Commit d2f68a05 authored by Mark Brown's avatar Mark Brown

Merge tag 'spi-fix-v4.10-rc4' into spi-linus

spi: Fixes for v4.10

The usual small smattering of driver specific fixes.  A few bits that
stand out here:

 - The R-Car patches adding fallbacks are just adding new compatible
   strings to the driver so that device trees are written in a more
   robustly future proof fashion, this isn't strictly a fix but it's
   just new IDs and it's better to get it into mainline sooner to
   improve the ABI.
 - The DesignWare "switch to new API part 2" patch is actually a
   misleadingly titled fix for a bit that got missed in the original
   conversion.

# gpg: Signature made Thu 19 Jan 2017 14:54:15 GMT
# gpg:                using RSA key ADE668AA675718B59FE29FEA24D68B725D5487D0
# gpg:                issuer "broonie@kernel.org"
# gpg: key 0D9EACE2CD7BEEBC: no public key for trusted key - skipped
# gpg: key 0D9EACE2CD7BEEBC marked as ultimately trusted
# gpg: key CCB0A420AF88CD16: no public key for trusted key - skipped
# gpg: key CCB0A420AF88CD16 marked as ultimately trusted
# gpg: key 162614E316005C11: no public key for trusted key - skipped
# gpg: key 162614E316005C11 marked as ultimately trusted
# gpg: key A730C53A5621E907: no public key for trusted key - skipped
# gpg: key A730C53A5621E907 marked as ultimately trusted
# gpg: key 276568D75C6153AD: no public key for trusted key - skipped
# gpg: key 276568D75C6153AD marked as ultimately trusted
# gpg: Good signature from "Mark Brown <broonie@sirena.org.uk>" [ultimate]
# gpg:                 aka "Mark Brown <broonie@debian.org>" [ultimate]
# gpg:                 aka "Mark Brown <broonie@kernel.org>" [ultimate]
# gpg:                 aka "Mark Brown <broonie@tardis.ed.ac.uk>" [ultimate]
# gpg:                 aka "Mark Brown <broonie@linaro.org>" [ultimate]
# gpg:                 aka "Mark Brown <Mark.Brown@linaro.org>" [ultimate]
parents 69973b83 52cc720c
Renesas MSIOF spi controller
Required properties:
- compatible : "renesas,msiof-<soctype>" for SoCs,
"renesas,sh-msiof" for SuperH, or
"renesas,sh-mobile-msiof" for SH Mobile series.
Examples with soctypes are:
"renesas,msiof-r8a7790" (R-Car H2)
- compatible : "renesas,msiof-r8a7790" (R-Car H2)
"renesas,msiof-r8a7791" (R-Car M2-W)
"renesas,msiof-r8a7792" (R-Car V2H)
"renesas,msiof-r8a7793" (R-Car M2-N)
"renesas,msiof-r8a7794" (R-Car E2)
"renesas,msiof-r8a7796" (R-Car M3-W)
"renesas,msiof-sh73a0" (SH-Mobile AG5)
"renesas,sh-mobile-msiof" (generic SH-Mobile compatibile device)
"renesas,rcar-gen2-msiof" (generic R-Car Gen2 compatible device)
"renesas,rcar-gen3-msiof" (generic R-Car Gen3 compatible device)
"renesas,sh-msiof" (deprecated)
When compatible with the generic version, nodes
must list the SoC-specific version corresponding
to the platform first followed by the generic
version.
- reg : A list of offsets and lengths of the register sets for
the device.
If only one register set is present, it is to be used
......@@ -60,7 +67,8 @@ Documentation/devicetree/bindings/pinctrl/renesas,*.
Example:
msiof0: spi@e6e20000 {
compatible = "renesas,msiof-r8a7791";
compatible = "renesas,msiof-r8a7791",
"renesas,rcar-gen2-msiof";
reg = <0 0xe6e20000 0 0x0064>;
interrupts = <0 156 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&mstp0_clks R8A7791_CLK_MSIOF0>;
......
* Marvell Armada 3700 SPI Controller
Required Properties:
- compatible: should be "marvell,armada-3700-spi"
- reg: physical base address of the controller and length of memory mapped
region.
- interrupts: The interrupt number. The interrupt specifier format depends on
the interrupt controller and of its driver.
- clocks: Must contain the clock source, usually from the North Bridge clocks.
- num-cs: The number of chip selects that is supported by this SPI Controller
- #address-cells: should be 1.
- #size-cells: should be 0.
Example:
spi0: spi@10600 {
compatible = "marvell,armada-3700-spi";
#address-cells = <1>;
#size-cells = <0>;
reg = <0x10600 0x5d>;
clocks = <&nb_perih_clk 7>;
interrupts = <GIC_SPI 0 IRQ_TYPE_LEVEL_HIGH>;
num-cs = <4>;
};
* Freescale Low Power SPI (LPSPI) for i.MX
Required properties:
- compatible :
- "fsl,imx7ulp-spi" for LPSPI compatible with the one integrated on i.MX7ULP soc
- reg : address and length of the lpspi master registers
- interrupt-parent : core interrupt controller
- interrupts : lpspi interrupt
- clocks : lpspi clock specifier
Examples:
lpspi2: lpspi@40290000 {
compatible = "fsl,imx7ulp-spi";
reg = <0x40290000 0x10000>;
interrupt-parent = <&intc>;
interrupts = <GIC_SPI 28 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&clks IMX7ULP_CLK_LPSPI2>;
};
Allwinner A31 SPI controller
Allwinner A31/H3 SPI controller
Required properties:
- compatible: Should be "allwinner,sun6i-a31-spi".
- compatible: Should be "allwinner,sun6i-a31-spi" or "allwinner,sun8i-h3-spi".
- reg: Should contain register location and length.
- interrupts: Should contain interrupt.
- clocks: phandle to the clocks feeding the SPI controller. Two are
......@@ -12,6 +12,11 @@ Required properties:
- resets: phandle to the reset controller asserting this device in
reset
Optional properties:
- dmas: DMA specifiers for rx and tx dma. See the DMA client binding,
Documentation/devicetree/bindings/dma/dma.txt
- dma-names: DMA request names should include "rx" and "tx" if present.
Example:
spi1: spi@01c69000 {
......@@ -22,3 +27,19 @@ spi1: spi@01c69000 {
clock-names = "ahb", "mod";
resets = <&ahb1_rst 21>;
};
spi0: spi@01c68000 {
compatible = "allwinner,sun8i-h3-spi";
reg = <0x01c68000 0x1000>;
interrupts = <GIC_SPI 65 IRQ_TYPE_LEVEL_HIGH>;
clocks = <&ccu CLK_BUS_SPI0>, <&ccu CLK_SPI0>;
clock-names = "ahb", "mod";
dmas = <&dma 23>, <&dma 23>;
dma-names = "rx", "tx";
pinctrl-names = "default";
pinctrl-0 = <&spi0_pins>;
resets = <&ccu RST_BUS_SPI0>;
status = "disabled";
#address-cells = <1>;
#size-cells = <0>;
};
......@@ -67,6 +67,13 @@ config SPI_ATH79
This enables support for the SPI controller present on the
Atheros AR71XX/AR724X/AR913X SoCs.
config SPI_ARMADA_3700
tristate "Marvell Armada 3700 SPI Controller"
depends on (ARCH_MVEBU && OF) || COMPILE_TEST
help
This enables support for the SPI controller present on the
Marvell Armada 3700 SoCs.
config SPI_ATMEL
tristate "Atmel SPI Controller"
depends on HAS_DMA
......@@ -264,6 +271,12 @@ config SPI_FALCON
has only been tested with m25p80 type chips. The hardware has no
support for other types of SPI peripherals.
config SPI_FSL_LPSPI
tristate "Freescale i.MX LPSPI controller"
depends on ARCH_MXC || COMPILE_TEST
help
This enables Freescale i.MX LPSPI controllers in master mode.
config SPI_GPIO
tristate "GPIO-based bitbanging SPI Master"
depends on GPIOLIB || COMPILE_TEST
......@@ -365,6 +378,7 @@ config SPI_FSL_SPI
config SPI_FSL_DSPI
tristate "Freescale DSPI controller"
select REGMAP_MMIO
depends on HAS_DMA
depends on SOC_VF610 || SOC_LS1021A || ARCH_LAYERSCAPE || COMPILE_TEST
help
This enables support for the Freescale DSPI controller in master
......@@ -373,7 +387,6 @@ config SPI_FSL_DSPI
config SPI_FSL_ESPI
tristate "Freescale eSPI controller"
depends on FSL_SOC
select SPI_FSL_LIB
help
This enables using the Freescale eSPI controllers in master mode.
From MPC8536, 85xx platform uses the controller, and all P10xx,
......@@ -451,7 +464,8 @@ config SPI_ORION
tristate "Orion SPI master"
depends on PLAT_ORION || ARCH_MVEBU || COMPILE_TEST
help
This enables using the SPI master controller on the Orion chips.
This enables using the SPI master controller on the Orion
and MVEBU chips.
config SPI_PIC32
tristate "Microchip PIC32 series SPI"
......@@ -553,7 +567,7 @@ config SPI_S3C24XX_FIQ
config SPI_S3C64XX
tristate "Samsung S3C64XX series type SPI"
depends on (PLAT_SAMSUNG || ARCH_EXYNOS)
depends on (PLAT_SAMSUNG || ARCH_EXYNOS || COMPILE_TEST)
help
SPI driver for Samsung S3C64XX and newer SoCs.
......
......@@ -12,6 +12,7 @@ obj-$(CONFIG_SPI_LOOPBACK_TEST) += spi-loopback-test.o
# SPI master controller drivers (bus)
obj-$(CONFIG_SPI_ALTERA) += spi-altera.o
obj-$(CONFIG_SPI_ARMADA_3700) += spi-armada-3700.o
obj-$(CONFIG_SPI_ATMEL) += spi-atmel.o
obj-$(CONFIG_SPI_ATH79) += spi-ath79.o
obj-$(CONFIG_SPI_AU1550) += spi-au1550.o
......@@ -43,6 +44,7 @@ obj-$(CONFIG_SPI_FSL_CPM) += spi-fsl-cpm.o
obj-$(CONFIG_SPI_FSL_DSPI) += spi-fsl-dspi.o
obj-$(CONFIG_SPI_FSL_LIB) += spi-fsl-lib.o
obj-$(CONFIG_SPI_FSL_ESPI) += spi-fsl-espi.o
obj-$(CONFIG_SPI_FSL_LPSPI) += spi-fsl-lpspi.o
obj-$(CONFIG_SPI_FSL_SPI) += spi-fsl-spi.o
obj-$(CONFIG_SPI_GPIO) += spi-gpio.o
obj-$(CONFIG_SPI_IMG_SPFI) += spi-img-spfi.o
......
/*
* Marvell Armada-3700 SPI controller driver
*
* Copyright (C) 2016 Marvell Ltd.
*
* Author: Wilson Ding <dingwei@marvell.com>
* Author: Romain Perier <romain.perier@free-electrons.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_device.h>
#include <linux/pinctrl/consumer.h>
#include <linux/spi/spi.h>
#define DRIVER_NAME "armada_3700_spi"
#define A3700_SPI_TIMEOUT 10
/* SPI Register Offest */
#define A3700_SPI_IF_CTRL_REG 0x00
#define A3700_SPI_IF_CFG_REG 0x04
#define A3700_SPI_DATA_OUT_REG 0x08
#define A3700_SPI_DATA_IN_REG 0x0C
#define A3700_SPI_IF_INST_REG 0x10
#define A3700_SPI_IF_ADDR_REG 0x14
#define A3700_SPI_IF_RMODE_REG 0x18
#define A3700_SPI_IF_HDR_CNT_REG 0x1C
#define A3700_SPI_IF_DIN_CNT_REG 0x20
#define A3700_SPI_IF_TIME_REG 0x24
#define A3700_SPI_INT_STAT_REG 0x28
#define A3700_SPI_INT_MASK_REG 0x2C
/* A3700_SPI_IF_CTRL_REG */
#define A3700_SPI_EN BIT(16)
#define A3700_SPI_ADDR_NOT_CONFIG BIT(12)
#define A3700_SPI_WFIFO_OVERFLOW BIT(11)
#define A3700_SPI_WFIFO_UNDERFLOW BIT(10)
#define A3700_SPI_RFIFO_OVERFLOW BIT(9)
#define A3700_SPI_RFIFO_UNDERFLOW BIT(8)
#define A3700_SPI_WFIFO_FULL BIT(7)
#define A3700_SPI_WFIFO_EMPTY BIT(6)
#define A3700_SPI_RFIFO_FULL BIT(5)
#define A3700_SPI_RFIFO_EMPTY BIT(4)
#define A3700_SPI_WFIFO_RDY BIT(3)
#define A3700_SPI_RFIFO_RDY BIT(2)
#define A3700_SPI_XFER_RDY BIT(1)
#define A3700_SPI_XFER_DONE BIT(0)
/* A3700_SPI_IF_CFG_REG */
#define A3700_SPI_WFIFO_THRS BIT(28)
#define A3700_SPI_RFIFO_THRS BIT(24)
#define A3700_SPI_AUTO_CS BIT(20)
#define A3700_SPI_DMA_RD_EN BIT(18)
#define A3700_SPI_FIFO_MODE BIT(17)
#define A3700_SPI_SRST BIT(16)
#define A3700_SPI_XFER_START BIT(15)
#define A3700_SPI_XFER_STOP BIT(14)
#define A3700_SPI_INST_PIN BIT(13)
#define A3700_SPI_ADDR_PIN BIT(12)
#define A3700_SPI_DATA_PIN1 BIT(11)
#define A3700_SPI_DATA_PIN0 BIT(10)
#define A3700_SPI_FIFO_FLUSH BIT(9)
#define A3700_SPI_RW_EN BIT(8)
#define A3700_SPI_CLK_POL BIT(7)
#define A3700_SPI_CLK_PHA BIT(6)
#define A3700_SPI_BYTE_LEN BIT(5)
#define A3700_SPI_CLK_PRESCALE BIT(0)
#define A3700_SPI_CLK_PRESCALE_MASK (0x1f)
#define A3700_SPI_WFIFO_THRS_BIT 28
#define A3700_SPI_RFIFO_THRS_BIT 24
#define A3700_SPI_FIFO_THRS_MASK 0x7
#define A3700_SPI_DATA_PIN_MASK 0x3
/* A3700_SPI_IF_HDR_CNT_REG */
#define A3700_SPI_DUMMY_CNT_BIT 12
#define A3700_SPI_DUMMY_CNT_MASK 0x7
#define A3700_SPI_RMODE_CNT_BIT 8
#define A3700_SPI_RMODE_CNT_MASK 0x3
#define A3700_SPI_ADDR_CNT_BIT 4
#define A3700_SPI_ADDR_CNT_MASK 0x7
#define A3700_SPI_INSTR_CNT_BIT 0
#define A3700_SPI_INSTR_CNT_MASK 0x3
/* A3700_SPI_IF_TIME_REG */
#define A3700_SPI_CLK_CAPT_EDGE BIT(7)
/* Flags and macros for struct a3700_spi */
#define A3700_INSTR_CNT 1
#define A3700_ADDR_CNT 3
#define A3700_DUMMY_CNT 1
struct a3700_spi {
struct spi_master *master;
void __iomem *base;
struct clk *clk;
unsigned int irq;
unsigned int flags;
bool xmit_data;
const u8 *tx_buf;
u8 *rx_buf;
size_t buf_len;
u8 byte_len;
u32 wait_mask;
struct completion done;
u32 addr_cnt;
u32 instr_cnt;
size_t hdr_cnt;
};
static u32 spireg_read(struct a3700_spi *a3700_spi, u32 offset)
{
return readl(a3700_spi->base + offset);
}
static void spireg_write(struct a3700_spi *a3700_spi, u32 offset, u32 data)
{
writel(data, a3700_spi->base + offset);
}
static void a3700_spi_auto_cs_unset(struct a3700_spi *a3700_spi)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val &= ~A3700_SPI_AUTO_CS;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
}
static void a3700_spi_activate_cs(struct a3700_spi *a3700_spi, unsigned int cs)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CTRL_REG);
val |= (A3700_SPI_EN << cs);
spireg_write(a3700_spi, A3700_SPI_IF_CTRL_REG, val);
}
static void a3700_spi_deactivate_cs(struct a3700_spi *a3700_spi,
unsigned int cs)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CTRL_REG);
val &= ~(A3700_SPI_EN << cs);
spireg_write(a3700_spi, A3700_SPI_IF_CTRL_REG, val);
}
static int a3700_spi_pin_mode_set(struct a3700_spi *a3700_spi,
unsigned int pin_mode)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val &= ~(A3700_SPI_INST_PIN | A3700_SPI_ADDR_PIN);
val &= ~(A3700_SPI_DATA_PIN0 | A3700_SPI_DATA_PIN1);
switch (pin_mode) {
case 1:
break;
case 2:
val |= A3700_SPI_DATA_PIN0;
break;
case 4:
val |= A3700_SPI_DATA_PIN1;
break;
default:
dev_err(&a3700_spi->master->dev, "wrong pin mode %u", pin_mode);
return -EINVAL;
}
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
return 0;
}
static void a3700_spi_fifo_mode_set(struct a3700_spi *a3700_spi)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val |= A3700_SPI_FIFO_MODE;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
}
static void a3700_spi_mode_set(struct a3700_spi *a3700_spi,
unsigned int mode_bits)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
if (mode_bits & SPI_CPOL)
val |= A3700_SPI_CLK_POL;
else
val &= ~A3700_SPI_CLK_POL;
if (mode_bits & SPI_CPHA)
val |= A3700_SPI_CLK_PHA;
else
val &= ~A3700_SPI_CLK_PHA;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
}
static void a3700_spi_clock_set(struct a3700_spi *a3700_spi,
unsigned int speed_hz, u16 mode)
{
u32 val;
u32 prescale;
prescale = DIV_ROUND_UP(clk_get_rate(a3700_spi->clk), speed_hz);
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val = val & ~A3700_SPI_CLK_PRESCALE_MASK;
val = val | (prescale & A3700_SPI_CLK_PRESCALE_MASK);
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
if (prescale <= 2) {
val = spireg_read(a3700_spi, A3700_SPI_IF_TIME_REG);
val |= A3700_SPI_CLK_CAPT_EDGE;
spireg_write(a3700_spi, A3700_SPI_IF_TIME_REG, val);
}
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val &= ~(A3700_SPI_CLK_POL | A3700_SPI_CLK_PHA);
if (mode & SPI_CPOL)
val |= A3700_SPI_CLK_POL;
if (mode & SPI_CPHA)
val |= A3700_SPI_CLK_PHA;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
}
static void a3700_spi_bytelen_set(struct a3700_spi *a3700_spi, unsigned int len)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
if (len == 4)
val |= A3700_SPI_BYTE_LEN;
else
val &= ~A3700_SPI_BYTE_LEN;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
a3700_spi->byte_len = len;
}
static int a3700_spi_fifo_flush(struct a3700_spi *a3700_spi)
{
int timeout = A3700_SPI_TIMEOUT;
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val |= A3700_SPI_FIFO_FLUSH;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
while (--timeout) {
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
if (!(val & A3700_SPI_FIFO_FLUSH))
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static int a3700_spi_init(struct a3700_spi *a3700_spi)
{
struct spi_master *master = a3700_spi->master;
u32 val;
int i, ret = 0;
/* Reset SPI unit */
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val |= A3700_SPI_SRST;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
udelay(A3700_SPI_TIMEOUT);
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val &= ~A3700_SPI_SRST;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
/* Disable AUTO_CS and deactivate all chip-selects */
a3700_spi_auto_cs_unset(a3700_spi);
for (i = 0; i < master->num_chipselect; i++)
a3700_spi_deactivate_cs(a3700_spi, i);
/* Enable FIFO mode */
a3700_spi_fifo_mode_set(a3700_spi);
/* Set SPI mode */
a3700_spi_mode_set(a3700_spi, master->mode_bits);
/* Reset counters */
spireg_write(a3700_spi, A3700_SPI_IF_HDR_CNT_REG, 0);
spireg_write(a3700_spi, A3700_SPI_IF_DIN_CNT_REG, 0);
/* Mask the interrupts and clear cause bits */
spireg_write(a3700_spi, A3700_SPI_INT_MASK_REG, 0);
spireg_write(a3700_spi, A3700_SPI_INT_STAT_REG, ~0U);
return ret;
}
static irqreturn_t a3700_spi_interrupt(int irq, void *dev_id)
{
struct spi_master *master = dev_id;
struct a3700_spi *a3700_spi;
u32 cause;
a3700_spi = spi_master_get_devdata(master);
/* Get interrupt causes */
cause = spireg_read(a3700_spi, A3700_SPI_INT_STAT_REG);
if (!cause || !(a3700_spi->wait_mask & cause))
return IRQ_NONE;
/* mask and acknowledge the SPI interrupts */
spireg_write(a3700_spi, A3700_SPI_INT_MASK_REG, 0);
spireg_write(a3700_spi, A3700_SPI_INT_STAT_REG, cause);
/* Wake up the transfer */
if (a3700_spi->wait_mask & cause)
complete(&a3700_spi->done);
return IRQ_HANDLED;
}
static bool a3700_spi_wait_completion(struct spi_device *spi)
{
struct a3700_spi *a3700_spi;
unsigned int timeout;
unsigned int ctrl_reg;
unsigned long timeout_jiffies;
a3700_spi = spi_master_get_devdata(spi->master);
/* SPI interrupt is edge-triggered, which means an interrupt will
* be generated only when detecting a specific status bit changed
* from '0' to '1'. So when we start waiting for a interrupt, we
* need to check status bit in control reg first, if it is already 1,
* then we do not need to wait for interrupt
*/
ctrl_reg = spireg_read(a3700_spi, A3700_SPI_IF_CTRL_REG);
if (a3700_spi->wait_mask & ctrl_reg)
return true;
reinit_completion(&a3700_spi->done);
spireg_write(a3700_spi, A3700_SPI_INT_MASK_REG,
a3700_spi->wait_mask);
timeout_jiffies = msecs_to_jiffies(A3700_SPI_TIMEOUT);
timeout = wait_for_completion_timeout(&a3700_spi->done,
timeout_jiffies);
a3700_spi->wait_mask = 0;
if (timeout)
return true;
/* there might be the case that right after we checked the
* status bits in this routine and before start to wait for
* interrupt by wait_for_completion_timeout, the interrupt
* happens, to avoid missing it we need to double check
* status bits in control reg, if it is already 1, then
* consider that we have the interrupt successfully and
* return true.
*/
ctrl_reg = spireg_read(a3700_spi, A3700_SPI_IF_CTRL_REG);
if (a3700_spi->wait_mask & ctrl_reg)
return true;
spireg_write(a3700_spi, A3700_SPI_INT_MASK_REG, 0);
return true;
}
static bool a3700_spi_transfer_wait(struct spi_device *spi,
unsigned int bit_mask)
{
struct a3700_spi *a3700_spi;
a3700_spi = spi_master_get_devdata(spi->master);
a3700_spi->wait_mask = bit_mask;
return a3700_spi_wait_completion(spi);
}
static void a3700_spi_fifo_thres_set(struct a3700_spi *a3700_spi,
unsigned int bytes)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val &= ~(A3700_SPI_FIFO_THRS_MASK << A3700_SPI_RFIFO_THRS_BIT);
val |= (bytes - 1) << A3700_SPI_RFIFO_THRS_BIT;
val &= ~(A3700_SPI_FIFO_THRS_MASK << A3700_SPI_WFIFO_THRS_BIT);
val |= (7 - bytes) << A3700_SPI_WFIFO_THRS_BIT;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
}
static void a3700_spi_transfer_setup(struct spi_device *spi,
struct spi_transfer *xfer)
{
struct a3700_spi *a3700_spi;
unsigned int byte_len;
a3700_spi = spi_master_get_devdata(spi->master);
a3700_spi_clock_set(a3700_spi, xfer->speed_hz, spi->mode);
byte_len = xfer->bits_per_word >> 3;
a3700_spi_fifo_thres_set(a3700_spi, byte_len);
}
static void a3700_spi_set_cs(struct spi_device *spi, bool enable)
{
struct a3700_spi *a3700_spi = spi_master_get_devdata(spi->master);
if (!enable)
a3700_spi_activate_cs(a3700_spi, spi->chip_select);
else
a3700_spi_deactivate_cs(a3700_spi, spi->chip_select);
}
static void a3700_spi_header_set(struct a3700_spi *a3700_spi)
{
u32 instr_cnt = 0, addr_cnt = 0, dummy_cnt = 0;
u32 val = 0;
/* Clear the header registers */
spireg_write(a3700_spi, A3700_SPI_IF_INST_REG, 0);
spireg_write(a3700_spi, A3700_SPI_IF_ADDR_REG, 0);
spireg_write(a3700_spi, A3700_SPI_IF_RMODE_REG, 0);
/* Set header counters */
if (a3700_spi->tx_buf) {
if (a3700_spi->buf_len <= a3700_spi->instr_cnt) {
instr_cnt = a3700_spi->buf_len;
} else if (a3700_spi->buf_len <= (a3700_spi->instr_cnt +
a3700_spi->addr_cnt)) {
instr_cnt = a3700_spi->instr_cnt;
addr_cnt = a3700_spi->buf_len - instr_cnt;
} else if (a3700_spi->buf_len <= a3700_spi->hdr_cnt) {
instr_cnt = a3700_spi->instr_cnt;
addr_cnt = a3700_spi->addr_cnt;
/* Need to handle the normal write case with 1 byte
* data
*/
if (!a3700_spi->tx_buf[instr_cnt + addr_cnt])
dummy_cnt = a3700_spi->buf_len - instr_cnt -
addr_cnt;
}
val |= ((instr_cnt & A3700_SPI_INSTR_CNT_MASK)
<< A3700_SPI_INSTR_CNT_BIT);
val |= ((addr_cnt & A3700_SPI_ADDR_CNT_MASK)
<< A3700_SPI_ADDR_CNT_BIT);
val |= ((dummy_cnt & A3700_SPI_DUMMY_CNT_MASK)
<< A3700_SPI_DUMMY_CNT_BIT);
}
spireg_write(a3700_spi, A3700_SPI_IF_HDR_CNT_REG, val);
/* Update the buffer length to be transferred */
a3700_spi->buf_len -= (instr_cnt + addr_cnt + dummy_cnt);
/* Set Instruction */
val = 0;
while (instr_cnt--) {
val = (val << 8) | a3700_spi->tx_buf[0];
a3700_spi->tx_buf++;
}
spireg_write(a3700_spi, A3700_SPI_IF_INST_REG, val);
/* Set Address */
val = 0;
while (addr_cnt--) {
val = (val << 8) | a3700_spi->tx_buf[0];
a3700_spi->tx_buf++;
}
spireg_write(a3700_spi, A3700_SPI_IF_ADDR_REG, val);
}
static int a3700_is_wfifo_full(struct a3700_spi *a3700_spi)
{
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CTRL_REG);
return (val & A3700_SPI_WFIFO_FULL);
}
static int a3700_spi_fifo_write(struct a3700_spi *a3700_spi)
{
u32 val;
int i = 0;
while (!a3700_is_wfifo_full(a3700_spi) && a3700_spi->buf_len) {
val = 0;
if (a3700_spi->buf_len >= 4) {
val = cpu_to_le32(*(u32 *)a3700_spi->tx_buf);
spireg_write(a3700_spi, A3700_SPI_DATA_OUT_REG, val);
a3700_spi->buf_len -= 4;
a3700_spi->tx_buf += 4;
} else {
/*
* If the remained buffer length is less than 4-bytes,
* we should pad the write buffer with all ones. So that
* it avoids overwrite the unexpected bytes following
* the last one.
*/
val = GENMASK(31, 0);
while (a3700_spi->buf_len) {
val &= ~(0xff << (8 * i));
val |= *a3700_spi->tx_buf++ << (8 * i);
i++;
a3700_spi->buf_len--;
spireg_write(a3700_spi, A3700_SPI_DATA_OUT_REG,
val);
}
break;
}
}
return 0;
}
static int a3700_is_rfifo_empty(struct a3700_spi *a3700_spi)
{
u32 val = spireg_read(a3700_spi, A3700_SPI_IF_CTRL_REG);
return (val & A3700_SPI_RFIFO_EMPTY);
}
static int a3700_spi_fifo_read(struct a3700_spi *a3700_spi)
{
u32 val;
while (!a3700_is_rfifo_empty(a3700_spi) && a3700_spi->buf_len) {
val = spireg_read(a3700_spi, A3700_SPI_DATA_IN_REG);
if (a3700_spi->buf_len >= 4) {
u32 data = le32_to_cpu(val);
memcpy(a3700_spi->rx_buf, &data, 4);
a3700_spi->buf_len -= 4;
a3700_spi->rx_buf += 4;
} else {
/*
* When remain bytes is not larger than 4, we should
* avoid memory overwriting and just write the left rx
* buffer bytes.
*/
while (a3700_spi->buf_len) {
*a3700_spi->rx_buf = val & 0xff;
val >>= 8;
a3700_spi->buf_len--;
a3700_spi->rx_buf++;
}
}
}
return 0;
}
static void a3700_spi_transfer_abort_fifo(struct a3700_spi *a3700_spi)
{
int timeout = A3700_SPI_TIMEOUT;
u32 val;
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val |= A3700_SPI_XFER_STOP;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
while (--timeout) {
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
if (!(val & A3700_SPI_XFER_START))
break;
udelay(1);
}
a3700_spi_fifo_flush(a3700_spi);
val &= ~A3700_SPI_XFER_STOP;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
}
static int a3700_spi_prepare_message(struct spi_master *master,
struct spi_message *message)
{
struct a3700_spi *a3700_spi = spi_master_get_devdata(master);
struct spi_device *spi = message->spi;
int ret;
ret = clk_enable(a3700_spi->clk);
if (ret) {
dev_err(&spi->dev, "failed to enable clk with error %d\n", ret);
return ret;
}
/* Flush the FIFOs */
ret = a3700_spi_fifo_flush(a3700_spi);
if (ret)
return ret;
a3700_spi_bytelen_set(a3700_spi, 4);
return 0;
}
static int a3700_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct a3700_spi *a3700_spi = spi_master_get_devdata(master);
int ret = 0, timeout = A3700_SPI_TIMEOUT;
unsigned int nbits = 0;
u32 val;
a3700_spi_transfer_setup(spi, xfer);
a3700_spi->tx_buf = xfer->tx_buf;
a3700_spi->rx_buf = xfer->rx_buf;
a3700_spi->buf_len = xfer->len;
/* SPI transfer headers */
a3700_spi_header_set(a3700_spi);
if (xfer->tx_buf)
nbits = xfer->tx_nbits;
else if (xfer->rx_buf)
nbits = xfer->rx_nbits;
a3700_spi_pin_mode_set(a3700_spi, nbits);
if (xfer->rx_buf) {
/* Set read data length */
spireg_write(a3700_spi, A3700_SPI_IF_DIN_CNT_REG,
a3700_spi->buf_len);
/* Start READ transfer */
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val &= ~A3700_SPI_RW_EN;
val |= A3700_SPI_XFER_START;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
} else if (xfer->tx_buf) {
/* Start Write transfer */
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val |= (A3700_SPI_XFER_START | A3700_SPI_RW_EN);
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
/*
* If there are data to be written to the SPI device, xmit_data
* flag is set true; otherwise the instruction in SPI_INSTR does
* not require data to be written to the SPI device, then
* xmit_data flag is set false.
*/
a3700_spi->xmit_data = (a3700_spi->buf_len != 0);
}
while (a3700_spi->buf_len) {
if (a3700_spi->tx_buf) {
/* Wait wfifo ready */
if (!a3700_spi_transfer_wait(spi,
A3700_SPI_WFIFO_RDY)) {
dev_err(&spi->dev,
"wait wfifo ready timed out\n");
ret = -ETIMEDOUT;
goto error;
}
/* Fill up the wfifo */
ret = a3700_spi_fifo_write(a3700_spi);
if (ret)
goto error;
} else if (a3700_spi->rx_buf) {
/* Wait rfifo ready */
if (!a3700_spi_transfer_wait(spi,
A3700_SPI_RFIFO_RDY)) {
dev_err(&spi->dev,
"wait rfifo ready timed out\n");
ret = -ETIMEDOUT;
goto error;
}
/* Drain out the rfifo */
ret = a3700_spi_fifo_read(a3700_spi);
if (ret)
goto error;
}
}
/*
* Stop a write transfer in fifo mode:
* - wait all the bytes in wfifo to be shifted out
* - set XFER_STOP bit
* - wait XFER_START bit clear
* - clear XFER_STOP bit
* Stop a read transfer in fifo mode:
* - the hardware is to reset the XFER_START bit
* after the number of bytes indicated in DIN_CNT
* register
* - just wait XFER_START bit clear
*/
if (a3700_spi->tx_buf) {
if (a3700_spi->xmit_data) {
/*
* If there are data written to the SPI device, wait
* until SPI_WFIFO_EMPTY is 1 to wait for all data to
* transfer out of write FIFO.
*/
if (!a3700_spi_transfer_wait(spi,
A3700_SPI_WFIFO_EMPTY)) {
dev_err(&spi->dev, "wait wfifo empty timed out\n");
return -ETIMEDOUT;
}
} else {
/*
* If the instruction in SPI_INSTR does not require data
* to be written to the SPI device, wait until SPI_RDY
* is 1 for the SPI interface to be in idle.
*/
if (!a3700_spi_transfer_wait(spi, A3700_SPI_XFER_RDY)) {
dev_err(&spi->dev, "wait xfer ready timed out\n");
return -ETIMEDOUT;
}
}
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
val |= A3700_SPI_XFER_STOP;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
}
while (--timeout) {
val = spireg_read(a3700_spi, A3700_SPI_IF_CFG_REG);
if (!(val & A3700_SPI_XFER_START))
break;
udelay(1);
}
if (timeout == 0) {
dev_err(&spi->dev, "wait transfer start clear timed out\n");
ret = -ETIMEDOUT;
goto error;
}
val &= ~A3700_SPI_XFER_STOP;
spireg_write(a3700_spi, A3700_SPI_IF_CFG_REG, val);
goto out;
error:
a3700_spi_transfer_abort_fifo(a3700_spi);
out:
spi_finalize_current_transfer(master);
return ret;
}
static int a3700_spi_unprepare_message(struct spi_master *master,
struct spi_message *message)
{
struct a3700_spi *a3700_spi = spi_master_get_devdata(master);
clk_disable(a3700_spi->clk);
return 0;
}
static const struct of_device_id a3700_spi_dt_ids[] = {
{ .compatible = "marvell,armada-3700-spi", .data = NULL },
{},
};
MODULE_DEVICE_TABLE(of, a3700_spi_dt_ids);
static int a3700_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *of_node = dev->of_node;
struct resource *res;
struct spi_master *master;
struct a3700_spi *spi;
u32 num_cs = 0;
int irq, ret = 0;
master = spi_alloc_master(dev, sizeof(*spi));
if (!master) {
dev_err(dev, "master allocation failed\n");
ret = -ENOMEM;
goto out;
}
if (of_property_read_u32(of_node, "num-cs", &num_cs)) {
dev_err(dev, "could not find num-cs\n");
ret = -ENXIO;
goto error;
}
master->bus_num = pdev->id;
master->dev.of_node = of_node;
master->mode_bits = SPI_MODE_3;
master->num_chipselect = num_cs;
master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(32);
master->prepare_message = a3700_spi_prepare_message;
master->transfer_one = a3700_spi_transfer_one;
master->unprepare_message = a3700_spi_unprepare_message;
master->set_cs = a3700_spi_set_cs;
master->flags = SPI_MASTER_HALF_DUPLEX;
master->mode_bits |= (SPI_RX_DUAL | SPI_TX_DUAL |
SPI_RX_QUAD | SPI_TX_QUAD);
platform_set_drvdata(pdev, master);
spi = spi_master_get_devdata(master);
memset(spi, 0, sizeof(struct a3700_spi));
spi->master = master;
spi->instr_cnt = A3700_INSTR_CNT;
spi->addr_cnt = A3700_ADDR_CNT;
spi->hdr_cnt = A3700_INSTR_CNT + A3700_ADDR_CNT +
A3700_DUMMY_CNT;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
spi->base = devm_ioremap_resource(dev, res);
if (IS_ERR(spi->base)) {
ret = PTR_ERR(spi->base);
goto error;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "could not get irq: %d\n", irq);
ret = -ENXIO;
goto error;
}
spi->irq = irq;
init_completion(&spi->done);
spi->clk = devm_clk_get(dev, NULL);
if (IS_ERR(spi->clk)) {
dev_err(dev, "could not find clk: %ld\n", PTR_ERR(spi->clk));
goto error;
}
ret = clk_prepare(spi->clk);
if (ret) {
dev_err(dev, "could not prepare clk: %d\n", ret);
goto error;
}
ret = a3700_spi_init(spi);
if (ret)
goto error_clk;
ret = devm_request_irq(dev, spi->irq, a3700_spi_interrupt, 0,
dev_name(dev), master);
if (ret) {
dev_err(dev, "could not request IRQ: %d\n", ret);
goto error_clk;
}
ret = devm_spi_register_master(dev, master);
if (ret) {
dev_err(dev, "Failed to register master\n");
goto error_clk;
}
return 0;
error_clk:
clk_disable_unprepare(spi->clk);
error:
spi_master_put(master);
out:
return ret;
}
static int a3700_spi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct a3700_spi *spi = spi_master_get_devdata(master);
clk_unprepare(spi->clk);
spi_master_put(master);
return 0;
}
static struct platform_driver a3700_spi_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = of_match_ptr(a3700_spi_dt_ids),
},
.probe = a3700_spi_probe,
.remove = a3700_spi_remove,
};
module_platform_driver(a3700_spi_driver);
MODULE_DESCRIPTION("Armada-3700 SPI driver");
MODULE_AUTHOR("Wilson Ding <dingwei@marvell.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
......@@ -304,6 +304,7 @@ static const struct of_device_id ath79_spi_of_match[] = {
{ .compatible = "qca,ar7100-spi", },
{ },
};
MODULE_DEVICE_TABLE(of, ath79_spi_of_match);
static struct platform_driver ath79_spi_driver = {
.probe = ath79_spi_probe,
......
......@@ -24,6 +24,7 @@
#include <linux/io.h>
#include <linux/gpio.h>
#include <linux/of_gpio.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
......@@ -264,17 +265,6 @@
#define AUTOSUSPEND_TIMEOUT 2000
struct atmel_spi_dma {
struct dma_chan *chan_rx;
struct dma_chan *chan_tx;
struct scatterlist sgrx;
struct scatterlist sgtx;
struct dma_async_tx_descriptor *data_desc_rx;
struct dma_async_tx_descriptor *data_desc_tx;
struct at_dma_slave dma_slave;
};
struct atmel_spi_caps {
bool is_spi2;
bool has_wdrbt;
......@@ -295,6 +285,7 @@ struct atmel_spi {
int irq;
struct clk *clk;
struct platform_device *pdev;
unsigned long spi_clk;
struct spi_transfer *current_transfer;
int current_remaining_bytes;
......@@ -302,17 +293,11 @@ struct atmel_spi {
struct completion xfer_completion;
/* scratch buffer */
void *buffer;
dma_addr_t buffer_dma;
struct atmel_spi_caps caps;
bool use_dma;
bool use_pdc;
bool use_cs_gpios;
/* dmaengine data */
struct atmel_spi_dma dma;
bool keep_cs;
bool cs_active;
......@@ -326,7 +311,7 @@ struct atmel_spi_device {
u32 csr;
};
#define BUFFER_SIZE PAGE_SIZE
#define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
#define INVALID_DMA_ADDRESS 0xffffffff
/*
......@@ -456,10 +441,20 @@ static inline bool atmel_spi_use_dma(struct atmel_spi *as,
return as->use_dma && xfer->len >= DMA_MIN_BYTES;
}
static bool atmel_spi_can_dma(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *xfer)
{
struct atmel_spi *as = spi_master_get_devdata(master);
return atmel_spi_use_dma(as, xfer);
}
static int atmel_spi_dma_slave_config(struct atmel_spi *as,
struct dma_slave_config *slave_config,
u8 bits_per_word)
{
struct spi_master *master = platform_get_drvdata(as->pdev);
int err = 0;
if (bits_per_word > 8) {
......@@ -491,7 +486,7 @@ static int atmel_spi_dma_slave_config(struct atmel_spi *as,
* path works the same whether FIFOs are available (and enabled) or not.
*/
slave_config->direction = DMA_MEM_TO_DEV;
if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
if (dmaengine_slave_config(master->dma_tx, slave_config)) {
dev_err(&as->pdev->dev,
"failed to configure tx dma channel\n");
err = -EINVAL;
......@@ -506,7 +501,7 @@ static int atmel_spi_dma_slave_config(struct atmel_spi *as,
* enabled) or not.
*/
slave_config->direction = DMA_DEV_TO_MEM;
if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
if (dmaengine_slave_config(master->dma_rx, slave_config)) {
dev_err(&as->pdev->dev,
"failed to configure rx dma channel\n");
err = -EINVAL;
......@@ -515,7 +510,8 @@ static int atmel_spi_dma_slave_config(struct atmel_spi *as,
return err;
}
static int atmel_spi_configure_dma(struct atmel_spi *as)
static int atmel_spi_configure_dma(struct spi_master *master,
struct atmel_spi *as)
{
struct dma_slave_config slave_config;
struct device *dev = &as->pdev->dev;
......@@ -525,26 +521,26 @@ static int atmel_spi_configure_dma(struct atmel_spi *as)
dma_cap_zero(mask);
dma_cap_set(DMA_SLAVE, mask);
as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
if (IS_ERR(as->dma.chan_tx)) {
err = PTR_ERR(as->dma.chan_tx);
master->dma_tx = dma_request_slave_channel_reason(dev, "tx");
if (IS_ERR(master->dma_tx)) {
err = PTR_ERR(master->dma_tx);
if (err == -EPROBE_DEFER) {
dev_warn(dev, "no DMA channel available at the moment\n");
return err;
goto error_clear;
}
dev_err(dev,
"DMA TX channel not available, SPI unable to use DMA\n");
err = -EBUSY;
goto error;
goto error_clear;
}
/*
* No reason to check EPROBE_DEFER here since we have already requested
* tx channel. If it fails here, it's for another reason.
*/
as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
master->dma_rx = dma_request_slave_channel(dev, "rx");
if (!as->dma.chan_rx) {
if (!master->dma_rx) {
dev_err(dev,
"DMA RX channel not available, SPI unable to use DMA\n");
err = -EBUSY;
......@@ -557,31 +553,38 @@ static int atmel_spi_configure_dma(struct atmel_spi *as)
dev_info(&as->pdev->dev,
"Using %s (tx) and %s (rx) for DMA transfers\n",
dma_chan_name(as->dma.chan_tx),
dma_chan_name(as->dma.chan_rx));
dma_chan_name(master->dma_tx),
dma_chan_name(master->dma_rx));
return 0;
error:
if (as->dma.chan_rx)
dma_release_channel(as->dma.chan_rx);
if (!IS_ERR(as->dma.chan_tx))
dma_release_channel(as->dma.chan_tx);
if (master->dma_rx)
dma_release_channel(master->dma_rx);
if (!IS_ERR(master->dma_tx))
dma_release_channel(master->dma_tx);
error_clear:
master->dma_tx = master->dma_rx = NULL;
return err;
}
static void atmel_spi_stop_dma(struct atmel_spi *as)
static void atmel_spi_stop_dma(struct spi_master *master)
{
if (as->dma.chan_rx)
dmaengine_terminate_all(as->dma.chan_rx);
if (as->dma.chan_tx)
dmaengine_terminate_all(as->dma.chan_tx);
if (master->dma_rx)
dmaengine_terminate_all(master->dma_rx);
if (master->dma_tx)
dmaengine_terminate_all(master->dma_tx);
}
static void atmel_spi_release_dma(struct atmel_spi *as)
static void atmel_spi_release_dma(struct spi_master *master)
{
if (as->dma.chan_rx)
dma_release_channel(as->dma.chan_rx);
if (as->dma.chan_tx)
dma_release_channel(as->dma.chan_tx);
if (master->dma_rx) {
dma_release_channel(master->dma_rx);
master->dma_rx = NULL;
}
if (master->dma_tx) {
dma_release_channel(master->dma_tx);
master->dma_tx = NULL;
}
}
/* This function is called by the DMA driver from tasklet context */
......@@ -611,14 +614,10 @@ static void atmel_spi_next_xfer_single(struct spi_master *master,
cpu_relax();
}
if (xfer->tx_buf) {
if (xfer->bits_per_word > 8)
spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
else
spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
} else {
spi_writel(as, TDR, 0);
}
dev_dbg(master->dev.parent,
" start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
......@@ -665,7 +664,6 @@ static void atmel_spi_next_xfer_fifo(struct spi_master *master,
/* Fill TX FIFO */
while (num_data >= 2) {
if (xfer->tx_buf) {
if (xfer->bits_per_word > 8) {
td0 = *words++;
td1 = *words++;
......@@ -673,24 +671,16 @@ static void atmel_spi_next_xfer_fifo(struct spi_master *master,
td0 = *bytes++;
td1 = *bytes++;
}
} else {
td0 = 0;
td1 = 0;
}
spi_writel(as, TDR, (td1 << 16) | td0);
num_data -= 2;
}
if (num_data) {
if (xfer->tx_buf) {
if (xfer->bits_per_word > 8)
td0 = *words++;
else
td0 = *bytes++;
} else {
td0 = 0;
}
spi_writew(as, TDR, td0);
num_data--;
......@@ -730,13 +720,12 @@ static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
u32 *plen)
{
struct atmel_spi *as = spi_master_get_devdata(master);
struct dma_chan *rxchan = as->dma.chan_rx;
struct dma_chan *txchan = as->dma.chan_tx;
struct dma_chan *rxchan = master->dma_rx;
struct dma_chan *txchan = master->dma_tx;
struct dma_async_tx_descriptor *rxdesc;
struct dma_async_tx_descriptor *txdesc;
struct dma_slave_config slave_config;
dma_cookie_t cookie;
u32 len = *plen;
dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
......@@ -747,44 +736,22 @@ static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
/* release lock for DMA operations */
atmel_spi_unlock(as);
/* prepare the RX dma transfer */
sg_init_table(&as->dma.sgrx, 1);
if (xfer->rx_buf) {
as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
} else {
as->dma.sgrx.dma_address = as->buffer_dma;
if (len > BUFFER_SIZE)
len = BUFFER_SIZE;
}
/* prepare the TX dma transfer */
sg_init_table(&as->dma.sgtx, 1);
if (xfer->tx_buf) {
as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
} else {
as->dma.sgtx.dma_address = as->buffer_dma;
if (len > BUFFER_SIZE)
len = BUFFER_SIZE;
memset(as->buffer, 0, len);
}
sg_dma_len(&as->dma.sgtx) = len;
sg_dma_len(&as->dma.sgrx) = len;
*plen = len;
*plen = xfer->len;
if (atmel_spi_dma_slave_config(as, &slave_config,
xfer->bits_per_word))
goto err_exit;
/* Send both scatterlists */
rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
rxdesc = dmaengine_prep_slave_sg(rxchan,
xfer->rx_sg.sgl, xfer->rx_sg.nents,
DMA_FROM_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc)
goto err_dma;
txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
txdesc = dmaengine_prep_slave_sg(txchan,
xfer->tx_sg.sgl, xfer->tx_sg.nents,
DMA_TO_DEVICE,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc)
......@@ -818,7 +785,7 @@ static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
err_dma:
spi_writel(as, IDR, SPI_BIT(OVRES));
atmel_spi_stop_dma(as);
atmel_spi_stop_dma(master);
err_exit:
atmel_spi_lock(as);
return -ENOMEM;
......@@ -830,30 +797,10 @@ static void atmel_spi_next_xfer_data(struct spi_master *master,
dma_addr_t *rx_dma,
u32 *plen)
{
struct atmel_spi *as = spi_master_get_devdata(master);
u32 len = *plen;
/* use scratch buffer only when rx or tx data is unspecified */
if (xfer->rx_buf)
*rx_dma = xfer->rx_dma + xfer->len - *plen;
else {
*rx_dma = as->buffer_dma;
if (len > BUFFER_SIZE)
len = BUFFER_SIZE;
}
if (xfer->tx_buf)
*tx_dma = xfer->tx_dma + xfer->len - *plen;
else {
*tx_dma = as->buffer_dma;
if (len > BUFFER_SIZE)
len = BUFFER_SIZE;
memset(as->buffer, 0, len);
dma_sync_single_for_device(&as->pdev->dev,
as->buffer_dma, len, DMA_TO_DEVICE);
}
*plen = len;
if (*plen > master->max_dma_len)
*plen = master->max_dma_len;
}
static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
......@@ -864,7 +811,7 @@ static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
unsigned long bus_hz;
/* v1 chips start out at half the peripheral bus speed. */
bus_hz = clk_get_rate(as->clk);
bus_hz = as->spi_clk;
if (!atmel_spi_is_v2(as))
bus_hz /= 2;
......@@ -1025,7 +972,6 @@ atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
u16 *rxp16;
unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
if (xfer->rx_buf) {
if (xfer->bits_per_word > 8) {
rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
*rxp16 = spi_readl(as, RDR);
......@@ -1033,9 +979,6 @@ atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
*rxp = spi_readl(as, RDR);
}
} else {
spi_readl(as, RDR);
}
if (xfer->bits_per_word > 8) {
if (as->current_remaining_bytes > 2)
as->current_remaining_bytes -= 2;
......@@ -1073,12 +1016,10 @@ atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
/* Read data */
while (num_data) {
rd = spi_readl(as, RDR);
if (xfer->rx_buf) {
if (xfer->bits_per_word > 8)
*words++ = rd;
else
*bytes++ = rd;
}
num_data--;
}
}
......@@ -1204,7 +1145,6 @@ static int atmel_spi_setup(struct spi_device *spi)
u32 csr;
unsigned int bits = spi->bits_per_word;
unsigned int npcs_pin;
int ret;
as = spi_master_get_devdata(spi->master);
......@@ -1247,16 +1187,9 @@ static int atmel_spi_setup(struct spi_device *spi)
if (!asd)
return -ENOMEM;
if (as->use_cs_gpios) {
ret = gpio_request(npcs_pin, dev_name(&spi->dev));
if (ret) {
kfree(asd);
return ret;
}
if (as->use_cs_gpios)
gpio_direction_output(npcs_pin,
!(spi->mode & SPI_CS_HIGH));
}
asd->npcs_pin = npcs_pin;
spi->controller_state = asd;
......@@ -1307,7 +1240,7 @@ static int atmel_spi_one_transfer(struct spi_master *master,
* better fault reporting.
*/
if ((!msg->is_dma_mapped)
&& (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
&& as->use_pdc) {
if (atmel_spi_dma_map_xfer(as, xfer) < 0)
return -ENOMEM;
}
......@@ -1380,11 +1313,11 @@ static int atmel_spi_one_transfer(struct spi_master *master,
spi_readl(as, SR);
} else if (atmel_spi_use_dma(as, xfer)) {
atmel_spi_stop_dma(as);
atmel_spi_stop_dma(master);
}
if (!msg->is_dma_mapped
&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
&& as->use_pdc)
atmel_spi_dma_unmap_xfer(master, xfer);
return 0;
......@@ -1395,7 +1328,7 @@ static int atmel_spi_one_transfer(struct spi_master *master,
}
if (!msg->is_dma_mapped
&& (atmel_spi_use_dma(as, xfer) || as->use_pdc))
&& as->use_pdc)
atmel_spi_dma_unmap_xfer(master, xfer);
if (xfer->delay_usecs)
......@@ -1471,13 +1404,11 @@ static int atmel_spi_transfer_one_message(struct spi_master *master,
static void atmel_spi_cleanup(struct spi_device *spi)
{
struct atmel_spi_device *asd = spi->controller_state;
unsigned gpio = (unsigned long) spi->controller_data;
if (!asd)
return;
spi->controller_state = NULL;
gpio_free(gpio);
kfree(asd);
}
......@@ -1499,6 +1430,39 @@ static void atmel_get_caps(struct atmel_spi *as)
}
/*-------------------------------------------------------------------------*/
static int atmel_spi_gpio_cs(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct atmel_spi *as = spi_master_get_devdata(master);
struct device_node *np = master->dev.of_node;
int i;
int ret = 0;
int nb = 0;
if (!as->use_cs_gpios)
return 0;
if (!np)
return 0;
nb = of_gpio_named_count(np, "cs-gpios");
for (i = 0; i < nb; i++) {
int cs_gpio = of_get_named_gpio(pdev->dev.of_node,
"cs-gpios", i);
if (cs_gpio == -EPROBE_DEFER)
return cs_gpio;
if (gpio_is_valid(cs_gpio)) {
ret = devm_gpio_request(&pdev->dev, cs_gpio,
dev_name(&pdev->dev));
if (ret)
return ret;
}
}
return 0;
}
static int atmel_spi_probe(struct platform_device *pdev)
{
......@@ -1537,29 +1501,23 @@ static int atmel_spi_probe(struct platform_device *pdev)
master->bus_num = pdev->id;
master->num_chipselect = master->dev.of_node ? 0 : 4;
master->setup = atmel_spi_setup;
master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
master->transfer_one_message = atmel_spi_transfer_one_message;
master->cleanup = atmel_spi_cleanup;
master->auto_runtime_pm = true;
master->max_dma_len = SPI_MAX_DMA_XFER;
master->can_dma = atmel_spi_can_dma;
platform_set_drvdata(pdev, master);
as = spi_master_get_devdata(master);
/*
* Scratch buffer is used for throwaway rx and tx data.
* It's coherent to minimize dcache pollution.
*/
as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
&as->buffer_dma, GFP_KERNEL);
if (!as->buffer)
goto out_free;
spin_lock_init(&as->lock);
as->pdev = pdev;
as->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(as->regs)) {
ret = PTR_ERR(as->regs);
goto out_free_buffer;
goto out_unmap_regs;
}
as->phybase = regs->start;
as->irq = irq;
......@@ -1577,14 +1535,19 @@ static int atmel_spi_probe(struct platform_device *pdev)
master->num_chipselect = 4;
}
ret = atmel_spi_gpio_cs(pdev);
if (ret)
goto out_unmap_regs;
as->use_dma = false;
as->use_pdc = false;
if (as->caps.has_dma_support) {
ret = atmel_spi_configure_dma(as);
if (ret == 0)
ret = atmel_spi_configure_dma(master, as);
if (ret == 0) {
as->use_dma = true;
else if (ret == -EPROBE_DEFER)
} else if (ret == -EPROBE_DEFER) {
return ret;
}
} else {
as->use_pdc = true;
}
......@@ -1606,6 +1569,9 @@ static int atmel_spi_probe(struct platform_device *pdev)
ret = clk_prepare_enable(clk);
if (ret)
goto out_free_irq;
as->spi_clk = clk_get_rate(clk);
spi_writel(as, CR, SPI_BIT(SWRST));
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
if (as->caps.has_wdrbt) {
......@@ -1626,10 +1592,6 @@ static int atmel_spi_probe(struct platform_device *pdev)
spi_writel(as, CR, SPI_BIT(FIFOEN));
}
/* go! */
dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
(unsigned long)regs->start, irq);
pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
......@@ -1639,6 +1601,10 @@ static int atmel_spi_probe(struct platform_device *pdev)
if (ret)
goto out_free_dma;
/* go! */
dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
(unsigned long)regs->start, irq);
return 0;
out_free_dma:
......@@ -1646,16 +1612,13 @@ static int atmel_spi_probe(struct platform_device *pdev)
pm_runtime_set_suspended(&pdev->dev);
if (as->use_dma)
atmel_spi_release_dma(as);
atmel_spi_release_dma(master);
spi_writel(as, CR, SPI_BIT(SWRST));
spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
clk_disable_unprepare(clk);
out_free_irq:
out_unmap_regs:
out_free_buffer:
dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
as->buffer_dma);
out_free:
spi_master_put(master);
return ret;
......@@ -1671,8 +1634,8 @@ static int atmel_spi_remove(struct platform_device *pdev)
/* reset the hardware and block queue progress */
spin_lock_irq(&as->lock);
if (as->use_dma) {
atmel_spi_stop_dma(as);
atmel_spi_release_dma(as);
atmel_spi_stop_dma(master);
atmel_spi_release_dma(master);
}
spi_writel(as, CR, SPI_BIT(SWRST));
......@@ -1680,9 +1643,6 @@ static int atmel_spi_remove(struct platform_device *pdev)
spi_readl(as, SR);
spin_unlock_irq(&as->lock);
dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
as->buffer_dma);
clk_disable_unprepare(as->clk);
pm_runtime_put_noidle(&pdev->dev);
......
......@@ -494,7 +494,8 @@ static int spi_engine_probe(struct platform_device *pdev)
SPI_ENGINE_VERSION_MAJOR(version),
SPI_ENGINE_VERSION_MINOR(version),
SPI_ENGINE_VERSION_PATCH(version));
return -ENODEV;
ret = -ENODEV;
goto err_put_master;
}
spi_engine->clk = devm_clk_get(&pdev->dev, "s_axi_aclk");
......@@ -574,6 +575,7 @@ static const struct of_device_id spi_engine_match_table[] = {
{ .compatible = "adi,axi-spi-engine-1.00.a" },
{ },
};
MODULE_DEVICE_TABLE(of, spi_engine_match_table);
static struct platform_driver spi_engine_driver = {
.probe = spi_engine_probe,
......
......@@ -646,7 +646,7 @@ static int davinci_spi_bufs(struct spi_device *spi, struct spi_transfer *t)
buf = t->rx_buf;
t->rx_dma = dma_map_single(&spi->dev, buf,
t->len, DMA_FROM_DEVICE);
if (!t->rx_dma) {
if (dma_mapping_error(&spi->dev, !t->rx_dma)) {
ret = -EFAULT;
goto err_rx_map;
}
......@@ -660,7 +660,7 @@ static int davinci_spi_bufs(struct spi_device *spi, struct spi_transfer *t)
buf = (void *)t->tx_buf;
t->tx_dma = dma_map_single(&spi->dev, buf,
t->len, DMA_TO_DEVICE);
if (!t->tx_dma) {
if (dma_mapping_error(&spi->dev, t->tx_dma)) {
ret = -EFAULT;
goto err_tx_map;
}
......
......@@ -274,11 +274,11 @@ static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
static void mid_spi_dma_stop(struct dw_spi *dws)
{
if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_all(dws->txchan);
dmaengine_terminate_sync(dws->txchan);
clear_bit(TX_BUSY, &dws->dma_chan_busy);
}
if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
dmaengine_terminate_all(dws->rxchan);
dmaengine_terminate_sync(dws->rxchan);
clear_bit(RX_BUSY, &dws->dma_chan_busy);
}
}
......
......@@ -107,7 +107,10 @@ static const struct file_operations dw_spi_regs_ops = {
static int dw_spi_debugfs_init(struct dw_spi *dws)
{
dws->debugfs = debugfs_create_dir("dw_spi", NULL);
char name[128];
snprintf(name, 128, "dw_spi-%s", dev_name(&dws->master->dev));
dws->debugfs = debugfs_create_dir(name, NULL);
if (!dws->debugfs)
return -ENOMEM;
......@@ -502,6 +505,7 @@ int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
master->handle_err = dw_spi_handle_err;
master->max_speed_hz = dws->max_freq;
master->dev.of_node = dev->of_node;
master->flags = SPI_MASTER_GPIO_SS;
/* Basic HW init */
spi_hw_init(dev, dws);
......
......@@ -15,6 +15,8 @@
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
......@@ -40,6 +42,7 @@
#define TRAN_STATE_WORD_ODD_NUM 0x04
#define DSPI_FIFO_SIZE 4
#define DSPI_DMA_BUFSIZE (DSPI_FIFO_SIZE * 1024)
#define SPI_MCR 0x00
#define SPI_MCR_MASTER (1 << 31)
......@@ -72,6 +75,11 @@
#define SPI_SR_TCFQF 0x80000000
#define SPI_SR_CLEAR 0xdaad0000
#define SPI_RSER_TFFFE BIT(25)
#define SPI_RSER_TFFFD BIT(24)
#define SPI_RSER_RFDFE BIT(17)
#define SPI_RSER_RFDFD BIT(16)
#define SPI_RSER 0x30
#define SPI_RSER_EOQFE 0x10000000
#define SPI_RSER_TCFQE 0x80000000
......@@ -109,6 +117,8 @@
#define SPI_TCR_TCNT_MAX 0x10000
#define DMA_COMPLETION_TIMEOUT msecs_to_jiffies(3000)
struct chip_data {
u32 mcr_val;
u32 ctar_val;
......@@ -118,6 +128,7 @@ struct chip_data {
enum dspi_trans_mode {
DSPI_EOQ_MODE = 0,
DSPI_TCFQ_MODE,
DSPI_DMA_MODE,
};
struct fsl_dspi_devtype_data {
......@@ -126,7 +137,7 @@ struct fsl_dspi_devtype_data {
};
static const struct fsl_dspi_devtype_data vf610_data = {
.trans_mode = DSPI_EOQ_MODE,
.trans_mode = DSPI_DMA_MODE,
.max_clock_factor = 2,
};
......@@ -140,6 +151,23 @@ static const struct fsl_dspi_devtype_data ls2085a_data = {
.max_clock_factor = 8,
};
struct fsl_dspi_dma {
/* Length of transfer in words of DSPI_FIFO_SIZE */
u32 curr_xfer_len;
u32 *tx_dma_buf;
struct dma_chan *chan_tx;
dma_addr_t tx_dma_phys;
struct completion cmd_tx_complete;
struct dma_async_tx_descriptor *tx_desc;
u32 *rx_dma_buf;
struct dma_chan *chan_rx;
dma_addr_t rx_dma_phys;
struct completion cmd_rx_complete;
struct dma_async_tx_descriptor *rx_desc;
};
struct fsl_dspi {
struct spi_master *master;
struct platform_device *pdev;
......@@ -166,8 +194,11 @@ struct fsl_dspi {
u32 waitflags;
u32 spi_tcnt;
struct fsl_dspi_dma *dma;
};
static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word);
static inline int is_double_byte_mode(struct fsl_dspi *dspi)
{
unsigned int val;
......@@ -177,6 +208,255 @@ static inline int is_double_byte_mode(struct fsl_dspi *dspi)
return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
}
static void dspi_tx_dma_callback(void *arg)
{
struct fsl_dspi *dspi = arg;
struct fsl_dspi_dma *dma = dspi->dma;
complete(&dma->cmd_tx_complete);
}
static void dspi_rx_dma_callback(void *arg)
{
struct fsl_dspi *dspi = arg;
struct fsl_dspi_dma *dma = dspi->dma;
int rx_word;
int i;
u16 d;
rx_word = is_double_byte_mode(dspi);
if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) {
for (i = 0; i < dma->curr_xfer_len; i++) {
d = dspi->dma->rx_dma_buf[i];
rx_word ? (*(u16 *)dspi->rx = d) :
(*(u8 *)dspi->rx = d);
dspi->rx += rx_word + 1;
}
}
complete(&dma->cmd_rx_complete);
}
static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
{
struct fsl_dspi_dma *dma = dspi->dma;
struct device *dev = &dspi->pdev->dev;
int time_left;
int tx_word;
int i;
tx_word = is_double_byte_mode(dspi);
for (i = 0; i < dma->curr_xfer_len; i++) {
dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word);
if ((dspi->cs_change) && (!dspi->len))
dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT;
}
dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
dma->tx_dma_phys,
dma->curr_xfer_len *
DMA_SLAVE_BUSWIDTH_4_BYTES,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!dma->tx_desc) {
dev_err(dev, "Not able to get desc for DMA xfer\n");
return -EIO;
}
dma->tx_desc->callback = dspi_tx_dma_callback;
dma->tx_desc->callback_param = dspi;
if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
dev_err(dev, "DMA submit failed\n");
return -EINVAL;
}
dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
dma->rx_dma_phys,
dma->curr_xfer_len *
DMA_SLAVE_BUSWIDTH_4_BYTES,
DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!dma->rx_desc) {
dev_err(dev, "Not able to get desc for DMA xfer\n");
return -EIO;
}
dma->rx_desc->callback = dspi_rx_dma_callback;
dma->rx_desc->callback_param = dspi;
if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
dev_err(dev, "DMA submit failed\n");
return -EINVAL;
}
reinit_completion(&dspi->dma->cmd_rx_complete);
reinit_completion(&dspi->dma->cmd_tx_complete);
dma_async_issue_pending(dma->chan_rx);
dma_async_issue_pending(dma->chan_tx);
time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
DMA_COMPLETION_TIMEOUT);
if (time_left == 0) {
dev_err(dev, "DMA tx timeout\n");
dmaengine_terminate_all(dma->chan_tx);
dmaengine_terminate_all(dma->chan_rx);
return -ETIMEDOUT;
}
time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
DMA_COMPLETION_TIMEOUT);
if (time_left == 0) {
dev_err(dev, "DMA rx timeout\n");
dmaengine_terminate_all(dma->chan_tx);
dmaengine_terminate_all(dma->chan_rx);
return -ETIMEDOUT;
}
return 0;
}
static int dspi_dma_xfer(struct fsl_dspi *dspi)
{
struct fsl_dspi_dma *dma = dspi->dma;
struct device *dev = &dspi->pdev->dev;
int curr_remaining_bytes;
int bytes_per_buffer;
int word = 1;
int ret = 0;
if (is_double_byte_mode(dspi))
word = 2;
curr_remaining_bytes = dspi->len;
bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
while (curr_remaining_bytes) {
/* Check if current transfer fits the DMA buffer */
dma->curr_xfer_len = curr_remaining_bytes / word;
if (dma->curr_xfer_len > bytes_per_buffer)
dma->curr_xfer_len = bytes_per_buffer;
ret = dspi_next_xfer_dma_submit(dspi);
if (ret) {
dev_err(dev, "DMA transfer failed\n");
goto exit;
} else {
curr_remaining_bytes -= dma->curr_xfer_len * word;
if (curr_remaining_bytes < 0)
curr_remaining_bytes = 0;
}
}
exit:
return ret;
}
static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
{
struct fsl_dspi_dma *dma;
struct dma_slave_config cfg;
struct device *dev = &dspi->pdev->dev;
int ret;
dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
if (!dma)
return -ENOMEM;
dma->chan_rx = dma_request_slave_channel(dev, "rx");
if (!dma->chan_rx) {
dev_err(dev, "rx dma channel not available\n");
ret = -ENODEV;
return ret;
}
dma->chan_tx = dma_request_slave_channel(dev, "tx");
if (!dma->chan_tx) {
dev_err(dev, "tx dma channel not available\n");
ret = -ENODEV;
goto err_tx_channel;
}
dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
&dma->tx_dma_phys, GFP_KERNEL);
if (!dma->tx_dma_buf) {
ret = -ENOMEM;
goto err_tx_dma_buf;
}
dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
&dma->rx_dma_phys, GFP_KERNEL);
if (!dma->rx_dma_buf) {
ret = -ENOMEM;
goto err_rx_dma_buf;
}
cfg.src_addr = phy_addr + SPI_POPR;
cfg.dst_addr = phy_addr + SPI_PUSHR;
cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
cfg.src_maxburst = 1;
cfg.dst_maxburst = 1;
cfg.direction = DMA_DEV_TO_MEM;
ret = dmaengine_slave_config(dma->chan_rx, &cfg);
if (ret) {
dev_err(dev, "can't configure rx dma channel\n");
ret = -EINVAL;
goto err_slave_config;
}
cfg.direction = DMA_MEM_TO_DEV;
ret = dmaengine_slave_config(dma->chan_tx, &cfg);
if (ret) {
dev_err(dev, "can't configure tx dma channel\n");
ret = -EINVAL;
goto err_slave_config;
}
dspi->dma = dma;
init_completion(&dma->cmd_tx_complete);
init_completion(&dma->cmd_rx_complete);
return 0;
err_slave_config:
dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
dma->rx_dma_buf, dma->rx_dma_phys);
err_rx_dma_buf:
dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
dma->tx_dma_buf, dma->tx_dma_phys);
err_tx_dma_buf:
dma_release_channel(dma->chan_tx);
err_tx_channel:
dma_release_channel(dma->chan_rx);
devm_kfree(dev, dma);
dspi->dma = NULL;
return ret;
}
static void dspi_release_dma(struct fsl_dspi *dspi)
{
struct fsl_dspi_dma *dma = dspi->dma;
struct device *dev = &dspi->pdev->dev;
if (dma) {
if (dma->chan_tx) {
dma_unmap_single(dev, dma->tx_dma_phys,
DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
dma_release_channel(dma->chan_tx);
}
if (dma->chan_rx) {
dma_unmap_single(dev, dma->rx_dma_phys,
DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
dma_release_channel(dma->chan_rx);
}
}
}
static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
unsigned long clkrate)
{
......@@ -425,6 +705,12 @@ static int dspi_transfer_one_message(struct spi_master *master,
regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
dspi_tcfq_write(dspi);
break;
case DSPI_DMA_MODE:
regmap_write(dspi->regmap, SPI_RSER,
SPI_RSER_TFFFE | SPI_RSER_TFFFD |
SPI_RSER_RFDFE | SPI_RSER_RFDFD);
status = dspi_dma_xfer(dspi);
break;
default:
dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
trans_mode);
......@@ -432,9 +718,13 @@ static int dspi_transfer_one_message(struct spi_master *master,
goto out;
}
if (wait_event_interruptible(dspi->waitq, dspi->waitflags))
dev_err(&dspi->pdev->dev, "wait transfer complete fail!\n");
if (trans_mode != DSPI_DMA_MODE) {
if (wait_event_interruptible(dspi->waitq,
dspi->waitflags))
dev_err(&dspi->pdev->dev,
"wait transfer complete fail!\n");
dspi->waitflags = 0;
}
if (transfer->delay_usecs)
udelay(transfer->delay_usecs);
......@@ -740,6 +1030,13 @@ static int dspi_probe(struct platform_device *pdev)
if (ret)
goto out_master_put;
if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
if (dspi_request_dma(dspi, res->start)) {
dev_err(&pdev->dev, "can't get dma channels\n");
goto out_clk_put;
}
}
master->max_speed_hz =
clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
......@@ -768,6 +1065,7 @@ static int dspi_remove(struct platform_device *pdev)
struct fsl_dspi *dspi = spi_master_get_devdata(master);
/* Disconnect from the SPI framework */
dspi_release_dma(dspi);
clk_disable_unprepare(dspi->clk);
spi_unregister_master(dspi->master);
......
......@@ -23,8 +23,6 @@
#include <linux/pm_runtime.h>
#include <sysdev/fsl_soc.h>
#include "spi-fsl-lib.h"
/* eSPI Controller registers */
#define ESPI_SPMODE 0x00 /* eSPI mode register */
#define ESPI_SPIE 0x04 /* eSPI event register */
......@@ -54,8 +52,11 @@
#define CSMODE_AFT(x) ((x) << 8)
#define CSMODE_CG(x) ((x) << 3)
#define FSL_ESPI_FIFO_SIZE 32
#define FSL_ESPI_RXTHR 15
/* Default mode/csmode for eSPI controller */
#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
#define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(FSL_ESPI_RXTHR))
#define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
| CSMODE_AFT(0) | CSMODE_CG(1))
......@@ -90,219 +91,342 @@
#define AUTOSUSPEND_TIMEOUT 2000
static inline u32 fsl_espi_read_reg(struct mpc8xxx_spi *mspi, int offset)
struct fsl_espi {
struct device *dev;
void __iomem *reg_base;
struct list_head *m_transfers;
struct spi_transfer *tx_t;
unsigned int tx_pos;
bool tx_done;
struct spi_transfer *rx_t;
unsigned int rx_pos;
bool rx_done;
bool swab;
unsigned int rxskip;
spinlock_t lock;
u32 spibrg; /* SPIBRG input clock */
struct completion done;
};
struct fsl_espi_cs {
u32 hw_mode;
};
static inline u32 fsl_espi_read_reg(struct fsl_espi *espi, int offset)
{
return ioread32be(mspi->reg_base + offset);
return ioread32be(espi->reg_base + offset);
}
static inline u8 fsl_espi_read_reg8(struct mpc8xxx_spi *mspi, int offset)
static inline u16 fsl_espi_read_reg16(struct fsl_espi *espi, int offset)
{
return ioread8(mspi->reg_base + offset);
return ioread16be(espi->reg_base + offset);
}
static inline void fsl_espi_write_reg(struct mpc8xxx_spi *mspi, int offset,
u32 val)
static inline u8 fsl_espi_read_reg8(struct fsl_espi *espi, int offset)
{
iowrite32be(val, mspi->reg_base + offset);
return ioread8(espi->reg_base + offset);
}
static inline void fsl_espi_write_reg8(struct mpc8xxx_spi *mspi, int offset,
u8 val)
static inline void fsl_espi_write_reg(struct fsl_espi *espi, int offset,
u32 val)
{
iowrite8(val, mspi->reg_base + offset);
iowrite32be(val, espi->reg_base + offset);
}
static void fsl_espi_copy_to_buf(struct spi_message *m,
struct mpc8xxx_spi *mspi)
static inline void fsl_espi_write_reg16(struct fsl_espi *espi, int offset,
u16 val)
{
struct spi_transfer *t;
u8 *buf = mspi->local_buf;
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->tx_buf)
memcpy(buf, t->tx_buf, t->len);
else
memset(buf, 0, t->len);
buf += t->len;
}
iowrite16be(val, espi->reg_base + offset);
}
static void fsl_espi_copy_from_buf(struct spi_message *m,
struct mpc8xxx_spi *mspi)
static inline void fsl_espi_write_reg8(struct fsl_espi *espi, int offset,
u8 val)
{
struct spi_transfer *t;
u8 *buf = mspi->local_buf;
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->rx_buf)
memcpy(t->rx_buf, buf, t->len);
buf += t->len;
}
iowrite8(val, espi->reg_base + offset);
}
static int fsl_espi_check_message(struct spi_message *m)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
struct spi_transfer *t, *first;
if (m->frame_length > SPCOM_TRANLEN_MAX) {
dev_err(mspi->dev, "message too long, size is %u bytes\n",
dev_err(espi->dev, "message too long, size is %u bytes\n",
m->frame_length);
return -EMSGSIZE;
}
first = list_first_entry(&m->transfers, struct spi_transfer,
transfer_list);
list_for_each_entry(t, &m->transfers, transfer_list) {
if (first->bits_per_word != t->bits_per_word ||
first->speed_hz != t->speed_hz) {
dev_err(mspi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
dev_err(espi->dev, "bits_per_word/speed_hz should be the same for all transfers\n");
return -EINVAL;
}
}
/* ESPI supports MSB-first transfers for word size 8 / 16 only */
if (!(m->spi->mode & SPI_LSB_FIRST) && first->bits_per_word != 8 &&
first->bits_per_word != 16) {
dev_err(espi->dev,
"MSB-first transfer not supported for wordsize %u\n",
first->bits_per_word);
return -EINVAL;
}
return 0;
}
static void fsl_espi_change_mode(struct spi_device *spi)
static unsigned int fsl_espi_check_rxskip_mode(struct spi_message *m)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
struct spi_mpc8xxx_cs *cs = spi->controller_state;
u32 tmp;
unsigned long flags;
/* Turn off IRQs locally to minimize time that SPI is disabled. */
local_irq_save(flags);
/* Turn off SPI unit prior changing mode */
tmp = fsl_espi_read_reg(mspi, ESPI_SPMODE);
fsl_espi_write_reg(mspi, ESPI_SPMODE, tmp & ~SPMODE_ENABLE);
fsl_espi_write_reg(mspi, ESPI_SPMODEx(spi->chip_select),
cs->hw_mode);
fsl_espi_write_reg(mspi, ESPI_SPMODE, tmp);
struct spi_transfer *t;
unsigned int i = 0, rxskip = 0;
local_irq_restore(flags);
/*
* prerequisites for ESPI rxskip mode:
* - message has two transfers
* - first transfer is a write and second is a read
*
* In addition the current low-level transfer mechanism requires
* that the rxskip bytes fit into the TX FIFO. Else the transfer
* would hang because after the first FSL_ESPI_FIFO_SIZE bytes
* the TX FIFO isn't re-filled.
*/
list_for_each_entry(t, &m->transfers, transfer_list) {
if (i == 0) {
if (!t->tx_buf || t->rx_buf ||
t->len > FSL_ESPI_FIFO_SIZE)
return 0;
rxskip = t->len;
} else if (i == 1) {
if (t->tx_buf || !t->rx_buf)
return 0;
}
i++;
}
return i == 2 ? rxskip : 0;
}
static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
static void fsl_espi_fill_tx_fifo(struct fsl_espi *espi, u32 events)
{
u32 data;
u16 data_h;
u16 data_l;
const u32 *tx = mpc8xxx_spi->tx;
u32 tx_fifo_avail;
unsigned int tx_left;
const void *tx_buf;
/* if events is zero transfer has not started and tx fifo is empty */
tx_fifo_avail = events ? SPIE_TXCNT(events) : FSL_ESPI_FIFO_SIZE;
start:
tx_left = espi->tx_t->len - espi->tx_pos;
tx_buf = espi->tx_t->tx_buf;
while (tx_fifo_avail >= min(4U, tx_left) && tx_left) {
if (tx_left >= 4) {
if (!tx_buf)
fsl_espi_write_reg(espi, ESPI_SPITF, 0);
else if (espi->swab)
fsl_espi_write_reg(espi, ESPI_SPITF,
swahb32p(tx_buf + espi->tx_pos));
else
fsl_espi_write_reg(espi, ESPI_SPITF,
*(u32 *)(tx_buf + espi->tx_pos));
espi->tx_pos += 4;
tx_left -= 4;
tx_fifo_avail -= 4;
} else if (tx_left >= 2 && tx_buf && espi->swab) {
fsl_espi_write_reg16(espi, ESPI_SPITF,
swab16p(tx_buf + espi->tx_pos));
espi->tx_pos += 2;
tx_left -= 2;
tx_fifo_avail -= 2;
} else {
if (!tx_buf)
fsl_espi_write_reg8(espi, ESPI_SPITF, 0);
else
fsl_espi_write_reg8(espi, ESPI_SPITF,
*(u8 *)(tx_buf + espi->tx_pos));
espi->tx_pos += 1;
tx_left -= 1;
tx_fifo_avail -= 1;
}
}
if (!tx)
return 0;
if (!tx_left) {
/* Last transfer finished, in rxskip mode only one is needed */
if (list_is_last(&espi->tx_t->transfer_list,
espi->m_transfers) || espi->rxskip) {
espi->tx_done = true;
return;
}
espi->tx_t = list_next_entry(espi->tx_t, transfer_list);
espi->tx_pos = 0;
/* continue with next transfer if tx fifo is not full */
if (tx_fifo_avail)
goto start;
}
}
static void fsl_espi_read_rx_fifo(struct fsl_espi *espi, u32 events)
{
u32 rx_fifo_avail = SPIE_RXCNT(events);
unsigned int rx_left;
void *rx_buf;
start:
rx_left = espi->rx_t->len - espi->rx_pos;
rx_buf = espi->rx_t->rx_buf;
while (rx_fifo_avail >= min(4U, rx_left) && rx_left) {
if (rx_left >= 4) {
u32 val = fsl_espi_read_reg(espi, ESPI_SPIRF);
if (rx_buf && espi->swab)
*(u32 *)(rx_buf + espi->rx_pos) = swahb32(val);
else if (rx_buf)
*(u32 *)(rx_buf + espi->rx_pos) = val;
espi->rx_pos += 4;
rx_left -= 4;
rx_fifo_avail -= 4;
} else if (rx_left >= 2 && rx_buf && espi->swab) {
u16 val = fsl_espi_read_reg16(espi, ESPI_SPIRF);
*(u16 *)(rx_buf + espi->rx_pos) = swab16(val);
espi->rx_pos += 2;
rx_left -= 2;
rx_fifo_avail -= 2;
} else {
u8 val = fsl_espi_read_reg8(espi, ESPI_SPIRF);
data = *tx++ << mpc8xxx_spi->tx_shift;
data_l = data & 0xffff;
data_h = (data >> 16) & 0xffff;
swab16s(&data_l);
swab16s(&data_h);
data = data_h | data_l;
if (rx_buf)
*(u8 *)(rx_buf + espi->rx_pos) = val;
espi->rx_pos += 1;
rx_left -= 1;
rx_fifo_avail -= 1;
}
}
mpc8xxx_spi->tx = tx;
return data;
if (!rx_left) {
if (list_is_last(&espi->rx_t->transfer_list,
espi->m_transfers)) {
espi->rx_done = true;
return;
}
espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
espi->rx_pos = 0;
/* continue with next transfer if rx fifo is not empty */
if (rx_fifo_avail)
goto start;
}
}
static void fsl_espi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
struct fsl_espi *espi = spi_master_get_devdata(spi->master);
int bits_per_word = t ? t->bits_per_word : spi->bits_per_word;
u32 hz = t ? t->speed_hz : spi->max_speed_hz;
u8 pm;
struct spi_mpc8xxx_cs *cs = spi->controller_state;
cs->rx_shift = 0;
cs->tx_shift = 0;
cs->get_rx = mpc8xxx_spi_rx_buf_u32;
cs->get_tx = mpc8xxx_spi_tx_buf_u32;
if (bits_per_word <= 8) {
cs->rx_shift = 8 - bits_per_word;
} else {
cs->rx_shift = 16 - bits_per_word;
if (spi->mode & SPI_LSB_FIRST)
cs->get_tx = fsl_espi_tx_buf_lsb;
}
mpc8xxx_spi->rx_shift = cs->rx_shift;
mpc8xxx_spi->tx_shift = cs->tx_shift;
mpc8xxx_spi->get_rx = cs->get_rx;
mpc8xxx_spi->get_tx = cs->get_tx;
u32 pm, hz = t ? t->speed_hz : spi->max_speed_hz;
struct fsl_espi_cs *cs = spi_get_ctldata(spi);
u32 hw_mode_old = cs->hw_mode;
/* mask out bits we are going to set */
cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
cs->hw_mode |= CSMODE_LEN(bits_per_word - 1);
if ((mpc8xxx_spi->spibrg / hz) > 64) {
cs->hw_mode |= CSMODE_DIV16;
pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
pm = DIV_ROUND_UP(espi->spibrg, hz * 4) - 1;
WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
"Will use %d Hz instead.\n", dev_name(&spi->dev),
hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
if (pm > 33)
pm = 33;
} else {
pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
if (pm > 15) {
cs->hw_mode |= CSMODE_DIV16;
pm = DIV_ROUND_UP(espi->spibrg, hz * 16 * 4) - 1;
}
if (pm)
pm--;
if (pm < 2)
pm = 2;
cs->hw_mode |= CSMODE_PM(pm);
fsl_espi_change_mode(spi);
/* don't write the mode register if the mode doesn't change */
if (cs->hw_mode != hw_mode_old)
fsl_espi_write_reg(espi, ESPI_SPMODEx(spi->chip_select),
cs->hw_mode);
}
static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
{
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
u32 word;
struct fsl_espi *espi = spi_master_get_devdata(spi->master);
unsigned int rx_len = t->len;
u32 mask, spcom;
int ret;
mpc8xxx_spi->len = t->len;
mpc8xxx_spi->count = roundup(t->len, 4) / 4;
mpc8xxx_spi->tx = t->tx_buf;
mpc8xxx_spi->rx = t->rx_buf;
reinit_completion(&mpc8xxx_spi->done);
reinit_completion(&espi->done);
/* Set SPCOM[CS] and SPCOM[TRANLEN] field */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPCOM,
(SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
spcom = SPCOM_CS(spi->chip_select);
spcom |= SPCOM_TRANLEN(t->len - 1);
/* configure RXSKIP mode */
if (espi->rxskip) {
spcom |= SPCOM_RXSKIP(espi->rxskip);
rx_len = t->len - espi->rxskip;
if (t->rx_nbits == SPI_NBITS_DUAL)
spcom |= SPCOM_DO;
}
fsl_espi_write_reg(espi, ESPI_SPCOM, spcom);
/* enable rx ints */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, SPIM_RNE);
/* enable interrupts */
mask = SPIM_DON;
if (rx_len > FSL_ESPI_FIFO_SIZE)
mask |= SPIM_RXT;
fsl_espi_write_reg(espi, ESPI_SPIM, mask);
/* transmit word */
word = mpc8xxx_spi->get_tx(mpc8xxx_spi);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPITF, word);
/* Prevent filling the fifo from getting interrupted */
spin_lock_irq(&espi->lock);
fsl_espi_fill_tx_fifo(espi, 0);
spin_unlock_irq(&espi->lock);
/* Won't hang up forever, SPI bus sometimes got lost interrupts... */
ret = wait_for_completion_timeout(&mpc8xxx_spi->done, 2 * HZ);
ret = wait_for_completion_timeout(&espi->done, 2 * HZ);
if (ret == 0)
dev_err(mpc8xxx_spi->dev,
"Transaction hanging up (left %d bytes)\n",
mpc8xxx_spi->count);
dev_err(espi->dev, "Transfer timed out!\n");
/* disable rx ints */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, 0);
fsl_espi_write_reg(espi, ESPI_SPIM, 0);
return mpc8xxx_spi->count > 0 ? -EMSGSIZE : 0;
return ret == 0 ? -ETIMEDOUT : 0;
}
static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
struct fsl_espi *espi = spi_master_get_devdata(m->spi->master);
struct spi_device *spi = m->spi;
int ret;
fsl_espi_copy_to_buf(m, mspi);
/* In case of LSB-first and bits_per_word > 8 byte-swap all words */
espi->swab = spi->mode & SPI_LSB_FIRST && trans->bits_per_word > 8;
espi->m_transfers = &m->transfers;
espi->tx_t = list_first_entry(&m->transfers, struct spi_transfer,
transfer_list);
espi->tx_pos = 0;
espi->tx_done = false;
espi->rx_t = list_first_entry(&m->transfers, struct spi_transfer,
transfer_list);
espi->rx_pos = 0;
espi->rx_done = false;
espi->rxskip = fsl_espi_check_rxskip_mode(m);
if (trans->rx_nbits == SPI_NBITS_DUAL && !espi->rxskip) {
dev_err(espi->dev, "Dual output mode requires RXSKIP mode!\n");
return -EINVAL;
}
/* In RXSKIP mode skip first transfer for reads */
if (espi->rxskip)
espi->rx_t = list_next_entry(espi->rx_t, transfer_list);
fsl_espi_setup_transfer(spi, trans);
ret = fsl_espi_bufs(spi, trans);
......@@ -310,19 +434,13 @@ static int fsl_espi_trans(struct spi_message *m, struct spi_transfer *trans)
if (trans->delay_usecs)
udelay(trans->delay_usecs);
fsl_espi_setup_transfer(spi, NULL);
if (!ret)
fsl_espi_copy_from_buf(m, mspi);
return ret;
}
static int fsl_espi_do_one_msg(struct spi_master *master,
struct spi_message *m)
{
struct mpc8xxx_spi *mspi = spi_master_get_devdata(m->spi->master);
unsigned int delay_usecs = 0;
unsigned int delay_usecs = 0, rx_nbits = 0;
struct spi_transfer *t, trans = {};
int ret;
......@@ -333,6 +451,8 @@ static int fsl_espi_do_one_msg(struct spi_master *master,
list_for_each_entry(t, &m->transfers, transfer_list) {
if (t->delay_usecs > delay_usecs)
delay_usecs = t->delay_usecs;
if (t->rx_nbits > rx_nbits)
rx_nbits = t->rx_nbits;
}
t = list_first_entry(&m->transfers, struct spi_transfer,
......@@ -342,8 +462,7 @@ static int fsl_espi_do_one_msg(struct spi_master *master,
trans.speed_hz = t->speed_hz;
trans.bits_per_word = t->bits_per_word;
trans.delay_usecs = delay_usecs;
trans.tx_buf = mspi->local_buf;
trans.rx_buf = mspi->local_buf;
trans.rx_nbits = rx_nbits;
if (trans.len)
ret = fsl_espi_trans(m, &trans);
......@@ -360,12 +479,9 @@ static int fsl_espi_do_one_msg(struct spi_master *master,
static int fsl_espi_setup(struct spi_device *spi)
{
struct mpc8xxx_spi *mpc8xxx_spi;
struct fsl_espi *espi;
u32 loop_mode;
struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
if (!spi->max_speed_hz)
return -EINVAL;
struct fsl_espi_cs *cs = spi_get_ctldata(spi);
if (!cs) {
cs = kzalloc(sizeof(*cs), GFP_KERNEL);
......@@ -374,12 +490,11 @@ static int fsl_espi_setup(struct spi_device *spi)
spi_set_ctldata(spi, cs);
}
mpc8xxx_spi = spi_master_get_devdata(spi->master);
espi = spi_master_get_devdata(spi->master);
pm_runtime_get_sync(mpc8xxx_spi->dev);
pm_runtime_get_sync(espi->dev);
cs->hw_mode = fsl_espi_read_reg(mpc8xxx_spi,
ESPI_SPMODEx(spi->chip_select));
cs->hw_mode = fsl_espi_read_reg(espi, ESPI_SPMODEx(spi->chip_select));
/* mask out bits we are going to set */
cs->hw_mode &= ~(CSMODE_CP_BEGIN_EDGECLK | CSMODE_CI_INACTIVEHIGH
| CSMODE_REV);
......@@ -392,115 +507,74 @@ static int fsl_espi_setup(struct spi_device *spi)
cs->hw_mode |= CSMODE_REV;
/* Handle the loop mode */
loop_mode = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
loop_mode = fsl_espi_read_reg(espi, ESPI_SPMODE);
loop_mode &= ~SPMODE_LOOP;
if (spi->mode & SPI_LOOP)
loop_mode |= SPMODE_LOOP;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, loop_mode);
fsl_espi_write_reg(espi, ESPI_SPMODE, loop_mode);
fsl_espi_setup_transfer(spi, NULL);
pm_runtime_mark_last_busy(mpc8xxx_spi->dev);
pm_runtime_put_autosuspend(mpc8xxx_spi->dev);
pm_runtime_mark_last_busy(espi->dev);
pm_runtime_put_autosuspend(espi->dev);
return 0;
}
static void fsl_espi_cleanup(struct spi_device *spi)
{
struct spi_mpc8xxx_cs *cs = spi_get_ctldata(spi);
struct fsl_espi_cs *cs = spi_get_ctldata(spi);
kfree(cs);
spi_set_ctldata(spi, NULL);
}
static void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
static void fsl_espi_cpu_irq(struct fsl_espi *espi, u32 events)
{
/* We need handle RX first */
if (events & SPIE_RNE) {
u32 rx_data, tmp;
u8 rx_data_8;
int rx_nr_bytes = 4;
int ret;
/* Spin until RX is done */
if (SPIE_RXCNT(events) < min(4, mspi->len)) {
ret = spin_event_timeout(
!(SPIE_RXCNT(events =
fsl_espi_read_reg(mspi, ESPI_SPIE)) <
min(4, mspi->len)),
10000, 0); /* 10 msec */
if (!ret)
dev_err(mspi->dev,
"tired waiting for SPIE_RXCNT\n");
}
if (!espi->rx_done)
fsl_espi_read_rx_fifo(espi, events);
if (mspi->len >= 4) {
rx_data = fsl_espi_read_reg(mspi, ESPI_SPIRF);
} else if (mspi->len <= 0) {
dev_err(mspi->dev,
"unexpected RX(SPIE_RNE) interrupt occurred,\n"
"(local rxlen %d bytes, reg rxlen %d bytes)\n",
min(4, mspi->len), SPIE_RXCNT(events));
rx_nr_bytes = 0;
} else {
rx_nr_bytes = mspi->len;
tmp = mspi->len;
rx_data = 0;
while (tmp--) {
rx_data_8 = fsl_espi_read_reg8(mspi,
ESPI_SPIRF);
rx_data |= (rx_data_8 << (tmp * 8));
}
if (!espi->tx_done)
fsl_espi_fill_tx_fifo(espi, events);
rx_data <<= (4 - mspi->len) * 8;
}
mspi->len -= rx_nr_bytes;
if (rx_nr_bytes && mspi->rx)
mspi->get_rx(rx_data, mspi);
}
if (!espi->tx_done || !espi->rx_done)
return;
if (!(events & SPIE_TNF)) {
int ret;
/* we're done, but check for errors before returning */
events = fsl_espi_read_reg(espi, ESPI_SPIE);
/* spin until TX is done */
ret = spin_event_timeout(((events = fsl_espi_read_reg(
mspi, ESPI_SPIE)) & SPIE_TNF), 1000, 0);
if (!ret) {
dev_err(mspi->dev, "tired waiting for SPIE_TNF\n");
complete(&mspi->done);
return;
}
}
if (!(events & SPIE_DON))
dev_err(espi->dev,
"Transfer done but SPIE_DON isn't set!\n");
mspi->count -= 1;
if (mspi->count) {
u32 word = mspi->get_tx(mspi);
if (SPIE_RXCNT(events) || SPIE_TXCNT(events) != FSL_ESPI_FIFO_SIZE)
dev_err(espi->dev, "Transfer done but rx/tx fifo's aren't empty!\n");
fsl_espi_write_reg(mspi, ESPI_SPITF, word);
} else {
complete(&mspi->done);
}
complete(&espi->done);
}
static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
{
struct mpc8xxx_spi *mspi = context_data;
struct fsl_espi *espi = context_data;
u32 events;
spin_lock(&espi->lock);
/* Get interrupt events(tx/rx) */
events = fsl_espi_read_reg(mspi, ESPI_SPIE);
if (!events)
events = fsl_espi_read_reg(espi, ESPI_SPIE);
if (!events) {
spin_unlock(&espi->lock);
return IRQ_NONE;
}
dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
dev_vdbg(espi->dev, "%s: events %x\n", __func__, events);
fsl_espi_cpu_irq(mspi, events);
fsl_espi_cpu_irq(espi, events);
/* Clear the events */
fsl_espi_write_reg(mspi, ESPI_SPIE, events);
fsl_espi_write_reg(espi, ESPI_SPIE, events);
spin_unlock(&espi->lock);
return IRQ_HANDLED;
}
......@@ -509,12 +583,12 @@ static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
static int fsl_espi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
struct fsl_espi *espi = spi_master_get_devdata(master);
u32 regval;
regval = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
regval &= ~SPMODE_ENABLE;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
return 0;
}
......@@ -522,12 +596,12 @@ static int fsl_espi_runtime_suspend(struct device *dev)
static int fsl_espi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(master);
struct fsl_espi *espi = spi_master_get_devdata(master);
u32 regval;
regval = fsl_espi_read_reg(mpc8xxx_spi, ESPI_SPMODE);
regval = fsl_espi_read_reg(espi, ESPI_SPMODE);
regval |= SPMODE_ENABLE;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_write_reg(espi, ESPI_SPMODE, regval);
return 0;
}
......@@ -538,96 +612,105 @@ static size_t fsl_espi_max_message_size(struct spi_device *spi)
return SPCOM_TRANLEN_MAX;
}
static void fsl_espi_init_regs(struct device *dev, bool initial)
{
struct spi_master *master = dev_get_drvdata(dev);
struct fsl_espi *espi = spi_master_get_devdata(master);
struct device_node *nc;
u32 csmode, cs, prop;
int ret;
/* SPI controller initializations */
fsl_espi_write_reg(espi, ESPI_SPMODE, 0);
fsl_espi_write_reg(espi, ESPI_SPIM, 0);
fsl_espi_write_reg(espi, ESPI_SPCOM, 0);
fsl_espi_write_reg(espi, ESPI_SPIE, 0xffffffff);
/* Init eSPI CS mode register */
for_each_available_child_of_node(master->dev.of_node, nc) {
/* get chip select */
ret = of_property_read_u32(nc, "reg", &cs);
if (ret || cs >= master->num_chipselect)
continue;
csmode = CSMODE_INIT_VAL;
/* check if CSBEF is set in device tree */
ret = of_property_read_u32(nc, "fsl,csbef", &prop);
if (!ret) {
csmode &= ~(CSMODE_BEF(0xf));
csmode |= CSMODE_BEF(prop);
}
/* check if CSAFT is set in device tree */
ret = of_property_read_u32(nc, "fsl,csaft", &prop);
if (!ret) {
csmode &= ~(CSMODE_AFT(0xf));
csmode |= CSMODE_AFT(prop);
}
fsl_espi_write_reg(espi, ESPI_SPMODEx(cs), csmode);
if (initial)
dev_info(dev, "cs=%u, init_csmode=0x%x\n", cs, csmode);
}
/* Enable SPI interface */
fsl_espi_write_reg(espi, ESPI_SPMODE, SPMODE_INIT_VAL | SPMODE_ENABLE);
}
static int fsl_espi_probe(struct device *dev, struct resource *mem,
unsigned int irq)
unsigned int irq, unsigned int num_cs)
{
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master;
struct mpc8xxx_spi *mpc8xxx_spi;
struct device_node *nc;
const __be32 *prop;
u32 regval, csmode;
int i, len, ret;
struct fsl_espi *espi;
int ret;
master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
master = spi_alloc_master(dev, sizeof(struct fsl_espi));
if (!master)
return -ENOMEM;
dev_set_drvdata(dev, master);
mpc8xxx_spi_probe(dev, mem, irq);
master->mode_bits = SPI_RX_DUAL | SPI_CPOL | SPI_CPHA | SPI_CS_HIGH |
SPI_LSB_FIRST | SPI_LOOP;
master->dev.of_node = dev->of_node;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
master->setup = fsl_espi_setup;
master->cleanup = fsl_espi_cleanup;
master->transfer_one_message = fsl_espi_do_one_msg;
master->auto_runtime_pm = true;
master->max_message_size = fsl_espi_max_message_size;
master->num_chipselect = num_cs;
mpc8xxx_spi = spi_master_get_devdata(master);
espi = spi_master_get_devdata(master);
spin_lock_init(&espi->lock);
mpc8xxx_spi->local_buf =
devm_kmalloc(dev, SPCOM_TRANLEN_MAX, GFP_KERNEL);
if (!mpc8xxx_spi->local_buf) {
ret = -ENOMEM;
espi->dev = dev;
espi->spibrg = fsl_get_sys_freq();
if (espi->spibrg == -1) {
dev_err(dev, "Can't get sys frequency!\n");
ret = -EINVAL;
goto err_probe;
}
/* determined by clock divider fields DIV16/PM in register SPMODEx */
master->min_speed_hz = DIV_ROUND_UP(espi->spibrg, 4 * 16 * 16);
master->max_speed_hz = DIV_ROUND_UP(espi->spibrg, 4);
init_completion(&espi->done);
mpc8xxx_spi->reg_base = devm_ioremap_resource(dev, mem);
if (IS_ERR(mpc8xxx_spi->reg_base)) {
ret = PTR_ERR(mpc8xxx_spi->reg_base);
espi->reg_base = devm_ioremap_resource(dev, mem);
if (IS_ERR(espi->reg_base)) {
ret = PTR_ERR(espi->reg_base);
goto err_probe;
}
/* Register for SPI Interrupt */
ret = devm_request_irq(dev, mpc8xxx_spi->irq, fsl_espi_irq,
0, "fsl_espi", mpc8xxx_spi);
ret = devm_request_irq(dev, irq, fsl_espi_irq, 0, "fsl_espi", espi);
if (ret)
goto err_probe;
if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
mpc8xxx_spi->rx_shift = 16;
mpc8xxx_spi->tx_shift = 24;
}
/* SPI controller initializations */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPCOM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIE, 0xffffffff);
/* Init eSPI CS mode register */
for_each_available_child_of_node(master->dev.of_node, nc) {
/* get chip select */
prop = of_get_property(nc, "reg", &len);
if (!prop || len < sizeof(*prop))
continue;
i = be32_to_cpup(prop);
if (i < 0 || i >= pdata->max_chipselect)
continue;
csmode = CSMODE_INIT_VAL;
/* check if CSBEF is set in device tree */
prop = of_get_property(nc, "fsl,csbef", &len);
if (prop && len >= sizeof(*prop)) {
csmode &= ~(CSMODE_BEF(0xf));
csmode |= CSMODE_BEF(be32_to_cpup(prop));
}
/* check if CSAFT is set in device tree */
prop = of_get_property(nc, "fsl,csaft", &len);
if (prop && len >= sizeof(*prop)) {
csmode &= ~(CSMODE_AFT(0xf));
csmode |= CSMODE_AFT(be32_to_cpup(prop));
}
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODEx(i), csmode);
dev_info(dev, "cs=%d, init_csmode=0x%x\n", i, csmode);
}
/* Enable SPI interface */
regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_init_regs(dev, true);
pm_runtime_set_autosuspend_delay(dev, AUTOSUSPEND_TIMEOUT);
pm_runtime_use_autosuspend(dev);
......@@ -639,8 +722,7 @@ static int fsl_espi_probe(struct device *dev, struct resource *mem,
if (ret < 0)
goto err_pm;
dev_info(dev, "at 0x%p (irq = %d)\n", mpc8xxx_spi->reg_base,
mpc8xxx_spi->irq);
dev_info(dev, "at 0x%p (irq = %u)\n", espi->reg_base, irq);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
......@@ -659,20 +741,16 @@ static int fsl_espi_probe(struct device *dev, struct resource *mem,
static int of_fsl_espi_get_chipselects(struct device *dev)
{
struct device_node *np = dev->of_node;
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
const u32 *prop;
int len;
u32 num_cs;
int ret;
prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
if (!prop || len < sizeof(*prop)) {
ret = of_property_read_u32(np, "fsl,espi-num-chipselects", &num_cs);
if (ret) {
dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
return -EINVAL;
return 0;
}
pdata->max_chipselect = *prop;
pdata->cs_control = NULL;
return 0;
return num_cs;
}
static int of_fsl_espi_probe(struct platform_device *ofdev)
......@@ -680,16 +758,17 @@ static int of_fsl_espi_probe(struct platform_device *ofdev)
struct device *dev = &ofdev->dev;
struct device_node *np = ofdev->dev.of_node;
struct resource mem;
unsigned int irq;
unsigned int irq, num_cs;
int ret;
ret = of_mpc8xxx_spi_probe(ofdev);
if (ret)
return ret;
if (of_property_read_bool(np, "mode")) {
dev_err(dev, "mode property is not supported on ESPI!\n");
return -EINVAL;
}
ret = of_fsl_espi_get_chipselects(dev);
if (ret)
return ret;
num_cs = of_fsl_espi_get_chipselects(dev);
if (!num_cs)
return -EINVAL;
ret = of_address_to_resource(np, 0, &mem);
if (ret)
......@@ -699,7 +778,7 @@ static int of_fsl_espi_probe(struct platform_device *ofdev)
if (!irq)
return -EINVAL;
return fsl_espi_probe(dev, &mem, irq);
return fsl_espi_probe(dev, &mem, irq, num_cs);
}
static int of_fsl_espi_remove(struct platform_device *dev)
......@@ -721,38 +800,15 @@ static int of_fsl_espi_suspend(struct device *dev)
return ret;
}
ret = pm_runtime_force_suspend(dev);
if (ret < 0)
return ret;
return 0;
return pm_runtime_force_suspend(dev);
}
static int of_fsl_espi_resume(struct device *dev)
{
struct fsl_spi_platform_data *pdata = dev_get_platdata(dev);
struct spi_master *master = dev_get_drvdata(dev);
struct mpc8xxx_spi *mpc8xxx_spi;
u32 regval;
int i, ret;
mpc8xxx_spi = spi_master_get_devdata(master);
/* SPI controller initializations */
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPCOM, 0);
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPIE, 0xffffffff);
/* Init eSPI CS mode register */
for (i = 0; i < pdata->max_chipselect; i++)
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODEx(i),
CSMODE_INIT_VAL);
/* Enable SPI interface */
regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
int ret;
fsl_espi_write_reg(mpc8xxx_spi, ESPI_SPMODE, regval);
fsl_espi_init_regs(dev, false);
ret = pm_runtime_force_resume(dev);
if (ret < 0)
......
......@@ -28,10 +28,6 @@ struct mpc8xxx_spi {
/* rx & tx bufs from the spi_transfer */
const void *tx;
void *rx;
#if IS_ENABLED(CONFIG_SPI_FSL_ESPI)
int len;
u8 *local_buf;
#endif
int subblock;
struct spi_pram __iomem *pram;
......
/*
* Freescale i.MX7ULP LPSPI driver
*
* Copyright 2016 Freescale Semiconductor, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/types.h>
#define DRIVER_NAME "fsl_lpspi"
/* i.MX7ULP LPSPI registers */
#define IMX7ULP_VERID 0x0
#define IMX7ULP_PARAM 0x4
#define IMX7ULP_CR 0x10
#define IMX7ULP_SR 0x14
#define IMX7ULP_IER 0x18
#define IMX7ULP_DER 0x1c
#define IMX7ULP_CFGR0 0x20
#define IMX7ULP_CFGR1 0x24
#define IMX7ULP_DMR0 0x30
#define IMX7ULP_DMR1 0x34
#define IMX7ULP_CCR 0x40
#define IMX7ULP_FCR 0x58
#define IMX7ULP_FSR 0x5c
#define IMX7ULP_TCR 0x60
#define IMX7ULP_TDR 0x64
#define IMX7ULP_RSR 0x70
#define IMX7ULP_RDR 0x74
/* General control register field define */
#define CR_RRF BIT(9)
#define CR_RTF BIT(8)
#define CR_RST BIT(1)
#define CR_MEN BIT(0)
#define SR_TCF BIT(10)
#define SR_RDF BIT(1)
#define SR_TDF BIT(0)
#define IER_TCIE BIT(10)
#define IER_RDIE BIT(1)
#define IER_TDIE BIT(0)
#define CFGR1_PCSCFG BIT(27)
#define CFGR1_PCSPOL BIT(8)
#define CFGR1_NOSTALL BIT(3)
#define CFGR1_MASTER BIT(0)
#define RSR_RXEMPTY BIT(1)
#define TCR_CPOL BIT(31)
#define TCR_CPHA BIT(30)
#define TCR_CONT BIT(21)
#define TCR_CONTC BIT(20)
#define TCR_RXMSK BIT(19)
#define TCR_TXMSK BIT(18)
static int clkdivs[] = {1, 2, 4, 8, 16, 32, 64, 128};
struct lpspi_config {
u8 bpw;
u8 chip_select;
u8 prescale;
u16 mode;
u32 speed_hz;
};
struct fsl_lpspi_data {
struct device *dev;
void __iomem *base;
struct clk *clk;
void *rx_buf;
const void *tx_buf;
void (*tx)(struct fsl_lpspi_data *);
void (*rx)(struct fsl_lpspi_data *);
u32 remain;
u8 txfifosize;
u8 rxfifosize;
struct lpspi_config config;
struct completion xfer_done;
};
static const struct of_device_id fsl_lpspi_dt_ids[] = {
{ .compatible = "fsl,imx7ulp-spi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, fsl_lpspi_dt_ids);
#define LPSPI_BUF_RX(type) \
static void fsl_lpspi_buf_rx_##type(struct fsl_lpspi_data *fsl_lpspi) \
{ \
unsigned int val = readl(fsl_lpspi->base + IMX7ULP_RDR); \
\
if (fsl_lpspi->rx_buf) { \
*(type *)fsl_lpspi->rx_buf = val; \
fsl_lpspi->rx_buf += sizeof(type); \
} \
}
#define LPSPI_BUF_TX(type) \
static void fsl_lpspi_buf_tx_##type(struct fsl_lpspi_data *fsl_lpspi) \
{ \
type val = 0; \
\
if (fsl_lpspi->tx_buf) { \
val = *(type *)fsl_lpspi->tx_buf; \
fsl_lpspi->tx_buf += sizeof(type); \
} \
\
fsl_lpspi->remain -= sizeof(type); \
writel(val, fsl_lpspi->base + IMX7ULP_TDR); \
}
LPSPI_BUF_RX(u8)
LPSPI_BUF_TX(u8)
LPSPI_BUF_RX(u16)
LPSPI_BUF_TX(u16)
LPSPI_BUF_RX(u32)
LPSPI_BUF_TX(u32)
static void fsl_lpspi_intctrl(struct fsl_lpspi_data *fsl_lpspi,
unsigned int enable)
{
writel(enable, fsl_lpspi->base + IMX7ULP_IER);
}
static int lpspi_prepare_xfer_hardware(struct spi_master *master)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
return clk_prepare_enable(fsl_lpspi->clk);
}
static int lpspi_unprepare_xfer_hardware(struct spi_master *master)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
clk_disable_unprepare(fsl_lpspi->clk);
return 0;
}
static int fsl_lpspi_txfifo_empty(struct fsl_lpspi_data *fsl_lpspi)
{
u32 txcnt;
unsigned long orig_jiffies = jiffies;
do {
txcnt = readl(fsl_lpspi->base + IMX7ULP_FSR) & 0xff;
if (time_after(jiffies, orig_jiffies + msecs_to_jiffies(500))) {
dev_dbg(fsl_lpspi->dev, "txfifo empty timeout\n");
return -ETIMEDOUT;
}
cond_resched();
} while (txcnt);
return 0;
}
static void fsl_lpspi_write_tx_fifo(struct fsl_lpspi_data *fsl_lpspi)
{
u8 txfifo_cnt;
txfifo_cnt = readl(fsl_lpspi->base + IMX7ULP_FSR) & 0xff;
while (txfifo_cnt < fsl_lpspi->txfifosize) {
if (!fsl_lpspi->remain)
break;
fsl_lpspi->tx(fsl_lpspi);
txfifo_cnt++;
}
if (!fsl_lpspi->remain && (txfifo_cnt < fsl_lpspi->txfifosize))
writel(0, fsl_lpspi->base + IMX7ULP_TDR);
else
fsl_lpspi_intctrl(fsl_lpspi, IER_TDIE);
}
static void fsl_lpspi_read_rx_fifo(struct fsl_lpspi_data *fsl_lpspi)
{
while (!(readl(fsl_lpspi->base + IMX7ULP_RSR) & RSR_RXEMPTY))
fsl_lpspi->rx(fsl_lpspi);
}
static void fsl_lpspi_set_cmd(struct fsl_lpspi_data *fsl_lpspi,
bool is_first_xfer)
{
u32 temp = 0;
temp |= fsl_lpspi->config.bpw - 1;
temp |= fsl_lpspi->config.prescale << 27;
temp |= (fsl_lpspi->config.mode & 0x3) << 30;
temp |= (fsl_lpspi->config.chip_select & 0x3) << 24;
/*
* Set TCR_CONT will keep SS asserted after current transfer.
* For the first transfer, clear TCR_CONTC to assert SS.
* For subsequent transfer, set TCR_CONTC to keep SS asserted.
*/
temp |= TCR_CONT;
if (is_first_xfer)
temp &= ~TCR_CONTC;
else
temp |= TCR_CONTC;
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
dev_dbg(fsl_lpspi->dev, "TCR=0x%x\n", temp);
}
static void fsl_lpspi_set_watermark(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
temp = fsl_lpspi->txfifosize >> 1 | (fsl_lpspi->rxfifosize >> 1) << 16;
writel(temp, fsl_lpspi->base + IMX7ULP_FCR);
dev_dbg(fsl_lpspi->dev, "FCR=0x%x\n", temp);
}
static int fsl_lpspi_set_bitrate(struct fsl_lpspi_data *fsl_lpspi)
{
struct lpspi_config config = fsl_lpspi->config;
unsigned int perclk_rate, scldiv;
u8 prescale;
perclk_rate = clk_get_rate(fsl_lpspi->clk);
for (prescale = 0; prescale < 8; prescale++) {
scldiv = perclk_rate /
(clkdivs[prescale] * config.speed_hz) - 2;
if (scldiv < 256) {
fsl_lpspi->config.prescale = prescale;
break;
}
}
if (prescale == 8 && scldiv >= 256)
return -EINVAL;
writel(scldiv, fsl_lpspi->base + IMX7ULP_CCR);
dev_dbg(fsl_lpspi->dev, "perclk=%d, speed=%d, prescale =%d, scldiv=%d\n",
perclk_rate, config.speed_hz, prescale, scldiv);
return 0;
}
static int fsl_lpspi_config(struct fsl_lpspi_data *fsl_lpspi)
{
u32 temp;
int ret;
temp = CR_RST;
writel(temp, fsl_lpspi->base + IMX7ULP_CR);
writel(0, fsl_lpspi->base + IMX7ULP_CR);
ret = fsl_lpspi_set_bitrate(fsl_lpspi);
if (ret)
return ret;
fsl_lpspi_set_watermark(fsl_lpspi);
temp = CFGR1_PCSCFG | CFGR1_MASTER | CFGR1_NOSTALL;
if (fsl_lpspi->config.mode & SPI_CS_HIGH)
temp |= CFGR1_PCSPOL;
writel(temp, fsl_lpspi->base + IMX7ULP_CFGR1);
temp = readl(fsl_lpspi->base + IMX7ULP_CR);
temp |= CR_RRF | CR_RTF | CR_MEN;
writel(temp, fsl_lpspi->base + IMX7ULP_CR);
return 0;
}
static void fsl_lpspi_setup_transfer(struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(spi->master);
fsl_lpspi->config.mode = spi->mode;
fsl_lpspi->config.bpw = t ? t->bits_per_word : spi->bits_per_word;
fsl_lpspi->config.speed_hz = t ? t->speed_hz : spi->max_speed_hz;
fsl_lpspi->config.chip_select = spi->chip_select;
if (!fsl_lpspi->config.speed_hz)
fsl_lpspi->config.speed_hz = spi->max_speed_hz;
if (!fsl_lpspi->config.bpw)
fsl_lpspi->config.bpw = spi->bits_per_word;
/* Initialize the functions for transfer */
if (fsl_lpspi->config.bpw <= 8) {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u8;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u8;
} else if (fsl_lpspi->config.bpw <= 16) {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u16;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u16;
} else {
fsl_lpspi->rx = fsl_lpspi_buf_rx_u32;
fsl_lpspi->tx = fsl_lpspi_buf_tx_u32;
}
fsl_lpspi_config(fsl_lpspi);
}
static int fsl_lpspi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *t)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
int ret;
fsl_lpspi->tx_buf = t->tx_buf;
fsl_lpspi->rx_buf = t->rx_buf;
fsl_lpspi->remain = t->len;
reinit_completion(&fsl_lpspi->xfer_done);
fsl_lpspi_write_tx_fifo(fsl_lpspi);
ret = wait_for_completion_timeout(&fsl_lpspi->xfer_done, HZ);
if (!ret) {
dev_dbg(fsl_lpspi->dev, "wait for completion timeout\n");
return -ETIMEDOUT;
}
ret = fsl_lpspi_txfifo_empty(fsl_lpspi);
if (ret)
return ret;
fsl_lpspi_read_rx_fifo(fsl_lpspi);
return 0;
}
static int fsl_lpspi_transfer_one_msg(struct spi_master *master,
struct spi_message *msg)
{
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
struct spi_device *spi = msg->spi;
struct spi_transfer *xfer;
bool is_first_xfer = true;
u32 temp;
int ret;
msg->status = 0;
msg->actual_length = 0;
list_for_each_entry(xfer, &msg->transfers, transfer_list) {
fsl_lpspi_setup_transfer(spi, xfer);
fsl_lpspi_set_cmd(fsl_lpspi, is_first_xfer);
is_first_xfer = false;
ret = fsl_lpspi_transfer_one(master, spi, xfer);
if (ret < 0)
goto complete;
msg->actual_length += xfer->len;
}
complete:
/* de-assert SS, then finalize current message */
temp = readl(fsl_lpspi->base + IMX7ULP_TCR);
temp &= ~TCR_CONTC;
writel(temp, fsl_lpspi->base + IMX7ULP_TCR);
msg->status = ret;
spi_finalize_current_message(master);
return ret;
}
static irqreturn_t fsl_lpspi_isr(int irq, void *dev_id)
{
struct fsl_lpspi_data *fsl_lpspi = dev_id;
u32 temp;
fsl_lpspi_intctrl(fsl_lpspi, 0);
temp = readl(fsl_lpspi->base + IMX7ULP_SR);
fsl_lpspi_read_rx_fifo(fsl_lpspi);
if (temp & SR_TDF) {
fsl_lpspi_write_tx_fifo(fsl_lpspi);
if (!fsl_lpspi->remain)
complete(&fsl_lpspi->xfer_done);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int fsl_lpspi_probe(struct platform_device *pdev)
{
struct fsl_lpspi_data *fsl_lpspi;
struct spi_master *master;
struct resource *res;
int ret, irq;
u32 temp;
master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_lpspi_data));
if (!master)
return -ENOMEM;
platform_set_drvdata(pdev, master);
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 32);
master->bus_num = pdev->id;
fsl_lpspi = spi_master_get_devdata(master);
fsl_lpspi->dev = &pdev->dev;
master->transfer_one_message = fsl_lpspi_transfer_one_msg;
master->prepare_transfer_hardware = lpspi_prepare_xfer_hardware;
master->unprepare_transfer_hardware = lpspi_unprepare_xfer_hardware;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
master->dev.of_node = pdev->dev.of_node;
master->bus_num = pdev->id;
init_completion(&fsl_lpspi->xfer_done);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fsl_lpspi->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(fsl_lpspi->base)) {
ret = PTR_ERR(fsl_lpspi->base);
goto out_master_put;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = irq;
goto out_master_put;
}
ret = devm_request_irq(&pdev->dev, irq, fsl_lpspi_isr, 0,
dev_name(&pdev->dev), fsl_lpspi);
if (ret) {
dev_err(&pdev->dev, "can't get irq%d: %d\n", irq, ret);
goto out_master_put;
}
fsl_lpspi->clk = devm_clk_get(&pdev->dev, "ipg");
if (IS_ERR(fsl_lpspi->clk)) {
ret = PTR_ERR(fsl_lpspi->clk);
goto out_master_put;
}
ret = clk_prepare_enable(fsl_lpspi->clk);
if (ret) {
dev_err(&pdev->dev, "can't enable lpspi clock, ret=%d\n", ret);
goto out_master_put;
}
temp = readl(fsl_lpspi->base + IMX7ULP_PARAM);
fsl_lpspi->txfifosize = 1 << (temp & 0x0f);
fsl_lpspi->rxfifosize = 1 << ((temp >> 8) & 0x0f);
clk_disable_unprepare(fsl_lpspi->clk);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret < 0) {
dev_err(&pdev->dev, "spi_register_master error.\n");
goto out_master_put;
}
return 0;
out_master_put:
spi_master_put(master);
return ret;
}
static int fsl_lpspi_remove(struct platform_device *pdev)
{
struct spi_master *master = platform_get_drvdata(pdev);
struct fsl_lpspi_data *fsl_lpspi = spi_master_get_devdata(master);
clk_disable_unprepare(fsl_lpspi->clk);
return 0;
}
static struct platform_driver fsl_lpspi_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = fsl_lpspi_dt_ids,
},
.probe = fsl_lpspi_probe,
.remove = fsl_lpspi_remove,
};
module_platform_driver(fsl_lpspi_driver);
MODULE_DESCRIPTION("LPSPI Master Controller driver");
MODULE_AUTHOR("Gao Pan <pandy.gao@nxp.com>");
MODULE_LICENSE("GPL");
......@@ -173,15 +173,16 @@ static int mxc_clkdivs[] = {0, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192,
/* MX21, MX27 */
static unsigned int spi_imx_clkdiv_1(unsigned int fin,
unsigned int fspi, unsigned int max)
unsigned int fspi, unsigned int max, unsigned int *fres)
{
int i;
for (i = 2; i < max; i++)
if (fspi * mxc_clkdivs[i] >= fin)
return i;
break;
return max;
*fres = fin / mxc_clkdivs[i];
return i;
}
/* MX1, MX31, MX35, MX51 CSPI */
......@@ -442,6 +443,7 @@ static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
#define MX31_CSPICTRL_ENABLE (1 << 0)
#define MX31_CSPICTRL_MASTER (1 << 1)
#define MX31_CSPICTRL_XCH (1 << 2)
#define MX31_CSPICTRL_SMC (1 << 3)
#define MX31_CSPICTRL_POL (1 << 4)
#define MX31_CSPICTRL_PHA (1 << 5)
#define MX31_CSPICTRL_SSCTL (1 << 6)
......@@ -452,6 +454,10 @@ static void mx51_ecspi_reset(struct spi_imx_data *spi_imx)
#define MX35_CSPICTRL_CS_SHIFT 12
#define MX31_CSPICTRL_DR_SHIFT 16
#define MX31_CSPI_DMAREG 0x10
#define MX31_DMAREG_RH_DEN (1<<4)
#define MX31_DMAREG_TH_DEN (1<<1)
#define MX31_CSPISTATUS 0x14
#define MX31_STATUS_RR (1 << 3)
......@@ -511,6 +517,9 @@ static int mx31_config(struct spi_device *spi, struct spi_imx_config *config)
(is_imx35_cspi(spi_imx) ? MX35_CSPICTRL_CS_SHIFT :
MX31_CSPICTRL_CS_SHIFT);
if (spi_imx->usedma)
reg |= MX31_CSPICTRL_SMC;
writel(reg, spi_imx->base + MXC_CSPICTRL);
reg = readl(spi_imx->base + MX31_CSPI_TESTREG);
......@@ -520,6 +529,13 @@ static int mx31_config(struct spi_device *spi, struct spi_imx_config *config)
reg &= ~MX31_TEST_LBC;
writel(reg, spi_imx->base + MX31_CSPI_TESTREG);
if (spi_imx->usedma) {
/* configure DMA requests when RXFIFO is half full and
when TXFIFO is half empty */
writel(MX31_DMAREG_RH_DEN | MX31_DMAREG_TH_DEN,
spi_imx->base + MX31_CSPI_DMAREG);
}
return 0;
}
......@@ -574,9 +590,12 @@ static int mx21_config(struct spi_device *spi, struct spi_imx_config *config)
struct spi_imx_data *spi_imx = spi_master_get_devdata(spi->master);
unsigned int reg = MX21_CSPICTRL_ENABLE | MX21_CSPICTRL_MASTER;
unsigned int max = is_imx27_cspi(spi_imx) ? 16 : 18;
unsigned int clk;
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, config->speed_hz, max, &clk)
<< MX21_CSPICTRL_DR_SHIFT;
spi_imx->spi_bus_clk = clk;
reg |= spi_imx_clkdiv_1(spi_imx->spi_clk, config->speed_hz, max) <<
MX21_CSPICTRL_DR_SHIFT;
reg |= config->bpw - 1;
if (spi->mode & SPI_CPHA)
......@@ -1244,10 +1263,10 @@ static int spi_imx_probe(struct platform_device *pdev)
spi_imx->spi_clk = clk_get_rate(spi_imx->clk_per);
/*
* Only validated on i.mx6 now, can remove the constrain if validated on
* other chips.
* Only validated on i.mx35 and i.mx6 now, can remove the constraint
* if validated on other chips.
*/
if (is_imx51_ecspi(spi_imx)) {
if (is_imx35_cspi(spi_imx) || is_imx51_ecspi(spi_imx)) {
ret = spi_imx_sdma_init(&pdev->dev, spi_imx, master);
if (ret == -EPROBE_DEFER)
goto out_clk_put;
......
......@@ -214,6 +214,7 @@ static const struct of_device_id jcore_spi_of_match[] = {
{ .compatible = "jcore,spi2" },
{},
};
MODULE_DEVICE_TABLE(of, jcore_spi_of_match);
static struct platform_driver jcore_spi_driver = {
.probe = jcore_spi_probe,
......
......@@ -1386,20 +1386,13 @@ static int omap2_mcspi_probe(struct platform_device *pdev)
regs_offset = pdata->regs_offset;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (r == NULL) {
status = -ENODEV;
goto free_master;
}
r->start += regs_offset;
r->end += regs_offset;
mcspi->phys = r->start;
mcspi->base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(mcspi->base)) {
status = PTR_ERR(mcspi->base);
goto free_master;
}
mcspi->phys = r->start + regs_offset;
mcspi->base += regs_offset;
mcspi->dev = &pdev->dev;
......
......@@ -138,37 +138,62 @@ static int orion_spi_baudrate_set(struct spi_device *spi, unsigned int speed)
tclk_hz = clk_get_rate(orion_spi->clk);
if (devdata->typ == ARMADA_SPI) {
unsigned int clk, spr, sppr, sppr2, err;
unsigned int best_spr, best_sppr, best_err;
/*
* Given the core_clk (tclk_hz) and the target rate (speed) we
* determine the best values for SPR (in [0 .. 15]) and SPPR (in
* [0..7]) such that
*
* core_clk / (SPR * 2 ** SPPR)
*
* is as big as possible but not bigger than speed.
*/
best_err = speed;
best_spr = 0;
best_sppr = 0;
/* best integer divider: */
unsigned divider = DIV_ROUND_UP(tclk_hz, speed);
unsigned spr, sppr;
/* Iterate over the valid range looking for best fit */
for (sppr = 0; sppr < 8; sppr++) {
sppr2 = 0x1 << sppr;
if (divider < 16) {
/* This is the easy case, divider is less than 16 */
spr = divider;
sppr = 0;
spr = tclk_hz / sppr2;
spr = DIV_ROUND_UP(spr, speed);
if ((spr == 0) || (spr > 15))
continue;
} else {
unsigned two_pow_sppr;
/*
* Find the highest bit set in divider. This and the
* three next bits define SPR (apart from rounding).
* SPPR is then the number of zero bits that must be
* appended:
*/
sppr = fls(divider) - 4;
clk = tclk_hz / (spr * sppr2);
err = speed - clk;
/*
* As SPR only has 4 bits, we have to round divider up
* to the next multiple of 2 ** sppr.
*/
two_pow_sppr = 1 << sppr;
divider = (divider + two_pow_sppr - 1) & -two_pow_sppr;
if (err < best_err) {
best_spr = spr;
best_sppr = sppr;
best_err = err;
}
}
/*
* recalculate sppr as rounding up divider might have
* increased it enough to change the position of the
* highest set bit. In this case the bit that now
* doesn't make it into SPR is 0, so there is no need to
* round again.
*/
sppr = fls(divider) - 4;
spr = divider >> sppr;
if ((best_sppr == 0) && (best_spr == 0))
/*
* Now do range checking. SPR is constructed to have a
* width of 4 bits, so this is fine for sure. So we
* still need to check for sppr to fit into 3 bits:
*/
if (sppr > 7)
return -EINVAL;
}
prescale = ((best_sppr & 0x6) << 5) |
((best_sppr & 0x1) << 4) | best_spr;
prescale = ((sppr & 0x6) << 5) | ((sppr & 0x1) << 4) | spr;
} else {
/*
* the supported rates are: 4,6,8...30
......
......@@ -1690,6 +1690,7 @@ static int pxa2xx_spi_probe(struct platform_device *pdev)
pxa2xx_spi_write(drv_data, SSCR1, tmp);
tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
pxa2xx_spi_write(drv_data, SSCR0, tmp);
break;
default:
tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
SSCR1_TxTresh(TX_THRESH_DFLT);
......
......@@ -109,7 +109,6 @@ static inline void pxa2xx_spi_write(const struct driver_data *drv_data,
#define DONE_STATE ((void *)2)
#define ERROR_STATE ((void *)-1)
#define IS_DMA_ALIGNED(x) IS_ALIGNED((unsigned long)(x), DMA_ALIGNMENT)
#define DMA_ALIGNMENT 8
static inline int pxa25x_ssp_comp(struct driver_data *drv_data)
......
......@@ -413,7 +413,7 @@ static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
return n;
}
static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
{
unsigned int n;
......@@ -428,6 +428,7 @@ static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
qspi_update(rspi, SPBFCR_RXTRG_MASK,
SPBFCR_RXTRG_1B, QSPI_SPBFCR);
}
return n;
}
#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
......@@ -785,6 +786,9 @@ static int qspi_transfer_out_in(struct rspi_data *rspi,
static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
{
const u8 *tx = xfer->tx_buf;
unsigned int n = xfer->len;
unsigned int i, len;
int ret;
if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
......@@ -793,9 +797,23 @@ static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
return ret;
}
ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
while (n > 0) {
len = qspi_set_send_trigger(rspi, n);
if (len == QSPI_BUFFER_SIZE) {
ret = rspi_wait_for_tx_empty(rspi);
if (ret < 0) {
dev_err(&rspi->master->dev, "transmit timeout\n");
return ret;
}
for (i = 0; i < len; i++)
rspi_write_data(rspi, *tx++);
} else {
ret = rspi_pio_transfer(rspi, tx, NULL, n);
if (ret < 0)
return ret;
}
n -= len;
}
/* Wait for the last transmission */
rspi_wait_for_tx_empty(rspi);
......@@ -805,13 +823,37 @@ static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
{
u8 *rx = xfer->rx_buf;
unsigned int n = xfer->len;
unsigned int i, len;
int ret;
if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
if (ret != -EAGAIN)
return ret;
}
return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
while (n > 0) {
len = qspi_set_receive_trigger(rspi, n);
if (len == QSPI_BUFFER_SIZE) {
ret = rspi_wait_for_rx_full(rspi);
if (ret < 0) {
dev_err(&rspi->master->dev, "receive timeout\n");
return ret;
}
for (i = 0; i < len; i++)
*rx++ = rspi_read_data(rspi);
} else {
ret = rspi_pio_transfer(rspi, NULL, rx, n);
if (ret < 0)
return ret;
*rx++ = ret;
}
n -= len;
}
return 0;
}
static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
......
......@@ -973,13 +973,16 @@ static const struct sh_msiof_chipdata r8a779x_data = {
};
static const struct of_device_id sh_msiof_match[] = {
{ .compatible = "renesas,sh-msiof", .data = &sh_data },
{ .compatible = "renesas,sh-mobile-msiof", .data = &sh_data },
{ .compatible = "renesas,msiof-r8a7790", .data = &r8a779x_data },
{ .compatible = "renesas,msiof-r8a7791", .data = &r8a779x_data },
{ .compatible = "renesas,msiof-r8a7792", .data = &r8a779x_data },
{ .compatible = "renesas,msiof-r8a7793", .data = &r8a779x_data },
{ .compatible = "renesas,msiof-r8a7794", .data = &r8a779x_data },
{ .compatible = "renesas,rcar-gen2-msiof", .data = &r8a779x_data },
{ .compatible = "renesas,msiof-r8a7796", .data = &r8a779x_data },
{ .compatible = "renesas,rcar-gen3-msiof", .data = &r8a779x_data },
{ .compatible = "renesas,sh-msiof", .data = &sh_data }, /* Deprecated */
{},
};
MODULE_DEVICE_TABLE(of, sh_msiof_match);
......
......@@ -46,6 +46,8 @@
#define SUN4I_CTL_TP BIT(18)
#define SUN4I_INT_CTL_REG 0x0c
#define SUN4I_INT_CTL_RF_F34 BIT(4)
#define SUN4I_INT_CTL_TF_E34 BIT(12)
#define SUN4I_INT_CTL_TC BIT(16)
#define SUN4I_INT_STA_REG 0x10
......@@ -61,11 +63,14 @@
#define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
#define SUN4I_CLK_CTL_DRS BIT(12)
#define SUN4I_MAX_XFER_SIZE 0xffffff
#define SUN4I_BURST_CNT_REG 0x20
#define SUN4I_BURST_CNT(cnt) ((cnt) & 0xffffff)
#define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_XMIT_CNT_REG 0x24
#define SUN4I_XMIT_CNT(cnt) ((cnt) & 0xffffff)
#define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_FIFO_STA_REG 0x28
#define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
......@@ -96,6 +101,31 @@ static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
writel(value, sspi->base_addr + reg);
}
static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
}
static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
reg |= mask;
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
}
static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
reg &= ~mask;
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
}
static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
{
u32 reg, cnt;
......@@ -118,10 +148,13 @@ static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
{
u32 cnt;
u8 byte;
if (len > sspi->len)
len = sspi->len;
/* See how much data we can fit */
cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
len = min3(len, (int)cnt, sspi->len);
while (len--) {
byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
......@@ -184,10 +217,10 @@ static int sun4i_spi_transfer_one(struct spi_master *master,
u32 reg;
/* We don't support transfer larger than the FIFO */
if (tfr->len > SUN4I_FIFO_DEPTH)
if (tfr->len > SUN4I_MAX_XFER_SIZE)
return -EMSGSIZE;
if (tfr->tx_buf && tfr->len >= SUN4I_FIFO_DEPTH)
if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
return -EMSGSIZE;
reinit_completion(&sspi->done);
......@@ -286,7 +319,11 @@ static int sun4i_spi_transfer_one(struct spi_master *master,
sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
/* Enable the interrupts */
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, SUN4I_INT_CTL_TC);
sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
SUN4I_INT_CTL_RF_F34);
/* Only enable Tx FIFO interrupt if we really need it */
if (tx_len > SUN4I_FIFO_DEPTH)
sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
/* Start the transfer */
reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
......@@ -306,7 +343,6 @@ static int sun4i_spi_transfer_one(struct spi_master *master,
goto out;
}
sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
out:
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
......@@ -322,10 +358,33 @@ static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
/* Transfer complete */
if (status & SUN4I_INT_CTL_TC) {
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
complete(&sspi->done);
return IRQ_HANDLED;
}
/* Receive FIFO 3/4 full */
if (status & SUN4I_INT_CTL_RF_F34) {
sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
/* Only clear the interrupt _after_ draining the FIFO */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
return IRQ_HANDLED;
}
/* Transmit FIFO 3/4 empty */
if (status & SUN4I_INT_CTL_TF_E34) {
sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
if (!sspi->len)
/* nothing left to transmit */
sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
/* Only clear the interrupt _after_ re-seeding the FIFO */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
......
......@@ -17,6 +17,7 @@
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
......@@ -24,6 +25,7 @@
#include <linux/spi/spi.h>
#define SUN6I_FIFO_DEPTH 128
#define SUN8I_FIFO_DEPTH 64
#define SUN6I_GBL_CTL_REG 0x04
#define SUN6I_GBL_CTL_BUS_ENABLE BIT(0)
......@@ -90,6 +92,7 @@ struct sun6i_spi {
const u8 *tx_buf;
u8 *rx_buf;
int len;
unsigned long fifo_depth;
};
static inline u32 sun6i_spi_read(struct sun6i_spi *sspi, u32 reg)
......@@ -155,7 +158,9 @@ static void sun6i_spi_set_cs(struct spi_device *spi, bool enable)
static size_t sun6i_spi_max_transfer_size(struct spi_device *spi)
{
return SUN6I_FIFO_DEPTH - 1;
struct sun6i_spi *sspi = spi_master_get_devdata(spi->master);
return sspi->fifo_depth - 1;
}
static int sun6i_spi_transfer_one(struct spi_master *master,
......@@ -170,7 +175,7 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
u32 reg;
/* We don't support transfer larger than the FIFO */
if (tfr->len > SUN6I_FIFO_DEPTH)
if (tfr->len > sspi->fifo_depth)
return -EINVAL;
reinit_completion(&sspi->done);
......@@ -265,7 +270,7 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
SUN6I_BURST_CTL_CNT_STC(tx_len));
/* Fill the TX FIFO */
sun6i_spi_fill_fifo(sspi, SUN6I_FIFO_DEPTH);
sun6i_spi_fill_fifo(sspi, sspi->fifo_depth);
/* Enable the interrupts */
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, SUN6I_INT_CTL_TC);
......@@ -288,7 +293,7 @@ static int sun6i_spi_transfer_one(struct spi_master *master,
goto out;
}
sun6i_spi_drain_fifo(sspi, SUN6I_FIFO_DEPTH);
sun6i_spi_drain_fifo(sspi, sspi->fifo_depth);
out:
sun6i_spi_write(sspi, SUN6I_INT_CTL_REG, 0);
......@@ -398,6 +403,8 @@ static int sun6i_spi_probe(struct platform_device *pdev)
}
sspi->master = master;
sspi->fifo_depth = (unsigned long)of_device_get_match_data(&pdev->dev);
master->max_speed_hz = 100 * 1000 * 1000;
master->min_speed_hz = 3 * 1000;
master->set_cs = sun6i_spi_set_cs;
......@@ -470,7 +477,8 @@ static int sun6i_spi_remove(struct platform_device *pdev)
}
static const struct of_device_id sun6i_spi_match[] = {
{ .compatible = "allwinner,sun6i-a31-spi", },
{ .compatible = "allwinner,sun6i-a31-spi", .data = (void *)SUN6I_FIFO_DEPTH },
{ .compatible = "allwinner,sun8i-h3-spi", .data = (void *)SUN8I_FIFO_DEPTH },
{}
};
MODULE_DEVICE_TABLE(of, sun6i_spi_match);
......
......@@ -411,6 +411,7 @@ static int ti_qspi_dma_xfer(struct ti_qspi *qspi, dma_addr_t dma_dst,
tx->callback = ti_qspi_dma_callback;
tx->callback_param = qspi;
cookie = tx->tx_submit(tx);
reinit_completion(&qspi->transfer_complete);
ret = dma_submit_error(cookie);
if (ret) {
......
......@@ -1268,11 +1268,8 @@ static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
struct pch_spi_data *data)
{
int retval = 0;
dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
/* reset PCH SPI h/w */
pch_spi_reset(data->master);
dev_dbg(&board_dat->pdev->dev,
......@@ -1280,15 +1277,7 @@ static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
if (retval != 0) {
dev_err(&board_dat->pdev->dev,
"%s FAIL:invoking pch_spi_free_resources\n", __func__);
pch_spi_free_resources(board_dat, data);
}
dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
return retval;
return 0;
}
static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
......
......@@ -451,6 +451,7 @@ static const struct of_device_id xlp_spi_dt_id[] = {
{ .compatible = "netlogic,xlp832-spi" },
{ },
};
MODULE_DEVICE_TABLE(of, xlp_spi_dt_id);
static struct platform_driver xlp_spi_driver = {
.probe = xlp_spi_probe,
......
......@@ -697,10 +697,15 @@ static void spi_set_cs(struct spi_device *spi, bool enable)
if (spi->mode & SPI_CS_HIGH)
enable = !enable;
if (gpio_is_valid(spi->cs_gpio))
if (gpio_is_valid(spi->cs_gpio)) {
gpio_set_value(spi->cs_gpio, !enable);
else if (spi->master->set_cs)
/* Some SPI masters need both GPIO CS & slave_select */
if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
spi->master->set_cs)
spi->master->set_cs(spi, !enable);
} else if (spi->master->set_cs) {
spi->master->set_cs(spi, !enable);
}
}
#ifdef CONFIG_HAS_DMA
......@@ -720,6 +725,7 @@ static int spi_map_buf(struct spi_master *master, struct device *dev,
int desc_len;
int sgs;
struct page *vm_page;
struct scatterlist *sg;
void *sg_buf;
size_t min;
int i, ret;
......@@ -738,6 +744,7 @@ static int spi_map_buf(struct spi_master *master, struct device *dev,
if (ret != 0)
return ret;
sg = &sgt->sgl[0];
for (i = 0; i < sgs; i++) {
if (vmalloced_buf || kmap_buf) {
......@@ -751,16 +758,17 @@ static int spi_map_buf(struct spi_master *master, struct device *dev,
sg_free_table(sgt);
return -ENOMEM;
}
sg_set_page(&sgt->sgl[i], vm_page,
sg_set_page(sg, vm_page,
min, offset_in_page(buf));
} else {
min = min_t(size_t, len, desc_len);
sg_buf = buf;
sg_set_buf(&sgt->sgl[i], sg_buf, min);
sg_set_buf(sg, sg_buf, min);
}
buf += min;
len -= min;
sg = sg_next(sg);
}
ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
......@@ -1034,8 +1042,14 @@ static int spi_transfer_one_message(struct spi_master *master,
if (msg->status != -EINPROGRESS)
goto out;
if (xfer->delay_usecs)
udelay(xfer->delay_usecs);
if (xfer->delay_usecs) {
u16 us = xfer->delay_usecs;
if (us <= 10)
udelay(us);
else
usleep_range(us, us + DIV_ROUND_UP(us, 10));
}
if (xfer->cs_change) {
if (list_is_last(&xfer->transfer_list,
......
......@@ -696,6 +696,7 @@ static struct class *spidev_class;
static const struct of_device_id spidev_dt_ids[] = {
{ .compatible = "rohm,dh2228fv" },
{ .compatible = "lineartechnology,ltc2488" },
{ .compatible = "ge,achc" },
{},
};
MODULE_DEVICE_TABLE(of, spidev_dt_ids);
......
......@@ -442,6 +442,7 @@ struct spi_master {
#define SPI_MASTER_NO_TX BIT(2) /* can't do buffer write */
#define SPI_MASTER_MUST_RX BIT(3) /* requires rx */
#define SPI_MASTER_MUST_TX BIT(4) /* requires tx */
#define SPI_MASTER_GPIO_SS BIT(5) /* GPIO CS must select slave */
/*
* on some hardware transfer / message size may be constrained
......
......@@ -315,7 +315,7 @@ static void transfer_file(int fd, char *filename)
pabort("can't stat input file");
tx_fd = open(filename, O_RDONLY);
if (fd < 0)
if (tx_fd < 0)
pabort("can't open input file");
tx = malloc(sb.st_size);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment