Commit cfb4b571 authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 's390-5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux

Pull more s390 updates from Vasily Gorbik:
 "The second round of s390 fixes and features for 5.6:

   - Add KPROBES_ON_FTRACE support

   - Add EP11 AES secure keys support

   - PAES rework and prerequisites for paes-s390 ciphers selftests

   - Fix page table upgrade for hugetlbfs"

* tag 's390-5.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
  s390/pkey/zcrypt: Support EP11 AES secure keys
  s390/zcrypt: extend EP11 card and queue sysfs attributes
  s390/zcrypt: add new low level ep11 functions support file
  s390/zcrypt: ep11 structs rework, export zcrypt_send_ep11_cprb
  s390/zcrypt: enable card/domain autoselect on ep11 cprbs
  s390/crypto: enable clear key values for paes ciphers
  s390/pkey: Add support for key blob with clear key value
  s390/crypto: Rework on paes implementation
  s390: support KPROBES_ON_FTRACE
  s390/mm: fix dynamic pagetable upgrade for hugetlbfs
parents 6992ca0d 55d0a513
...@@ -24,7 +24,7 @@ ...@@ -24,7 +24,7 @@
| parisc: | ok | | parisc: | ok |
| powerpc: | ok | | powerpc: | ok |
| riscv: | TODO | | riscv: | TODO |
| s390: | TODO | | s390: | ok |
| sh: | TODO | | sh: | TODO |
| sparc: | TODO | | sparc: | TODO |
| um: | TODO | | um: | TODO |
......
...@@ -156,6 +156,7 @@ config S390 ...@@ -156,6 +156,7 @@ config S390
select HAVE_KERNEL_UNCOMPRESSED select HAVE_KERNEL_UNCOMPRESSED
select HAVE_KERNEL_XZ select HAVE_KERNEL_XZ
select HAVE_KPROBES select HAVE_KPROBES
select HAVE_KPROBES_ON_FTRACE
select HAVE_KRETPROBES select HAVE_KRETPROBES
select HAVE_KVM select HAVE_KVM
select HAVE_LIVEPATCH select HAVE_LIVEPATCH
......
...@@ -5,7 +5,7 @@ ...@@ -5,7 +5,7 @@
* s390 implementation of the AES Cipher Algorithm with protected keys. * s390 implementation of the AES Cipher Algorithm with protected keys.
* *
* s390 Version: * s390 Version:
* Copyright IBM Corp. 2017,2019 * Copyright IBM Corp. 2017,2020
* Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com> * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
* Harald Freudenberger <freude@de.ibm.com> * Harald Freudenberger <freude@de.ibm.com>
*/ */
...@@ -20,6 +20,7 @@ ...@@ -20,6 +20,7 @@
#include <linux/module.h> #include <linux/module.h>
#include <linux/cpufeature.h> #include <linux/cpufeature.h>
#include <linux/init.h> #include <linux/init.h>
#include <linux/mutex.h>
#include <linux/spinlock.h> #include <linux/spinlock.h>
#include <crypto/internal/skcipher.h> #include <crypto/internal/skcipher.h>
#include <crypto/xts.h> #include <crypto/xts.h>
...@@ -32,11 +33,11 @@ ...@@ -32,11 +33,11 @@
* is called. As paes can handle different kinds of key blobs * is called. As paes can handle different kinds of key blobs
* and padding is also possible, the limits need to be generous. * and padding is also possible, the limits need to be generous.
*/ */
#define PAES_MIN_KEYSIZE 64 #define PAES_MIN_KEYSIZE 16
#define PAES_MAX_KEYSIZE 256 #define PAES_MAX_KEYSIZE 320
static u8 *ctrblk; static u8 *ctrblk;
static DEFINE_SPINLOCK(ctrblk_lock); static DEFINE_MUTEX(ctrblk_lock);
static cpacf_mask_t km_functions, kmc_functions, kmctr_functions; static cpacf_mask_t km_functions, kmc_functions, kmctr_functions;
...@@ -53,10 +54,35 @@ struct key_blob { ...@@ -53,10 +54,35 @@ struct key_blob {
unsigned int keylen; unsigned int keylen;
}; };
static inline int _copy_key_to_kb(struct key_blob *kb, static inline int _key_to_kb(struct key_blob *kb,
const u8 *key, const u8 *key,
unsigned int keylen) unsigned int keylen)
{ {
struct clearkey_header {
u8 type;
u8 res0[3];
u8 version;
u8 res1[3];
u32 keytype;
u32 len;
} __packed * h;
switch (keylen) {
case 16:
case 24:
case 32:
/* clear key value, prepare pkey clear key token in keybuf */
memset(kb->keybuf, 0, sizeof(kb->keybuf));
h = (struct clearkey_header *) kb->keybuf;
h->version = 0x02; /* TOKVER_CLEAR_KEY */
h->keytype = (keylen - 8) >> 3;
h->len = keylen;
memcpy(kb->keybuf + sizeof(*h), key, keylen);
kb->keylen = sizeof(*h) + keylen;
kb->key = kb->keybuf;
break;
default:
/* other key material, let pkey handle this */
if (keylen <= sizeof(kb->keybuf)) if (keylen <= sizeof(kb->keybuf))
kb->key = kb->keybuf; kb->key = kb->keybuf;
else { else {
...@@ -66,6 +92,8 @@ static inline int _copy_key_to_kb(struct key_blob *kb, ...@@ -66,6 +92,8 @@ static inline int _copy_key_to_kb(struct key_blob *kb,
} }
memcpy(kb->key, key, keylen); memcpy(kb->key, key, keylen);
kb->keylen = keylen; kb->keylen = keylen;
break;
}
return 0; return 0;
} }
...@@ -82,16 +110,18 @@ static inline void _free_kb_keybuf(struct key_blob *kb) ...@@ -82,16 +110,18 @@ static inline void _free_kb_keybuf(struct key_blob *kb)
struct s390_paes_ctx { struct s390_paes_ctx {
struct key_blob kb; struct key_blob kb;
struct pkey_protkey pk; struct pkey_protkey pk;
spinlock_t pk_lock;
unsigned long fc; unsigned long fc;
}; };
struct s390_pxts_ctx { struct s390_pxts_ctx {
struct key_blob kb[2]; struct key_blob kb[2];
struct pkey_protkey pk[2]; struct pkey_protkey pk[2];
spinlock_t pk_lock;
unsigned long fc; unsigned long fc;
}; };
static inline int __paes_convert_key(struct key_blob *kb, static inline int __paes_keyblob2pkey(struct key_blob *kb,
struct pkey_protkey *pk) struct pkey_protkey *pk)
{ {
int i, ret; int i, ret;
...@@ -106,22 +136,18 @@ static inline int __paes_convert_key(struct key_blob *kb, ...@@ -106,22 +136,18 @@ static inline int __paes_convert_key(struct key_blob *kb,
return ret; return ret;
} }
static int __paes_set_key(struct s390_paes_ctx *ctx) static inline int __paes_convert_key(struct s390_paes_ctx *ctx)
{ {
unsigned long fc; struct pkey_protkey pkey;
if (__paes_convert_key(&ctx->kb, &ctx->pk)) if (__paes_keyblob2pkey(&ctx->kb, &pkey))
return -EINVAL; return -EINVAL;
/* Pick the correct function code based on the protected key type */ spin_lock_bh(&ctx->pk_lock);
fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KM_PAES_128 : memcpy(&ctx->pk, &pkey, sizeof(pkey));
(ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KM_PAES_192 : spin_unlock_bh(&ctx->pk_lock);
(ctx->pk.type == PKEY_KEYTYPE_AES_256) ? CPACF_KM_PAES_256 : 0;
/* Check if the function code is available */
ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
return ctx->fc ? 0 : -EINVAL; return 0;
} }
static int ecb_paes_init(struct crypto_skcipher *tfm) static int ecb_paes_init(struct crypto_skcipher *tfm)
...@@ -129,6 +155,7 @@ static int ecb_paes_init(struct crypto_skcipher *tfm) ...@@ -129,6 +155,7 @@ static int ecb_paes_init(struct crypto_skcipher *tfm)
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL; ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0; return 0;
} }
...@@ -140,6 +167,24 @@ static void ecb_paes_exit(struct crypto_skcipher *tfm) ...@@ -140,6 +167,24 @@ static void ecb_paes_exit(struct crypto_skcipher *tfm)
_free_kb_keybuf(&ctx->kb); _free_kb_keybuf(&ctx->kb);
} }
static inline int __ecb_paes_set_key(struct s390_paes_ctx *ctx)
{
unsigned long fc;
if (__paes_convert_key(ctx))
return -EINVAL;
/* Pick the correct function code based on the protected key type */
fc = (ctx->pk.type == PKEY_KEYTYPE_AES_128) ? CPACF_KM_PAES_128 :
(ctx->pk.type == PKEY_KEYTYPE_AES_192) ? CPACF_KM_PAES_192 :
(ctx->pk.type == PKEY_KEYTYPE_AES_256) ? CPACF_KM_PAES_256 : 0;
/* Check if the function code is available */
ctx->fc = (fc && cpacf_test_func(&km_functions, fc)) ? fc : 0;
return ctx->fc ? 0 : -EINVAL;
}
static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len) unsigned int key_len)
{ {
...@@ -147,11 +192,11 @@ static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, ...@@ -147,11 +192,11 @@ static int ecb_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb); _free_kb_keybuf(&ctx->kb);
rc = _copy_key_to_kb(&ctx->kb, in_key, key_len); rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc) if (rc)
return rc; return rc;
return __paes_set_key(ctx); return __ecb_paes_set_key(ctx);
} }
static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier) static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
...@@ -161,18 +206,31 @@ static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier) ...@@ -161,18 +206,31 @@ static int ecb_paes_crypt(struct skcipher_request *req, unsigned long modifier)
struct skcipher_walk walk; struct skcipher_walk walk;
unsigned int nbytes, n, k; unsigned int nbytes, n, k;
int ret; int ret;
struct {
u8 key[MAXPROTKEYSIZE];
} param;
ret = skcipher_walk_virt(&walk, req, false); ret = skcipher_walk_virt(&walk, req, false);
if (ret)
return ret;
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) { while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */ /* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1); n = nbytes & ~(AES_BLOCK_SIZE - 1);
k = cpacf_km(ctx->fc | modifier, ctx->pk.protkey, k = cpacf_km(ctx->fc | modifier, &param,
walk.dst.virt.addr, walk.src.virt.addr, n); walk.dst.virt.addr, walk.src.virt.addr, n);
if (k) if (k)
ret = skcipher_walk_done(&walk, nbytes - k); ret = skcipher_walk_done(&walk, nbytes - k);
if (k < n) { if (k < n) {
if (__paes_set_key(ctx) != 0) if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO); return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
} }
} }
return ret; return ret;
...@@ -210,6 +268,7 @@ static int cbc_paes_init(struct crypto_skcipher *tfm) ...@@ -210,6 +268,7 @@ static int cbc_paes_init(struct crypto_skcipher *tfm)
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL; ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0; return 0;
} }
...@@ -221,11 +280,11 @@ static void cbc_paes_exit(struct crypto_skcipher *tfm) ...@@ -221,11 +280,11 @@ static void cbc_paes_exit(struct crypto_skcipher *tfm)
_free_kb_keybuf(&ctx->kb); _free_kb_keybuf(&ctx->kb);
} }
static int __cbc_paes_set_key(struct s390_paes_ctx *ctx) static inline int __cbc_paes_set_key(struct s390_paes_ctx *ctx)
{ {
unsigned long fc; unsigned long fc;
if (__paes_convert_key(&ctx->kb, &ctx->pk)) if (__paes_convert_key(ctx))
return -EINVAL; return -EINVAL;
/* Pick the correct function code based on the protected key type */ /* Pick the correct function code based on the protected key type */
...@@ -246,7 +305,7 @@ static int cbc_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, ...@@ -246,7 +305,7 @@ static int cbc_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb); _free_kb_keybuf(&ctx->kb);
rc = _copy_key_to_kb(&ctx->kb, in_key, key_len); rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc) if (rc)
return rc; return rc;
...@@ -268,8 +327,12 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier) ...@@ -268,8 +327,12 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
ret = skcipher_walk_virt(&walk, req, false); ret = skcipher_walk_virt(&walk, req, false);
if (ret) if (ret)
return ret; return ret;
memcpy(param.iv, walk.iv, AES_BLOCK_SIZE); memcpy(param.iv, walk.iv, AES_BLOCK_SIZE);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE); memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
while ((nbytes = walk.nbytes) != 0) { while ((nbytes = walk.nbytes) != 0) {
/* only use complete blocks */ /* only use complete blocks */
n = nbytes & ~(AES_BLOCK_SIZE - 1); n = nbytes & ~(AES_BLOCK_SIZE - 1);
...@@ -280,9 +343,11 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier) ...@@ -280,9 +343,11 @@ static int cbc_paes_crypt(struct skcipher_request *req, unsigned long modifier)
ret = skcipher_walk_done(&walk, nbytes - k); ret = skcipher_walk_done(&walk, nbytes - k);
} }
if (k < n) { if (k < n) {
if (__cbc_paes_set_key(ctx) != 0) if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO); return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE); memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
} }
} }
return ret; return ret;
...@@ -322,6 +387,7 @@ static int xts_paes_init(struct crypto_skcipher *tfm) ...@@ -322,6 +387,7 @@ static int xts_paes_init(struct crypto_skcipher *tfm)
ctx->kb[0].key = NULL; ctx->kb[0].key = NULL;
ctx->kb[1].key = NULL; ctx->kb[1].key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0; return 0;
} }
...@@ -334,12 +400,27 @@ static void xts_paes_exit(struct crypto_skcipher *tfm) ...@@ -334,12 +400,27 @@ static void xts_paes_exit(struct crypto_skcipher *tfm)
_free_kb_keybuf(&ctx->kb[1]); _free_kb_keybuf(&ctx->kb[1]);
} }
static int __xts_paes_set_key(struct s390_pxts_ctx *ctx) static inline int __xts_paes_convert_key(struct s390_pxts_ctx *ctx)
{
struct pkey_protkey pkey0, pkey1;
if (__paes_keyblob2pkey(&ctx->kb[0], &pkey0) ||
__paes_keyblob2pkey(&ctx->kb[1], &pkey1))
return -EINVAL;
spin_lock_bh(&ctx->pk_lock);
memcpy(&ctx->pk[0], &pkey0, sizeof(pkey0));
memcpy(&ctx->pk[1], &pkey1, sizeof(pkey1));
spin_unlock_bh(&ctx->pk_lock);
return 0;
}
static inline int __xts_paes_set_key(struct s390_pxts_ctx *ctx)
{ {
unsigned long fc; unsigned long fc;
if (__paes_convert_key(&ctx->kb[0], &ctx->pk[0]) || if (__xts_paes_convert_key(ctx))
__paes_convert_key(&ctx->kb[1], &ctx->pk[1]))
return -EINVAL; return -EINVAL;
if (ctx->pk[0].type != ctx->pk[1].type) if (ctx->pk[0].type != ctx->pk[1].type)
...@@ -371,10 +452,10 @@ static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, ...@@ -371,10 +452,10 @@ static int xts_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
_free_kb_keybuf(&ctx->kb[0]); _free_kb_keybuf(&ctx->kb[0]);
_free_kb_keybuf(&ctx->kb[1]); _free_kb_keybuf(&ctx->kb[1]);
rc = _copy_key_to_kb(&ctx->kb[0], in_key, key_len); rc = _key_to_kb(&ctx->kb[0], in_key, key_len);
if (rc) if (rc)
return rc; return rc;
rc = _copy_key_to_kb(&ctx->kb[1], in_key + key_len, key_len); rc = _key_to_kb(&ctx->kb[1], in_key + key_len, key_len);
if (rc) if (rc)
return rc; return rc;
...@@ -416,15 +497,17 @@ static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier) ...@@ -416,15 +497,17 @@ static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
ret = skcipher_walk_virt(&walk, req, false); ret = skcipher_walk_virt(&walk, req, false);
if (ret) if (ret)
return ret; return ret;
keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 48 : 64; keylen = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 48 : 64;
offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 16 : 0; offset = (ctx->pk[0].type == PKEY_KEYTYPE_AES_128) ? 16 : 0;
retry:
memset(&pcc_param, 0, sizeof(pcc_param)); memset(&pcc_param, 0, sizeof(pcc_param));
memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak)); memcpy(pcc_param.tweak, walk.iv, sizeof(pcc_param.tweak));
spin_lock_bh(&ctx->pk_lock);
memcpy(pcc_param.key + offset, ctx->pk[1].protkey, keylen); memcpy(pcc_param.key + offset, ctx->pk[1].protkey, keylen);
cpacf_pcc(ctx->fc, pcc_param.key + offset);
memcpy(xts_param.key + offset, ctx->pk[0].protkey, keylen); memcpy(xts_param.key + offset, ctx->pk[0].protkey, keylen);
spin_unlock_bh(&ctx->pk_lock);
cpacf_pcc(ctx->fc, pcc_param.key + offset);
memcpy(xts_param.init, pcc_param.xts, 16); memcpy(xts_param.init, pcc_param.xts, 16);
while ((nbytes = walk.nbytes) != 0) { while ((nbytes = walk.nbytes) != 0) {
...@@ -435,11 +518,15 @@ static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier) ...@@ -435,11 +518,15 @@ static int xts_paes_crypt(struct skcipher_request *req, unsigned long modifier)
if (k) if (k)
ret = skcipher_walk_done(&walk, nbytes - k); ret = skcipher_walk_done(&walk, nbytes - k);
if (k < n) { if (k < n) {
if (__xts_paes_set_key(ctx) != 0) if (__xts_paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO); return skcipher_walk_done(&walk, -EIO);
goto retry; spin_lock_bh(&ctx->pk_lock);
memcpy(xts_param.key + offset,
ctx->pk[0].protkey, keylen);
spin_unlock_bh(&ctx->pk_lock);
} }
} }
return ret; return ret;
} }
...@@ -476,6 +563,7 @@ static int ctr_paes_init(struct crypto_skcipher *tfm) ...@@ -476,6 +563,7 @@ static int ctr_paes_init(struct crypto_skcipher *tfm)
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
ctx->kb.key = NULL; ctx->kb.key = NULL;
spin_lock_init(&ctx->pk_lock);
return 0; return 0;
} }
...@@ -487,11 +575,11 @@ static void ctr_paes_exit(struct crypto_skcipher *tfm) ...@@ -487,11 +575,11 @@ static void ctr_paes_exit(struct crypto_skcipher *tfm)
_free_kb_keybuf(&ctx->kb); _free_kb_keybuf(&ctx->kb);
} }
static int __ctr_paes_set_key(struct s390_paes_ctx *ctx) static inline int __ctr_paes_set_key(struct s390_paes_ctx *ctx)
{ {
unsigned long fc; unsigned long fc;
if (__paes_convert_key(&ctx->kb, &ctx->pk)) if (__paes_convert_key(ctx))
return -EINVAL; return -EINVAL;
/* Pick the correct function code based on the protected key type */ /* Pick the correct function code based on the protected key type */
...@@ -513,7 +601,7 @@ static int ctr_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key, ...@@ -513,7 +601,7 @@ static int ctr_paes_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm); struct s390_paes_ctx *ctx = crypto_skcipher_ctx(tfm);
_free_kb_keybuf(&ctx->kb); _free_kb_keybuf(&ctx->kb);
rc = _copy_key_to_kb(&ctx->kb, in_key, key_len); rc = _key_to_kb(&ctx->kb, in_key, key_len);
if (rc) if (rc)
return rc; return rc;
...@@ -543,49 +631,65 @@ static int ctr_paes_crypt(struct skcipher_request *req) ...@@ -543,49 +631,65 @@ static int ctr_paes_crypt(struct skcipher_request *req)
struct skcipher_walk walk; struct skcipher_walk walk;
unsigned int nbytes, n, k; unsigned int nbytes, n, k;
int ret, locked; int ret, locked;
struct {
locked = spin_trylock(&ctrblk_lock); u8 key[MAXPROTKEYSIZE];
} param;
ret = skcipher_walk_virt(&walk, req, false); ret = skcipher_walk_virt(&walk, req, false);
if (ret)
return ret;
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
locked = mutex_trylock(&ctrblk_lock);
while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) { while ((nbytes = walk.nbytes) >= AES_BLOCK_SIZE) {
n = AES_BLOCK_SIZE; n = AES_BLOCK_SIZE;
if (nbytes >= 2*AES_BLOCK_SIZE && locked) if (nbytes >= 2*AES_BLOCK_SIZE && locked)
n = __ctrblk_init(ctrblk, walk.iv, nbytes); n = __ctrblk_init(ctrblk, walk.iv, nbytes);
ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv; ctrptr = (n > AES_BLOCK_SIZE) ? ctrblk : walk.iv;
k = cpacf_kmctr(ctx->fc, ctx->pk.protkey, walk.dst.virt.addr, k = cpacf_kmctr(ctx->fc, &param, walk.dst.virt.addr,
walk.src.virt.addr, n, ctrptr); walk.src.virt.addr, n, ctrptr);
if (k) { if (k) {
if (ctrptr == ctrblk) if (ctrptr == ctrblk)
memcpy(walk.iv, ctrptr + k - AES_BLOCK_SIZE, memcpy(walk.iv, ctrptr + k - AES_BLOCK_SIZE,
AES_BLOCK_SIZE); AES_BLOCK_SIZE);
crypto_inc(walk.iv, AES_BLOCK_SIZE); crypto_inc(walk.iv, AES_BLOCK_SIZE);
ret = skcipher_walk_done(&walk, nbytes - n); ret = skcipher_walk_done(&walk, nbytes - k);
} }
if (k < n) { if (k < n) {
if (__ctr_paes_set_key(ctx) != 0) { if (__paes_convert_key(ctx)) {
if (locked) if (locked)
spin_unlock(&ctrblk_lock); mutex_unlock(&ctrblk_lock);
return skcipher_walk_done(&walk, -EIO); return skcipher_walk_done(&walk, -EIO);
} }
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
} }
} }
if (locked) if (locked)
spin_unlock(&ctrblk_lock); mutex_unlock(&ctrblk_lock);
/* /*
* final block may be < AES_BLOCK_SIZE, copy only nbytes * final block may be < AES_BLOCK_SIZE, copy only nbytes
*/ */
if (nbytes) { if (nbytes) {
while (1) { while (1) {
if (cpacf_kmctr(ctx->fc, ctx->pk.protkey, buf, if (cpacf_kmctr(ctx->fc, &param, buf,
walk.src.virt.addr, AES_BLOCK_SIZE, walk.src.virt.addr, AES_BLOCK_SIZE,
walk.iv) == AES_BLOCK_SIZE) walk.iv) == AES_BLOCK_SIZE)
break; break;
if (__ctr_paes_set_key(ctx) != 0) if (__paes_convert_key(ctx))
return skcipher_walk_done(&walk, -EIO); return skcipher_walk_done(&walk, -EIO);
spin_lock_bh(&ctx->pk_lock);
memcpy(param.key, ctx->pk.protkey, MAXPROTKEYSIZE);
spin_unlock_bh(&ctx->pk_lock);
} }
memcpy(walk.dst.virt.addr, buf, nbytes); memcpy(walk.dst.virt.addr, buf, nbytes);
crypto_inc(walk.iv, AES_BLOCK_SIZE); crypto_inc(walk.iv, AES_BLOCK_SIZE);
ret = skcipher_walk_done(&walk, 0); ret = skcipher_walk_done(&walk, nbytes);
} }
return ret; return ret;
...@@ -618,12 +722,12 @@ static inline void __crypto_unregister_skcipher(struct skcipher_alg *alg) ...@@ -618,12 +722,12 @@ static inline void __crypto_unregister_skcipher(struct skcipher_alg *alg)
static void paes_s390_fini(void) static void paes_s390_fini(void)
{ {
if (ctrblk)
free_page((unsigned long) ctrblk);
__crypto_unregister_skcipher(&ctr_paes_alg); __crypto_unregister_skcipher(&ctr_paes_alg);
__crypto_unregister_skcipher(&xts_paes_alg); __crypto_unregister_skcipher(&xts_paes_alg);
__crypto_unregister_skcipher(&cbc_paes_alg); __crypto_unregister_skcipher(&cbc_paes_alg);
__crypto_unregister_skcipher(&ecb_paes_alg); __crypto_unregister_skcipher(&ecb_paes_alg);
if (ctrblk)
free_page((unsigned long) ctrblk);
} }
static int __init paes_s390_init(void) static int __init paes_s390_init(void)
...@@ -661,14 +765,14 @@ static int __init paes_s390_init(void) ...@@ -661,14 +765,14 @@ static int __init paes_s390_init(void)
if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_128) || if (cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_128) ||
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_192) || cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_192) ||
cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_256)) { cpacf_test_func(&kmctr_functions, CPACF_KMCTR_PAES_256)) {
ret = crypto_register_skcipher(&ctr_paes_alg);
if (ret)
goto out_err;
ctrblk = (u8 *) __get_free_page(GFP_KERNEL); ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
if (!ctrblk) { if (!ctrblk) {
ret = -ENOMEM; ret = -ENOMEM;
goto out_err; goto out_err;
} }
ret = crypto_register_skcipher(&ctr_paes_alg);
if (ret)
goto out_err;
} }
return 0; return 0;
......
...@@ -54,7 +54,6 @@ typedef u16 kprobe_opcode_t; ...@@ -54,7 +54,6 @@ typedef u16 kprobe_opcode_t;
struct arch_specific_insn { struct arch_specific_insn {
/* copy of original instruction */ /* copy of original instruction */
kprobe_opcode_t *insn; kprobe_opcode_t *insn;
unsigned int is_ftrace_insn : 1;
}; };
struct prev_kprobe { struct prev_kprobe {
......
...@@ -33,6 +33,8 @@ ...@@ -33,6 +33,8 @@
#define ARCH_HAS_PREPARE_HUGEPAGE #define ARCH_HAS_PREPARE_HUGEPAGE
#define ARCH_HAS_HUGEPAGE_CLEAR_FLUSH #define ARCH_HAS_HUGEPAGE_CLEAR_FLUSH
#define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
#include <asm/setup.h> #include <asm/setup.h>
#ifndef __ASSEMBLY__ #ifndef __ASSEMBLY__
......
...@@ -25,10 +25,11 @@ ...@@ -25,10 +25,11 @@
#define MAXPROTKEYSIZE 64 /* a protected key blob may be up to 64 bytes */ #define MAXPROTKEYSIZE 64 /* a protected key blob may be up to 64 bytes */
#define MAXCLRKEYSIZE 32 /* a clear key value may be up to 32 bytes */ #define MAXCLRKEYSIZE 32 /* a clear key value may be up to 32 bytes */
#define MAXAESCIPHERKEYSIZE 136 /* our aes cipher keys have always 136 bytes */ #define MAXAESCIPHERKEYSIZE 136 /* our aes cipher keys have always 136 bytes */
#define MINEP11AESKEYBLOBSIZE 256 /* min EP11 AES key blob size */
#define MAXEP11AESKEYBLOBSIZE 320 /* max EP11 AES key blob size */
/* Minimum and maximum size of a key blob */ /* Minimum size of a key blob */
#define MINKEYBLOBSIZE SECKEYBLOBSIZE #define MINKEYBLOBSIZE SECKEYBLOBSIZE
#define MAXKEYBLOBSIZE MAXAESCIPHERKEYSIZE
/* defines for the type field within the pkey_protkey struct */ /* defines for the type field within the pkey_protkey struct */
#define PKEY_KEYTYPE_AES_128 1 #define PKEY_KEYTYPE_AES_128 1
...@@ -39,6 +40,7 @@ ...@@ -39,6 +40,7 @@
enum pkey_key_type { enum pkey_key_type {
PKEY_TYPE_CCA_DATA = (__u32) 1, PKEY_TYPE_CCA_DATA = (__u32) 1,
PKEY_TYPE_CCA_CIPHER = (__u32) 2, PKEY_TYPE_CCA_CIPHER = (__u32) 2,
PKEY_TYPE_EP11 = (__u32) 3,
}; };
/* the newer ioctls use a pkey_key_size enum for key size information */ /* the newer ioctls use a pkey_key_size enum for key size information */
...@@ -200,7 +202,7 @@ struct pkey_kblob2pkey { ...@@ -200,7 +202,7 @@ struct pkey_kblob2pkey {
/* /*
* Generate secure key, version 2. * Generate secure key, version 2.
* Generate either a CCA AES secure key or a CCA AES cipher key. * Generate CCA AES secure key, CCA AES cipher key or EP11 AES secure key.
* There needs to be a list of apqns given with at least one entry in there. * There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain * All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and * is not supported. The implementation walks through the list of apqns and
...@@ -210,10 +212,13 @@ struct pkey_kblob2pkey { ...@@ -210,10 +212,13 @@ struct pkey_kblob2pkey {
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to * (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to
* generate a list of apqns based on the key type to generate. * generate a list of apqns based on the key type to generate.
* The keygenflags argument is passed to the low level generation functions * The keygenflags argument is passed to the low level generation functions
* individual for the key type and has a key type specific meaning. Currently * individual for the key type and has a key type specific meaning. When
* only CCA AES cipher keys react to this parameter: Use one or more of the * generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_*
* PKEY_KEYGEN_* flags to widen the export possibilities. By default a cipher * flags to widen the export possibilities. By default a cipher key is
* key is only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC). * only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* The keygenflag argument for generating an EP11 AES key should either be 0
* to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and
* XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags.
*/ */
struct pkey_genseck2 { struct pkey_genseck2 {
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets*/ struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets*/
...@@ -229,8 +234,8 @@ struct pkey_genseck2 { ...@@ -229,8 +234,8 @@ struct pkey_genseck2 {
/* /*
* Generate secure key from clear key value, version 2. * Generate secure key from clear key value, version 2.
* Construct a CCA AES secure key or CCA AES cipher key from a given clear key * Construct an CCA AES secure key, CCA AES cipher key or EP11 AES secure
* value. * key from a given clear key value.
* There needs to be a list of apqns given with at least one entry in there. * There needs to be a list of apqns given with at least one entry in there.
* All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain * All apqns in the list need to be exact apqns, 0xFFFF as ANY card or domain
* is not supported. The implementation walks through the list of apqns and * is not supported. The implementation walks through the list of apqns and
...@@ -240,10 +245,13 @@ struct pkey_genseck2 { ...@@ -240,10 +245,13 @@ struct pkey_genseck2 {
* (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to * (return -1 with errno ENODEV). You may use the PKEY_APQNS4KT ioctl to
* generate a list of apqns based on the key type to generate. * generate a list of apqns based on the key type to generate.
* The keygenflags argument is passed to the low level generation functions * The keygenflags argument is passed to the low level generation functions
* individual for the key type and has a key type specific meaning. Currently * individual for the key type and has a key type specific meaning. When
* only CCA AES cipher keys react to this parameter: Use one or more of the * generating CCA cipher keys you can use one or more of the PKEY_KEYGEN_*
* PKEY_KEYGEN_* flags to widen the export possibilities. By default a cipher * flags to widen the export possibilities. By default a cipher key is
* key is only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC). * only exportable for CPACF (PKEY_KEYGEN_XPRT_CPAC).
* The keygenflag argument for generating an EP11 AES key should either be 0
* to use the defaults which are XCP_BLOB_ENCRYPT, XCP_BLOB_DECRYPT and
* XCP_BLOB_PROTKEY_EXTRACTABLE or a valid combination of XCP_BLOB_* flags.
*/ */
struct pkey_clr2seck2 { struct pkey_clr2seck2 {
struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */ struct pkey_apqn __user *apqns; /* in: ptr to list of apqn targets */
...@@ -266,14 +274,19 @@ struct pkey_clr2seck2 { ...@@ -266,14 +274,19 @@ struct pkey_clr2seck2 {
* with one apqn able to handle this key. * with one apqn able to handle this key.
* The function also checks for the master key verification patterns * The function also checks for the master key verification patterns
* of the key matching to the current or alternate mkvp of the apqn. * of the key matching to the current or alternate mkvp of the apqn.
* Currently CCA AES secure keys and CCA AES cipher keys are supported. * For CCA AES secure keys and CCA AES cipher keys this means to check
* The flags field is updated with some additional info about the apqn mkvp * the key's mkvp against the current or old mkvp of the apqns. The flags
* field is updated with some additional info about the apqn mkvp
* match: If the current mkvp matches to the key's mkvp then the * match: If the current mkvp matches to the key's mkvp then the
* PKEY_FLAGS_MATCH_CUR_MKVP bit is set, if the alternate mkvp matches to * PKEY_FLAGS_MATCH_CUR_MKVP bit is set, if the alternate mkvp matches to
* the key's mkvp the PKEY_FLAGS_MATCH_ALT_MKVP is set. For CCA keys the * the key's mkvp the PKEY_FLAGS_MATCH_ALT_MKVP is set. For CCA keys the
* alternate mkvp is the old master key verification pattern. * alternate mkvp is the old master key verification pattern.
* CCA AES secure keys are also checked to have the CPACF export allowed * CCA AES secure keys are also checked to have the CPACF export allowed
* bit enabled (XPRTCPAC) in the kmf1 field. * bit enabled (XPRTCPAC) in the kmf1 field.
* EP11 keys are also supported and the wkvp of the key is checked against
* the current wkvp of the apqns. There is no alternate for this type of
* key and so on a match the flag PKEY_FLAGS_MATCH_CUR_MKVP always is set.
* EP11 keys are also checked to have XCP_BLOB_PROTKEY_EXTRACTABLE set.
* The ioctl returns 0 as long as the given or found apqn matches to * The ioctl returns 0 as long as the given or found apqn matches to
* matches with the current or alternate mkvp to the key's mkvp. If the given * matches with the current or alternate mkvp to the key's mkvp. If the given
* apqn does not match or there is no such apqn found, -1 with errno * apqn does not match or there is no such apqn found, -1 with errno
...@@ -313,16 +326,20 @@ struct pkey_kblob2pkey2 { ...@@ -313,16 +326,20 @@ struct pkey_kblob2pkey2 {
/* /*
* Build a list of APQNs based on a key blob given. * Build a list of APQNs based on a key blob given.
* Is able to find out which type of secure key is given (CCA AES secure * Is able to find out which type of secure key is given (CCA AES secure
* key or CCA AES cipher key) and tries to find all matching crypto cards * key, CCA AES cipher key or EP11 AES key) and tries to find all matching
* based on the MKVP and maybe other criterias (like CCA AES cipher keys * crypto cards based on the MKVP and maybe other criterias (like CCA AES
* need a CEX5C or higher). The list of APQNs is further filtered by the key's * cipher keys need a CEX5C or higher, EP11 keys with BLOB_PKEY_EXTRACTABLE
* mkvp which needs to match to either the current mkvp or the alternate mkvp * need a CEX7 and EP11 api version 4). The list of APQNs is further filtered
* (which is the old mkvp on CCA adapters) of the apqns. The flags argument may * by the key's mkvp which needs to match to either the current mkvp (CCA and
* be used to limit the matching apqns. If the PKEY_FLAGS_MATCH_CUR_MKVP is * EP11) or the alternate mkvp (old mkvp, CCA adapters only) of the apqns. The
* given, only the current mkvp of each apqn is compared. Likewise with the * flags argument may be used to limit the matching apqns. If the
* PKEY_FLAGS_MATCH_ALT_MKVP. If both are given, it is assumed to * PKEY_FLAGS_MATCH_CUR_MKVP is given, only the current mkvp of each apqn is
* return apqns where either the current or the alternate mkvp * compared. Likewise with the PKEY_FLAGS_MATCH_ALT_MKVP. If both are given, it
* is assumed to return apqns where either the current or the alternate mkvp
* matches. At least one of the matching flags needs to be given. * matches. At least one of the matching flags needs to be given.
* The flags argument for EP11 keys has no further action and is currently
* ignored (but needs to be given as PKEY_FLAGS_MATCH_CUR_MKVP) as there is only
* the wkvp from the key to match against the apqn's wkvp.
* The list of matching apqns is stored into the space given by the apqns * The list of matching apqns is stored into the space given by the apqns
* argument and the number of stored entries goes into apqn_entries. If the list * argument and the number of stored entries goes into apqn_entries. If the list
* is empty (apqn_entries is 0) the apqn_entries field is updated to the number * is empty (apqn_entries is 0) the apqn_entries field is updated to the number
...@@ -356,6 +373,10 @@ struct pkey_apqns4key { ...@@ -356,6 +373,10 @@ struct pkey_apqns4key {
* If both are given, it is assumed to return apqns where either the * If both are given, it is assumed to return apqns where either the
* current or the alternate mkvp matches. If no match flag is given * current or the alternate mkvp matches. If no match flag is given
* (flags is 0) the mkvp values are ignored for the match process. * (flags is 0) the mkvp values are ignored for the match process.
* For EP11 keys there is only the current wkvp. So if the apqns should also
* match to a given wkvp, then the PKEY_FLAGS_MATCH_CUR_MKVP flag should be
* set. The wkvp value is 32 bytes but only the leftmost 16 bytes are compared
* against the leftmost 16 byte of the wkvp of the apqn.
* The list of matching apqns is stored into the space given by the apqns * The list of matching apqns is stored into the space given by the apqns
* argument and the number of stored entries goes into apqn_entries. If the list * argument and the number of stored entries goes into apqn_entries. If the list
* is empty (apqn_entries is 0) the apqn_entries field is updated to the number * is empty (apqn_entries is 0) the apqn_entries field is updated to the number
......
...@@ -162,10 +162,10 @@ struct ica_xcRB { ...@@ -162,10 +162,10 @@ struct ica_xcRB {
*/ */
struct ep11_cprb { struct ep11_cprb {
__u16 cprb_len; __u16 cprb_len;
unsigned char cprb_ver_id; __u8 cprb_ver_id;
unsigned char pad_000[2]; __u8 pad_000[2];
unsigned char flags; __u8 flags;
unsigned char func_id[2]; __u8 func_id[2];
__u32 source_id; __u32 source_id;
__u32 target_id; __u32 target_id;
__u32 ret_code; __u32 ret_code;
...@@ -197,13 +197,13 @@ struct ep11_target_dev { ...@@ -197,13 +197,13 @@ struct ep11_target_dev {
*/ */
struct ep11_urb { struct ep11_urb {
__u16 targets_num; __u16 targets_num;
__u64 targets; __u8 __user *targets;
__u64 weight; __u64 weight;
__u64 req_no; __u64 req_no;
__u64 req_len; __u64 req_len;
__u64 req; __u8 __user *req;
__u64 resp_len; __u64 resp_len;
__u64 resp; __u8 __user *resp;
} __attribute__((packed)); } __attribute__((packed));
/** /**
...@@ -238,6 +238,8 @@ struct zcrypt_device_matrix_ext { ...@@ -238,6 +238,8 @@ struct zcrypt_device_matrix_ext {
}; };
#define AUTOSELECT 0xFFFFFFFF #define AUTOSELECT 0xFFFFFFFF
#define AUTOSEL_AP ((__u16) 0xFFFF)
#define AUTOSEL_DOM ((__u16) 0xFFFF)
#define ZCRYPT_IOCTL_MAGIC 'z' #define ZCRYPT_IOCTL_MAGIC 'z'
......
...@@ -72,15 +72,6 @@ static inline void ftrace_generate_orig_insn(struct ftrace_insn *insn) ...@@ -72,15 +72,6 @@ static inline void ftrace_generate_orig_insn(struct ftrace_insn *insn)
#endif #endif
} }
static inline int is_kprobe_on_ftrace(struct ftrace_insn *insn)
{
#ifdef CONFIG_KPROBES
if (insn->opc == BREAKPOINT_INSTRUCTION)
return 1;
#endif
return 0;
}
static inline void ftrace_generate_kprobe_nop_insn(struct ftrace_insn *insn) static inline void ftrace_generate_kprobe_nop_insn(struct ftrace_insn *insn)
{ {
#ifdef CONFIG_KPROBES #ifdef CONFIG_KPROBES
...@@ -114,16 +105,6 @@ int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec, ...@@ -114,16 +105,6 @@ int ftrace_make_nop(struct module *mod, struct dyn_ftrace *rec,
/* Initial code replacement */ /* Initial code replacement */
ftrace_generate_orig_insn(&orig); ftrace_generate_orig_insn(&orig);
ftrace_generate_nop_insn(&new); ftrace_generate_nop_insn(&new);
} else if (is_kprobe_on_ftrace(&old)) {
/*
* If we find a breakpoint instruction, a kprobe has been
* placed at the beginning of the function. We write the
* constant KPROBE_ON_FTRACE_NOP into the remaining four
* bytes of the original instruction so that the kprobes
* handler can execute a nop, if it reaches this breakpoint.
*/
ftrace_generate_kprobe_call_insn(&orig);
ftrace_generate_kprobe_nop_insn(&new);
} else { } else {
/* Replace ftrace call with a nop. */ /* Replace ftrace call with a nop. */
ftrace_generate_call_insn(&orig, rec->ip); ftrace_generate_call_insn(&orig, rec->ip);
...@@ -142,21 +123,10 @@ int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr) ...@@ -142,21 +123,10 @@ int ftrace_make_call(struct dyn_ftrace *rec, unsigned long addr)
if (probe_kernel_read(&old, (void *) rec->ip, sizeof(old))) if (probe_kernel_read(&old, (void *) rec->ip, sizeof(old)))
return -EFAULT; return -EFAULT;
if (is_kprobe_on_ftrace(&old)) {
/*
* If we find a breakpoint instruction, a kprobe has been
* placed at the beginning of the function. We write the
* constant KPROBE_ON_FTRACE_CALL into the remaining four
* bytes of the original instruction so that the kprobes
* handler can execute a brasl if it reaches this breakpoint.
*/
ftrace_generate_kprobe_nop_insn(&orig);
ftrace_generate_kprobe_call_insn(&new);
} else {
/* Replace nop with an ftrace call. */ /* Replace nop with an ftrace call. */
ftrace_generate_nop_insn(&orig); ftrace_generate_nop_insn(&orig);
ftrace_generate_call_insn(&new, rec->ip); ftrace_generate_call_insn(&new, rec->ip);
}
/* Verify that the to be replaced code matches what we expect. */ /* Verify that the to be replaced code matches what we expect. */
if (memcmp(&orig, &old, sizeof(old))) if (memcmp(&orig, &old, sizeof(old)))
return -EINVAL; return -EINVAL;
...@@ -241,3 +211,45 @@ int ftrace_disable_ftrace_graph_caller(void) ...@@ -241,3 +211,45 @@ int ftrace_disable_ftrace_graph_caller(void)
} }
#endif /* CONFIG_FUNCTION_GRAPH_TRACER */ #endif /* CONFIG_FUNCTION_GRAPH_TRACER */
#ifdef CONFIG_KPROBES_ON_FTRACE
void kprobe_ftrace_handler(unsigned long ip, unsigned long parent_ip,
struct ftrace_ops *ops, struct pt_regs *regs)
{
struct kprobe_ctlblk *kcb;
struct kprobe *p = get_kprobe((kprobe_opcode_t *)ip);
if (unlikely(!p) || kprobe_disabled(p))
return;
if (kprobe_running()) {
kprobes_inc_nmissed_count(p);
return;
}
__this_cpu_write(current_kprobe, p);
kcb = get_kprobe_ctlblk();
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
instruction_pointer_set(regs, ip);
if (!p->pre_handler || !p->pre_handler(p, regs)) {
instruction_pointer_set(regs, ip + MCOUNT_INSN_SIZE);
if (unlikely(p->post_handler)) {
kcb->kprobe_status = KPROBE_HIT_SSDONE;
p->post_handler(p, regs, 0);
}
}
__this_cpu_write(current_kprobe, NULL);
}
NOKPROBE_SYMBOL(kprobe_ftrace_handler);
int arch_prepare_kprobe_ftrace(struct kprobe *p)
{
p->ainsn.insn = NULL;
return 0;
}
#endif
...@@ -56,20 +56,9 @@ struct kprobe_insn_cache kprobe_s390_insn_slots = { ...@@ -56,20 +56,9 @@ struct kprobe_insn_cache kprobe_s390_insn_slots = {
static void copy_instruction(struct kprobe *p) static void copy_instruction(struct kprobe *p)
{ {
unsigned long ip = (unsigned long) p->addr;
s64 disp, new_disp; s64 disp, new_disp;
u64 addr, new_addr; u64 addr, new_addr;
if (ftrace_location(ip) == ip) {
/*
* If kprobes patches the instruction that is morphed by
* ftrace make sure that kprobes always sees the branch
* "jg .+24" that skips the mcount block or the "brcl 0,0"
* in case of hotpatch.
*/
ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
p->ainsn.is_ftrace_insn = 1;
} else
memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8)); memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
p->opcode = p->ainsn.insn[0]; p->opcode = p->ainsn.insn[0];
if (!probe_is_insn_relative_long(p->ainsn.insn)) if (!probe_is_insn_relative_long(p->ainsn.insn))
...@@ -136,11 +125,6 @@ int arch_prepare_kprobe(struct kprobe *p) ...@@ -136,11 +125,6 @@ int arch_prepare_kprobe(struct kprobe *p)
} }
NOKPROBE_SYMBOL(arch_prepare_kprobe); NOKPROBE_SYMBOL(arch_prepare_kprobe);
int arch_check_ftrace_location(struct kprobe *p)
{
return 0;
}
struct swap_insn_args { struct swap_insn_args {
struct kprobe *p; struct kprobe *p;
unsigned int arm_kprobe : 1; unsigned int arm_kprobe : 1;
...@@ -149,28 +133,11 @@ struct swap_insn_args { ...@@ -149,28 +133,11 @@ struct swap_insn_args {
static int swap_instruction(void *data) static int swap_instruction(void *data)
{ {
struct swap_insn_args *args = data; struct swap_insn_args *args = data;
struct ftrace_insn new_insn, *insn;
struct kprobe *p = args->p; struct kprobe *p = args->p;
size_t len; u16 opc;
new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode; opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
len = sizeof(new_insn.opc); s390_kernel_write(p->addr, &opc, sizeof(opc));
if (!p->ainsn.is_ftrace_insn)
goto skip_ftrace;
len = sizeof(new_insn);
insn = (struct ftrace_insn *) p->addr;
if (args->arm_kprobe) {
if (is_ftrace_nop(insn))
new_insn.disp = KPROBE_ON_FTRACE_NOP;
else
new_insn.disp = KPROBE_ON_FTRACE_CALL;
} else {
ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
if (insn->disp == KPROBE_ON_FTRACE_NOP)
ftrace_generate_nop_insn(&new_insn);
}
skip_ftrace:
s390_kernel_write(p->addr, &new_insn, len);
return 0; return 0;
} }
NOKPROBE_SYMBOL(swap_instruction); NOKPROBE_SYMBOL(swap_instruction);
...@@ -464,24 +431,6 @@ static void resume_execution(struct kprobe *p, struct pt_regs *regs) ...@@ -464,24 +431,6 @@ static void resume_execution(struct kprobe *p, struct pt_regs *regs)
unsigned long ip = regs->psw.addr; unsigned long ip = regs->psw.addr;
int fixup = probe_get_fixup_type(p->ainsn.insn); int fixup = probe_get_fixup_type(p->ainsn.insn);
/* Check if the kprobes location is an enabled ftrace caller */
if (p->ainsn.is_ftrace_insn) {
struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
struct ftrace_insn call_insn;
ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
/*
* A kprobe on an enabled ftrace call site actually single
* stepped an unconditional branch (ftrace nop equivalent).
* Now we need to fixup things and pretend that a brasl r0,...
* was executed instead.
*/
if (insn->disp == KPROBE_ON_FTRACE_CALL) {
ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
}
}
if (fixup & FIXUP_PSW_NORMAL) if (fixup & FIXUP_PSW_NORMAL)
ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn; ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
......
...@@ -42,6 +42,9 @@ ENTRY(ftrace_caller) ...@@ -42,6 +42,9 @@ ENTRY(ftrace_caller)
.globl ftrace_regs_caller .globl ftrace_regs_caller
.set ftrace_regs_caller,ftrace_caller .set ftrace_regs_caller,ftrace_caller
stg %r14,(__SF_GPRS+8*8)(%r15) # save traced function caller stg %r14,(__SF_GPRS+8*8)(%r15) # save traced function caller
lghi %r14,0 # save condition code
ipm %r14 # don't put any instructions
sllg %r14,%r14,16 # clobbering CC before this point
lgr %r1,%r15 lgr %r1,%r15
#if !(defined(CC_USING_HOTPATCH) || defined(CC_USING_NOP_MCOUNT)) #if !(defined(CC_USING_HOTPATCH) || defined(CC_USING_NOP_MCOUNT))
aghi %r0,MCOUNT_RETURN_FIXUP aghi %r0,MCOUNT_RETURN_FIXUP
...@@ -54,6 +57,9 @@ ENTRY(ftrace_caller) ...@@ -54,6 +57,9 @@ ENTRY(ftrace_caller)
# allocate pt_regs and stack frame for ftrace_trace_function # allocate pt_regs and stack frame for ftrace_trace_function
aghi %r15,-STACK_FRAME_SIZE aghi %r15,-STACK_FRAME_SIZE
stg %r1,(STACK_PTREGS_GPRS+15*8)(%r15) stg %r1,(STACK_PTREGS_GPRS+15*8)(%r15)
stg %r14,(STACK_PTREGS_PSW)(%r15)
lg %r14,(__SF_GPRS+8*8)(%r1) # restore original return address
stosm (STACK_PTREGS_PSW)(%r15),0
aghi %r1,-TRACED_FUNC_FRAME_SIZE aghi %r1,-TRACED_FUNC_FRAME_SIZE
stg %r1,__SF_BACKCHAIN(%r15) stg %r1,__SF_BACKCHAIN(%r15)
stg %r0,(STACK_PTREGS_PSW+8)(%r15) stg %r0,(STACK_PTREGS_PSW+8)(%r15)
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
/* /*
* IBM System z Huge TLB Page Support for Kernel. * IBM System z Huge TLB Page Support for Kernel.
* *
* Copyright IBM Corp. 2007,2016 * Copyright IBM Corp. 2007,2020
* Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com> * Author(s): Gerald Schaefer <gerald.schaefer@de.ibm.com>
*/ */
...@@ -11,6 +11,9 @@ ...@@ -11,6 +11,9 @@
#include <linux/mm.h> #include <linux/mm.h>
#include <linux/hugetlb.h> #include <linux/hugetlb.h>
#include <linux/mman.h>
#include <linux/sched/mm.h>
#include <linux/security.h>
/* /*
* If the bit selected by single-bit bitmask "a" is set within "x", move * If the bit selected by single-bit bitmask "a" is set within "x", move
...@@ -267,3 +270,98 @@ static __init int setup_hugepagesz(char *opt) ...@@ -267,3 +270,98 @@ static __init int setup_hugepagesz(char *opt)
return 1; return 1;
} }
__setup("hugepagesz=", setup_hugepagesz); __setup("hugepagesz=", setup_hugepagesz);
static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
unsigned long addr, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
info.flags = 0;
info.length = len;
info.low_limit = current->mm->mmap_base;
info.high_limit = TASK_SIZE;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
return vm_unmapped_area(&info);
}
static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
unsigned long addr0, unsigned long len,
unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct vm_unmapped_area_info info;
unsigned long addr;
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
info.low_limit = max(PAGE_SIZE, mmap_min_addr);
info.high_limit = current->mm->mmap_base;
info.align_mask = PAGE_MASK & ~huge_page_mask(h);
info.align_offset = 0;
addr = vm_unmapped_area(&info);
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
if (addr & ~PAGE_MASK) {
VM_BUG_ON(addr != -ENOMEM);
info.flags = 0;
info.low_limit = TASK_UNMAPPED_BASE;
info.high_limit = TASK_SIZE;
addr = vm_unmapped_area(&info);
}
return addr;
}
unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct hstate *h = hstate_file(file);
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
int rc;
if (len & ~huge_page_mask(h))
return -EINVAL;
if (len > TASK_SIZE - mmap_min_addr)
return -ENOMEM;
if (flags & MAP_FIXED) {
if (prepare_hugepage_range(file, addr, len))
return -EINVAL;
goto check_asce_limit;
}
if (addr) {
addr = ALIGN(addr, huge_page_size(h));
vma = find_vma(mm, addr);
if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
(!vma || addr + len <= vm_start_gap(vma)))
goto check_asce_limit;
}
if (mm->get_unmapped_area == arch_get_unmapped_area)
addr = hugetlb_get_unmapped_area_bottomup(file, addr, len,
pgoff, flags);
else
addr = hugetlb_get_unmapped_area_topdown(file, addr, len,
pgoff, flags);
if (addr & ~PAGE_MASK)
return addr;
check_asce_limit:
if (addr + len > current->mm->context.asce_limit &&
addr + len <= TASK_SIZE) {
rc = crst_table_upgrade(mm, addr + len);
if (rc)
return (unsigned long) rc;
}
return addr;
}
...@@ -7,7 +7,8 @@ ap-objs := ap_bus.o ap_card.o ap_queue.o ...@@ -7,7 +7,8 @@ ap-objs := ap_bus.o ap_card.o ap_queue.o
obj-$(subst m,y,$(CONFIG_ZCRYPT)) += ap.o obj-$(subst m,y,$(CONFIG_ZCRYPT)) += ap.o
# zcrypt_api.o and zcrypt_msgtype*.o depend on ap.o # zcrypt_api.o and zcrypt_msgtype*.o depend on ap.o
zcrypt-objs := zcrypt_api.o zcrypt_card.o zcrypt_queue.o zcrypt-objs := zcrypt_api.o zcrypt_card.o zcrypt_queue.o
zcrypt-objs += zcrypt_msgtype6.o zcrypt_msgtype50.o zcrypt_ccamisc.o zcrypt-objs += zcrypt_msgtype6.o zcrypt_msgtype50.o
zcrypt-objs += zcrypt_ccamisc.o zcrypt_ep11misc.o
obj-$(CONFIG_ZCRYPT) += zcrypt.o obj-$(CONFIG_ZCRYPT) += zcrypt.o
# adapter drivers depend on ap.o and zcrypt.o # adapter drivers depend on ap.o and zcrypt.o
obj-$(CONFIG_ZCRYPT) += zcrypt_cex2c.o zcrypt_cex2a.o zcrypt_cex4.o obj-$(CONFIG_ZCRYPT) += zcrypt_cex2c.o zcrypt_cex2a.o zcrypt_cex4.o
......
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#include "zcrypt_api.h" #include "zcrypt_api.h"
#include "zcrypt_ccamisc.h" #include "zcrypt_ccamisc.h"
#include "zcrypt_ep11misc.h"
MODULE_LICENSE("GPL"); MODULE_LICENSE("GPL");
MODULE_AUTHOR("IBM Corporation"); MODULE_AUTHOR("IBM Corporation");
...@@ -71,6 +72,17 @@ struct protaeskeytoken { ...@@ -71,6 +72,17 @@ struct protaeskeytoken {
u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */ u8 protkey[MAXPROTKEYSIZE]; /* the protected key blob */
} __packed; } __packed;
/* inside view of a clear key token (type 0x00 version 0x02) */
struct clearaeskeytoken {
u8 type; /* 0x00 for PAES specific key tokens */
u8 res0[3];
u8 version; /* 0x02 for clear AES key token */
u8 res1[3];
u32 keytype; /* key type, one of the PKEY_KEYTYPE values */
u32 len; /* bytes actually stored in clearkey[] */
u8 clearkey[0]; /* clear key value */
} __packed;
/* /*
* Create a protected key from a clear key value. * Create a protected key from a clear key value.
*/ */
...@@ -172,6 +184,72 @@ static int pkey_skey2pkey(const u8 *key, struct pkey_protkey *pkey) ...@@ -172,6 +184,72 @@ static int pkey_skey2pkey(const u8 *key, struct pkey_protkey *pkey)
return rc; return rc;
} }
/*
* Construct EP11 key with given clear key value.
*/
static int pkey_clr2ep11key(const u8 *clrkey, size_t clrkeylen,
u8 *keybuf, size_t *keybuflen)
{
int i, rc;
u16 card, dom;
u32 nr_apqns, *apqns = NULL;
/* build a list of apqns suitable for ep11 keys with cpacf support */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, NULL);
if (rc)
goto out;
/* go through the list of apqns and try to bild an ep11 key */
for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_clr2keyblob(card, dom, clrkeylen * 8,
0, clrkey, keybuf, keybuflen);
if (rc == 0)
break;
}
out:
kfree(apqns);
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
/*
* Find card and transform EP11 secure key into protected key.
*/
static int pkey_ep11key2pkey(const u8 *key, struct pkey_protkey *pkey)
{
int i, rc;
u16 card, dom;
u32 nr_apqns, *apqns = NULL;
struct ep11keyblob *kb = (struct ep11keyblob *) key;
/* build a list of apqns suitable for this key */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
if (rc)
goto out;
/* go through the list of apqns and try to derive an pkey */
for (rc = -ENODEV, i = 0; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_key2protkey(card, dom, key, kb->head.len,
pkey->protkey, &pkey->len, &pkey->type);
if (rc == 0)
break;
}
out:
kfree(apqns);
if (rc)
DEBUG_DBG("%s failed rc=%d\n", __func__, rc);
return rc;
}
/* /*
* Verify key and give back some info about the key. * Verify key and give back some info about the key.
*/ */
...@@ -305,26 +383,90 @@ static int pkey_verifyprotkey(const struct pkey_protkey *protkey) ...@@ -305,26 +383,90 @@ static int pkey_verifyprotkey(const struct pkey_protkey *protkey)
static int pkey_nonccatok2pkey(const u8 *key, u32 keylen, static int pkey_nonccatok2pkey(const u8 *key, u32 keylen,
struct pkey_protkey *protkey) struct pkey_protkey *protkey)
{ {
int rc = -EINVAL;
u8 *tmpbuf = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key; struct keytoken_header *hdr = (struct keytoken_header *)key;
struct protaeskeytoken *t;
switch (hdr->version) { switch (hdr->version) {
case TOKVER_PROTECTED_KEY: case TOKVER_PROTECTED_KEY: {
if (keylen != sizeof(struct protaeskeytoken)) struct protaeskeytoken *t;
return -EINVAL;
if (keylen != sizeof(struct protaeskeytoken))
goto out;
t = (struct protaeskeytoken *)key; t = (struct protaeskeytoken *)key;
protkey->len = t->len; protkey->len = t->len;
protkey->type = t->keytype; protkey->type = t->keytype;
memcpy(protkey->protkey, t->protkey, memcpy(protkey->protkey, t->protkey,
sizeof(protkey->protkey)); sizeof(protkey->protkey));
rc = pkey_verifyprotkey(protkey);
break;
}
case TOKVER_CLEAR_KEY: {
struct clearaeskeytoken *t;
struct pkey_clrkey ckey;
union u_tmpbuf {
u8 skey[SECKEYBLOBSIZE];
u8 ep11key[MAXEP11AESKEYBLOBSIZE];
};
size_t tmpbuflen = sizeof(union u_tmpbuf);
return pkey_verifyprotkey(protkey); if (keylen < sizeof(struct clearaeskeytoken))
goto out;
t = (struct clearaeskeytoken *)key;
if (keylen != sizeof(*t) + t->len)
goto out;
if ((t->keytype == PKEY_KEYTYPE_AES_128 && t->len == 16)
|| (t->keytype == PKEY_KEYTYPE_AES_192 && t->len == 24)
|| (t->keytype == PKEY_KEYTYPE_AES_256 && t->len == 32))
memcpy(ckey.clrkey, t->clearkey, t->len);
else
goto out;
/* alloc temp key buffer space */
tmpbuf = kmalloc(tmpbuflen, GFP_ATOMIC);
if (!tmpbuf) {
rc = -ENOMEM;
goto out;
}
/* try direct way with the PCKMO instruction */
rc = pkey_clr2protkey(t->keytype, &ckey, protkey);
if (rc == 0)
break;
/* PCKMO failed, so try the CCA secure key way */
rc = cca_clr2seckey(0xFFFF, 0xFFFF, t->keytype,
ckey.clrkey, tmpbuf);
if (rc == 0)
rc = pkey_skey2pkey(tmpbuf, protkey);
if (rc == 0)
break;
/* if the CCA way also failed, let's try via EP11 */
rc = pkey_clr2ep11key(ckey.clrkey, t->len,
tmpbuf, &tmpbuflen);
if (rc == 0)
rc = pkey_ep11key2pkey(tmpbuf, protkey);
/* now we should really have an protected key */
DEBUG_ERR("%s unable to build protected key from clear",
__func__);
break;
}
case TOKVER_EP11_AES: {
if (keylen < MINEP11AESKEYBLOBSIZE)
goto out;
/* check ep11 key for exportable as protected key */
rc = ep11_check_aeskeyblob(debug_info, 3, key, 0, 1);
if (rc)
goto out;
rc = pkey_ep11key2pkey(key, protkey);
break;
}
default: default:
DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n", DEBUG_ERR("%s unknown/unsupported non-CCA token version %d\n",
__func__, hdr->version); __func__, hdr->version);
return -EINVAL; rc = -EINVAL;
} }
out:
kfree(tmpbuf);
return rc;
} }
/* /*
...@@ -403,6 +545,10 @@ static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns, ...@@ -403,6 +545,10 @@ static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
if (*keybufsize < SECKEYBLOBSIZE) if (*keybufsize < SECKEYBLOBSIZE)
return -EINVAL; return -EINVAL;
break; break;
case PKEY_TYPE_EP11:
if (*keybufsize < MINEP11AESKEYBLOBSIZE)
return -EINVAL;
break;
default: default:
return -EINVAL; return -EINVAL;
} }
...@@ -419,7 +565,10 @@ static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns, ...@@ -419,7 +565,10 @@ static int pkey_genseckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card; card = apqns[i].card;
dom = apqns[i].domain; dom = apqns[i].domain;
if (ktype == PKEY_TYPE_CCA_DATA) { if (ktype == PKEY_TYPE_EP11) {
rc = ep11_genaeskey(card, dom, ksize, kflags,
keybuf, keybufsize);
} else if (ktype == PKEY_TYPE_CCA_DATA) {
rc = cca_genseckey(card, dom, ksize, keybuf); rc = cca_genseckey(card, dom, ksize, keybuf);
*keybufsize = (rc ? 0 : SECKEYBLOBSIZE); *keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
} else /* TOKVER_CCA_VLSC */ } else /* TOKVER_CCA_VLSC */
...@@ -450,6 +599,10 @@ static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns, ...@@ -450,6 +599,10 @@ static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
if (*keybufsize < SECKEYBLOBSIZE) if (*keybufsize < SECKEYBLOBSIZE)
return -EINVAL; return -EINVAL;
break; break;
case PKEY_TYPE_EP11:
if (*keybufsize < MINEP11AESKEYBLOBSIZE)
return -EINVAL;
break;
default: default:
return -EINVAL; return -EINVAL;
} }
...@@ -466,7 +619,10 @@ static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns, ...@@ -466,7 +619,10 @@ static int pkey_clr2seckey2(const struct pkey_apqn *apqns, size_t nr_apqns,
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card; card = apqns[i].card;
dom = apqns[i].domain; dom = apqns[i].domain;
if (ktype == PKEY_TYPE_CCA_DATA) { if (ktype == PKEY_TYPE_EP11) {
rc = ep11_clr2keyblob(card, dom, ksize, kflags,
clrkey, keybuf, keybufsize);
} else if (ktype == PKEY_TYPE_CCA_DATA) {
rc = cca_clr2seckey(card, dom, ksize, rc = cca_clr2seckey(card, dom, ksize,
clrkey, keybuf); clrkey, keybuf);
*keybufsize = (rc ? 0 : SECKEYBLOBSIZE); *keybufsize = (rc ? 0 : SECKEYBLOBSIZE);
...@@ -489,11 +645,11 @@ static int pkey_verifykey2(const u8 *key, size_t keylen, ...@@ -489,11 +645,11 @@ static int pkey_verifykey2(const u8 *key, size_t keylen,
u32 _nr_apqns, *_apqns = NULL; u32 _nr_apqns, *_apqns = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key; struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header) || if (keylen < sizeof(struct keytoken_header))
hdr->type != TOKTYPE_CCA_INTERNAL)
return -EINVAL; return -EINVAL;
if (hdr->version == TOKVER_CCA_AES) { if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_AES) {
struct secaeskeytoken *t = (struct secaeskeytoken *)key; struct secaeskeytoken *t = (struct secaeskeytoken *)key;
rc = cca_check_secaeskeytoken(debug_info, 3, key, 0); rc = cca_check_secaeskeytoken(debug_info, 3, key, 0);
...@@ -521,7 +677,8 @@ static int pkey_verifykey2(const u8 *key, size_t keylen, ...@@ -521,7 +677,8 @@ static int pkey_verifykey2(const u8 *key, size_t keylen,
*cardnr = ((struct pkey_apqn *)_apqns)->card; *cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain; *domain = ((struct pkey_apqn *)_apqns)->domain;
} else if (hdr->version == TOKVER_CCA_VLSC) { } else if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_VLSC) {
struct cipherkeytoken *t = (struct cipherkeytoken *)key; struct cipherkeytoken *t = (struct cipherkeytoken *)key;
rc = cca_check_secaescipherkey(debug_info, 3, key, 0, 1); rc = cca_check_secaescipherkey(debug_info, 3, key, 0, 1);
...@@ -556,6 +713,29 @@ static int pkey_verifykey2(const u8 *key, size_t keylen, ...@@ -556,6 +713,29 @@ static int pkey_verifykey2(const u8 *key, size_t keylen,
*cardnr = ((struct pkey_apqn *)_apqns)->card; *cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain; *domain = ((struct pkey_apqn *)_apqns)->domain;
} else if (hdr->type == TOKTYPE_NON_CCA
&& hdr->version == TOKVER_EP11_AES) {
struct ep11keyblob *kb = (struct ep11keyblob *)key;
rc = ep11_check_aeskeyblob(debug_info, 3, key, 0, 1);
if (rc)
goto out;
if (ktype)
*ktype = PKEY_TYPE_EP11;
if (ksize)
*ksize = kb->head.keybitlen;
rc = ep11_findcard2(&_apqns, &_nr_apqns, *cardnr, *domain,
ZCRYPT_CEX7, EP11_API_V, kb->wkvp);
if (rc)
goto out;
if (flags)
*flags = PKEY_FLAGS_MATCH_CUR_MKVP;
*cardnr = ((struct pkey_apqn *)_apqns)->card;
*domain = ((struct pkey_apqn *)_apqns)->domain;
} else } else
rc = -EINVAL; rc = -EINVAL;
...@@ -578,30 +758,32 @@ static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns, ...@@ -578,30 +758,32 @@ static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns,
if (keylen < sizeof(struct keytoken_header)) if (keylen < sizeof(struct keytoken_header))
return -EINVAL; return -EINVAL;
switch (hdr->type) { if (hdr->type == TOKTYPE_CCA_INTERNAL) {
case TOKTYPE_NON_CCA: if (hdr->version == TOKVER_CCA_AES) {
return pkey_nonccatok2pkey(key, keylen, pkey);
case TOKTYPE_CCA_INTERNAL:
switch (hdr->version) {
case TOKVER_CCA_AES:
if (keylen != sizeof(struct secaeskeytoken)) if (keylen != sizeof(struct secaeskeytoken))
return -EINVAL; return -EINVAL;
if (cca_check_secaeskeytoken(debug_info, 3, key, 0)) if (cca_check_secaeskeytoken(debug_info, 3, key, 0))
return -EINVAL; return -EINVAL;
break; } else if (hdr->version == TOKVER_CCA_VLSC) {
case TOKVER_CCA_VLSC:
if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE) if (keylen < hdr->len || keylen > MAXCCAVLSCTOKENSIZE)
return -EINVAL; return -EINVAL;
if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1)) if (cca_check_secaescipherkey(debug_info, 3, key, 0, 1))
return -EINVAL; return -EINVAL;
break; } else {
default:
DEBUG_ERR("%s unknown CCA internal token version %d\n", DEBUG_ERR("%s unknown CCA internal token version %d\n",
__func__, hdr->version); __func__, hdr->version);
return -EINVAL; return -EINVAL;
} }
break; } else if (hdr->type == TOKTYPE_NON_CCA) {
default: if (hdr->version == TOKVER_EP11_AES) {
if (keylen < sizeof(struct ep11keyblob))
return -EINVAL;
if (ep11_check_aeskeyblob(debug_info, 3, key, 0, 1))
return -EINVAL;
} else {
return pkey_nonccatok2pkey(key, keylen, pkey);
}
} else {
DEBUG_ERR("%s unknown/unsupported blob type %d\n", DEBUG_ERR("%s unknown/unsupported blob type %d\n",
__func__, hdr->type); __func__, hdr->type);
return -EINVAL; return -EINVAL;
...@@ -611,12 +793,21 @@ static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns, ...@@ -611,12 +793,21 @@ static int pkey_keyblob2pkey2(const struct pkey_apqn *apqns, size_t nr_apqns,
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) { for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i].card; card = apqns[i].card;
dom = apqns[i].domain; dom = apqns[i].domain;
if (hdr->version == TOKVER_CCA_AES) if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_AES)
rc = cca_sec2protkey(card, dom, key, pkey->protkey, rc = cca_sec2protkey(card, dom, key, pkey->protkey,
&pkey->len, &pkey->type); &pkey->len, &pkey->type);
else /* TOKVER_CCA_VLSC */ else if (hdr->type == TOKTYPE_CCA_INTERNAL
&& hdr->version == TOKVER_CCA_VLSC)
rc = cca_cipher2protkey(card, dom, key, pkey->protkey, rc = cca_cipher2protkey(card, dom, key, pkey->protkey,
&pkey->len, &pkey->type); &pkey->len, &pkey->type);
else { /* EP11 AES secure key blob */
struct ep11keyblob *kb = (struct ep11keyblob *) key;
rc = ep11_key2protkey(card, dom, key, kb->head.len,
pkey->protkey, &pkey->len,
&pkey->type);
}
if (rc == 0) if (rc == 0)
break; break;
} }
...@@ -631,12 +822,24 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags, ...@@ -631,12 +822,24 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
u32 _nr_apqns, *_apqns = NULL; u32 _nr_apqns, *_apqns = NULL;
struct keytoken_header *hdr = (struct keytoken_header *)key; struct keytoken_header *hdr = (struct keytoken_header *)key;
if (keylen < sizeof(struct keytoken_header) || if (keylen < sizeof(struct keytoken_header) || flags == 0)
hdr->type != TOKTYPE_CCA_INTERNAL ||
flags == 0)
return -EINVAL; return -EINVAL;
if (hdr->version == TOKVER_CCA_AES || hdr->version == TOKVER_CCA_VLSC) { if (hdr->type == TOKTYPE_NON_CCA && hdr->version == TOKVER_EP11_AES) {
int minhwtype = 0, api = 0;
struct ep11keyblob *kb = (struct ep11keyblob *) key;
if (flags != PKEY_FLAGS_MATCH_CUR_MKVP)
return -EINVAL;
if (kb->attr & EP11_BLOB_PKEY_EXTRACTABLE) {
minhwtype = ZCRYPT_CEX7;
api = EP11_API_V;
}
rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, api, kb->wkvp);
if (rc)
goto out;
} else if (hdr->type == TOKTYPE_CCA_INTERNAL) {
int minhwtype = ZCRYPT_CEX3C; int minhwtype = ZCRYPT_CEX3C;
u64 cur_mkvp = 0, old_mkvp = 0; u64 cur_mkvp = 0, old_mkvp = 0;
...@@ -647,7 +850,7 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags, ...@@ -647,7 +850,7 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
cur_mkvp = t->mkvp; cur_mkvp = t->mkvp;
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP) if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = t->mkvp; old_mkvp = t->mkvp;
} else { } else if (hdr->version == TOKVER_CCA_VLSC) {
struct cipherkeytoken *t = (struct cipherkeytoken *)key; struct cipherkeytoken *t = (struct cipherkeytoken *)key;
minhwtype = ZCRYPT_CEX6; minhwtype = ZCRYPT_CEX6;
...@@ -655,11 +858,17 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags, ...@@ -655,11 +858,17 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
cur_mkvp = t->mkvp0; cur_mkvp = t->mkvp0;
if (flags & PKEY_FLAGS_MATCH_ALT_MKVP) if (flags & PKEY_FLAGS_MATCH_ALT_MKVP)
old_mkvp = t->mkvp0; old_mkvp = t->mkvp0;
} else {
/* unknown cca internal token type */
return -EINVAL;
} }
rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF, rc = cca_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
minhwtype, cur_mkvp, old_mkvp, 1); minhwtype, cur_mkvp, old_mkvp, 1);
if (rc) if (rc)
goto out; goto out;
} else
return -EINVAL;
if (apqns) { if (apqns) {
if (*nr_apqns < _nr_apqns) if (*nr_apqns < _nr_apqns)
rc = -ENOSPC; rc = -ENOSPC;
...@@ -667,7 +876,6 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags, ...@@ -667,7 +876,6 @@ static int pkey_apqns4key(const u8 *key, size_t keylen, u32 flags,
memcpy(apqns, _apqns, _nr_apqns * sizeof(u32)); memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
} }
*nr_apqns = _nr_apqns; *nr_apqns = _nr_apqns;
}
out: out:
kfree(_apqns); kfree(_apqns);
...@@ -695,6 +903,19 @@ static int pkey_apqns4keytype(enum pkey_key_type ktype, ...@@ -695,6 +903,19 @@ static int pkey_apqns4keytype(enum pkey_key_type ktype,
minhwtype, cur_mkvp, old_mkvp, 1); minhwtype, cur_mkvp, old_mkvp, 1);
if (rc) if (rc)
goto out; goto out;
} else if (ktype == PKEY_TYPE_EP11) {
u8 *wkvp = NULL;
if (flags & PKEY_FLAGS_MATCH_CUR_MKVP)
wkvp = cur_mkvp;
rc = ep11_findcard2(&_apqns, &_nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, wkvp);
if (rc)
goto out;
} else
return -EINVAL;
if (apqns) { if (apqns) {
if (*nr_apqns < _nr_apqns) if (*nr_apqns < _nr_apqns)
rc = -ENOSPC; rc = -ENOSPC;
...@@ -702,7 +923,6 @@ static int pkey_apqns4keytype(enum pkey_key_type ktype, ...@@ -702,7 +923,6 @@ static int pkey_apqns4keytype(enum pkey_key_type ktype,
memcpy(apqns, _apqns, _nr_apqns * sizeof(u32)); memcpy(apqns, _apqns, _nr_apqns * sizeof(u32));
} }
*nr_apqns = _nr_apqns; *nr_apqns = _nr_apqns;
}
out: out:
kfree(_apqns); kfree(_apqns);
...@@ -1357,8 +1577,9 @@ static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits, ...@@ -1357,8 +1577,9 @@ static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits,
bool is_xts, char *buf, loff_t off, bool is_xts, char *buf, loff_t off,
size_t count) size_t count)
{ {
size_t keysize; int i, rc, card, dom;
int rc; u32 nr_apqns, *apqns = NULL;
size_t keysize = CCACIPHERTOKENSIZE;
if (off != 0 || count < CCACIPHERTOKENSIZE) if (off != 0 || count < CCACIPHERTOKENSIZE)
return -EINVAL; return -EINVAL;
...@@ -1366,21 +1587,30 @@ static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits, ...@@ -1366,21 +1587,30 @@ static ssize_t pkey_ccacipher_aes_attr_read(enum pkey_key_size keybits,
if (count < 2 * CCACIPHERTOKENSIZE) if (count < 2 * CCACIPHERTOKENSIZE)
return -EINVAL; return -EINVAL;
keysize = CCACIPHERTOKENSIZE; /* build a list of apqns able to generate an cipher key */
rc = cca_gencipherkey(-1, -1, keybits, 0, buf, &keysize); rc = cca_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX6, 0, 0, 0);
if (rc) if (rc)
return rc; return rc;
memset(buf + keysize, 0, CCACIPHERTOKENSIZE - keysize);
if (is_xts) { memset(buf, 0, is_xts ? 2 * keysize : keysize);
keysize = CCACIPHERTOKENSIZE;
rc = cca_gencipherkey(-1, -1, keybits, 0, /* simple try all apqns from the list */
buf + CCACIPHERTOKENSIZE, &keysize); for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
break;
}
if (rc) if (rc)
return rc; return rc;
memset(buf + CCACIPHERTOKENSIZE + keysize, 0,
CCACIPHERTOKENSIZE - keysize);
if (is_xts) {
keysize = CCACIPHERTOKENSIZE;
buf += CCACIPHERTOKENSIZE;
rc = cca_gencipherkey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
return 2 * CCACIPHERTOKENSIZE; return 2 * CCACIPHERTOKENSIZE;
} }
...@@ -1457,10 +1687,134 @@ static struct attribute_group ccacipher_attr_group = { ...@@ -1457,10 +1687,134 @@ static struct attribute_group ccacipher_attr_group = {
.bin_attrs = ccacipher_attrs, .bin_attrs = ccacipher_attrs,
}; };
/*
* Sysfs attribute read function for all ep11 aes key binary attributes.
* The implementation can not deal with partial reads, because a new random
* secure key blob is generated with each read. In case of partial reads
* (i.e. off != 0 or count < key blob size) -EINVAL is returned.
* This function and the sysfs attributes using it provide EP11 key blobs
* padded to the upper limit of MAXEP11AESKEYBLOBSIZE which is currently
* 320 bytes.
*/
static ssize_t pkey_ep11_aes_attr_read(enum pkey_key_size keybits,
bool is_xts, char *buf, loff_t off,
size_t count)
{
int i, rc, card, dom;
u32 nr_apqns, *apqns = NULL;
size_t keysize = MAXEP11AESKEYBLOBSIZE;
if (off != 0 || count < MAXEP11AESKEYBLOBSIZE)
return -EINVAL;
if (is_xts)
if (count < 2 * MAXEP11AESKEYBLOBSIZE)
return -EINVAL;
/* build a list of apqns able to generate an cipher key */
rc = ep11_findcard2(&apqns, &nr_apqns, 0xFFFF, 0xFFFF,
ZCRYPT_CEX7, EP11_API_V, NULL);
if (rc)
return rc;
memset(buf, 0, is_xts ? 2 * keysize : keysize);
/* simple try all apqns from the list */
for (i = 0, rc = -ENODEV; i < nr_apqns; i++) {
card = apqns[i] >> 16;
dom = apqns[i] & 0xFFFF;
rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
break;
}
if (rc)
return rc;
if (is_xts) {
keysize = MAXEP11AESKEYBLOBSIZE;
buf += MAXEP11AESKEYBLOBSIZE;
rc = ep11_genaeskey(card, dom, keybits, 0, buf, &keysize);
if (rc == 0)
return 2 * MAXEP11AESKEYBLOBSIZE;
}
return MAXEP11AESKEYBLOBSIZE;
}
static ssize_t ep11_aes_128_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, false, buf,
off, count);
}
static ssize_t ep11_aes_192_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_192, false, buf,
off, count);
}
static ssize_t ep11_aes_256_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, false, buf,
off, count);
}
static ssize_t ep11_aes_128_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_128, true, buf,
off, count);
}
static ssize_t ep11_aes_256_xts_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off,
size_t count)
{
return pkey_ep11_aes_attr_read(PKEY_SIZE_AES_256, true, buf,
off, count);
}
static BIN_ATTR_RO(ep11_aes_128, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_192, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_256, MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_128_xts, 2 * MAXEP11AESKEYBLOBSIZE);
static BIN_ATTR_RO(ep11_aes_256_xts, 2 * MAXEP11AESKEYBLOBSIZE);
static struct bin_attribute *ep11_attrs[] = {
&bin_attr_ep11_aes_128,
&bin_attr_ep11_aes_192,
&bin_attr_ep11_aes_256,
&bin_attr_ep11_aes_128_xts,
&bin_attr_ep11_aes_256_xts,
NULL
};
static struct attribute_group ep11_attr_group = {
.name = "ep11",
.bin_attrs = ep11_attrs,
};
static const struct attribute_group *pkey_attr_groups[] = { static const struct attribute_group *pkey_attr_groups[] = {
&protkey_attr_group, &protkey_attr_group,
&ccadata_attr_group, &ccadata_attr_group,
&ccacipher_attr_group, &ccacipher_attr_group,
&ep11_attr_group,
NULL, NULL,
}; };
......
...@@ -36,6 +36,7 @@ ...@@ -36,6 +36,7 @@
#include "zcrypt_msgtype6.h" #include "zcrypt_msgtype6.h"
#include "zcrypt_msgtype50.h" #include "zcrypt_msgtype50.h"
#include "zcrypt_ccamisc.h" #include "zcrypt_ccamisc.h"
#include "zcrypt_ep11misc.h"
/* /*
* Module description. * Module description.
...@@ -849,7 +850,7 @@ static long _zcrypt_send_cprb(struct ap_perms *perms, ...@@ -849,7 +850,7 @@ static long _zcrypt_send_cprb(struct ap_perms *perms,
/* check if device is online and eligible */ /* check if device is online and eligible */
if (!zq->online || if (!zq->online ||
!zq->ops->send_cprb || !zq->ops->send_cprb ||
(tdom != (unsigned short) AUTOSELECT && (tdom != AUTOSEL_DOM &&
tdom != AP_QID_QUEUE(zq->queue->qid))) tdom != AP_QID_QUEUE(zq->queue->qid)))
continue; continue;
/* check if device node has admission for this queue */ /* check if device node has admission for this queue */
...@@ -874,7 +875,7 @@ static long _zcrypt_send_cprb(struct ap_perms *perms, ...@@ -874,7 +875,7 @@ static long _zcrypt_send_cprb(struct ap_perms *perms,
/* in case of auto select, provide the correct domain */ /* in case of auto select, provide the correct domain */
qid = pref_zq->queue->qid; qid = pref_zq->queue->qid;
if (*domain == (unsigned short) AUTOSELECT) if (*domain == AUTOSEL_DOM)
*domain = AP_QID_QUEUE(qid); *domain = AP_QID_QUEUE(qid);
rc = pref_zq->ops->send_cprb(pref_zq, xcRB, &ap_msg); rc = pref_zq->ops->send_cprb(pref_zq, xcRB, &ap_msg);
...@@ -901,7 +902,7 @@ static bool is_desired_ep11_card(unsigned int dev_id, ...@@ -901,7 +902,7 @@ static bool is_desired_ep11_card(unsigned int dev_id,
struct ep11_target_dev *targets) struct ep11_target_dev *targets)
{ {
while (target_num-- > 0) { while (target_num-- > 0) {
if (dev_id == targets->ap_id) if (targets->ap_id == dev_id || targets->ap_id == AUTOSEL_AP)
return true; return true;
targets++; targets++;
} }
...@@ -912,15 +913,18 @@ static bool is_desired_ep11_queue(unsigned int dev_qid, ...@@ -912,15 +913,18 @@ static bool is_desired_ep11_queue(unsigned int dev_qid,
unsigned short target_num, unsigned short target_num,
struct ep11_target_dev *targets) struct ep11_target_dev *targets)
{ {
int card = AP_QID_CARD(dev_qid), dom = AP_QID_QUEUE(dev_qid);
while (target_num-- > 0) { while (target_num-- > 0) {
if (AP_MKQID(targets->ap_id, targets->dom_id) == dev_qid) if ((targets->ap_id == card || targets->ap_id == AUTOSEL_AP) &&
(targets->dom_id == dom || targets->dom_id == AUTOSEL_DOM))
return true; return true;
targets++; targets++;
} }
return false; return false;
} }
static long zcrypt_send_ep11_cprb(struct ap_perms *perms, static long _zcrypt_send_ep11_cprb(struct ap_perms *perms,
struct ep11_urb *xcrb) struct ep11_urb *xcrb)
{ {
struct zcrypt_card *zc, *pref_zc; struct zcrypt_card *zc, *pref_zc;
...@@ -1026,6 +1030,12 @@ static long zcrypt_send_ep11_cprb(struct ap_perms *perms, ...@@ -1026,6 +1030,12 @@ static long zcrypt_send_ep11_cprb(struct ap_perms *perms,
return rc; return rc;
} }
long zcrypt_send_ep11_cprb(struct ep11_urb *xcrb)
{
return _zcrypt_send_ep11_cprb(&ap_perms, xcrb);
}
EXPORT_SYMBOL(zcrypt_send_ep11_cprb);
static long zcrypt_rng(char *buffer) static long zcrypt_rng(char *buffer)
{ {
struct zcrypt_card *zc, *pref_zc; struct zcrypt_card *zc, *pref_zc;
...@@ -1366,12 +1376,12 @@ static long zcrypt_unlocked_ioctl(struct file *filp, unsigned int cmd, ...@@ -1366,12 +1376,12 @@ static long zcrypt_unlocked_ioctl(struct file *filp, unsigned int cmd,
if (copy_from_user(&xcrb, uxcrb, sizeof(xcrb))) if (copy_from_user(&xcrb, uxcrb, sizeof(xcrb)))
return -EFAULT; return -EFAULT;
do { do {
rc = zcrypt_send_ep11_cprb(perms, &xcrb); rc = _zcrypt_send_ep11_cprb(perms, &xcrb);
} while (rc == -EAGAIN); } while (rc == -EAGAIN);
/* on failure: retry once again after a requested rescan */ /* on failure: retry once again after a requested rescan */
if ((rc == -ENODEV) && (zcrypt_process_rescan())) if ((rc == -ENODEV) && (zcrypt_process_rescan()))
do { do {
rc = zcrypt_send_ep11_cprb(perms, &xcrb); rc = _zcrypt_send_ep11_cprb(perms, &xcrb);
} while (rc == -EAGAIN); } while (rc == -EAGAIN);
if (rc) if (rc)
ZCRYPT_DBF(DBF_DEBUG, "ioctl ZSENDEP11CPRB rc=%d\n", rc); ZCRYPT_DBF(DBF_DEBUG, "ioctl ZSENDEP11CPRB rc=%d\n", rc);
...@@ -1885,6 +1895,7 @@ void __exit zcrypt_api_exit(void) ...@@ -1885,6 +1895,7 @@ void __exit zcrypt_api_exit(void)
zcrypt_msgtype6_exit(); zcrypt_msgtype6_exit();
zcrypt_msgtype50_exit(); zcrypt_msgtype50_exit();
zcrypt_ccamisc_exit(); zcrypt_ccamisc_exit();
zcrypt_ep11misc_exit();
zcrypt_debug_exit(); zcrypt_debug_exit();
} }
......
...@@ -140,6 +140,7 @@ struct zcrypt_ops *zcrypt_msgtype(unsigned char *, int); ...@@ -140,6 +140,7 @@ struct zcrypt_ops *zcrypt_msgtype(unsigned char *, int);
int zcrypt_api_init(void); int zcrypt_api_init(void);
void zcrypt_api_exit(void); void zcrypt_api_exit(void);
long zcrypt_send_cprb(struct ica_xcRB *xcRB); long zcrypt_send_cprb(struct ica_xcRB *xcRB);
long zcrypt_send_ep11_cprb(struct ep11_urb *urb);
void zcrypt_device_status_mask_ext(struct zcrypt_device_status_ext *devstatus); void zcrypt_device_status_mask_ext(struct zcrypt_device_status_ext *devstatus);
int zcrypt_device_status_ext(int card, int queue, int zcrypt_device_status_ext(int card, int queue,
struct zcrypt_device_status_ext *devstatus); struct zcrypt_device_status_ext *devstatus);
......
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
/* For TOKTYPE_NON_CCA: */ /* For TOKTYPE_NON_CCA: */
#define TOKVER_PROTECTED_KEY 0x01 /* Protected key token */ #define TOKVER_PROTECTED_KEY 0x01 /* Protected key token */
#define TOKVER_CLEAR_KEY 0x02 /* Clear key token */
/* For TOKTYPE_CCA_INTERNAL: */ /* For TOKTYPE_CCA_INTERNAL: */
#define TOKVER_CCA_AES 0x04 /* CCA AES key token */ #define TOKVER_CCA_AES 0x04 /* CCA AES key token */
......
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "zcrypt_error.h" #include "zcrypt_error.h"
#include "zcrypt_cex4.h" #include "zcrypt_cex4.h"
#include "zcrypt_ccamisc.h" #include "zcrypt_ccamisc.h"
#include "zcrypt_ep11misc.h"
#define CEX4A_MIN_MOD_SIZE 1 /* 8 bits */ #define CEX4A_MIN_MOD_SIZE 1 /* 8 bits */
#define CEX4A_MAX_MOD_SIZE_2K 256 /* 2048 bits */ #define CEX4A_MAX_MOD_SIZE_2K 256 /* 2048 bits */
...@@ -71,9 +72,9 @@ static struct ap_device_id zcrypt_cex4_queue_ids[] = { ...@@ -71,9 +72,9 @@ static struct ap_device_id zcrypt_cex4_queue_ids[] = {
MODULE_DEVICE_TABLE(ap, zcrypt_cex4_queue_ids); MODULE_DEVICE_TABLE(ap, zcrypt_cex4_queue_ids);
/* /*
* CCA card addditional device attributes * CCA card additional device attributes
*/ */
static ssize_t serialnr_show(struct device *dev, static ssize_t cca_serialnr_show(struct device *dev,
struct device_attribute *attr, struct device_attribute *attr,
char *buf) char *buf)
{ {
...@@ -88,21 +89,23 @@ static ssize_t serialnr_show(struct device *dev, ...@@ -88,21 +89,23 @@ static ssize_t serialnr_show(struct device *dev,
return snprintf(buf, PAGE_SIZE, "%s\n", ci.serial); return snprintf(buf, PAGE_SIZE, "%s\n", ci.serial);
} }
static DEVICE_ATTR_RO(serialnr);
static struct device_attribute dev_attr_cca_serialnr =
__ATTR(serialnr, 0444, cca_serialnr_show, NULL);
static struct attribute *cca_card_attrs[] = { static struct attribute *cca_card_attrs[] = {
&dev_attr_serialnr.attr, &dev_attr_cca_serialnr.attr,
NULL, NULL,
}; };
static const struct attribute_group cca_card_attr_group = { static const struct attribute_group cca_card_attr_grp = {
.attrs = cca_card_attrs, .attrs = cca_card_attrs,
}; };
/* /*
* CCA queue addditional device attributes * CCA queue additional device attributes
*/ */
static ssize_t mkvps_show(struct device *dev, static ssize_t cca_mkvps_show(struct device *dev,
struct device_attribute *attr, struct device_attribute *attr,
char *buf) char *buf)
{ {
...@@ -138,17 +141,233 @@ static ssize_t mkvps_show(struct device *dev, ...@@ -138,17 +141,233 @@ static ssize_t mkvps_show(struct device *dev,
return n; return n;
} }
static DEVICE_ATTR_RO(mkvps);
static struct device_attribute dev_attr_cca_mkvps =
__ATTR(mkvps, 0444, cca_mkvps_show, NULL);
static struct attribute *cca_queue_attrs[] = { static struct attribute *cca_queue_attrs[] = {
&dev_attr_mkvps.attr, &dev_attr_cca_mkvps.attr,
NULL, NULL,
}; };
static const struct attribute_group cca_queue_attr_group = { static const struct attribute_group cca_queue_attr_grp = {
.attrs = cca_queue_attrs, .attrs = cca_queue_attrs,
}; };
/*
* EP11 card additional device attributes
*/
static ssize_t ep11_api_ordinalnr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
if (ci.API_ord_nr > 0)
return snprintf(buf, PAGE_SIZE, "%u\n", ci.API_ord_nr);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static struct device_attribute dev_attr_ep11_api_ordinalnr =
__ATTR(API_ordinalnr, 0444, ep11_api_ordinalnr_show, NULL);
static ssize_t ep11_fw_version_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
if (ci.FW_version > 0)
return snprintf(buf, PAGE_SIZE, "%d.%d\n",
(int)(ci.FW_version >> 8),
(int)(ci.FW_version & 0xFF));
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static struct device_attribute dev_attr_ep11_fw_version =
__ATTR(FW_version, 0444, ep11_fw_version_show, NULL);
static ssize_t ep11_serialnr_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
if (ci.serial[0])
return snprintf(buf, PAGE_SIZE, "%16.16s\n", ci.serial);
else
return snprintf(buf, PAGE_SIZE, "\n");
}
static struct device_attribute dev_attr_ep11_serialnr =
__ATTR(serialnr, 0444, ep11_serialnr_show, NULL);
static const struct {
int mode_bit;
const char *mode_txt;
} ep11_op_modes[] = {
{ 0, "FIPS2009" },
{ 1, "BSI2009" },
{ 2, "FIPS2011" },
{ 3, "BSI2011" },
{ 6, "BSICC2017" },
{ 0, NULL }
};
static ssize_t ep11_card_op_modes_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int i, n = 0;
struct ep11_card_info ci;
struct ap_card *ac = to_ap_card(dev);
struct zcrypt_card *zc = ac->private;
memset(&ci, 0, sizeof(ci));
ep11_get_card_info(ac->id, &ci, zc->online);
for (i = 0; ep11_op_modes[i].mode_txt; i++) {
if (ci.op_mode & (1 << ep11_op_modes[i].mode_bit)) {
if (n > 0)
buf[n++] = ' ';
n += snprintf(buf + n, PAGE_SIZE - n,
"%s", ep11_op_modes[i].mode_txt);
}
}
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
return n;
}
static struct device_attribute dev_attr_ep11_card_op_modes =
__ATTR(op_modes, 0444, ep11_card_op_modes_show, NULL);
static struct attribute *ep11_card_attrs[] = {
&dev_attr_ep11_api_ordinalnr.attr,
&dev_attr_ep11_fw_version.attr,
&dev_attr_ep11_serialnr.attr,
&dev_attr_ep11_card_op_modes.attr,
NULL,
};
static const struct attribute_group ep11_card_attr_grp = {
.attrs = ep11_card_attrs,
};
/*
* EP11 queue additional device attributes
*/
static ssize_t ep11_mkvps_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int n = 0;
struct ep11_domain_info di;
struct zcrypt_queue *zq = to_ap_queue(dev)->private;
static const char * const cwk_state[] = { "invalid", "valid" };
static const char * const nwk_state[] = { "empty", "uncommitted",
"committed" };
memset(&di, 0, sizeof(di));
if (zq->online)
ep11_get_domain_info(AP_QID_CARD(zq->queue->qid),
AP_QID_QUEUE(zq->queue->qid),
&di);
if (di.cur_wk_state == '0') {
n = snprintf(buf, PAGE_SIZE, "WK CUR: %s -\n",
cwk_state[di.cur_wk_state - '0']);
} else if (di.cur_wk_state == '1') {
n = snprintf(buf, PAGE_SIZE, "WK CUR: %s 0x",
cwk_state[di.cur_wk_state - '0']);
bin2hex(buf + n, di.cur_wkvp, sizeof(di.cur_wkvp));
n += 2 * sizeof(di.cur_wkvp);
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
} else
n = snprintf(buf, PAGE_SIZE, "WK CUR: - -\n");
if (di.new_wk_state == '0') {
n += snprintf(buf + n, PAGE_SIZE - n, "WK NEW: %s -\n",
nwk_state[di.new_wk_state - '0']);
} else if (di.new_wk_state >= '1' && di.new_wk_state <= '2') {
n += snprintf(buf + n, PAGE_SIZE - n, "WK NEW: %s 0x",
nwk_state[di.new_wk_state - '0']);
bin2hex(buf + n, di.new_wkvp, sizeof(di.new_wkvp));
n += 2 * sizeof(di.new_wkvp);
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
} else
n += snprintf(buf + n, PAGE_SIZE - n, "WK NEW: - -\n");
return n;
}
static struct device_attribute dev_attr_ep11_mkvps =
__ATTR(mkvps, 0444, ep11_mkvps_show, NULL);
static ssize_t ep11_queue_op_modes_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int i, n = 0;
struct ep11_domain_info di;
struct zcrypt_queue *zq = to_ap_queue(dev)->private;
memset(&di, 0, sizeof(di));
if (zq->online)
ep11_get_domain_info(AP_QID_CARD(zq->queue->qid),
AP_QID_QUEUE(zq->queue->qid),
&di);
for (i = 0; ep11_op_modes[i].mode_txt; i++) {
if (di.op_mode & (1 << ep11_op_modes[i].mode_bit)) {
if (n > 0)
buf[n++] = ' ';
n += snprintf(buf + n, PAGE_SIZE - n,
"%s", ep11_op_modes[i].mode_txt);
}
}
n += snprintf(buf + n, PAGE_SIZE - n, "\n");
return n;
}
static struct device_attribute dev_attr_ep11_queue_op_modes =
__ATTR(op_modes, 0444, ep11_queue_op_modes_show, NULL);
static struct attribute *ep11_queue_attrs[] = {
&dev_attr_ep11_mkvps.attr,
&dev_attr_ep11_queue_op_modes.attr,
NULL,
};
static const struct attribute_group ep11_queue_attr_grp = {
.attrs = ep11_queue_attrs,
};
/** /**
* Probe function for CEX4/CEX5/CEX6/CEX7 card device. It always * Probe function for CEX4/CEX5/CEX6/CEX7 card device. It always
* accepts the AP device since the bus_match already checked * accepts the AP device since the bus_match already checked
...@@ -313,7 +532,12 @@ static int zcrypt_cex4_card_probe(struct ap_device *ap_dev) ...@@ -313,7 +532,12 @@ static int zcrypt_cex4_card_probe(struct ap_device *ap_dev)
if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) { if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) {
rc = sysfs_create_group(&ap_dev->device.kobj, rc = sysfs_create_group(&ap_dev->device.kobj,
&cca_card_attr_group); &cca_card_attr_grp);
if (rc)
zcrypt_card_unregister(zc);
} else if (ap_test_bit(&ac->functions, AP_FUNC_EP11)) {
rc = sysfs_create_group(&ap_dev->device.kobj,
&ep11_card_attr_grp);
if (rc) if (rc)
zcrypt_card_unregister(zc); zcrypt_card_unregister(zc);
} }
...@@ -332,7 +556,9 @@ static void zcrypt_cex4_card_remove(struct ap_device *ap_dev) ...@@ -332,7 +556,9 @@ static void zcrypt_cex4_card_remove(struct ap_device *ap_dev)
struct zcrypt_card *zc = ac->private; struct zcrypt_card *zc = ac->private;
if (ap_test_bit(&ac->functions, AP_FUNC_COPRO)) if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
sysfs_remove_group(&ap_dev->device.kobj, &cca_card_attr_group); sysfs_remove_group(&ap_dev->device.kobj, &cca_card_attr_grp);
else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
sysfs_remove_group(&ap_dev->device.kobj, &ep11_card_attr_grp);
if (zc) if (zc)
zcrypt_card_unregister(zc); zcrypt_card_unregister(zc);
} }
...@@ -394,7 +620,12 @@ static int zcrypt_cex4_queue_probe(struct ap_device *ap_dev) ...@@ -394,7 +620,12 @@ static int zcrypt_cex4_queue_probe(struct ap_device *ap_dev)
if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) { if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) {
rc = sysfs_create_group(&ap_dev->device.kobj, rc = sysfs_create_group(&ap_dev->device.kobj,
&cca_queue_attr_group); &cca_queue_attr_grp);
if (rc)
zcrypt_queue_unregister(zq);
} else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11)) {
rc = sysfs_create_group(&ap_dev->device.kobj,
&ep11_queue_attr_grp);
if (rc) if (rc)
zcrypt_queue_unregister(zq); zcrypt_queue_unregister(zq);
} }
...@@ -413,7 +644,9 @@ static void zcrypt_cex4_queue_remove(struct ap_device *ap_dev) ...@@ -413,7 +644,9 @@ static void zcrypt_cex4_queue_remove(struct ap_device *ap_dev)
struct zcrypt_queue *zq = aq->private; struct zcrypt_queue *zq = aq->private;
if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO)) if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
sysfs_remove_group(&ap_dev->device.kobj, &cca_queue_attr_group); sysfs_remove_group(&ap_dev->device.kobj, &cca_queue_attr_grp);
else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
sysfs_remove_group(&ap_dev->device.kobj, &ep11_queue_attr_grp);
if (zq) if (zq)
zcrypt_queue_unregister(zq); zcrypt_queue_unregister(zq);
} }
......
// SPDX-License-Identifier: GPL-2.0+
/*
* Copyright IBM Corp. 2019
* Author(s): Harald Freudenberger <freude@linux.ibm.com>
*
* Collection of EP11 misc functions used by zcrypt and pkey
*/
#define KMSG_COMPONENT "zcrypt"
#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <asm/zcrypt.h>
#include <asm/pkey.h>
#include "ap_bus.h"
#include "zcrypt_api.h"
#include "zcrypt_debug.h"
#include "zcrypt_msgtype6.h"
#include "zcrypt_ep11misc.h"
#include "zcrypt_ccamisc.h"
#define DEBUG_DBG(...) ZCRYPT_DBF(DBF_DEBUG, ##__VA_ARGS__)
#define DEBUG_INFO(...) ZCRYPT_DBF(DBF_INFO, ##__VA_ARGS__)
#define DEBUG_WARN(...) ZCRYPT_DBF(DBF_WARN, ##__VA_ARGS__)
#define DEBUG_ERR(...) ZCRYPT_DBF(DBF_ERR, ##__VA_ARGS__)
/* default iv used here */
static const u8 def_iv[16] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff };
/* ep11 card info cache */
struct card_list_entry {
struct list_head list;
u16 cardnr;
struct ep11_card_info info;
};
static LIST_HEAD(card_list);
static DEFINE_SPINLOCK(card_list_lock);
static int card_cache_fetch(u16 cardnr, struct ep11_card_info *ci)
{
int rc = -ENOENT;
struct card_list_entry *ptr;
spin_lock_bh(&card_list_lock);
list_for_each_entry(ptr, &card_list, list) {
if (ptr->cardnr == cardnr) {
memcpy(ci, &ptr->info, sizeof(*ci));
rc = 0;
break;
}
}
spin_unlock_bh(&card_list_lock);
return rc;
}
static void card_cache_update(u16 cardnr, const struct ep11_card_info *ci)
{
int found = 0;
struct card_list_entry *ptr;
spin_lock_bh(&card_list_lock);
list_for_each_entry(ptr, &card_list, list) {
if (ptr->cardnr == cardnr) {
memcpy(&ptr->info, ci, sizeof(*ci));
found = 1;
break;
}
}
if (!found) {
ptr = kmalloc(sizeof(*ptr), GFP_ATOMIC);
if (!ptr) {
spin_unlock_bh(&card_list_lock);
return;
}
ptr->cardnr = cardnr;
memcpy(&ptr->info, ci, sizeof(*ci));
list_add(&ptr->list, &card_list);
}
spin_unlock_bh(&card_list_lock);
}
static void card_cache_scrub(u16 cardnr)
{
struct card_list_entry *ptr;
spin_lock_bh(&card_list_lock);
list_for_each_entry(ptr, &card_list, list) {
if (ptr->cardnr == cardnr) {
list_del(&ptr->list);
kfree(ptr);
break;
}
}
spin_unlock_bh(&card_list_lock);
}
static void __exit card_cache_free(void)
{
struct card_list_entry *ptr, *pnext;
spin_lock_bh(&card_list_lock);
list_for_each_entry_safe(ptr, pnext, &card_list, list) {
list_del(&ptr->list);
kfree(ptr);
}
spin_unlock_bh(&card_list_lock);
}
/*
* Simple check if the key blob is a valid EP11 secure AES key.
*/
int ep11_check_aeskeyblob(debug_info_t *dbg, int dbflvl,
const u8 *key, int keybitsize,
int checkcpacfexport)
{
struct ep11keyblob *kb = (struct ep11keyblob *) key;
#define DBF(...) debug_sprintf_event(dbg, dbflvl, ##__VA_ARGS__)
if (kb->head.type != TOKTYPE_NON_CCA) {
if (dbg)
DBF("%s key check failed, type 0x%02x != 0x%02x\n",
__func__, (int) kb->head.type, TOKTYPE_NON_CCA);
return -EINVAL;
}
if (kb->head.version != TOKVER_EP11_AES) {
if (dbg)
DBF("%s key check failed, version 0x%02x != 0x%02x\n",
__func__, (int) kb->head.version, TOKVER_EP11_AES);
return -EINVAL;
}
if (kb->version != EP11_STRUCT_MAGIC) {
if (dbg)
DBF("%s key check failed, magic 0x%04x != 0x%04x\n",
__func__, (int) kb->version, EP11_STRUCT_MAGIC);
return -EINVAL;
}
switch (kb->head.keybitlen) {
case 128:
case 192:
case 256:
break;
default:
if (dbg)
DBF("%s key check failed, keybitlen %d invalid\n",
__func__, (int) kb->head.keybitlen);
return -EINVAL;
}
if (keybitsize > 0 && keybitsize != (int) kb->head.keybitlen) {
DBF("%s key check failed, keybitsize %d\n",
__func__, keybitsize);
return -EINVAL;
}
if (checkcpacfexport && !(kb->attr & EP11_BLOB_PKEY_EXTRACTABLE)) {
if (dbg)
DBF("%s key check failed, PKEY_EXTRACTABLE is 0\n",
__func__);
return -EINVAL;
}
#undef DBF
return 0;
}
EXPORT_SYMBOL(ep11_check_aeskeyblob);
/*
* Helper function which calls zcrypt_send_ep11_cprb with
* memory management segment adjusted to kernel space
* so that the copy_from_user called within this
* function do in fact copy from kernel space.
*/
static inline int _zcrypt_send_ep11_cprb(struct ep11_urb *urb)
{
int rc;
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
rc = zcrypt_send_ep11_cprb(urb);
set_fs(old_fs);
return rc;
}
/*
* Allocate and prepare ep11 cprb plus additional payload.
*/
static inline struct ep11_cprb *alloc_cprb(size_t payload_len)
{
size_t len = sizeof(struct ep11_cprb) + payload_len;
struct ep11_cprb *cprb;
cprb = kmalloc(len, GFP_KERNEL);
if (!cprb)
return NULL;
memset(cprb, 0, len);
cprb->cprb_len = sizeof(struct ep11_cprb);
cprb->cprb_ver_id = 0x04;
memcpy(cprb->func_id, "T4", 2);
cprb->ret_code = 0xFFFFFFFF;
cprb->payload_len = payload_len;
return cprb;
}
/*
* Some helper functions related to ASN1 encoding.
* Limited to length info <= 2 byte.
*/
#define ASN1TAGLEN(x) (2 + (x) + ((x) > 127 ? 1 : 0) + ((x) > 255 ? 1 : 0))
static int asn1tag_write(u8 *ptr, u8 tag, const u8 *pvalue, u16 valuelen)
{
ptr[0] = tag;
if (valuelen > 255) {
ptr[1] = 0x82;
*((u16 *)(ptr + 2)) = valuelen;
memcpy(ptr + 4, pvalue, valuelen);
return 4 + valuelen;
}
if (valuelen > 127) {
ptr[1] = 0x81;
ptr[2] = (u8) valuelen;
memcpy(ptr + 3, pvalue, valuelen);
return 3 + valuelen;
}
ptr[1] = (u8) valuelen;
memcpy(ptr + 2, pvalue, valuelen);
return 2 + valuelen;
}
/* EP11 payload > 127 bytes starts with this struct */
struct pl_head {
u8 tag;
u8 lenfmt;
u16 len;
u8 func_tag;
u8 func_len;
u32 func;
u8 dom_tag;
u8 dom_len;
u32 dom;
} __packed;
/* prep ep11 payload head helper function */
static inline void prep_head(struct pl_head *h,
size_t pl_size, int api, int func)
{
h->tag = 0x30;
h->lenfmt = 0x82;
h->len = pl_size - 4;
h->func_tag = 0x04;
h->func_len = sizeof(u32);
h->func = (api << 16) + func;
h->dom_tag = 0x04;
h->dom_len = sizeof(u32);
}
/* prep urb helper function */
static inline void prep_urb(struct ep11_urb *u,
struct ep11_target_dev *t, int nt,
struct ep11_cprb *req, size_t req_len,
struct ep11_cprb *rep, size_t rep_len)
{
u->targets = (u8 __user *) t;
u->targets_num = nt;
u->req = (u8 __user *) req;
u->req_len = req_len;
u->resp = (u8 __user *) rep;
u->resp_len = rep_len;
}
/* Check ep11 reply payload, return 0 or suggested errno value. */
static int check_reply_pl(const u8 *pl, const char *func)
{
int len;
u32 ret;
/* start tag */
if (*pl++ != 0x30) {
DEBUG_ERR("%s reply start tag mismatch\n", func);
return -EIO;
}
/* payload length format */
if (*pl < 127) {
len = *pl;
pl++;
} else if (*pl == 0x81) {
pl++;
len = *pl;
pl++;
} else if (*pl == 0x82) {
pl++;
len = *((u16 *)pl);
pl += 2;
} else {
DEBUG_ERR("%s reply start tag lenfmt mismatch 0x%02hhx\n",
func, *pl);
return -EIO;
}
/* len should cover at least 3 fields with 32 bit value each */
if (len < 3 * 6) {
DEBUG_ERR("%s reply length %d too small\n", func, len);
return -EIO;
}
/* function tag, length and value */
if (pl[0] != 0x04 || pl[1] != 0x04) {
DEBUG_ERR("%s function tag or length mismatch\n", func);
return -EIO;
}
pl += 6;
/* dom tag, length and value */
if (pl[0] != 0x04 || pl[1] != 0x04) {
DEBUG_ERR("%s dom tag or length mismatch\n", func);
return -EIO;
}
pl += 6;
/* return value tag, length and value */
if (pl[0] != 0x04 || pl[1] != 0x04) {
DEBUG_ERR("%s return value tag or length mismatch\n", func);
return -EIO;
}
pl += 2;
ret = *((u32 *)pl);
if (ret != 0) {
DEBUG_ERR("%s return value 0x%04x != 0\n", func, ret);
return -EIO;
}
return 0;
}
/*
* Helper function which does an ep11 query with given query type.
*/
static int ep11_query_info(u16 cardnr, u16 domain, u32 query_type,
size_t buflen, u8 *buf)
{
struct ep11_info_req_pl {
struct pl_head head;
u8 query_type_tag;
u8 query_type_len;
u32 query_type;
u8 query_subtype_tag;
u8 query_subtype_len;
u32 query_subtype;
} __packed * req_pl;
struct ep11_info_rep_pl {
struct pl_head head;
u8 rc_tag;
u8 rc_len;
u32 rc;
u8 data_tag;
u8 data_lenfmt;
u16 data_len;
} __packed * rep_pl;
struct ep11_cprb *req = NULL, *rep = NULL;
struct ep11_target_dev target;
struct ep11_urb *urb = NULL;
int api = 1, rc = -ENOMEM;
/* request cprb and payload */
req = alloc_cprb(sizeof(struct ep11_info_req_pl));
if (!req)
goto out;
req_pl = (struct ep11_info_req_pl *) (((u8 *) req) + sizeof(*req));
prep_head(&req_pl->head, sizeof(*req_pl), api, 38); /* get xcp info */
req_pl->query_type_tag = 0x04;
req_pl->query_type_len = sizeof(u32);
req_pl->query_type = query_type;
req_pl->query_subtype_tag = 0x04;
req_pl->query_subtype_len = sizeof(u32);
/* reply cprb and payload */
rep = alloc_cprb(sizeof(struct ep11_info_rep_pl) + buflen);
if (!rep)
goto out;
rep_pl = (struct ep11_info_rep_pl *) (((u8 *) rep) + sizeof(*rep));
/* urb and target */
urb = kmalloc(sizeof(struct ep11_urb), GFP_KERNEL);
if (!urb)
goto out;
target.ap_id = cardnr;
target.dom_id = domain;
prep_urb(urb, &target, 1,
req, sizeof(*req) + sizeof(*req_pl),
rep, sizeof(*rep) + sizeof(*rep_pl) + buflen);
rc = _zcrypt_send_ep11_cprb(urb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_ep11_cprb(card=%d dom=%d) failed, rc=%d\n",
__func__, (int) cardnr, (int) domain, rc);
goto out;
}
rc = check_reply_pl((u8 *)rep_pl, __func__);
if (rc)
goto out;
if (rep_pl->data_tag != 0x04 || rep_pl->data_lenfmt != 0x82) {
DEBUG_ERR("%s unknown reply data format\n", __func__);
rc = -EIO;
goto out;
}
if (rep_pl->data_len > buflen) {
DEBUG_ERR("%s mismatch between reply data len and buffer len\n",
__func__);
rc = -ENOSPC;
goto out;
}
memcpy(buf, ((u8 *) rep_pl) + sizeof(*rep_pl), rep_pl->data_len);
out:
kfree(req);
kfree(rep);
kfree(urb);
return rc;
}
/*
* Provide information about an EP11 card.
*/
int ep11_get_card_info(u16 card, struct ep11_card_info *info, int verify)
{
int rc;
struct ep11_module_query_info {
u32 API_ord_nr;
u32 firmware_id;
u8 FW_major_vers;
u8 FW_minor_vers;
u8 CSP_major_vers;
u8 CSP_minor_vers;
u8 fwid[32];
u8 xcp_config_hash[32];
u8 CSP_config_hash[32];
u8 serial[16];
u8 module_date_time[16];
u64 op_mode;
u32 PKCS11_flags;
u32 ext_flags;
u32 domains;
u32 sym_state_bytes;
u32 digest_state_bytes;
u32 pin_blob_bytes;
u32 SPKI_bytes;
u32 priv_key_blob_bytes;
u32 sym_blob_bytes;
u32 max_payload_bytes;
u32 CP_profile_bytes;
u32 max_CP_index;
} __packed * pmqi = NULL;
rc = card_cache_fetch(card, info);
if (rc || verify) {
pmqi = kmalloc(sizeof(*pmqi), GFP_KERNEL);
if (!pmqi)
return -ENOMEM;
rc = ep11_query_info(card, AUTOSEL_DOM,
0x01 /* module info query */,
sizeof(*pmqi), (u8 *) pmqi);
if (rc) {
if (rc == -ENODEV)
card_cache_scrub(card);
goto out;
}
memset(info, 0, sizeof(*info));
info->API_ord_nr = pmqi->API_ord_nr;
info->FW_version =
(pmqi->FW_major_vers << 8) + pmqi->FW_minor_vers;
memcpy(info->serial, pmqi->serial, sizeof(info->serial));
info->op_mode = pmqi->op_mode;
card_cache_update(card, info);
}
out:
kfree(pmqi);
return rc;
}
EXPORT_SYMBOL(ep11_get_card_info);
/*
* Provide information about a domain within an EP11 card.
*/
int ep11_get_domain_info(u16 card, u16 domain, struct ep11_domain_info *info)
{
int rc;
struct ep11_domain_query_info {
u32 dom_index;
u8 cur_WK_VP[32];
u8 new_WK_VP[32];
u32 dom_flags;
u64 op_mode;
} __packed * p_dom_info;
p_dom_info = kmalloc(sizeof(*p_dom_info), GFP_KERNEL);
if (!p_dom_info)
return -ENOMEM;
rc = ep11_query_info(card, domain, 0x03 /* domain info query */,
sizeof(*p_dom_info), (u8 *) p_dom_info);
if (rc)
goto out;
memset(info, 0, sizeof(*info));
info->cur_wk_state = '0';
info->new_wk_state = '0';
if (p_dom_info->dom_flags & 0x10 /* left imprint mode */) {
if (p_dom_info->dom_flags & 0x02 /* cur wk valid */) {
info->cur_wk_state = '1';
memcpy(info->cur_wkvp, p_dom_info->cur_WK_VP, 32);
}
if (p_dom_info->dom_flags & 0x04 /* new wk present */
|| p_dom_info->dom_flags & 0x08 /* new wk committed */) {
info->new_wk_state =
p_dom_info->dom_flags & 0x08 ? '2' : '1';
memcpy(info->new_wkvp, p_dom_info->new_WK_VP, 32);
}
}
info->op_mode = p_dom_info->op_mode;
out:
kfree(p_dom_info);
return rc;
}
EXPORT_SYMBOL(ep11_get_domain_info);
/*
* Default EP11 AES key generate attributes, used when no keygenflags given:
* XCP_BLOB_ENCRYPT | XCP_BLOB_DECRYPT | XCP_BLOB_PROTKEY_EXTRACTABLE
*/
#define KEY_ATTR_DEFAULTS 0x00200c00
int ep11_genaeskey(u16 card, u16 domain, u32 keybitsize, u32 keygenflags,
u8 *keybuf, size_t *keybufsize)
{
struct keygen_req_pl {
struct pl_head head;
u8 var_tag;
u8 var_len;
u32 var;
u8 keybytes_tag;
u8 keybytes_len;
u32 keybytes;
u8 mech_tag;
u8 mech_len;
u32 mech;
u8 attr_tag;
u8 attr_len;
u32 attr_header;
u32 attr_bool_mask;
u32 attr_bool_bits;
u32 attr_val_len_type;
u32 attr_val_len_value;
u8 pin_tag;
u8 pin_len;
} __packed * req_pl;
struct keygen_rep_pl {
struct pl_head head;
u8 rc_tag;
u8 rc_len;
u32 rc;
u8 data_tag;
u8 data_lenfmt;
u16 data_len;
u8 data[512];
} __packed * rep_pl;
struct ep11_cprb *req = NULL, *rep = NULL;
struct ep11_target_dev target;
struct ep11_urb *urb = NULL;
struct ep11keyblob *kb;
int api, rc = -ENOMEM;
switch (keybitsize) {
case 128:
case 192:
case 256:
break;
default:
DEBUG_ERR(
"%s unknown/unsupported keybitsize %d\n",
__func__, keybitsize);
rc = -EINVAL;
goto out;
}
/* request cprb and payload */
req = alloc_cprb(sizeof(struct keygen_req_pl));
if (!req)
goto out;
req_pl = (struct keygen_req_pl *) (((u8 *) req) + sizeof(*req));
api = (!keygenflags || keygenflags & 0x00200000) ? 4 : 1;
prep_head(&req_pl->head, sizeof(*req_pl), api, 21); /* GenerateKey */
req_pl->var_tag = 0x04;
req_pl->var_len = sizeof(u32);
req_pl->keybytes_tag = 0x04;
req_pl->keybytes_len = sizeof(u32);
req_pl->keybytes = keybitsize / 8;
req_pl->mech_tag = 0x04;
req_pl->mech_len = sizeof(u32);
req_pl->mech = 0x00001080; /* CKM_AES_KEY_GEN */
req_pl->attr_tag = 0x04;
req_pl->attr_len = 5 * sizeof(u32);
req_pl->attr_header = 0x10010000;
req_pl->attr_bool_mask = keygenflags ? keygenflags : KEY_ATTR_DEFAULTS;
req_pl->attr_bool_bits = keygenflags ? keygenflags : KEY_ATTR_DEFAULTS;
req_pl->attr_val_len_type = 0x00000161; /* CKA_VALUE_LEN */
req_pl->attr_val_len_value = keybitsize / 8;
req_pl->pin_tag = 0x04;
/* reply cprb and payload */
rep = alloc_cprb(sizeof(struct keygen_rep_pl));
if (!rep)
goto out;
rep_pl = (struct keygen_rep_pl *) (((u8 *) rep) + sizeof(*rep));
/* urb and target */
urb = kmalloc(sizeof(struct ep11_urb), GFP_KERNEL);
if (!urb)
goto out;
target.ap_id = card;
target.dom_id = domain;
prep_urb(urb, &target, 1,
req, sizeof(*req) + sizeof(*req_pl),
rep, sizeof(*rep) + sizeof(*rep_pl));
rc = _zcrypt_send_ep11_cprb(urb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_ep11_cprb(card=%d dom=%d) failed, rc=%d\n",
__func__, (int) card, (int) domain, rc);
goto out;
}
rc = check_reply_pl((u8 *)rep_pl, __func__);
if (rc)
goto out;
if (rep_pl->data_tag != 0x04 || rep_pl->data_lenfmt != 0x82) {
DEBUG_ERR("%s unknown reply data format\n", __func__);
rc = -EIO;
goto out;
}
if (rep_pl->data_len > *keybufsize) {
DEBUG_ERR("%s mismatch reply data len / key buffer len\n",
__func__);
rc = -ENOSPC;
goto out;
}
/* copy key blob and set header values */
memcpy(keybuf, rep_pl->data, rep_pl->data_len);
*keybufsize = rep_pl->data_len;
kb = (struct ep11keyblob *) keybuf;
kb->head.type = TOKTYPE_NON_CCA;
kb->head.len = rep_pl->data_len;
kb->head.version = TOKVER_EP11_AES;
kb->head.keybitlen = keybitsize;
out:
kfree(req);
kfree(rep);
kfree(urb);
return rc;
}
EXPORT_SYMBOL(ep11_genaeskey);
static int ep11_cryptsingle(u16 card, u16 domain,
u16 mode, u32 mech, const u8 *iv,
const u8 *key, size_t keysize,
const u8 *inbuf, size_t inbufsize,
u8 *outbuf, size_t *outbufsize)
{
struct crypt_req_pl {
struct pl_head head;
u8 var_tag;
u8 var_len;
u32 var;
u8 mech_tag;
u8 mech_len;
u32 mech;
/*
* maybe followed by iv data
* followed by key tag + key blob
* followed by plaintext tag + plaintext
*/
} __packed * req_pl;
struct crypt_rep_pl {
struct pl_head head;
u8 rc_tag;
u8 rc_len;
u32 rc;
u8 data_tag;
u8 data_lenfmt;
/* data follows */
} __packed * rep_pl;
struct ep11_cprb *req = NULL, *rep = NULL;
struct ep11_target_dev target;
struct ep11_urb *urb = NULL;
size_t req_pl_size, rep_pl_size;
int n, api = 1, rc = -ENOMEM;
u8 *p;
/* the simple asn1 coding used has length limits */
if (keysize > 0xFFFF || inbufsize > 0xFFFF)
return -EINVAL;
/* request cprb and payload */
req_pl_size = sizeof(struct crypt_req_pl) + (iv ? 16 : 0)
+ ASN1TAGLEN(keysize) + ASN1TAGLEN(inbufsize);
req = alloc_cprb(req_pl_size);
if (!req)
goto out;
req_pl = (struct crypt_req_pl *) (((u8 *) req) + sizeof(*req));
prep_head(&req_pl->head, req_pl_size, api, (mode ? 20 : 19));
req_pl->var_tag = 0x04;
req_pl->var_len = sizeof(u32);
/* mech is mech + mech params (iv here) */
req_pl->mech_tag = 0x04;
req_pl->mech_len = sizeof(u32) + (iv ? 16 : 0);
req_pl->mech = (mech ? mech : 0x00001085); /* CKM_AES_CBC_PAD */
p = ((u8 *) req_pl) + sizeof(*req_pl);
if (iv) {
memcpy(p, iv, 16);
p += 16;
}
/* key and input data */
p += asn1tag_write(p, 0x04, key, keysize);
p += asn1tag_write(p, 0x04, inbuf, inbufsize);
/* reply cprb and payload, assume out data size <= in data size + 32 */
rep_pl_size = sizeof(struct crypt_rep_pl) + ASN1TAGLEN(inbufsize + 32);
rep = alloc_cprb(rep_pl_size);
if (!rep)
goto out;
rep_pl = (struct crypt_rep_pl *) (((u8 *) rep) + sizeof(*rep));
/* urb and target */
urb = kmalloc(sizeof(struct ep11_urb), GFP_KERNEL);
if (!urb)
goto out;
target.ap_id = card;
target.dom_id = domain;
prep_urb(urb, &target, 1,
req, sizeof(*req) + req_pl_size,
rep, sizeof(*rep) + rep_pl_size);
rc = _zcrypt_send_ep11_cprb(urb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_ep11_cprb(card=%d dom=%d) failed, rc=%d\n",
__func__, (int) card, (int) domain, rc);
goto out;
}
rc = check_reply_pl((u8 *)rep_pl, __func__);
if (rc)
goto out;
if (rep_pl->data_tag != 0x04) {
DEBUG_ERR("%s unknown reply data format\n", __func__);
rc = -EIO;
goto out;
}
p = ((u8 *) rep_pl) + sizeof(*rep_pl);
if (rep_pl->data_lenfmt <= 127)
n = rep_pl->data_lenfmt;
else if (rep_pl->data_lenfmt == 0x81)
n = *p++;
else if (rep_pl->data_lenfmt == 0x82) {
n = *((u16 *) p);
p += 2;
} else {
DEBUG_ERR("%s unknown reply data length format 0x%02hhx\n",
__func__, rep_pl->data_lenfmt);
rc = -EIO;
goto out;
}
if (n > *outbufsize) {
DEBUG_ERR("%s mismatch reply data len %d / output buffer %zu\n",
__func__, n, *outbufsize);
rc = -ENOSPC;
goto out;
}
memcpy(outbuf, p, n);
*outbufsize = n;
out:
kfree(req);
kfree(rep);
kfree(urb);
return rc;
}
static int ep11_unwrapkey(u16 card, u16 domain,
const u8 *kek, size_t keksize,
const u8 *enckey, size_t enckeysize,
u32 mech, const u8 *iv,
u32 keybitsize, u32 keygenflags,
u8 *keybuf, size_t *keybufsize)
{
struct uw_req_pl {
struct pl_head head;
u8 attr_tag;
u8 attr_len;
u32 attr_header;
u32 attr_bool_mask;
u32 attr_bool_bits;
u32 attr_key_type;
u32 attr_key_type_value;
u32 attr_val_len;
u32 attr_val_len_value;
u8 mech_tag;
u8 mech_len;
u32 mech;
/*
* maybe followed by iv data
* followed by kek tag + kek blob
* followed by empty mac tag
* followed by empty pin tag
* followed by encryted key tag + bytes
*/
} __packed * req_pl;
struct uw_rep_pl {
struct pl_head head;
u8 rc_tag;
u8 rc_len;
u32 rc;
u8 data_tag;
u8 data_lenfmt;
u16 data_len;
u8 data[512];
} __packed * rep_pl;
struct ep11_cprb *req = NULL, *rep = NULL;
struct ep11_target_dev target;
struct ep11_urb *urb = NULL;
struct ep11keyblob *kb;
size_t req_pl_size;
int api, rc = -ENOMEM;
u8 *p;
/* request cprb and payload */
req_pl_size = sizeof(struct uw_req_pl) + (iv ? 16 : 0)
+ ASN1TAGLEN(keksize) + 4 + ASN1TAGLEN(enckeysize);
req = alloc_cprb(req_pl_size);
if (!req)
goto out;
req_pl = (struct uw_req_pl *) (((u8 *) req) + sizeof(*req));
api = (!keygenflags || keygenflags & 0x00200000) ? 4 : 1;
prep_head(&req_pl->head, req_pl_size, api, 34); /* UnwrapKey */
req_pl->attr_tag = 0x04;
req_pl->attr_len = 7 * sizeof(u32);
req_pl->attr_header = 0x10020000;
req_pl->attr_bool_mask = keygenflags ? keygenflags : KEY_ATTR_DEFAULTS;
req_pl->attr_bool_bits = keygenflags ? keygenflags : KEY_ATTR_DEFAULTS;
req_pl->attr_key_type = 0x00000100; /* CKA_KEY_TYPE */
req_pl->attr_key_type_value = 0x0000001f; /* CKK_AES */
req_pl->attr_val_len = 0x00000161; /* CKA_VALUE_LEN */
req_pl->attr_val_len_value = keybitsize / 8;
/* mech is mech + mech params (iv here) */
req_pl->mech_tag = 0x04;
req_pl->mech_len = sizeof(u32) + (iv ? 16 : 0);
req_pl->mech = (mech ? mech : 0x00001085); /* CKM_AES_CBC_PAD */
p = ((u8 *) req_pl) + sizeof(*req_pl);
if (iv) {
memcpy(p, iv, 16);
p += 16;
}
/* kek */
p += asn1tag_write(p, 0x04, kek, keksize);
/* empty mac key tag */
*p++ = 0x04;
*p++ = 0;
/* empty pin tag */
*p++ = 0x04;
*p++ = 0;
/* encrytped key value tag and bytes */
p += asn1tag_write(p, 0x04, enckey, enckeysize);
/* reply cprb and payload */
rep = alloc_cprb(sizeof(struct uw_rep_pl));
if (!rep)
goto out;
rep_pl = (struct uw_rep_pl *) (((u8 *) rep) + sizeof(*rep));
/* urb and target */
urb = kmalloc(sizeof(struct ep11_urb), GFP_KERNEL);
if (!urb)
goto out;
target.ap_id = card;
target.dom_id = domain;
prep_urb(urb, &target, 1,
req, sizeof(*req) + req_pl_size,
rep, sizeof(*rep) + sizeof(*rep_pl));
rc = _zcrypt_send_ep11_cprb(urb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_ep11_cprb(card=%d dom=%d) failed, rc=%d\n",
__func__, (int) card, (int) domain, rc);
goto out;
}
rc = check_reply_pl((u8 *)rep_pl, __func__);
if (rc)
goto out;
if (rep_pl->data_tag != 0x04 || rep_pl->data_lenfmt != 0x82) {
DEBUG_ERR("%s unknown reply data format\n", __func__);
rc = -EIO;
goto out;
}
if (rep_pl->data_len > *keybufsize) {
DEBUG_ERR("%s mismatch reply data len / key buffer len\n",
__func__);
rc = -ENOSPC;
goto out;
}
/* copy key blob and set header values */
memcpy(keybuf, rep_pl->data, rep_pl->data_len);
*keybufsize = rep_pl->data_len;
kb = (struct ep11keyblob *) keybuf;
kb->head.type = TOKTYPE_NON_CCA;
kb->head.len = rep_pl->data_len;
kb->head.version = TOKVER_EP11_AES;
kb->head.keybitlen = keybitsize;
out:
kfree(req);
kfree(rep);
kfree(urb);
return rc;
}
static int ep11_wrapkey(u16 card, u16 domain,
const u8 *key, size_t keysize,
u32 mech, const u8 *iv,
u8 *databuf, size_t *datasize)
{
struct wk_req_pl {
struct pl_head head;
u8 var_tag;
u8 var_len;
u32 var;
u8 mech_tag;
u8 mech_len;
u32 mech;
/*
* followed by iv data
* followed by key tag + key blob
* followed by dummy kek param
* followed by dummy mac param
*/
} __packed * req_pl;
struct wk_rep_pl {
struct pl_head head;
u8 rc_tag;
u8 rc_len;
u32 rc;
u8 data_tag;
u8 data_lenfmt;
u16 data_len;
u8 data[512];
} __packed * rep_pl;
struct ep11_cprb *req = NULL, *rep = NULL;
struct ep11_target_dev target;
struct ep11_urb *urb = NULL;
struct ep11keyblob *kb;
size_t req_pl_size;
int api, rc = -ENOMEM;
u8 *p;
/* request cprb and payload */
req_pl_size = sizeof(struct wk_req_pl) + (iv ? 16 : 0)
+ ASN1TAGLEN(keysize) + 4;
req = alloc_cprb(req_pl_size);
if (!req)
goto out;
if (!mech || mech == 0x80060001)
req->flags |= 0x20; /* CPACF_WRAP needs special bit */
req_pl = (struct wk_req_pl *) (((u8 *) req) + sizeof(*req));
api = (!mech || mech == 0x80060001) ? 4 : 1; /* CKM_IBM_CPACF_WRAP */
prep_head(&req_pl->head, req_pl_size, api, 33); /* WrapKey */
req_pl->var_tag = 0x04;
req_pl->var_len = sizeof(u32);
/* mech is mech + mech params (iv here) */
req_pl->mech_tag = 0x04;
req_pl->mech_len = sizeof(u32) + (iv ? 16 : 0);
req_pl->mech = (mech ? mech : 0x80060001); /* CKM_IBM_CPACF_WRAP */
p = ((u8 *) req_pl) + sizeof(*req_pl);
if (iv) {
memcpy(p, iv, 16);
p += 16;
}
/* key blob */
p += asn1tag_write(p, 0x04, key, keysize);
/* maybe the key argument needs the head data cleaned out */
kb = (struct ep11keyblob *)(p - keysize);
if (kb->head.version == TOKVER_EP11_AES)
memset(&kb->head, 0, sizeof(kb->head));
/* empty kek tag */
*p++ = 0x04;
*p++ = 0;
/* empty mac tag */
*p++ = 0x04;
*p++ = 0;
/* reply cprb and payload */
rep = alloc_cprb(sizeof(struct wk_rep_pl));
if (!rep)
goto out;
rep_pl = (struct wk_rep_pl *) (((u8 *) rep) + sizeof(*rep));
/* urb and target */
urb = kmalloc(sizeof(struct ep11_urb), GFP_KERNEL);
if (!urb)
goto out;
target.ap_id = card;
target.dom_id = domain;
prep_urb(urb, &target, 1,
req, sizeof(*req) + req_pl_size,
rep, sizeof(*rep) + sizeof(*rep_pl));
rc = _zcrypt_send_ep11_cprb(urb);
if (rc) {
DEBUG_ERR(
"%s zcrypt_send_ep11_cprb(card=%d dom=%d) failed, rc=%d\n",
__func__, (int) card, (int) domain, rc);
goto out;
}
rc = check_reply_pl((u8 *)rep_pl, __func__);
if (rc)
goto out;
if (rep_pl->data_tag != 0x04 || rep_pl->data_lenfmt != 0x82) {
DEBUG_ERR("%s unknown reply data format\n", __func__);
rc = -EIO;
goto out;
}
if (rep_pl->data_len > *datasize) {
DEBUG_ERR("%s mismatch reply data len / data buffer len\n",
__func__);
rc = -ENOSPC;
goto out;
}
/* copy the data from the cprb to the data buffer */
memcpy(databuf, rep_pl->data, rep_pl->data_len);
*datasize = rep_pl->data_len;
out:
kfree(req);
kfree(rep);
kfree(urb);
return rc;
}
int ep11_clr2keyblob(u16 card, u16 domain, u32 keybitsize, u32 keygenflags,
const u8 *clrkey, u8 *keybuf, size_t *keybufsize)
{
int rc;
struct ep11keyblob *kb;
u8 encbuf[64], *kek = NULL;
size_t clrkeylen, keklen, encbuflen = sizeof(encbuf);
if (keybitsize == 128 || keybitsize == 192 || keybitsize == 256)
clrkeylen = keybitsize / 8;
else {
DEBUG_ERR(
"%s unknown/unsupported keybitsize %d\n",
__func__, keybitsize);
return -EINVAL;
}
/* allocate memory for the temp kek */
keklen = MAXEP11AESKEYBLOBSIZE;
kek = kmalloc(keklen, GFP_ATOMIC);
if (!kek) {
rc = -ENOMEM;
goto out;
}
/* Step 1: generate AES 256 bit random kek key */
rc = ep11_genaeskey(card, domain, 256,
0x00006c00, /* EN/DECRYTP, WRAP/UNWRAP */
kek, &keklen);
if (rc) {
DEBUG_ERR(
"%s generate kek key failed, rc=%d\n",
__func__, rc);
goto out;
}
kb = (struct ep11keyblob *) kek;
memset(&kb->head, 0, sizeof(kb->head));
/* Step 2: encrypt clear key value with the kek key */
rc = ep11_cryptsingle(card, domain, 0, 0, def_iv, kek, keklen,
clrkey, clrkeylen, encbuf, &encbuflen);
if (rc) {
DEBUG_ERR(
"%s encrypting key value with kek key failed, rc=%d\n",
__func__, rc);
goto out;
}
/* Step 3: import the encrypted key value as a new key */
rc = ep11_unwrapkey(card, domain, kek, keklen,
encbuf, encbuflen, 0, def_iv,
keybitsize, 0, keybuf, keybufsize);
if (rc) {
DEBUG_ERR(
"%s importing key value as new key failed,, rc=%d\n",
__func__, rc);
goto out;
}
out:
kfree(kek);
return rc;
}
EXPORT_SYMBOL(ep11_clr2keyblob);
int ep11_key2protkey(u16 card, u16 dom, const u8 *key, size_t keylen,
u8 *protkey, u32 *protkeylen, u32 *protkeytype)
{
int rc = -EIO;
u8 *wkbuf = NULL;
size_t wkbuflen = 256;
struct wk_info {
u16 version;
u8 res1[16];
u32 pkeytype;
u32 pkeybitsize;
u64 pkeysize;
u8 res2[8];
u8 pkey[0];
} __packed * wki;
/* alloc temp working buffer */
wkbuf = kmalloc(wkbuflen, GFP_ATOMIC);
if (!wkbuf)
return -ENOMEM;
/* ep11 secure key -> protected key + info */
rc = ep11_wrapkey(card, dom, key, keylen,
0, def_iv, wkbuf, &wkbuflen);
if (rc) {
DEBUG_ERR(
"%s rewrapping ep11 key to pkey failed, rc=%d\n",
__func__, rc);
goto out;
}
wki = (struct wk_info *) wkbuf;
/* check struct version and pkey type */
if (wki->version != 1 || wki->pkeytype != 1) {
DEBUG_ERR("%s wk info version %d or pkeytype %d mismatch.\n",
__func__, (int) wki->version, (int) wki->pkeytype);
rc = -EIO;
goto out;
}
/* copy the tanslated protected key */
switch (wki->pkeysize) {
case 16+32:
/* AES 128 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_128;
break;
case 24+32:
/* AES 192 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_192;
break;
case 32+32:
/* AES 256 protected key */
if (protkeytype)
*protkeytype = PKEY_KEYTYPE_AES_256;
break;
default:
DEBUG_ERR("%s unknown/unsupported pkeysize %d\n",
__func__, (int) wki->pkeysize);
rc = -EIO;
goto out;
}
memcpy(protkey, wki->pkey, wki->pkeysize);
if (protkeylen)
*protkeylen = (u32) wki->pkeysize;
rc = 0;
out:
kfree(wkbuf);
return rc;
}
EXPORT_SYMBOL(ep11_key2protkey);
int ep11_findcard2(u32 **apqns, u32 *nr_apqns, u16 cardnr, u16 domain,
int minhwtype, int minapi, const u8 *wkvp)
{
struct zcrypt_device_status_ext *device_status;
u32 *_apqns = NULL, _nr_apqns = 0;
int i, card, dom, rc = -ENOMEM;
struct ep11_domain_info edi;
struct ep11_card_info eci;
/* fetch status of all crypto cards */
device_status = kmalloc_array(MAX_ZDEV_ENTRIES_EXT,
sizeof(struct zcrypt_device_status_ext),
GFP_KERNEL);
if (!device_status)
return -ENOMEM;
zcrypt_device_status_mask_ext(device_status);
/* allocate 1k space for up to 256 apqns */
_apqns = kmalloc_array(256, sizeof(u32), GFP_KERNEL);
if (!_apqns) {
kfree(device_status);
return -ENOMEM;
}
/* walk through all the crypto apqnss */
for (i = 0; i < MAX_ZDEV_ENTRIES_EXT; i++) {
card = AP_QID_CARD(device_status[i].qid);
dom = AP_QID_QUEUE(device_status[i].qid);
/* check online state */
if (!device_status[i].online)
continue;
/* check for ep11 functions */
if (!(device_status[i].functions & 0x01))
continue;
/* check cardnr */
if (cardnr != 0xFFFF && card != cardnr)
continue;
/* check domain */
if (domain != 0xFFFF && dom != domain)
continue;
/* check min hardware type */
if (minhwtype && device_status[i].hwtype < minhwtype)
continue;
/* check min api version if given */
if (minapi > 0) {
if (ep11_get_card_info(card, &eci, 0))
continue;
if (minapi > eci.API_ord_nr)
continue;
}
/* check wkvp if given */
if (wkvp) {
if (ep11_get_domain_info(card, dom, &edi))
continue;
if (edi.cur_wk_state != '1')
continue;
if (memcmp(wkvp, edi.cur_wkvp, 16))
continue;
}
/* apqn passed all filtering criterons, add to the array */
if (_nr_apqns < 256)
_apqns[_nr_apqns++] = (((u16)card) << 16) | ((u16) dom);
}
/* nothing found ? */
if (!_nr_apqns) {
kfree(_apqns);
rc = -ENODEV;
} else {
/* no re-allocation, simple return the _apqns array */
*apqns = _apqns;
*nr_apqns = _nr_apqns;
rc = 0;
}
kfree(device_status);
return rc;
}
EXPORT_SYMBOL(ep11_findcard2);
void __exit zcrypt_ep11misc_exit(void)
{
card_cache_free();
}
/* SPDX-License-Identifier: GPL-2.0+ */
/*
* Copyright IBM Corp. 2019
* Author(s): Harald Freudenberger <freude@linux.ibm.com>
*
* Collection of EP11 misc functions used by zcrypt and pkey
*/
#ifndef _ZCRYPT_EP11MISC_H_
#define _ZCRYPT_EP11MISC_H_
#include <asm/zcrypt.h>
#include <asm/pkey.h>
#define TOKVER_EP11_AES 0x03 /* EP11 AES key blob */
#define EP11_API_V 4 /* highest known and supported EP11 API version */
#define EP11_STRUCT_MAGIC 0x1234
#define EP11_BLOB_PKEY_EXTRACTABLE 0x200000
/* inside view of an EP11 secure key blob */
struct ep11keyblob {
union {
u8 session[32];
struct {
u8 type; /* 0x00 (TOKTYPE_NON_CCA) */
u8 res0; /* unused */
u16 len; /* total length in bytes of this blob */
u8 version; /* 0x06 (TOKVER_EP11_AES) */
u8 res1; /* unused */
u16 keybitlen; /* clear key bit len, 0 for unknown */
} head;
};
u8 wkvp[16]; /* wrapping key verification pattern */
u64 attr; /* boolean key attributes */
u64 mode; /* mode bits */
u16 version; /* 0x1234, EP11_STRUCT_MAGIC */
u8 iv[14];
u8 encrypted_key_data[144];
u8 mac[32];
} __packed;
/*
* Simple check if the key blob is a valid EP11 secure AES key.
* If keybitsize is given, the bitsize of the key is also checked.
* If checkcpacfexport is enabled, the key is also checked for the
* attributes needed to export this key for CPACF use.
* Returns 0 on success or errno value on failure.
*/
int ep11_check_aeskeyblob(debug_info_t *dbg, int dbflvl,
const u8 *key, int keybitsize,
int checkcpacfexport);
/* EP11 card info struct */
struct ep11_card_info {
u32 API_ord_nr; /* API ordinal number */
u16 FW_version; /* Firmware major and minor version */
char serial[16]; /* serial number string (16 ascii, no 0x00 !) */
u64 op_mode; /* card operational mode(s) */
};
/* EP11 domain info struct */
struct ep11_domain_info {
char cur_wk_state; /* '0' invalid, '1' valid */
char new_wk_state; /* '0' empty, '1' uncommitted, '2' committed */
u8 cur_wkvp[32]; /* current wrapping key verification pattern */
u8 new_wkvp[32]; /* new wrapping key verification pattern */
u64 op_mode; /* domain operational mode(s) */
};
/*
* Provide information about an EP11 card.
*/
int ep11_get_card_info(u16 card, struct ep11_card_info *info, int verify);
/*
* Provide information about a domain within an EP11 card.
*/
int ep11_get_domain_info(u16 card, u16 domain, struct ep11_domain_info *info);
/*
* Generate (random) EP11 AES secure key.
*/
int ep11_genaeskey(u16 card, u16 domain, u32 keybitsize, u32 keygenflags,
u8 *keybuf, size_t *keybufsize);
/*
* Generate EP11 AES secure key with given clear key value.
*/
int ep11_clr2keyblob(u16 cardnr, u16 domain, u32 keybitsize, u32 keygenflags,
const u8 *clrkey, u8 *keybuf, size_t *keybufsize);
/*
* Derive proteced key from EP11 AES secure key blob.
*/
int ep11_key2protkey(u16 cardnr, u16 domain, const u8 *key, size_t keylen,
u8 *protkey, u32 *protkeylen, u32 *protkeytype);
/*
* Build a list of ep11 apqns meeting the following constrains:
* - apqn is online and is in fact an EP11 apqn
* - if cardnr is not FFFF only apqns with this cardnr
* - if domain is not FFFF only apqns with this domainnr
* - if minhwtype > 0 only apqns with hwtype >= minhwtype
* - if minapi > 0 only apqns with API_ord_nr >= minapi
* - if wkvp != NULL only apqns where the wkvp (EP11_WKVPLEN bytes) matches
* to the first EP11_WKVPLEN bytes of the wkvp of the current wrapping
* key for this domain. When a wkvp is given there will aways be a re-fetch
* of the domain info for the potential apqn - so this triggers an request
* reply to each apqn eligible.
* The array of apqn entries is allocated with kmalloc and returned in *apqns;
* the number of apqns stored into the list is returned in *nr_apqns. One apqn
* entry is simple a 32 bit value with 16 bit cardnr and 16 bit domain nr and
* may be casted to struct pkey_apqn. The return value is either 0 for success
* or a negative errno value. If no apqn meeting the criterias is found,
* -ENODEV is returned.
*/
int ep11_findcard2(u32 **apqns, u32 *nr_apqns, u16 cardnr, u16 domain,
int minhwtype, int minapi, const u8 *wkvp);
void zcrypt_ep11misc_exit(void);
#endif /* _ZCRYPT_EP11MISC_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment