Commit bf9c8c9d authored by Timur Tabi's avatar Timur Tabi Committed by Takashi Iwai

ALSA: ASoC: fix SNDCTL_DSP_SYNC support in Freescale 8610 sound drivers

If an OSS application calls SNDCTL_DSP_SYNC, then ALSA will call the driver's
_hw_params and _prepare functions again.  On the Freescale MPC8610 DMA ASoC
driver, this caused the DMA controller to be unneccessarily re-programmed, and
apparently it doesn't like that.  The DMA will then not operate when
instructed.  This patch relocates much of the DMA programming to
fsl_dma_open(), which is called only once.
Signed-off-by: default avatarTimur Tabi <timur@freescale.com>
Signed-off-by: default avatarTakashi Iwai <tiwai@suse.de>
parent 11589418
...@@ -327,14 +327,75 @@ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai, ...@@ -327,14 +327,75 @@ static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
* fsl_dma_open: open a new substream. * fsl_dma_open: open a new substream.
* *
* Each substream has its own DMA buffer. * Each substream has its own DMA buffer.
*
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
* descriptors that ping-pong from one period to the next. For example, if
* there are six periods and two link descriptors, this is how they look
* before playback starts:
*
* The last link descriptor
* ____________ points back to the first
* | |
* V |
* ___ ___ |
* | |->| |->|
* |___| |___|
* | |
* | |
* V V
* _________________________________________
* | | | | | | | The DMA buffer is
* | | | | | | | divided into 6 parts
* |______|______|______|______|______|______|
*
* and here's how they look after the first period is finished playing:
*
* ____________
* | |
* V |
* ___ ___ |
* | |->| |->|
* |___| |___|
* | |
* |______________
* | |
* V V
* _________________________________________
* | | | | | | |
* | | | | | | |
* |______|______|______|______|______|______|
*
* The first link descriptor now points to the third period. The DMA
* controller is currently playing the second period. When it finishes, it
* will jump back to the first descriptor and play the third period.
*
* There are four reasons we do this:
*
* 1. The only way to get the DMA controller to automatically restart the
* transfer when it gets to the end of the buffer is to use chaining
* mode. Basic direct mode doesn't offer that feature.
* 2. We need to receive an interrupt at the end of every period. The DMA
* controller can generate an interrupt at the end of every link transfer
* (aka segment). Making each period into a DMA segment will give us the
* interrupts we need.
* 3. By creating only two link descriptors, regardless of the number of
* periods, we do not need to reallocate the link descriptors if the
* number of periods changes.
* 4. All of the audio data is still stored in a single, contiguous DMA
* buffer, which is what ALSA expects. We're just dividing it into
* contiguous parts, and creating a link descriptor for each one.
*/ */
static int fsl_dma_open(struct snd_pcm_substream *substream) static int fsl_dma_open(struct snd_pcm_substream *substream)
{ {
struct snd_pcm_runtime *runtime = substream->runtime; struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_dma_private *dma_private; struct fsl_dma_private *dma_private;
struct ccsr_dma_channel __iomem *dma_channel;
dma_addr_t ld_buf_phys; dma_addr_t ld_buf_phys;
u64 temp_link; /* Pointer to next link descriptor */
u32 mr;
unsigned int channel; unsigned int channel;
int ret = 0; int ret = 0;
unsigned int i;
/* /*
* Reject any DMA buffer whose size is not a multiple of the period * Reject any DMA buffer whose size is not a multiple of the period
...@@ -395,68 +456,74 @@ static int fsl_dma_open(struct snd_pcm_substream *substream) ...@@ -395,68 +456,74 @@ static int fsl_dma_open(struct snd_pcm_substream *substream)
snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware); snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
runtime->private_data = dma_private; runtime->private_data = dma_private;
/* Program the fixed DMA controller parameters */
dma_channel = dma_private->dma_channel;
temp_link = dma_private->ld_buf_phys +
sizeof(struct fsl_dma_link_descriptor);
for (i = 0; i < NUM_DMA_LINKS; i++) {
struct fsl_dma_link_descriptor *link = &dma_private->link[i];
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
link->next = cpu_to_be64(temp_link);
temp_link += sizeof(struct fsl_dma_link_descriptor);
}
/* The last link descriptor points to the first */
dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
/* Tell the DMA controller where the first link descriptor is */
out_be32(&dma_channel->clndar,
CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
out_be32(&dma_channel->eclndar,
CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
/* The manual says the BCR must be clear before enabling EMP */
out_be32(&dma_channel->bcr, 0);
/*
* Program the mode register for interrupts, external master control,
* and source/destination hold. Also clear the Channel Abort bit.
*/
mr = in_be32(&dma_channel->mr) &
~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
/*
* We want External Master Start and External Master Pause enabled,
* because the SSI is controlling the DMA controller. We want the DMA
* controller to be set up in advance, and then we signal only the SSI
* to start transferring.
*
* We want End-Of-Segment Interrupts enabled, because this will generate
* an interrupt at the end of each segment (each link descriptor
* represents one segment). Each DMA segment is the same thing as an
* ALSA period, so this is how we get an interrupt at the end of every
* period.
*
* We want Error Interrupt enabled, so that we can get an error if
* the DMA controller is mis-programmed somehow.
*/
mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
CCSR_DMA_MR_EMS_EN;
/* For playback, we want the destination address to be held. For
capture, set the source address to be held. */
mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
out_be32(&dma_channel->mr, mr);
return 0; return 0;
} }
/** /**
* fsl_dma_hw_params: allocate the DMA buffer and the DMA link descriptors. * fsl_dma_hw_params: continue initializing the DMA links
* *
* ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link * This function obtains hardware parameters about the opened stream and
* descriptors that ping-pong from one period to the next. For example, if * programs the DMA controller accordingly.
* there are six periods and two link descriptors, this is how they look
* before playback starts:
*
* The last link descriptor
* ____________ points back to the first
* | |
* V |
* ___ ___ |
* | |->| |->|
* |___| |___|
* | |
* | |
* V V
* _________________________________________
* | | | | | | | The DMA buffer is
* | | | | | | | divided into 6 parts
* |______|______|______|______|______|______|
*
* and here's how they look after the first period is finished playing:
*
* ____________
* | |
* V |
* ___ ___ |
* | |->| |->|
* |___| |___|
* | |
* |______________
* | |
* V V
* _________________________________________
* | | | | | | |
* | | | | | | |
* |______|______|______|______|______|______|
*
* The first link descriptor now points to the third period. The DMA
* controller is currently playing the second period. When it finishes, it
* will jump back to the first descriptor and play the third period.
*
* There are four reasons we do this:
*
* 1. The only way to get the DMA controller to automatically restart the
* transfer when it gets to the end of the buffer is to use chaining
* mode. Basic direct mode doesn't offer that feature.
* 2. We need to receive an interrupt at the end of every period. The DMA
* controller can generate an interrupt at the end of every link transfer
* (aka segment). Making each period into a DMA segment will give us the
* interrupts we need.
* 3. By creating only two link descriptors, regardless of the number of
* periods, we do not need to reallocate the link descriptors if the
* number of periods changes.
* 4. All of the audio data is still stored in a single, contiguous DMA
* buffer, which is what ALSA expects. We're just dividing it into
* contiguous parts, and creating a link descriptor for each one.
* *
* Note that due to a quirk of the SSI's STX register, the target address * Note that due to a quirk of the SSI's STX register, the target address
* for the DMA operations depends on the sample size. So we don't program * for the DMA operations depends on the sample size. So we don't program
...@@ -468,11 +535,8 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, ...@@ -468,11 +535,8 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
{ {
struct snd_pcm_runtime *runtime = substream->runtime; struct snd_pcm_runtime *runtime = substream->runtime;
struct fsl_dma_private *dma_private = runtime->private_data; struct fsl_dma_private *dma_private = runtime->private_data;
struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
dma_addr_t temp_addr; /* Pointer to next period */ dma_addr_t temp_addr; /* Pointer to next period */
u64 temp_link; /* Pointer to next link descriptor */
u32 mr; /* Temporary variable for MR register */
unsigned int i; unsigned int i;
...@@ -490,8 +554,6 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, ...@@ -490,8 +554,6 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
dma_private->dma_buf_next = dma_private->dma_buf_phys; dma_private->dma_buf_next = dma_private->dma_buf_phys;
/* /*
* Initialize each link descriptor.
*
* The actual address in STX0 (destination for playback, source for * The actual address in STX0 (destination for playback, source for
* capture) is based on the sample size, but we don't know the sample * capture) is based on the sample size, but we don't know the sample
* size in this function, so we'll have to adjust that later. See * size in this function, so we'll have to adjust that later. See
...@@ -507,16 +569,11 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, ...@@ -507,16 +569,11 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
* buffer itself. * buffer itself.
*/ */
temp_addr = substream->dma_buffer.addr; temp_addr = substream->dma_buffer.addr;
temp_link = dma_private->ld_buf_phys +
sizeof(struct fsl_dma_link_descriptor);
for (i = 0; i < NUM_DMA_LINKS; i++) { for (i = 0; i < NUM_DMA_LINKS; i++) {
struct fsl_dma_link_descriptor *link = &dma_private->link[i]; struct fsl_dma_link_descriptor *link = &dma_private->link[i];
link->count = cpu_to_be32(period_size); link->count = cpu_to_be32(period_size);
link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
link->next = cpu_to_be64(temp_link);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
link->source_addr = cpu_to_be32(temp_addr); link->source_addr = cpu_to_be32(temp_addr);
...@@ -524,51 +581,7 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream, ...@@ -524,51 +581,7 @@ static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
link->dest_addr = cpu_to_be32(temp_addr); link->dest_addr = cpu_to_be32(temp_addr);
temp_addr += period_size; temp_addr += period_size;
temp_link += sizeof(struct fsl_dma_link_descriptor);
} }
/* The last link descriptor points to the first */
dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
/* Tell the DMA controller where the first link descriptor is */
out_be32(&dma_channel->clndar,
CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
out_be32(&dma_channel->eclndar,
CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
/* The manual says the BCR must be clear before enabling EMP */
out_be32(&dma_channel->bcr, 0);
/*
* Program the mode register for interrupts, external master control,
* and source/destination hold. Also clear the Channel Abort bit.
*/
mr = in_be32(&dma_channel->mr) &
~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
/*
* We want External Master Start and External Master Pause enabled,
* because the SSI is controlling the DMA controller. We want the DMA
* controller to be set up in advance, and then we signal only the SSI
* to start transfering.
*
* We want End-Of-Segment Interrupts enabled, because this will generate
* an interrupt at the end of each segment (each link descriptor
* represents one segment). Each DMA segment is the same thing as an
* ALSA period, so this is how we get an interrupt at the end of every
* period.
*
* We want Error Interrupt enabled, so that we can get an error if
* the DMA controller is mis-programmed somehow.
*/
mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
CCSR_DMA_MR_EMS_EN;
/* For playback, we want the destination address to be held. For
capture, set the source address to be held. */
mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
out_be32(&dma_channel->mr, mr);
return 0; return 0;
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment