Commit e1302912 authored by Steve Longerbeam's avatar Steve Longerbeam Committed by Mauro Carvalho Chehab

[media] media: Add i.MX media core driver

Add the core media driver for i.MX SOC.

Switch from the v4l2_of_ APIs to the v4l2_fwnode_ APIs.
Add the bayer formats to imx-media's list of supported pixel and bus
formats.
Signed-off-by: default avatarSteve Longerbeam <steve_longerbeam@mentor.com>
Signed-off-by: default avatarPhilipp Zabel <p.zabel@pengutronix.de>
Signed-off-by: default avatarRussell King <rmk+kernel@armlinux.org.uk>
Signed-off-by: default avatarHans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab@s-opensource.com>
parent a2bce379
i.MX Video Capture Driver
=========================
Introduction
------------
The Freescale i.MX5/6 contains an Image Processing Unit (IPU), which
handles the flow of image frames to and from capture devices and
display devices.
For image capture, the IPU contains the following internal subunits:
- Image DMA Controller (IDMAC)
- Camera Serial Interface (CSI)
- Image Converter (IC)
- Sensor Multi-FIFO Controller (SMFC)
- Image Rotator (IRT)
- Video De-Interlacing or Combining Block (VDIC)
The IDMAC is the DMA controller for transfer of image frames to and from
memory. Various dedicated DMA channels exist for both video capture and
display paths. During transfer, the IDMAC is also capable of vertical
image flip, 8x8 block transfer (see IRT description), pixel component
re-ordering (for example UYVY to YUYV) within the same colorspace, and
even packed <--> planar conversion. It can also perform a simple
de-interlacing by interleaving even and odd lines during transfer
(without motion compensation which requires the VDIC).
The CSI is the backend capture unit that interfaces directly with
camera sensors over Parallel, BT.656/1120, and MIPI CSI-2 busses.
The IC handles color-space conversion, resizing (downscaling and
upscaling), horizontal flip, and 90/270 degree rotation operations.
There are three independent "tasks" within the IC that can carry out
conversions concurrently: pre-process encoding, pre-process viewfinder,
and post-processing. Within each task, conversions are split into three
sections: downsizing section, main section (upsizing, flip, colorspace
conversion, and graphics plane combining), and rotation section.
The IPU time-shares the IC task operations. The time-slice granularity
is one burst of eight pixels in the downsizing section, one image line
in the main processing section, one image frame in the rotation section.
The SMFC is composed of four independent FIFOs that each can transfer
captured frames from sensors directly to memory concurrently via four
IDMAC channels.
The IRT carries out 90 and 270 degree image rotation operations. The
rotation operation is carried out on 8x8 pixel blocks at a time. This
operation is supported by the IDMAC which handles the 8x8 block transfer
along with block reordering, in coordination with vertical flip.
The VDIC handles the conversion of interlaced video to progressive, with
support for different motion compensation modes (low, medium, and high
motion). The deinterlaced output frames from the VDIC can be sent to the
IC pre-process viewfinder task for further conversions. The VDIC also
contains a Combiner that combines two image planes, with alpha blending
and color keying.
In addition to the IPU internal subunits, there are also two units
outside the IPU that are also involved in video capture on i.MX:
- MIPI CSI-2 Receiver for camera sensors with the MIPI CSI-2 bus
interface. This is a Synopsys DesignWare core.
- Two video multiplexers for selecting among multiple sensor inputs
to send to a CSI.
For more info, refer to the latest versions of the i.MX5/6 reference
manuals [#f1]_ and [#f2]_.
Features
--------
Some of the features of this driver include:
- Many different pipelines can be configured via media controller API,
that correspond to the hardware video capture pipelines supported in
the i.MX.
- Supports parallel, BT.565, and MIPI CSI-2 interfaces.
- Concurrent independent streams, by configuring pipelines to multiple
video capture interfaces using independent entities.
- Scaling, color-space conversion, horizontal and vertical flip, and
image rotation via IC task subdevs.
- Many pixel formats supported (RGB, packed and planar YUV, partial
planar YUV).
- The VDIC subdev supports motion compensated de-interlacing, with three
motion compensation modes: low, medium, and high motion. Pipelines are
defined that allow sending frames to the VDIC subdev directly from the
CSI. There is also support in the future for sending frames to the
VDIC from memory buffers via a output/mem2mem devices.
- Includes a Frame Interval Monitor (FIM) that can correct vertical sync
problems with the ADV718x video decoders.
Entities
--------
imx6-mipi-csi2
--------------
This is the MIPI CSI-2 receiver entity. It has one sink pad to receive
the MIPI CSI-2 stream (usually from a MIPI CSI-2 camera sensor). It has
four source pads, corresponding to the four MIPI CSI-2 demuxed virtual
channel outputs. Multpiple source pads can be enabled to independently
stream from multiple virtual channels.
This entity actually consists of two sub-blocks. One is the MIPI CSI-2
core. This is a Synopsys Designware MIPI CSI-2 core. The other sub-block
is a "CSI-2 to IPU gasket". The gasket acts as a demultiplexer of the
four virtual channels streams, providing four separate parallel buses
containing each virtual channel that are routed to CSIs or video
multiplexers as described below.
On i.MX6 solo/dual-lite, all four virtual channel buses are routed to
two video multiplexers. Both CSI0 and CSI1 can receive any virtual
channel, as selected by the video multiplexers.
On i.MX6 Quad, virtual channel 0 is routed to IPU1-CSI0 (after selected
by a video mux), virtual channels 1 and 2 are hard-wired to IPU1-CSI1
and IPU2-CSI0, respectively, and virtual channel 3 is routed to
IPU2-CSI1 (again selected by a video mux).
ipuX_csiY_mux
-------------
These are the video multiplexers. They have two or more sink pads to
select from either camera sensors with a parallel interface, or from
MIPI CSI-2 virtual channels from imx6-mipi-csi2 entity. They have a
single source pad that routes to a CSI (ipuX_csiY entities).
On i.MX6 solo/dual-lite, there are two video mux entities. One sits
in front of IPU1-CSI0 to select between a parallel sensor and any of
the four MIPI CSI-2 virtual channels (a total of five sink pads). The
other mux sits in front of IPU1-CSI1, and again has five sink pads to
select between a parallel sensor and any of the four MIPI CSI-2 virtual
channels.
On i.MX6 Quad, there are two video mux entities. One sits in front of
IPU1-CSI0 to select between a parallel sensor and MIPI CSI-2 virtual
channel 0 (two sink pads). The other mux sits in front of IPU2-CSI1 to
select between a parallel sensor and MIPI CSI-2 virtual channel 3 (two
sink pads).
ipuX_csiY
---------
These are the CSI entities. They have a single sink pad receiving from
either a video mux or from a MIPI CSI-2 virtual channel as described
above.
This entity has two source pads. The first source pad can link directly
to the ipuX_vdic entity or the ipuX_ic_prp entity, using hardware links
that require no IDMAC memory buffer transfer.
When the direct source pad is routed to the ipuX_ic_prp entity, frames
from the CSI can be processed by one or both of the IC pre-processing
tasks.
When the direct source pad is routed to the ipuX_vdic entity, the VDIC
will carry out motion-compensated de-interlace using "high motion" mode
(see description of ipuX_vdic entity).
The second source pad sends video frames directly to memory buffers
via the SMFC and an IDMAC channel, bypassing IC pre-processing. This
source pad is routed to a capture device node, with a node name of the
format "ipuX_csiY capture".
Note that since the IDMAC source pad makes use of an IDMAC channel, it
can do pixel reordering within the same colorspace. For example, the
sink pad can take UYVY2X8, but the IDMAC source pad can output YUYV2X8.
If the sink pad is receiving YUV, the output at the capture device can
also be converted to a planar YUV format such as YUV420.
It will also perform simple de-interlace without motion compensation,
which is activated if the sink pad's field type is an interlaced type,
and the IDMAC source pad field type is set to none.
This subdev can generate the following event when enabling the second
IDMAC source pad:
- V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR
The user application can subscribe to this event from the ipuX_csiY
subdev node. This event is generated by the Frame Interval Monitor
(see below for more on the FIM).
Cropping in ipuX_csiY
---------------------
The CSI supports cropping the incoming raw sensor frames. This is
implemented in the ipuX_csiY entities at the sink pad, using the
crop selection subdev API.
The CSI also supports fixed divide-by-two downscaling indepently in
width and height. This is implemented in the ipuX_csiY entities at
the sink pad, using the compose selection subdev API.
The output rectangle at the ipuX_csiY source pad is the same as
the compose rectangle at the sink pad. So the source pad rectangle
cannot be negotiated, it must be set using the compose selection
API at sink pad (if /2 downscale is desired, otherwise source pad
rectangle is equal to incoming rectangle).
To give an example of crop and /2 downscale, this will crop a
1280x960 input frame to 640x480, and then /2 downscale in both
dimensions to 320x240 (assumes ipu1_csi0 is linked to ipu1_csi0_mux):
media-ctl -V "'ipu1_csi0_mux':2[fmt:UYVY2X8/1280x960]"
media-ctl -V "'ipu1_csi0':0[crop:(0,0)/640x480]"
media-ctl -V "'ipu1_csi0':0[compose:(0,0)/320x240]"
Frame Skipping in ipuX_csiY
---------------------------
The CSI supports frame rate decimation, via frame skipping. Frame
rate decimation is specified by setting the frame intervals at
sink and source pads. The ipuX_csiY entity then applies the best
frame skip setting to the CSI to achieve the desired frame rate
at the source pad.
The following example reduces an assumed incoming 60 Hz frame
rate by half at the IDMAC output source pad:
media-ctl -V "'ipu1_csi0':0[fmt:UYVY2X8/640x480@1/60]"
media-ctl -V "'ipu1_csi0':2[fmt:UYVY2X8/640x480@1/30]"
Frame Interval Monitor in ipuX_csiY
-----------------------------------
The adv718x decoders can occasionally send corrupt fields during
NTSC/PAL signal re-sync (too little or too many video lines). When
this happens, the IPU triggers a mechanism to re-establish vertical
sync by adding 1 dummy line every frame, which causes a rolling effect
from image to image, and can last a long time before a stable image is
recovered. Or sometimes the mechanism doesn't work at all, causing a
permanent split image (one frame contains lines from two consecutive
captured images).
From experiment it was found that during image rolling, the frame
intervals (elapsed time between two EOF's) drop below the nominal
value for the current standard, by about one frame time (60 usec),
and remain at that value until rolling stops.
While the reason for this observation isn't known (the IPU dummy
line mechanism should show an increase in the intervals by 1 line
time every frame, not a fixed value), we can use it to detect the
corrupt fields using a frame interval monitor. If the FIM detects a
bad frame interval, the ipuX_csiY subdev will send the event
V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR. Userland can register with
the FIM event notification on the ipuX_csiY subdev device node.
Userland can issue a streaming restart when this event is received
to correct the rolling/split image.
The ipuX_csiY subdev includes custom controls to tweak some dials for
FIM. If one of these controls is changed during streaming, the FIM will
be reset and will continue at the new settings.
- V4L2_CID_IMX_FIM_ENABLE
Enable/disable the FIM.
- V4L2_CID_IMX_FIM_NUM
How many frame interval measurements to average before comparing against
the nominal frame interval reported by the sensor. This can reduce noise
caused by interrupt latency.
- V4L2_CID_IMX_FIM_TOLERANCE_MIN
If the averaged intervals fall outside nominal by this amount, in
microseconds, the V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR event is sent.
- V4L2_CID_IMX_FIM_TOLERANCE_MAX
If any intervals are higher than this value, those samples are
discarded and do not enter into the average. This can be used to
discard really high interval errors that might be due to interrupt
latency from high system load.
- V4L2_CID_IMX_FIM_NUM_SKIP
How many frames to skip after a FIM reset or stream restart before
FIM begins to average intervals.
- V4L2_CID_IMX_FIM_ICAP_CHANNEL
- V4L2_CID_IMX_FIM_ICAP_EDGE
These controls will configure an input capture channel as the method
for measuring frame intervals. This is superior to the default method
of measuring frame intervals via EOF interrupt, since it is not subject
to uncertainty errors introduced by interrupt latency.
Input capture requires hardware support. A VSYNC signal must be routed
to one of the i.MX6 input capture channel pads.
V4L2_CID_IMX_FIM_ICAP_CHANNEL configures which i.MX6 input capture
channel to use. This must be 0 or 1.
V4L2_CID_IMX_FIM_ICAP_EDGE configures which signal edge will trigger
input capture events. By default the input capture method is disabled
with a value of IRQ_TYPE_NONE. Set this control to IRQ_TYPE_EDGE_RISING,
IRQ_TYPE_EDGE_FALLING, or IRQ_TYPE_EDGE_BOTH to enable input capture,
triggered on the given signal edge(s).
When input capture is disabled, frame intervals will be measured via
EOF interrupt.
ipuX_vdic
---------
The VDIC carries out motion compensated de-interlacing, with three
motion compensation modes: low, medium, and high motion. The mode is
specified with the menu control V4L2_CID_DEINTERLACING_MODE. It has
two sink pads and a single source pad.
The direct sink pad receives from an ipuX_csiY direct pad. With this
link the VDIC can only operate in high motion mode.
When the IDMAC sink pad is activated, it receives from an output
or mem2mem device node. With this pipeline, it can also operate
in low and medium modes, because these modes require receiving
frames from memory buffers. Note that an output or mem2mem device
is not implemented yet, so this sink pad currently has no links.
The source pad routes to the IC pre-processing entity ipuX_ic_prp.
ipuX_ic_prp
-----------
This is the IC pre-processing entity. It acts as a router, routing
data from its sink pad to one or both of its source pads.
It has a single sink pad. The sink pad can receive from the ipuX_csiY
direct pad, or from ipuX_vdic.
This entity has two source pads. One source pad routes to the
pre-process encode task entity (ipuX_ic_prpenc), the other to the
pre-process viewfinder task entity (ipuX_ic_prpvf). Both source pads
can be activated at the same time if the sink pad is receiving from
ipuX_csiY. Only the source pad to the pre-process viewfinder task entity
can be activated if the sink pad is receiving from ipuX_vdic (frames
from the VDIC can only be processed by the pre-process viewfinder task).
ipuX_ic_prpenc
--------------
This is the IC pre-processing encode entity. It has a single sink
pad from ipuX_ic_prp, and a single source pad. The source pad is
routed to a capture device node, with a node name of the format
"ipuX_ic_prpenc capture".
This entity performs the IC pre-process encode task operations:
color-space conversion, resizing (downscaling and upscaling),
horizontal and vertical flip, and 90/270 degree rotation. Flip
and rotation are provided via standard V4L2 controls.
Like the ipuX_csiY IDMAC source, it can also perform simple de-interlace
without motion compensation, and pixel reordering.
ipuX_ic_prpvf
-------------
This is the IC pre-processing viewfinder entity. It has a single sink
pad from ipuX_ic_prp, and a single source pad. The source pad is routed
to a capture device node, with a node name of the format
"ipuX_ic_prpvf capture".
It is identical in operation to ipuX_ic_prpenc, with the same resizing
and CSC operations and flip/rotation controls. It will receive and
process de-interlaced frames from the ipuX_vdic if ipuX_ic_prp is
receiving from ipuX_vdic.
Like the ipuX_csiY IDMAC source, it can perform simple de-interlace
without motion compensation. However, note that if the ipuX_vdic is
included in the pipeline (ipuX_ic_prp is receiving from ipuX_vdic),
it's not possible to use simple de-interlace in ipuX_ic_prpvf, since
the ipuX_vdic has already carried out de-interlacing (with motion
compensation) and therefore the field type output from ipuX_ic_prp can
only be none.
Capture Pipelines
-----------------
The following describe the various use-cases supported by the pipelines.
The links shown do not include the backend sensor, video mux, or mipi
csi-2 receiver links. This depends on the type of sensor interface
(parallel or mipi csi-2). So these pipelines begin with:
sensor -> ipuX_csiY_mux -> ...
for parallel sensors, or:
sensor -> imx6-mipi-csi2 -> (ipuX_csiY_mux) -> ...
for mipi csi-2 sensors. The imx6-mipi-csi2 receiver may need to route
to the video mux (ipuX_csiY_mux) before sending to the CSI, depending
on the mipi csi-2 virtual channel, hence ipuX_csiY_mux is shown in
parenthesis.
Unprocessed Video Capture:
--------------------------
Send frames directly from sensor to camera device interface node, with
no conversions, via ipuX_csiY IDMAC source pad:
-> ipuX_csiY:2 -> ipuX_csiY capture
IC Direct Conversions:
----------------------
This pipeline uses the preprocess encode entity to route frames directly
from the CSI to the IC, to carry out scaling up to 1024x1024 resolution,
CSC, flipping, and image rotation:
-> ipuX_csiY:1 -> 0:ipuX_ic_prp:1 -> 0:ipuX_ic_prpenc:1 ->
ipuX_ic_prpenc capture
Motion Compensated De-interlace:
--------------------------------
This pipeline routes frames from the CSI direct pad to the VDIC entity to
support motion-compensated de-interlacing (high motion mode only),
scaling up to 1024x1024, CSC, flip, and rotation:
-> ipuX_csiY:1 -> 0:ipuX_vdic:2 -> 0:ipuX_ic_prp:2 ->
0:ipuX_ic_prpvf:1 -> ipuX_ic_prpvf capture
Usage Notes
-----------
To aid in configuration and for backward compatibility with V4L2
applications that access controls only from video device nodes, the
capture device interfaces inherit controls from the active entities
in the current pipeline, so controls can be accessed either directly
from the subdev or from the active capture device interface. For
example, the FIM controls are available either from the ipuX_csiY
subdevs or from the active capture device.
The following are specific usage notes for the Sabre* reference
boards:
SabreLite with OV5642 and OV5640
--------------------------------
This platform requires the OmniVision OV5642 module with a parallel
camera interface, and the OV5640 module with a MIPI CSI-2
interface. Both modules are available from Boundary Devices:
https://boundarydevices.com/product/nit6x_5mp
https://boundarydevices.com/product/nit6x_5mp_mipi
Note that if only one camera module is available, the other sensor
node can be disabled in the device tree.
The OV5642 module is connected to the parallel bus input on the i.MX
internal video mux to IPU1 CSI0. It's i2c bus connects to i2c bus 2.
The MIPI CSI-2 OV5640 module is connected to the i.MX internal MIPI CSI-2
receiver, and the four virtual channel outputs from the receiver are
routed as follows: vc0 to the IPU1 CSI0 mux, vc1 directly to IPU1 CSI1,
vc2 directly to IPU2 CSI0, and vc3 to the IPU2 CSI1 mux. The OV5640 is
also connected to i2c bus 2 on the SabreLite, therefore the OV5642 and
OV5640 must not share the same i2c slave address.
The following basic example configures unprocessed video capture
pipelines for both sensors. The OV5642 is routed to ipu1_csi0, and
the OV5640, transmitting on MIPI CSI-2 virtual channel 1 (which is
imx6-mipi-csi2 pad 2), is routed to ipu1_csi1. Both sensors are
configured to output 640x480, and the OV5642 outputs YUYV2X8, the
OV5640 UYVY2X8:
.. code-block:: none
# Setup links for OV5642
media-ctl -l "'ov5642 1-0042':0 -> 'ipu1_csi0_mux':1[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':2 -> 'ipu1_csi0 capture':0[1]"
# Setup links for OV5640
media-ctl -l "'ov5640 1-0040':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -l "'imx6-mipi-csi2':2 -> 'ipu1_csi1':0[1]"
media-ctl -l "'ipu1_csi1':2 -> 'ipu1_csi1 capture':0[1]"
# Configure pads for OV5642 pipeline
media-ctl -V "'ov5642 1-0042':0 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:YUYV2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi0':2 [fmt:AYUV32/640x480 field:none]"
# Configure pads for OV5640 pipeline
media-ctl -V "'ov5640 1-0040':0 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'imx6-mipi-csi2':2 [fmt:UYVY2X8/640x480 field:none]"
media-ctl -V "'ipu1_csi1':2 [fmt:AYUV32/640x480 field:none]"
Streaming can then begin independently on the capture device nodes
"ipu1_csi0 capture" and "ipu1_csi1 capture". The v4l2-ctl tool can
be used to select any supported YUV pixelformat on the capture device
nodes, including planar.
SabreAuto with ADV7180 decoder
------------------------------
On the SabreAuto, an on-board ADV7180 SD decoder is connected to the
parallel bus input on the internal video mux to IPU1 CSI0.
The following example configures a pipeline to capture from the ADV7180
video decoder, assuming NTSC 720x480 input signals, with Motion
Compensated de-interlacing. Pad field types assume the adv7180 outputs
"interlaced". $outputfmt can be any format supported by the ipu1_ic_prpvf
entity at its output pad:
.. code-block:: none
# Setup links
media-ctl -l "'adv7180 3-0021':0 -> 'ipu1_csi0_mux':1[1]"
media-ctl -l "'ipu1_csi0_mux':2 -> 'ipu1_csi0':0[1]"
media-ctl -l "'ipu1_csi0':1 -> 'ipu1_vdic':0[1]"
media-ctl -l "'ipu1_vdic':2 -> 'ipu1_ic_prp':0[1]"
media-ctl -l "'ipu1_ic_prp':2 -> 'ipu1_ic_prpvf':0[1]"
media-ctl -l "'ipu1_ic_prpvf':1 -> 'ipu1_ic_prpvf capture':0[1]"
# Configure pads
media-ctl -V "'adv7180 3-0021':0 [fmt:UYVY2X8/720x480]"
media-ctl -V "'ipu1_csi0_mux':2 [fmt:UYVY2X8/720x480 field:interlaced]"
media-ctl -V "'ipu1_csi0':1 [fmt:AYUV32/720x480 field:interlaced]"
media-ctl -V "'ipu1_vdic':2 [fmt:AYUV32/720x480 field:none]"
media-ctl -V "'ipu1_ic_prp':2 [fmt:AYUV32/720x480 field:none]"
media-ctl -V "'ipu1_ic_prpvf':1 [fmt:$outputfmt field:none]"
Streaming can then begin on the capture device node at
"ipu1_ic_prpvf capture". The v4l2-ctl tool can be used to select any
supported YUV or RGB pixelformat on the capture device node.
This platform accepts Composite Video analog inputs to the ADV7180 on
Ain1 (connector J42).
SabreSD with MIPI CSI-2 OV5640
------------------------------
Similarly to SabreLite, the SabreSD supports a parallel interface
OV5642 module on IPU1 CSI0, and a MIPI CSI-2 OV5640 module. The OV5642
connects to i2c bus 1 and the OV5640 to i2c bus 2.
The device tree for SabreSD includes OF graphs for both the parallel
OV5642 and the MIPI CSI-2 OV5640, but as of this writing only the MIPI
CSI-2 OV5640 has been tested, so the OV5642 node is currently disabled.
The OV5640 module connects to MIPI connector J5 (sorry I don't have the
compatible module part number or URL).
The following example configures a direct conversion pipeline to capture
from the OV5640, transmitting on MIPI CSI-2 virtual channel 1. $sensorfmt
can be any format supported by the OV5640. $sensordim is the frame
dimension part of $sensorfmt (minus the mbus pixel code). $outputfmt can
be any format supported by the ipu1_ic_prpenc entity at its output pad:
.. code-block:: none
# Setup links
media-ctl -l "'ov5640 1-003c':0 -> 'imx6-mipi-csi2':0[1]"
media-ctl -l "'imx6-mipi-csi2':2 -> 'ipu1_csi1':0[1]"
media-ctl -l "'ipu1_csi1':1 -> 'ipu1_ic_prp':0[1]"
media-ctl -l "'ipu1_ic_prp':1 -> 'ipu1_ic_prpenc':0[1]"
media-ctl -l "'ipu1_ic_prpenc':1 -> 'ipu1_ic_prpenc capture':0[1]"
# Configure pads
media-ctl -V "'ov5640 1-003c':0 [fmt:$sensorfmt field:none]"
media-ctl -V "'imx6-mipi-csi2':2 [fmt:$sensorfmt field:none]"
media-ctl -V "'ipu1_csi1':1 [fmt:AYUV32/$sensordim field:none]"
media-ctl -V "'ipu1_ic_prp':1 [fmt:AYUV32/$sensordim field:none]"
media-ctl -V "'ipu1_ic_prpenc':1 [fmt:$outputfmt field:none]"
Streaming can then begin on "ipu1_ic_prpenc capture" node. The v4l2-ctl
tool can be used to select any supported YUV or RGB pixelformat on the
capture device node.
Known Issues
------------
1. When using 90 or 270 degree rotation control at capture resolutions
near the IC resizer limit of 1024x1024, and combined with planar
pixel formats (YUV420, YUV422p), frame capture will often fail with
no end-of-frame interrupts from the IDMAC channel. To work around
this, use lower resolution and/or packed formats (YUYV, RGB3, etc.)
when 90 or 270 rotations are needed.
File list
---------
drivers/staging/media/imx/
include/media/imx.h
include/linux/imx-media.h
References
----------
.. [#f1] http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6DQRM.pdf
.. [#f2] http://www.nxp.com/assets/documents/data/en/reference-manuals/IMX6SDLRM.pdf
Authors
-------
Steve Longerbeam <steve_longerbeam@mentor.com>
Philipp Zabel <kernel@pengutronix.de>
Russell King <linux@armlinux.org.uk>
Copyright (C) 2012-2017 Mentor Graphics Inc.
......@@ -27,6 +27,8 @@ source "drivers/staging/media/cxd2099/Kconfig"
source "drivers/staging/media/davinci_vpfe/Kconfig"
source "drivers/staging/media/imx/Kconfig"
source "drivers/staging/media/omap4iss/Kconfig"
# Keep LIRC at the end, as it has sub-menus
......
obj-$(CONFIG_I2C_BCM2048) += bcm2048/
obj-$(CONFIG_DVB_CXD2099) += cxd2099/
obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx/
obj-$(CONFIG_LIRC_STAGING) += lirc/
obj-$(CONFIG_VIDEO_DM365_VPFE) += davinci_vpfe/
obj-$(CONFIG_VIDEO_OMAP4) += omap4iss/
......
config VIDEO_IMX_MEDIA
tristate "i.MX5/6 V4L2 media core driver"
depends on MEDIA_CONTROLLER && VIDEO_V4L2 && ARCH_MXC && IMX_IPUV3_CORE
select V4L2_FWNODE
---help---
Say yes here to enable support for video4linux media controller
driver for the i.MX5/6 SOC.
imx-media-objs := imx-media-dev.o imx-media-internal-sd.o imx-media-of.o
imx-media-common-objs := imx-media-utils.o imx-media-fim.o
obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx-media.o
obj-$(CONFIG_VIDEO_IMX_MEDIA) += imx-media-common.o
/*
* V4L2 Media Controller Driver for Freescale i.MX5/6 SOC
*
* Copyright (c) 2016 Mentor Graphics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/timer.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-event.h>
#include <media/v4l2-ioctl.h>
#include <media/v4l2-mc.h>
#include <video/imx-ipu-v3.h>
#include <media/imx.h>
#include "imx-media.h"
static inline struct imx_media_dev *notifier2dev(struct v4l2_async_notifier *n)
{
return container_of(n, struct imx_media_dev, subdev_notifier);
}
/*
* Find a subdev by device node or device name. This is called during
* driver load to form the async subdev list and bind them.
*/
struct imx_media_subdev *
imx_media_find_async_subdev(struct imx_media_dev *imxmd,
struct device_node *np,
const char *devname)
{
struct fwnode_handle *fwnode = np ? of_fwnode_handle(np) : NULL;
struct imx_media_subdev *imxsd;
int i;
for (i = 0; i < imxmd->subdev_notifier.num_subdevs; i++) {
imxsd = &imxmd->subdev[i];
switch (imxsd->asd.match_type) {
case V4L2_ASYNC_MATCH_FWNODE:
if (fwnode && imxsd->asd.match.fwnode.fwnode == fwnode)
return imxsd;
break;
case V4L2_ASYNC_MATCH_DEVNAME:
if (devname &&
!strcmp(imxsd->asd.match.device_name.name, devname))
return imxsd;
break;
default:
break;
}
}
return NULL;
}
/*
* Adds a subdev to the async subdev list. If np is non-NULL, adds
* the async as a V4L2_ASYNC_MATCH_FWNODE match type, otherwise as
* a V4L2_ASYNC_MATCH_DEVNAME match type using the dev_name of the
* given platform_device. This is called during driver load when
* forming the async subdev list.
*/
struct imx_media_subdev *
imx_media_add_async_subdev(struct imx_media_dev *imxmd,
struct device_node *np,
struct platform_device *pdev)
{
struct imx_media_subdev *imxsd;
struct v4l2_async_subdev *asd;
const char *devname = NULL;
int sd_idx;
mutex_lock(&imxmd->mutex);
if (pdev)
devname = dev_name(&pdev->dev);
/* return NULL if this subdev already added */
if (imx_media_find_async_subdev(imxmd, np, devname)) {
dev_dbg(imxmd->md.dev, "%s: already added %s\n",
__func__, np ? np->name : devname);
imxsd = NULL;
goto out;
}
sd_idx = imxmd->subdev_notifier.num_subdevs;
if (sd_idx >= IMX_MEDIA_MAX_SUBDEVS) {
dev_err(imxmd->md.dev, "%s: too many subdevs! can't add %s\n",
__func__, np ? np->name : devname);
imxsd = ERR_PTR(-ENOSPC);
goto out;
}
imxsd = &imxmd->subdev[sd_idx];
asd = &imxsd->asd;
if (np) {
asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
asd->match.fwnode.fwnode = of_fwnode_handle(np);
} else {
asd->match_type = V4L2_ASYNC_MATCH_DEVNAME;
strncpy(imxsd->devname, devname, sizeof(imxsd->devname));
asd->match.device_name.name = imxsd->devname;
imxsd->pdev = pdev;
}
imxmd->async_ptrs[sd_idx] = asd;
imxmd->subdev_notifier.num_subdevs++;
dev_dbg(imxmd->md.dev, "%s: added %s, match type %s\n",
__func__, np ? np->name : devname, np ? "FWNODE" : "DEVNAME");
out:
mutex_unlock(&imxmd->mutex);
return imxsd;
}
/*
* Adds an imx-media link to a subdev pad's link list. This is called
* during driver load when forming the links between subdevs.
*
* @pad: the local pad
* @remote_node: the device node of the remote subdev
* @remote_devname: the device name of the remote subdev
* @local_pad: local pad index
* @remote_pad: remote pad index
*/
int imx_media_add_pad_link(struct imx_media_dev *imxmd,
struct imx_media_pad *pad,
struct device_node *remote_node,
const char *remote_devname,
int local_pad, int remote_pad)
{
struct imx_media_link *link;
int link_idx, ret = 0;
mutex_lock(&imxmd->mutex);
link_idx = pad->num_links;
if (link_idx >= IMX_MEDIA_MAX_LINKS) {
dev_err(imxmd->md.dev, "%s: too many links!\n", __func__);
ret = -ENOSPC;
goto out;
}
link = &pad->link[link_idx];
link->remote_sd_node = remote_node;
if (remote_devname)
strncpy(link->remote_devname, remote_devname,
sizeof(link->remote_devname));
link->local_pad = local_pad;
link->remote_pad = remote_pad;
pad->num_links++;
out:
mutex_unlock(&imxmd->mutex);
return ret;
}
/*
* get IPU from this CSI and add it to the list of IPUs
* the media driver will control.
*/
static int imx_media_get_ipu(struct imx_media_dev *imxmd,
struct v4l2_subdev *csi_sd)
{
struct ipu_soc *ipu;
int ipu_id;
ipu = dev_get_drvdata(csi_sd->dev->parent);
if (!ipu) {
v4l2_err(&imxmd->v4l2_dev,
"CSI %s has no parent IPU!\n", csi_sd->name);
return -ENODEV;
}
ipu_id = ipu_get_num(ipu);
if (ipu_id > 1) {
v4l2_err(&imxmd->v4l2_dev, "invalid IPU id %d!\n", ipu_id);
return -ENODEV;
}
if (!imxmd->ipu[ipu_id])
imxmd->ipu[ipu_id] = ipu;
return 0;
}
/* async subdev bound notifier */
static int imx_media_subdev_bound(struct v4l2_async_notifier *notifier,
struct v4l2_subdev *sd,
struct v4l2_async_subdev *asd)
{
struct imx_media_dev *imxmd = notifier2dev(notifier);
struct device_node *np = to_of_node(sd->fwnode);
struct imx_media_subdev *imxsd;
int ret = 0;
mutex_lock(&imxmd->mutex);
imxsd = imx_media_find_async_subdev(imxmd, np, dev_name(sd->dev));
if (!imxsd) {
ret = -EINVAL;
goto out;
}
if (sd->grp_id & IMX_MEDIA_GRP_ID_CSI) {
ret = imx_media_get_ipu(imxmd, sd);
if (ret)
goto out_unlock;
} else if (sd->entity.function == MEDIA_ENT_F_VID_MUX) {
/* this is a video mux */
sd->grp_id = IMX_MEDIA_GRP_ID_VIDMUX;
} else if (imxsd->num_sink_pads == 0) {
/*
* this is an original source of video frames, it
* could be a camera sensor, an analog decoder, or
* a bridge device (HDMI -> MIPI CSI-2 for example).
* This group ID is used to locate the entity that
* is the original source of video in a pipeline.
*/
sd->grp_id = IMX_MEDIA_GRP_ID_SENSOR;
}
/* attach the subdev */
imxsd->sd = sd;
out:
if (ret)
v4l2_warn(&imxmd->v4l2_dev,
"Received unknown subdev %s\n", sd->name);
else
v4l2_info(&imxmd->v4l2_dev,
"Registered subdev %s\n", sd->name);
out_unlock:
mutex_unlock(&imxmd->mutex);
return ret;
}
/*
* Create a single source->sink media link given a subdev and a single
* link from one of its source pads. Called after all subdevs have
* registered.
*/
static int imx_media_create_link(struct imx_media_dev *imxmd,
struct imx_media_subdev *src,
struct imx_media_link *link)
{
struct imx_media_subdev *sink;
u16 source_pad, sink_pad;
int ret;
sink = imx_media_find_async_subdev(imxmd, link->remote_sd_node,
link->remote_devname);
if (!sink) {
v4l2_warn(&imxmd->v4l2_dev, "%s: no sink for %s:%d\n",
__func__, src->sd->name, link->local_pad);
return 0;
}
source_pad = link->local_pad;
sink_pad = link->remote_pad;
v4l2_info(&imxmd->v4l2_dev, "%s: %s:%d -> %s:%d\n", __func__,
src->sd->name, source_pad, sink->sd->name, sink_pad);
ret = media_create_pad_link(&src->sd->entity, source_pad,
&sink->sd->entity, sink_pad, 0);
if (ret)
v4l2_err(&imxmd->v4l2_dev,
"create_pad_link failed: %d\n", ret);
return ret;
}
/*
* create the media links from all imx-media pads and their links.
* Called after all subdevs have registered.
*/
static int imx_media_create_links(struct imx_media_dev *imxmd)
{
struct imx_media_subdev *imxsd;
struct imx_media_link *link;
struct imx_media_pad *pad;
int num_pads, i, j, k;
int ret = 0;
for (i = 0; i < imxmd->num_subdevs; i++) {
imxsd = &imxmd->subdev[i];
num_pads = imxsd->num_sink_pads + imxsd->num_src_pads;
for (j = 0; j < num_pads; j++) {
pad = &imxsd->pad[j];
/* only create the source->sink links */
if (!(pad->pad.flags & MEDIA_PAD_FL_SOURCE))
continue;
for (k = 0; k < pad->num_links; k++) {
link = &pad->link[k];
ret = imx_media_create_link(imxmd, imxsd, link);
if (ret)
goto out;
}
}
}
out:
return ret;
}
/*
* adds given video device to given imx-media source pad vdev list.
* Continues upstream from the pad entity's sink pads.
*/
static int imx_media_add_vdev_to_pad(struct imx_media_dev *imxmd,
struct imx_media_video_dev *vdev,
struct media_pad *srcpad)
{
struct media_entity *entity = srcpad->entity;
struct imx_media_subdev *imxsd;
struct imx_media_pad *imxpad;
struct media_link *link;
struct v4l2_subdev *sd;
int i, vdev_idx, ret;
/* skip this entity if not a v4l2_subdev */
if (!is_media_entity_v4l2_subdev(entity))
return 0;
sd = media_entity_to_v4l2_subdev(entity);
imxsd = imx_media_find_subdev_by_sd(imxmd, sd);
if (IS_ERR(imxsd))
return PTR_ERR(imxsd);
imxpad = &imxsd->pad[srcpad->index];
vdev_idx = imxpad->num_vdevs;
/* just return if we've been here before */
for (i = 0; i < vdev_idx; i++)
if (vdev == imxpad->vdev[i])
return 0;
if (vdev_idx >= IMX_MEDIA_MAX_VDEVS) {
dev_err(imxmd->md.dev, "can't add %s to pad %s:%u\n",
vdev->vfd->entity.name, entity->name, srcpad->index);
return -ENOSPC;
}
dev_dbg(imxmd->md.dev, "adding %s to pad %s:%u\n",
vdev->vfd->entity.name, entity->name, srcpad->index);
imxpad->vdev[vdev_idx] = vdev;
imxpad->num_vdevs++;
/* move upstream from this entity's sink pads */
for (i = 0; i < entity->num_pads; i++) {
struct media_pad *pad = &entity->pads[i];
if (!(pad->flags & MEDIA_PAD_FL_SINK))
continue;
list_for_each_entry(link, &entity->links, list) {
if (link->sink != pad)
continue;
ret = imx_media_add_vdev_to_pad(imxmd, vdev,
link->source);
if (ret)
return ret;
}
}
return 0;
}
/* form the vdev lists in all imx-media source pads */
static int imx_media_create_pad_vdev_lists(struct imx_media_dev *imxmd)
{
struct imx_media_video_dev *vdev;
struct media_link *link;
int i, ret;
for (i = 0; i < imxmd->num_vdevs; i++) {
vdev = imxmd->vdev[i];
link = list_first_entry(&vdev->vfd->entity.links,
struct media_link, list);
ret = imx_media_add_vdev_to_pad(imxmd, vdev, link->source);
if (ret)
break;
}
return ret;
}
/* async subdev complete notifier */
static int imx_media_probe_complete(struct v4l2_async_notifier *notifier)
{
struct imx_media_dev *imxmd = notifier2dev(notifier);
int i, ret;
mutex_lock(&imxmd->mutex);
/* make sure all subdevs were bound */
for (i = 0; i < imxmd->num_subdevs; i++) {
if (!imxmd->subdev[i].sd) {
v4l2_err(&imxmd->v4l2_dev, "unbound subdev!\n");
ret = -ENODEV;
goto unlock;
}
}
ret = imx_media_create_links(imxmd);
if (ret)
goto unlock;
ret = imx_media_create_pad_vdev_lists(imxmd);
if (ret)
goto unlock;
ret = v4l2_device_register_subdev_nodes(&imxmd->v4l2_dev);
unlock:
mutex_unlock(&imxmd->mutex);
if (ret)
return ret;
return media_device_register(&imxmd->md);
}
/*
* adds controls to a video device from an entity subdevice.
* Continues upstream from the entity's sink pads.
*/
static int imx_media_inherit_controls(struct imx_media_dev *imxmd,
struct video_device *vfd,
struct media_entity *entity)
{
int i, ret = 0;
if (is_media_entity_v4l2_subdev(entity)) {
struct v4l2_subdev *sd = media_entity_to_v4l2_subdev(entity);
dev_dbg(imxmd->md.dev,
"adding controls to %s from %s\n",
vfd->entity.name, sd->entity.name);
ret = v4l2_ctrl_add_handler(vfd->ctrl_handler,
sd->ctrl_handler,
NULL);
if (ret)
return ret;
}
/* move upstream */
for (i = 0; i < entity->num_pads; i++) {
struct media_pad *pad, *spad = &entity->pads[i];
if (!(spad->flags & MEDIA_PAD_FL_SINK))
continue;
pad = media_entity_remote_pad(spad);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
continue;
ret = imx_media_inherit_controls(imxmd, vfd, pad->entity);
if (ret)
break;
}
return ret;
}
static int imx_media_link_notify(struct media_link *link, u32 flags,
unsigned int notification)
{
struct media_entity *source = link->source->entity;
struct imx_media_subdev *imxsd;
struct imx_media_pad *imxpad;
struct imx_media_dev *imxmd;
struct video_device *vfd;
struct v4l2_subdev *sd;
int i, pad_idx, ret;
ret = v4l2_pipeline_link_notify(link, flags, notification);
if (ret)
return ret;
/* don't bother if source is not a subdev */
if (!is_media_entity_v4l2_subdev(source))
return 0;
sd = media_entity_to_v4l2_subdev(source);
pad_idx = link->source->index;
imxmd = dev_get_drvdata(sd->v4l2_dev->dev);
imxsd = imx_media_find_subdev_by_sd(imxmd, sd);
if (IS_ERR(imxsd))
return PTR_ERR(imxsd);
imxpad = &imxsd->pad[pad_idx];
/*
* Before disabling a link, reset controls for all video
* devices reachable from this link.
*
* After enabling a link, refresh controls for all video
* devices reachable from this link.
*/
if (notification == MEDIA_DEV_NOTIFY_PRE_LINK_CH &&
!(flags & MEDIA_LNK_FL_ENABLED)) {
for (i = 0; i < imxpad->num_vdevs; i++) {
vfd = imxpad->vdev[i]->vfd;
dev_dbg(imxmd->md.dev,
"reset controls for %s\n",
vfd->entity.name);
v4l2_ctrl_handler_free(vfd->ctrl_handler);
v4l2_ctrl_handler_init(vfd->ctrl_handler, 0);
}
} else if (notification == MEDIA_DEV_NOTIFY_POST_LINK_CH &&
(link->flags & MEDIA_LNK_FL_ENABLED)) {
for (i = 0; i < imxpad->num_vdevs; i++) {
vfd = imxpad->vdev[i]->vfd;
dev_dbg(imxmd->md.dev,
"refresh controls for %s\n",
vfd->entity.name);
ret = imx_media_inherit_controls(imxmd, vfd,
&vfd->entity);
if (ret)
break;
}
}
return ret;
}
static const struct media_device_ops imx_media_md_ops = {
.link_notify = imx_media_link_notify,
};
static int imx_media_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct imx_media_subdev *csi[4] = {0};
struct imx_media_dev *imxmd;
int ret;
imxmd = devm_kzalloc(dev, sizeof(*imxmd), GFP_KERNEL);
if (!imxmd)
return -ENOMEM;
dev_set_drvdata(dev, imxmd);
strlcpy(imxmd->md.model, "imx-media", sizeof(imxmd->md.model));
imxmd->md.ops = &imx_media_md_ops;
imxmd->md.dev = dev;
mutex_init(&imxmd->mutex);
imxmd->v4l2_dev.mdev = &imxmd->md;
strlcpy(imxmd->v4l2_dev.name, "imx-media",
sizeof(imxmd->v4l2_dev.name));
media_device_init(&imxmd->md);
ret = v4l2_device_register(dev, &imxmd->v4l2_dev);
if (ret < 0) {
v4l2_err(&imxmd->v4l2_dev,
"Failed to register v4l2_device: %d\n", ret);
goto cleanup;
}
dev_set_drvdata(imxmd->v4l2_dev.dev, imxmd);
ret = imx_media_of_parse(imxmd, &csi, node);
if (ret) {
v4l2_err(&imxmd->v4l2_dev,
"imx_media_of_parse failed with %d\n", ret);
goto unreg_dev;
}
ret = imx_media_add_internal_subdevs(imxmd, csi);
if (ret) {
v4l2_err(&imxmd->v4l2_dev,
"add_internal_subdevs failed with %d\n", ret);
goto unreg_dev;
}
/* no subdevs? just bail */
imxmd->num_subdevs = imxmd->subdev_notifier.num_subdevs;
if (imxmd->num_subdevs == 0) {
ret = -ENODEV;
goto unreg_dev;
}
/* prepare the async subdev notifier and register it */
imxmd->subdev_notifier.subdevs = imxmd->async_ptrs;
imxmd->subdev_notifier.bound = imx_media_subdev_bound;
imxmd->subdev_notifier.complete = imx_media_probe_complete;
ret = v4l2_async_notifier_register(&imxmd->v4l2_dev,
&imxmd->subdev_notifier);
if (ret) {
v4l2_err(&imxmd->v4l2_dev,
"v4l2_async_notifier_register failed with %d\n", ret);
goto del_int;
}
return 0;
del_int:
imx_media_remove_internal_subdevs(imxmd);
unreg_dev:
v4l2_device_unregister(&imxmd->v4l2_dev);
cleanup:
media_device_cleanup(&imxmd->md);
return ret;
}
static int imx_media_remove(struct platform_device *pdev)
{
struct imx_media_dev *imxmd =
(struct imx_media_dev *)platform_get_drvdata(pdev);
v4l2_info(&imxmd->v4l2_dev, "Removing imx-media\n");
v4l2_async_notifier_unregister(&imxmd->subdev_notifier);
imx_media_remove_internal_subdevs(imxmd);
v4l2_device_unregister(&imxmd->v4l2_dev);
media_device_unregister(&imxmd->md);
media_device_cleanup(&imxmd->md);
return 0;
}
static const struct of_device_id imx_media_dt_ids[] = {
{ .compatible = "fsl,imx-capture-subsystem" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_media_dt_ids);
static struct platform_driver imx_media_pdrv = {
.probe = imx_media_probe,
.remove = imx_media_remove,
.driver = {
.name = "imx-media",
.of_match_table = imx_media_dt_ids,
},
};
module_platform_driver(imx_media_pdrv);
MODULE_DESCRIPTION("i.MX5/6 v4l2 media controller driver");
MODULE_AUTHOR("Steve Longerbeam <steve_longerbeam@mentor.com>");
MODULE_LICENSE("GPL");
/*
* Frame Interval Monitor.
*
* Copyright (c) 2016 Mentor Graphics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/delay.h>
#include <linux/irq.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include <media/imx.h>
#include "imx-media.h"
enum {
FIM_CL_ENABLE = 0,
FIM_CL_NUM,
FIM_CL_TOLERANCE_MIN,
FIM_CL_TOLERANCE_MAX,
FIM_CL_NUM_SKIP,
FIM_NUM_CONTROLS,
};
enum {
FIM_CL_ICAP_EDGE = 0,
FIM_CL_ICAP_CHANNEL,
FIM_NUM_ICAP_CONTROLS,
};
#define FIM_CL_ENABLE_DEF 0 /* FIM disabled by default */
#define FIM_CL_NUM_DEF 8 /* average 8 frames */
#define FIM_CL_NUM_SKIP_DEF 2 /* skip 2 frames after restart */
#define FIM_CL_TOLERANCE_MIN_DEF 50 /* usec */
#define FIM_CL_TOLERANCE_MAX_DEF 0 /* no max tolerance (unbounded) */
struct imx_media_fim {
struct imx_media_dev *md;
/* the owning subdev of this fim instance */
struct v4l2_subdev *sd;
/* FIM's control handler */
struct v4l2_ctrl_handler ctrl_handler;
/* control clusters */
struct v4l2_ctrl *ctrl[FIM_NUM_CONTROLS];
struct v4l2_ctrl *icap_ctrl[FIM_NUM_ICAP_CONTROLS];
spinlock_t lock; /* protect control values */
/* current control values */
bool enabled;
int num_avg;
int num_skip;
unsigned long tolerance_min; /* usec */
unsigned long tolerance_max; /* usec */
/* input capture method of measuring FI */
int icap_channel;
int icap_flags;
int counter;
struct timespec last_ts;
unsigned long sum; /* usec */
unsigned long nominal; /* usec */
struct completion icap_first_event;
bool stream_on;
};
#define icap_enabled(fim) ((fim)->icap_flags != IRQ_TYPE_NONE)
static void update_fim_nominal(struct imx_media_fim *fim,
const struct v4l2_fract *fi)
{
if (fi->denominator == 0) {
dev_dbg(fim->sd->dev, "no frame interval, FIM disabled\n");
fim->enabled = false;
return;
}
fim->nominal = DIV_ROUND_CLOSEST_ULL(1000000ULL * (u64)fi->numerator,
fi->denominator);
dev_dbg(fim->sd->dev, "FI=%lu usec\n", fim->nominal);
}
static void reset_fim(struct imx_media_fim *fim, bool curval)
{
struct v4l2_ctrl *icap_chan = fim->icap_ctrl[FIM_CL_ICAP_CHANNEL];
struct v4l2_ctrl *icap_edge = fim->icap_ctrl[FIM_CL_ICAP_EDGE];
struct v4l2_ctrl *en = fim->ctrl[FIM_CL_ENABLE];
struct v4l2_ctrl *num = fim->ctrl[FIM_CL_NUM];
struct v4l2_ctrl *skip = fim->ctrl[FIM_CL_NUM_SKIP];
struct v4l2_ctrl *tol_min = fim->ctrl[FIM_CL_TOLERANCE_MIN];
struct v4l2_ctrl *tol_max = fim->ctrl[FIM_CL_TOLERANCE_MAX];
if (curval) {
fim->enabled = en->cur.val;
fim->icap_flags = icap_edge->cur.val;
fim->icap_channel = icap_chan->cur.val;
fim->num_avg = num->cur.val;
fim->num_skip = skip->cur.val;
fim->tolerance_min = tol_min->cur.val;
fim->tolerance_max = tol_max->cur.val;
} else {
fim->enabled = en->val;
fim->icap_flags = icap_edge->val;
fim->icap_channel = icap_chan->val;
fim->num_avg = num->val;
fim->num_skip = skip->val;
fim->tolerance_min = tol_min->val;
fim->tolerance_max = tol_max->val;
}
/* disable tolerance range if max <= min */
if (fim->tolerance_max <= fim->tolerance_min)
fim->tolerance_max = 0;
/* num_skip must be >= 1 if input capture not used */
if (!icap_enabled(fim))
fim->num_skip = max_t(int, fim->num_skip, 1);
fim->counter = -fim->num_skip;
fim->sum = 0;
}
static void send_fim_event(struct imx_media_fim *fim, unsigned long error)
{
static const struct v4l2_event ev = {
.type = V4L2_EVENT_IMX_FRAME_INTERVAL_ERROR,
};
v4l2_subdev_notify_event(fim->sd, &ev);
}
/*
* Monitor an averaged frame interval. If the average deviates too much
* from the nominal frame rate, send the frame interval error event. The
* frame intervals are averaged in order to quiet noise from
* (presumably random) interrupt latency.
*/
static void frame_interval_monitor(struct imx_media_fim *fim,
struct timespec *ts)
{
unsigned long interval, error, error_avg;
bool send_event = false;
struct timespec diff;
if (!fim->enabled || ++fim->counter <= 0)
goto out_update_ts;
diff = timespec_sub(*ts, fim->last_ts);
interval = diff.tv_sec * 1000 * 1000 + diff.tv_nsec / 1000;
error = abs(interval - fim->nominal);
if (fim->tolerance_max && error >= fim->tolerance_max) {
dev_dbg(fim->sd->dev,
"FIM: %lu ignored, out of tolerance bounds\n",
error);
fim->counter--;
goto out_update_ts;
}
fim->sum += error;
if (fim->counter == fim->num_avg) {
error_avg = DIV_ROUND_CLOSEST(fim->sum, fim->num_avg);
if (error_avg > fim->tolerance_min)
send_event = true;
dev_dbg(fim->sd->dev, "FIM: error: %lu usec%s\n",
error_avg, send_event ? " (!!!)" : "");
fim->counter = 0;
fim->sum = 0;
}
out_update_ts:
fim->last_ts = *ts;
if (send_event)
send_fim_event(fim, error_avg);
}
#ifdef CONFIG_IMX_GPT_ICAP
/*
* Input Capture method of measuring frame intervals. Not subject
* to interrupt latency.
*/
static void fim_input_capture_handler(int channel, void *dev_id,
struct timespec *ts)
{
struct imx_media_fim *fim = dev_id;
unsigned long flags;
spin_lock_irqsave(&fim->lock, flags);
frame_interval_monitor(fim, ts);
if (!completion_done(&fim->icap_first_event))
complete(&fim->icap_first_event);
spin_unlock_irqrestore(&fim->lock, flags);
}
static int fim_request_input_capture(struct imx_media_fim *fim)
{
init_completion(&fim->icap_first_event);
return mxc_request_input_capture(fim->icap_channel,
fim_input_capture_handler,
fim->icap_flags, fim);
}
static void fim_free_input_capture(struct imx_media_fim *fim)
{
mxc_free_input_capture(fim->icap_channel, fim);
}
#else /* CONFIG_IMX_GPT_ICAP */
static int fim_request_input_capture(struct imx_media_fim *fim)
{
return 0;
}
static void fim_free_input_capture(struct imx_media_fim *fim)
{
}
#endif /* CONFIG_IMX_GPT_ICAP */
/*
* In case we are monitoring the first frame interval after streamon
* (when fim->num_skip = 0), we need a valid fim->last_ts before we
* can begin. This only applies to the input capture method. It is not
* possible to accurately measure the first FI after streamon using the
* EOF method, so fim->num_skip minimum is set to 1 in that case, so this
* function is a noop when the EOF method is used.
*/
static void fim_acquire_first_ts(struct imx_media_fim *fim)
{
unsigned long ret;
if (!fim->enabled || fim->num_skip > 0)
return;
ret = wait_for_completion_timeout(
&fim->icap_first_event,
msecs_to_jiffies(IMX_MEDIA_EOF_TIMEOUT));
if (ret == 0)
v4l2_warn(fim->sd, "wait first icap event timeout\n");
}
/* FIM Controls */
static int fim_s_ctrl(struct v4l2_ctrl *ctrl)
{
struct imx_media_fim *fim = container_of(ctrl->handler,
struct imx_media_fim,
ctrl_handler);
unsigned long flags;
int ret = 0;
spin_lock_irqsave(&fim->lock, flags);
switch (ctrl->id) {
case V4L2_CID_IMX_FIM_ENABLE:
break;
case V4L2_CID_IMX_FIM_ICAP_EDGE:
if (fim->stream_on)
ret = -EBUSY;
break;
default:
ret = -EINVAL;
}
if (!ret)
reset_fim(fim, false);
spin_unlock_irqrestore(&fim->lock, flags);
return ret;
}
static const struct v4l2_ctrl_ops fim_ctrl_ops = {
.s_ctrl = fim_s_ctrl,
};
static const struct v4l2_ctrl_config fim_ctrl[] = {
[FIM_CL_ENABLE] = {
.ops = &fim_ctrl_ops,
.id = V4L2_CID_IMX_FIM_ENABLE,
.name = "FIM Enable",
.type = V4L2_CTRL_TYPE_BOOLEAN,
.def = FIM_CL_ENABLE_DEF,
.min = 0,
.max = 1,
.step = 1,
},
[FIM_CL_NUM] = {
.ops = &fim_ctrl_ops,
.id = V4L2_CID_IMX_FIM_NUM,
.name = "FIM Num Average",
.type = V4L2_CTRL_TYPE_INTEGER,
.def = FIM_CL_NUM_DEF,
.min = 1, /* no averaging */
.max = 64, /* average 64 frames */
.step = 1,
},
[FIM_CL_TOLERANCE_MIN] = {
.ops = &fim_ctrl_ops,
.id = V4L2_CID_IMX_FIM_TOLERANCE_MIN,
.name = "FIM Tolerance Min",
.type = V4L2_CTRL_TYPE_INTEGER,
.def = FIM_CL_TOLERANCE_MIN_DEF,
.min = 2,
.max = 200,
.step = 1,
},
[FIM_CL_TOLERANCE_MAX] = {
.ops = &fim_ctrl_ops,
.id = V4L2_CID_IMX_FIM_TOLERANCE_MAX,
.name = "FIM Tolerance Max",
.type = V4L2_CTRL_TYPE_INTEGER,
.def = FIM_CL_TOLERANCE_MAX_DEF,
.min = 0,
.max = 500,
.step = 1,
},
[FIM_CL_NUM_SKIP] = {
.ops = &fim_ctrl_ops,
.id = V4L2_CID_IMX_FIM_NUM_SKIP,
.name = "FIM Num Skip",
.type = V4L2_CTRL_TYPE_INTEGER,
.def = FIM_CL_NUM_SKIP_DEF,
.min = 0, /* skip no frames */
.max = 256, /* skip 256 frames */
.step = 1,
},
};
static const struct v4l2_ctrl_config fim_icap_ctrl[] = {
[FIM_CL_ICAP_EDGE] = {
.ops = &fim_ctrl_ops,
.id = V4L2_CID_IMX_FIM_ICAP_EDGE,
.name = "FIM Input Capture Edge",
.type = V4L2_CTRL_TYPE_INTEGER,
.def = IRQ_TYPE_NONE, /* input capture disabled by default */
.min = IRQ_TYPE_NONE,
.max = IRQ_TYPE_EDGE_BOTH,
.step = 1,
},
[FIM_CL_ICAP_CHANNEL] = {
.ops = &fim_ctrl_ops,
.id = V4L2_CID_IMX_FIM_ICAP_CHANNEL,
.name = "FIM Input Capture Channel",
.type = V4L2_CTRL_TYPE_INTEGER,
.def = 0,
.min = 0,
.max = 1,
.step = 1,
},
};
static int init_fim_controls(struct imx_media_fim *fim)
{
struct v4l2_ctrl_handler *hdlr = &fim->ctrl_handler;
int i, ret;
v4l2_ctrl_handler_init(hdlr, FIM_NUM_CONTROLS + FIM_NUM_ICAP_CONTROLS);
for (i = 0; i < FIM_NUM_CONTROLS; i++)
fim->ctrl[i] = v4l2_ctrl_new_custom(hdlr,
&fim_ctrl[i],
NULL);
for (i = 0; i < FIM_NUM_ICAP_CONTROLS; i++)
fim->icap_ctrl[i] = v4l2_ctrl_new_custom(hdlr,
&fim_icap_ctrl[i],
NULL);
if (hdlr->error) {
ret = hdlr->error;
goto err_free;
}
v4l2_ctrl_cluster(FIM_NUM_CONTROLS, fim->ctrl);
v4l2_ctrl_cluster(FIM_NUM_ICAP_CONTROLS, fim->icap_ctrl);
return 0;
err_free:
v4l2_ctrl_handler_free(hdlr);
return ret;
}
/*
* Monitor frame intervals via EOF interrupt. This method is
* subject to uncertainty errors introduced by interrupt latency.
*
* This is a noop if the Input Capture method is being used, since
* the frame_interval_monitor() is called by the input capture event
* callback handler in that case.
*/
void imx_media_fim_eof_monitor(struct imx_media_fim *fim, struct timespec *ts)
{
unsigned long flags;
spin_lock_irqsave(&fim->lock, flags);
if (!icap_enabled(fim))
frame_interval_monitor(fim, ts);
spin_unlock_irqrestore(&fim->lock, flags);
}
EXPORT_SYMBOL_GPL(imx_media_fim_eof_monitor);
/* Called by the subdev in its s_stream callback */
int imx_media_fim_set_stream(struct imx_media_fim *fim,
const struct v4l2_fract *fi,
bool on)
{
unsigned long flags;
int ret = 0;
v4l2_ctrl_lock(fim->ctrl[FIM_CL_ENABLE]);
if (fim->stream_on == on)
goto out;
if (on) {
spin_lock_irqsave(&fim->lock, flags);
reset_fim(fim, true);
update_fim_nominal(fim, fi);
spin_unlock_irqrestore(&fim->lock, flags);
if (icap_enabled(fim)) {
ret = fim_request_input_capture(fim);
if (ret)
goto out;
fim_acquire_first_ts(fim);
}
} else {
if (icap_enabled(fim))
fim_free_input_capture(fim);
}
fim->stream_on = on;
out:
v4l2_ctrl_unlock(fim->ctrl[FIM_CL_ENABLE]);
return ret;
}
EXPORT_SYMBOL_GPL(imx_media_fim_set_stream);
int imx_media_fim_add_controls(struct imx_media_fim *fim)
{
/* add the FIM controls to the calling subdev ctrl handler */
return v4l2_ctrl_add_handler(fim->sd->ctrl_handler,
&fim->ctrl_handler, NULL);
}
EXPORT_SYMBOL_GPL(imx_media_fim_add_controls);
/* Called by the subdev in its subdev registered callback */
struct imx_media_fim *imx_media_fim_init(struct v4l2_subdev *sd)
{
struct imx_media_fim *fim;
int ret;
fim = devm_kzalloc(sd->dev, sizeof(*fim), GFP_KERNEL);
if (!fim)
return ERR_PTR(-ENOMEM);
/* get media device */
fim->md = dev_get_drvdata(sd->v4l2_dev->dev);
fim->sd = sd;
spin_lock_init(&fim->lock);
ret = init_fim_controls(fim);
if (ret)
return ERR_PTR(ret);
return fim;
}
EXPORT_SYMBOL_GPL(imx_media_fim_init);
void imx_media_fim_free(struct imx_media_fim *fim)
{
v4l2_ctrl_handler_free(&fim->ctrl_handler);
}
EXPORT_SYMBOL_GPL(imx_media_fim_free);
/*
* Media driver for Freescale i.MX5/6 SOC
*
* Adds the internal subdevices and the media links between them.
*
* Copyright (c) 2016 Mentor Graphics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/platform_device.h>
#include "imx-media.h"
enum isd_enum {
isd_csi0 = 0,
isd_csi1,
isd_vdic,
isd_ic_prp,
isd_ic_prpenc,
isd_ic_prpvf,
num_isd,
};
static const struct internal_subdev_id {
enum isd_enum index;
const char *name;
u32 grp_id;
} isd_id[num_isd] = {
[isd_csi0] = {
.index = isd_csi0,
.grp_id = IMX_MEDIA_GRP_ID_CSI0,
.name = "imx-ipuv3-csi",
},
[isd_csi1] = {
.index = isd_csi1,
.grp_id = IMX_MEDIA_GRP_ID_CSI1,
.name = "imx-ipuv3-csi",
},
[isd_vdic] = {
.index = isd_vdic,
.grp_id = IMX_MEDIA_GRP_ID_VDIC,
.name = "imx-ipuv3-vdic",
},
[isd_ic_prp] = {
.index = isd_ic_prp,
.grp_id = IMX_MEDIA_GRP_ID_IC_PRP,
.name = "imx-ipuv3-ic",
},
[isd_ic_prpenc] = {
.index = isd_ic_prpenc,
.grp_id = IMX_MEDIA_GRP_ID_IC_PRPENC,
.name = "imx-ipuv3-ic",
},
[isd_ic_prpvf] = {
.index = isd_ic_prpvf,
.grp_id = IMX_MEDIA_GRP_ID_IC_PRPVF,
.name = "imx-ipuv3-ic",
},
};
struct internal_link {
const struct internal_subdev_id *remote_id;
int remote_pad;
};
struct internal_pad {
bool devnode; /* does this pad link to a device node */
struct internal_link link[IMX_MEDIA_MAX_LINKS];
};
static const struct internal_subdev {
const struct internal_subdev_id *id;
struct internal_pad pad[IMX_MEDIA_MAX_PADS];
int num_sink_pads;
int num_src_pads;
} internal_subdev[num_isd] = {
[isd_csi0] = {
.id = &isd_id[isd_csi0],
.num_sink_pads = CSI_NUM_SINK_PADS,
.num_src_pads = CSI_NUM_SRC_PADS,
.pad[CSI_SRC_PAD_DIRECT] = {
.link = {
{
.remote_id = &isd_id[isd_ic_prp],
.remote_pad = PRP_SINK_PAD,
}, {
.remote_id = &isd_id[isd_vdic],
.remote_pad = VDIC_SINK_PAD_DIRECT,
},
},
},
.pad[CSI_SRC_PAD_IDMAC] = {
.devnode = true,
},
},
[isd_csi1] = {
.id = &isd_id[isd_csi1],
.num_sink_pads = CSI_NUM_SINK_PADS,
.num_src_pads = CSI_NUM_SRC_PADS,
.pad[CSI_SRC_PAD_DIRECT] = {
.link = {
{
.remote_id = &isd_id[isd_ic_prp],
.remote_pad = PRP_SINK_PAD,
}, {
.remote_id = &isd_id[isd_vdic],
.remote_pad = VDIC_SINK_PAD_DIRECT,
},
},
},
.pad[CSI_SRC_PAD_IDMAC] = {
.devnode = true,
},
},
[isd_vdic] = {
.id = &isd_id[isd_vdic],
.num_sink_pads = VDIC_NUM_SINK_PADS,
.num_src_pads = VDIC_NUM_SRC_PADS,
.pad[VDIC_SINK_PAD_IDMAC] = {
.devnode = true,
},
.pad[VDIC_SRC_PAD_DIRECT] = {
.link = {
{
.remote_id = &isd_id[isd_ic_prp],
.remote_pad = PRP_SINK_PAD,
},
},
},
},
[isd_ic_prp] = {
.id = &isd_id[isd_ic_prp],
.num_sink_pads = PRP_NUM_SINK_PADS,
.num_src_pads = PRP_NUM_SRC_PADS,
.pad[PRP_SRC_PAD_PRPENC] = {
.link = {
{
.remote_id = &isd_id[isd_ic_prpenc],
.remote_pad = 0,
},
},
},
.pad[PRP_SRC_PAD_PRPVF] = {
.link = {
{
.remote_id = &isd_id[isd_ic_prpvf],
.remote_pad = 0,
},
},
},
},
[isd_ic_prpenc] = {
.id = &isd_id[isd_ic_prpenc],
.num_sink_pads = PRPENCVF_NUM_SINK_PADS,
.num_src_pads = PRPENCVF_NUM_SRC_PADS,
.pad[PRPENCVF_SRC_PAD] = {
.devnode = true,
},
},
[isd_ic_prpvf] = {
.id = &isd_id[isd_ic_prpvf],
.num_sink_pads = PRPENCVF_NUM_SINK_PADS,
.num_src_pads = PRPENCVF_NUM_SRC_PADS,
.pad[PRPENCVF_SRC_PAD] = {
.devnode = true,
},
},
};
/* form a device name given a group id and ipu id */
static inline void isd_id_to_devname(char *devname, int sz,
const struct internal_subdev_id *id,
int ipu_id)
{
int pdev_id = ipu_id * num_isd + id->index;
snprintf(devname, sz, "%s.%d", id->name, pdev_id);
}
/* adds the links from given internal subdev */
static int add_internal_links(struct imx_media_dev *imxmd,
const struct internal_subdev *isd,
struct imx_media_subdev *imxsd,
int ipu_id)
{
int i, num_pads, ret;
num_pads = isd->num_sink_pads + isd->num_src_pads;
for (i = 0; i < num_pads; i++) {
const struct internal_pad *intpad = &isd->pad[i];
struct imx_media_pad *pad = &imxsd->pad[i];
int j;
/* init the pad flags for this internal subdev */
pad->pad.flags = (i < isd->num_sink_pads) ?
MEDIA_PAD_FL_SINK : MEDIA_PAD_FL_SOURCE;
/* export devnode pad flag to the subdevs */
pad->devnode = intpad->devnode;
for (j = 0; ; j++) {
const struct internal_link *link;
char remote_devname[32];
link = &intpad->link[j];
if (!link->remote_id)
break;
isd_id_to_devname(remote_devname,
sizeof(remote_devname),
link->remote_id, ipu_id);
ret = imx_media_add_pad_link(imxmd, pad,
NULL, remote_devname,
i, link->remote_pad);
if (ret)
return ret;
}
}
return 0;
}
/* register an internal subdev as a platform device */
static struct imx_media_subdev *
add_internal_subdev(struct imx_media_dev *imxmd,
const struct internal_subdev *isd,
int ipu_id)
{
struct imx_media_internal_sd_platformdata pdata;
struct platform_device_info pdevinfo = {0};
struct imx_media_subdev *imxsd;
struct platform_device *pdev;
pdata.grp_id = isd->id->grp_id;
/* the id of IPU this subdev will control */
pdata.ipu_id = ipu_id;
/* create subdev name */
imx_media_grp_id_to_sd_name(pdata.sd_name, sizeof(pdata.sd_name),
pdata.grp_id, ipu_id);
pdevinfo.name = isd->id->name;
pdevinfo.id = ipu_id * num_isd + isd->id->index;
pdevinfo.parent = imxmd->md.dev;
pdevinfo.data = &pdata;
pdevinfo.size_data = sizeof(pdata);
pdevinfo.dma_mask = DMA_BIT_MASK(32);
pdev = platform_device_register_full(&pdevinfo);
if (IS_ERR(pdev))
return ERR_CAST(pdev);
imxsd = imx_media_add_async_subdev(imxmd, NULL, pdev);
if (IS_ERR(imxsd))
return imxsd;
imxsd->num_sink_pads = isd->num_sink_pads;
imxsd->num_src_pads = isd->num_src_pads;
return imxsd;
}
/* adds the internal subdevs in one ipu */
static int add_ipu_internal_subdevs(struct imx_media_dev *imxmd,
struct imx_media_subdev *csi0,
struct imx_media_subdev *csi1,
int ipu_id)
{
enum isd_enum i;
int ret;
for (i = 0; i < num_isd; i++) {
const struct internal_subdev *isd = &internal_subdev[i];
struct imx_media_subdev *imxsd;
/*
* the CSIs are represented in the device-tree, so those
* devices are added already, and are added to the async
* subdev list by of_parse_subdev(), so we are given those
* subdevs as csi0 and csi1.
*/
switch (isd->id->grp_id) {
case IMX_MEDIA_GRP_ID_CSI0:
imxsd = csi0;
break;
case IMX_MEDIA_GRP_ID_CSI1:
imxsd = csi1;
break;
default:
imxsd = add_internal_subdev(imxmd, isd, ipu_id);
break;
}
if (IS_ERR(imxsd))
return PTR_ERR(imxsd);
/* add the links from this subdev */
if (imxsd) {
ret = add_internal_links(imxmd, isd, imxsd, ipu_id);
if (ret)
return ret;
}
}
return 0;
}
int imx_media_add_internal_subdevs(struct imx_media_dev *imxmd,
struct imx_media_subdev *csi[4])
{
int ret;
ret = add_ipu_internal_subdevs(imxmd, csi[0], csi[1], 0);
if (ret)
goto remove;
ret = add_ipu_internal_subdevs(imxmd, csi[2], csi[3], 1);
if (ret)
goto remove;
return 0;
remove:
imx_media_remove_internal_subdevs(imxmd);
return ret;
}
void imx_media_remove_internal_subdevs(struct imx_media_dev *imxmd)
{
struct imx_media_subdev *imxsd;
int i;
for (i = 0; i < imxmd->subdev_notifier.num_subdevs; i++) {
imxsd = &imxmd->subdev[i];
if (!imxsd->pdev)
continue;
platform_device_unregister(imxsd->pdev);
}
}
/*
* Media driver for Freescale i.MX5/6 SOC
*
* Open Firmware parsing.
*
* Copyright (c) 2016 Mentor Graphics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/of_platform.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include <linux/of_graph.h>
#include <video/imx-ipu-v3.h>
#include "imx-media.h"
static int of_add_pad_link(struct imx_media_dev *imxmd,
struct imx_media_pad *pad,
struct device_node *local_sd_node,
struct device_node *remote_sd_node,
int local_pad, int remote_pad)
{
dev_dbg(imxmd->md.dev, "%s: adding %s:%d -> %s:%d\n", __func__,
local_sd_node->name, local_pad,
remote_sd_node->name, remote_pad);
return imx_media_add_pad_link(imxmd, pad, remote_sd_node, NULL,
local_pad, remote_pad);
}
static void of_parse_sensor(struct imx_media_dev *imxmd,
struct imx_media_subdev *sensor,
struct device_node *sensor_np)
{
struct device_node *endpoint;
endpoint = of_graph_get_next_endpoint(sensor_np, NULL);
if (endpoint) {
v4l2_fwnode_endpoint_parse(of_fwnode_handle(endpoint),
&sensor->sensor_ep);
of_node_put(endpoint);
}
}
static int of_get_port_count(const struct device_node *np)
{
struct device_node *ports, *child;
int num = 0;
/* check if this node has a ports subnode */
ports = of_get_child_by_name(np, "ports");
if (ports)
np = ports;
for_each_child_of_node(np, child)
if (of_node_cmp(child->name, "port") == 0)
num++;
of_node_put(ports);
return num;
}
/*
* find the remote device node and remote port id (remote pad #)
* given local endpoint node
*/
static void of_get_remote_pad(struct device_node *epnode,
struct device_node **remote_node,
int *remote_pad)
{
struct device_node *rp, *rpp;
struct device_node *remote;
rp = of_graph_get_remote_port(epnode);
rpp = of_graph_get_remote_port_parent(epnode);
if (of_device_is_compatible(rpp, "fsl,imx6q-ipu")) {
/* the remote is one of the CSI ports */
remote = rp;
*remote_pad = 0;
of_node_put(rpp);
} else {
remote = rpp;
if (of_property_read_u32(rp, "reg", remote_pad))
*remote_pad = 0;
of_node_put(rp);
}
if (!of_device_is_available(remote)) {
of_node_put(remote);
*remote_node = NULL;
} else {
*remote_node = remote;
}
}
static struct imx_media_subdev *
of_parse_subdev(struct imx_media_dev *imxmd, struct device_node *sd_np,
bool is_csi_port)
{
struct imx_media_subdev *imxsd;
int i, num_pads, ret;
if (!of_device_is_available(sd_np)) {
dev_dbg(imxmd->md.dev, "%s: %s not enabled\n", __func__,
sd_np->name);
return NULL;
}
/* register this subdev with async notifier */
imxsd = imx_media_add_async_subdev(imxmd, sd_np, NULL);
if (IS_ERR_OR_NULL(imxsd))
return imxsd;
if (is_csi_port) {
/*
* the ipu-csi has one sink port and two source ports.
* The source ports are not represented in the device tree,
* but are described by the internal pads and links later.
*/
num_pads = CSI_NUM_PADS;
imxsd->num_sink_pads = CSI_NUM_SINK_PADS;
} else if (of_device_is_compatible(sd_np, "fsl,imx6-mipi-csi2")) {
num_pads = of_get_port_count(sd_np);
/* the mipi csi2 receiver has only one sink port */
imxsd->num_sink_pads = 1;
} else if (of_device_is_compatible(sd_np, "video-mux")) {
num_pads = of_get_port_count(sd_np);
/* for the video mux, all but the last port are sinks */
imxsd->num_sink_pads = num_pads - 1;
} else {
num_pads = of_get_port_count(sd_np);
if (num_pads != 1) {
dev_warn(imxmd->md.dev,
"%s: unknown device %s with %d ports\n",
__func__, sd_np->name, num_pads);
return NULL;
}
/*
* we got to this node from this single source port,
* there are no sink pads.
*/
imxsd->num_sink_pads = 0;
}
if (imxsd->num_sink_pads >= num_pads)
return ERR_PTR(-EINVAL);
imxsd->num_src_pads = num_pads - imxsd->num_sink_pads;
dev_dbg(imxmd->md.dev, "%s: %s has %d pads (%d sink, %d src)\n",
__func__, sd_np->name, num_pads,
imxsd->num_sink_pads, imxsd->num_src_pads);
/*
* With no sink, this subdev node is the original source
* of video, parse it's media bus for use by the pipeline.
*/
if (imxsd->num_sink_pads == 0)
of_parse_sensor(imxmd, imxsd, sd_np);
for (i = 0; i < num_pads; i++) {
struct device_node *epnode = NULL, *port, *remote_np;
struct imx_media_subdev *remote_imxsd;
struct imx_media_pad *pad;
int remote_pad;
/* init this pad */
pad = &imxsd->pad[i];
pad->pad.flags = (i < imxsd->num_sink_pads) ?
MEDIA_PAD_FL_SINK : MEDIA_PAD_FL_SOURCE;
if (is_csi_port)
port = (i < imxsd->num_sink_pads) ? sd_np : NULL;
else
port = of_graph_get_port_by_id(sd_np, i);
if (!port)
continue;
for_each_child_of_node(port, epnode) {
of_get_remote_pad(epnode, &remote_np, &remote_pad);
if (!remote_np)
continue;
ret = of_add_pad_link(imxmd, pad, sd_np, remote_np,
i, remote_pad);
if (ret) {
imxsd = ERR_PTR(ret);
break;
}
if (i < imxsd->num_sink_pads) {
/* follow sink endpoints upstream */
remote_imxsd = of_parse_subdev(imxmd,
remote_np,
false);
if (IS_ERR(remote_imxsd)) {
imxsd = remote_imxsd;
break;
}
}
of_node_put(remote_np);
}
if (port != sd_np)
of_node_put(port);
if (IS_ERR(imxsd)) {
of_node_put(remote_np);
of_node_put(epnode);
break;
}
}
return imxsd;
}
int imx_media_of_parse(struct imx_media_dev *imxmd,
struct imx_media_subdev *(*csi)[4],
struct device_node *np)
{
struct imx_media_subdev *lcsi;
struct device_node *csi_np;
u32 ipu_id, csi_id;
int i, ret;
for (i = 0; ; i++) {
csi_np = of_parse_phandle(np, "ports", i);
if (!csi_np)
break;
lcsi = of_parse_subdev(imxmd, csi_np, true);
if (IS_ERR(lcsi)) {
ret = PTR_ERR(lcsi);
goto err_put;
}
ret = of_property_read_u32(csi_np, "reg", &csi_id);
if (ret) {
dev_err(imxmd->md.dev,
"%s: csi port missing reg property!\n",
__func__);
goto err_put;
}
ipu_id = of_alias_get_id(csi_np->parent, "ipu");
of_node_put(csi_np);
if (ipu_id > 1 || csi_id > 1) {
dev_err(imxmd->md.dev,
"%s: invalid ipu/csi id (%u/%u)\n",
__func__, ipu_id, csi_id);
return -EINVAL;
}
(*csi)[ipu_id * 2 + csi_id] = lcsi;
}
return 0;
err_put:
of_node_put(csi_np);
return ret;
}
/*
* V4L2 Media Controller Driver for Freescale i.MX5/6 SOC
*
* Copyright (c) 2016 Mentor Graphics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/module.h>
#include "imx-media.h"
/*
* List of supported pixel formats for the subdevs.
*
* In all of these tables, the non-mbus formats (with no
* mbus codes) must all fall at the end of the table.
*/
static const struct imx_media_pixfmt yuv_formats[] = {
{
.fourcc = V4L2_PIX_FMT_UYVY,
.codes = {
MEDIA_BUS_FMT_UYVY8_2X8,
MEDIA_BUS_FMT_UYVY8_1X16
},
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_YUYV,
.codes = {
MEDIA_BUS_FMT_YUYV8_2X8,
MEDIA_BUS_FMT_YUYV8_1X16
},
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 16,
},
/***
* non-mbus YUV formats start here. NOTE! when adding non-mbus
* formats, NUM_NON_MBUS_YUV_FORMATS must be updated below.
***/
{
.fourcc = V4L2_PIX_FMT_YUV420,
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 12,
.planar = true,
}, {
.fourcc = V4L2_PIX_FMT_YVU420,
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 12,
.planar = true,
}, {
.fourcc = V4L2_PIX_FMT_YUV422P,
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 16,
.planar = true,
}, {
.fourcc = V4L2_PIX_FMT_NV12,
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 12,
.planar = true,
}, {
.fourcc = V4L2_PIX_FMT_NV16,
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 16,
.planar = true,
},
};
#define NUM_NON_MBUS_YUV_FORMATS 5
#define NUM_YUV_FORMATS ARRAY_SIZE(yuv_formats)
#define NUM_MBUS_YUV_FORMATS (NUM_YUV_FORMATS - NUM_NON_MBUS_YUV_FORMATS)
static const struct imx_media_pixfmt rgb_formats[] = {
{
.fourcc = V4L2_PIX_FMT_RGB565,
.codes = {MEDIA_BUS_FMT_RGB565_2X8_LE},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 16,
}, {
.fourcc = V4L2_PIX_FMT_RGB24,
.codes = {
MEDIA_BUS_FMT_RGB888_1X24,
MEDIA_BUS_FMT_RGB888_2X12_LE
},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_RGB32,
.codes = {MEDIA_BUS_FMT_ARGB8888_1X32},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 32,
.ipufmt = true,
},
/*** raw bayer formats start here ***/
{
.fourcc = V4L2_PIX_FMT_SBGGR8,
.codes = {MEDIA_BUS_FMT_SBGGR8_1X8},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 8,
.bayer = true,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG8,
.codes = {MEDIA_BUS_FMT_SGBRG8_1X8},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 8,
.bayer = true,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG8,
.codes = {MEDIA_BUS_FMT_SGRBG8_1X8},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 8,
.bayer = true,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB8,
.codes = {MEDIA_BUS_FMT_SRGGB8_1X8},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 8,
.bayer = true,
}, {
.fourcc = V4L2_PIX_FMT_SBGGR16,
.codes = {
MEDIA_BUS_FMT_SBGGR10_1X10,
MEDIA_BUS_FMT_SBGGR12_1X12,
MEDIA_BUS_FMT_SBGGR14_1X14,
MEDIA_BUS_FMT_SBGGR16_1X16
},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 16,
.bayer = true,
}, {
.fourcc = V4L2_PIX_FMT_SGBRG16,
.codes = {
MEDIA_BUS_FMT_SGBRG10_1X10,
MEDIA_BUS_FMT_SGBRG12_1X12,
MEDIA_BUS_FMT_SGBRG14_1X14,
MEDIA_BUS_FMT_SGBRG16_1X16,
},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 16,
.bayer = true,
}, {
.fourcc = V4L2_PIX_FMT_SGRBG16,
.codes = {
MEDIA_BUS_FMT_SGRBG10_1X10,
MEDIA_BUS_FMT_SGRBG12_1X12,
MEDIA_BUS_FMT_SGRBG14_1X14,
MEDIA_BUS_FMT_SGRBG16_1X16,
},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 16,
.bayer = true,
}, {
.fourcc = V4L2_PIX_FMT_SRGGB16,
.codes = {
MEDIA_BUS_FMT_SRGGB10_1X10,
MEDIA_BUS_FMT_SRGGB12_1X12,
MEDIA_BUS_FMT_SRGGB14_1X14,
MEDIA_BUS_FMT_SRGGB16_1X16,
},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 16,
.bayer = true,
},
/***
* non-mbus RGB formats start here. NOTE! when adding non-mbus
* formats, NUM_NON_MBUS_RGB_FORMATS must be updated below.
***/
{
.fourcc = V4L2_PIX_FMT_BGR24,
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 24,
}, {
.fourcc = V4L2_PIX_FMT_BGR32,
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 32,
},
};
#define NUM_NON_MBUS_RGB_FORMATS 2
#define NUM_RGB_FORMATS ARRAY_SIZE(rgb_formats)
#define NUM_MBUS_RGB_FORMATS (NUM_RGB_FORMATS - NUM_NON_MBUS_RGB_FORMATS)
static const struct imx_media_pixfmt ipu_yuv_formats[] = {
{
.fourcc = V4L2_PIX_FMT_YUV32,
.codes = {MEDIA_BUS_FMT_AYUV8_1X32},
.cs = IPUV3_COLORSPACE_YUV,
.bpp = 32,
.ipufmt = true,
},
};
#define NUM_IPU_YUV_FORMATS ARRAY_SIZE(ipu_yuv_formats)
static const struct imx_media_pixfmt ipu_rgb_formats[] = {
{
.fourcc = V4L2_PIX_FMT_RGB32,
.codes = {MEDIA_BUS_FMT_ARGB8888_1X32},
.cs = IPUV3_COLORSPACE_RGB,
.bpp = 32,
.ipufmt = true,
},
};
#define NUM_IPU_RGB_FORMATS ARRAY_SIZE(ipu_rgb_formats)
static void init_mbus_colorimetry(struct v4l2_mbus_framefmt *mbus,
const struct imx_media_pixfmt *fmt)
{
mbus->colorspace = (fmt->cs == IPUV3_COLORSPACE_RGB) ?
V4L2_COLORSPACE_SRGB : V4L2_COLORSPACE_SMPTE170M;
mbus->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(mbus->colorspace);
mbus->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(mbus->colorspace);
mbus->quantization =
V4L2_MAP_QUANTIZATION_DEFAULT(fmt->cs == IPUV3_COLORSPACE_RGB,
mbus->colorspace,
mbus->ycbcr_enc);
}
static const struct imx_media_pixfmt *find_format(u32 fourcc,
u32 code,
enum codespace_sel cs_sel,
bool allow_non_mbus,
bool allow_bayer)
{
const struct imx_media_pixfmt *array, *fmt, *ret = NULL;
u32 array_size;
int i, j;
switch (cs_sel) {
case CS_SEL_YUV:
array_size = NUM_YUV_FORMATS;
array = yuv_formats;
break;
case CS_SEL_RGB:
array_size = NUM_RGB_FORMATS;
array = rgb_formats;
break;
case CS_SEL_ANY:
array_size = NUM_YUV_FORMATS + NUM_RGB_FORMATS;
array = yuv_formats;
break;
default:
return NULL;
}
for (i = 0; i < array_size; i++) {
if (cs_sel == CS_SEL_ANY && i >= NUM_YUV_FORMATS)
fmt = &rgb_formats[i - NUM_YUV_FORMATS];
else
fmt = &array[i];
if ((!allow_non_mbus && fmt->codes[0] == 0) ||
(!allow_bayer && fmt->bayer))
continue;
if (fourcc && fmt->fourcc == fourcc) {
ret = fmt;
goto out;
}
for (j = 0; code && fmt->codes[j]; j++) {
if (code == fmt->codes[j]) {
ret = fmt;
goto out;
}
}
}
out:
return ret;
}
static int enum_format(u32 *fourcc, u32 *code, u32 index,
enum codespace_sel cs_sel,
bool allow_non_mbus,
bool allow_bayer)
{
const struct imx_media_pixfmt *fmt;
u32 mbus_yuv_sz = NUM_MBUS_YUV_FORMATS;
u32 mbus_rgb_sz = NUM_MBUS_RGB_FORMATS;
u32 yuv_sz = NUM_YUV_FORMATS;
u32 rgb_sz = NUM_RGB_FORMATS;
switch (cs_sel) {
case CS_SEL_YUV:
if (index >= yuv_sz ||
(!allow_non_mbus && index >= mbus_yuv_sz))
return -EINVAL;
fmt = &yuv_formats[index];
break;
case CS_SEL_RGB:
if (index >= rgb_sz ||
(!allow_non_mbus && index >= mbus_rgb_sz))
return -EINVAL;
fmt = &rgb_formats[index];
if (!allow_bayer && fmt->bayer)
return -EINVAL;
break;
case CS_SEL_ANY:
if (!allow_non_mbus) {
if (index >= mbus_yuv_sz) {
index -= mbus_yuv_sz;
if (index >= mbus_rgb_sz)
return -EINVAL;
fmt = &rgb_formats[index];
if (!allow_bayer && fmt->bayer)
return -EINVAL;
} else {
fmt = &yuv_formats[index];
}
} else {
if (index >= yuv_sz + rgb_sz)
return -EINVAL;
if (index >= yuv_sz) {
fmt = &rgb_formats[index - yuv_sz];
if (!allow_bayer && fmt->bayer)
return -EINVAL;
} else {
fmt = &yuv_formats[index];
}
}
break;
default:
return -EINVAL;
}
if (fourcc)
*fourcc = fmt->fourcc;
if (code)
*code = fmt->codes[0];
return 0;
}
const struct imx_media_pixfmt *
imx_media_find_format(u32 fourcc, enum codespace_sel cs_sel, bool allow_bayer)
{
return find_format(fourcc, 0, cs_sel, true, allow_bayer);
}
EXPORT_SYMBOL_GPL(imx_media_find_format);
int imx_media_enum_format(u32 *fourcc, u32 index, enum codespace_sel cs_sel)
{
return enum_format(fourcc, NULL, index, cs_sel, true, false);
}
EXPORT_SYMBOL_GPL(imx_media_enum_format);
const struct imx_media_pixfmt *
imx_media_find_mbus_format(u32 code, enum codespace_sel cs_sel,
bool allow_bayer)
{
return find_format(0, code, cs_sel, false, allow_bayer);
}
EXPORT_SYMBOL_GPL(imx_media_find_mbus_format);
int imx_media_enum_mbus_format(u32 *code, u32 index, enum codespace_sel cs_sel,
bool allow_bayer)
{
return enum_format(NULL, code, index, cs_sel, false, allow_bayer);
}
EXPORT_SYMBOL_GPL(imx_media_enum_mbus_format);
const struct imx_media_pixfmt *
imx_media_find_ipu_format(u32 code, enum codespace_sel cs_sel)
{
const struct imx_media_pixfmt *array, *fmt, *ret = NULL;
u32 array_size;
int i, j;
switch (cs_sel) {
case CS_SEL_YUV:
array_size = NUM_IPU_YUV_FORMATS;
array = ipu_yuv_formats;
break;
case CS_SEL_RGB:
array_size = NUM_IPU_RGB_FORMATS;
array = ipu_rgb_formats;
break;
case CS_SEL_ANY:
array_size = NUM_IPU_YUV_FORMATS + NUM_IPU_RGB_FORMATS;
array = ipu_yuv_formats;
break;
default:
return NULL;
}
for (i = 0; i < array_size; i++) {
if (cs_sel == CS_SEL_ANY && i >= NUM_IPU_YUV_FORMATS)
fmt = &ipu_rgb_formats[i - NUM_IPU_YUV_FORMATS];
else
fmt = &array[i];
for (j = 0; code && fmt->codes[j]; j++) {
if (code == fmt->codes[j]) {
ret = fmt;
goto out;
}
}
}
out:
return ret;
}
EXPORT_SYMBOL_GPL(imx_media_find_ipu_format);
int imx_media_enum_ipu_format(u32 *code, u32 index, enum codespace_sel cs_sel)
{
switch (cs_sel) {
case CS_SEL_YUV:
if (index >= NUM_IPU_YUV_FORMATS)
return -EINVAL;
*code = ipu_yuv_formats[index].codes[0];
break;
case CS_SEL_RGB:
if (index >= NUM_IPU_RGB_FORMATS)
return -EINVAL;
*code = ipu_rgb_formats[index].codes[0];
break;
case CS_SEL_ANY:
if (index >= NUM_IPU_YUV_FORMATS + NUM_IPU_RGB_FORMATS)
return -EINVAL;
if (index >= NUM_IPU_YUV_FORMATS) {
index -= NUM_IPU_YUV_FORMATS;
*code = ipu_rgb_formats[index].codes[0];
} else {
*code = ipu_yuv_formats[index].codes[0];
}
break;
default:
return -EINVAL;
}
return 0;
}
EXPORT_SYMBOL_GPL(imx_media_enum_ipu_format);
int imx_media_init_mbus_fmt(struct v4l2_mbus_framefmt *mbus,
u32 width, u32 height, u32 code, u32 field,
const struct imx_media_pixfmt **cc)
{
const struct imx_media_pixfmt *lcc;
mbus->width = width;
mbus->height = height;
mbus->field = field;
if (code == 0)
imx_media_enum_mbus_format(&code, 0, CS_SEL_YUV, false);
lcc = imx_media_find_mbus_format(code, CS_SEL_ANY, false);
if (!lcc) {
lcc = imx_media_find_ipu_format(code, CS_SEL_ANY);
if (!lcc)
return -EINVAL;
}
mbus->code = code;
init_mbus_colorimetry(mbus, lcc);
if (cc)
*cc = lcc;
return 0;
}
EXPORT_SYMBOL_GPL(imx_media_init_mbus_fmt);
int imx_media_mbus_fmt_to_pix_fmt(struct v4l2_pix_format *pix,
struct v4l2_mbus_framefmt *mbus,
const struct imx_media_pixfmt *cc)
{
u32 stride;
if (!cc) {
cc = imx_media_find_ipu_format(mbus->code, CS_SEL_ANY);
if (!cc)
cc = imx_media_find_mbus_format(mbus->code, CS_SEL_ANY,
true);
if (!cc)
return -EINVAL;
}
/*
* TODO: the IPU currently does not support the AYUV32 format,
* so until it does convert to a supported YUV format.
*/
if (cc->ipufmt && cc->cs == IPUV3_COLORSPACE_YUV) {
u32 code;
imx_media_enum_mbus_format(&code, 0, CS_SEL_YUV, false);
cc = imx_media_find_mbus_format(code, CS_SEL_YUV, false);
}
stride = cc->planar ? mbus->width : (mbus->width * cc->bpp) >> 3;
pix->width = mbus->width;
pix->height = mbus->height;
pix->pixelformat = cc->fourcc;
pix->colorspace = mbus->colorspace;
pix->xfer_func = mbus->xfer_func;
pix->ycbcr_enc = mbus->ycbcr_enc;
pix->quantization = mbus->quantization;
pix->field = mbus->field;
pix->bytesperline = stride;
pix->sizeimage = (pix->width * pix->height * cc->bpp) >> 3;
return 0;
}
EXPORT_SYMBOL_GPL(imx_media_mbus_fmt_to_pix_fmt);
int imx_media_mbus_fmt_to_ipu_image(struct ipu_image *image,
struct v4l2_mbus_framefmt *mbus)
{
int ret;
memset(image, 0, sizeof(*image));
ret = imx_media_mbus_fmt_to_pix_fmt(&image->pix, mbus, NULL);
if (ret)
return ret;
image->rect.width = mbus->width;
image->rect.height = mbus->height;
return 0;
}
EXPORT_SYMBOL_GPL(imx_media_mbus_fmt_to_ipu_image);
int imx_media_ipu_image_to_mbus_fmt(struct v4l2_mbus_framefmt *mbus,
struct ipu_image *image)
{
const struct imx_media_pixfmt *fmt;
fmt = imx_media_find_format(image->pix.pixelformat, CS_SEL_ANY, true);
if (!fmt)
return -EINVAL;
memset(mbus, 0, sizeof(*mbus));
mbus->width = image->pix.width;
mbus->height = image->pix.height;
mbus->code = fmt->codes[0];
mbus->field = image->pix.field;
mbus->colorspace = image->pix.colorspace;
mbus->xfer_func = image->pix.xfer_func;
mbus->ycbcr_enc = image->pix.ycbcr_enc;
mbus->quantization = image->pix.quantization;
return 0;
}
EXPORT_SYMBOL_GPL(imx_media_ipu_image_to_mbus_fmt);
void imx_media_free_dma_buf(struct imx_media_dev *imxmd,
struct imx_media_dma_buf *buf)
{
if (buf->virt)
dma_free_coherent(imxmd->md.dev, buf->len,
buf->virt, buf->phys);
buf->virt = NULL;
buf->phys = 0;
}
EXPORT_SYMBOL_GPL(imx_media_free_dma_buf);
int imx_media_alloc_dma_buf(struct imx_media_dev *imxmd,
struct imx_media_dma_buf *buf,
int size)
{
imx_media_free_dma_buf(imxmd, buf);
buf->len = PAGE_ALIGN(size);
buf->virt = dma_alloc_coherent(imxmd->md.dev, buf->len, &buf->phys,
GFP_DMA | GFP_KERNEL);
if (!buf->virt) {
dev_err(imxmd->md.dev, "failed to alloc dma buffer\n");
return -ENOMEM;
}
return 0;
}
EXPORT_SYMBOL_GPL(imx_media_alloc_dma_buf);
/* form a subdev name given a group id and ipu id */
void imx_media_grp_id_to_sd_name(char *sd_name, int sz, u32 grp_id, int ipu_id)
{
int id;
switch (grp_id) {
case IMX_MEDIA_GRP_ID_CSI0...IMX_MEDIA_GRP_ID_CSI1:
id = (grp_id >> IMX_MEDIA_GRP_ID_CSI_BIT) - 1;
snprintf(sd_name, sz, "ipu%d_csi%d", ipu_id + 1, id);
break;
case IMX_MEDIA_GRP_ID_VDIC:
snprintf(sd_name, sz, "ipu%d_vdic", ipu_id + 1);
break;
case IMX_MEDIA_GRP_ID_IC_PRP:
snprintf(sd_name, sz, "ipu%d_ic_prp", ipu_id + 1);
break;
case IMX_MEDIA_GRP_ID_IC_PRPENC:
snprintf(sd_name, sz, "ipu%d_ic_prpenc", ipu_id + 1);
break;
case IMX_MEDIA_GRP_ID_IC_PRPVF:
snprintf(sd_name, sz, "ipu%d_ic_prpvf", ipu_id + 1);
break;
default:
break;
}
}
EXPORT_SYMBOL_GPL(imx_media_grp_id_to_sd_name);
struct imx_media_subdev *
imx_media_find_subdev_by_sd(struct imx_media_dev *imxmd,
struct v4l2_subdev *sd)
{
struct imx_media_subdev *imxsd;
int i;
for (i = 0; i < imxmd->num_subdevs; i++) {
imxsd = &imxmd->subdev[i];
if (sd == imxsd->sd)
return imxsd;
}
return ERR_PTR(-ENODEV);
}
EXPORT_SYMBOL_GPL(imx_media_find_subdev_by_sd);
struct imx_media_subdev *
imx_media_find_subdev_by_id(struct imx_media_dev *imxmd, u32 grp_id)
{
struct imx_media_subdev *imxsd;
int i;
for (i = 0; i < imxmd->num_subdevs; i++) {
imxsd = &imxmd->subdev[i];
if (imxsd->sd && imxsd->sd->grp_id == grp_id)
return imxsd;
}
return ERR_PTR(-ENODEV);
}
EXPORT_SYMBOL_GPL(imx_media_find_subdev_by_id);
/*
* Adds a video device to the master video device list. This is called by
* an async subdev that owns a video device when it is registered.
*/
int imx_media_add_video_device(struct imx_media_dev *imxmd,
struct imx_media_video_dev *vdev)
{
int vdev_idx, ret = 0;
mutex_lock(&imxmd->mutex);
vdev_idx = imxmd->num_vdevs;
if (vdev_idx >= IMX_MEDIA_MAX_VDEVS) {
dev_err(imxmd->md.dev,
"%s: too many video devices! can't add %s\n",
__func__, vdev->vfd->name);
ret = -ENOSPC;
goto out;
}
imxmd->vdev[vdev_idx] = vdev;
imxmd->num_vdevs++;
out:
mutex_unlock(&imxmd->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(imx_media_add_video_device);
/*
* Search upstream or downstream for a subdevice in the current pipeline
* with given grp_id, starting from start_entity. Returns the subdev's
* source/sink pad that it was reached from. Must be called with
* mdev->graph_mutex held.
*/
static struct media_pad *
find_pipeline_pad(struct imx_media_dev *imxmd,
struct media_entity *start_entity,
u32 grp_id, bool upstream)
{
struct media_entity *me = start_entity;
struct media_pad *pad = NULL;
struct v4l2_subdev *sd;
int i;
for (i = 0; i < me->num_pads; i++) {
struct media_pad *spad = &me->pads[i];
if ((upstream && !(spad->flags & MEDIA_PAD_FL_SINK)) ||
(!upstream && !(spad->flags & MEDIA_PAD_FL_SOURCE)))
continue;
pad = media_entity_remote_pad(spad);
if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
continue;
sd = media_entity_to_v4l2_subdev(pad->entity);
if (sd->grp_id & grp_id)
return pad;
return find_pipeline_pad(imxmd, pad->entity, grp_id, upstream);
}
return NULL;
}
/*
* Search upstream for a subdev in the current pipeline with
* given grp_id. Must be called with mdev->graph_mutex held.
*/
static struct v4l2_subdev *
find_upstream_subdev(struct imx_media_dev *imxmd,
struct media_entity *start_entity,
u32 grp_id)
{
struct v4l2_subdev *sd;
struct media_pad *pad;
if (is_media_entity_v4l2_subdev(start_entity)) {
sd = media_entity_to_v4l2_subdev(start_entity);
if (sd->grp_id & grp_id)
return sd;
}
pad = find_pipeline_pad(imxmd, start_entity, grp_id, true);
return pad ? media_entity_to_v4l2_subdev(pad->entity) : NULL;
}
/*
* Find the upstream mipi-csi2 virtual channel reached from the given
* start entity in the current pipeline.
* Must be called with mdev->graph_mutex held.
*/
int imx_media_find_mipi_csi2_channel(struct imx_media_dev *imxmd,
struct media_entity *start_entity)
{
struct media_pad *pad;
int ret = -EPIPE;
pad = find_pipeline_pad(imxmd, start_entity, IMX_MEDIA_GRP_ID_CSI2,
true);
if (pad) {
ret = pad->index - 1;
dev_dbg(imxmd->md.dev, "found vc%d from %s\n",
ret, start_entity->name);
}
return ret;
}
EXPORT_SYMBOL_GPL(imx_media_find_mipi_csi2_channel);
/*
* Find a subdev reached upstream from the given start entity in
* the current pipeline.
* Must be called with mdev->graph_mutex held.
*/
struct imx_media_subdev *
imx_media_find_upstream_subdev(struct imx_media_dev *imxmd,
struct media_entity *start_entity,
u32 grp_id)
{
struct v4l2_subdev *sd;
sd = find_upstream_subdev(imxmd, start_entity, grp_id);
if (!sd)
return ERR_PTR(-ENODEV);
return imx_media_find_subdev_by_sd(imxmd, sd);
}
EXPORT_SYMBOL_GPL(imx_media_find_upstream_subdev);
struct imx_media_subdev *
__imx_media_find_sensor(struct imx_media_dev *imxmd,
struct media_entity *start_entity)
{
return imx_media_find_upstream_subdev(imxmd, start_entity,
IMX_MEDIA_GRP_ID_SENSOR);
}
EXPORT_SYMBOL_GPL(__imx_media_find_sensor);
struct imx_media_subdev *
imx_media_find_sensor(struct imx_media_dev *imxmd,
struct media_entity *start_entity)
{
struct imx_media_subdev *sensor;
mutex_lock(&imxmd->md.graph_mutex);
sensor = __imx_media_find_sensor(imxmd, start_entity);
mutex_unlock(&imxmd->md.graph_mutex);
return sensor;
}
EXPORT_SYMBOL_GPL(imx_media_find_sensor);
/*
* Turn current pipeline streaming on/off starting from entity.
*/
int imx_media_pipeline_set_stream(struct imx_media_dev *imxmd,
struct media_entity *entity,
bool on)
{
struct v4l2_subdev *sd;
int ret = 0;
if (!is_media_entity_v4l2_subdev(entity))
return -EINVAL;
sd = media_entity_to_v4l2_subdev(entity);
mutex_lock(&imxmd->md.graph_mutex);
if (on) {
ret = __media_pipeline_start(entity, &imxmd->pipe);
if (ret)
goto out;
ret = v4l2_subdev_call(sd, video, s_stream, 1);
if (ret)
__media_pipeline_stop(entity);
} else {
v4l2_subdev_call(sd, video, s_stream, 0);
if (entity->pipe)
__media_pipeline_stop(entity);
}
out:
mutex_unlock(&imxmd->md.graph_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(imx_media_pipeline_set_stream);
MODULE_DESCRIPTION("i.MX5/6 v4l2 media controller driver");
MODULE_AUTHOR("Steve Longerbeam <steve_longerbeam@mentor.com>");
MODULE_LICENSE("GPL");
/*
* V4L2 Media Controller Driver for Freescale i.MX5/6 SOC
*
* Copyright (c) 2016 Mentor Graphics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#ifndef _IMX_MEDIA_H
#define _IMX_MEDIA_H
#include <media/v4l2-ctrls.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#include <media/videobuf2-dma-contig.h>
#include <video/imx-ipu-v3.h>
/*
* This is somewhat arbitrary, but we need at least:
* - 4 video devices per IPU
* - 3 IC subdevs per IPU
* - 1 VDIC subdev per IPU
* - 2 CSI subdevs per IPU
* - 1 mipi-csi2 receiver subdev
* - 2 video-mux subdevs
* - 2 camera sensor subdevs per IPU (1 parallel, 1 mipi-csi2)
*
*/
/* max video devices */
#define IMX_MEDIA_MAX_VDEVS 8
/* max subdevices */
#define IMX_MEDIA_MAX_SUBDEVS 32
/* max pads per subdev */
#define IMX_MEDIA_MAX_PADS 16
/* max links per pad */
#define IMX_MEDIA_MAX_LINKS 8
/*
* Pad definitions for the subdevs with multiple source or
* sink pads
*/
/* ipu_csi */
enum {
CSI_SINK_PAD = 0,
CSI_SRC_PAD_DIRECT,
CSI_SRC_PAD_IDMAC,
CSI_NUM_PADS,
};
#define CSI_NUM_SINK_PADS 1
#define CSI_NUM_SRC_PADS 2
/* ipu_vdic */
enum {
VDIC_SINK_PAD_DIRECT = 0,
VDIC_SINK_PAD_IDMAC,
VDIC_SRC_PAD_DIRECT,
VDIC_NUM_PADS,
};
#define VDIC_NUM_SINK_PADS 2
#define VDIC_NUM_SRC_PADS 1
/* ipu_ic_prp */
enum {
PRP_SINK_PAD = 0,
PRP_SRC_PAD_PRPENC,
PRP_SRC_PAD_PRPVF,
PRP_NUM_PADS,
};
#define PRP_NUM_SINK_PADS 1
#define PRP_NUM_SRC_PADS 2
/* ipu_ic_prpencvf */
enum {
PRPENCVF_SINK_PAD = 0,
PRPENCVF_SRC_PAD,
PRPENCVF_NUM_PADS,
};
#define PRPENCVF_NUM_SINK_PADS 1
#define PRPENCVF_NUM_SRC_PADS 1
/* How long to wait for EOF interrupts in the buffer-capture subdevs */
#define IMX_MEDIA_EOF_TIMEOUT 1000
struct imx_media_pixfmt {
u32 fourcc;
u32 codes[4];
int bpp; /* total bpp */
enum ipu_color_space cs;
bool planar; /* is a planar format */
bool bayer; /* is a raw bayer format */
bool ipufmt; /* is one of the IPU internal formats */
};
struct imx_media_buffer {
struct vb2_v4l2_buffer vbuf; /* v4l buffer must be first */
struct list_head list;
};
struct imx_media_video_dev {
struct video_device *vfd;
/* the user format */
struct v4l2_format fmt;
const struct imx_media_pixfmt *cc;
};
static inline struct imx_media_buffer *to_imx_media_vb(struct vb2_buffer *vb)
{
struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
return container_of(vbuf, struct imx_media_buffer, vbuf);
}
struct imx_media_link {
struct device_node *remote_sd_node;
char remote_devname[32];
int local_pad;
int remote_pad;
};
struct imx_media_pad {
struct media_pad pad;
struct imx_media_link link[IMX_MEDIA_MAX_LINKS];
bool devnode; /* does this pad link to a device node */
int num_links;
/*
* list of video devices that can be reached from this pad,
* list is only valid for source pads.
*/
struct imx_media_video_dev *vdev[IMX_MEDIA_MAX_VDEVS];
int num_vdevs;
};
struct imx_media_internal_sd_platformdata {
char sd_name[V4L2_SUBDEV_NAME_SIZE];
u32 grp_id;
int ipu_id;
};
struct imx_media_subdev {
struct v4l2_async_subdev asd;
struct v4l2_subdev *sd; /* set when bound */
struct imx_media_pad pad[IMX_MEDIA_MAX_PADS];
int num_sink_pads;
int num_src_pads;
/* the platform device if this is an internal subdev */
struct platform_device *pdev;
/* the devname is needed for async devname match */
char devname[32];
/* if this is a sensor */
struct v4l2_fwnode_endpoint sensor_ep;
};
struct imx_media_dev {
struct media_device md;
struct v4l2_device v4l2_dev;
/* the pipeline object */
struct media_pipeline pipe;
struct mutex mutex; /* protect elements below */
/* master subdevice list */
struct imx_media_subdev subdev[IMX_MEDIA_MAX_SUBDEVS];
int num_subdevs;
/* master video device list */
struct imx_media_video_dev *vdev[IMX_MEDIA_MAX_VDEVS];
int num_vdevs;
/* IPUs this media driver control, valid after subdevs bound */
struct ipu_soc *ipu[2];
/* for async subdev registration */
struct v4l2_async_subdev *async_ptrs[IMX_MEDIA_MAX_SUBDEVS];
struct v4l2_async_notifier subdev_notifier;
};
enum codespace_sel {
CS_SEL_YUV = 0,
CS_SEL_RGB,
CS_SEL_ANY,
};
const struct imx_media_pixfmt *
imx_media_find_format(u32 fourcc, enum codespace_sel cs_sel, bool allow_bayer);
int imx_media_enum_format(u32 *fourcc, u32 index, enum codespace_sel cs_sel);
const struct imx_media_pixfmt *
imx_media_find_mbus_format(u32 code, enum codespace_sel cs_sel,
bool allow_bayer);
int imx_media_enum_mbus_format(u32 *code, u32 index, enum codespace_sel cs_sel,
bool allow_bayer);
const struct imx_media_pixfmt *
imx_media_find_ipu_format(u32 code, enum codespace_sel cs_sel);
int imx_media_enum_ipu_format(u32 *code, u32 index, enum codespace_sel cs_sel);
int imx_media_init_mbus_fmt(struct v4l2_mbus_framefmt *mbus,
u32 width, u32 height, u32 code, u32 field,
const struct imx_media_pixfmt **cc);
int imx_media_mbus_fmt_to_pix_fmt(struct v4l2_pix_format *pix,
struct v4l2_mbus_framefmt *mbus,
const struct imx_media_pixfmt *cc);
int imx_media_mbus_fmt_to_ipu_image(struct ipu_image *image,
struct v4l2_mbus_framefmt *mbus);
int imx_media_ipu_image_to_mbus_fmt(struct v4l2_mbus_framefmt *mbus,
struct ipu_image *image);
struct imx_media_subdev *
imx_media_find_async_subdev(struct imx_media_dev *imxmd,
struct device_node *np,
const char *devname);
struct imx_media_subdev *
imx_media_add_async_subdev(struct imx_media_dev *imxmd,
struct device_node *np,
struct platform_device *pdev);
int imx_media_add_pad_link(struct imx_media_dev *imxmd,
struct imx_media_pad *pad,
struct device_node *remote_node,
const char *remote_devname,
int local_pad, int remote_pad);
void imx_media_grp_id_to_sd_name(char *sd_name, int sz,
u32 grp_id, int ipu_id);
int imx_media_add_internal_subdevs(struct imx_media_dev *imxmd,
struct imx_media_subdev *csi[4]);
void imx_media_remove_internal_subdevs(struct imx_media_dev *imxmd);
struct imx_media_subdev *
imx_media_find_subdev_by_sd(struct imx_media_dev *imxmd,
struct v4l2_subdev *sd);
struct imx_media_subdev *
imx_media_find_subdev_by_id(struct imx_media_dev *imxmd,
u32 grp_id);
int imx_media_add_video_device(struct imx_media_dev *imxmd,
struct imx_media_video_dev *vdev);
int imx_media_find_mipi_csi2_channel(struct imx_media_dev *imxmd,
struct media_entity *start_entity);
struct imx_media_subdev *
imx_media_find_upstream_subdev(struct imx_media_dev *imxmd,
struct media_entity *start_entity,
u32 grp_id);
struct imx_media_subdev *
__imx_media_find_sensor(struct imx_media_dev *imxmd,
struct media_entity *start_entity);
struct imx_media_subdev *
imx_media_find_sensor(struct imx_media_dev *imxmd,
struct media_entity *start_entity);
struct imx_media_dma_buf {
void *virt;
dma_addr_t phys;
unsigned long len;
};
void imx_media_free_dma_buf(struct imx_media_dev *imxmd,
struct imx_media_dma_buf *buf);
int imx_media_alloc_dma_buf(struct imx_media_dev *imxmd,
struct imx_media_dma_buf *buf,
int size);
int imx_media_pipeline_set_stream(struct imx_media_dev *imxmd,
struct media_entity *entity,
bool on);
/* imx-media-fim.c */
struct imx_media_fim;
void imx_media_fim_eof_monitor(struct imx_media_fim *fim, struct timespec *ts);
int imx_media_fim_set_stream(struct imx_media_fim *fim,
const struct v4l2_fract *frame_interval,
bool on);
int imx_media_fim_add_controls(struct imx_media_fim *fim);
struct imx_media_fim *imx_media_fim_init(struct v4l2_subdev *sd);
void imx_media_fim_free(struct imx_media_fim *fim);
/* imx-media-of.c */
struct imx_media_subdev *
imx_media_of_find_subdev(struct imx_media_dev *imxmd,
struct device_node *np,
const char *name);
int imx_media_of_parse(struct imx_media_dev *dev,
struct imx_media_subdev *(*csi)[4],
struct device_node *np);
/* imx-media-capture.c */
struct imx_media_video_dev *
imx_media_capture_device_init(struct v4l2_subdev *src_sd, int pad);
void imx_media_capture_device_remove(struct imx_media_video_dev *vdev);
int imx_media_capture_device_register(struct imx_media_video_dev *vdev);
void imx_media_capture_device_unregister(struct imx_media_video_dev *vdev);
struct imx_media_buffer *
imx_media_capture_device_next_buf(struct imx_media_video_dev *vdev);
void imx_media_capture_device_set_format(struct imx_media_video_dev *vdev,
struct v4l2_pix_format *pix);
void imx_media_capture_device_error(struct imx_media_video_dev *vdev);
/* subdev group ids */
#define IMX_MEDIA_GRP_ID_SENSOR (1 << 8)
#define IMX_MEDIA_GRP_ID_VIDMUX (1 << 9)
#define IMX_MEDIA_GRP_ID_CSI2 (1 << 10)
#define IMX_MEDIA_GRP_ID_CSI_BIT 11
#define IMX_MEDIA_GRP_ID_CSI (0x3 << IMX_MEDIA_GRP_ID_CSI_BIT)
#define IMX_MEDIA_GRP_ID_CSI0 (1 << IMX_MEDIA_GRP_ID_CSI_BIT)
#define IMX_MEDIA_GRP_ID_CSI1 (2 << IMX_MEDIA_GRP_ID_CSI_BIT)
#define IMX_MEDIA_GRP_ID_VDIC (1 << 13)
#define IMX_MEDIA_GRP_ID_IC_PRP (1 << 14)
#define IMX_MEDIA_GRP_ID_IC_PRPENC (1 << 15)
#define IMX_MEDIA_GRP_ID_IC_PRPVF (1 << 16)
#endif
/*
* Copyright (c) 2014-2017 Mentor Graphics Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the
* License, or (at your option) any later version
*/
#ifndef __MEDIA_IMX_H__
#define __MEDIA_IMX_H__
#include <linux/imx-media.h>
#endif
......@@ -185,6 +185,10 @@ enum v4l2_colorfx {
*/
#define V4L2_CID_USER_MAX217X_BASE (V4L2_CID_USER_BASE + 0x1090)
/* The base for the imx driver controls.
* We reserve 16 controls for this driver. */
#define V4L2_CID_USER_IMX_BASE (V4L2_CID_USER_BASE + 0x1090)
/* MPEG-class control IDs */
/* The MPEG controls are applicable to all codec controls
* and the 'MPEG' part of the define is historical */
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment