Commit c38dec71 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'rtc-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux

Pull RTC updates from Alexandre Belloni:
 "Core:
   - fix module reference count in rtc-proc
   - Replace simple_strtoul by kstrtoul

  New driver:
   - Epson RX8010SJ

  Subsystem wide cleanups:
   - use %ph for short hex dumps
   - constify *_chip_ops structures

  Drivers:
   - abx80x: Microcrystal rv1805 support, alarm support
   - cmos: prevent kernel warning on IRQ flags mismatch
   - s5m: various cleanups
   - rv8803: rx8900 compatibility, small error path fix
   - sunxi: various cleanups
   - lpc32xx: remove irq > NR_IRQS check from probe()
   - imxdi: fix spelling mistake in warning message
   - ds1685: don't try to micromanage sysfs output size
   - da9063: avoid writing undefined data to rtc
   - gemini: Remove unnecessary platform_set_drvdata()
   - efi: add efi_procfs in efi_rtc_ops
   - pcf8523: refuse to write dates later than 2099"

* tag 'rtc-4.5' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux: (24 commits)
  rtc: cmos: prevent kernel warning on IRQ flags mismatch
  rtc: rtc-ds2404: constify ds2404_chip_ops structures
  rtc: s5m: Make register configuration per S2MPS device to remove exceptions
  rtc: s5m: Add separate field for storing auto-cleared mask in register config
  rtc: s5m: Cleanup by removing useless 'rtc' prefix from fields
  rtc: Replace simple_strtoul by kstrtoul
  rtc: abx80x: add alarm support
  rtc: abx80x: Add Microcrystal rv1805 support
  rtc: v3020: constify v3020_chip_ops structures
  rtc: rv8803: Extend compatibility with the rx8900
  rtc: rv8803: fix handling return value of i2c_smbus_read_byte_data
  rtc: Add Epson RX8010SJ RTC driver
  rtc: lpc32xx: remove irq > NR_IRQS check from probe()
  rtc: imxdi: fix spelling mistake in warning message
  rtc: ds1685: don't try to micromanage sysfs output size
  rtc: use %ph for short hex dumps
  rtc: da9063: avoid writing undefined data to rtc
  rtc: sunxi: use of_device_get_match_data
  rtc: sunxi: constify the data_year_param structure
  rtc: sunxi: fix signedness issues
  ...
parents d43fb9f3 079062b2
...@@ -558,6 +558,16 @@ config RTC_DRV_FM3130 ...@@ -558,6 +558,16 @@ config RTC_DRV_FM3130
This driver can also be built as a module. If so the module This driver can also be built as a module. If so the module
will be called rtc-fm3130. will be called rtc-fm3130.
config RTC_DRV_RX8010
tristate "Epson RX8010SJ"
depends on I2C
help
If you say yes here you get support for the Epson RX8010SJ RTC
chip.
This driver can also be built as a module. If so, the module
will be called rtc-rx8010.
config RTC_DRV_RX8581 config RTC_DRV_RX8581
tristate "Epson RX-8581" tristate "Epson RX-8581"
help help
......
...@@ -128,6 +128,7 @@ obj-$(CONFIG_RTC_DRV_RS5C372) += rtc-rs5c372.o ...@@ -128,6 +128,7 @@ obj-$(CONFIG_RTC_DRV_RS5C372) += rtc-rs5c372.o
obj-$(CONFIG_RTC_DRV_RV3029C2) += rtc-rv3029c2.o obj-$(CONFIG_RTC_DRV_RV3029C2) += rtc-rv3029c2.o
obj-$(CONFIG_RTC_DRV_RV8803) += rtc-rv8803.o obj-$(CONFIG_RTC_DRV_RV8803) += rtc-rv8803.o
obj-$(CONFIG_RTC_DRV_RX4581) += rtc-rx4581.o obj-$(CONFIG_RTC_DRV_RX4581) += rtc-rx4581.o
obj-$(CONFIG_RTC_DRV_RX8010) += rtc-rx8010.o
obj-$(CONFIG_RTC_DRV_RX8025) += rtc-rx8025.o obj-$(CONFIG_RTC_DRV_RX8025) += rtc-rx8025.o
obj-$(CONFIG_RTC_DRV_RX8581) += rtc-rx8581.o obj-$(CONFIG_RTC_DRV_RX8581) += rtc-rx8581.o
obj-$(CONFIG_RTC_DRV_S35390A) += rtc-s35390a.o obj-$(CONFIG_RTC_DRV_S35390A) += rtc-s35390a.o
......
...@@ -27,10 +27,28 @@ ...@@ -27,10 +27,28 @@
#define ABX8XX_REG_YR 0x06 #define ABX8XX_REG_YR 0x06
#define ABX8XX_REG_WD 0x07 #define ABX8XX_REG_WD 0x07
#define ABX8XX_REG_AHTH 0x08
#define ABX8XX_REG_ASC 0x09
#define ABX8XX_REG_AMN 0x0a
#define ABX8XX_REG_AHR 0x0b
#define ABX8XX_REG_ADA 0x0c
#define ABX8XX_REG_AMO 0x0d
#define ABX8XX_REG_AWD 0x0e
#define ABX8XX_REG_STATUS 0x0f
#define ABX8XX_STATUS_AF BIT(2)
#define ABX8XX_REG_CTRL1 0x10 #define ABX8XX_REG_CTRL1 0x10
#define ABX8XX_CTRL_WRITE BIT(0) #define ABX8XX_CTRL_WRITE BIT(0)
#define ABX8XX_CTRL_ARST BIT(2)
#define ABX8XX_CTRL_12_24 BIT(6) #define ABX8XX_CTRL_12_24 BIT(6)
#define ABX8XX_REG_IRQ 0x12
#define ABX8XX_IRQ_AIE BIT(2)
#define ABX8XX_IRQ_IM_1_4 (0x3 << 5)
#define ABX8XX_REG_CD_TIMER_CTL 0x18
#define ABX8XX_REG_CFG_KEY 0x1f #define ABX8XX_REG_CFG_KEY 0x1f
#define ABX8XX_CFG_KEY_MISC 0x9d #define ABX8XX_CFG_KEY_MISC 0x9d
...@@ -63,8 +81,6 @@ static struct abx80x_cap abx80x_caps[] = { ...@@ -63,8 +81,6 @@ static struct abx80x_cap abx80x_caps[] = {
[ABX80X] = {.pn = 0} [ABX80X] = {.pn = 0}
}; };
static struct i2c_driver abx80x_driver;
static int abx80x_enable_trickle_charger(struct i2c_client *client, static int abx80x_enable_trickle_charger(struct i2c_client *client,
u8 trickle_cfg) u8 trickle_cfg)
{ {
...@@ -148,9 +164,111 @@ static int abx80x_rtc_set_time(struct device *dev, struct rtc_time *tm) ...@@ -148,9 +164,111 @@ static int abx80x_rtc_set_time(struct device *dev, struct rtc_time *tm)
return 0; return 0;
} }
static irqreturn_t abx80x_handle_irq(int irq, void *dev_id)
{
struct i2c_client *client = dev_id;
struct rtc_device *rtc = i2c_get_clientdata(client);
int status;
status = i2c_smbus_read_byte_data(client, ABX8XX_REG_STATUS);
if (status < 0)
return IRQ_NONE;
if (status & ABX8XX_STATUS_AF)
rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
i2c_smbus_write_byte_data(client, ABX8XX_REG_STATUS, 0);
return IRQ_HANDLED;
}
static int abx80x_read_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned char buf[7];
int irq_mask, err;
if (client->irq <= 0)
return -EINVAL;
err = i2c_smbus_read_i2c_block_data(client, ABX8XX_REG_ASC,
sizeof(buf), buf);
if (err)
return err;
irq_mask = i2c_smbus_read_byte_data(client, ABX8XX_REG_IRQ);
if (irq_mask < 0)
return irq_mask;
t->time.tm_sec = bcd2bin(buf[0] & 0x7F);
t->time.tm_min = bcd2bin(buf[1] & 0x7F);
t->time.tm_hour = bcd2bin(buf[2] & 0x3F);
t->time.tm_mday = bcd2bin(buf[3] & 0x3F);
t->time.tm_mon = bcd2bin(buf[4] & 0x1F) - 1;
t->time.tm_wday = buf[5] & 0x7;
t->enabled = !!(irq_mask & ABX8XX_IRQ_AIE);
t->pending = (buf[6] & ABX8XX_STATUS_AF) && t->enabled;
return err;
}
static int abx80x_set_alarm(struct device *dev, struct rtc_wkalrm *t)
{
struct i2c_client *client = to_i2c_client(dev);
u8 alarm[6];
int err;
if (client->irq <= 0)
return -EINVAL;
alarm[0] = 0x0;
alarm[1] = bin2bcd(t->time.tm_sec);
alarm[2] = bin2bcd(t->time.tm_min);
alarm[3] = bin2bcd(t->time.tm_hour);
alarm[4] = bin2bcd(t->time.tm_mday);
alarm[5] = bin2bcd(t->time.tm_mon + 1);
err = i2c_smbus_write_i2c_block_data(client, ABX8XX_REG_AHTH,
sizeof(alarm), alarm);
if (err < 0) {
dev_err(&client->dev, "Unable to write alarm registers\n");
return -EIO;
}
if (t->enabled) {
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
if (err)
return err;
}
return 0;
}
static int abx80x_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct i2c_client *client = to_i2c_client(dev);
int err;
if (enabled)
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
(ABX8XX_IRQ_IM_1_4 |
ABX8XX_IRQ_AIE));
else
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_IRQ,
ABX8XX_IRQ_IM_1_4);
return err;
}
static const struct rtc_class_ops abx80x_rtc_ops = { static const struct rtc_class_ops abx80x_rtc_ops = {
.read_time = abx80x_rtc_read_time, .read_time = abx80x_rtc_read_time,
.set_time = abx80x_rtc_set_time, .set_time = abx80x_rtc_set_time,
.read_alarm = abx80x_read_alarm,
.set_alarm = abx80x_set_alarm,
.alarm_irq_enable = abx80x_alarm_irq_enable,
}; };
static int abx80x_dt_trickle_cfg(struct device_node *np) static int abx80x_dt_trickle_cfg(struct device_node *np)
...@@ -225,7 +343,8 @@ static int abx80x_probe(struct i2c_client *client, ...@@ -225,7 +343,8 @@ static int abx80x_probe(struct i2c_client *client,
} }
err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL1, err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CTRL1,
((data & ~ABX8XX_CTRL_12_24) | ((data & ~(ABX8XX_CTRL_12_24 |
ABX8XX_CTRL_ARST)) |
ABX8XX_CTRL_WRITE)); ABX8XX_CTRL_WRITE));
if (err < 0) { if (err < 0) {
dev_err(&client->dev, "Unable to write control register\n"); dev_err(&client->dev, "Unable to write control register\n");
...@@ -260,7 +379,12 @@ static int abx80x_probe(struct i2c_client *client, ...@@ -260,7 +379,12 @@ static int abx80x_probe(struct i2c_client *client,
abx80x_enable_trickle_charger(client, trickle_cfg); abx80x_enable_trickle_charger(client, trickle_cfg);
} }
rtc = devm_rtc_device_register(&client->dev, abx80x_driver.driver.name, err = i2c_smbus_write_byte_data(client, ABX8XX_REG_CD_TIMER_CTL,
BIT(2));
if (err)
return err;
rtc = devm_rtc_device_register(&client->dev, "abx8xx",
&abx80x_rtc_ops, THIS_MODULE); &abx80x_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc)) if (IS_ERR(rtc))
...@@ -268,6 +392,19 @@ static int abx80x_probe(struct i2c_client *client, ...@@ -268,6 +392,19 @@ static int abx80x_probe(struct i2c_client *client,
i2c_set_clientdata(client, rtc); i2c_set_clientdata(client, rtc);
if (client->irq > 0) {
dev_info(&client->dev, "IRQ %d supplied\n", client->irq);
err = devm_request_threaded_irq(&client->dev, client->irq, NULL,
abx80x_handle_irq,
IRQF_SHARED | IRQF_ONESHOT,
"abx8xx",
client);
if (err) {
dev_err(&client->dev, "unable to request IRQ, alarms disabled\n");
client->irq = 0;
}
}
return 0; return 0;
} }
...@@ -286,6 +423,7 @@ static const struct i2c_device_id abx80x_id[] = { ...@@ -286,6 +423,7 @@ static const struct i2c_device_id abx80x_id[] = {
{ "ab1803", AB1803 }, { "ab1803", AB1803 },
{ "ab1804", AB1804 }, { "ab1804", AB1804 },
{ "ab1805", AB1805 }, { "ab1805", AB1805 },
{ "rv1805", AB1805 },
{ } { }
}; };
MODULE_DEVICE_TABLE(i2c, abx80x_id); MODULE_DEVICE_TABLE(i2c, abx80x_id);
......
...@@ -725,7 +725,7 @@ cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) ...@@ -725,7 +725,7 @@ cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
rtc_cmos_int_handler = cmos_interrupt; rtc_cmos_int_handler = cmos_interrupt;
retval = request_irq(rtc_irq, rtc_cmos_int_handler, retval = request_irq(rtc_irq, rtc_cmos_int_handler,
0, dev_name(&cmos_rtc.rtc->dev), IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
cmos_rtc.rtc); cmos_rtc.rtc);
if (retval < 0) { if (retval < 0) {
dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
......
...@@ -191,24 +191,13 @@ static void da9063_tm_to_data(struct rtc_time *tm, u8 *data, ...@@ -191,24 +191,13 @@ static void da9063_tm_to_data(struct rtc_time *tm, u8 *data,
{ {
const struct da9063_compatible_rtc_regmap *config = rtc->config; const struct da9063_compatible_rtc_regmap *config = rtc->config;
data[RTC_SEC] &= ~config->rtc_count_sec_mask; data[RTC_SEC] = tm->tm_sec & config->rtc_count_sec_mask;
data[RTC_SEC] |= tm->tm_sec & config->rtc_count_sec_mask; data[RTC_MIN] = tm->tm_min & config->rtc_count_min_mask;
data[RTC_HOUR] = tm->tm_hour & config->rtc_count_hour_mask;
data[RTC_MIN] &= ~config->rtc_count_min_mask; data[RTC_DAY] = tm->tm_mday & config->rtc_count_day_mask;
data[RTC_MIN] |= tm->tm_min & config->rtc_count_min_mask; data[RTC_MONTH] = MONTHS_TO_DA9063(tm->tm_mon) &
data[RTC_HOUR] &= ~config->rtc_count_hour_mask;
data[RTC_HOUR] |= tm->tm_hour & config->rtc_count_hour_mask;
data[RTC_DAY] &= ~config->rtc_count_day_mask;
data[RTC_DAY] |= tm->tm_mday & config->rtc_count_day_mask;
data[RTC_MONTH] &= ~config->rtc_count_month_mask;
data[RTC_MONTH] |= MONTHS_TO_DA9063(tm->tm_mon) &
config->rtc_count_month_mask; config->rtc_count_month_mask;
data[RTC_YEAR] = YEARS_TO_DA9063(tm->tm_year) &
data[RTC_YEAR] &= ~config->rtc_count_year_mask;
data[RTC_YEAR] |= YEARS_TO_DA9063(tm->tm_year) &
config->rtc_count_year_mask; config->rtc_count_year_mask;
} }
......
...@@ -186,9 +186,7 @@ static int ds1305_get_time(struct device *dev, struct rtc_time *time) ...@@ -186,9 +186,7 @@ static int ds1305_get_time(struct device *dev, struct rtc_time *time)
if (status < 0) if (status < 0)
return status; return status;
dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n", dev_vdbg(dev, "%s: %3ph, %4ph\n", "read", &buf[0], &buf[3]);
"read", buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6]);
/* Decode the registers */ /* Decode the registers */
time->tm_sec = bcd2bin(buf[DS1305_SEC]); time->tm_sec = bcd2bin(buf[DS1305_SEC]);
...@@ -232,9 +230,7 @@ static int ds1305_set_time(struct device *dev, struct rtc_time *time) ...@@ -232,9 +230,7 @@ static int ds1305_set_time(struct device *dev, struct rtc_time *time)
*bp++ = bin2bcd(time->tm_mon + 1); *bp++ = bin2bcd(time->tm_mon + 1);
*bp++ = bin2bcd(time->tm_year - 100); *bp++ = bin2bcd(time->tm_year - 100);
dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n", dev_dbg(dev, "%s: %3ph, %4ph\n", "write", &buf[1], &buf[4]);
"write", buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7]);
/* use write-then-read since dma from stack is nonportable */ /* use write-then-read since dma from stack is nonportable */
return spi_write_then_read(ds1305->spi, buf, sizeof(buf), return spi_write_then_read(ds1305->spi, buf, sizeof(buf),
......
...@@ -460,13 +460,8 @@ static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t) ...@@ -460,13 +460,8 @@ static int ds1337_read_alarm(struct device *dev, struct rtc_wkalrm *t)
return -EIO; return -EIO;
} }
dev_dbg(dev, "%s: %02x %02x %02x %02x, %02x %02x %02x, %02x %02x\n", dev_dbg(dev, "%s: %4ph, %3ph, %2ph\n", "alarm read",
"alarm read", &ds1307->regs[0], &ds1307->regs[4], &ds1307->regs[7]);
ds1307->regs[0], ds1307->regs[1],
ds1307->regs[2], ds1307->regs[3],
ds1307->regs[4], ds1307->regs[5],
ds1307->regs[6], ds1307->regs[7],
ds1307->regs[8]);
/* /*
* report alarm time (ALARM1); assume 24 hour and day-of-month modes, * report alarm time (ALARM1); assume 24 hour and day-of-month modes,
...@@ -522,12 +517,8 @@ static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t) ...@@ -522,12 +517,8 @@ static int ds1337_set_alarm(struct device *dev, struct rtc_wkalrm *t)
control = ds1307->regs[7]; control = ds1307->regs[7];
status = ds1307->regs[8]; status = ds1307->regs[8];
dev_dbg(dev, "%s: %02x %02x %02x %02x, %02x %02x %02x, %02x %02x\n", dev_dbg(dev, "%s: %4ph, %3ph, %02x %02x\n", "alarm set (old status)",
"alarm set (old status)", &ds1307->regs[0], &ds1307->regs[4], control, status);
ds1307->regs[0], ds1307->regs[1],
ds1307->regs[2], ds1307->regs[3],
ds1307->regs[4], ds1307->regs[5],
ds1307->regs[6], control, status);
/* set ALARM1, using 24 hour and day-of-month modes */ /* set ALARM1, using 24 hour and day-of-month modes */
buf[0] = bin2bcd(t->time.tm_sec); buf[0] = bin2bcd(t->time.tm_sec);
......
...@@ -853,7 +853,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq) ...@@ -853,7 +853,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
"Periodic Rate\t: %s\n" "Periodic Rate\t: %s\n"
"SQW Freq\t: %s\n" "SQW Freq\t: %s\n"
#ifdef CONFIG_RTC_DS1685_PROC_REGS #ifdef CONFIG_RTC_DS1685_PROC_REGS
"Serial #\t: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n" "Serial #\t: %8phC\n"
"Register Status\t:\n" "Register Status\t:\n"
" Ctrl A\t: UIP DV2 DV1 DV0 RS3 RS2 RS1 RS0\n" " Ctrl A\t: UIP DV2 DV1 DV0 RS3 RS2 RS1 RS0\n"
"\t\t: %s\n" "\t\t: %s\n"
...@@ -872,7 +872,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq) ...@@ -872,7 +872,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
" Ctrl 4B\t: ABE E32k CS RCE PRS RIE WIE KSE\n" " Ctrl 4B\t: ABE E32k CS RCE PRS RIE WIE KSE\n"
"\t\t: %s\n", "\t\t: %s\n",
#else #else
"Serial #\t: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", "Serial #\t: %8phC\n",
#endif #endif
model, model,
((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"), ((ctrla & RTC_CTRL_A_DV1) ? "enabled" : "disabled"),
...@@ -888,7 +888,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq) ...@@ -888,7 +888,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
(!((ctrl4b & RTC_CTRL_4B_E32K)) ? (!((ctrl4b & RTC_CTRL_4B_E32K)) ?
ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"), ds1685_rtc_sqw_freq[(ctrla & RTC_CTRL_A_RS_MASK)] : "32768Hz"),
#ifdef CONFIG_RTC_DS1685_PROC_REGS #ifdef CONFIG_RTC_DS1685_PROC_REGS
ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5], ssn[6], ssn[7], ssn,
ds1685_rtc_print_regs(ctrla, bits[0]), ds1685_rtc_print_regs(ctrla, bits[0]),
ds1685_rtc_print_regs(ctrlb, bits[1]), ds1685_rtc_print_regs(ctrlb, bits[1]),
ds1685_rtc_print_regs(ctrlc, bits[2]), ds1685_rtc_print_regs(ctrlc, bits[2]),
...@@ -896,7 +896,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq) ...@@ -896,7 +896,7 @@ ds1685_rtc_proc(struct device *dev, struct seq_file *seq)
ds1685_rtc_print_regs(ctrl4a, bits[4]), ds1685_rtc_print_regs(ctrl4a, bits[4]),
ds1685_rtc_print_regs(ctrl4b, bits[5])); ds1685_rtc_print_regs(ctrl4b, bits[5]));
#else #else
ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5], ssn[6], ssn[7]); ssn);
#endif #endif
return 0; return 0;
} }
...@@ -1114,7 +1114,7 @@ ds1685_rtc_sysfs_battery_show(struct device *dev, ...@@ -1114,7 +1114,7 @@ ds1685_rtc_sysfs_battery_show(struct device *dev,
ctrld = rtc->read(rtc, RTC_CTRL_D); ctrld = rtc->read(rtc, RTC_CTRL_D);
return snprintf(buf, 13, "%s\n", return sprintf(buf, "%s\n",
(ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A"); (ctrld & RTC_CTRL_D_VRT) ? "ok" : "not ok or N/A");
} }
static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL); static DEVICE_ATTR(battery, S_IRUGO, ds1685_rtc_sysfs_battery_show, NULL);
...@@ -1137,7 +1137,7 @@ ds1685_rtc_sysfs_auxbatt_show(struct device *dev, ...@@ -1137,7 +1137,7 @@ ds1685_rtc_sysfs_auxbatt_show(struct device *dev,
ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A); ctrl4a = rtc->read(rtc, RTC_EXT_CTRL_4A);
ds1685_rtc_switch_to_bank0(rtc); ds1685_rtc_switch_to_bank0(rtc);
return snprintf(buf, 13, "%s\n", return sprintf(buf, "%s\n",
(ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A"); (ctrl4a & RTC_CTRL_4A_VRT2) ? "ok" : "not ok or N/A");
} }
static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL); static DEVICE_ATTR(auxbatt, S_IRUGO, ds1685_rtc_sysfs_auxbatt_show, NULL);
...@@ -1160,11 +1160,7 @@ ds1685_rtc_sysfs_serial_show(struct device *dev, ...@@ -1160,11 +1160,7 @@ ds1685_rtc_sysfs_serial_show(struct device *dev,
ds1685_rtc_get_ssn(rtc, ssn); ds1685_rtc_get_ssn(rtc, ssn);
ds1685_rtc_switch_to_bank0(rtc); ds1685_rtc_switch_to_bank0(rtc);
return snprintf(buf, 24, "%02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", return sprintf(buf, "%8phC\n", ssn);
ssn[0], ssn[1], ssn[2], ssn[3], ssn[4], ssn[5],
ssn[6], ssn[7]);
return 0;
} }
static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL); static DEVICE_ATTR(serial, S_IRUGO, ds1685_rtc_sysfs_serial_show, NULL);
...@@ -1287,7 +1283,7 @@ ds1685_rtc_sysfs_ctrl_regs_show(struct device *dev, ...@@ -1287,7 +1283,7 @@ ds1685_rtc_sysfs_ctrl_regs_show(struct device *dev,
tmp = rtc->read(rtc, reg_info->reg) & reg_info->bit; tmp = rtc->read(rtc, reg_info->reg) & reg_info->bit;
ds1685_rtc_switch_to_bank0(rtc); ds1685_rtc_switch_to_bank0(rtc);
return snprintf(buf, 2, "%d\n", (tmp ? 1 : 0)); return sprintf(buf, "%d\n", (tmp ? 1 : 0));
} }
/** /**
...@@ -1623,7 +1619,7 @@ ds1685_rtc_sysfs_time_regs_show(struct device *dev, ...@@ -1623,7 +1619,7 @@ ds1685_rtc_sysfs_time_regs_show(struct device *dev,
tmp = ds1685_rtc_bcd2bin(rtc, tmp, bcd_reg_info->mask, tmp = ds1685_rtc_bcd2bin(rtc, tmp, bcd_reg_info->mask,
bin_reg_info->mask); bin_reg_info->mask);
return snprintf(buf, 4, "%d\n", tmp); return sprintf(buf, "%d\n", tmp);
} }
/** /**
......
...@@ -48,7 +48,7 @@ struct ds2404_gpio { ...@@ -48,7 +48,7 @@ struct ds2404_gpio {
struct ds2404 { struct ds2404 {
struct ds2404_gpio *gpio; struct ds2404_gpio *gpio;
struct ds2404_chip_ops *ops; const struct ds2404_chip_ops *ops;
struct rtc_device *rtc; struct rtc_device *rtc;
}; };
...@@ -95,7 +95,7 @@ static void ds2404_gpio_unmap(struct ds2404 *chip) ...@@ -95,7 +95,7 @@ static void ds2404_gpio_unmap(struct ds2404 *chip)
gpio_free(ds2404_gpio[i].gpio); gpio_free(ds2404_gpio[i].gpio);
} }
static struct ds2404_chip_ops ds2404_gpio_ops = { static const struct ds2404_chip_ops ds2404_gpio_ops = {
.map_io = ds2404_gpio_map, .map_io = ds2404_gpio_map,
.unmap_io = ds2404_gpio_unmap, .unmap_io = ds2404_gpio_unmap,
}; };
......
...@@ -191,11 +191,69 @@ static int efi_set_time(struct device *dev, struct rtc_time *tm) ...@@ -191,11 +191,69 @@ static int efi_set_time(struct device *dev, struct rtc_time *tm)
return status == EFI_SUCCESS ? 0 : -EINVAL; return status == EFI_SUCCESS ? 0 : -EINVAL;
} }
static int efi_procfs(struct device *dev, struct seq_file *seq)
{
efi_time_t eft, alm;
efi_time_cap_t cap;
efi_bool_t enabled, pending;
memset(&eft, 0, sizeof(eft));
memset(&alm, 0, sizeof(alm));
memset(&cap, 0, sizeof(cap));
efi.get_time(&eft, &cap);
efi.get_wakeup_time(&enabled, &pending, &alm);
seq_printf(seq,
"Time\t\t: %u:%u:%u.%09u\n"
"Date\t\t: %u-%u-%u\n"
"Daylight\t: %u\n",
eft.hour, eft.minute, eft.second, eft.nanosecond,
eft.year, eft.month, eft.day,
eft.daylight);
if (eft.timezone == EFI_UNSPECIFIED_TIMEZONE)
seq_puts(seq, "Timezone\t: unspecified\n");
else
/* XXX fixme: convert to string? */
seq_printf(seq, "Timezone\t: %u\n", eft.timezone);
seq_printf(seq,
"Alarm Time\t: %u:%u:%u.%09u\n"
"Alarm Date\t: %u-%u-%u\n"
"Alarm Daylight\t: %u\n"
"Enabled\t\t: %s\n"
"Pending\t\t: %s\n",
alm.hour, alm.minute, alm.second, alm.nanosecond,
alm.year, alm.month, alm.day,
alm.daylight,
enabled == 1 ? "yes" : "no",
pending == 1 ? "yes" : "no");
if (eft.timezone == EFI_UNSPECIFIED_TIMEZONE)
seq_puts(seq, "Timezone\t: unspecified\n");
else
/* XXX fixme: convert to string? */
seq_printf(seq, "Timezone\t: %u\n", alm.timezone);
/*
* now prints the capabilities
*/
seq_printf(seq,
"Resolution\t: %u\n"
"Accuracy\t: %u\n"
"SetstoZero\t: %u\n",
cap.resolution, cap.accuracy, cap.sets_to_zero);
return 0;
}
static const struct rtc_class_ops efi_rtc_ops = { static const struct rtc_class_ops efi_rtc_ops = {
.read_time = efi_read_time, .read_time = efi_read_time,
.set_time = efi_set_time, .set_time = efi_set_time,
.read_alarm = efi_read_alarm, .read_alarm = efi_read_alarm,
.set_alarm = efi_set_alarm, .set_alarm = efi_set_alarm,
.proc = efi_procfs,
}; };
static int __init efi_rtc_probe(struct platform_device *dev) static int __init efi_rtc_probe(struct platform_device *dev)
......
...@@ -156,7 +156,6 @@ static int gemini_rtc_remove(struct platform_device *pdev) ...@@ -156,7 +156,6 @@ static int gemini_rtc_remove(struct platform_device *pdev)
struct gemini_rtc *rtc = platform_get_drvdata(pdev); struct gemini_rtc *rtc = platform_get_drvdata(pdev);
rtc_device_unregister(rtc->rtc_dev); rtc_device_unregister(rtc->rtc_dev);
platform_set_drvdata(pdev, NULL);
return 0; return 0;
} }
......
...@@ -303,7 +303,7 @@ static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr) ...@@ -303,7 +303,7 @@ static int di_handle_invalid_state(struct imxdi_dev *imxdi, u32 dsr)
sec = readl(imxdi->ioaddr + DTCMR); sec = readl(imxdi->ioaddr + DTCMR);
if (sec != 0) if (sec != 0)
dev_warn(&imxdi->pdev->dev, dev_warn(&imxdi->pdev->dev,
"The security violation has happend at %u seconds\n", "The security violation has happened at %u seconds\n",
sec); sec);
/* /*
* the timer cannot be set/modified if * the timer cannot be set/modified if
......
...@@ -205,7 +205,7 @@ static int lpc32xx_rtc_probe(struct platform_device *pdev) ...@@ -205,7 +205,7 @@ static int lpc32xx_rtc_probe(struct platform_device *pdev)
u32 tmp; u32 tmp;
rtcirq = platform_get_irq(pdev, 0); rtcirq = platform_get_irq(pdev, 0);
if (rtcirq < 0 || rtcirq >= NR_IRQS) { if (rtcirq < 0) {
dev_warn(&pdev->dev, "Can't get interrupt resource\n"); dev_warn(&pdev->dev, "Can't get interrupt resource\n");
rtcirq = -1; rtcirq = -1;
} }
......
...@@ -219,6 +219,17 @@ static int pcf8523_rtc_set_time(struct device *dev, struct rtc_time *tm) ...@@ -219,6 +219,17 @@ static int pcf8523_rtc_set_time(struct device *dev, struct rtc_time *tm)
u8 regs[8]; u8 regs[8];
int err; int err;
/*
* The hardware can only store values between 0 and 99 in it's YEAR
* register (with 99 overflowing to 0 on increment).
* After 2100-02-28 we could start interpreting the year to be in the
* interval [2100, 2199], but there is no path to switch in a smooth way
* because the chip handles YEAR=0x00 (and the out-of-spec
* YEAR=0xa0) as a leap year, but 2100 isn't.
*/
if (tm->tm_year < 100 || tm->tm_year >= 200)
return -EINVAL;
err = pcf8523_stop_rtc(client); err = pcf8523_stop_rtc(client);
if (err < 0) if (err < 0)
return err; return err;
......
...@@ -112,19 +112,21 @@ static int rtc_proc_open(struct inode *inode, struct file *file) ...@@ -112,19 +112,21 @@ static int rtc_proc_open(struct inode *inode, struct file *file)
int ret; int ret;
struct rtc_device *rtc = PDE_DATA(inode); struct rtc_device *rtc = PDE_DATA(inode);
if (!try_module_get(THIS_MODULE)) if (!try_module_get(rtc->owner))
return -ENODEV; return -ENODEV;
ret = single_open(file, rtc_proc_show, rtc); ret = single_open(file, rtc_proc_show, rtc);
if (ret) if (ret)
module_put(THIS_MODULE); module_put(rtc->owner);
return ret; return ret;
} }
static int rtc_proc_release(struct inode *inode, struct file *file) static int rtc_proc_release(struct inode *inode, struct file *file)
{ {
int res = single_release(inode, file); int res = single_release(inode, file);
module_put(THIS_MODULE); struct rtc_device *rtc = PDE_DATA(inode);
module_put(rtc->owner);
return res; return res;
} }
......
...@@ -61,7 +61,7 @@ static irqreturn_t rv8803_handle_irq(int irq, void *dev_id) ...@@ -61,7 +61,7 @@ static irqreturn_t rv8803_handle_irq(int irq, void *dev_id)
struct i2c_client *client = dev_id; struct i2c_client *client = dev_id;
struct rv8803_data *rv8803 = i2c_get_clientdata(client); struct rv8803_data *rv8803 = i2c_get_clientdata(client);
unsigned long events = 0; unsigned long events = 0;
u8 flags; int flags;
spin_lock(&rv8803->flags_lock); spin_lock(&rv8803->flags_lock);
...@@ -502,6 +502,7 @@ static int rv8803_remove(struct i2c_client *client) ...@@ -502,6 +502,7 @@ static int rv8803_remove(struct i2c_client *client)
static const struct i2c_device_id rv8803_id[] = { static const struct i2c_device_id rv8803_id[] = {
{ "rv8803", 0 }, { "rv8803", 0 },
{ "rx8900", 0 },
{ } { }
}; };
MODULE_DEVICE_TABLE(i2c, rv8803_id); MODULE_DEVICE_TABLE(i2c, rv8803_id);
......
This diff is collapsed.
...@@ -38,7 +38,22 @@ ...@@ -38,7 +38,22 @@
*/ */
#define UDR_READ_RETRY_CNT 5 #define UDR_READ_RETRY_CNT 5
/* Registers used by the driver which are different between chipsets. */ /*
* Registers used by the driver which are different between chipsets.
*
* Operations like read time and write alarm/time require updating
* specific fields in UDR register. These fields usually are auto-cleared
* (with some exceptions).
*
* Table of operations per device:
*
* Device | Write time | Read time | Write alarm
* =================================================
* S5M8767 | UDR + TIME | | UDR
* S2MPS11/14 | WUDR | RUDR | WUDR + RUDR
* S2MPS13 | WUDR | RUDR | WUDR + AUDR
* S2MPS15 | WUDR | RUDR | AUDR
*/
struct s5m_rtc_reg_config { struct s5m_rtc_reg_config {
/* Number of registers used for setting time/alarm0/alarm1 */ /* Number of registers used for setting time/alarm0/alarm1 */
unsigned int regs_count; unsigned int regs_count;
...@@ -55,9 +70,16 @@ struct s5m_rtc_reg_config { ...@@ -55,9 +70,16 @@ struct s5m_rtc_reg_config {
* will enable update of time or alarm register. Then it will be * will enable update of time or alarm register. Then it will be
* auto-cleared after successful update. * auto-cleared after successful update.
*/ */
unsigned int rtc_udr_update; unsigned int udr_update;
/* Mask for UDR field in 'rtc_udr_update' register */ /* Auto-cleared mask in UDR field for writing time and alarm */
unsigned int rtc_udr_mask; unsigned int autoclear_udr_mask;
/*
* Masks in UDR field for time and alarm operations.
* The read time mask can be 0. Rest should not.
*/
unsigned int read_time_udr_mask;
unsigned int write_time_udr_mask;
unsigned int write_alarm_udr_mask;
}; };
/* Register map for S5M8763 and S5M8767 */ /* Register map for S5M8763 and S5M8767 */
...@@ -67,22 +89,56 @@ static const struct s5m_rtc_reg_config s5m_rtc_regs = { ...@@ -67,22 +89,56 @@ static const struct s5m_rtc_reg_config s5m_rtc_regs = {
.ctrl = S5M_ALARM1_CONF, .ctrl = S5M_ALARM1_CONF,
.alarm0 = S5M_ALARM0_SEC, .alarm0 = S5M_ALARM0_SEC,
.alarm1 = S5M_ALARM1_SEC, .alarm1 = S5M_ALARM1_SEC,
.rtc_udr_update = S5M_RTC_UDR_CON, .udr_update = S5M_RTC_UDR_CON,
.rtc_udr_mask = S5M_RTC_UDR_MASK, .autoclear_udr_mask = S5M_RTC_UDR_MASK,
.read_time_udr_mask = 0, /* Not needed */
.write_time_udr_mask = S5M_RTC_UDR_MASK | S5M_RTC_TIME_EN_MASK,
.write_alarm_udr_mask = S5M_RTC_UDR_MASK,
};
/* Register map for S2MPS13 */
static const struct s5m_rtc_reg_config s2mps13_rtc_regs = {
.regs_count = 7,
.time = S2MPS_RTC_SEC,
.ctrl = S2MPS_RTC_CTRL,
.alarm0 = S2MPS_ALARM0_SEC,
.alarm1 = S2MPS_ALARM1_SEC,
.udr_update = S2MPS_RTC_UDR_CON,
.autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
.read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
.write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
.write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS13_RTC_AUDR_MASK,
};
/* Register map for S2MPS11/14 */
static const struct s5m_rtc_reg_config s2mps14_rtc_regs = {
.regs_count = 7,
.time = S2MPS_RTC_SEC,
.ctrl = S2MPS_RTC_CTRL,
.alarm0 = S2MPS_ALARM0_SEC,
.alarm1 = S2MPS_ALARM1_SEC,
.udr_update = S2MPS_RTC_UDR_CON,
.autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
.read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
.write_time_udr_mask = S2MPS_RTC_WUDR_MASK,
.write_alarm_udr_mask = S2MPS_RTC_WUDR_MASK | S2MPS_RTC_RUDR_MASK,
}; };
/* /*
* Register map for S2MPS14. * Register map for S2MPS15 - in comparison to S2MPS14 the WUDR and AUDR bits
* It may be also suitable for S2MPS11 but this was not tested. * are swapped.
*/ */
static const struct s5m_rtc_reg_config s2mps_rtc_regs = { static const struct s5m_rtc_reg_config s2mps15_rtc_regs = {
.regs_count = 7, .regs_count = 7,
.time = S2MPS_RTC_SEC, .time = S2MPS_RTC_SEC,
.ctrl = S2MPS_RTC_CTRL, .ctrl = S2MPS_RTC_CTRL,
.alarm0 = S2MPS_ALARM0_SEC, .alarm0 = S2MPS_ALARM0_SEC,
.alarm1 = S2MPS_ALARM1_SEC, .alarm1 = S2MPS_ALARM1_SEC,
.rtc_udr_update = S2MPS_RTC_UDR_CON, .udr_update = S2MPS_RTC_UDR_CON,
.rtc_udr_mask = S2MPS_RTC_WUDR_MASK, .autoclear_udr_mask = S2MPS_RTC_WUDR_MASK,
.read_time_udr_mask = S2MPS_RTC_RUDR_MASK,
.write_time_udr_mask = S2MPS15_RTC_WUDR_MASK,
.write_alarm_udr_mask = S2MPS15_RTC_AUDR_MASK,
}; };
struct s5m_rtc_info { struct s5m_rtc_info {
...@@ -166,9 +222,8 @@ static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info) ...@@ -166,9 +222,8 @@ static inline int s5m8767_wait_for_udr_update(struct s5m_rtc_info *info)
unsigned int data; unsigned int data;
do { do {
ret = regmap_read(info->regmap, info->regs->rtc_udr_update, ret = regmap_read(info->regmap, info->regs->udr_update, &data);
&data); } while (--retry && (data & info->regs->autoclear_udr_mask) && !ret);
} while (--retry && (data & info->regs->rtc_udr_mask) && !ret);
if (!retry) if (!retry)
dev_err(info->dev, "waiting for UDR update, reached max number of retries\n"); dev_err(info->dev, "waiting for UDR update, reached max number of retries\n");
...@@ -214,30 +269,15 @@ static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info) ...@@ -214,30 +269,15 @@ static inline int s5m8767_rtc_set_time_reg(struct s5m_rtc_info *info)
int ret; int ret;
unsigned int data; unsigned int data;
ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data); ret = regmap_read(info->regmap, info->regs->udr_update, &data);
if (ret < 0) { if (ret < 0) {
dev_err(info->dev, "failed to read update reg(%d)\n", ret); dev_err(info->dev, "failed to read update reg(%d)\n", ret);
return ret; return ret;
} }
switch (info->device_type) { data |= info->regs->write_time_udr_mask;
case S5M8763X:
case S5M8767X:
data |= info->regs->rtc_udr_mask | S5M_RTC_TIME_EN_MASK;
case S2MPS15X:
/* As per UM, for write time register, set WUDR bit to high */
data |= S2MPS15_RTC_WUDR_MASK;
break;
case S2MPS14X:
case S2MPS13X:
data |= info->regs->rtc_udr_mask;
break;
default:
return -EINVAL;
}
ret = regmap_write(info->regmap, info->regs->udr_update, data);
ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data);
if (ret < 0) { if (ret < 0) {
dev_err(info->dev, "failed to write update reg(%d)\n", ret); dev_err(info->dev, "failed to write update reg(%d)\n", ret);
return ret; return ret;
...@@ -253,35 +293,29 @@ static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info) ...@@ -253,35 +293,29 @@ static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
int ret; int ret;
unsigned int data; unsigned int data;
ret = regmap_read(info->regmap, info->regs->rtc_udr_update, &data); ret = regmap_read(info->regmap, info->regs->udr_update, &data);
if (ret < 0) { if (ret < 0) {
dev_err(info->dev, "%s: fail to read update reg(%d)\n", dev_err(info->dev, "%s: fail to read update reg(%d)\n",
__func__, ret); __func__, ret);
return ret; return ret;
} }
data |= info->regs->rtc_udr_mask; data |= info->regs->write_alarm_udr_mask;
switch (info->device_type) { switch (info->device_type) {
case S5M8763X: case S5M8763X:
case S5M8767X: case S5M8767X:
data &= ~S5M_RTC_TIME_EN_MASK; data &= ~S5M_RTC_TIME_EN_MASK;
break; break;
case S2MPS15X: case S2MPS15X:
/* As per UM, for write alarm, set A_UDR(bit[4]) to high
* rtc_udr_mask above sets bit[4]
*/
break;
case S2MPS14X: case S2MPS14X:
data |= S2MPS_RTC_RUDR_MASK;
break;
case S2MPS13X: case S2MPS13X:
data |= S2MPS13_RTC_AUDR_MASK; /* No exceptions needed */
break; break;
default: default:
return -EINVAL; return -EINVAL;
} }
ret = regmap_write(info->regmap, info->regs->rtc_udr_update, data); ret = regmap_write(info->regmap, info->regs->udr_update, data);
if (ret < 0) { if (ret < 0) {
dev_err(info->dev, "%s: fail to write update reg(%d)\n", dev_err(info->dev, "%s: fail to write update reg(%d)\n",
__func__, ret); __func__, ret);
...@@ -292,7 +326,7 @@ static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info) ...@@ -292,7 +326,7 @@ static inline int s5m8767_rtc_set_alarm_reg(struct s5m_rtc_info *info)
/* On S2MPS13 the AUDR is not auto-cleared */ /* On S2MPS13 the AUDR is not auto-cleared */
if (info->device_type == S2MPS13X) if (info->device_type == S2MPS13X)
regmap_update_bits(info->regmap, info->regs->rtc_udr_update, regmap_update_bits(info->regmap, info->regs->udr_update,
S2MPS13_RTC_AUDR_MASK, 0); S2MPS13_RTC_AUDR_MASK, 0);
return ret; return ret;
...@@ -336,11 +370,11 @@ static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm) ...@@ -336,11 +370,11 @@ static int s5m_rtc_read_time(struct device *dev, struct rtc_time *tm)
u8 data[info->regs->regs_count]; u8 data[info->regs->regs_count];
int ret; int ret;
if (info->device_type == S2MPS15X || info->device_type == S2MPS14X || if (info->regs->read_time_udr_mask) {
info->device_type == S2MPS13X) {
ret = regmap_update_bits(info->regmap, ret = regmap_update_bits(info->regmap,
info->regs->rtc_udr_update, info->regs->udr_update,
S2MPS_RTC_RUDR_MASK, S2MPS_RTC_RUDR_MASK); info->regs->read_time_udr_mask,
info->regs->read_time_udr_mask);
if (ret) { if (ret) {
dev_err(dev, dev_err(dev,
"Failed to prepare registers for time reading: %d\n", "Failed to prepare registers for time reading: %d\n",
...@@ -707,10 +741,18 @@ static int s5m_rtc_probe(struct platform_device *pdev) ...@@ -707,10 +741,18 @@ static int s5m_rtc_probe(struct platform_device *pdev)
switch (platform_get_device_id(pdev)->driver_data) { switch (platform_get_device_id(pdev)->driver_data) {
case S2MPS15X: case S2MPS15X:
regmap_cfg = &s2mps14_rtc_regmap_config;
info->regs = &s2mps15_rtc_regs;
alarm_irq = S2MPS14_IRQ_RTCA0;
break;
case S2MPS14X: case S2MPS14X:
regmap_cfg = &s2mps14_rtc_regmap_config;
info->regs = &s2mps14_rtc_regs;
alarm_irq = S2MPS14_IRQ_RTCA0;
break;
case S2MPS13X: case S2MPS13X:
regmap_cfg = &s2mps14_rtc_regmap_config; regmap_cfg = &s2mps14_rtc_regmap_config;
info->regs = &s2mps_rtc_regs; info->regs = &s2mps13_rtc_regs;
alarm_irq = S2MPS14_IRQ_RTCA0; alarm_irq = S2MPS14_IRQ_RTCA0;
break; break;
case S5M8763X: case S5M8763X:
......
...@@ -133,7 +133,7 @@ struct sunxi_rtc_data_year { ...@@ -133,7 +133,7 @@ struct sunxi_rtc_data_year {
unsigned char leap_shift; /* bit shift to get the leap year */ unsigned char leap_shift; /* bit shift to get the leap year */
}; };
static struct sunxi_rtc_data_year data_year_param[] = { static const struct sunxi_rtc_data_year data_year_param[] = {
[0] = { [0] = {
.min = 2010, .min = 2010,
.max = 2073, .max = 2073,
...@@ -151,7 +151,7 @@ static struct sunxi_rtc_data_year data_year_param[] = { ...@@ -151,7 +151,7 @@ static struct sunxi_rtc_data_year data_year_param[] = {
struct sunxi_rtc_dev { struct sunxi_rtc_dev {
struct rtc_device *rtc; struct rtc_device *rtc;
struct device *dev; struct device *dev;
struct sunxi_rtc_data_year *data_year; const struct sunxi_rtc_data_year *data_year;
void __iomem *base; void __iomem *base;
int irq; int irq;
}; };
...@@ -175,7 +175,7 @@ static irqreturn_t sunxi_rtc_alarmirq(int irq, void *id) ...@@ -175,7 +175,7 @@ static irqreturn_t sunxi_rtc_alarmirq(int irq, void *id)
return IRQ_NONE; return IRQ_NONE;
} }
static void sunxi_rtc_setaie(int to, struct sunxi_rtc_dev *chip) static void sunxi_rtc_setaie(unsigned int to, struct sunxi_rtc_dev *chip)
{ {
u32 alrm_val = 0; u32 alrm_val = 0;
u32 alrm_irq_val = 0; u32 alrm_irq_val = 0;
...@@ -343,7 +343,7 @@ static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) ...@@ -343,7 +343,7 @@ static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
struct sunxi_rtc_dev *chip = dev_get_drvdata(dev); struct sunxi_rtc_dev *chip = dev_get_drvdata(dev);
u32 date = 0; u32 date = 0;
u32 time = 0; u32 time = 0;
int year; unsigned int year;
/* /*
* the input rtc_tm->tm_year is the offset relative to 1900. We use * the input rtc_tm->tm_year is the offset relative to 1900. We use
...@@ -353,8 +353,8 @@ static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm) ...@@ -353,8 +353,8 @@ static int sunxi_rtc_settime(struct device *dev, struct rtc_time *rtc_tm)
year = rtc_tm->tm_year + 1900; year = rtc_tm->tm_year + 1900;
if (year < chip->data_year->min || year > chip->data_year->max) { if (year < chip->data_year->min || year > chip->data_year->max) {
dev_err(dev, "rtc only supports year in range %d - %d\n", dev_err(dev, "rtc only supports year in range %u - %u\n",
chip->data_year->min, chip->data_year->max); chip->data_year->min, chip->data_year->max);
return -EINVAL; return -EINVAL;
} }
...@@ -436,7 +436,6 @@ static int sunxi_rtc_probe(struct platform_device *pdev) ...@@ -436,7 +436,6 @@ static int sunxi_rtc_probe(struct platform_device *pdev)
{ {
struct sunxi_rtc_dev *chip; struct sunxi_rtc_dev *chip;
struct resource *res; struct resource *res;
const struct of_device_id *of_id;
int ret; int ret;
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL); chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
...@@ -463,12 +462,11 @@ static int sunxi_rtc_probe(struct platform_device *pdev) ...@@ -463,12 +462,11 @@ static int sunxi_rtc_probe(struct platform_device *pdev)
return ret; return ret;
} }
of_id = of_match_device(sunxi_rtc_dt_ids, &pdev->dev); chip->data_year = of_device_get_match_data(&pdev->dev);
if (!of_id) { if (!chip->data_year) {
dev_err(&pdev->dev, "Unable to setup RTC data\n"); dev_err(&pdev->dev, "Unable to setup RTC data\n");
return -ENODEV; return -ENODEV;
} }
chip->data_year = (struct sunxi_rtc_data_year *) of_id->data;
/* clear the alarm count value */ /* clear the alarm count value */
writel(0, chip->base + SUNXI_ALRM_DHMS); writel(0, chip->base + SUNXI_ALRM_DHMS);
......
...@@ -91,7 +91,12 @@ max_user_freq_store(struct device *dev, struct device_attribute *attr, ...@@ -91,7 +91,12 @@ max_user_freq_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t n) const char *buf, size_t n)
{ {
struct rtc_device *rtc = to_rtc_device(dev); struct rtc_device *rtc = to_rtc_device(dev);
unsigned long val = simple_strtoul(buf, NULL, 0); unsigned long val;
int err;
err = kstrtoul(buf, 0, &val);
if (err)
return err;
if (val >= 4096 || val == 0) if (val >= 4096 || val == 0)
return -EINVAL; return -EINVAL;
...@@ -175,7 +180,9 @@ wakealarm_store(struct device *dev, struct device_attribute *attr, ...@@ -175,7 +180,9 @@ wakealarm_store(struct device *dev, struct device_attribute *attr,
} else } else
adjust = 1; adjust = 1;
} }
alarm = simple_strtoul(buf_ptr, NULL, 0); retval = kstrtoul(buf_ptr, 0, &alarm);
if (retval)
return retval;
if (adjust) { if (adjust) {
alarm += now; alarm += now;
} }
......
...@@ -57,7 +57,7 @@ struct v3020 { ...@@ -57,7 +57,7 @@ struct v3020 {
/* GPIO access */ /* GPIO access */
struct gpio *gpio; struct gpio *gpio;
struct v3020_chip_ops *ops; const struct v3020_chip_ops *ops;
struct rtc_device *rtc; struct rtc_device *rtc;
}; };
...@@ -95,7 +95,7 @@ static unsigned char v3020_mmio_read_bit(struct v3020 *chip) ...@@ -95,7 +95,7 @@ static unsigned char v3020_mmio_read_bit(struct v3020 *chip)
return !!(readl(chip->ioaddress) & (1 << chip->leftshift)); return !!(readl(chip->ioaddress) & (1 << chip->leftshift));
} }
static struct v3020_chip_ops v3020_mmio_ops = { static const struct v3020_chip_ops v3020_mmio_ops = {
.map_io = v3020_mmio_map, .map_io = v3020_mmio_map,
.unmap_io = v3020_mmio_unmap, .unmap_io = v3020_mmio_unmap,
.read_bit = v3020_mmio_read_bit, .read_bit = v3020_mmio_read_bit,
...@@ -158,7 +158,7 @@ static unsigned char v3020_gpio_read_bit(struct v3020 *chip) ...@@ -158,7 +158,7 @@ static unsigned char v3020_gpio_read_bit(struct v3020 *chip)
return bit; return bit;
} }
static struct v3020_chip_ops v3020_gpio_ops = { static const struct v3020_chip_ops v3020_gpio_ops = {
.map_io = v3020_gpio_map, .map_io = v3020_gpio_map,
.unmap_io = v3020_gpio_unmap, .unmap_io = v3020_gpio_unmap,
.read_bit = v3020_gpio_read_bit, .read_bit = v3020_gpio_read_bit,
......
...@@ -105,6 +105,8 @@ enum s2mps_rtc_reg { ...@@ -105,6 +105,8 @@ enum s2mps_rtc_reg {
#define S5M_RTC_UDR_MASK (1 << S5M_RTC_UDR_SHIFT) #define S5M_RTC_UDR_MASK (1 << S5M_RTC_UDR_SHIFT)
#define S2MPS_RTC_WUDR_SHIFT 4 #define S2MPS_RTC_WUDR_SHIFT 4
#define S2MPS_RTC_WUDR_MASK (1 << S2MPS_RTC_WUDR_SHIFT) #define S2MPS_RTC_WUDR_MASK (1 << S2MPS_RTC_WUDR_SHIFT)
#define S2MPS15_RTC_AUDR_SHIFT 4
#define S2MPS15_RTC_AUDR_MASK (1 << S2MPS15_RTC_AUDR_SHIFT)
#define S2MPS13_RTC_AUDR_SHIFT 1 #define S2MPS13_RTC_AUDR_SHIFT 1
#define S2MPS13_RTC_AUDR_MASK (1 << S2MPS13_RTC_AUDR_SHIFT) #define S2MPS13_RTC_AUDR_MASK (1 << S2MPS13_RTC_AUDR_SHIFT)
#define S2MPS15_RTC_WUDR_SHIFT 1 #define S2MPS15_RTC_WUDR_SHIFT 1
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment