepatch: '$MOD_LIVEPATCH': patching complete
$MOD_LIVEPATCH: this has been live patched
% modprobe $MOD_REPLACE replace=0
livepatch: enabling patch '$MOD_REPLACE'
livepatch: '$MOD_REPLACE': initializing patching transition
livepatch: '$MOD_REPLACE': starting patching transition
livepatch: '$MOD_REPLACE': completing patching transition
livepatch: '$MOD_REPLACE': patching complete
$MOD_LIVEPATCH: this has been live patched
$MOD_REPLACE: this has been live patched
% echo 0 > /sys/kernel/livepatch/$MOD_REPLACE/enabled
livepatch: '$MOD_REPLACE': initializing unpatching transition
livepatch: '$MOD_REPLACE': starting unpatching transition
livepatch: '$MOD_REPLACE': completing unpatching transition
livepatch: '$MOD_REPLACE': unpatching complete
% rmmod $MOD_REPLACE
$MOD_LIVEPATCH: this has been live patched
% echo 0 > /sys/kernel/livepatch/$MOD_LIVEPATCH/enabled
livepatch: '$MOD_LIVEPATCH': initializing unpatching transition
livepatch: '$MOD_LIVEPATCH': starting unpatching transition
livepatch: '$MOD_LIVEPATCH': completing unpatching transition
livepatch: '$MOD_LIVEPATCH': unpatching complete
% rmmod $MOD_LIVEPATCH"
# TEST: atomic replace livepatch
# - load a livepatch that modifies the output from /proc/cmdline and
# verify correct behavior
# - load an atomic replace livepatch and verify that only the second is active
# - remove the first livepatch and verify that the atomic replace livepatch
# is still active
# - remove the atomic replace livepatch and verify that none are active
echo -n "TEST: atomic replace livepatch ... "
dmesg -C
load_lp $MOD_LIVEPATCH
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
load_lp $MOD_REPLACE replace=1
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
unload_lp $MOD_LIVEPATCH
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
disable_lp $MOD_REPLACE
unload_lp $MOD_REPLACE
grep 'live patched' /proc/cmdline > /dev/kmsg
grep 'live patched' /proc/meminfo > /dev/kmsg
check_result "% modprobe $MOD_LIVEPATCH
livepatch: enabling patch '$MOD_LIVEPATCH'
livepatch: '$MOD_LIVEPATCH': initializing patching transition
livepatch: '$MOD_LIVEPATCH': starting patching transition
livepatch: '$MOD_LIVEPATCH': completing patching transition
livepatch: '$MOD_LIVEPATCH': patching complete
$MOD_LIVEPATCH: this has been live patched
% modprobe $MOD_REPLACE replace=1
livepatch: enabling patch '$MOD_REPLACE'
livepatch: '$MOD_REPLACE': initializing patching transition
livepatch: '$MOD_REPLACE': starting patching transition
livepatch: '$MOD_REPLACE': completing patching transition
livepatch: '$MOD_REPLACE': patching complete
$MOD_REPLACE: this has been live patched
% rmmod $MOD_LIVEPATCH
$MOD_REPLACE: this has been live patched
% echo 0 > /sys/kernel/livepatch/$MOD_REPLACE/enabled
livepatch: '$MOD_REPLACE': initializing unpatching transition
livepatch: '$MOD_REPLACE': starting unpatching transition
livepatch: '$MOD_REPLACE': completing unpatching transition
livepatch: '$MOD_REPLACE': unpatching complete
% rmmod $MOD_REPLACE"
exit 0
#!/bin/bash
# SPDX-License-Identifier: GPL-2.0
# Copyright (C) 2018 Joe Lawrence <joe.lawrence@redhat.com>
. $(dirname $0)/functions.sh
MOD_TEST=test_klp_shadow_vars
set_dynamic_debug
# TEST: basic shadow variable API
# - load a module that exercises the shadow variable API
echo -n "TEST: basic shadow variable API ... "
dmesg -C
load_mod $MOD_TEST
unload_mod $MOD_TEST
check_result "% modprobe $MOD_TEST
$MOD_TEST: klp_shadow_get(obj=PTR5, id=0x1234) = PTR0
$MOD_TEST: got expected NULL result
$MOD_TEST: shadow_ctor: PTR6 -> PTR1
$MOD_TEST: klp_shadow_alloc(obj=PTR5, id=0x1234, size=8, gfp_flags=GFP_KERNEL), ctor=PTR7, ctor_data=PTR1 = PTR6
$MOD_TEST: shadow_ctor: PTR8 -> PTR2
$MOD_TEST: klp_shadow_alloc(obj=PTR9, id=0x1234, size=8, gfp_flags=GFP_KERNEL), ctor=PTR7, ctor_data=PTR2 = PTR8
$MOD_TEST: shadow_ctor: PTR10 -> PTR3
$MOD_TEST: klp_shadow_alloc(obj=PTR5, id=0x1235, size=8, gfp_flags=GFP_KERNEL), ctor=PTR7, ctor_data=PTR3 = PTR10
$MOD_TEST: klp_shadow_get(obj=PTR5, id=0x1234) = PTR6
$MOD_TEST: got expected PTR6 -> PTR1 result
$MOD_TEST: klp_shadow_get(obj=PTR9, id=0x1234) = PTR8
$MOD_TEST: got expected PTR8 -> PTR2 result
$MOD_TEST: klp_shadow_get(obj=PTR5, id=0x1235) = PTR10
$MOD_TEST: got expected PTR10 -> PTR3 result
$MOD_TEST: shadow_ctor: PTR11 -> PTR4
$MOD_TEST: klp_shadow_get_or_alloc(obj=PTR12, id=0x1234, size=8, gfp_flags=GFP_KERNEL), ctor=PTR7, ctor_data=PTR4 = PTR11
$MOD_TEST: klp_shadow_get_or_alloc(obj=PTR12, id=0x1234, size=8, gfp_flags=GFP_KERNEL), ctor=PTR7, ctor_data=PTR4 = PTR11
$MOD_TEST: got expected PTR11 -> PTR4 result
$MOD_TEST: shadow_dtor(obj=PTR5, shadow_data=PTR6)
$MOD_TEST: klp_shadow_free(obj=PTR5, id=0x1234, dtor=PTR13)
$MOD_TEST: klp_shadow_get(obj=PTR5, id=0x1234) = PTR0
$MOD_TEST: got expected NULL result
$MOD_TEST: shadow_dtor(obj=PTR9, shadow_data=PTR8)
$MOD_TEST: klp_shadow_free(obj=PTR9, id=0x1234, dtor=PTR13)
$MOD_TEST: klp_shadow_get(obj=PTR9, id=0x1234) = PTR0
$MOD_TEST: got expected NULL result
$MOD_TEST: shadow_dtor(obj=PTR12, shadow_data=PTR11)
$MOD_TEST: klp_shadow_free(obj=PTR12, id=0x1234, dtor=PTR13)
$MOD_TEST: klp_shadow_get(obj=PTR12, id=0x1234) = PTR0
$MOD_TEST: got expected NULL result
$MOD_TEST: klp_shadow_get(obj=PTR5, id=0x1235) = PTR10
$MOD_TEST: got expected PTR10 -> PTR3 result
$MOD_TEST: shadow_dtor(obj=PTR5, shadow_data=PTR10)
$MOD_TEST: klp_shadow_free_all(id=0x1235, dtor=PTR13)
$MOD_TEST: klp_shadow_get(obj=PTR5, id=0x1234) = PTR0
$MOD_TEST: shadow_get() got expected NULL result
% rmmod test_klp_shadow_vars"
exit 0
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment