Commit d9d67c87 authored by Stephan Müller's avatar Stephan Müller Committed by Herbert Xu

crypto: jitter - update implementation to 2.1.2

The Jitter RNG implementation is updated to comply with upstream version
2.1.2. The change covers the following aspects:

* Time variation measurement is conducted over the LFSR operation
instead of the XOR folding

* Invcation of stuck test during initialization

* Removal of the stirring functionality and the Von-Neumann
unbiaser as the LFSR using a primitive and irreducible polynomial
generates an identical distribution of random bits

This implementation was successfully used in FIPS 140-2 validations
as well as in German BSI evaluations.

This kernel implementation was tested as follows:

* The unchanged kernel code file jitterentropy.c is compiled as part
of user space application to generate raw unconditioned noise
data. That data is processed with the NIST SP800-90B non-IID test
tool to verify that the kernel code exhibits an equal amount of noise
as the upstream Jitter RNG version 2.1.2.

* Using AF_ALG with the libkcapi tool of kcapi-rng the Jitter RNG was
output tested with dieharder to verify that the output does not
exhibit statistical weaknesses. The following command was used:
kcapi-rng -n "jitterentropy_rng" -b 100000000000 | dieharder -a -g 200

* The unchanged kernel code file jitterentropy.c is compiled as part
of user space application to test the LFSR implementation. The
LFSR is injected a monotonically increasing counter as input and
the output is fed into dieharder to verify that the LFSR operation
does not exhibit statistical weaknesses.

* The patch was tested on the Muen separation kernel which returns
a more coarse time stamp to verify that the Jitter RNG does not cause
regressions with its initialization test considering that the Jitter
RNG depends on a high-resolution timer.
Tested-by: default avatarReto Buerki <reet@codelabs.ch>
Signed-off-by: default avatarStephan Mueller <smueller@chronox.de>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent d8ea98aa
...@@ -56,11 +56,6 @@ void jent_entropy_collector_free(struct rand_data *entropy_collector); ...@@ -56,11 +56,6 @@ void jent_entropy_collector_free(struct rand_data *entropy_collector);
* Helper function * Helper function
***************************************************************************/ ***************************************************************************/
__u64 jent_rol64(__u64 word, unsigned int shift)
{
return rol64(word, shift);
}
void *jent_zalloc(unsigned int len) void *jent_zalloc(unsigned int len)
{ {
return kzalloc(len, GFP_KERNEL); return kzalloc(len, GFP_KERNEL);
......
...@@ -2,7 +2,7 @@ ...@@ -2,7 +2,7 @@
* Non-physical true random number generator based on timing jitter -- * Non-physical true random number generator based on timing jitter --
* Jitter RNG standalone code. * Jitter RNG standalone code.
* *
* Copyright Stephan Mueller <smueller@chronox.de>, 2015 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2019
* *
* Design * Design
* ====== * ======
...@@ -47,7 +47,7 @@ ...@@ -47,7 +47,7 @@
/* /*
* This Jitterentropy RNG is based on the jitterentropy library * This Jitterentropy RNG is based on the jitterentropy library
* version 1.1.0 provided at http://www.chronox.de/jent.html * version 2.1.2 provided at http://www.chronox.de/jent.html
*/ */
#ifdef __OPTIMIZE__ #ifdef __OPTIMIZE__
...@@ -71,10 +71,7 @@ struct rand_data { ...@@ -71,10 +71,7 @@ struct rand_data {
#define DATA_SIZE_BITS ((sizeof(__u64)) * 8) #define DATA_SIZE_BITS ((sizeof(__u64)) * 8)
__u64 last_delta; /* SENSITIVE stuck test */ __u64 last_delta; /* SENSITIVE stuck test */
__s64 last_delta2; /* SENSITIVE stuck test */ __s64 last_delta2; /* SENSITIVE stuck test */
unsigned int stuck:1; /* Time measurement stuck */
unsigned int osr; /* Oversample rate */ unsigned int osr; /* Oversample rate */
unsigned int stir:1; /* Post-processing stirring */
unsigned int disable_unbias:1; /* Deactivate Von-Neuman unbias */
#define JENT_MEMORY_BLOCKS 64 #define JENT_MEMORY_BLOCKS 64
#define JENT_MEMORY_BLOCKSIZE 32 #define JENT_MEMORY_BLOCKSIZE 32
#define JENT_MEMORY_ACCESSLOOPS 128 #define JENT_MEMORY_ACCESSLOOPS 128
...@@ -89,8 +86,6 @@ struct rand_data { ...@@ -89,8 +86,6 @@ struct rand_data {
}; };
/* Flags that can be used to initialize the RNG */ /* Flags that can be used to initialize the RNG */
#define JENT_DISABLE_STIR (1<<0) /* Disable stirring the entropy pool */
#define JENT_DISABLE_UNBIAS (1<<1) /* Disable the Von-Neuman Unbiaser */
#define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more #define JENT_DISABLE_MEMORY_ACCESS (1<<2) /* Disable memory access for more
* entropy, saves MEMORY_SIZE RAM for * entropy, saves MEMORY_SIZE RAM for
* entropy collector */ * entropy collector */
...@@ -99,19 +94,16 @@ struct rand_data { ...@@ -99,19 +94,16 @@ struct rand_data {
#define JENT_ENOTIME 1 /* Timer service not available */ #define JENT_ENOTIME 1 /* Timer service not available */
#define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */ #define JENT_ECOARSETIME 2 /* Timer too coarse for RNG */
#define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */ #define JENT_ENOMONOTONIC 3 /* Timer is not monotonic increasing */
#define JENT_EMINVARIATION 4 /* Timer variations too small for RNG */
#define JENT_EVARVAR 5 /* Timer does not produce variations of #define JENT_EVARVAR 5 /* Timer does not produce variations of
* variations (2nd derivation of time is * variations (2nd derivation of time is
* zero). */ * zero). */
#define JENT_EMINVARVAR 6 /* Timer variations of variations is tooi #define JENT_ESTUCK 8 /* Too many stuck results during init. */
* small. */
/*************************************************************************** /***************************************************************************
* Helper functions * Helper functions
***************************************************************************/ ***************************************************************************/
void jent_get_nstime(__u64 *out); void jent_get_nstime(__u64 *out);
__u64 jent_rol64(__u64 word, unsigned int shift);
void *jent_zalloc(unsigned int len); void *jent_zalloc(unsigned int len);
void jent_zfree(void *ptr); void jent_zfree(void *ptr);
int jent_fips_enabled(void); int jent_fips_enabled(void);
...@@ -140,16 +132,16 @@ static __u64 jent_loop_shuffle(struct rand_data *ec, ...@@ -140,16 +132,16 @@ static __u64 jent_loop_shuffle(struct rand_data *ec,
jent_get_nstime(&time); jent_get_nstime(&time);
/* /*
* mix the current state of the random number into the shuffle * Mix the current state of the random number into the shuffle
* calculation to balance that shuffle a bit more * calculation to balance that shuffle a bit more.
*/ */
if (ec) if (ec)
time ^= ec->data; time ^= ec->data;
/* /*
* we fold the time value as much as possible to ensure that as many * We fold the time value as much as possible to ensure that as many
* bits of the time stamp are included as possible * bits of the time stamp are included as possible.
*/ */
for (i = 0; (DATA_SIZE_BITS / bits) > i; i++) { for (i = 0; ((DATA_SIZE_BITS + bits - 1) / bits) > i; i++) {
shuffle ^= time & mask; shuffle ^= time & mask;
time = time >> bits; time = time >> bits;
} }
...@@ -169,38 +161,28 @@ static __u64 jent_loop_shuffle(struct rand_data *ec, ...@@ -169,38 +161,28 @@ static __u64 jent_loop_shuffle(struct rand_data *ec,
* CPU Jitter noise source -- this is the noise source based on the CPU * CPU Jitter noise source -- this is the noise source based on the CPU
* execution time jitter * execution time jitter
* *
* This function folds the time into one bit units by iterating * This function injects the individual bits of the time value into the
* through the DATA_SIZE_BITS bit time value as follows: assume our time value * entropy pool using an LFSR.
* is 0xabcd
* 1st loop, 1st shift generates 0xd000
* 1st loop, 2nd shift generates 0x000d
* 2nd loop, 1st shift generates 0xcd00
* 2nd loop, 2nd shift generates 0x000c
* 3rd loop, 1st shift generates 0xbcd0
* 3rd loop, 2nd shift generates 0x000b
* 4th loop, 1st shift generates 0xabcd
* 4th loop, 2nd shift generates 0x000a
* Now, the values at the end of the 2nd shifts are XORed together.
* *
* The code is deliberately inefficient and shall stay that way. This function * The code is deliberately inefficient with respect to the bit shifting
* is the root cause why the code shall be compiled without optimization. This * and shall stay that way. This function is the root cause why the code
* function not only acts as folding operation, but this function's execution * shall be compiled without optimization. This function not only acts as
* is used to measure the CPU execution time jitter. Any change to the loop in * folding operation, but this function's execution is used to measure
* this function implies that careful retesting must be done. * the CPU execution time jitter. Any change to the loop in this function
* implies that careful retesting must be done.
* *
* Input: * Input:
* @ec entropy collector struct -- may be NULL * @ec entropy collector struct -- may be NULL
* @time time stamp to be folded * @time time stamp to be injected
* @loop_cnt if a value not equal to 0 is set, use the given value as number of * @loop_cnt if a value not equal to 0 is set, use the given value as number of
* loops to perform the folding * loops to perform the folding
* *
* Output: * Output:
* @folded result of folding operation * updated ec->data
* *
* @return Number of loops the folding operation is performed * @return Number of loops the folding operation is performed
*/ */
static __u64 jent_fold_time(struct rand_data *ec, __u64 time, static __u64 jent_lfsr_time(struct rand_data *ec, __u64 time, __u64 loop_cnt)
__u64 *folded, __u64 loop_cnt)
{ {
unsigned int i; unsigned int i;
__u64 j = 0; __u64 j = 0;
...@@ -217,15 +199,34 @@ static __u64 jent_fold_time(struct rand_data *ec, __u64 time, ...@@ -217,15 +199,34 @@ static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
if (loop_cnt) if (loop_cnt)
fold_loop_cnt = loop_cnt; fold_loop_cnt = loop_cnt;
for (j = 0; j < fold_loop_cnt; j++) { for (j = 0; j < fold_loop_cnt; j++) {
new = 0; new = ec->data;
for (i = 1; (DATA_SIZE_BITS) >= i; i++) { for (i = 1; (DATA_SIZE_BITS) >= i; i++) {
__u64 tmp = time << (DATA_SIZE_BITS - i); __u64 tmp = time << (DATA_SIZE_BITS - i);
tmp = tmp >> (DATA_SIZE_BITS - 1); tmp = tmp >> (DATA_SIZE_BITS - 1);
/*
* Fibonacci LSFR with polynomial of
* x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
* primitive according to
* http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
* (the shift values are the polynomial values minus one
* due to counting bits from 0 to 63). As the current
* position is always the LSB, the polynomial only needs
* to shift data in from the left without wrap.
*/
tmp ^= ((new >> 63) & 1);
tmp ^= ((new >> 60) & 1);
tmp ^= ((new >> 55) & 1);
tmp ^= ((new >> 30) & 1);
tmp ^= ((new >> 27) & 1);
tmp ^= ((new >> 22) & 1);
new <<= 1;
new ^= tmp; new ^= tmp;
} }
} }
*folded = new; ec->data = new;
return fold_loop_cnt; return fold_loop_cnt;
} }
...@@ -258,7 +259,6 @@ static __u64 jent_fold_time(struct rand_data *ec, __u64 time, ...@@ -258,7 +259,6 @@ static __u64 jent_fold_time(struct rand_data *ec, __u64 time,
*/ */
static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt) static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
{ {
unsigned char *tmpval = NULL;
unsigned int wrap = 0; unsigned int wrap = 0;
__u64 i = 0; __u64 i = 0;
#define MAX_ACC_LOOP_BIT 7 #define MAX_ACC_LOOP_BIT 7
...@@ -278,7 +278,7 @@ static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt) ...@@ -278,7 +278,7 @@ static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
acc_loop_cnt = loop_cnt; acc_loop_cnt = loop_cnt;
for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) { for (i = 0; i < (ec->memaccessloops + acc_loop_cnt); i++) {
tmpval = ec->mem + ec->memlocation; unsigned char *tmpval = ec->mem + ec->memlocation;
/* /*
* memory access: just add 1 to one byte, * memory access: just add 1 to one byte,
* wrap at 255 -- memory access implies read * wrap at 255 -- memory access implies read
...@@ -316,7 +316,7 @@ static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt) ...@@ -316,7 +316,7 @@ static unsigned int jent_memaccess(struct rand_data *ec, __u64 loop_cnt)
* 0 jitter measurement not stuck (good bit) * 0 jitter measurement not stuck (good bit)
* 1 jitter measurement stuck (reject bit) * 1 jitter measurement stuck (reject bit)
*/ */
static void jent_stuck(struct rand_data *ec, __u64 current_delta) static int jent_stuck(struct rand_data *ec, __u64 current_delta)
{ {
__s64 delta2 = ec->last_delta - current_delta; __s64 delta2 = ec->last_delta - current_delta;
__s64 delta3 = delta2 - ec->last_delta2; __s64 delta3 = delta2 - ec->last_delta2;
...@@ -325,14 +325,15 @@ static void jent_stuck(struct rand_data *ec, __u64 current_delta) ...@@ -325,14 +325,15 @@ static void jent_stuck(struct rand_data *ec, __u64 current_delta)
ec->last_delta2 = delta2; ec->last_delta2 = delta2;
if (!current_delta || !delta2 || !delta3) if (!current_delta || !delta2 || !delta3)
ec->stuck = 1; return 1;
return 0;
} }
/** /**
* This is the heart of the entropy generation: calculate time deltas and * This is the heart of the entropy generation: calculate time deltas and
* use the CPU jitter in the time deltas. The jitter is folded into one * use the CPU jitter in the time deltas. The jitter is injected into the
* bit. You can call this function the "random bit generator" as it * entropy pool.
* produces one random bit per invocation.
* *
* WARNING: ensure that ->prev_time is primed before using the output * WARNING: ensure that ->prev_time is primed before using the output
* of this function! This can be done by calling this function * of this function! This can be done by calling this function
...@@ -341,12 +342,11 @@ static void jent_stuck(struct rand_data *ec, __u64 current_delta) ...@@ -341,12 +342,11 @@ static void jent_stuck(struct rand_data *ec, __u64 current_delta)
* Input: * Input:
* @entropy_collector Reference to entropy collector * @entropy_collector Reference to entropy collector
* *
* @return One random bit * @return result of stuck test
*/ */
static __u64 jent_measure_jitter(struct rand_data *ec) static int jent_measure_jitter(struct rand_data *ec)
{ {
__u64 time = 0; __u64 time = 0;
__u64 data = 0;
__u64 current_delta = 0; __u64 current_delta = 0;
/* Invoke one noise source before time measurement to add variations */ /* Invoke one noise source before time measurement to add variations */
...@@ -360,109 +360,11 @@ static __u64 jent_measure_jitter(struct rand_data *ec) ...@@ -360,109 +360,11 @@ static __u64 jent_measure_jitter(struct rand_data *ec)
current_delta = time - ec->prev_time; current_delta = time - ec->prev_time;
ec->prev_time = time; ec->prev_time = time;
/* Now call the next noise sources which also folds the data */ /* Now call the next noise sources which also injects the data */
jent_fold_time(ec, current_delta, &data, 0); jent_lfsr_time(ec, current_delta, 0);
/*
* Check whether we have a stuck measurement. The enforcement
* is performed after the stuck value has been mixed into the
* entropy pool.
*/
jent_stuck(ec, current_delta);
return data;
}
/**
* Von Neuman unbias as explained in RFC 4086 section 4.2. As shown in the
* documentation of that RNG, the bits from jent_measure_jitter are considered
* independent which implies that the Von Neuman unbias operation is applicable.
* A proof of the Von-Neumann unbias operation to remove skews is given in the
* document "A proposal for: Functionality classes for random number
* generators", version 2.0 by Werner Schindler, section 5.4.1.
*
* Input:
* @entropy_collector Reference to entropy collector
*
* @return One random bit
*/
static __u64 jent_unbiased_bit(struct rand_data *entropy_collector)
{
do {
__u64 a = jent_measure_jitter(entropy_collector);
__u64 b = jent_measure_jitter(entropy_collector);
if (a == b)
continue;
if (1 == a)
return 1;
else
return 0;
} while (1);
}
/**
* Shuffle the pool a bit by mixing some value with a bijective function (XOR)
* into the pool.
*
* The function generates a mixer value that depends on the bits set and the
* location of the set bits in the random number generated by the entropy
* source. Therefore, based on the generated random number, this mixer value
* can have 2**64 different values. That mixer value is initialized with the
* first two SHA-1 constants. After obtaining the mixer value, it is XORed into
* the random number.
*
* The mixer value is not assumed to contain any entropy. But due to the XOR
* operation, it can also not destroy any entropy present in the entropy pool.
*
* Input:
* @entropy_collector Reference to entropy collector
*/
static void jent_stir_pool(struct rand_data *entropy_collector)
{
/*
* to shut up GCC on 32 bit, we have to initialize the 64 variable
* with two 32 bit variables
*/
union c {
__u64 u64;
__u32 u32[2];
};
/*
* This constant is derived from the first two 32 bit initialization
* vectors of SHA-1 as defined in FIPS 180-4 section 5.3.1
*/
union c constant;
/*
* The start value of the mixer variable is derived from the third
* and fourth 32 bit initialization vector of SHA-1 as defined in
* FIPS 180-4 section 5.3.1
*/
union c mixer;
unsigned int i = 0;
/*
* Store the SHA-1 constants in reverse order to make up the 64 bit
* value -- this applies to a little endian system, on a big endian
* system, it reverses as expected. But this really does not matter
* as we do not rely on the specific numbers. We just pick the SHA-1
* constants as they have a good mix of bit set and unset.
*/
constant.u32[1] = 0x67452301;
constant.u32[0] = 0xefcdab89;
mixer.u32[1] = 0x98badcfe;
mixer.u32[0] = 0x10325476;
for (i = 0; i < DATA_SIZE_BITS; i++) { /* Check whether we have a stuck measurement. */
/* return jent_stuck(ec, current_delta);
* get the i-th bit of the input random number and only XOR
* the constant into the mixer value when that bit is set
*/
if ((entropy_collector->data >> i) & 1)
mixer.u64 ^= constant.u64;
mixer.u64 = jent_rol64(mixer.u64, 1);
}
entropy_collector->data ^= mixer.u64;
} }
/** /**
...@@ -480,48 +382,9 @@ static void jent_gen_entropy(struct rand_data *ec) ...@@ -480,48 +382,9 @@ static void jent_gen_entropy(struct rand_data *ec)
jent_measure_jitter(ec); jent_measure_jitter(ec);
while (1) { while (1) {
__u64 data = 0; /* If a stuck measurement is received, repeat measurement */
if (jent_measure_jitter(ec))
if (ec->disable_unbias == 1)
data = jent_measure_jitter(ec);
else
data = jent_unbiased_bit(ec);
/* enforcement of the jent_stuck test */
if (ec->stuck) {
/*
* We only mix in the bit considered not appropriate
* without the LSFR. The reason is that if we apply
* the LSFR and we do not rotate, the 2nd bit with LSFR
* will cancel out the first LSFR application on the
* bad bit.
*
* And we do not rotate as we apply the next bit to the
* current bit location again.
*/
ec->data ^= data;
ec->stuck = 0;
continue; continue;
}
/*
* Fibonacci LSFR with polynom of
* x^64 + x^61 + x^56 + x^31 + x^28 + x^23 + 1 which is
* primitive according to
* http://poincare.matf.bg.ac.rs/~ezivkovm/publications/primpol1.pdf
* (the shift values are the polynom values minus one
* due to counting bits from 0 to 63). As the current
* position is always the LSB, the polynom only needs
* to shift data in from the left without wrap.
*/
ec->data ^= data;
ec->data ^= ((ec->data >> 63) & 1);
ec->data ^= ((ec->data >> 60) & 1);
ec->data ^= ((ec->data >> 55) & 1);
ec->data ^= ((ec->data >> 30) & 1);
ec->data ^= ((ec->data >> 27) & 1);
ec->data ^= ((ec->data >> 22) & 1);
ec->data = jent_rol64(ec->data, 1);
/* /*
* We multiply the loop value with ->osr to obtain the * We multiply the loop value with ->osr to obtain the
...@@ -530,8 +393,6 @@ static void jent_gen_entropy(struct rand_data *ec) ...@@ -530,8 +393,6 @@ static void jent_gen_entropy(struct rand_data *ec)
if (++k >= (DATA_SIZE_BITS * ec->osr)) if (++k >= (DATA_SIZE_BITS * ec->osr))
break; break;
} }
if (ec->stir)
jent_stir_pool(ec);
} }
/** /**
...@@ -639,12 +500,6 @@ struct rand_data *jent_entropy_collector_alloc(unsigned int osr, ...@@ -639,12 +500,6 @@ struct rand_data *jent_entropy_collector_alloc(unsigned int osr,
osr = 1; /* minimum sampling rate is 1 */ osr = 1; /* minimum sampling rate is 1 */
entropy_collector->osr = osr; entropy_collector->osr = osr;
entropy_collector->stir = 1;
if (flags & JENT_DISABLE_STIR)
entropy_collector->stir = 0;
if (flags & JENT_DISABLE_UNBIAS)
entropy_collector->disable_unbias = 1;
/* fill the data pad with non-zero values */ /* fill the data pad with non-zero values */
jent_gen_entropy(entropy_collector); jent_gen_entropy(entropy_collector);
...@@ -656,7 +511,6 @@ void jent_entropy_collector_free(struct rand_data *entropy_collector) ...@@ -656,7 +511,6 @@ void jent_entropy_collector_free(struct rand_data *entropy_collector)
jent_zfree(entropy_collector->mem); jent_zfree(entropy_collector->mem);
entropy_collector->mem = NULL; entropy_collector->mem = NULL;
jent_zfree(entropy_collector); jent_zfree(entropy_collector);
entropy_collector = NULL;
} }
int jent_entropy_init(void) int jent_entropy_init(void)
...@@ -665,8 +519,9 @@ int jent_entropy_init(void) ...@@ -665,8 +519,9 @@ int jent_entropy_init(void)
__u64 delta_sum = 0; __u64 delta_sum = 0;
__u64 old_delta = 0; __u64 old_delta = 0;
int time_backwards = 0; int time_backwards = 0;
int count_var = 0;
int count_mod = 0; int count_mod = 0;
int count_stuck = 0;
struct rand_data ec = { 0 };
/* We could perform statistical tests here, but the problem is /* We could perform statistical tests here, but the problem is
* that we only have a few loop counts to do testing. These * that we only have a few loop counts to do testing. These
...@@ -695,12 +550,14 @@ int jent_entropy_init(void) ...@@ -695,12 +550,14 @@ int jent_entropy_init(void)
for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) { for (i = 0; (TESTLOOPCOUNT + CLEARCACHE) > i; i++) {
__u64 time = 0; __u64 time = 0;
__u64 time2 = 0; __u64 time2 = 0;
__u64 folded = 0;
__u64 delta = 0; __u64 delta = 0;
unsigned int lowdelta = 0; unsigned int lowdelta = 0;
int stuck;
/* Invoke core entropy collection logic */
jent_get_nstime(&time); jent_get_nstime(&time);
jent_fold_time(NULL, time, &folded, 1<<MIN_FOLD_LOOP_BIT); ec.prev_time = time;
jent_lfsr_time(&ec, time, 0);
jent_get_nstime(&time2); jent_get_nstime(&time2);
/* test whether timer works */ /* test whether timer works */
...@@ -715,6 +572,8 @@ int jent_entropy_init(void) ...@@ -715,6 +572,8 @@ int jent_entropy_init(void)
if (!delta) if (!delta)
return JENT_ECOARSETIME; return JENT_ECOARSETIME;
stuck = jent_stuck(&ec, delta);
/* /*
* up to here we did not modify any variable that will be * up to here we did not modify any variable that will be
* evaluated later, but we already performed some work. Thus we * evaluated later, but we already performed some work. Thus we
...@@ -725,14 +584,14 @@ int jent_entropy_init(void) ...@@ -725,14 +584,14 @@ int jent_entropy_init(void)
if (CLEARCACHE > i) if (CLEARCACHE > i)
continue; continue;
if (stuck)
count_stuck++;
/* test whether we have an increasing timer */ /* test whether we have an increasing timer */
if (!(time2 > time)) if (!(time2 > time))
time_backwards++; time_backwards++;
/* /* use 32 bit value to ensure compilation on 32 bit arches */
* Avoid modulo of 64 bit integer to allow code to compile
* on 32 bit architectures.
*/
lowdelta = time2 - time; lowdelta = time2 - time;
if (!(lowdelta % 100)) if (!(lowdelta % 100))
count_mod++; count_mod++;
...@@ -743,14 +602,10 @@ int jent_entropy_init(void) ...@@ -743,14 +602,10 @@ int jent_entropy_init(void)
* only after the first loop is executed as we need to prime * only after the first loop is executed as we need to prime
* the old_data value * the old_data value
*/ */
if (i) { if (delta > old_delta)
if (delta != old_delta) delta_sum += (delta - old_delta);
count_var++; else
if (delta > old_delta) delta_sum += (old_delta - delta);
delta_sum += (delta - old_delta);
else
delta_sum += (old_delta - delta);
}
old_delta = delta; old_delta = delta;
} }
...@@ -763,25 +618,29 @@ int jent_entropy_init(void) ...@@ -763,25 +618,29 @@ int jent_entropy_init(void)
*/ */
if (3 < time_backwards) if (3 < time_backwards)
return JENT_ENOMONOTONIC; return JENT_ENOMONOTONIC;
/* Error if the time variances are always identical */
if (!delta_sum)
return JENT_EVARVAR;
/* /*
* Variations of deltas of time must on average be larger * Variations of deltas of time must on average be larger
* than 1 to ensure the entropy estimation * than 1 to ensure the entropy estimation
* implied with 1 is preserved * implied with 1 is preserved
*/ */
if (delta_sum <= 1) if ((delta_sum) <= 1)
return JENT_EMINVARVAR; return JENT_EVARVAR;
/* /*
* Ensure that we have variations in the time stamp below 10 for at * Ensure that we have variations in the time stamp below 10 for at
* least 10% of all checks -- on some platforms, the counter * least 10% of all checks -- on some platforms, the counter increments
* increments in multiples of 100, but not always * in multiples of 100, but not always
*/ */
if ((TESTLOOPCOUNT/10 * 9) < count_mod) if ((TESTLOOPCOUNT/10 * 9) < count_mod)
return JENT_ECOARSETIME; return JENT_ECOARSETIME;
/*
* If we have more than 90% stuck results, then this Jitter RNG is
* likely to not work well.
*/
if ((TESTLOOPCOUNT/10 * 9) < count_stuck)
return JENT_ESTUCK;
return 0; return 0;
} }
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment