Commit d47e5382 authored by Greg Kroah-Hartman's avatar Greg Kroah-Hartman

Merge tag 'iio-for-4.12d' of...

Merge tag 'iio-for-4.12d' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23/iio into staging-next

Jonathan writes:

Fourth set of IIO new device support, features and cleanups for the 4.12 cycle

New device support
* max1117, 1118 and 1119
  - new ADC driver
* max9611
  - new ADC driver
* pm8xxx hk/xoadc
  - new driver with some shared features broken out from the SPMI vadc.
* sun4i-gpadc
  - A33 thermal sensor support (with associated rework)
* stm32-dac
  - new driver and bindings
* stm32 trigger
  - enable support of quadrature encoder device and counter modes

Features
* apds9960
  - use the runtime pm for normal suspend
* stm32-adc
  - add opition to sest resolution via devicetree
* xoadc
  - augment DT bindings to deal with some weird mux cases

Cleanups
* ad5933
  - protect direct mode using claim and release helpers
* ade7759
  - S_IRUGO and friends to octal in two goes
* adis16203
  - drop unnecessary brackets
* hid-sensor
  - fix unbalanced pm_runtieme_enable error when probing after remove
* lsm6dsx
  - use actual part numbers for device name when known
  - simplify data read pin parsing
* mpu3050
  - avoid double reporting errors
parents 18125dc0 d454ae2e
What: /sys/bus/iio/devices/iio:deviceX/in_power_shunt_resistor
Date: March 2017
KernelVersion: 4.12
Contact: linux-iio@vger.kernel.org
Description: The value of the shunt resistor used to compute power drain on
common input voltage pin (RS+). In Ohms.
What: /sys/bus/iio/devices/iio:deviceX/in_current_shunt_resistor
Date: March 2017
KernelVersion: 4.12
Contact: linux-iio@vger.kernel.org
Description: The value of the shunt resistor used to compute current flowing
between RS+ and RS- voltage sense inputs. In Ohms.
These attributes describe a single physical component, exposed as two distinct
attributes as it is used to calculate two different values: power load and
current flowing between RS+ and RS- inputs.
......@@ -3,11 +3,15 @@ KernelVersion: 4.11
Contact: benjamin.gaignard@st.com
Description:
Reading returns the list possible master modes which are:
- "reset" : The UG bit from the TIMx_EGR register is used as trigger output (TRGO).
- "enable" : The Counter Enable signal CNT_EN is used as trigger output.
- "reset" : The UG bit from the TIMx_EGR register is
used as trigger output (TRGO).
- "enable" : The Counter Enable signal CNT_EN is used
as trigger output.
- "update" : The update event is selected as trigger output.
For instance a master timer can then be used as a prescaler for a slave timer.
- "compare_pulse" : The trigger output send a positive pulse when the CC1IF flag is to be set.
For instance a master timer can then be used
as a prescaler for a slave timer.
- "compare_pulse" : The trigger output send a positive pulse
when the CC1IF flag is to be set.
- "OC1REF" : OC1REF signal is used as trigger output.
- "OC2REF" : OC2REF signal is used as trigger output.
- "OC3REF" : OC3REF signal is used as trigger output.
......@@ -27,3 +31,62 @@ Description:
Reading returns the current sampling frequency.
Writing an value different of 0 set and start sampling.
Writing 0 stop sampling.
What: /sys/bus/iio/devices/iio:deviceX/in_count0_preset
KernelVersion: 4.12
Contact: benjamin.gaignard@st.com
Description:
Reading returns the current preset value.
Writing sets the preset value.
When counting up the counter starts from 0 and fires an
event when reach preset value.
When counting down the counter start from preset value
and fire event when reach 0.
What: /sys/bus/iio/devices/iio:deviceX/in_count_quadrature_mode_available
KernelVersion: 4.12
Contact: benjamin.gaignard@st.com
Description:
Reading returns the list possible quadrature modes.
What: /sys/bus/iio/devices/iio:deviceX/in_count0_quadrature_mode
KernelVersion: 4.12
Contact: benjamin.gaignard@st.com
Description:
Configure the device counter quadrature modes:
channel_A:
Encoder A input servers as the count input and B as
the UP/DOWN direction control input.
channel_B:
Encoder B input serves as the count input and A as
the UP/DOWN direction control input.
quadrature:
Encoder A and B inputs are mixed to get direction
and count with a scale of 0.25.
What: /sys/bus/iio/devices/iio:deviceX/in_count_enable_mode_available
KernelVersion: 4.12
Contact: benjamin.gaignard@st.com
Description:
Reading returns the list possible enable modes.
What: /sys/bus/iio/devices/iio:deviceX/in_count0_enable_mode
KernelVersion: 4.12
Contact: benjamin.gaignard@st.com
Description:
Configure the device counter enable modes, in all case
counting direction is set by in_count0_count_direction
attribute and the counter is clocked by the internal clock.
always:
Counter is always ON.
gated:
Counting is enabled when connected trigger signal
level is high else counting is disabled.
triggered:
Counting is enabled on rising edge of the connected
trigger, and remains enabled for the duration of this
selected mode.
* MAX1117/MAX1118/MAX1119 8-bit, dual-channel ADCs
Required properties:
- compatible: Should be one of
* "maxim,max1117"
* "maxim,max1118"
* "maxim,max1119"
- reg: spi chip select number for the device
- (max1118 only) vref-supply: The regulator supply for ADC reference voltage
Recommended properties:
- spi-max-frequency: Definition as per
Documentation/devicetree/bindings/spi/spi-bus.txt
Example:
adc@0 {
compatible = "maxim,max1118";
reg = <0>;
vref-supply = <&vdd_supply>;
spi-max-frequency = <1000000>;
};
* Maxim max9611/max9612 current sense amplifier with 12-bits ADC interface
Maxim max9611/max9612 is an high-side current sense amplifier with integrated
12-bits ADC communicating over I2c bus.
The device node for this driver shall be a child of a I2c controller.
Required properties
- compatible: Should be "maxim,max9611" or "maxim,max9612"
- reg: The 7-bits long I2c address of the device
- shunt-resistor-micro-ohms: Value, in micro Ohms, of the current sense shunt
resistor
Example:
&i2c4 {
csa: adc@7c {
compatible = "maxim,max9611";
reg = <0x7c>;
shunt-resistor-micro-ohms = <5000>;
};
};
This device node describes a current sense amplifier sitting on I2c4 bus
with address 0x7c (read address is 0xf9, write address is 0xf8).
A sense resistor of 0,005 Ohm is installed between RS+ and RS- current-sensing
inputs.
......@@ -19,32 +19,42 @@ Required properties:
with PMIC variant but is typically something like 2.2 or 1.8V.
The following required properties are standard for IO channels, see
iio-bindings.txt for more details:
iio-bindings.txt for more details, but notice that this particular
ADC has a special addressing scheme that require two cells for
identifying each ADC channel:
- #address-cells: should be set to <1>
- #address-cells: should be set to <2>, the first cell is the
prescaler (on PM8058) or premux (on PM8921) with two valid bits
so legal values are 0x00, 0x01 or 0x02. The second cell
is the main analog mux setting (0x00..0x0f). The combination
of prescaler/premux and analog mux uniquely addresses a hardware
channel on all systems.
- #size-cells: should be set to <0>
- #io-channel-cells: should be set to <1>
- #io-channel-cells: should be set to <2>, again the cells are
precaler or premux followed by the analog muxing line.
- interrupts: should refer to the parent PMIC interrupt controller
and reference the proper ADC interrupt.
Required subnodes:
The ADC channels are configured as subnodes of the ADC. Since some of
them are used for calibrating the ADC, these nodes are compulsory:
The ADC channels are configured as subnodes of the ADC.
Since some of them are used for calibrating the ADC, these nodes are
compulsory:
adc-channel@c {
reg = <0x0c>;
reg = <0x00 0x0c>;
};
adc-channel@d {
reg = <0x0d>;
reg = <0x00 0x0d>;
};
adc-channel@f {
reg = <0x0f>;
reg = <0x00 0x0f>;
};
These three nodes are used for absolute and ratiometric calibration
......@@ -52,13 +62,13 @@ and only need to have these reg values: they are by hardware definition
1:1 ratio converters that sample 625, 1250 and 0 milliV and create
an interpolation calibration for all other ADCs.
Optional subnodes: any channels other than channel 0x0c, 0x0d and
0x0f are optional.
Optional subnodes: any channels other than channels [0x00 0x0c],
[0x00 0x0d] and [0x00 0x0f] are optional.
Required channel node properties:
- reg: should contain the hardware channel number in the range
0 .. 0x0f (4 bits). The hardware only supports 16 channels.
0 .. 0xff (8 bits).
Optional channel node properties:
......@@ -94,56 +104,54 @@ Example:
xoadc: xoadc@197 {
compatible = "qcom,pm8058-adc";
reg = <0x197>;
interrupt-parent = <&pm8058>;
interrupts = <76 1>;
#address-cells = <1>;
interrupts-extended = <&pm8058 76 IRQ_TYPE_EDGE_RISING>;
#address-cells = <2>;
#size-cells = <0>;
#io-channel-cells = <1>;
#io-channel-cells = <2>;
vcoin: adc-channel@0 {
reg = <0x00>;
reg = <0x00 0x00>;
};
vbat: adc-channel@1 {
reg = <0x01>;
reg = <0x00 0x01>;
};
dcin: adc-channel@2 {
reg = <0x02>;
reg = <0x00 0x02>;
};
ichg: adc-channel@3 {
reg = <0x03>;
reg = <0x00 0x03>;
};
vph_pwr: adc-channel@4 {
reg = <0x04>;
reg = <0x00 0x04>;
};
usb_vbus: adc-channel@a {
reg = <0x0a>;
reg = <0x00 0x0a>;
};
die_temp: adc-channel@b {
reg = <0x0b>;
reg = <0x00 0x0b>;
};
ref_625mv: adc-channel@c {
reg = <0x0c>;
reg = <0x00 0x0c>;
};
ref_1250mv: adc-channel@d {
reg = <0x0d>;
reg = <0x00 0x0d>;
};
ref_325mv: adc-channel@e {
reg = <0x0e>;
reg = <0x00 0x0e>;
};
ref_muxoff: adc-channel@f {
reg = <0x0f>;
reg = <0x00 0x0f>;
};
};
/* IIO client node */
iio-hwmon {
compatible = "iio-hwmon";
io-channels = <&xoadc 0x01>, /* Battery */
<&xoadc 0x02>, /* DC in (charger) */
<&xoadc 0x04>, /* VPH the main system voltage */
<&xoadc 0x0b>, /* Die temperature */
<&xoadc 0x0c>, /* Reference voltage 1.25V */
<&xoadc 0x0d>, /* Reference voltage 0.625V */
<&xoadc 0x0e>; /* Reference voltage 0.325V */
io-channels = <&xoadc 0x00 0x01>, /* Battery */
<&xoadc 0x00 0x02>, /* DC in (charger) */
<&xoadc 0x00 0x04>, /* VPH the main system voltage */
<&xoadc 0x00 0x0b>, /* Die temperature */
<&xoadc 0x00 0x0c>, /* Reference voltage 1.25V */
<&xoadc 0x00 0x0d>, /* Reference voltage 0.625V */
<&xoadc 0x00 0x0e>; /* Reference voltage 0.325V */
};
......@@ -57,6 +57,9 @@ Optional properties:
- dmas: Phandle to dma channel for this ADC instance.
See ../../dma/dma.txt for details.
- dma-names: Must be "rx" when dmas property is being used.
- assigned-resolution-bits: Resolution (bits) to use for conversions. Must
match device available resolutions (e.g. can be 6, 8, 10 or 12 on stm32f4).
Default is maximum resolution if unset.
Example:
adc: adc@40012000 {
......@@ -84,6 +87,7 @@ Example:
st,adc-channels = <8>;
dmas = <&dma2 0 0 0x400 0x0>;
dma-names = "rx";
assigned-resolution-bits = <8>;
};
...
other adc child nodes follow...
......
STMicroelectronics STM32 DAC
The STM32 DAC is a 12-bit voltage output digital-to-analog converter. The DAC
may be configured in 8 or 12-bit mode. It has two output channels, each with
its own converter.
It has built-in noise and triangle waveform generator and supports external
triggers for conversions. The DAC's output buffer allows a high drive output
current.
Contents of a stm32 dac root node:
-----------------------------------
Required properties:
- compatible: Must be "st,stm32h7-dac-core".
- reg: Offset and length of the device's register set.
- clocks: Must contain an entry for pclk (which feeds the peripheral bus
interface)
- clock-names: Must be "pclk".
- vref-supply: Phandle to the vref+ input analog reference supply.
- #address-cells = <1>;
- #size-cells = <0>;
Optional properties:
- resets: Must contain the phandle to the reset controller.
- A pinctrl state named "default" for each DAC channel may be defined to set
DAC_OUTx pin in mode of operation for analog output on external pin.
Contents of a stm32 dac child node:
-----------------------------------
DAC core node should contain at least one subnode, representing a
DAC instance/channel available on the machine.
Required properties:
- compatible: Must be "st,stm32-dac".
- reg: Must be either 1 or 2, to define (single) channel in use
- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers" in
Documentation/devicetree/bindings/iio/iio-bindings.txt
Example:
dac: dac@40007400 {
compatible = "st,stm32h7-dac-core";
reg = <0x40007400 0x400>;
clocks = <&clk>;
clock-names = "pclk";
vref-supply = <&reg_vref>;
pinctrl-names = "default";
pinctrl-0 = <&dac_out1 &dac_out2>;
#address-cells = <1>;
#size-cells = <0>;
dac1: dac@1 {
compatible = "st,stm32-dac";
#io-channels-cells = <1>;
reg = <1>;
};
dac2: dac@2 {
compatible = "st,stm32-dac";
#io-channels-cells = <1>;
reg = <2>;
};
};
......@@ -379,6 +379,18 @@ config MAX11100
To compile this driver as a module, choose M here: the module will be
called max11100.
config MAX1118
tristate "Maxim max1117/max1118/max1119 ADCs driver"
depends on SPI
select IIO_BUFFER
select IIO_TRIGGERED_BUFFER
help
Say yes here to build support for Maxim max1117/max1118/max1119
8-bit, dual-channel ADCs.
To compile this driver as a module, choose M here: the module will be
called max1118.
config MAX1363
tristate "Maxim max1363 ADC driver"
depends on I2C
......@@ -398,6 +410,16 @@ config MAX1363
To compile this driver as a module, choose M here: the module will be
called max1363.
config MAX9611
tristate "Maxim max9611/max9612 ADC driver"
depends on I2C
help
Say yes here to build support for Maxim max9611/max9612 current sense
amplifier with 12-bits ADC interface.
To compile this driver as a module, choose M here: the module will be
called max9611.
config MCP320X
tristate "Microchip Technology MCP3x01/02/04/08"
depends on SPI
......@@ -486,6 +508,20 @@ config PALMAS_GPADC
is used in smartphones and tablets and supports a 16 channel
general purpose ADC.
config QCOM_VADC_COMMON
tristate
config QCOM_PM8XXX_XOADC
tristate "Qualcomm SSBI PM8xxx PMIC XOADCs"
depends on MFD_PM8XXX
select QCOM_VADC_COMMON
help
ADC driver for the XOADC portions of the Qualcomm PM8xxx PMICs
using SSBI transport: PM8018, PM8038, PM8058, PM8921.
To compile this driver as a module, choose M here: the module
will be called qcom-pm8xxx-xoadc.
config QCOM_SPMI_IADC
tristate "Qualcomm SPMI PMIC current ADC"
depends on SPMI
......@@ -504,6 +540,7 @@ config QCOM_SPMI_VADC
tristate "Qualcomm SPMI PMIC voltage ADC"
depends on SPMI
select REGMAP_SPMI
select QCOM_VADC_COMMON
help
This is the IIO Voltage ADC driver for Qualcomm QPNP VADC Chip.
......@@ -594,7 +631,7 @@ config STX104
config SUN4I_GPADC
tristate "Support for the Allwinner SoCs GPADC"
depends on IIO
depends on MFD_SUN4I_GPADC
depends on MFD_SUN4I_GPADC || MACH_SUN8I
depends on THERMAL || !THERMAL_OF
help
Say yes here to build support for Allwinner (A10, A13 and A31) SoCs
......
......@@ -37,7 +37,9 @@ obj-$(CONFIG_LTC2485) += ltc2485.o
obj-$(CONFIG_LTC2497) += ltc2497.o
obj-$(CONFIG_MAX1027) += max1027.o
obj-$(CONFIG_MAX11100) += max11100.o
obj-$(CONFIG_MAX1118) += max1118.o
obj-$(CONFIG_MAX1363) += max1363.o
obj-$(CONFIG_MAX9611) += max9611.o
obj-$(CONFIG_MCP320X) += mcp320x.o
obj-$(CONFIG_MCP3422) += mcp3422.o
obj-$(CONFIG_MEDIATEK_MT6577_AUXADC) += mt6577_auxadc.o
......@@ -47,7 +49,9 @@ obj-$(CONFIG_MXS_LRADC) += mxs-lradc.o
obj-$(CONFIG_NAU7802) += nau7802.o
obj-$(CONFIG_PALMAS_GPADC) += palmas_gpadc.o
obj-$(CONFIG_QCOM_SPMI_IADC) += qcom-spmi-iadc.o
obj-$(CONFIG_QCOM_VADC_COMMON) += qcom-vadc-common.o
obj-$(CONFIG_QCOM_SPMI_VADC) += qcom-spmi-vadc.o
obj-$(CONFIG_QCOM_PM8XXX_XOADC) += qcom-pm8xxx-xoadc.o
obj-$(CONFIG_RCAR_GYRO_ADC) += rcar-gyroadc.o
obj-$(CONFIG_ROCKCHIP_SARADC) += rockchip_saradc.o
obj-$(CONFIG_SPEAR_ADC) += spear_adc.o
......
/*
* MAX1117/MAX1118/MAX1119 8-bit, dual-channel ADCs driver
*
* Copyright (c) 2017 Akinobu Mita <akinobu.mita@gmail.com>
*
* This file is subject to the terms and conditions of version 2 of
* the GNU General Public License. See the file COPYING in the main
* directory of this archive for more details.
*
* Datasheet: https://datasheets.maximintegrated.com/en/ds/MAX1117-MAX1119.pdf
*
* SPI interface connections
*
* SPI MAXIM
* Master Direction MAX1117/8/9
* ------ --------- -----------
* nCS --> CNVST
* SCK --> SCLK
* MISO <-- DOUT
* ------ --------- -----------
*/
#include <linux/module.h>
#include <linux/spi/spi.h>
#include <linux/iio/iio.h>
#include <linux/iio/buffer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/regulator/consumer.h>
enum max1118_id {
max1117,
max1118,
max1119,
};
struct max1118 {
struct spi_device *spi;
struct mutex lock;
struct regulator *reg;
u8 data ____cacheline_aligned;
};
#define MAX1118_CHANNEL(ch) \
{ \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.channel = (ch), \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.scan_index = ch, \
.scan_type = { \
.sign = 'u', \
.realbits = 8, \
.storagebits = 8, \
}, \
}
static const struct iio_chan_spec max1118_channels[] = {
MAX1118_CHANNEL(0),
MAX1118_CHANNEL(1),
IIO_CHAN_SOFT_TIMESTAMP(2),
};
static int max1118_read(struct spi_device *spi, int channel)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct max1118 *adc = iio_priv(indio_dev);
struct spi_transfer xfers[] = {
/*
* To select CH1 for conversion, CNVST pin must be brought high
* and low for a second time.
*/
{
.len = 0,
.delay_usecs = 1, /* > CNVST Low Time 100 ns */
.cs_change = 1,
},
/*
* The acquisition interval begins with the falling edge of
* CNVST. The total acquisition and conversion process takes
* <7.5us.
*/
{
.len = 0,
.delay_usecs = 8,
},
{
.rx_buf = &adc->data,
.len = 1,
},
};
int ret;
if (channel == 0)
ret = spi_sync_transfer(spi, xfers + 1, 2);
else
ret = spi_sync_transfer(spi, xfers, 3);
if (ret)
return ret;
return adc->data;
}
static int max1118_get_vref_mV(struct spi_device *spi)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct max1118 *adc = iio_priv(indio_dev);
const struct spi_device_id *id = spi_get_device_id(spi);
int vref_uV;
switch (id->driver_data) {
case max1117:
return 2048;
case max1119:
return 4096;
case max1118:
vref_uV = regulator_get_voltage(adc->reg);
if (vref_uV < 0)
return vref_uV;
return vref_uV / 1000;
}
return -ENODEV;
}
static int max1118_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct max1118 *adc = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&adc->lock);
*val = max1118_read(adc->spi, chan->channel);
mutex_unlock(&adc->lock);
if (*val < 0)
return *val;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
*val = max1118_get_vref_mV(adc->spi);
if (*val < 0)
return *val;
*val2 = 8;
return IIO_VAL_FRACTIONAL_LOG2;
}
return -EINVAL;
}
static const struct iio_info max1118_info = {
.read_raw = max1118_read_raw,
.driver_module = THIS_MODULE,
};
static irqreturn_t max1118_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct max1118 *adc = iio_priv(indio_dev);
u8 data[16] = { }; /* 2x 8-bit ADC data + padding + 8 bytes timestamp */
int scan_index;
int i = 0;
mutex_lock(&adc->lock);
for_each_set_bit(scan_index, indio_dev->active_scan_mask,
indio_dev->masklength) {
const struct iio_chan_spec *scan_chan =
&indio_dev->channels[scan_index];
int ret = max1118_read(adc->spi, scan_chan->channel);
if (ret < 0) {
dev_warn(&adc->spi->dev,
"failed to get conversion data\n");
goto out;
}
data[i] = ret;
i++;
}
iio_push_to_buffers_with_timestamp(indio_dev, data,
iio_get_time_ns(indio_dev));
out:
mutex_unlock(&adc->lock);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static int max1118_probe(struct spi_device *spi)
{
struct iio_dev *indio_dev;
struct max1118 *adc;
const struct spi_device_id *id = spi_get_device_id(spi);
int ret;
indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
adc = iio_priv(indio_dev);
adc->spi = spi;
mutex_init(&adc->lock);
if (id->driver_data == max1118) {
adc->reg = devm_regulator_get(&spi->dev, "vref");
if (IS_ERR(adc->reg)) {
dev_err(&spi->dev, "failed to get vref regulator\n");
return PTR_ERR(adc->reg);
}
ret = regulator_enable(adc->reg);
if (ret)
return ret;
}
spi_set_drvdata(spi, indio_dev);
indio_dev->name = spi_get_device_id(spi)->name;
indio_dev->dev.parent = &spi->dev;
indio_dev->info = &max1118_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->channels = max1118_channels;
indio_dev->num_channels = ARRAY_SIZE(max1118_channels);
/*
* To reinitiate a conversion on CH0, it is necessary to allow for a
* conversion to be complete and all of the data to be read out. Once
* a conversion has been completed, the MAX1117/MAX1118/MAX1119 will go
* into AutoShutdown mode until the next conversion is initiated.
*/
max1118_read(spi, 0);
ret = iio_triggered_buffer_setup(indio_dev, NULL,
max1118_trigger_handler, NULL);
if (ret)
goto err_reg_disable;
ret = iio_device_register(indio_dev);
if (ret)
goto err_buffer_cleanup;
return 0;
err_buffer_cleanup:
iio_triggered_buffer_cleanup(indio_dev);
err_reg_disable:
if (id->driver_data == max1118)
regulator_disable(adc->reg);
return ret;
}
static int max1118_remove(struct spi_device *spi)
{
struct iio_dev *indio_dev = spi_get_drvdata(spi);
struct max1118 *adc = iio_priv(indio_dev);
const struct spi_device_id *id = spi_get_device_id(spi);
iio_device_unregister(indio_dev);
iio_triggered_buffer_cleanup(indio_dev);
if (id->driver_data == max1118)
return regulator_disable(adc->reg);
return 0;
}
static const struct spi_device_id max1118_id[] = {
{ "max1117", max1117 },
{ "max1118", max1118 },
{ "max1119", max1119 },
{}
};
MODULE_DEVICE_TABLE(spi, max1118_id);
#ifdef CONFIG_OF
static const struct of_device_id max1118_dt_ids[] = {
{ .compatible = "maxim,max1117" },
{ .compatible = "maxim,max1118" },
{ .compatible = "maxim,max1119" },
{},
};
MODULE_DEVICE_TABLE(of, max1118_dt_ids);
#endif
static struct spi_driver max1118_spi_driver = {
.driver = {
.name = "max1118",
.of_match_table = of_match_ptr(max1118_dt_ids),
},
.probe = max1118_probe,
.remove = max1118_remove,
.id_table = max1118_id,
};
module_spi_driver(max1118_spi_driver);
MODULE_AUTHOR("Akinobu Mita <akinobu.mita@gmail.com>");
MODULE_DESCRIPTION("MAXIM MAX1117/MAX1118/MAX1119 ADCs driver");
MODULE_LICENSE("GPL v2");
/*
* iio/adc/max9611.c
*
* Maxim max9611/max9612 high side current sense amplifier with
* 12-bit ADC interface.
*
* Copyright (C) 2017 Jacopo Mondi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
/*
* This driver supports input common-mode voltage, current-sense
* amplifier with programmable gains and die temperature reading from
* Maxim max9611/max9612.
*
* Op-amp, analog comparator, and watchdog functionalities are not
* supported by this driver.
*/
#include <linux/delay.h>
#include <linux/i2c.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/module.h>
#include <linux/of_device.h>
#define DRIVER_NAME "max9611"
/* max9611 register addresses */
#define MAX9611_REG_CSA_DATA 0x00
#define MAX9611_REG_RS_DATA 0x02
#define MAX9611_REG_TEMP_DATA 0x08
#define MAX9611_REG_CTRL1 0x0a
#define MAX9611_REG_CTRL2 0x0b
/* max9611 REG1 mux configuration options */
#define MAX9611_MUX_MASK GENMASK(3, 0)
#define MAX9611_MUX_SENSE_1x 0x00
#define MAX9611_MUX_SENSE_4x 0x01
#define MAX9611_MUX_SENSE_8x 0x02
#define MAX9611_INPUT_VOLT 0x03
#define MAX9611_MUX_TEMP 0x06
/* max9611 voltage (both csa and input) helper macros */
#define MAX9611_VOLTAGE_SHIFT 0x04
#define MAX9611_VOLTAGE_RAW(_r) ((_r) >> MAX9611_VOLTAGE_SHIFT)
/*
* max9611 current sense amplifier voltage output:
* LSB and offset values depends on selected gain (1x, 4x, 8x)
*
* GAIN LSB (nV) OFFSET (LSB steps)
* 1x 107500 1
* 4x 26880 1
* 8x 13440 3
*
* The complete formula to calculate current sense voltage is:
* (((adc_read >> 4) - offset) / ((1 / LSB) * 10^-3)
*/
#define MAX9611_CSA_1X_LSB_nV 107500
#define MAX9611_CSA_4X_LSB_nV 26880
#define MAX9611_CSA_8X_LSB_nV 13440
#define MAX9611_CSA_1X_OFFS_RAW 1
#define MAX9611_CSA_4X_OFFS_RAW 1
#define MAX9611_CSA_8X_OFFS_RAW 3
/*
* max9611 common input mode (CIM): LSB is 14mV, with 14mV offset at 25 C
*
* The complete formula to calculate input common voltage is:
* (((adc_read >> 4) * 1000) - offset) / (1 / 14 * 1000)
*/
#define MAX9611_CIM_LSB_mV 14
#define MAX9611_CIM_OFFSET_RAW 1
/*
* max9611 temperature reading: LSB is 480 milli degrees Celsius
*
* The complete formula to calculate temperature is:
* ((adc_read >> 7) * 1000) / (1 / 480 * 1000)
*/
#define MAX9611_TEMP_MAX_POS 0x7f80
#define MAX9611_TEMP_MAX_NEG 0xff80
#define MAX9611_TEMP_MIN_NEG 0xd980
#define MAX9611_TEMP_MASK GENMASK(7, 15)
#define MAX9611_TEMP_SHIFT 0x07
#define MAX9611_TEMP_RAW(_r) ((_r) >> MAX9611_TEMP_SHIFT)
#define MAX9611_TEMP_SCALE_NUM 1000000
#define MAX9611_TEMP_SCALE_DIV 2083
struct max9611_dev {
struct device *dev;
struct i2c_client *i2c_client;
struct mutex lock;
unsigned int shunt_resistor_uohm;
};
enum max9611_conf_ids {
CONF_SENSE_1x,
CONF_SENSE_4x,
CONF_SENSE_8x,
CONF_IN_VOLT,
CONF_TEMP,
};
/**
* max9611_mux_conf - associate ADC mux configuration with register address
* where data shall be read from
*/
static const unsigned int max9611_mux_conf[][2] = {
/* CONF_SENSE_1x */
{ MAX9611_MUX_SENSE_1x, MAX9611_REG_CSA_DATA },
/* CONF_SENSE_4x */
{ MAX9611_MUX_SENSE_4x, MAX9611_REG_CSA_DATA },
/* CONF_SENSE_8x */
{ MAX9611_MUX_SENSE_8x, MAX9611_REG_CSA_DATA },
/* CONF_IN_VOLT */
{ MAX9611_INPUT_VOLT, MAX9611_REG_RS_DATA },
/* CONF_TEMP */
{ MAX9611_MUX_TEMP, MAX9611_REG_TEMP_DATA },
};
enum max9611_csa_gain {
CSA_GAIN_1x,
CSA_GAIN_4x,
CSA_GAIN_8x,
};
enum max9611_csa_gain_params {
CSA_GAIN_LSB_nV,
CSA_GAIN_OFFS_RAW,
};
/**
* max9611_csa_gain_conf - associate gain multiplier with LSB and
* offset values.
*
* Group together parameters associated with configurable gain
* on current sense amplifier path to ADC interface.
* Current sense read routine adjusts gain until it gets a meaningful
* value; use this structure to retrieve the correct LSB and offset values.
*/
static const unsigned int max9611_gain_conf[][2] = {
{ /* [0] CSA_GAIN_1x */
MAX9611_CSA_1X_LSB_nV,
MAX9611_CSA_1X_OFFS_RAW,
},
{ /* [1] CSA_GAIN_4x */
MAX9611_CSA_4X_LSB_nV,
MAX9611_CSA_4X_OFFS_RAW,
},
{ /* [2] CSA_GAIN_8x */
MAX9611_CSA_8X_LSB_nV,
MAX9611_CSA_8X_OFFS_RAW,
},
};
enum max9611_chan_addrs {
MAX9611_CHAN_VOLTAGE_INPUT,
MAX9611_CHAN_VOLTAGE_SENSE,
MAX9611_CHAN_TEMPERATURE,
MAX9611_CHAN_CURRENT_LOAD,
MAX9611_CHAN_POWER_LOAD,
};
static const struct iio_chan_spec max9611_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE),
.address = MAX9611_CHAN_TEMPERATURE,
},
{
.type = IIO_VOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.address = MAX9611_CHAN_VOLTAGE_SENSE,
.indexed = 1,
.channel = 0,
},
{
.type = IIO_VOLTAGE,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.address = MAX9611_CHAN_VOLTAGE_INPUT,
.indexed = 1,
.channel = 1,
},
{
.type = IIO_CURRENT,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.address = MAX9611_CHAN_CURRENT_LOAD,
},
{
.type = IIO_POWER,
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
.address = MAX9611_CHAN_POWER_LOAD
},
};
/**
* max9611_read_single() - read a single value from ADC interface
*
* Data registers are 16 bit long, spread between two 8 bit registers
* with consecutive addresses.
* Configure ADC mux first, then read register at address "reg_addr".
* The smbus_read_word routine asks for 16 bits and the ADC is kind enough
* to return values from "reg_addr" and "reg_addr + 1" consecutively.
* Data are transmitted with big-endian ordering: MSB arrives first.
*
* @max9611: max9611 device
* @selector: index for mux and register configuration
* @raw_val: the value returned from ADC
*/
static int max9611_read_single(struct max9611_dev *max9611,
enum max9611_conf_ids selector,
u16 *raw_val)
{
int ret;
u8 mux_conf = max9611_mux_conf[selector][0] & MAX9611_MUX_MASK;
u8 reg_addr = max9611_mux_conf[selector][1];
/*
* Keep mutex lock held during read-write to avoid mux register
* (CTRL1) re-configuration.
*/
mutex_lock(&max9611->lock);
ret = i2c_smbus_write_byte_data(max9611->i2c_client,
MAX9611_REG_CTRL1, mux_conf);
if (ret) {
dev_err(max9611->dev, "i2c write byte failed: 0x%2x - 0x%2x\n",
MAX9611_REG_CTRL1, mux_conf);
mutex_unlock(&max9611->lock);
return ret;
}
/*
* need a delay here to make register configuration
* stabilize. 1 msec at least, from empirical testing.
*/
usleep_range(1000, 2000);
ret = i2c_smbus_read_word_swapped(max9611->i2c_client, reg_addr);
if (ret < 0) {
dev_err(max9611->dev, "i2c read word from 0x%2x failed\n",
reg_addr);
mutex_unlock(&max9611->lock);
return ret;
}
*raw_val = ret;
mutex_unlock(&max9611->lock);
return 0;
}
/**
* max9611_read_csa_voltage() - read current sense amplifier output voltage
*
* Current sense amplifier output voltage is read through a configurable
* 1x, 4x or 8x gain.
* Start with plain 1x gain, and adjust gain control properly until a
* meaningful value is read from ADC output.
*
* @max9611: max9611 device
* @adc_raw: raw value read from ADC output
* @csa_gain: gain configuration option selector
*/
static int max9611_read_csa_voltage(struct max9611_dev *max9611,
u16 *adc_raw,
enum max9611_csa_gain *csa_gain)
{
enum max9611_conf_ids gain_selectors[] = {
CONF_SENSE_1x,
CONF_SENSE_4x,
CONF_SENSE_8x
};
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(gain_selectors); ++i) {
ret = max9611_read_single(max9611, gain_selectors[i], adc_raw);
if (ret)
return ret;
if (*adc_raw > 0) {
*csa_gain = gain_selectors[i];
return 0;
}
}
return -EIO;
}
static int max9611_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct max9611_dev *dev = iio_priv(indio_dev);
enum max9611_csa_gain gain_selector;
const unsigned int *csa_gain;
u16 adc_data;
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
switch (chan->address) {
case MAX9611_CHAN_TEMPERATURE:
ret = max9611_read_single(dev, CONF_TEMP,
&adc_data);
if (ret)
return -EINVAL;
*val = MAX9611_TEMP_RAW(adc_data);
return IIO_VAL_INT;
case MAX9611_CHAN_VOLTAGE_INPUT:
ret = max9611_read_single(dev, CONF_IN_VOLT,
&adc_data);
if (ret)
return -EINVAL;
*val = MAX9611_VOLTAGE_RAW(adc_data);
return IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_OFFSET:
/* MAX9611_CHAN_VOLTAGE_INPUT */
*val = MAX9611_CIM_OFFSET_RAW;
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
switch (chan->address) {
case MAX9611_CHAN_TEMPERATURE:
*val = MAX9611_TEMP_SCALE_NUM;
*val2 = MAX9611_TEMP_SCALE_DIV;
return IIO_VAL_FRACTIONAL;
case MAX9611_CHAN_VOLTAGE_INPUT:
*val = MAX9611_CIM_LSB_mV;
return IIO_VAL_INT;
}
break;
case IIO_CHAN_INFO_PROCESSED:
switch (chan->address) {
case MAX9611_CHAN_VOLTAGE_SENSE:
/*
* processed (mV): (raw - offset) * LSB (nV) / 10^6
*
* Even if max9611 can output raw csa voltage readings,
* use a produced value as scale depends on gain.
*/
ret = max9611_read_csa_voltage(dev, &adc_data,
&gain_selector);
if (ret)
return -EINVAL;
csa_gain = max9611_gain_conf[gain_selector];
adc_data -= csa_gain[CSA_GAIN_OFFS_RAW];
*val = MAX9611_VOLTAGE_RAW(adc_data) *
csa_gain[CSA_GAIN_LSB_nV];
*val2 = 1000000;
return IIO_VAL_FRACTIONAL;
case MAX9611_CHAN_CURRENT_LOAD:
/* processed (mA): Vcsa (nV) / Rshunt (uOhm) */
ret = max9611_read_csa_voltage(dev, &adc_data,
&gain_selector);
if (ret)
return -EINVAL;
csa_gain = max9611_gain_conf[gain_selector];
adc_data -= csa_gain[CSA_GAIN_OFFS_RAW];
*val = MAX9611_VOLTAGE_RAW(adc_data) *
csa_gain[CSA_GAIN_LSB_nV];
*val2 = dev->shunt_resistor_uohm;
return IIO_VAL_FRACTIONAL;
case MAX9611_CHAN_POWER_LOAD:
/*
* processed (mW): Vin (mV) * Vcsa (uV) /
* Rshunt (uOhm)
*/
ret = max9611_read_single(dev, CONF_IN_VOLT,
&adc_data);
if (ret)
return -EINVAL;
adc_data -= MAX9611_CIM_OFFSET_RAW;
*val = MAX9611_VOLTAGE_RAW(adc_data) *
MAX9611_CIM_LSB_mV;
ret = max9611_read_csa_voltage(dev, &adc_data,
&gain_selector);
if (ret)
return -EINVAL;
csa_gain = max9611_gain_conf[gain_selector];
/* divide by 10^3 here to avoid 32bit overflow */
adc_data -= csa_gain[CSA_GAIN_OFFS_RAW];
*val *= MAX9611_VOLTAGE_RAW(adc_data) *
csa_gain[CSA_GAIN_LSB_nV] / 1000;
*val2 = dev->shunt_resistor_uohm;
return IIO_VAL_FRACTIONAL;
}
break;
}
return -EINVAL;
}
static ssize_t max9611_shunt_resistor_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct max9611_dev *max9611 = iio_priv(dev_to_iio_dev(dev));
unsigned int i, r;
i = max9611->shunt_resistor_uohm / 1000;
r = max9611->shunt_resistor_uohm % 1000;
return sprintf(buf, "%u.%03u\n", i, r);
}
static IIO_DEVICE_ATTR(in_power_shunt_resistor, 0444,
max9611_shunt_resistor_show, NULL, 0);
static IIO_DEVICE_ATTR(in_current_shunt_resistor, 0444,
max9611_shunt_resistor_show, NULL, 0);
static struct attribute *max9611_attributes[] = {
&iio_dev_attr_in_power_shunt_resistor.dev_attr.attr,
&iio_dev_attr_in_current_shunt_resistor.dev_attr.attr,
NULL,
};
static const struct attribute_group max9611_attribute_group = {
.attrs = max9611_attributes,
};
static const struct iio_info indio_info = {
.driver_module = THIS_MODULE,
.read_raw = max9611_read_raw,
.attrs = &max9611_attribute_group,
};
static int max9611_init(struct max9611_dev *max9611)
{
struct i2c_client *client = max9611->i2c_client;
u16 regval;
int ret;
if (!i2c_check_functionality(client->adapter,
I2C_FUNC_SMBUS_WRITE_BYTE |
I2C_FUNC_SMBUS_READ_WORD_DATA)) {
dev_err(max9611->dev,
"I2c adapter does not support smbus write_byte or read_word functionalities: aborting probe.\n");
return -EINVAL;
}
/* Make sure die temperature is in range to test communications. */
ret = max9611_read_single(max9611, CONF_TEMP, &regval);
if (ret)
return ret;
regval = ret & MAX9611_TEMP_MASK;
if ((regval > MAX9611_TEMP_MAX_POS &&
regval < MAX9611_TEMP_MIN_NEG) ||
regval > MAX9611_TEMP_MAX_NEG) {
dev_err(max9611->dev,
"Invalid value received from ADC 0x%4x: aborting\n",
regval);
return -EIO;
}
/* Mux shall be zeroed back before applying other configurations */
ret = i2c_smbus_write_byte_data(max9611->i2c_client,
MAX9611_REG_CTRL1, 0);
if (ret) {
dev_err(max9611->dev, "i2c write byte failed: 0x%2x - 0x%2x\n",
MAX9611_REG_CTRL1, 0);
return ret;
}
ret = i2c_smbus_write_byte_data(max9611->i2c_client,
MAX9611_REG_CTRL2, 0);
if (ret) {
dev_err(max9611->dev, "i2c write byte failed: 0x%2x - 0x%2x\n",
MAX9611_REG_CTRL2, 0);
return ret;
}
usleep_range(1000, 2000);
return 0;
}
static const struct of_device_id max9611_of_table[] = {
{.compatible = "maxim,max9611", .data = "max9611"},
{.compatible = "maxim,max9612", .data = "max9612"},
{ },
};
MODULE_DEVICE_TABLE(of, max9611_of_table);
static int max9611_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
const char * const shunt_res_prop = "shunt-resistor-micro-ohms";
const struct device_node *of_node = client->dev.of_node;
const struct of_device_id *of_id =
of_match_device(max9611_of_table, &client->dev);
struct max9611_dev *max9611;
struct iio_dev *indio_dev;
unsigned int of_shunt;
int ret;
indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*max9611));
if (IS_ERR(indio_dev))
return PTR_ERR(indio_dev);
i2c_set_clientdata(client, indio_dev);
max9611 = iio_priv(indio_dev);
max9611->dev = &client->dev;
max9611->i2c_client = client;
mutex_init(&max9611->lock);
ret = of_property_read_u32(of_node, shunt_res_prop, &of_shunt);
if (ret) {
dev_err(&client->dev,
"Missing %s property for %s node\n",
shunt_res_prop, of_node->full_name);
return ret;
}
max9611->shunt_resistor_uohm = of_shunt;
ret = max9611_init(max9611);
if (ret)
return ret;
indio_dev->dev.parent = &client->dev;
indio_dev->dev.of_node = client->dev.of_node;
indio_dev->name = of_id->data;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &indio_info;
indio_dev->channels = max9611_channels;
indio_dev->num_channels = ARRAY_SIZE(max9611_channels);
return devm_iio_device_register(&client->dev, indio_dev);
}
static struct i2c_driver max9611_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.of_match_table = max9611_of_table,
},
.probe = max9611_probe,
};
module_i2c_driver(max9611_driver);
MODULE_AUTHOR("Jacopo Mondi <jacopo+renesas@jmondi.org>");
MODULE_DESCRIPTION("Maxim max9611/12 current sense amplifier with 12bit ADC");
MODULE_LICENSE("GPL v2");
/*
* Qualcomm PM8xxx PMIC XOADC driver
*
* These ADCs are known as HK/XO (house keeping / chrystal oscillator)
* "XO" in "XOADC" means Chrystal Oscillator. It's a bunch of
* specific-purpose and general purpose ADC converters and channels.
*
* Copyright (C) 2017 Linaro Ltd.
* Author: Linus Walleij <linus.walleij@linaro.org>
*/
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/regulator/consumer.h>
#include "qcom-vadc-common.h"
/*
* Definitions for the "user processor" registers lifted from the v3.4
* Qualcomm tree. Their kernel has two out-of-tree drivers for the ADC:
* drivers/misc/pmic8058-xoadc.c
* drivers/hwmon/pm8xxx-adc.c
* None of them contain any complete register specification, so this is
* a best effort of combining the information.
*/
/* These appear to be "battery monitor" registers */
#define ADC_ARB_BTM_CNTRL1 0x17e
#define ADC_ARB_BTM_CNTRL1_EN_BTM BIT(0)
#define ADC_ARB_BTM_CNTRL1_SEL_OP_MODE BIT(1)
#define ADC_ARB_BTM_CNTRL1_MEAS_INTERVAL1 BIT(2)
#define ADC_ARB_BTM_CNTRL1_MEAS_INTERVAL2 BIT(3)
#define ADC_ARB_BTM_CNTRL1_MEAS_INTERVAL3 BIT(4)
#define ADC_ARB_BTM_CNTRL1_MEAS_INTERVAL4 BIT(5)
#define ADC_ARB_BTM_CNTRL1_EOC BIT(6)
#define ADC_ARB_BTM_CNTRL1_REQ BIT(7)
#define ADC_ARB_BTM_AMUX_CNTRL 0x17f
#define ADC_ARB_BTM_ANA_PARAM 0x180
#define ADC_ARB_BTM_DIG_PARAM 0x181
#define ADC_ARB_BTM_RSV 0x182
#define ADC_ARB_BTM_DATA1 0x183
#define ADC_ARB_BTM_DATA0 0x184
#define ADC_ARB_BTM_BAT_COOL_THR1 0x185
#define ADC_ARB_BTM_BAT_COOL_THR0 0x186
#define ADC_ARB_BTM_BAT_WARM_THR1 0x187
#define ADC_ARB_BTM_BAT_WARM_THR0 0x188
#define ADC_ARB_BTM_CNTRL2 0x18c
/* Proper ADC registers */
#define ADC_ARB_USRP_CNTRL 0x197
#define ADC_ARB_USRP_CNTRL_EN_ARB BIT(0)
#define ADC_ARB_USRP_CNTRL_RSV1 BIT(1)
#define ADC_ARB_USRP_CNTRL_RSV2 BIT(2)
#define ADC_ARB_USRP_CNTRL_RSV3 BIT(3)
#define ADC_ARB_USRP_CNTRL_RSV4 BIT(4)
#define ADC_ARB_USRP_CNTRL_RSV5 BIT(5)
#define ADC_ARB_USRP_CNTRL_EOC BIT(6)
#define ADC_ARB_USRP_CNTRL_REQ BIT(7)
#define ADC_ARB_USRP_AMUX_CNTRL 0x198
/*
* The channel mask includes the bits selecting channel mux and prescaler
* on PM8058, or channel mux and premux on PM8921.
*/
#define ADC_ARB_USRP_AMUX_CNTRL_CHAN_MASK 0xfc
#define ADC_ARB_USRP_AMUX_CNTRL_RSV0 BIT(0)
#define ADC_ARB_USRP_AMUX_CNTRL_RSV1 BIT(1)
/* On PM8058 this is prescaling, on PM8921 this is premux */
#define ADC_ARB_USRP_AMUX_CNTRL_PRESCALEMUX0 BIT(2)
#define ADC_ARB_USRP_AMUX_CNTRL_PRESCALEMUX1 BIT(3)
#define ADC_ARB_USRP_AMUX_CNTRL_SEL0 BIT(4)
#define ADC_ARB_USRP_AMUX_CNTRL_SEL1 BIT(5)
#define ADC_ARB_USRP_AMUX_CNTRL_SEL2 BIT(6)
#define ADC_ARB_USRP_AMUX_CNTRL_SEL3 BIT(7)
#define ADC_AMUX_PREMUX_SHIFT 2
#define ADC_AMUX_SEL_SHIFT 4
/* We know very little about the bits in this register */
#define ADC_ARB_USRP_ANA_PARAM 0x199
#define ADC_ARB_USRP_ANA_PARAM_DIS 0xFE
#define ADC_ARB_USRP_ANA_PARAM_EN 0xFF
#define ADC_ARB_USRP_DIG_PARAM 0x19A
#define ADC_ARB_USRP_DIG_PARAM_SEL_SHIFT0 BIT(0)
#define ADC_ARB_USRP_DIG_PARAM_SEL_SHIFT1 BIT(1)
#define ADC_ARB_USRP_DIG_PARAM_CLK_RATE0 BIT(2)
#define ADC_ARB_USRP_DIG_PARAM_CLK_RATE1 BIT(3)
#define ADC_ARB_USRP_DIG_PARAM_EOC BIT(4)
/*
* On a later ADC the decimation factors are defined as
* 00 = 512, 01 = 1024, 10 = 2048, 11 = 4096 so assume this
* holds also for this older XOADC.
*/
#define ADC_ARB_USRP_DIG_PARAM_DEC_RATE0 BIT(5)
#define ADC_ARB_USRP_DIG_PARAM_DEC_RATE1 BIT(6)
#define ADC_ARB_USRP_DIG_PARAM_EN BIT(7)
#define ADC_DIG_PARAM_DEC_SHIFT 5
#define ADC_ARB_USRP_RSV 0x19B
#define ADC_ARB_USRP_RSV_RST BIT(0)
#define ADC_ARB_USRP_RSV_DTEST0 BIT(1)
#define ADC_ARB_USRP_RSV_DTEST1 BIT(2)
#define ADC_ARB_USRP_RSV_OP BIT(3)
#define ADC_ARB_USRP_RSV_IP_SEL0 BIT(4)
#define ADC_ARB_USRP_RSV_IP_SEL1 BIT(5)
#define ADC_ARB_USRP_RSV_IP_SEL2 BIT(6)
#define ADC_ARB_USRP_RSV_TRM BIT(7)
#define ADC_RSV_IP_SEL_SHIFT 4
#define ADC_ARB_USRP_DATA0 0x19D
#define ADC_ARB_USRP_DATA1 0x19C
/**
* Physical channels which MUST exist on all PM variants in order to provide
* proper reference points for calibration.
*
* @PM8XXX_CHANNEL_INTERNAL: 625mV reference channel
* @PM8XXX_CHANNEL_125V: 1250mV reference channel
* @PM8XXX_CHANNEL_INTERNAL_2: 325mV reference channel
* @PM8XXX_CHANNEL_MUXOFF: channel to reduce input load on mux, apparently also
* measures XO temperature
*/
#define PM8XXX_CHANNEL_INTERNAL 0x0c
#define PM8XXX_CHANNEL_125V 0x0d
#define PM8XXX_CHANNEL_INTERNAL_2 0x0e
#define PM8XXX_CHANNEL_MUXOFF 0x0f
/*
* PM8058 AMUX premux scaling, two bits. This is done of the channel before
* reaching the AMUX.
*/
#define PM8058_AMUX_PRESCALE_0 0x0 /* No scaling on the signal */
#define PM8058_AMUX_PRESCALE_1 0x1 /* Unity scaling selected by the user */
#define PM8058_AMUX_PRESCALE_1_DIV3 0x2 /* 1/3 prescaler on the input */
/* Defines reference voltage for the XOADC */
#define AMUX_RSV0 0x0 /* XO_IN/XOADC_GND, special selection to read XO temp */
#define AMUX_RSV1 0x1 /* PMIC_IN/XOADC_GND */
#define AMUX_RSV2 0x2 /* PMIC_IN/BMS_CSP */
#define AMUX_RSV3 0x3 /* not used */
#define AMUX_RSV4 0x4 /* XOADC_GND/XOADC_GND */
#define AMUX_RSV5 0x5 /* XOADC_VREF/XOADC_GND */
#define XOADC_RSV_MAX 5 /* 3 bits 0..7, 3 and 6,7 are invalid */
/**
* struct xoadc_channel - encodes channel properties and defaults
* @datasheet_name: the hardwarename of this channel
* @pre_scale_mux: prescale (PM8058) or premux (PM8921) for selecting
* this channel. Both this and the amux channel is needed to uniquely
* identify a channel. Values 0..3.
* @amux_channel: value of the ADC_ARB_USRP_AMUX_CNTRL register for this
* channel, bits 4..7, selects the amux, values 0..f
* @prescale: the channels have hard-coded prescale ratios defined
* by the hardware, this tells us what it is
* @type: corresponding IIO channel type, usually IIO_VOLTAGE or
* IIO_TEMP
* @scale_fn_type: the liner interpolation etc to convert the
* ADC code to the value that IIO expects, in uV or millicelsius
* etc. This scale function can be pretty elaborate if different
* thermistors are connected or other hardware characteristics are
* deployed.
* @amux_ip_rsv: ratiometric scale value used by the analog muxer: this
* selects the reference voltage for ratiometric scaling
*/
struct xoadc_channel {
const char *datasheet_name;
u8 pre_scale_mux:2;
u8 amux_channel:4;
const struct vadc_prescale_ratio prescale;
enum iio_chan_type type;
enum vadc_scale_fn_type scale_fn_type;
u8 amux_ip_rsv:3;
};
/**
* struct xoadc_variant - encodes the XOADC variant characteristics
* @name: name of this PMIC variant
* @channels: the hardware channels and respective settings and defaults
* @broken_ratiometric: if the PMIC has broken ratiometric scaling (this
* is a known problem on PM8058)
* @prescaling: this variant uses AMUX bits 2 & 3 for prescaling (PM8058)
* @second_level_mux: this variant uses AMUX bits 2 & 3 for a second level
* mux
*/
struct xoadc_variant {
const char name[16];
const struct xoadc_channel *channels;
bool broken_ratiometric;
bool prescaling;
bool second_level_mux;
};
/*
* XOADC_CHAN macro parameters:
* _dname: the name of the channel
* _presmux: prescaler (PM8058) or premux (PM8921) setting for this channel
* _amux: the value in bits 2..7 of the ADC_ARB_USRP_AMUX_CNTRL register
* for this channel. On some PMICs some of the bits select a prescaler, and
* on some PMICs some of the bits select various complex multiplex settings.
* _type: IIO channel type
* _prenum: prescaler numerator (dividend)
* _preden: prescaler denominator (divisor)
* _scale: scaling function type, this selects how the raw valued is mangled
* to output the actual processed measurement
* _amip: analog mux input parent when using ratiometric measurements
*/
#define XOADC_CHAN(_dname, _presmux, _amux, _type, _prenum, _preden, _scale, _amip) \
{ \
.datasheet_name = __stringify(_dname), \
.pre_scale_mux = _presmux, \
.amux_channel = _amux, \
.prescale = { .num = _prenum, .den = _preden }, \
.type = _type, \
.scale_fn_type = _scale, \
.amux_ip_rsv = _amip, \
}
/*
* Taken from arch/arm/mach-msm/board-9615.c in the vendor tree:
* TODO: incomplete, needs testing.
*/
static const struct xoadc_channel pm8018_xoadc_channels[] = {
XOADC_CHAN(VCOIN, 0x00, 0x00, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(VBAT, 0x00, 0x01, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(VPH_PWR, 0x00, 0x02, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DIE_TEMP, 0x00, 0x0b, IIO_TEMP, 1, 1, SCALE_PMIC_THERM, AMUX_RSV1),
/* Used for battery ID or battery temperature */
XOADC_CHAN(AMUX8, 0x00, 0x08, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV2),
XOADC_CHAN(INTERNAL, 0x00, 0x0c, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(125V, 0x00, 0x0d, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(MUXOFF, 0x00, 0x0f, IIO_TEMP, 1, 1, SCALE_XOTHERM, AMUX_RSV0),
{ }, /* Sentinel */
};
/*
* Taken from arch/arm/mach-msm/board-8930-pmic.c in the vendor tree:
* TODO: needs testing.
*/
static const struct xoadc_channel pm8038_xoadc_channels[] = {
XOADC_CHAN(VCOIN, 0x00, 0x00, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(VBAT, 0x00, 0x01, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DCIN, 0x00, 0x02, IIO_VOLTAGE, 1, 6, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ICHG, 0x00, 0x03, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(VPH_PWR, 0x00, 0x04, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX5, 0x00, 0x05, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX6, 0x00, 0x06, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX7, 0x00, 0x07, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
/* AMUX8 used for battery temperature in most cases */
XOADC_CHAN(AMUX8, 0x00, 0x08, IIO_TEMP, 1, 1, SCALE_THERM_100K_PULLUP, AMUX_RSV2),
XOADC_CHAN(AMUX9, 0x00, 0x09, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(USB_VBUS, 0x00, 0x0a, IIO_VOLTAGE, 1, 4, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DIE_TEMP, 0x00, 0x0b, IIO_TEMP, 1, 1, SCALE_PMIC_THERM, AMUX_RSV1),
XOADC_CHAN(INTERNAL, 0x00, 0x0c, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(125V, 0x00, 0x0d, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(INTERNAL_2, 0x00, 0x0e, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(MUXOFF, 0x00, 0x0f, IIO_TEMP, 1, 1, SCALE_XOTHERM, AMUX_RSV0),
{ }, /* Sentinel */
};
/*
* This was created by cross-referencing the vendor tree
* arch/arm/mach-msm/board-msm8x60.c msm_adc_channels_data[]
* with the "channel types" (first field) to find the right
* configuration for these channels on an MSM8x60 i.e. PM8058
* setup.
*/
static const struct xoadc_channel pm8058_xoadc_channels[] = {
XOADC_CHAN(VCOIN, 0x00, 0x00, IIO_VOLTAGE, 1, 2, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(VBAT, 0x00, 0x01, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DCIN, 0x00, 0x02, IIO_VOLTAGE, 1, 10, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ICHG, 0x00, 0x03, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(VPH_PWR, 0x00, 0x04, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
/*
* AMUX channels 5 thru 9 are referred to as MPP5 thru MPP9 in
* some code and documentation. But they are really just 5
* channels just like any other. They are connected to a switching
* matrix where they can be routed to any of the MPPs, not just
* 1-to-1 onto MPP5 thru 9, so naming them MPP5 thru MPP9 is
* very confusing.
*/
XOADC_CHAN(AMUX5, 0x00, 0x05, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX6, 0x00, 0x06, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX7, 0x00, 0x07, IIO_VOLTAGE, 1, 2, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX8, 0x00, 0x08, IIO_VOLTAGE, 1, 2, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX9, 0x00, 0x09, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(USB_VBUS, 0x00, 0x0a, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DIE_TEMP, 0x00, 0x0b, IIO_TEMP, 1, 1, SCALE_PMIC_THERM, AMUX_RSV1),
XOADC_CHAN(INTERNAL, 0x00, 0x0c, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(125V, 0x00, 0x0d, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(INTERNAL_2, 0x00, 0x0e, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(MUXOFF, 0x00, 0x0f, IIO_TEMP, 1, 1, SCALE_XOTHERM, AMUX_RSV0),
/* There are also "unity" and divided by 3 channels (prescaler) but noone is using them */
{ }, /* Sentinel */
};
/*
* The PM8921 has some pre-muxing on its channels, this comes from the vendor tree
* include/linux/mfd/pm8xxx/pm8xxx-adc.h
* board-flo-pmic.c (Nexus 7) and board-8064-pmic.c
*/
static const struct xoadc_channel pm8921_xoadc_channels[] = {
XOADC_CHAN(VCOIN, 0x00, 0x00, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(VBAT, 0x00, 0x01, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DCIN, 0x00, 0x02, IIO_VOLTAGE, 1, 6, SCALE_DEFAULT, AMUX_RSV1),
/* channel "ICHG" is reserved and not used on PM8921 */
XOADC_CHAN(VPH_PWR, 0x00, 0x04, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(IBAT, 0x00, 0x05, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
/* CHAN 6 & 7 (MPP1 & MPP2) are reserved for MPP channels on PM8921 */
XOADC_CHAN(BATT_THERM, 0x00, 0x08, IIO_TEMP, 1, 1, SCALE_THERM_100K_PULLUP, AMUX_RSV1),
XOADC_CHAN(BATT_ID, 0x00, 0x09, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(USB_VBUS, 0x00, 0x0a, IIO_VOLTAGE, 1, 4, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DIE_TEMP, 0x00, 0x0b, IIO_TEMP, 1, 1, SCALE_PMIC_THERM, AMUX_RSV1),
XOADC_CHAN(INTERNAL, 0x00, 0x0c, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(125V, 0x00, 0x0d, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
/* FIXME: look into the scaling of this temperature */
XOADC_CHAN(CHG_TEMP, 0x00, 0x0e, IIO_TEMP, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(MUXOFF, 0x00, 0x0f, IIO_TEMP, 1, 1, SCALE_XOTHERM, AMUX_RSV0),
/* The following channels have premux bit 0 set to 1 (all end in 4) */
XOADC_CHAN(ATEST_8, 0x01, 0x00, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
/* Set scaling to 1/2 based on the name for these two */
XOADC_CHAN(USB_SNS_DIV20, 0x01, 0x01, IIO_VOLTAGE, 1, 2, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DCIN_SNS_DIV20, 0x01, 0x02, IIO_VOLTAGE, 1, 2, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX3, 0x01, 0x03, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX4, 0x01, 0x04, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX5, 0x01, 0x05, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX6, 0x01, 0x06, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX7, 0x01, 0x07, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX8, 0x01, 0x08, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
/* Internal test signals, I think */
XOADC_CHAN(ATEST_1, 0x01, 0x09, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_2, 0x01, 0x0a, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_3, 0x01, 0x0b, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_4, 0x01, 0x0c, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_5, 0x01, 0x0d, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_6, 0x01, 0x0e, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_7, 0x01, 0x0f, IIO_VOLTAGE, 1, 1, SCALE_DEFAULT, AMUX_RSV1),
/* The following channels have premux bit 1 set to 1 (all end in 8) */
/* I guess even ATEST8 will be divided by 3 here */
XOADC_CHAN(ATEST_8, 0x02, 0x00, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
/* I guess div 2 div 3 becomes div 6 */
XOADC_CHAN(USB_SNS_DIV20_DIV3, 0x02, 0x01, IIO_VOLTAGE, 1, 6, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(DCIN_SNS_DIV20_DIV3, 0x02, 0x02, IIO_VOLTAGE, 1, 6, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX3_DIV3, 0x02, 0x03, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX4_DIV3, 0x02, 0x04, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX5_DIV3, 0x02, 0x05, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX6_DIV3, 0x02, 0x06, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX7_DIV3, 0x02, 0x07, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(AMUX8_DIV3, 0x02, 0x08, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_1_DIV3, 0x02, 0x09, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_2_DIV3, 0x02, 0x0a, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_3_DIV3, 0x02, 0x0b, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_4_DIV3, 0x02, 0x0c, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_5_DIV3, 0x02, 0x0d, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_6_DIV3, 0x02, 0x0e, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
XOADC_CHAN(ATEST_7_DIV3, 0x02, 0x0f, IIO_VOLTAGE, 1, 3, SCALE_DEFAULT, AMUX_RSV1),
{ }, /* Sentinel */
};
/**
* struct pm8xxx_chan_info - ADC channel information
* @name: name of this channel
* @hwchan: pointer to hardware channel information (muxing & scaling settings)
* @calibration: whether to use absolute or ratiometric calibration
* @scale_fn_type: scaling function type
* @decimation: 0,1,2,3
* @amux_ip_rsv: ratiometric scale value if using ratiometric
* calibration: 0, 1, 2, 4, 5.
*/
struct pm8xxx_chan_info {
const char *name;
const struct xoadc_channel *hwchan;
enum vadc_calibration calibration;
u8 decimation:2;
u8 amux_ip_rsv:3;
};
/**
* struct pm8xxx_xoadc - state container for the XOADC
* @dev: pointer to device
* @map: regmap to access registers
* @vref: reference voltage regulator
* characteristics of the channels, and sensible default settings
* @nchans: number of channels, configured by the device tree
* @chans: the channel information per-channel, configured by the device tree
* @iio_chans: IIO channel specifiers
* @graph: linear calibration parameters for absolute and
* ratiometric measurements
* @complete: completion to indicate end of conversion
* @lock: lock to restrict access to the hardware to one client at the time
*/
struct pm8xxx_xoadc {
struct device *dev;
struct regmap *map;
const struct xoadc_variant *variant;
struct regulator *vref;
unsigned int nchans;
struct pm8xxx_chan_info *chans;
struct iio_chan_spec *iio_chans;
struct vadc_linear_graph graph[2];
struct completion complete;
struct mutex lock;
};
static irqreturn_t pm8xxx_eoc_irq(int irq, void *d)
{
struct iio_dev *indio_dev = d;
struct pm8xxx_xoadc *adc = iio_priv(indio_dev);
complete(&adc->complete);
return IRQ_HANDLED;
}
static struct pm8xxx_chan_info *
pm8xxx_get_channel(struct pm8xxx_xoadc *adc, u8 chan)
{
struct pm8xxx_chan_info *ch;
int i;
for (i = 0; i < adc->nchans; i++) {
ch = &adc->chans[i];
if (ch->hwchan->amux_channel == chan)
break;
}
if (i == adc->nchans)
return NULL;
return ch;
}
static int pm8xxx_read_channel_rsv(struct pm8xxx_xoadc *adc,
const struct pm8xxx_chan_info *ch,
u8 rsv, u16 *adc_code,
bool force_ratiometric)
{
int ret;
unsigned int val;
u8 rsvmask, rsvval;
u8 lsb, msb;
dev_dbg(adc->dev, "read channel \"%s\", amux %d, prescale/mux: %d, rsv %d\n",
ch->name, ch->hwchan->amux_channel, ch->hwchan->pre_scale_mux, rsv);
mutex_lock(&adc->lock);
/* Mux in this channel */
val = ch->hwchan->amux_channel << ADC_AMUX_SEL_SHIFT;
val |= ch->hwchan->pre_scale_mux << ADC_AMUX_PREMUX_SHIFT;
ret = regmap_write(adc->map, ADC_ARB_USRP_AMUX_CNTRL, val);
if (ret)
goto unlock;
/* Set up ratiometric scale value, mask off all bits except these */
rsvmask = (ADC_ARB_USRP_RSV_RST | ADC_ARB_USRP_RSV_DTEST0 |
ADC_ARB_USRP_RSV_DTEST1 | ADC_ARB_USRP_RSV_OP);
if (adc->variant->broken_ratiometric && !force_ratiometric) {
/*
* Apparently the PM8058 has some kind of bug which is
* reflected in the vendor tree drivers/misc/pmix8058-xoadc.c
* which just hardcodes the RSV selector to SEL1 (0x20) for
* most cases and SEL0 (0x10) for the MUXOFF channel only.
* If we force ratiometric (currently only done when attempting
* to do ratiometric calibration) this doesn't seem to work
* very well and I suspect ratiometric conversion is simply
* broken or not supported on the PM8058.
*
* Maybe IO_SEL2 doesn't exist on PM8058 and bits 4 & 5 select
* the mode alone.
*
* Some PM8058 register documentation would be nice to get
* this right.
*/
if (ch->hwchan->amux_channel == PM8XXX_CHANNEL_MUXOFF)
rsvval = ADC_ARB_USRP_RSV_IP_SEL0;
else
rsvval = ADC_ARB_USRP_RSV_IP_SEL1;
} else {
if (rsv == 0xff)
rsvval = (ch->amux_ip_rsv << ADC_RSV_IP_SEL_SHIFT) |
ADC_ARB_USRP_RSV_TRM;
else
rsvval = (rsv << ADC_RSV_IP_SEL_SHIFT) |
ADC_ARB_USRP_RSV_TRM;
}
ret = regmap_update_bits(adc->map,
ADC_ARB_USRP_RSV,
~rsvmask,
rsvval);
if (ret)
goto unlock;
ret = regmap_write(adc->map, ADC_ARB_USRP_ANA_PARAM,
ADC_ARB_USRP_ANA_PARAM_DIS);
if (ret)
goto unlock;
/* Decimation factor */
ret = regmap_write(adc->map, ADC_ARB_USRP_DIG_PARAM,
ADC_ARB_USRP_DIG_PARAM_SEL_SHIFT0 |
ADC_ARB_USRP_DIG_PARAM_SEL_SHIFT1 |
ch->decimation << ADC_DIG_PARAM_DEC_SHIFT);
if (ret)
goto unlock;
ret = regmap_write(adc->map, ADC_ARB_USRP_ANA_PARAM,
ADC_ARB_USRP_ANA_PARAM_EN);
if (ret)
goto unlock;
/* Enable the arbiter, the Qualcomm code does it twice like this */
ret = regmap_write(adc->map, ADC_ARB_USRP_CNTRL,
ADC_ARB_USRP_CNTRL_EN_ARB);
if (ret)
goto unlock;
ret = regmap_write(adc->map, ADC_ARB_USRP_CNTRL,
ADC_ARB_USRP_CNTRL_EN_ARB);
if (ret)
goto unlock;
/* Fire a request! */
reinit_completion(&adc->complete);
ret = regmap_write(adc->map, ADC_ARB_USRP_CNTRL,
ADC_ARB_USRP_CNTRL_EN_ARB |
ADC_ARB_USRP_CNTRL_REQ);
if (ret)
goto unlock;
/* Next the interrupt occurs */
ret = wait_for_completion_timeout(&adc->complete,
VADC_CONV_TIME_MAX_US);
if (!ret) {
dev_err(adc->dev, "conversion timed out\n");
ret = -ETIMEDOUT;
goto unlock;
}
ret = regmap_read(adc->map, ADC_ARB_USRP_DATA0, &val);
if (ret)
goto unlock;
lsb = val;
ret = regmap_read(adc->map, ADC_ARB_USRP_DATA1, &val);
if (ret)
goto unlock;
msb = val;
*adc_code = (msb << 8) | lsb;
/* Turn off the ADC by setting the arbiter to 0 twice */
ret = regmap_write(adc->map, ADC_ARB_USRP_CNTRL, 0);
if (ret)
goto unlock;
ret = regmap_write(adc->map, ADC_ARB_USRP_CNTRL, 0);
if (ret)
goto unlock;
unlock:
mutex_unlock(&adc->lock);
return ret;
}
static int pm8xxx_read_channel(struct pm8xxx_xoadc *adc,
const struct pm8xxx_chan_info *ch,
u16 *adc_code)
{
/*
* Normally we just use the ratiometric scale value (RSV) predefined
* for the channel, but during calibration we need to modify this
* so this wrapper is a helper hiding the more complex version.
*/
return pm8xxx_read_channel_rsv(adc, ch, 0xff, adc_code, false);
}
static int pm8xxx_calibrate_device(struct pm8xxx_xoadc *adc)
{
const struct pm8xxx_chan_info *ch;
u16 read_1250v;
u16 read_0625v;
u16 read_nomux_rsv5;
u16 read_nomux_rsv4;
int ret;
adc->graph[VADC_CALIB_ABSOLUTE].dx = VADC_ABSOLUTE_RANGE_UV;
adc->graph[VADC_CALIB_RATIOMETRIC].dx = VADC_RATIOMETRIC_RANGE;
/* Common reference channel calibration */
ch = pm8xxx_get_channel(adc, PM8XXX_CHANNEL_125V);
if (!ch)
return -ENODEV;
ret = pm8xxx_read_channel(adc, ch, &read_1250v);
if (ret) {
dev_err(adc->dev, "could not read 1.25V reference channel\n");
return -ENODEV;
}
ch = pm8xxx_get_channel(adc, PM8XXX_CHANNEL_INTERNAL);
if (!ch)
return -ENODEV;
ret = pm8xxx_read_channel(adc, ch, &read_0625v);
if (ret) {
dev_err(adc->dev, "could not read 0.625V reference channel\n");
return -ENODEV;
}
if (read_1250v == read_0625v) {
dev_err(adc->dev, "read same ADC code for 1.25V and 0.625V\n");
return -ENODEV;
}
adc->graph[VADC_CALIB_ABSOLUTE].dy = read_1250v - read_0625v;
adc->graph[VADC_CALIB_ABSOLUTE].gnd = read_0625v;
dev_info(adc->dev, "absolute calibration dx = %d uV, dy = %d units\n",
VADC_ABSOLUTE_RANGE_UV, adc->graph[VADC_CALIB_ABSOLUTE].dy);
/* Ratiometric calibration */
ch = pm8xxx_get_channel(adc, PM8XXX_CHANNEL_MUXOFF);
if (!ch)
return -ENODEV;
ret = pm8xxx_read_channel_rsv(adc, ch, AMUX_RSV5,
&read_nomux_rsv5, true);
if (ret) {
dev_err(adc->dev, "could not read MUXOFF reference channel\n");
return -ENODEV;
}
ret = pm8xxx_read_channel_rsv(adc, ch, AMUX_RSV4,
&read_nomux_rsv4, true);
if (ret) {
dev_err(adc->dev, "could not read MUXOFF reference channel\n");
return -ENODEV;
}
adc->graph[VADC_CALIB_RATIOMETRIC].dy =
read_nomux_rsv5 - read_nomux_rsv4;
adc->graph[VADC_CALIB_RATIOMETRIC].gnd = read_nomux_rsv4;
dev_info(adc->dev, "ratiometric calibration dx = %d, dy = %d units\n",
VADC_RATIOMETRIC_RANGE,
adc->graph[VADC_CALIB_RATIOMETRIC].dy);
return 0;
}
static int pm8xxx_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct pm8xxx_xoadc *adc = iio_priv(indio_dev);
const struct pm8xxx_chan_info *ch;
u16 adc_code;
int ret;
switch (mask) {
case IIO_CHAN_INFO_PROCESSED:
ch = pm8xxx_get_channel(adc, chan->address);
if (!ch) {
dev_err(adc->dev, "no such channel %lu\n",
chan->address);
return -EINVAL;
}
ret = pm8xxx_read_channel(adc, ch, &adc_code);
if (ret)
return ret;
ret = qcom_vadc_scale(ch->hwchan->scale_fn_type,
&adc->graph[ch->calibration],
&ch->hwchan->prescale,
(ch->calibration == VADC_CALIB_ABSOLUTE),
adc_code, val);
if (ret)
return ret;
return IIO_VAL_INT;
case IIO_CHAN_INFO_RAW:
ch = pm8xxx_get_channel(adc, chan->address);
if (!ch) {
dev_err(adc->dev, "no such channel %lu\n",
chan->address);
return -EINVAL;
}
ret = pm8xxx_read_channel(adc, ch, &adc_code);
if (ret)
return ret;
*val = (int)adc_code;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int pm8xxx_of_xlate(struct iio_dev *indio_dev,
const struct of_phandle_args *iiospec)
{
struct pm8xxx_xoadc *adc = iio_priv(indio_dev);
u8 pre_scale_mux;
u8 amux_channel;
unsigned int i;
/*
* First cell is prescaler or premux, second cell is analog
* mux.
*/
if (iiospec->args_count != 2) {
dev_err(&indio_dev->dev, "wrong number of arguments for %s need 2 got %d\n",
iiospec->np->name,
iiospec->args_count);
return -EINVAL;
}
pre_scale_mux = (u8)iiospec->args[0];
amux_channel = (u8)iiospec->args[1];
dev_dbg(&indio_dev->dev, "pre scale/mux: %02x, amux: %02x\n",
pre_scale_mux, amux_channel);
/* We need to match exactly on the prescale/premux and channel */
for (i = 0; i < adc->nchans; i++)
if (adc->chans[i].hwchan->pre_scale_mux == pre_scale_mux &&
adc->chans[i].hwchan->amux_channel == amux_channel)
return i;
return -EINVAL;
}
static const struct iio_info pm8xxx_xoadc_info = {
.driver_module = THIS_MODULE,
.of_xlate = pm8xxx_of_xlate,
.read_raw = pm8xxx_read_raw,
};
static int pm8xxx_xoadc_parse_channel(struct device *dev,
struct device_node *np,
const struct xoadc_channel *hw_channels,
struct iio_chan_spec *iio_chan,
struct pm8xxx_chan_info *ch)
{
const char *name = np->name;
const struct xoadc_channel *hwchan;
u32 pre_scale_mux, amux_channel;
u32 rsv, dec;
int ret;
int chid;
ret = of_property_read_u32_index(np, "reg", 0, &pre_scale_mux);
if (ret) {
dev_err(dev, "invalid pre scale/mux number %s\n", name);
return ret;
}
ret = of_property_read_u32_index(np, "reg", 1, &amux_channel);
if (ret) {
dev_err(dev, "invalid amux channel number %s\n", name);
return ret;
}
/* Find the right channel setting */
chid = 0;
hwchan = &hw_channels[0];
while (hwchan && hwchan->datasheet_name) {
if (hwchan->pre_scale_mux == pre_scale_mux &&
hwchan->amux_channel == amux_channel)
break;
hwchan++;
chid++;
}
/* The sentinel does not have a name assigned */
if (!hwchan->datasheet_name) {
dev_err(dev, "could not locate channel %02x/%02x\n",
pre_scale_mux, amux_channel);
return -EINVAL;
}
ch->name = name;
ch->hwchan = hwchan;
/* Everyone seems to use absolute calibration except in special cases */
ch->calibration = VADC_CALIB_ABSOLUTE;
/* Everyone seems to use default ("type 2") decimation */
ch->decimation = VADC_DEF_DECIMATION;
if (!of_property_read_u32(np, "qcom,ratiometric", &rsv)) {
ch->calibration = VADC_CALIB_RATIOMETRIC;
if (rsv > XOADC_RSV_MAX) {
dev_err(dev, "%s too large RSV value %d\n", name, rsv);
return -EINVAL;
}
if (rsv == AMUX_RSV3) {
dev_err(dev, "%s invalid RSV value %d\n", name, rsv);
return -EINVAL;
}
}
/* Optional decimation, if omitted we use the default */
ret = of_property_read_u32(np, "qcom,decimation", &dec);
if (!ret) {
ret = qcom_vadc_decimation_from_dt(dec);
if (ret < 0) {
dev_err(dev, "%s invalid decimation %d\n",
name, dec);
return ret;
}
ch->decimation = ret;
}
iio_chan->channel = chid;
iio_chan->address = hwchan->amux_channel;
iio_chan->datasheet_name = hwchan->datasheet_name;
iio_chan->type = hwchan->type;
/* All channels are raw or processed */
iio_chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_PROCESSED);
iio_chan->indexed = 1;
dev_dbg(dev, "channel [PRESCALE/MUX: %02x AMUX: %02x] \"%s\" "
"ref voltage: %d, decimation %d "
"prescale %d/%d, scale function %d\n",
hwchan->pre_scale_mux, hwchan->amux_channel, ch->name,
ch->amux_ip_rsv, ch->decimation, hwchan->prescale.num,
hwchan->prescale.den, hwchan->scale_fn_type);
return 0;
}
static int pm8xxx_xoadc_parse_channels(struct pm8xxx_xoadc *adc,
struct device_node *np)
{
struct device_node *child;
struct pm8xxx_chan_info *ch;
int ret;
int i;
adc->nchans = of_get_available_child_count(np);
if (!adc->nchans) {
dev_err(adc->dev, "no channel children\n");
return -ENODEV;
}
dev_dbg(adc->dev, "found %d ADC channels\n", adc->nchans);
adc->iio_chans = devm_kcalloc(adc->dev, adc->nchans,
sizeof(*adc->iio_chans), GFP_KERNEL);
if (!adc->iio_chans)
return -ENOMEM;
adc->chans = devm_kcalloc(adc->dev, adc->nchans,
sizeof(*adc->chans), GFP_KERNEL);
if (!adc->chans)
return -ENOMEM;
i = 0;
for_each_available_child_of_node(np, child) {
ch = &adc->chans[i];
ret = pm8xxx_xoadc_parse_channel(adc->dev, child,
adc->variant->channels,
&adc->iio_chans[i],
ch);
if (ret) {
of_node_put(child);
return ret;
}
i++;
}
/* Check for required channels */
ch = pm8xxx_get_channel(adc, PM8XXX_CHANNEL_125V);
if (!ch) {
dev_err(adc->dev, "missing 1.25V reference channel\n");
return -ENODEV;
}
ch = pm8xxx_get_channel(adc, PM8XXX_CHANNEL_INTERNAL);
if (!ch) {
dev_err(adc->dev, "missing 0.625V reference channel\n");
return -ENODEV;
}
ch = pm8xxx_get_channel(adc, PM8XXX_CHANNEL_MUXOFF);
if (!ch) {
dev_err(adc->dev, "missing MUXOFF reference channel\n");
return -ENODEV;
}
return 0;
}
static int pm8xxx_xoadc_probe(struct platform_device *pdev)
{
const struct xoadc_variant *variant;
struct pm8xxx_xoadc *adc;
struct iio_dev *indio_dev;
struct device_node *np = pdev->dev.of_node;
struct regmap *map;
struct device *dev = &pdev->dev;
int ret;
variant = of_device_get_match_data(dev);
if (!variant)
return -ENODEV;
indio_dev = devm_iio_device_alloc(dev, sizeof(*adc));
if (!indio_dev)
return -ENOMEM;
platform_set_drvdata(pdev, indio_dev);
adc = iio_priv(indio_dev);
adc->dev = dev;
adc->variant = variant;
init_completion(&adc->complete);
mutex_init(&adc->lock);
ret = pm8xxx_xoadc_parse_channels(adc, np);
if (ret)
return ret;
map = dev_get_regmap(dev->parent, NULL);
if (!map) {
dev_err(dev, "parent regmap unavailable.\n");
return -ENXIO;
}
adc->map = map;
/* Bring up regulator */
adc->vref = devm_regulator_get(dev, "xoadc-ref");
if (IS_ERR(adc->vref)) {
dev_err(dev, "failed to get XOADC VREF regulator\n");
return PTR_ERR(adc->vref);
}
ret = regulator_enable(adc->vref);
if (ret) {
dev_err(dev, "failed to enable XOADC VREF regulator\n");
return ret;
}
ret = devm_request_threaded_irq(dev, platform_get_irq(pdev, 0),
pm8xxx_eoc_irq, NULL, 0, variant->name, indio_dev);
if (ret) {
dev_err(dev, "unable to request IRQ\n");
goto out_disable_vref;
}
indio_dev->dev.parent = dev;
indio_dev->dev.of_node = np;
indio_dev->name = variant->name;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->info = &pm8xxx_xoadc_info;
indio_dev->channels = adc->iio_chans;
indio_dev->num_channels = adc->nchans;
ret = iio_device_register(indio_dev);
if (ret)
goto out_disable_vref;
ret = pm8xxx_calibrate_device(adc);
if (ret)
goto out_unreg_device;
dev_info(dev, "%s XOADC driver enabled\n", variant->name);
return 0;
out_unreg_device:
iio_device_unregister(indio_dev);
out_disable_vref:
regulator_disable(adc->vref);
return ret;
}
static int pm8xxx_xoadc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct pm8xxx_xoadc *adc = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
regulator_disable(adc->vref);
return 0;
}
static const struct xoadc_variant pm8018_variant = {
.name = "PM8018-XOADC",
.channels = pm8018_xoadc_channels,
};
static const struct xoadc_variant pm8038_variant = {
.name = "PM8038-XOADC",
.channels = pm8038_xoadc_channels,
};
static const struct xoadc_variant pm8058_variant = {
.name = "PM8058-XOADC",
.channels = pm8058_xoadc_channels,
.broken_ratiometric = true,
.prescaling = true,
};
static const struct xoadc_variant pm8921_variant = {
.name = "PM8921-XOADC",
.channels = pm8921_xoadc_channels,
.second_level_mux = true,
};
static const struct of_device_id pm8xxx_xoadc_id_table[] = {
{
.compatible = "qcom,pm8018-adc",
.data = &pm8018_variant,
},
{
.compatible = "qcom,pm8038-adc",
.data = &pm8038_variant,
},
{
.compatible = "qcom,pm8058-adc",
.data = &pm8058_variant,
},
{
.compatible = "qcom,pm8921-adc",
.data = &pm8921_variant,
},
{ },
};
MODULE_DEVICE_TABLE(of, pm8xxx_xoadc_id_table);
static struct platform_driver pm8xxx_xoadc_driver = {
.driver = {
.name = "pm8xxx-adc",
.of_match_table = pm8xxx_xoadc_id_table,
},
.probe = pm8xxx_xoadc_probe,
.remove = pm8xxx_xoadc_remove,
};
module_platform_driver(pm8xxx_xoadc_driver);
MODULE_DESCRIPTION("PM8xxx XOADC driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:pm8xxx-xoadc");
......@@ -28,6 +28,8 @@
#include <dt-bindings/iio/qcom,spmi-vadc.h>
#include "qcom-vadc-common.h"
/* VADC register and bit definitions */
#define VADC_REVISION2 0x1
#define VADC_REVISION2_SUPPORTED_VADC 1
......@@ -75,83 +77,9 @@
#define VADC_DATA 0x60 /* 16 bits */
#define VADC_CONV_TIME_MIN_US 2000
#define VADC_CONV_TIME_MAX_US 2100
/* Min ADC code represents 0V */
#define VADC_MIN_ADC_CODE 0x6000
/* Max ADC code represents full-scale range of 1.8V */
#define VADC_MAX_ADC_CODE 0xa800
#define VADC_ABSOLUTE_RANGE_UV 625000
#define VADC_RATIOMETRIC_RANGE 1800
#define VADC_DEF_PRESCALING 0 /* 1:1 */
#define VADC_DEF_DECIMATION 0 /* 512 */
#define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */
#define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */
#define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE
#define VADC_DECIMATION_MIN 512
#define VADC_DECIMATION_MAX 4096
#define VADC_HW_SETTLE_DELAY_MAX 10000
#define VADC_AVG_SAMPLES_MAX 512
#define KELVINMIL_CELSIUSMIL 273150
#define PMI_CHG_SCALE_1 -138890
#define PMI_CHG_SCALE_2 391750000000LL
#define VADC_CHAN_MIN VADC_USBIN
#define VADC_CHAN_MAX VADC_LR_MUX3_BUF_PU1_PU2_XO_THERM
/**
* struct vadc_map_pt - Map the graph representation for ADC channel
* @x: Represent the ADC digitized code.
* @y: Represent the physical data which can be temperature, voltage,
* resistance.
*/
struct vadc_map_pt {
s32 x;
s32 y;
};
/*
* VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels.
* VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for
* calibration.
*/
enum vadc_calibration {
VADC_CALIB_ABSOLUTE = 0,
VADC_CALIB_RATIOMETRIC
};
/**
* struct vadc_linear_graph - Represent ADC characteristics.
* @dy: numerator slope to calculate the gain.
* @dx: denominator slope to calculate the gain.
* @gnd: A/D word of the ground reference used for the channel.
*
* Each ADC device has different offset and gain parameters which are
* computed to calibrate the device.
*/
struct vadc_linear_graph {
s32 dy;
s32 dx;
s32 gnd;
};
/**
* struct vadc_prescale_ratio - Represent scaling ratio for ADC input.
* @num: the inverse numerator of the gain applied to the input channel.
* @den: the inverse denominator of the gain applied to the input channel.
*/
struct vadc_prescale_ratio {
u32 num;
u32 den;
};
/**
* struct vadc_channel_prop - VADC channel property.
* @channel: channel number, refer to the channel list.
......@@ -162,9 +90,8 @@ struct vadc_prescale_ratio {
* start of conversion.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements.
* @scale_fn: Represents the scaling function to convert voltage
* @scale_fn_type: Represents the scaling function to convert voltage
* physical units desired by the client for the channel.
* Referenced from enum vadc_scale_fn_type.
*/
struct vadc_channel_prop {
unsigned int channel;
......@@ -173,7 +100,7 @@ struct vadc_channel_prop {
unsigned int prescale;
unsigned int hw_settle_time;
unsigned int avg_samples;
unsigned int scale_fn;
enum vadc_scale_fn_type scale_fn_type;
};
/**
......@@ -204,35 +131,6 @@ struct vadc_priv {
struct mutex lock;
};
/**
* struct vadc_scale_fn - Scaling function prototype
* @scale: Function pointer to one of the scaling functions
* which takes the adc properties, channel properties,
* and returns the physical result.
*/
struct vadc_scale_fn {
int (*scale)(struct vadc_priv *, const struct vadc_channel_prop *,
u16, int *);
};
/**
* enum vadc_scale_fn_type - Scaling function to convert ADC code to
* physical scaled units for the channel.
* SCALE_DEFAULT: Default scaling to convert raw adc code to voltage (uV).
* SCALE_THERM_100K_PULLUP: Returns temperature in millidegC.
* Uses a mapping table with 100K pullup.
* SCALE_PMIC_THERM: Returns result in milli degree's Centigrade.
* SCALE_XOTHERM: Returns XO thermistor voltage in millidegC.
* SCALE_PMI_CHG_TEMP: Conversion for PMI CHG temp
*/
enum vadc_scale_fn_type {
SCALE_DEFAULT = 0,
SCALE_THERM_100K_PULLUP,
SCALE_PMIC_THERM,
SCALE_XOTHERM,
SCALE_PMI_CHG_TEMP,
};
static const struct vadc_prescale_ratio vadc_prescale_ratios[] = {
{.num = 1, .den = 1},
{.num = 1, .den = 3},
......@@ -244,44 +142,6 @@ static const struct vadc_prescale_ratio vadc_prescale_ratios[] = {
{.num = 1, .den = 10}
};
/* Voltage to temperature */
static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = {
{1758, -40},
{1742, -35},
{1719, -30},
{1691, -25},
{1654, -20},
{1608, -15},
{1551, -10},
{1483, -5},
{1404, 0},
{1315, 5},
{1218, 10},
{1114, 15},
{1007, 20},
{900, 25},
{795, 30},
{696, 35},
{605, 40},
{522, 45},
{448, 50},
{383, 55},
{327, 60},
{278, 65},
{237, 70},
{202, 75},
{172, 80},
{146, 85},
{125, 90},
{107, 95},
{92, 100},
{79, 105},
{68, 110},
{59, 115},
{51, 120},
{44, 125}
};
static int vadc_read(struct vadc_priv *vadc, u16 offset, u8 *data)
{
return regmap_bulk_read(vadc->regmap, vadc->base + offset, data, 1);
......@@ -553,159 +413,6 @@ static int vadc_measure_ref_points(struct vadc_priv *vadc)
return ret;
}
static int vadc_map_voltage_temp(const struct vadc_map_pt *pts,
u32 tablesize, s32 input, s64 *output)
{
bool descending = 1;
u32 i = 0;
if (!pts)
return -EINVAL;
/* Check if table is descending or ascending */
if (tablesize > 1) {
if (pts[0].x < pts[1].x)
descending = 0;
}
while (i < tablesize) {
if ((descending) && (pts[i].x < input)) {
/* table entry is less than measured*/
/* value and table is descending, stop */
break;
} else if ((!descending) &&
(pts[i].x > input)) {
/* table entry is greater than measured*/
/*value and table is ascending, stop */
break;
}
i++;
}
if (i == 0) {
*output = pts[0].y;
} else if (i == tablesize) {
*output = pts[tablesize - 1].y;
} else {
/* result is between search_index and search_index-1 */
/* interpolate linearly */
*output = (((s32)((pts[i].y - pts[i - 1].y) *
(input - pts[i - 1].x)) /
(pts[i].x - pts[i - 1].x)) +
pts[i - 1].y);
}
return 0;
}
static void vadc_scale_calib(struct vadc_priv *vadc, u16 adc_code,
const struct vadc_channel_prop *prop,
s64 *scale_voltage)
{
*scale_voltage = (adc_code -
vadc->graph[prop->calibration].gnd);
*scale_voltage *= vadc->graph[prop->calibration].dx;
*scale_voltage = div64_s64(*scale_voltage,
vadc->graph[prop->calibration].dy);
if (prop->calibration == VADC_CALIB_ABSOLUTE)
*scale_voltage +=
vadc->graph[prop->calibration].dx;
if (*scale_voltage < 0)
*scale_voltage = 0;
}
static int vadc_scale_volt(struct vadc_priv *vadc,
const struct vadc_channel_prop *prop, u16 adc_code,
int *result_uv)
{
const struct vadc_prescale_ratio *prescale;
s64 voltage = 0, result = 0;
vadc_scale_calib(vadc, adc_code, prop, &voltage);
prescale = &vadc_prescale_ratios[prop->prescale];
voltage = voltage * prescale->den;
result = div64_s64(voltage, prescale->num);
*result_uv = result;
return 0;
}
static int vadc_scale_therm(struct vadc_priv *vadc,
const struct vadc_channel_prop *prop, u16 adc_code,
int *result_mdec)
{
s64 voltage = 0, result = 0;
vadc_scale_calib(vadc, adc_code, prop, &voltage);
if (prop->calibration == VADC_CALIB_ABSOLUTE)
voltage = div64_s64(voltage, 1000);
vadc_map_voltage_temp(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
voltage, &result);
result *= 1000;
*result_mdec = result;
return 0;
}
static int vadc_scale_die_temp(struct vadc_priv *vadc,
const struct vadc_channel_prop *prop,
u16 adc_code, int *result_mdec)
{
const struct vadc_prescale_ratio *prescale;
s64 voltage = 0;
u64 temp; /* Temporary variable for do_div */
vadc_scale_calib(vadc, adc_code, prop, &voltage);
if (voltage > 0) {
prescale = &vadc_prescale_ratios[prop->prescale];
temp = voltage * prescale->den;
do_div(temp, prescale->num * 2);
voltage = temp;
} else {
voltage = 0;
}
voltage -= KELVINMIL_CELSIUSMIL;
*result_mdec = voltage;
return 0;
}
static int vadc_scale_chg_temp(struct vadc_priv *vadc,
const struct vadc_channel_prop *prop,
u16 adc_code, int *result_mdec)
{
const struct vadc_prescale_ratio *prescale;
s64 voltage = 0, result = 0;
vadc_scale_calib(vadc, adc_code, prop, &voltage);
prescale = &vadc_prescale_ratios[prop->prescale];
voltage = voltage * prescale->den;
voltage = div64_s64(voltage, prescale->num);
voltage = ((PMI_CHG_SCALE_1) * (voltage * 2));
voltage = (voltage + PMI_CHG_SCALE_2);
result = div64_s64(voltage, 1000000);
*result_mdec = result;
return 0;
}
static int vadc_decimation_from_dt(u32 value)
{
if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
value > VADC_DECIMATION_MAX)
return -EINVAL;
return __ffs64(value / VADC_DECIMATION_MIN);
}
static int vadc_prescaling_from_dt(u32 num, u32 den)
{
unsigned int pre;
......@@ -742,14 +449,6 @@ static int vadc_avg_samples_from_dt(u32 value)
return __ffs64(value);
}
static struct vadc_scale_fn scale_fn[] = {
[SCALE_DEFAULT] = {vadc_scale_volt},
[SCALE_THERM_100K_PULLUP] = {vadc_scale_therm},
[SCALE_PMIC_THERM] = {vadc_scale_die_temp},
[SCALE_XOTHERM] = {vadc_scale_therm},
[SCALE_PMI_CHG_TEMP] = {vadc_scale_chg_temp},
};
static int vadc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val, int *val2,
long mask)
......@@ -766,7 +465,13 @@ static int vadc_read_raw(struct iio_dev *indio_dev,
if (ret)
break;
scale_fn[prop->scale_fn].scale(vadc, prop, adc_code, val);
ret = qcom_vadc_scale(prop->scale_fn_type,
&vadc->graph[prop->calibration],
&vadc_prescale_ratios[prop->prescale],
(prop->calibration == VADC_CALIB_ABSOLUTE),
adc_code, val);
if (ret)
break;
return IIO_VAL_INT;
case IIO_CHAN_INFO_RAW:
......@@ -809,7 +514,7 @@ struct vadc_channels {
unsigned int prescale_index;
enum iio_chan_type type;
long info_mask;
unsigned int scale_fn;
enum vadc_scale_fn_type scale_fn_type;
};
#define VADC_CHAN(_dname, _type, _mask, _pre, _scale) \
......@@ -818,7 +523,7 @@ struct vadc_channels {
.prescale_index = _pre, \
.type = _type, \
.info_mask = _mask, \
.scale_fn = _scale \
.scale_fn_type = _scale \
}, \
#define VADC_NO_CHAN(_dname, _type, _mask, _pre) \
......@@ -976,7 +681,7 @@ static int vadc_get_dt_channel_data(struct device *dev,
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = vadc_decimation_from_dt(value);
ret = qcom_vadc_decimation_from_dt(value);
if (ret < 0) {
dev_err(dev, "%02x invalid decimation %d\n",
chan, value);
......@@ -1068,7 +773,7 @@ static int vadc_get_dt_data(struct vadc_priv *vadc, struct device_node *node)
return ret;
}
prop.scale_fn = vadc_chans[prop.channel].scale_fn;
prop.scale_fn_type = vadc_chans[prop.channel].scale_fn_type;
vadc->chan_props[index] = prop;
vadc_chan = &vadc_chans[prop.channel];
......
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/math64.h>
#include <linux/log2.h>
#include <linux/err.h>
#include "qcom-vadc-common.h"
/* Voltage to temperature */
static const struct vadc_map_pt adcmap_100k_104ef_104fb[] = {
{1758, -40},
{1742, -35},
{1719, -30},
{1691, -25},
{1654, -20},
{1608, -15},
{1551, -10},
{1483, -5},
{1404, 0},
{1315, 5},
{1218, 10},
{1114, 15},
{1007, 20},
{900, 25},
{795, 30},
{696, 35},
{605, 40},
{522, 45},
{448, 50},
{383, 55},
{327, 60},
{278, 65},
{237, 70},
{202, 75},
{172, 80},
{146, 85},
{125, 90},
{107, 95},
{92, 100},
{79, 105},
{68, 110},
{59, 115},
{51, 120},
{44, 125}
};
static int qcom_vadc_map_voltage_temp(const struct vadc_map_pt *pts,
u32 tablesize, s32 input, s64 *output)
{
bool descending = 1;
u32 i = 0;
if (!pts)
return -EINVAL;
/* Check if table is descending or ascending */
if (tablesize > 1) {
if (pts[0].x < pts[1].x)
descending = 0;
}
while (i < tablesize) {
if ((descending) && (pts[i].x < input)) {
/* table entry is less than measured*/
/* value and table is descending, stop */
break;
} else if ((!descending) &&
(pts[i].x > input)) {
/* table entry is greater than measured*/
/*value and table is ascending, stop */
break;
}
i++;
}
if (i == 0) {
*output = pts[0].y;
} else if (i == tablesize) {
*output = pts[tablesize - 1].y;
} else {
/* result is between search_index and search_index-1 */
/* interpolate linearly */
*output = (((s32)((pts[i].y - pts[i - 1].y) *
(input - pts[i - 1].x)) /
(pts[i].x - pts[i - 1].x)) +
pts[i - 1].y);
}
return 0;
}
static void qcom_vadc_scale_calib(const struct vadc_linear_graph *calib_graph,
u16 adc_code,
bool absolute,
s64 *scale_voltage)
{
*scale_voltage = (adc_code - calib_graph->gnd);
*scale_voltage *= calib_graph->dx;
*scale_voltage = div64_s64(*scale_voltage, calib_graph->dy);
if (absolute)
*scale_voltage += calib_graph->dx;
if (*scale_voltage < 0)
*scale_voltage = 0;
}
static int qcom_vadc_scale_volt(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute, u16 adc_code,
int *result_uv)
{
s64 voltage = 0, result = 0;
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
voltage = voltage * prescale->den;
result = div64_s64(voltage, prescale->num);
*result_uv = result;
return 0;
}
static int qcom_vadc_scale_therm(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute, u16 adc_code,
int *result_mdec)
{
s64 voltage = 0, result = 0;
int ret;
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
if (absolute)
voltage = div64_s64(voltage, 1000);
ret = qcom_vadc_map_voltage_temp(adcmap_100k_104ef_104fb,
ARRAY_SIZE(adcmap_100k_104ef_104fb),
voltage, &result);
if (ret)
return ret;
result *= 1000;
*result_mdec = result;
return 0;
}
static int qcom_vadc_scale_die_temp(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result_mdec)
{
s64 voltage = 0;
u64 temp; /* Temporary variable for do_div */
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
if (voltage > 0) {
temp = voltage * prescale->den;
do_div(temp, prescale->num * 2);
voltage = temp;
} else {
voltage = 0;
}
voltage -= KELVINMIL_CELSIUSMIL;
*result_mdec = voltage;
return 0;
}
static int qcom_vadc_scale_chg_temp(const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result_mdec)
{
s64 voltage = 0, result = 0;
qcom_vadc_scale_calib(calib_graph, adc_code, absolute, &voltage);
voltage = voltage * prescale->den;
voltage = div64_s64(voltage, prescale->num);
voltage = ((PMI_CHG_SCALE_1) * (voltage * 2));
voltage = (voltage + PMI_CHG_SCALE_2);
result = div64_s64(voltage, 1000000);
*result_mdec = result;
return 0;
}
int qcom_vadc_scale(enum vadc_scale_fn_type scaletype,
const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result)
{
switch (scaletype) {
case SCALE_DEFAULT:
return qcom_vadc_scale_volt(calib_graph, prescale,
absolute, adc_code,
result);
case SCALE_THERM_100K_PULLUP:
case SCALE_XOTHERM:
return qcom_vadc_scale_therm(calib_graph, prescale,
absolute, adc_code,
result);
case SCALE_PMIC_THERM:
return qcom_vadc_scale_die_temp(calib_graph, prescale,
absolute, adc_code,
result);
case SCALE_PMI_CHG_TEMP:
return qcom_vadc_scale_chg_temp(calib_graph, prescale,
absolute, adc_code,
result);
default:
return -EINVAL;
}
}
EXPORT_SYMBOL(qcom_vadc_scale);
int qcom_vadc_decimation_from_dt(u32 value)
{
if (!is_power_of_2(value) || value < VADC_DECIMATION_MIN ||
value > VADC_DECIMATION_MAX)
return -EINVAL;
return __ffs64(value / VADC_DECIMATION_MIN);
}
EXPORT_SYMBOL(qcom_vadc_decimation_from_dt);
/*
* Code shared between the different Qualcomm PMIC voltage ADCs
*/
#ifndef QCOM_VADC_COMMON_H
#define QCOM_VADC_COMMON_H
#define VADC_CONV_TIME_MIN_US 2000
#define VADC_CONV_TIME_MAX_US 2100
/* Min ADC code represents 0V */
#define VADC_MIN_ADC_CODE 0x6000
/* Max ADC code represents full-scale range of 1.8V */
#define VADC_MAX_ADC_CODE 0xa800
#define VADC_ABSOLUTE_RANGE_UV 625000
#define VADC_RATIOMETRIC_RANGE 1800
#define VADC_DEF_PRESCALING 0 /* 1:1 */
#define VADC_DEF_DECIMATION 0 /* 512 */
#define VADC_DEF_HW_SETTLE_TIME 0 /* 0 us */
#define VADC_DEF_AVG_SAMPLES 0 /* 1 sample */
#define VADC_DEF_CALIB_TYPE VADC_CALIB_ABSOLUTE
#define VADC_DECIMATION_MIN 512
#define VADC_DECIMATION_MAX 4096
#define VADC_HW_SETTLE_DELAY_MAX 10000
#define VADC_AVG_SAMPLES_MAX 512
#define KELVINMIL_CELSIUSMIL 273150
#define PMI_CHG_SCALE_1 -138890
#define PMI_CHG_SCALE_2 391750000000LL
/**
* struct vadc_map_pt - Map the graph representation for ADC channel
* @x: Represent the ADC digitized code.
* @y: Represent the physical data which can be temperature, voltage,
* resistance.
*/
struct vadc_map_pt {
s32 x;
s32 y;
};
/*
* VADC_CALIB_ABSOLUTE: uses the 625mV and 1.25V as reference channels.
* VADC_CALIB_RATIOMETRIC: uses the reference voltage (1.8V) and GND for
* calibration.
*/
enum vadc_calibration {
VADC_CALIB_ABSOLUTE = 0,
VADC_CALIB_RATIOMETRIC
};
/**
* struct vadc_linear_graph - Represent ADC characteristics.
* @dy: numerator slope to calculate the gain.
* @dx: denominator slope to calculate the gain.
* @gnd: A/D word of the ground reference used for the channel.
*
* Each ADC device has different offset and gain parameters which are
* computed to calibrate the device.
*/
struct vadc_linear_graph {
s32 dy;
s32 dx;
s32 gnd;
};
/**
* struct vadc_prescale_ratio - Represent scaling ratio for ADC input.
* @num: the inverse numerator of the gain applied to the input channel.
* @den: the inverse denominator of the gain applied to the input channel.
*/
struct vadc_prescale_ratio {
u32 num;
u32 den;
};
/**
* enum vadc_scale_fn_type - Scaling function to convert ADC code to
* physical scaled units for the channel.
* SCALE_DEFAULT: Default scaling to convert raw adc code to voltage (uV).
* SCALE_THERM_100K_PULLUP: Returns temperature in millidegC.
* Uses a mapping table with 100K pullup.
* SCALE_PMIC_THERM: Returns result in milli degree's Centigrade.
* SCALE_XOTHERM: Returns XO thermistor voltage in millidegC.
* SCALE_PMI_CHG_TEMP: Conversion for PMI CHG temp
*/
enum vadc_scale_fn_type {
SCALE_DEFAULT = 0,
SCALE_THERM_100K_PULLUP,
SCALE_PMIC_THERM,
SCALE_XOTHERM,
SCALE_PMI_CHG_TEMP,
};
int qcom_vadc_scale(enum vadc_scale_fn_type scaletype,
const struct vadc_linear_graph *calib_graph,
const struct vadc_prescale_ratio *prescale,
bool absolute,
u16 adc_code, int *result_mdec);
int qcom_vadc_decimation_from_dt(u32 value);
#endif /* QCOM_VADC_COMMON_H */
......@@ -60,6 +60,8 @@
#define STM32F4_EOC BIT(1)
/* STM32F4_ADC_CR1 - bit fields */
#define STM32F4_RES_SHIFT 24
#define STM32F4_RES_MASK GENMASK(25, 24)
#define STM32F4_SCAN BIT(8)
#define STM32F4_EOCIE BIT(5)
......@@ -141,6 +143,7 @@ struct stm32_adc_regs {
* @lock: spinlock
* @bufi: data buffer index
* @num_conv: expected number of scan conversions
* @res: data resolution (e.g. RES bitfield value)
* @trigger_polarity: external trigger polarity (e.g. exten)
* @dma_chan: dma channel
* @rx_buf: dma rx buffer cpu address
......@@ -157,6 +160,7 @@ struct stm32_adc {
spinlock_t lock; /* interrupt lock */
unsigned int bufi;
unsigned int num_conv;
u32 res;
u32 trigger_polarity;
struct dma_chan *dma_chan;
u8 *rx_buf;
......@@ -196,6 +200,11 @@ static const struct stm32_adc_chan_spec stm32f4_adc123_channels[] = {
{ IIO_VOLTAGE, 15, "in15" },
};
static const unsigned int stm32f4_adc_resolutions[] = {
/* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
12, 10, 8, 6,
};
/**
* stm32f4_sq - describe regular sequence registers
* - L: sequence len (register & bit field)
......@@ -302,6 +311,14 @@ static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_EOCIE);
}
static void stm32_adc_set_res(struct stm32_adc *adc)
{
u32 val = stm32_adc_readl(adc, STM32F4_ADC_CR1);
val = (val & ~STM32F4_RES_MASK) | (adc->res << STM32F4_RES_SHIFT);
stm32_adc_writel(adc, STM32F4_ADC_CR1, val);
}
/**
* stm32_adc_start_conv() - Start conversions for regular channels.
* @adc: stm32 adc instance
......@@ -870,11 +887,37 @@ static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
{},
};
static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
{
struct device_node *node = indio_dev->dev.of_node;
struct stm32_adc *adc = iio_priv(indio_dev);
unsigned int i;
u32 res;
if (of_property_read_u32(node, "assigned-resolution-bits", &res))
res = stm32f4_adc_resolutions[0];
for (i = 0; i < ARRAY_SIZE(stm32f4_adc_resolutions); i++)
if (res == stm32f4_adc_resolutions[i])
break;
if (i >= ARRAY_SIZE(stm32f4_adc_resolutions)) {
dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
return -EINVAL;
}
dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
adc->res = i;
return 0;
}
static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
struct iio_chan_spec *chan,
const struct stm32_adc_chan_spec *channel,
int scan_index)
{
struct stm32_adc *adc = iio_priv(indio_dev);
chan->type = channel->type;
chan->channel = channel->channel;
chan->datasheet_name = channel->name;
......@@ -883,7 +926,7 @@ static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
chan->scan_type.sign = 'u';
chan->scan_type.realbits = 12;
chan->scan_type.realbits = stm32f4_adc_resolutions[adc->res];
chan->scan_type.storagebits = 16;
chan->ext_info = stm32_adc_ext_info;
}
......@@ -1022,6 +1065,11 @@ static int stm32_adc_probe(struct platform_device *pdev)
return ret;
}
ret = stm32_adc_of_get_resolution(indio_dev);
if (ret < 0)
goto err_clk_disable;
stm32_adc_set_res(adc);
ret = stm32_adc_chan_of_init(indio_dev);
if (ret < 0)
goto err_clk_disable;
......
......@@ -85,6 +85,12 @@ static const struct gpadc_data sun6i_gpadc_data = {
.adc_chan_mask = SUN6I_GPADC_CTRL1_ADC_CHAN_MASK,
};
static const struct gpadc_data sun8i_a33_gpadc_data = {
.temp_offset = -1662,
.temp_scale = 162,
.tp_mode_en = SUN8I_GPADC_CTRL1_CHOP_TEMP_EN,
};
struct sun4i_gpadc_iio {
struct iio_dev *indio_dev;
struct completion completion;
......@@ -96,6 +102,7 @@ struct sun4i_gpadc_iio {
unsigned int temp_data_irq;
atomic_t ignore_temp_data_irq;
const struct gpadc_data *data;
bool no_irq;
/* prevents concurrent reads of temperature and ADC */
struct mutex mutex;
};
......@@ -138,6 +145,23 @@ static const struct iio_chan_spec sun4i_gpadc_channels_no_temp[] = {
SUN4I_GPADC_ADC_CHANNEL(3, "adc_chan3"),
};
static const struct iio_chan_spec sun8i_a33_gpadc_channels[] = {
{
.type = IIO_TEMP,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
BIT(IIO_CHAN_INFO_SCALE) |
BIT(IIO_CHAN_INFO_OFFSET),
.datasheet_name = "temp_adc",
},
};
static const struct regmap_config sun4i_gpadc_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.fast_io = true,
};
static int sun4i_prepare_for_irq(struct iio_dev *indio_dev, int channel,
unsigned int irq)
{
......@@ -247,6 +271,17 @@ static int sun4i_gpadc_temp_read(struct iio_dev *indio_dev, int *val)
{
struct sun4i_gpadc_iio *info = iio_priv(indio_dev);
if (info->no_irq) {
pm_runtime_get_sync(indio_dev->dev.parent);
regmap_read(info->regmap, SUN4I_GPADC_TEMP_DATA, val);
pm_runtime_mark_last_busy(indio_dev->dev.parent);
pm_runtime_put_autosuspend(indio_dev->dev.parent);
return 0;
}
return sun4i_gpadc_read(indio_dev, 0, val, info->temp_data_irq);
}
......@@ -454,31 +489,69 @@ static int sun4i_irq_init(struct platform_device *pdev, const char *name,
return 0;
}
static int sun4i_gpadc_probe(struct platform_device *pdev)
static const struct of_device_id sun4i_gpadc_of_id[] = {
{
.compatible = "allwinner,sun8i-a33-ths",
.data = &sun8i_a33_gpadc_data,
},
{ /* sentinel */ }
};
static int sun4i_gpadc_probe_dt(struct platform_device *pdev,
struct iio_dev *indio_dev)
{
struct sun4i_gpadc_iio *info;
struct iio_dev *indio_dev;
struct sun4i_gpadc_iio *info = iio_priv(indio_dev);
const struct of_device_id *of_dev;
struct thermal_zone_device *tzd;
struct resource *mem;
void __iomem *base;
int ret;
struct sun4i_gpadc_dev *sun4i_gpadc_dev;
sun4i_gpadc_dev = dev_get_drvdata(pdev->dev.parent);
of_dev = of_match_device(sun4i_gpadc_of_id, &pdev->dev);
if (!of_dev)
return -ENODEV;
info->no_irq = true;
info->data = (struct gpadc_data *)of_dev->data;
indio_dev->num_channels = ARRAY_SIZE(sun8i_a33_gpadc_channels);
indio_dev->channels = sun8i_a33_gpadc_channels;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
base = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(base))
return PTR_ERR(base);
info->regmap = devm_regmap_init_mmio(&pdev->dev, base,
&sun4i_gpadc_regmap_config);
if (IS_ERR(info->regmap)) {
ret = PTR_ERR(info->regmap);
dev_err(&pdev->dev, "failed to init regmap: %d\n", ret);
return ret;
}
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*info));
if (!indio_dev)
return -ENOMEM;
if (!IS_ENABLED(CONFIG_THERMAL_OF))
return 0;
info = iio_priv(indio_dev);
platform_set_drvdata(pdev, indio_dev);
tzd = devm_thermal_zone_of_sensor_register(&pdev->dev, 0, info,
&sun4i_ts_tz_ops);
if (IS_ERR(tzd))
dev_err(&pdev->dev, "could not register thermal sensor: %ld\n",
PTR_ERR(tzd));
mutex_init(&info->mutex);
return PTR_ERR_OR_ZERO(tzd);
}
static int sun4i_gpadc_probe_mfd(struct platform_device *pdev,
struct iio_dev *indio_dev)
{
struct sun4i_gpadc_iio *info = iio_priv(indio_dev);
struct sun4i_gpadc_dev *sun4i_gpadc_dev =
dev_get_drvdata(pdev->dev.parent);
int ret;
info->no_irq = false;
info->regmap = sun4i_gpadc_dev->regmap;
info->indio_dev = indio_dev;
init_completion(&info->completion);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->info = &sun4i_gpadc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
indio_dev->num_channels = ARRAY_SIZE(sun4i_gpadc_channels);
indio_dev->channels = sun4i_gpadc_channels;
......@@ -519,8 +592,7 @@ static int sun4i_gpadc_probe(struct platform_device *pdev)
dev_err(&pdev->dev,
"could not register thermal sensor: %ld\n",
PTR_ERR(tzd));
ret = PTR_ERR(tzd);
goto err;
return PTR_ERR(tzd);
}
} else {
indio_dev->num_channels =
......@@ -528,36 +600,69 @@ static int sun4i_gpadc_probe(struct platform_device *pdev)
indio_dev->channels = sun4i_gpadc_channels_no_temp;
}
pm_runtime_set_autosuspend_delay(&pdev->dev,
SUN4I_GPADC_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_enable(&pdev->dev);
if (IS_ENABLED(CONFIG_THERMAL_OF)) {
ret = sun4i_irq_init(pdev, "TEMP_DATA_PENDING",
sun4i_gpadc_temp_data_irq_handler,
"temp_data", &info->temp_data_irq,
&info->ignore_temp_data_irq);
if (ret < 0)
goto err;
return ret;
}
ret = sun4i_irq_init(pdev, "FIFO_DATA_PENDING",
sun4i_gpadc_fifo_data_irq_handler, "fifo_data",
&info->fifo_data_irq, &info->ignore_fifo_data_irq);
if (ret < 0)
goto err;
return ret;
if (IS_ENABLED(CONFIG_THERMAL_OF)) {
ret = iio_map_array_register(indio_dev, sun4i_gpadc_hwmon_maps);
if (ret < 0) {
dev_err(&pdev->dev,
"failed to register iio map array\n");
goto err;
return ret;
}
}
return 0;
}
static int sun4i_gpadc_probe(struct platform_device *pdev)
{
struct sun4i_gpadc_iio *info;
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*info));
if (!indio_dev)
return -ENOMEM;
info = iio_priv(indio_dev);
platform_set_drvdata(pdev, indio_dev);
mutex_init(&info->mutex);
info->indio_dev = indio_dev;
init_completion(&info->completion);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->info = &sun4i_gpadc_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
if (pdev->dev.of_node)
ret = sun4i_gpadc_probe_dt(pdev, indio_dev);
else
ret = sun4i_gpadc_probe_mfd(pdev, indio_dev);
if (ret)
return ret;
pm_runtime_set_autosuspend_delay(&pdev->dev,
SUN4I_GPADC_AUTOSUSPEND_DELAY);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_enable(&pdev->dev);
ret = devm_iio_device_register(&pdev->dev, indio_dev);
if (ret < 0) {
dev_err(&pdev->dev, "could not register the device\n");
......@@ -567,10 +672,9 @@ static int sun4i_gpadc_probe(struct platform_device *pdev)
return 0;
err_map:
if (IS_ENABLED(CONFIG_THERMAL_OF))
if (!info->no_irq && IS_ENABLED(CONFIG_THERMAL_OF))
iio_map_array_unregister(indio_dev);
err:
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
......@@ -580,10 +684,11 @@ static int sun4i_gpadc_probe(struct platform_device *pdev)
static int sun4i_gpadc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct sun4i_gpadc_iio *info = iio_priv(indio_dev);
pm_runtime_put(&pdev->dev);
pm_runtime_disable(&pdev->dev);
if (IS_ENABLED(CONFIG_THERMAL_OF))
if (!info->no_irq && IS_ENABLED(CONFIG_THERMAL_OF))
iio_map_array_unregister(indio_dev);
return 0;
......@@ -599,6 +704,7 @@ static const struct platform_device_id sun4i_gpadc_id[] = {
static struct platform_driver sun4i_gpadc_driver = {
.driver = {
.name = "sun4i-gpadc-iio",
.of_match_table = sun4i_gpadc_of_id,
.pm = &sun4i_gpadc_pm_ops,
},
.id_table = sun4i_gpadc_id,
......
......@@ -138,6 +138,10 @@ static int hid_sensor_data_rdy_trigger_set_state(struct iio_trigger *trig,
void hid_sensor_remove_trigger(struct hid_sensor_common *attrb)
{
pm_runtime_disable(&attrb->pdev->dev);
pm_runtime_set_suspended(&attrb->pdev->dev);
pm_runtime_put_noidle(&attrb->pdev->dev);
cancel_work_sync(&attrb->work);
iio_trigger_unregister(attrb->trigger);
iio_trigger_free(attrb->trigger);
......
......@@ -284,6 +284,21 @@ config MCP4922
To compile this driver as a module, choose M here: the module
will be called mcp4922.
config STM32_DAC
tristate "STMicroelectronics STM32 DAC"
depends on (ARCH_STM32 && OF) || COMPILE_TEST
depends on REGULATOR
select STM32_DAC_CORE
help
Say yes here to build support for STMicroelectronics STM32 Digital
to Analog Converter (DAC).
This driver can also be built as a module. If so, the module
will be called stm32-dac.
config STM32_DAC_CORE
tristate
config VF610_DAC
tristate "Vybrid vf610 DAC driver"
depends on OF
......
......@@ -30,4 +30,6 @@ obj-$(CONFIG_MAX517) += max517.o
obj-$(CONFIG_MAX5821) += max5821.o
obj-$(CONFIG_MCP4725) += mcp4725.o
obj-$(CONFIG_MCP4922) += mcp4922.o
obj-$(CONFIG_STM32_DAC_CORE) += stm32-dac-core.o
obj-$(CONFIG_STM32_DAC) += stm32-dac.o
obj-$(CONFIG_VF610_DAC) += vf610_dac.o
/*
* This file is part of STM32 DAC driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* License type: GPLv2
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/regulator/consumer.h>
#include <linux/reset.h>
#include "stm32-dac-core.h"
/**
* struct stm32_dac_priv - stm32 DAC core private data
* @pclk: peripheral clock common for all DACs
* @rst: peripheral reset control
* @vref: regulator reference
* @common: Common data for all DAC instances
*/
struct stm32_dac_priv {
struct clk *pclk;
struct reset_control *rst;
struct regulator *vref;
struct stm32_dac_common common;
};
static struct stm32_dac_priv *to_stm32_dac_priv(struct stm32_dac_common *com)
{
return container_of(com, struct stm32_dac_priv, common);
}
static const struct regmap_config stm32_dac_regmap_cfg = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = sizeof(u32),
.max_register = 0x3fc,
};
static int stm32_dac_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct stm32_dac_priv *priv;
struct regmap *regmap;
struct resource *res;
void __iomem *mmio;
int ret;
if (!dev->of_node)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
mmio = devm_ioremap_resource(dev, res);
if (IS_ERR(mmio))
return PTR_ERR(mmio);
regmap = devm_regmap_init_mmio(dev, mmio, &stm32_dac_regmap_cfg);
if (IS_ERR(regmap))
return PTR_ERR(regmap);
priv->common.regmap = regmap;
priv->vref = devm_regulator_get(dev, "vref");
if (IS_ERR(priv->vref)) {
ret = PTR_ERR(priv->vref);
dev_err(dev, "vref get failed, %d\n", ret);
return ret;
}
ret = regulator_enable(priv->vref);
if (ret < 0) {
dev_err(dev, "vref enable failed\n");
return ret;
}
ret = regulator_get_voltage(priv->vref);
if (ret < 0) {
dev_err(dev, "vref get voltage failed, %d\n", ret);
goto err_vref;
}
priv->common.vref_mv = ret / 1000;
dev_dbg(dev, "vref+=%dmV\n", priv->common.vref_mv);
priv->pclk = devm_clk_get(dev, "pclk");
if (IS_ERR(priv->pclk)) {
ret = PTR_ERR(priv->pclk);
dev_err(dev, "pclk get failed\n");
goto err_vref;
}
ret = clk_prepare_enable(priv->pclk);
if (ret < 0) {
dev_err(dev, "pclk enable failed\n");
goto err_vref;
}
priv->rst = devm_reset_control_get(dev, NULL);
if (!IS_ERR(priv->rst)) {
reset_control_assert(priv->rst);
udelay(2);
reset_control_deassert(priv->rst);
}
/* When clock speed is higher than 80MHz, set HFSEL */
priv->common.hfsel = (clk_get_rate(priv->pclk) > 80000000UL);
ret = regmap_update_bits(regmap, STM32_DAC_CR, STM32H7_DAC_CR_HFSEL,
priv->common.hfsel ? STM32H7_DAC_CR_HFSEL : 0);
if (ret)
goto err_pclk;
platform_set_drvdata(pdev, &priv->common);
ret = of_platform_populate(pdev->dev.of_node, NULL, NULL, dev);
if (ret < 0) {
dev_err(dev, "failed to populate DT children\n");
goto err_pclk;
}
return 0;
err_pclk:
clk_disable_unprepare(priv->pclk);
err_vref:
regulator_disable(priv->vref);
return ret;
}
static int stm32_dac_remove(struct platform_device *pdev)
{
struct stm32_dac_common *common = platform_get_drvdata(pdev);
struct stm32_dac_priv *priv = to_stm32_dac_priv(common);
of_platform_depopulate(&pdev->dev);
clk_disable_unprepare(priv->pclk);
regulator_disable(priv->vref);
return 0;
}
static const struct of_device_id stm32_dac_of_match[] = {
{ .compatible = "st,stm32h7-dac-core", },
{},
};
MODULE_DEVICE_TABLE(of, stm32_dac_of_match);
static struct platform_driver stm32_dac_driver = {
.probe = stm32_dac_probe,
.remove = stm32_dac_remove,
.driver = {
.name = "stm32-dac-core",
.of_match_table = stm32_dac_of_match,
},
};
module_platform_driver(stm32_dac_driver);
MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 DAC core driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:stm32-dac-core");
/*
* This file is part of STM32 DAC driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
*
* License type: GPLv2
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __STM32_DAC_CORE_H
#define __STM32_DAC_CORE_H
#include <linux/regmap.h>
/* STM32 DAC registers */
#define STM32_DAC_CR 0x00
#define STM32_DAC_DHR12R1 0x08
#define STM32_DAC_DHR12R2 0x14
#define STM32_DAC_DOR1 0x2C
#define STM32_DAC_DOR2 0x30
/* STM32_DAC_CR bit fields */
#define STM32_DAC_CR_EN1 BIT(0)
#define STM32H7_DAC_CR_HFSEL BIT(15)
#define STM32_DAC_CR_EN2 BIT(16)
/**
* struct stm32_dac_common - stm32 DAC driver common data (for all instances)
* @regmap: DAC registers shared via regmap
* @vref_mv: reference voltage (mv)
* @hfsel: high speed bus clock selected
*/
struct stm32_dac_common {
struct regmap *regmap;
int vref_mv;
bool hfsel;
};
#endif
/*
* This file is part of STM32 DAC driver
*
* Copyright (C) 2017, STMicroelectronics - All Rights Reserved
* Authors: Amelie Delaunay <amelie.delaunay@st.com>
* Fabrice Gasnier <fabrice.gasnier@st.com>
*
* License type: GPLv2
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "stm32-dac-core.h"
#define STM32_DAC_CHANNEL_1 1
#define STM32_DAC_CHANNEL_2 2
#define STM32_DAC_IS_CHAN_1(ch) ((ch) & STM32_DAC_CHANNEL_1)
/**
* struct stm32_dac - private data of DAC driver
* @common: reference to DAC common data
*/
struct stm32_dac {
struct stm32_dac_common *common;
};
static int stm32_dac_is_enabled(struct iio_dev *indio_dev, int channel)
{
struct stm32_dac *dac = iio_priv(indio_dev);
u32 en, val;
int ret;
ret = regmap_read(dac->common->regmap, STM32_DAC_CR, &val);
if (ret < 0)
return ret;
if (STM32_DAC_IS_CHAN_1(channel))
en = FIELD_GET(STM32_DAC_CR_EN1, val);
else
en = FIELD_GET(STM32_DAC_CR_EN2, val);
return !!en;
}
static int stm32_dac_set_enable_state(struct iio_dev *indio_dev, int ch,
bool enable)
{
struct stm32_dac *dac = iio_priv(indio_dev);
u32 msk = STM32_DAC_IS_CHAN_1(ch) ? STM32_DAC_CR_EN1 : STM32_DAC_CR_EN2;
u32 en = enable ? msk : 0;
int ret;
ret = regmap_update_bits(dac->common->regmap, STM32_DAC_CR, msk, en);
if (ret < 0) {
dev_err(&indio_dev->dev, "%s failed\n", en ?
"Enable" : "Disable");
return ret;
}
/*
* When HFSEL is set, it is not allowed to write the DHRx register
* during 8 clock cycles after the ENx bit is set. It is not allowed
* to make software/hardware trigger during this period either.
*/
if (en && dac->common->hfsel)
udelay(1);
return 0;
}
static int stm32_dac_get_value(struct stm32_dac *dac, int channel, int *val)
{
int ret;
if (STM32_DAC_IS_CHAN_1(channel))
ret = regmap_read(dac->common->regmap, STM32_DAC_DOR1, val);
else
ret = regmap_read(dac->common->regmap, STM32_DAC_DOR2, val);
return ret ? ret : IIO_VAL_INT;
}
static int stm32_dac_set_value(struct stm32_dac *dac, int channel, int val)
{
int ret;
if (STM32_DAC_IS_CHAN_1(channel))
ret = regmap_write(dac->common->regmap, STM32_DAC_DHR12R1, val);
else
ret = regmap_write(dac->common->regmap, STM32_DAC_DHR12R2, val);
return ret;
}
static int stm32_dac_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct stm32_dac *dac = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return stm32_dac_get_value(dac, chan->channel, val);
case IIO_CHAN_INFO_SCALE:
*val = dac->common->vref_mv;
*val2 = chan->scan_type.realbits;
return IIO_VAL_FRACTIONAL_LOG2;
default:
return -EINVAL;
}
}
static int stm32_dac_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct stm32_dac *dac = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return stm32_dac_set_value(dac, chan->channel, val);
default:
return -EINVAL;
}
}
static int stm32_dac_debugfs_reg_access(struct iio_dev *indio_dev,
unsigned reg, unsigned writeval,
unsigned *readval)
{
struct stm32_dac *dac = iio_priv(indio_dev);
if (!readval)
return regmap_write(dac->common->regmap, reg, writeval);
else
return regmap_read(dac->common->regmap, reg, readval);
}
static const struct iio_info stm32_dac_iio_info = {
.read_raw = stm32_dac_read_raw,
.write_raw = stm32_dac_write_raw,
.debugfs_reg_access = stm32_dac_debugfs_reg_access,
.driver_module = THIS_MODULE,
};
static const char * const stm32_dac_powerdown_modes[] = {
"three_state",
};
static int stm32_dac_get_powerdown_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
return 0;
}
static int stm32_dac_set_powerdown_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int type)
{
return 0;
}
static ssize_t stm32_dac_read_powerdown(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
int ret = stm32_dac_is_enabled(indio_dev, chan->channel);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", ret ? 0 : 1);
}
static ssize_t stm32_dac_write_powerdown(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
bool powerdown;
int ret;
ret = strtobool(buf, &powerdown);
if (ret)
return ret;
ret = stm32_dac_set_enable_state(indio_dev, chan->channel, !powerdown);
if (ret)
return ret;
return len;
}
static const struct iio_enum stm32_dac_powerdown_mode_en = {
.items = stm32_dac_powerdown_modes,
.num_items = ARRAY_SIZE(stm32_dac_powerdown_modes),
.get = stm32_dac_get_powerdown_mode,
.set = stm32_dac_set_powerdown_mode,
};
static const struct iio_chan_spec_ext_info stm32_dac_ext_info[] = {
{
.name = "powerdown",
.read = stm32_dac_read_powerdown,
.write = stm32_dac_write_powerdown,
.shared = IIO_SEPARATE,
},
IIO_ENUM("powerdown_mode", IIO_SEPARATE, &stm32_dac_powerdown_mode_en),
IIO_ENUM_AVAILABLE("powerdown_mode", &stm32_dac_powerdown_mode_en),
{},
};
#define STM32_DAC_CHANNEL(chan, name) { \
.type = IIO_VOLTAGE, \
.indexed = 1, \
.output = 1, \
.channel = chan, \
.info_mask_separate = \
BIT(IIO_CHAN_INFO_RAW) | \
BIT(IIO_CHAN_INFO_SCALE), \
/* scan_index is always 0 as num_channels is 1 */ \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
}, \
.datasheet_name = name, \
.ext_info = stm32_dac_ext_info \
}
static const struct iio_chan_spec stm32_dac_channels[] = {
STM32_DAC_CHANNEL(STM32_DAC_CHANNEL_1, "out1"),
STM32_DAC_CHANNEL(STM32_DAC_CHANNEL_2, "out2"),
};
static int stm32_dac_chan_of_init(struct iio_dev *indio_dev)
{
struct device_node *np = indio_dev->dev.of_node;
unsigned int i;
u32 channel;
int ret;
ret = of_property_read_u32(np, "reg", &channel);
if (ret) {
dev_err(&indio_dev->dev, "Failed to read reg property\n");
return ret;
}
for (i = 0; i < ARRAY_SIZE(stm32_dac_channels); i++) {
if (stm32_dac_channels[i].channel == channel)
break;
}
if (i >= ARRAY_SIZE(stm32_dac_channels)) {
dev_err(&indio_dev->dev, "Invalid st,dac-channel\n");
return -EINVAL;
}
indio_dev->channels = &stm32_dac_channels[i];
/*
* Expose only one channel here, as they can be used independently,
* with separate trigger. Then separate IIO devices are instantiated
* to manage this.
*/
indio_dev->num_channels = 1;
return 0;
};
static int stm32_dac_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct iio_dev *indio_dev;
struct stm32_dac *dac;
int ret;
if (!np)
return -ENODEV;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*dac));
if (!indio_dev)
return -ENOMEM;
platform_set_drvdata(pdev, indio_dev);
dac = iio_priv(indio_dev);
dac->common = dev_get_drvdata(pdev->dev.parent);
indio_dev->name = dev_name(&pdev->dev);
indio_dev->dev.parent = &pdev->dev;
indio_dev->dev.of_node = pdev->dev.of_node;
indio_dev->info = &stm32_dac_iio_info;
indio_dev->modes = INDIO_DIRECT_MODE;
ret = stm32_dac_chan_of_init(indio_dev);
if (ret < 0)
return ret;
return devm_iio_device_register(&pdev->dev, indio_dev);
}
static const struct of_device_id stm32_dac_of_match[] = {
{ .compatible = "st,stm32-dac", },
{},
};
MODULE_DEVICE_TABLE(of, stm32_dac_of_match);
static struct platform_driver stm32_dac_driver = {
.probe = stm32_dac_probe,
.driver = {
.name = "stm32-dac",
.of_match_table = stm32_dac_of_match,
},
};
module_platform_driver(stm32_dac_driver);
MODULE_ALIAS("platform:stm32-dac");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 DAC driver");
MODULE_LICENSE("GPL v2");
......@@ -70,9 +70,8 @@ static int mpu3050_i2c_probe(struct i2c_client *client,
dev_err(&client->dev, "failed to allocate I2C mux\n");
else {
mpu3050->i2cmux->priv = mpu3050;
ret = i2c_mux_add_adapter(mpu3050->i2cmux, 0, 0, 0);
if (ret)
dev_err(&client->dev, "failed to add I2C mux\n");
/* Ignore failure, not critical */
i2c_mux_add_adapter(mpu3050->i2cmux, 0, 0, 0);
}
return 0;
......
......@@ -71,6 +71,7 @@ enum st_lsm6dsx_fifo_mode {
/**
* struct st_lsm6dsx_sensor - ST IMU sensor instance
* @name: Sensor name.
* @id: Sensor identifier.
* @hw: Pointer to instance of struct st_lsm6dsx_hw.
* @gain: Configured sensor sensitivity.
......@@ -83,6 +84,7 @@ enum st_lsm6dsx_fifo_mode {
* @ts: Latest timestamp from the interrupt handler.
*/
struct st_lsm6dsx_sensor {
char name[32];
enum st_lsm6dsx_sensor_id id;
struct st_lsm6dsx_hw *hw;
......@@ -133,7 +135,7 @@ struct st_lsm6dsx_hw {
#endif /* CONFIG_SPI_MASTER */
};
int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id,
int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id, const char *name,
const struct st_lsm6dsx_transfer_function *tf_ops);
int st_lsm6dsx_sensor_enable(struct st_lsm6dsx_sensor *sensor);
int st_lsm6dsx_sensor_disable(struct st_lsm6dsx_sensor *sensor);
......
......@@ -559,19 +559,11 @@ static const unsigned long st_lsm6dsx_available_scan_masks[] = {0x7, 0x0};
static int st_lsm6dsx_of_get_drdy_pin(struct st_lsm6dsx_hw *hw, int *drdy_pin)
{
struct device_node *np = hw->dev->of_node;
int err;
if (!np)
return -EINVAL;
err = of_property_read_u32(np, "st,drdy-int-pin", drdy_pin);
if (err == -ENODATA) {
/* if the property has not been specified use default value */
*drdy_pin = 1;
err = 0;
}
return err;
return of_property_read_u32(np, "st,drdy-int-pin", drdy_pin);
}
static int st_lsm6dsx_get_drdy_reg(struct st_lsm6dsx_hw *hw, u8 *drdy_reg)
......@@ -642,7 +634,8 @@ static int st_lsm6dsx_init_device(struct st_lsm6dsx_hw *hw)
}
static struct iio_dev *st_lsm6dsx_alloc_iiodev(struct st_lsm6dsx_hw *hw,
enum st_lsm6dsx_sensor_id id)
enum st_lsm6dsx_sensor_id id,
const char *name)
{
struct st_lsm6dsx_sensor *sensor;
struct iio_dev *iio_dev;
......@@ -666,27 +659,30 @@ static struct iio_dev *st_lsm6dsx_alloc_iiodev(struct st_lsm6dsx_hw *hw,
case ST_LSM6DSX_ID_ACC:
iio_dev->channels = st_lsm6dsx_acc_channels;
iio_dev->num_channels = ARRAY_SIZE(st_lsm6dsx_acc_channels);
iio_dev->name = "lsm6dsx_accel";
iio_dev->info = &st_lsm6dsx_acc_info;
sensor->decimator_mask = ST_LSM6DSX_REG_ACC_DEC_MASK;
scnprintf(sensor->name, sizeof(sensor->name), "%s_accel",
name);
break;
case ST_LSM6DSX_ID_GYRO:
iio_dev->channels = st_lsm6dsx_gyro_channels;
iio_dev->num_channels = ARRAY_SIZE(st_lsm6dsx_gyro_channels);
iio_dev->name = "lsm6dsx_gyro";
iio_dev->info = &st_lsm6dsx_gyro_info;
sensor->decimator_mask = ST_LSM6DSX_REG_GYRO_DEC_MASK;
scnprintf(sensor->name, sizeof(sensor->name), "%s_gyro",
name);
break;
default:
return NULL;
}
iio_dev->name = sensor->name;
return iio_dev;
}
int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id,
int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id, const char *name,
const struct st_lsm6dsx_transfer_function *tf_ops)
{
struct st_lsm6dsx_hw *hw;
......@@ -710,7 +706,7 @@ int st_lsm6dsx_probe(struct device *dev, int irq, int hw_id,
return err;
for (i = 0; i < ST_LSM6DSX_ID_MAX; i++) {
hw->iio_devs[i] = st_lsm6dsx_alloc_iiodev(hw, i);
hw->iio_devs[i] = st_lsm6dsx_alloc_iiodev(hw, i, name);
if (!hw->iio_devs[i])
return -ENOMEM;
}
......
......@@ -61,7 +61,7 @@ static int st_lsm6dsx_i2c_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
return st_lsm6dsx_probe(&client->dev, client->irq,
(int)id->driver_data,
(int)id->driver_data, id->name,
&st_lsm6dsx_transfer_fn);
}
......
......@@ -78,7 +78,7 @@ static int st_lsm6dsx_spi_probe(struct spi_device *spi)
const struct spi_device_id *id = spi_get_device_id(spi);
return st_lsm6dsx_probe(&spi->dev, spi->irq,
(int)id->driver_data,
(int)id->driver_data, id->name,
&st_lsm6dsx_transfer_fn);
}
......
......@@ -1112,6 +1112,8 @@ static int apds9960_runtime_resume(struct device *dev)
#endif
static const struct dev_pm_ops apds9960_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(apds9960_runtime_suspend,
apds9960_runtime_resume, NULL)
};
......
......@@ -15,6 +15,7 @@
#include <linux/platform_device.h>
#define MAX_TRIGGERS 6
#define MAX_VALIDS 5
/* List the triggers created by each timer */
static const void *triggers_table[][MAX_TRIGGERS] = {
......@@ -32,12 +33,29 @@ static const void *triggers_table[][MAX_TRIGGERS] = {
{ TIM12_TRGO, TIM12_CH1, TIM12_CH2,},
};
/* List the triggers accepted by each timer */
static const void *valids_table[][MAX_VALIDS] = {
{ TIM5_TRGO, TIM2_TRGO, TIM3_TRGO, TIM4_TRGO,},
{ TIM1_TRGO, TIM8_TRGO, TIM3_TRGO, TIM4_TRGO,},
{ TIM1_TRGO, TIM2_TRGO, TIM5_TRGO, TIM4_TRGO,},
{ TIM1_TRGO, TIM2_TRGO, TIM3_TRGO, TIM8_TRGO,},
{ TIM2_TRGO, TIM3_TRGO, TIM4_TRGO, TIM8_TRGO,},
{ }, /* timer 6 */
{ }, /* timer 7 */
{ TIM1_TRGO, TIM2_TRGO, TIM4_TRGO, TIM5_TRGO,},
{ TIM2_TRGO, TIM3_TRGO,},
{ }, /* timer 10 */
{ }, /* timer 11 */
{ TIM4_TRGO, TIM5_TRGO,},
};
struct stm32_timer_trigger {
struct device *dev;
struct regmap *regmap;
struct clk *clk;
u32 max_arr;
const void *triggers;
const void *valids;
};
static int stm32_timer_start(struct stm32_timer_trigger *priv,
......@@ -180,8 +198,7 @@ static ssize_t stm32_tt_show_master_mode(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
struct stm32_timer_trigger *priv = dev_get_drvdata(dev);
u32 cr2;
regmap_read(priv->regmap, TIM_CR2, &cr2);
......@@ -194,8 +211,7 @@ static ssize_t stm32_tt_store_master_mode(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t len)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
struct stm32_timer_trigger *priv = dev_get_drvdata(dev);
int i;
for (i = 0; i < ARRAY_SIZE(master_mode_table); i++) {
......@@ -275,6 +291,286 @@ static int stm32_setup_iio_triggers(struct stm32_timer_trigger *priv)
return 0;
}
static int stm32_counter_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
{
u32 cnt;
regmap_read(priv->regmap, TIM_CNT, &cnt);
*val = cnt;
return IIO_VAL_INT;
}
case IIO_CHAN_INFO_SCALE:
{
u32 smcr;
regmap_read(priv->regmap, TIM_SMCR, &smcr);
smcr &= TIM_SMCR_SMS;
*val = 1;
*val2 = 0;
/* in quadrature case scale = 0.25 */
if (smcr == 3)
*val2 = 2;
return IIO_VAL_FRACTIONAL_LOG2;
}
}
return -EINVAL;
}
static int stm32_counter_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
regmap_write(priv->regmap, TIM_CNT, val);
return IIO_VAL_INT;
case IIO_CHAN_INFO_SCALE:
/* fixed scale */
return -EINVAL;
}
return -EINVAL;
}
static const struct iio_info stm32_trigger_info = {
.driver_module = THIS_MODULE,
.read_raw = stm32_counter_read_raw,
.write_raw = stm32_counter_write_raw
};
static const char *const stm32_enable_modes[] = {
"always",
"gated",
"triggered",
};
static int stm32_enable_mode2sms(int mode)
{
switch (mode) {
case 0:
return 0;
case 1:
return 5;
case 2:
return 6;
}
return -EINVAL;
}
static int stm32_set_enable_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
int sms = stm32_enable_mode2sms(mode);
if (sms < 0)
return sms;
regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, sms);
return 0;
}
static int stm32_sms2enable_mode(int mode)
{
switch (mode) {
case 0:
return 0;
case 5:
return 1;
case 6:
return 2;
}
return -EINVAL;
}
static int stm32_get_enable_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
u32 smcr;
regmap_read(priv->regmap, TIM_SMCR, &smcr);
smcr &= TIM_SMCR_SMS;
return stm32_sms2enable_mode(smcr);
}
static const struct iio_enum stm32_enable_mode_enum = {
.items = stm32_enable_modes,
.num_items = ARRAY_SIZE(stm32_enable_modes),
.set = stm32_set_enable_mode,
.get = stm32_get_enable_mode
};
static const char *const stm32_quadrature_modes[] = {
"channel_A",
"channel_B",
"quadrature",
};
static int stm32_set_quadrature_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
regmap_update_bits(priv->regmap, TIM_SMCR, TIM_SMCR_SMS, mode + 1);
return 0;
}
static int stm32_get_quadrature_mode(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
u32 smcr;
regmap_read(priv->regmap, TIM_SMCR, &smcr);
smcr &= TIM_SMCR_SMS;
return smcr - 1;
}
static const struct iio_enum stm32_quadrature_mode_enum = {
.items = stm32_quadrature_modes,
.num_items = ARRAY_SIZE(stm32_quadrature_modes),
.set = stm32_set_quadrature_mode,
.get = stm32_get_quadrature_mode
};
static const char *const stm32_count_direction_states[] = {
"up",
"down"
};
static int stm32_set_count_direction(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
unsigned int mode)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_DIR, mode);
return 0;
}
static int stm32_get_count_direction(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
u32 cr1;
regmap_read(priv->regmap, TIM_CR1, &cr1);
return (cr1 & TIM_CR1_DIR);
}
static const struct iio_enum stm32_count_direction_enum = {
.items = stm32_count_direction_states,
.num_items = ARRAY_SIZE(stm32_count_direction_states),
.set = stm32_set_count_direction,
.get = stm32_get_count_direction
};
static ssize_t stm32_count_get_preset(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
char *buf)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
u32 arr;
regmap_read(priv->regmap, TIM_ARR, &arr);
return snprintf(buf, PAGE_SIZE, "%u\n", arr);
}
static ssize_t stm32_count_set_preset(struct iio_dev *indio_dev,
uintptr_t private,
const struct iio_chan_spec *chan,
const char *buf, size_t len)
{
struct stm32_timer_trigger *priv = iio_priv(indio_dev);
unsigned int preset;
int ret;
ret = kstrtouint(buf, 0, &preset);
if (ret)
return ret;
regmap_write(priv->regmap, TIM_ARR, preset);
regmap_update_bits(priv->regmap, TIM_CR1, TIM_CR1_ARPE, TIM_CR1_ARPE);
return len;
}
static const struct iio_chan_spec_ext_info stm32_trigger_count_info[] = {
{
.name = "preset",
.shared = IIO_SEPARATE,
.read = stm32_count_get_preset,
.write = stm32_count_set_preset
},
IIO_ENUM("count_direction", IIO_SEPARATE, &stm32_count_direction_enum),
IIO_ENUM_AVAILABLE("count_direction", &stm32_count_direction_enum),
IIO_ENUM("quadrature_mode", IIO_SEPARATE, &stm32_quadrature_mode_enum),
IIO_ENUM_AVAILABLE("quadrature_mode", &stm32_quadrature_mode_enum),
IIO_ENUM("enable_mode", IIO_SEPARATE, &stm32_enable_mode_enum),
IIO_ENUM_AVAILABLE("enable_mode", &stm32_enable_mode_enum),
{}
};
static const struct iio_chan_spec stm32_trigger_channel = {
.type = IIO_COUNT,
.channel = 0,
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
.ext_info = stm32_trigger_count_info,
.indexed = 1
};
static struct stm32_timer_trigger *stm32_setup_counter_device(struct device *dev)
{
struct iio_dev *indio_dev;
int ret;
indio_dev = devm_iio_device_alloc(dev,
sizeof(struct stm32_timer_trigger));
if (!indio_dev)
return NULL;
indio_dev->name = dev_name(dev);
indio_dev->dev.parent = dev;
indio_dev->info = &stm32_trigger_info;
indio_dev->num_channels = 1;
indio_dev->channels = &stm32_trigger_channel;
indio_dev->dev.of_node = dev->of_node;
ret = devm_iio_device_register(dev, indio_dev);
if (ret)
return NULL;
return iio_priv(indio_dev);
}
/**
* is_stm32_timer_trigger
* @trig: trigger to be checked
......@@ -299,10 +595,15 @@ static int stm32_timer_trigger_probe(struct platform_device *pdev)
if (of_property_read_u32(dev->of_node, "reg", &index))
return -EINVAL;
if (index >= ARRAY_SIZE(triggers_table))
if (index >= ARRAY_SIZE(triggers_table) ||
index >= ARRAY_SIZE(valids_table))
return -EINVAL;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
/* Create an IIO device only if we have triggers to be validated */
if (*valids_table[index])
priv = stm32_setup_counter_device(dev);
else
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
......@@ -312,6 +613,7 @@ static int stm32_timer_trigger_probe(struct platform_device *pdev)
priv->clk = ddata->clk;
priv->max_arr = ddata->max_arr;
priv->triggers = triggers_table[index];
priv->valids = valids_table[index];
ret = stm32_setup_iio_triggers(priv);
if (ret)
......
......@@ -205,9 +205,8 @@ static int adis16203_read_raw(struct iio_dev *indio_dev,
bits = 14;
addr = adis16203_addresses[chan->scan_index];
ret = adis_read_reg_16(st, addr, &val16);
if (ret) {
if (ret)
return ret;
}
val16 &= (1 << bits) - 1;
val16 = (s16)(val16 << (16 - bits)) >> (16 - bits);
*val = val16;
......
......@@ -98,6 +98,7 @@ struct ad5933_state {
struct i2c_client *client;
struct regulator *reg;
struct delayed_work work;
struct mutex lock; /* Protect sensor state */
unsigned long mclk_hz;
unsigned char ctrl_hb;
unsigned char ctrl_lb;
......@@ -306,9 +307,11 @@ static ssize_t ad5933_show_frequency(struct device *dev,
u8 d8[4];
} dat;
mutex_lock(&indio_dev->mlock);
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad5933_i2c_read(st->client, this_attr->address, 3, &dat.d8[1]);
mutex_unlock(&indio_dev->mlock);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
......@@ -338,9 +341,11 @@ static ssize_t ad5933_store_frequency(struct device *dev,
if (val > AD5933_MAX_OUTPUT_FREQ_Hz)
return -EINVAL;
mutex_lock(&indio_dev->mlock);
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad5933_set_freq(st, this_attr->address, val);
mutex_unlock(&indio_dev->mlock);
iio_device_release_direct_mode(indio_dev);
return ret ? ret : len;
}
......@@ -364,7 +369,7 @@ static ssize_t ad5933_show(struct device *dev,
struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
int ret = 0, len = 0;
mutex_lock(&indio_dev->mlock);
mutex_lock(&st->lock);
switch ((u32)this_attr->address) {
case AD5933_OUT_RANGE:
len = sprintf(buf, "%u\n",
......@@ -393,7 +398,7 @@ static ssize_t ad5933_show(struct device *dev,
ret = -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
mutex_unlock(&st->lock);
return ret ? ret : len;
}
......@@ -415,7 +420,10 @@ static ssize_t ad5933_store(struct device *dev,
return ret;
}
mutex_lock(&indio_dev->mlock);
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
switch ((u32)this_attr->address) {
case AD5933_OUT_RANGE:
ret = -EINVAL;
......@@ -465,7 +473,8 @@ static ssize_t ad5933_store(struct device *dev,
ret = -EINVAL;
}
mutex_unlock(&indio_dev->mlock);
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return ret ? ret : len;
}
......@@ -532,11 +541,9 @@ static int ad5933_read_raw(struct iio_dev *indio_dev,
switch (m) {
case IIO_CHAN_INFO_RAW:
mutex_lock(&indio_dev->mlock);
if (iio_buffer_enabled(indio_dev)) {
ret = -EBUSY;
goto out;
}
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
ret = ad5933_cmd(st, AD5933_CTRL_MEASURE_TEMP);
if (ret < 0)
goto out;
......@@ -549,7 +556,7 @@ static int ad5933_read_raw(struct iio_dev *indio_dev,
2, (u8 *)&dat);
if (ret < 0)
goto out;
mutex_unlock(&indio_dev->mlock);
iio_device_release_direct_mode(indio_dev);
*val = sign_extend32(be16_to_cpu(dat), 13);
return IIO_VAL_INT;
......@@ -561,7 +568,7 @@ static int ad5933_read_raw(struct iio_dev *indio_dev,
return -EINVAL;
out:
mutex_unlock(&indio_dev->mlock);
iio_device_release_direct_mode(indio_dev);
return ret;
}
......@@ -657,18 +664,17 @@ static void ad5933_work(struct work_struct *work)
unsigned char status;
int ret;
mutex_lock(&indio_dev->mlock);
if (st->state == AD5933_CTRL_INIT_START_FREQ) {
/* start sweep */
ad5933_cmd(st, AD5933_CTRL_START_SWEEP);
st->state = AD5933_CTRL_START_SWEEP;
schedule_delayed_work(&st->work, st->poll_time_jiffies);
goto out;
return;
}
ret = ad5933_i2c_read(st->client, AD5933_REG_STATUS, 1, &status);
if (ret)
goto out;
return;
if (status & AD5933_STAT_DATA_VALID) {
int scan_count = bitmap_weight(indio_dev->active_scan_mask,
......@@ -678,7 +684,7 @@ static void ad5933_work(struct work_struct *work)
AD5933_REG_REAL_DATA : AD5933_REG_IMAG_DATA,
scan_count * 2, (u8 *)buf);
if (ret)
goto out;
return;
if (scan_count == 2) {
val[0] = be16_to_cpu(buf[0]);
......@@ -690,7 +696,7 @@ static void ad5933_work(struct work_struct *work)
} else {
/* no data available - try again later */
schedule_delayed_work(&st->work, st->poll_time_jiffies);
goto out;
return;
}
if (status & AD5933_STAT_SWEEP_DONE) {
......@@ -703,8 +709,6 @@ static void ad5933_work(struct work_struct *work)
ad5933_cmd(st, AD5933_CTRL_INC_FREQ);
schedule_delayed_work(&st->work, st->poll_time_jiffies);
}
out:
mutex_unlock(&indio_dev->mlock);
}
static int ad5933_probe(struct i2c_client *client,
......@@ -723,6 +727,8 @@ static int ad5933_probe(struct i2c_client *client,
i2c_set_clientdata(client, indio_dev);
st->client = client;
mutex_init(&st->lock);
if (!pdata)
pdata = &ad5933_default_pdata;
......
......@@ -279,49 +279,49 @@ static int ade7759_reset(struct device *dev)
}
static IIO_DEV_ATTR_AENERGY(ade7759_read_40bit, ADE7759_AENERGY);
static IIO_DEV_ATTR_CFDEN(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_CFDEN(0644,
ade7759_read_16bit,
ade7759_write_16bit,
ADE7759_CFDEN);
static IIO_DEV_ATTR_CFNUM(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_CFNUM(0644,
ade7759_read_8bit,
ade7759_write_8bit,
ADE7759_CFNUM);
static IIO_DEV_ATTR_CHKSUM(ade7759_read_8bit, ADE7759_CHKSUM);
static IIO_DEV_ATTR_PHCAL(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_PHCAL(0644,
ade7759_read_16bit,
ade7759_write_16bit,
ADE7759_PHCAL);
static IIO_DEV_ATTR_APOS(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_APOS(0644,
ade7759_read_16bit,
ade7759_write_16bit,
ADE7759_APOS);
static IIO_DEV_ATTR_SAGCYC(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_SAGCYC(0644,
ade7759_read_8bit,
ade7759_write_8bit,
ADE7759_SAGCYC);
static IIO_DEV_ATTR_SAGLVL(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_SAGLVL(0644,
ade7759_read_8bit,
ade7759_write_8bit,
ADE7759_SAGLVL);
static IIO_DEV_ATTR_LINECYC(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_LINECYC(0644,
ade7759_read_8bit,
ade7759_write_8bit,
ADE7759_LINECYC);
static IIO_DEV_ATTR_LENERGY(ade7759_read_40bit, ADE7759_LENERGY);
static IIO_DEV_ATTR_PGA_GAIN(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_PGA_GAIN(0644,
ade7759_read_8bit,
ade7759_write_8bit,
ADE7759_GAIN);
static IIO_DEV_ATTR_ACTIVE_POWER_GAIN(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_ACTIVE_POWER_GAIN(0644,
ade7759_read_16bit,
ade7759_write_16bit,
ADE7759_APGAIN);
static IIO_DEV_ATTR_CH_OFF(1, S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_CH_OFF(1, 0644,
ade7759_read_8bit,
ade7759_write_8bit,
ADE7759_CH1OS);
static IIO_DEV_ATTR_CH_OFF(2, S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_CH_OFF(2, 0644,
ade7759_read_8bit,
ade7759_write_8bit,
ADE7759_CH2OS);
......@@ -458,7 +458,7 @@ static IIO_DEV_ATTR_TEMP_RAW(ade7759_read_8bit);
static IIO_CONST_ATTR(in_temp_offset, "70 C");
static IIO_CONST_ATTR(in_temp_scale, "1 C");
static IIO_DEV_ATTR_SAMP_FREQ(S_IWUSR | S_IRUGO,
static IIO_DEV_ATTR_SAMP_FREQ(0644,
ade7759_read_frequency,
ade7759_write_frequency);
......
......@@ -21,6 +21,7 @@
#define TIM_CCMR1 0x18 /* Capt/Comp 1 Mode Reg */
#define TIM_CCMR2 0x1C /* Capt/Comp 2 Mode Reg */
#define TIM_CCER 0x20 /* Capt/Comp Enable Reg */
#define TIM_CNT 0x24 /* Counter */
#define TIM_PSC 0x28 /* Prescaler */
#define TIM_ARR 0x2c /* Auto-Reload Register */
#define TIM_CCR1 0x34 /* Capt/Comp Register 1 */
......@@ -30,6 +31,7 @@
#define TIM_BDTR 0x44 /* Break and Dead-Time Reg */
#define TIM_CR1_CEN BIT(0) /* Counter Enable */
#define TIM_CR1_DIR BIT(4) /* Counter Direction */
#define TIM_CR1_ARPE BIT(7) /* Auto-reload Preload Ena */
#define TIM_CR2_MMS (BIT(4) | BIT(5) | BIT(6)) /* Master mode selection */
#define TIM_SMCR_SMS (BIT(0) | BIT(1) | BIT(2)) /* Slave mode selection */
......
......@@ -38,6 +38,10 @@
#define SUN6I_GPADC_CTRL1_ADC_CHAN_SELECT(x) (GENMASK(3, 0) & BIT(x))
#define SUN6I_GPADC_CTRL1_ADC_CHAN_MASK GENMASK(3, 0)
/* TP_CTRL1 bits for sun8i SoCs */
#define SUN8I_GPADC_CTRL1_CHOP_TEMP_EN BIT(8)
#define SUN8I_GPADC_CTRL1_GPADC_CALI_EN BIT(7)
#define SUN4I_GPADC_CTRL2 0x08
#define SUN4I_GPADC_CTRL2_TP_SENSITIVE_ADJUST(x) ((GENMASK(3, 0) & (x)) << 28)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment