Commit bf851860 authored by Linus Torvalds's avatar Linus Torvalds

Merge bk://ppc.bkbits.net/for-linus-ppc64

into ppc970.osdl.org:/home/torvalds/v2.6/linux
parents 6a8e8a44 96eacb6b
...@@ -7,7 +7,7 @@ extra-y := head.o vmlinux.lds ...@@ -7,7 +7,7 @@ extra-y := head.o vmlinux.lds
obj-y := setup.o entry.o traps.o irq.o idle.o dma.o \ obj-y := setup.o entry.o traps.o irq.o idle.o dma.o \
time.o process.o signal.o syscalls.o misc.o ptrace.o \ time.o process.o signal.o syscalls.o misc.o ptrace.o \
align.o semaphore.o bitops.o stab.o pacaData.o \ align.o semaphore.o bitops.o pacaData.o \
udbg.o binfmt_elf32.o sys_ppc32.o ioctl32.o \ udbg.o binfmt_elf32.o sys_ppc32.o ioctl32.o \
ptrace32.o signal32.o rtc.o init_task.o \ ptrace32.o signal32.o rtc.o init_task.o \
lmb.o cputable.o cpu_setup_power4.o idle_power4.o \ lmb.o cputable.o cpu_setup_power4.o idle_power4.o \
......
...@@ -4,6 +4,7 @@ ...@@ -4,6 +4,7 @@
EXTRA_CFLAGS += -mno-minimal-toc EXTRA_CFLAGS += -mno-minimal-toc
obj-y := fault.o init.o imalloc.o hash_utils.o hash_low.o tlb.o slb_low.o slb.o obj-y := fault.o init.o imalloc.o hash_utils.o hash_low.o tlb.o \
slb_low.o slb.o stab.o
obj-$(CONFIG_DISCONTIGMEM) += numa.o obj-$(CONFIG_DISCONTIGMEM) += numa.o
obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o obj-$(CONFIG_HUGETLB_PAGE) += hugetlbpage.o
...@@ -20,74 +20,44 @@ ...@@ -20,74 +20,44 @@
#include <asm/naca.h> #include <asm/naca.h>
#include <asm/cputable.h> #include <asm/cputable.h>
static int make_ste(unsigned long stab, unsigned long esid,
unsigned long vsid);
void slb_initialize(void);
/*
* Build an entry for the base kernel segment and put it into
* the segment table or SLB. All other segment table or SLB
* entries are faulted in.
*/
void stab_initialize(unsigned long stab)
{
unsigned long vsid = get_kernel_vsid(KERNELBASE);
if (cur_cpu_spec->cpu_features & CPU_FTR_SLB) {
slb_initialize();
} else {
asm volatile("isync; slbia; isync":::"memory");
make_ste(stab, GET_ESID(KERNELBASE), vsid);
/* Order update */
asm volatile("sync":::"memory");
}
}
/* Both the segment table and SLB code uses the following cache */ /* Both the segment table and SLB code uses the following cache */
#define NR_STAB_CACHE_ENTRIES 8 #define NR_STAB_CACHE_ENTRIES 8
DEFINE_PER_CPU(long, stab_cache_ptr); DEFINE_PER_CPU(long, stab_cache_ptr);
DEFINE_PER_CPU(long, stab_cache[NR_STAB_CACHE_ENTRIES]); DEFINE_PER_CPU(long, stab_cache[NR_STAB_CACHE_ENTRIES]);
/*
* Segment table stuff
*/
/* /*
* Create a segment table entry for the given esid/vsid pair. * Create a segment table entry for the given esid/vsid pair.
*/ */
static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid) static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
{ {
unsigned long esid_data, vsid_data;
unsigned long entry, group, old_esid, castout_entry, i; unsigned long entry, group, old_esid, castout_entry, i;
unsigned int global_entry; unsigned int global_entry;
STE *ste, *castout_ste; struct stab_entry *ste, *castout_ste;
unsigned long kernel_segment = (REGION_ID(esid << SID_SHIFT) != unsigned long kernel_segment = (esid << SID_SHIFT) >= KERNELBASE;
USER_REGION_ID);
vsid_data = vsid << STE_VSID_SHIFT;
esid_data = esid << SID_SHIFT | STE_ESID_KP | STE_ESID_V;
if (! kernel_segment)
esid_data |= STE_ESID_KS;
/* Search the primary group first. */ /* Search the primary group first. */
global_entry = (esid & 0x1f) << 3; global_entry = (esid & 0x1f) << 3;
ste = (STE *)(stab | ((esid & 0x1f) << 7)); ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
/* Find an empty entry, if one exists. */ /* Find an empty entry, if one exists. */
for (group = 0; group < 2; group++) { for (group = 0; group < 2; group++) {
for (entry = 0; entry < 8; entry++, ste++) { for (entry = 0; entry < 8; entry++, ste++) {
if (!(ste->dw0.dw0.v)) { if (!(ste->esid_data & STE_ESID_V)) {
ste->dw0.dword0 = 0; ste->vsid_data = vsid_data;
ste->dw1.dword1 = 0;
ste->dw1.dw1.vsid = vsid;
ste->dw0.dw0.esid = esid;
ste->dw0.dw0.kp = 1;
if (!kernel_segment)
ste->dw0.dw0.ks = 1;
asm volatile("eieio":::"memory"); asm volatile("eieio":::"memory");
ste->dw0.dw0.v = 1; ste->esid_data = esid_data;
return (global_entry | entry); return (global_entry | entry);
} }
} }
/* Now search the secondary group. */ /* Now search the secondary group. */
global_entry = ((~esid) & 0x1f) << 3; global_entry = ((~esid) & 0x1f) << 3;
ste = (STE *)(stab | (((~esid) & 0x1f) << 7)); ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
} }
/* /*
...@@ -98,16 +68,16 @@ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid) ...@@ -98,16 +68,16 @@ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
for (i = 0; i < 16; i++) { for (i = 0; i < 16; i++) {
if (castout_entry < 8) { if (castout_entry < 8) {
global_entry = (esid & 0x1f) << 3; global_entry = (esid & 0x1f) << 3;
ste = (STE *)(stab | ((esid & 0x1f) << 7)); ste = (struct stab_entry *)(stab | ((esid & 0x1f) << 7));
castout_ste = ste + castout_entry; castout_ste = ste + castout_entry;
} else { } else {
global_entry = ((~esid) & 0x1f) << 3; global_entry = ((~esid) & 0x1f) << 3;
ste = (STE *)(stab | (((~esid) & 0x1f) << 7)); ste = (struct stab_entry *)(stab | (((~esid) & 0x1f) << 7));
castout_ste = ste + (castout_entry - 8); castout_ste = ste + (castout_entry - 8);
} }
/* Dont cast out the first kernel segment */ /* Dont cast out the first kernel segment */
if (castout_ste->dw0.dw0.esid != GET_ESID(KERNELBASE)) if ((castout_ste->esid_data & ESID_MASK) != KERNELBASE)
break; break;
castout_entry = (castout_entry + 1) & 0xf; castout_entry = (castout_entry + 1) & 0xf;
...@@ -120,19 +90,15 @@ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid) ...@@ -120,19 +90,15 @@ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
/* Force previous translations to complete. DRENG */ /* Force previous translations to complete. DRENG */
asm volatile("isync" : : : "memory"); asm volatile("isync" : : : "memory");
castout_ste->dw0.dw0.v = 0; old_esid = castout_ste->esid_data >> SID_SHIFT;
castout_ste->esid_data = 0; /* Invalidate old entry */
asm volatile("sync" : : : "memory"); /* Order update */ asm volatile("sync" : : : "memory"); /* Order update */
castout_ste->dw0.dword0 = 0; castout_ste->vsid_data = vsid_data;
castout_ste->dw1.dword1 = 0;
castout_ste->dw1.dw1.vsid = vsid;
old_esid = castout_ste->dw0.dw0.esid;
castout_ste->dw0.dw0.esid = esid;
castout_ste->dw0.dw0.kp = 1;
if (!kernel_segment)
castout_ste->dw0.dw0.ks = 1;
asm volatile("eieio" : : : "memory"); /* Order update */ asm volatile("eieio" : : : "memory"); /* Order update */
castout_ste->dw0.dw0.v = 1; castout_ste->esid_data = esid_data;
asm volatile("slbie %0" : : "r" (old_esid << SID_SHIFT)); asm volatile("slbie %0" : : "r" (old_esid << SID_SHIFT));
/* Ensure completion of slbie */ /* Ensure completion of slbie */
asm volatile("sync" : : : "memory"); asm volatile("sync" : : : "memory");
...@@ -140,109 +106,64 @@ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid) ...@@ -140,109 +106,64 @@ static int make_ste(unsigned long stab, unsigned long esid, unsigned long vsid)
return (global_entry | (castout_entry & 0x7)); return (global_entry | (castout_entry & 0x7));
} }
static inline void __ste_allocate(unsigned long esid, unsigned long vsid)
{
unsigned char stab_entry;
unsigned long offset;
int region_id = REGION_ID(esid << SID_SHIFT);
stab_entry = make_ste(get_paca()->stab_addr, esid, vsid);
if (region_id != USER_REGION_ID)
return;
offset = __get_cpu_var(stab_cache_ptr);
if (offset < NR_STAB_CACHE_ENTRIES)
__get_cpu_var(stab_cache[offset++]) = stab_entry;
else
offset = NR_STAB_CACHE_ENTRIES+1;
__get_cpu_var(stab_cache_ptr) = offset;
}
/* /*
* Allocate a segment table entry for the given ea. * Allocate a segment table entry for the given ea and mm
*/ */
int ste_allocate(unsigned long ea) static int __ste_allocate(unsigned long ea, struct mm_struct *mm)
{ {
unsigned long vsid, esid; unsigned long vsid;
mm_context_t context; unsigned char stab_entry;
unsigned long offset;
/* Check for invalid effective addresses. */ /* Check for invalid effective addresses. */
if (!IS_VALID_EA(ea)) if (!IS_VALID_EA(ea))
return 1; return 1;
/* Kernel or user address? */ /* Kernel or user address? */
if (REGION_ID(ea) >= KERNEL_REGION_ID) { if (ea >= KERNELBASE) {
vsid = get_kernel_vsid(ea); vsid = get_kernel_vsid(ea);
context = KERNEL_CONTEXT(ea);
} else { } else {
if (!current->mm) if (! mm)
return 1; return 1;
context = current->mm->context; vsid = get_vsid(mm->context.id, ea);
vsid = get_vsid(context.id, ea);
} }
esid = GET_ESID(ea); stab_entry = make_ste(get_paca()->stab_addr, GET_ESID(ea), vsid);
__ste_allocate(esid, vsid);
if (ea < KERNELBASE) {
offset = __get_cpu_var(stab_cache_ptr);
if (offset < NR_STAB_CACHE_ENTRIES)
__get_cpu_var(stab_cache[offset++]) = stab_entry;
else
offset = NR_STAB_CACHE_ENTRIES+1;
__get_cpu_var(stab_cache_ptr) = offset;
/* Order update */ /* Order update */
asm volatile("sync":::"memory"); asm volatile("sync":::"memory");
}
return 0; return 0;
} }
int ste_allocate(unsigned long ea)
{
return __ste_allocate(ea, current->mm);
}
/* /*
* preload some userspace segments into the segment table. * Do the segment table work for a context switch: flush all user
* entries from the table, then preload some probably useful entries
* for the new task
*/ */
static void preload_stab(struct task_struct *tsk, struct mm_struct *mm) void switch_stab(struct task_struct *tsk, struct mm_struct *mm)
{ {
struct stab_entry *stab = (struct stab_entry *) get_paca()->stab_addr;
struct stab_entry *ste;
unsigned long offset = __get_cpu_var(stab_cache_ptr);
unsigned long pc = KSTK_EIP(tsk); unsigned long pc = KSTK_EIP(tsk);
unsigned long stack = KSTK_ESP(tsk); unsigned long stack = KSTK_ESP(tsk);
unsigned long unmapped_base; unsigned long unmapped_base;
unsigned long pc_esid = GET_ESID(pc);
unsigned long stack_esid = GET_ESID(stack);
unsigned long unmapped_base_esid;
unsigned long vsid;
if (test_tsk_thread_flag(tsk, TIF_32BIT))
unmapped_base = TASK_UNMAPPED_BASE_USER32;
else
unmapped_base = TASK_UNMAPPED_BASE_USER64;
unmapped_base_esid = GET_ESID(unmapped_base);
if (!IS_VALID_EA(pc) || (REGION_ID(pc) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context.id, pc);
__ste_allocate(pc_esid, vsid);
if (pc_esid == stack_esid)
return;
if (!IS_VALID_EA(stack) || (REGION_ID(stack) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context.id, stack);
__ste_allocate(stack_esid, vsid);
if (pc_esid == unmapped_base_esid || stack_esid == unmapped_base_esid)
return;
if (!IS_VALID_EA(unmapped_base) ||
(REGION_ID(unmapped_base) >= KERNEL_REGION_ID))
return;
vsid = get_vsid(mm->context.id, unmapped_base);
__ste_allocate(unmapped_base_esid, vsid);
/* Order update */
asm volatile("sync" : : : "memory");
}
/* Flush all user entries from the segment table of the current processor. */
void flush_stab(struct task_struct *tsk, struct mm_struct *mm)
{
STE *stab = (STE *) get_paca()->stab_addr;
STE *ste;
unsigned long offset = __get_cpu_var(stab_cache_ptr);
/* Force previous translations to complete. DRENG */ /* Force previous translations to complete. DRENG */
asm volatile("isync" : : : "memory"); asm volatile("isync" : : : "memory");
...@@ -252,7 +173,7 @@ void flush_stab(struct task_struct *tsk, struct mm_struct *mm) ...@@ -252,7 +173,7 @@ void flush_stab(struct task_struct *tsk, struct mm_struct *mm)
for (i = 0; i < offset; i++) { for (i = 0; i < offset; i++) {
ste = stab + __get_cpu_var(stab_cache[i]); ste = stab + __get_cpu_var(stab_cache[i]);
ste->dw0.dw0.v = 0; ste->esid_data = 0; /* invalidate entry */
} }
} else { } else {
unsigned long entry; unsigned long entry;
...@@ -263,12 +184,12 @@ void flush_stab(struct task_struct *tsk, struct mm_struct *mm) ...@@ -263,12 +184,12 @@ void flush_stab(struct task_struct *tsk, struct mm_struct *mm)
/* Never flush the first entry. */ /* Never flush the first entry. */
ste += 1; ste += 1;
for (entry = 1; for (entry = 1;
entry < (PAGE_SIZE / sizeof(STE)); entry < (PAGE_SIZE / sizeof(struct stab_entry));
entry++, ste++) { entry++, ste++) {
unsigned long ea; unsigned long ea;
ea = ste->dw0.dw0.esid << SID_SHIFT; ea = ste->esid_data & ESID_MASK;
if (ea < KERNELBASE) { if (ea < KERNELBASE) {
ste->dw0.dw0.v = 0; ste->esid_data = 0;
} }
} }
} }
...@@ -277,5 +198,47 @@ void flush_stab(struct task_struct *tsk, struct mm_struct *mm) ...@@ -277,5 +198,47 @@ void flush_stab(struct task_struct *tsk, struct mm_struct *mm)
__get_cpu_var(stab_cache_ptr) = 0; __get_cpu_var(stab_cache_ptr) = 0;
preload_stab(tsk, mm); /* Now preload some entries for the new task */
if (test_tsk_thread_flag(tsk, TIF_32BIT))
unmapped_base = TASK_UNMAPPED_BASE_USER32;
else
unmapped_base = TASK_UNMAPPED_BASE_USER64;
__ste_allocate(pc, mm);
if (GET_ESID(pc) == GET_ESID(stack))
return;
__ste_allocate(stack, mm);
if ((GET_ESID(pc) == GET_ESID(unmapped_base))
|| (GET_ESID(stack) == GET_ESID(unmapped_base)))
return;
__ste_allocate(unmapped_base, mm);
/* Order update */
asm volatile("sync" : : : "memory");
}
extern void slb_initialize(void);
/*
* Build an entry for the base kernel segment and put it into
* the segment table or SLB. All other segment table or SLB
* entries are faulted in.
*/
void stab_initialize(unsigned long stab)
{
unsigned long vsid = get_kernel_vsid(KERNELBASE);
if (cur_cpu_spec->cpu_features & CPU_FTR_SLB) {
slb_initialize();
} else {
asm volatile("isync; slbia; isync":::"memory");
make_ste(stab, GET_ESID(KERNELBASE), vsid);
/* Order update */
asm volatile("sync":::"memory");
}
} }
...@@ -37,33 +37,17 @@ typedef struct { ...@@ -37,33 +37,17 @@ typedef struct {
mm_context_t ctx = { .id = REGION_ID(ea), KERNEL_LOW_HPAGES}; \ mm_context_t ctx = { .id = REGION_ID(ea), KERNEL_LOW_HPAGES}; \
ctx; }) ctx; })
typedef struct { #define STE_ESID_V 0x80
unsigned long esid: 36; /* Effective segment ID */ #define STE_ESID_KS 0x20
unsigned long resv0:20; /* Reserved */ #define STE_ESID_KP 0x10
unsigned long v: 1; /* Entry valid (v=1) or invalid */ #define STE_ESID_N 0x08
unsigned long resv1: 1; /* Reserved */
unsigned long ks: 1; /* Supervisor (privileged) state storage key */
unsigned long kp: 1; /* Problem state storage key */
unsigned long n: 1; /* No-execute if n=1 */
unsigned long resv2: 3; /* padding to a 64b boundary */
} ste_dword0;
typedef struct { #define STE_VSID_SHIFT 12
unsigned long vsid: 52; /* Virtual segment ID */
unsigned long resv0:12; /* Padding to a 64b boundary */
} ste_dword1;
typedef struct _STE { struct stab_entry {
union { unsigned long esid_data;
unsigned long dword0; unsigned long vsid_data;
ste_dword0 dw0; };
} dw0;
union {
unsigned long dword1;
ste_dword1 dw1;
} dw1;
} STE;
/* Hardware Page Table Entry */ /* Hardware Page Table Entry */
......
...@@ -135,7 +135,7 @@ destroy_context(struct mm_struct *mm) ...@@ -135,7 +135,7 @@ destroy_context(struct mm_struct *mm)
spin_unlock_irqrestore(&mmu_context_queue.lock, flags); spin_unlock_irqrestore(&mmu_context_queue.lock, flags);
} }
extern void flush_stab(struct task_struct *tsk, struct mm_struct *mm); extern void switch_stab(struct task_struct *tsk, struct mm_struct *mm);
extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm); extern void switch_slb(struct task_struct *tsk, struct mm_struct *mm);
/* /*
...@@ -163,7 +163,7 @@ static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next, ...@@ -163,7 +163,7 @@ static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
if (cur_cpu_spec->cpu_features & CPU_FTR_SLB) if (cur_cpu_spec->cpu_features & CPU_FTR_SLB)
switch_slb(tsk, next); switch_slb(tsk, next);
else else
flush_stab(tsk, next); switch_stab(tsk, next);
} }
#define deactivate_mm(tsk,mm) do { } while (0) #define deactivate_mm(tsk,mm) do { } while (0)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment