Commit e35a3e9a authored by Linus Torvalds's avatar Linus Torvalds

Merge bk://linux-pnp.bkbits.net/pnp-2.5

into home.transmeta.com:/home/torvalds/v2.5/linux
parents e315468f da334d91
......@@ -186,3 +186,9 @@ oprofile_arch_init(struct oprofile_operations **ops)
return 0;
}
void __exit
oprofile_arch_exit(void)
{
}
......@@ -84,7 +84,7 @@ core-y += arch/i386/kernel/ \
arch/i386/$(mcore-y)/
drivers-$(CONFIG_MATH_EMULATION) += arch/i386/math-emu/
drivers-$(CONFIG_PCI) += arch/i386/pci/
# FIXME: is drivers- right ?
# must be linked after kernel/
drivers-$(CONFIG_OPROFILE) += arch/i386/oprofile/
CFLAGS += $(mflags-y)
......
......@@ -522,7 +522,8 @@ int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
spin_lock(&call_lock);
call_data = &data;
wmb();
mb();
/* Send a message to all other CPUs and wait for them to respond */
send_IPI_allbutself(CALL_FUNCTION_VECTOR);
......
......@@ -17,6 +17,7 @@
*/
extern int nmi_init(struct oprofile_operations ** ops);
extern void nmi_exit(void);
extern void timer_init(struct oprofile_operations ** ops);
int __init oprofile_arch_init(struct oprofile_operations ** ops)
......@@ -27,3 +28,11 @@ int __init oprofile_arch_init(struct oprofile_operations ** ops)
timer_init(ops);
return 0;
}
void __exit oprofile_arch_exit(void)
{
#ifdef CONFIG_X86_LOCAL_APIC
nmi_exit();
#endif
}
......@@ -67,15 +67,22 @@ static struct device device_nmi = {
};
static int __init init_nmi_driverfs(void)
static int __init init_driverfs(void)
{
driver_register(&nmi_driver);
return device_register(&device_nmi);
}
late_initcall(init_nmi_driverfs);
static void __exit exit_driverfs(void)
{
device_unregister(&device_nmi);
driver_unregister(&nmi_driver);
}
#else
#define init_driverfs() do { } while (0)
#define exit_driverfs() do { } while (0)
#endif /* CONFIG_PM */
......@@ -297,6 +304,10 @@ static int __init ppro_init(void)
#endif /* !CONFIG_X86_64 */
/* in order to get driverfs right */
static int using_nmi;
int __init nmi_init(struct oprofile_operations ** ops)
{
__u8 vendor = current_cpu_data.x86_vendor;
......@@ -339,7 +350,16 @@ int __init nmi_init(struct oprofile_operations ** ops)
return 0;
}
init_driverfs();
using_nmi = 1;
*ops = &nmi_ops;
printk(KERN_INFO "oprofile: using NMI interrupt.\n");
return 1;
}
void __exit nmi_exit(void)
{
if (using_nmi)
exit_driverfs();
}
......@@ -18,3 +18,8 @@ int __init oprofile_arch_init(struct oprofile_operations ** ops)
timer_init(ops);
return 0;
}
void __exit oprofile_arch_exit()
{
}
......@@ -18,3 +18,8 @@ int __init oprofile_arch_init(struct oprofile_operations ** ops)
timer_init(ops);
return 0;
}
void __exit oprofile_arch_exit(void)
{
}
......@@ -36,12 +36,31 @@ void module_free(struct module *mod, void *module_region)
table entries. */
}
/* We don't need anything special. */
/* Make generic code ignore STT_REGISTER dummy undefined symbols. */
int module_frob_arch_sections(Elf_Ehdr *hdr,
Elf_Shdr *sechdrs,
char *secstrings,
struct module *mod)
{
unsigned int symidx;
Elf32_Sym *sym;
const char *strtab;
int i;
for (symidx = 0; sechdrs[symidx].sh_type != SHT_SYMTAB; symidx++) {
if (symidx == hdr->e_shnum-1) {
printk("%s: no symtab found.\n", mod->name);
return -ENOEXEC;
}
}
sym = (Elf32_Sym *)sechdrs[symidx].sh_addr;
strtab = (char *)sechdrs[sechdrs[symidx].sh_link].sh_addr;
for (i = 1; i < sechdrs[symidx].sh_size / sizeof(Elf_Sym); i++) {
if (sym[i].st_shndx == SHN_UNDEF &&
ELF32_ST_TYPE(sym[i].st_info) == STT_REGISTER)
sym[i].st_shndx = SHN_ABS;
}
return 0;
}
......
......@@ -143,12 +143,31 @@ void module_free(struct module *mod, void *module_region)
table entries. */
}
/* We don't need anything special. */
/* Make generic code ignore STT_REGISTER dummy undefined symbols. */
int module_frob_arch_sections(Elf_Ehdr *hdr,
Elf_Shdr *sechdrs,
char *secstrings,
struct module *mod)
{
unsigned int symidx;
Elf64_Sym *sym;
const char *strtab;
int i;
for (symidx = 0; sechdrs[symidx].sh_type != SHT_SYMTAB; symidx++) {
if (symidx == hdr->e_shnum-1) {
printk("%s: no symtab found.\n", mod->name);
return -ENOEXEC;
}
}
sym = (Elf64_Sym *)sechdrs[symidx].sh_addr;
strtab = (char *)sechdrs[sechdrs[symidx].sh_link].sh_addr;
for (i = 1; i < sechdrs[symidx].sh_size / sizeof(Elf_Sym); i++) {
if (sym[i].st_shndx == SHN_UNDEF &&
ELF64_ST_TYPE(sym[i].st_info) == STT_REGISTER)
sym[i].st_shndx = SHN_ABS;
}
return 0;
}
......
......@@ -18,3 +18,8 @@ int __init oprofile_arch_init(struct oprofile_operations ** ops)
timer_init(ops);
return 0;
}
void __exit oprofile_arch_exit(void)
{
}
......@@ -736,7 +736,7 @@ acpi_os_acquire_lock (
if (flags & ACPI_NOT_ISR)
ACPI_DISABLE_IRQS();
spin_lock(handle);
spin_lock((spinlock_t *)handle);
return_VOID;
}
......@@ -755,7 +755,7 @@ acpi_os_release_lock (
ACPI_DEBUG_PRINT ((ACPI_DB_MUTEX, "Releasing spinlock[%p] from %s level\n", handle,
((flags & ACPI_NOT_ISR) ? "non-interrupt" : "interrupt")));
spin_unlock(handle);
spin_unlock((spinlock_t *)handle);
if (flags & ACPI_NOT_ISR)
ACPI_ENABLE_IRQS();
......
......@@ -61,6 +61,14 @@
/* Measure times between events in the driver. */
#undef DEBUG_TIMING
/* Timing parameters. Call every 10 ms when not doing anything,
otherwise call every KCS_SHORT_TIMEOUT_USEC microseconds. */
#define KCS_TIMEOUT_TIME_USEC 10000
#define KCS_USEC_PER_JIFFY (1000000/HZ)
#define KCS_TIMEOUT_JIFFIES (KCS_TIMEOUT_TIME_USEC/KCS_USEC_PER_JIFFY)
#define KCS_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
short timeout */
#ifdef CONFIG_IPMI_KCS
/* This forces a dependency to the config file for this option. */
#endif
......@@ -132,6 +140,8 @@ struct kcs_info
int interrupt_disabled;
};
static void kcs_restart_short_timer(struct kcs_info *kcs_info);
static void deliver_recv_msg(struct kcs_info *kcs_info, struct ipmi_smi_msg *msg)
{
/* Deliver the message to the upper layer with the lock
......@@ -309,6 +319,9 @@ static void handle_transaction_done(struct kcs_info *kcs_info)
#endif
switch (kcs_info->kcs_state) {
case KCS_NORMAL:
if (!kcs_info->curr_msg)
break;
kcs_info->curr_msg->rsp_size
= kcs_get_result(kcs_info->kcs_sm,
kcs_info->curr_msg->rsp,
......@@ -563,8 +576,9 @@ static void sender(void *send_info,
spin_lock_irqsave(&(kcs_info->kcs_lock), flags);
result = kcs_event_handler(kcs_info, 0);
while (result != KCS_SM_IDLE) {
udelay(500);
result = kcs_event_handler(kcs_info, 500);
udelay(KCS_SHORT_TIMEOUT_USEC);
result = kcs_event_handler(kcs_info,
KCS_SHORT_TIMEOUT_USEC);
}
spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags);
return;
......@@ -582,6 +596,7 @@ static void sender(void *send_info,
&& (kcs_info->curr_msg == NULL))
{
start_next_msg(kcs_info);
kcs_restart_short_timer(kcs_info);
}
spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags);
}
......@@ -598,8 +613,9 @@ static void set_run_to_completion(void *send_info, int i_run_to_completion)
if (i_run_to_completion) {
result = kcs_event_handler(kcs_info, 0);
while (result != KCS_SM_IDLE) {
udelay(500);
result = kcs_event_handler(kcs_info, 500);
udelay(KCS_SHORT_TIMEOUT_USEC);
result = kcs_event_handler(kcs_info,
KCS_SHORT_TIMEOUT_USEC);
}
}
......@@ -613,14 +629,42 @@ static void request_events(void *send_info)
atomic_set(&kcs_info->req_events, 1);
}
/* Call every 10 ms. */
#define KCS_TIMEOUT_TIME_USEC 10000
#define KCS_USEC_PER_JIFFY (1000000/HZ)
#define KCS_TIMEOUT_JIFFIES (KCS_TIMEOUT_TIME_USEC/KCS_USEC_PER_JIFFY)
#define KCS_SHORT_TIMEOUT_USEC 500 /* .5ms when the SM request a
short timeout */
static int initialized = 0;
/* Must be called with interrupts off and with the kcs_lock held. */
static void kcs_restart_short_timer(struct kcs_info *kcs_info)
{
if (del_timer(&(kcs_info->kcs_timer))) {
#ifdef CONFIG_HIGH_RES_TIMERS
unsigned long jiffies_now;
/* If we don't delete the timer, then it will go off
immediately, anyway. So we only process if we
actually delete the timer. */
/* We already have irqsave on, so no need for it
here. */
read_lock(&xtime_lock);
jiffies_now = jiffies;
kcs_info->kcs_timer.expires = jiffies_now;
kcs_info->kcs_timer.sub_expires
= quick_update_jiffies_sub(jiffies_now);
read_unlock(&xtime_lock);
kcs_info->kcs_timer.sub_expires
+= usec_to_arch_cycles(KCS_SHORT_TIMEOUT_USEC);
while (kcs_info->kcs_timer.sub_expires >= cycles_per_jiffies) {
kcs_info->kcs_timer.expires++;
kcs_info->kcs_timer.sub_expires -= cycles_per_jiffies;
}
#else
kcs_info->kcs_timer.expires = jiffies + 1;
#endif
add_timer(&(kcs_info->kcs_timer));
}
}
static void kcs_timeout(unsigned long data)
{
struct kcs_info *kcs_info = (struct kcs_info *) data;
......@@ -643,12 +687,11 @@ static void kcs_timeout(unsigned long data)
printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
#endif
jiffies_now = jiffies;
time_diff = ((jiffies_now - kcs_info->last_timeout_jiffies)
* KCS_USEC_PER_JIFFY);
kcs_result = kcs_event_handler(kcs_info, time_diff);
spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags);
kcs_info->last_timeout_jiffies = jiffies_now;
if ((kcs_info->irq) && (! kcs_info->interrupt_disabled)) {
......@@ -669,6 +712,7 @@ static void kcs_timeout(unsigned long data)
}
} else {
kcs_info->kcs_timer.expires = jiffies + KCS_TIMEOUT_JIFFIES;
kcs_info->kcs_timer.sub_expires = 0;
}
#else
/* If requested, take the shortest delay possible */
......@@ -681,6 +725,7 @@ static void kcs_timeout(unsigned long data)
do_add_timer:
add_timer(&(kcs_info->kcs_timer));
spin_unlock_irqrestore(&(kcs_info->kcs_lock), flags);
}
static void kcs_irq_handler(int irq, void *data, struct pt_regs *regs)
......
......@@ -1765,9 +1765,13 @@ static void ipmi_timeout(unsigned long data)
}
static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
/* FIXME - convert these to slabs. */
static void free_smi_msg(struct ipmi_smi_msg *msg)
{
atomic_dec(&smi_msg_inuse_count);
kfree(msg);
}
......@@ -1775,13 +1779,16 @@ struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
{
struct ipmi_smi_msg *rv;
rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
if (rv)
if (rv) {
rv->done = free_smi_msg;
atomic_inc(&smi_msg_inuse_count);
}
return rv;
}
static void free_recv_msg(struct ipmi_recv_msg *msg)
{
atomic_dec(&recv_msg_inuse_count);
kfree(msg);
}
......@@ -1790,8 +1797,10 @@ struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
struct ipmi_recv_msg *rv;
rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
if (rv)
if (rv) {
rv->done = free_recv_msg;
atomic_inc(&recv_msg_inuse_count);
}
return rv;
}
......@@ -1924,6 +1933,8 @@ static __init int ipmi_init_msghandler(void)
static __exit void cleanup_ipmi(void)
{
int count;
if (!initialized)
return;
......@@ -1940,6 +1951,16 @@ static __exit void cleanup_ipmi(void)
}
initialized = 0;
/* Check for buffer leaks. */
count = atomic_read(&smi_msg_inuse_count);
if (count != 0)
printk("ipmi_msghandler: SMI message count %d at exit\n",
count);
count = atomic_read(&recv_msg_inuse_count);
if (count != 0)
printk("ipmi_msghandler: recv message count %d at exit\n",
count);
}
module_exit(cleanup_ipmi);
......
......@@ -506,8 +506,8 @@ void do_tty_hangup(void *data)
p->tty = NULL;
if (!p->leader)
continue;
send_sig(SIGHUP, p, 1);
send_sig(SIGCONT, p, 1);
send_group_sig_info(SIGHUP, SEND_SIG_PRIV, p);
send_group_sig_info(SIGCONT, SEND_SIG_PRIV, p);
if (tty->pgrp > 0)
p->tty_old_pgrp = tty->pgrp;
}
......
......@@ -2036,7 +2036,7 @@ modem_write_profile(atemu * m)
memcpy(m->pmsn, m->msn, ISDN_MSNLEN);
memcpy(m->plmsn, m->lmsn, ISDN_LMSNLEN);
if (dev->profd)
send_sig(SIGIO, dev->profd, 1);
group_send_sig_info(SIGIO, SEND_SIG_PRIV, dev->profd);
}
int
......
......@@ -148,6 +148,7 @@ static int __init oprofile_init(void)
static void __exit oprofile_exit(void)
{
oprofilefs_unregister();
oprofile_arch_exit();
}
......
......@@ -465,7 +465,7 @@ static void send_sigio_to_task(struct task_struct *p,
break;
/* fall-through: fall back on the old plain SIGIO signal */
case 0:
send_sig(SIGIO, p, 1);
send_group_sig_info(SIGIO, SEND_SIG_PRIV, p);
}
}
......@@ -501,7 +501,7 @@ static void send_sigurg_to_task(struct task_struct *p,
struct fown_struct *fown)
{
if (sigio_perm(p, fown))
send_sig(SIGURG, p, 1);
send_group_sig_info(SIGURG, SEND_SIG_PRIV, p);
}
int send_sigurg(struct fown_struct *fown)
......
......@@ -45,6 +45,11 @@ struct oprofile_operations {
*/
int oprofile_arch_init(struct oprofile_operations ** ops);
/**
* One-time exit/cleanup for the arch.
*/
void oprofile_arch_exit(void);
/**
* Add a sample. This may be called from any context. Pass
* smp_processor_id() as cpu.
......
......@@ -541,6 +541,7 @@ extern void block_all_signals(int (*notifier)(void *priv), void *priv,
extern void unblock_all_signals(void);
extern void release_task(struct task_struct * p);
extern int send_sig_info(int, struct siginfo *, struct task_struct *);
extern int send_group_sig_info(int, struct siginfo *, struct task_struct *);
extern int force_sig_info(int, struct siginfo *, struct task_struct *);
extern int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp);
extern int kill_pg_info(int, struct siginfo *, pid_t);
......@@ -558,6 +559,11 @@ extern int kill_proc(pid_t, int, int);
extern int do_sigaction(int, const struct k_sigaction *, struct k_sigaction *);
extern int do_sigaltstack(const stack_t *, stack_t *, unsigned long);
/* These can be the second arg to send_sig_info/send_group_sig_info. */
#define SEND_SIG_NOINFO ((struct siginfo *) 0)
#define SEND_SIG_PRIV ((struct siginfo *) 1)
#define SEND_SIG_FORCED ((struct siginfo *) 2)
/* True if we are on the alternate signal stack. */
static inline int on_sig_stack(unsigned long sp)
......
......@@ -138,12 +138,10 @@ typedef enum {
*/
typedef union {
sctp_cid_t chunk;
sctp_event_timeout_t timeout;
sctp_event_other_t other;
sctp_event_primitive_t primitive;
} sctp_subtype_t;
#define SCTP_SUBTYPE_CONSTRUCTOR(_name, _type, _elt) \
......@@ -421,9 +419,9 @@ typedef enum {
/* Reasons to retransmit. */
typedef enum {
SCTP_RETRANSMIT_T3_RTX,
SCTP_RETRANSMIT_FAST_RTX,
SCTP_RETRANSMIT_PMTU_DISCOVERY,
SCTP_RTXR_T3_RTX,
SCTP_RTXR_FAST_RTX,
SCTP_RTXR_PMTUD,
} sctp_retransmit_reason_t;
/* Reasons to lower cwnd. */
......
......@@ -123,14 +123,14 @@
*/
extern struct sctp_protocol sctp_proto;
extern struct sock *sctp_get_ctl_sock(void);
extern int sctp_copy_local_addr_list(struct sctp_protocol *,
extern int sctp_copy_local_addr_list(struct sctp_protocol *,
struct sctp_bind_addr *,
sctp_scope_t, int priority, int flags);
extern struct sctp_pf *sctp_get_pf_specific(sa_family_t family);
extern int sctp_register_pf(struct sctp_pf *, sa_family_t);
/*
* sctp_socket.c
* sctp/socket.c
*/
extern int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb);
extern int sctp_inet_listen(struct socket *sock, int backlog);
......@@ -139,7 +139,7 @@ extern unsigned int sctp_poll(struct file *file, struct socket *sock,
poll_table *wait);
/*
* sctp_primitive.c
* sctp/primitive.c
*/
extern int sctp_primitive_ASSOCIATE(sctp_association_t *, void *arg);
extern int sctp_primitive_SHUTDOWN(sctp_association_t *, void *arg);
......@@ -148,14 +148,14 @@ extern int sctp_primitive_SEND(sctp_association_t *, void *arg);
extern int sctp_primitive_REQUESTHEARTBEAT(sctp_association_t *, void *arg);
/*
* sctp_crc32c.c
* sctp/crc32c.c
*/
extern __u32 sctp_start_cksum(__u8 *ptr, __u16 count);
extern __u32 sctp_update_cksum(__u8 *ptr, __u16 count, __u32 cksum);
extern __u32 sctp_end_cksum(__u32 cksum);
/*
* sctp_input.c
* sctp/input.c
*/
extern int sctp_rcv(struct sk_buff *skb);
extern void sctp_v4_err(struct sk_buff *skb, u32 info);
......@@ -170,9 +170,16 @@ extern void __sctp_unhash_endpoint(sctp_endpoint_t *);
extern sctp_association_t *__sctp_lookup_association(const union sctp_addr *,
const union sctp_addr *,
struct sctp_transport **);
extern struct sock *sctp_err_lookup(int family, struct sk_buff *,
struct sctphdr *, struct sctp_endpoint **,
struct sctp_association **,
struct sctp_transport **);
extern void sctp_err_finish(struct sock *, struct sctp_endpoint *,
struct sctp_association *);
extern void sctp_icmp_frag_needed(struct sock *, struct sctp_association *,
struct sctp_transport *t, __u32 pmtu);
/*
* sctp_hashdriver.c
* sctp/hashdriver.c
*/
extern void sctp_hash_digest(const char *secret, const int secret_len,
const char *text, const int text_len,
......@@ -184,9 +191,7 @@ extern void sctp_hash_digest(const char *secret, const int secret_len,
#ifdef TEST_FRAME
#include <test_frame.h>
#else
/* spin lock wrappers. */
......@@ -194,28 +199,28 @@ extern void sctp_hash_digest(const char *secret, const int secret_len,
#define sctp_spin_unlock_irqrestore(lock, flags) \
spin_unlock_irqrestore(lock, flags)
#define sctp_local_bh_disable() local_bh_disable()
#define sctp_local_bh_enable() local_bh_enable()
#define sctp_spin_lock(lock) spin_lock(lock)
#define sctp_spin_unlock(lock) spin_unlock(lock)
#define sctp_write_lock(lock) write_lock(lock)
#define sctp_local_bh_enable() local_bh_enable()
#define sctp_spin_lock(lock) spin_lock(lock)
#define sctp_spin_unlock(lock) spin_unlock(lock)
#define sctp_write_lock(lock) write_lock(lock)
#define sctp_write_unlock(lock) write_unlock(lock)
#define sctp_read_lock(lock) read_lock(lock)
#define sctp_read_unlock(lock) read_unlock(lock)
#define sctp_read_lock(lock) read_lock(lock)
#define sctp_read_unlock(lock) read_unlock(lock)
/* sock lock wrappers. */
#define sctp_lock_sock(sk) lock_sock(sk)
#define sctp_release_sock(sk) release_sock(sk)
#define sctp_bh_lock_sock(sk) bh_lock_sock(sk)
#define sctp_bh_unlock_sock(sk) bh_unlock_sock(sk)
#define SCTP_SOCK_SLEEP_PRE(sk) SOCK_SLEEP_PRE(sk)
#define sctp_lock_sock(sk) lock_sock(sk)
#define sctp_release_sock(sk) release_sock(sk)
#define sctp_bh_lock_sock(sk) bh_lock_sock(sk)
#define sctp_bh_unlock_sock(sk) bh_unlock_sock(sk)
#define SCTP_SOCK_SLEEP_PRE(sk) SOCK_SLEEP_PRE(sk)
#define SCTP_SOCK_SLEEP_POST(sk) SOCK_SLEEP_POST(sk)
/* SCTP SNMP MIB stats handlers */
DECLARE_SNMP_STAT(struct sctp_mib, sctp_statistics);
#define SCTP_INC_STATS(field) SNMP_INC_STATS(sctp_statistics, field)
#define SCTP_INC_STATS_BH(field) SNMP_INC_STATS_BH(sctp_statistics, field)
#define SCTP_INC_STATS_USER(field) SNMP_INC_STATS_USER(sctp_statistics, field)
#define SCTP_DEC_STATS(field) SNMP_DEC_STATS(sctp_statistics, field)
#define SCTP_INC_STATS(field) SNMP_INC_STATS(sctp_statistics, field)
#define SCTP_INC_STATS_BH(field) SNMP_INC_STATS_BH(sctp_statistics, field)
#define SCTP_INC_STATS_USER(field) SNMP_INC_STATS_USER(sctp_statistics, field)
#define SCTP_DEC_STATS(field) SNMP_DEC_STATS(sctp_statistics, field)
/* Determine if this is a valid kernel address. */
static inline int sctp_is_valid_kaddr(unsigned long addr)
......@@ -312,7 +317,6 @@ static inline void sctp_sysctl_register(void) { return; }
static inline void sctp_sysctl_unregister(void) { return; }
#endif
/* Size of Supported Address Parameter for 'x' address types. */
#define SCTP_SAT_LEN(x) (sizeof(struct sctp_paramhdr) + (x) * sizeof(__u16))
......@@ -320,19 +324,15 @@ static inline void sctp_sysctl_unregister(void) { return; }
extern int sctp_v6_init(void);
extern void sctp_v6_exit(void);
static inline int sctp_ipv6_addr_type(const struct in6_addr *addr)
{
return ipv6_addr_type((struct in6_addr*) addr);
}
extern void sctp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
int type, int code, int offset, __u32 info);
#else /* #ifdef defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
#else /* #ifdef defined(CONFIG_IPV6) */
#define sctp_ipv6_addr_type(a) 0
static inline int sctp_v6_init(void) { return 0; }
static inline void sctp_v6_exit(void) { return; }
#endif /* #ifdef defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */
#endif /* #if defined(CONFIG_IPV6) */
/* Map an association to an assoc_id. */
static inline sctp_assoc_t sctp_assoc2id(const sctp_association_t *asoc)
......@@ -414,13 +414,22 @@ static inline __s32 sctp_jitter(__u32 rto)
sctp_rand ^= (sctp_rand << 12);
sctp_rand ^= (sctp_rand >> 20);
/* Choose random number from 0 to rto, then move to -50% ~ +50%
* of rto.
/* Choose random number from 0 to rto, then move to -50% ~ +50%
* of rto.
*/
ret = sctp_rand % rto - (rto >> 1);
return ret;
}
/* Break down data chunks at this point. */
static inline int sctp_frag_point(int pmtu)
{
pmtu -= SCTP_IP_OVERHEAD + sizeof(struct sctp_data_chunk);
pmtu -= sizeof(struct sctp_sack_chunk);
return pmtu;
}
/* Walk through a list of TLV parameters. Don't trust the
* individual parameter lengths and instead depend on
* the chunk length to indicate when to stop. Make sure
......@@ -479,21 +488,24 @@ static inline struct sctp_protocol *sctp_get_protocol(void)
/* Convert from an IP version number to an Address Family symbol. */
static inline int ipver2af(__u8 ipver)
{
int family;
switch (ipver) {
case 4:
family = AF_INET;
break;
return AF_INET;
case 6:
family = AF_INET6;
break;
return AF_INET6;
default:
family = 0;
break;
return 0;
};
}
return family;
/* Perform some sanity checks. */
static inline int sctp_sanity_check(void)
{
SCTP_ASSERT(sizeof(struct sctp_ulpevent) <=
sizeof(((struct sk_buff *)0)->cb),
"SCTP: ulpevent does not fit in skb!\n", return 0);
return 1;
}
/* Warning: The following hash functions assume a power of two 'size'. */
......@@ -537,7 +549,7 @@ struct sctp_sock {
struct sock sk;
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
struct ipv6_pinfo *pinet6;
#endif /* CONFIG_IPV6 || CONFIG_IPV6_MODULE */
#endif /* CONFIG_IPV6 */
struct inet_opt inet;
struct sctp_opt sctp;
};
......@@ -550,7 +562,7 @@ struct sctp6_sock {
struct sctp_opt sctp;
struct ipv6_pinfo inet6;
};
#endif /* CONFIG_IPV6 || CONFIG_IPV6_MODULE */
#endif /* CONFIG_IPV6 */
#define sctp_sk(__sk) (&((struct sctp_sock *)__sk)->sctp)
......
......@@ -197,15 +197,14 @@ sctp_state_fn_t sctp_addip_do_asconf;
sctp_state_fn_t sctp_addip_do_asconf_ack;
/* Prototypes for utility support functions. */
__u8 sctp_get_chunk_type(sctp_chunk_t *chunk);
__u8 sctp_get_chunk_type(struct sctp_chunk *chunk);
sctp_sm_table_entry_t *sctp_sm_lookup_event(sctp_event_t event_type,
sctp_state_t state,
sctp_subtype_t event_subtype);
time_t timeval_sub(struct timeval *, struct timeval *);
sctp_association_t *sctp_make_temp_asoc(const sctp_endpoint_t *,
sctp_chunk_t *,
const int priority);
int sctp_chunk_iif(const struct sctp_chunk *);
struct sctp_association *sctp_make_temp_asoc(const struct sctp_endpoint *,
struct sctp_chunk *,
int gfp);
__u32 sctp_generate_verification_tag(void);
void sctp_populate_tie_tags(__u8 *cookie, __u32 curTag, __u32 hisTag);
......@@ -344,7 +343,7 @@ __u32 sctp_generate_tsn(const sctp_endpoint_t *);
/* 4th level prototypes */
void sctp_param2sockaddr(union sctp_addr *addr, sctp_addr_param_t *,
__u16 port);
__u16 port, int iif);
int sctp_addr2sockaddr(const union sctp_params, union sctp_addr *);
int sockaddr2sctp_addr(const union sctp_addr *, sctp_addr_param_t *);
......
......@@ -242,6 +242,7 @@ struct sctp_af {
void (*inaddr_any) (union sctp_addr *, unsigned short);
int (*is_any) (const union sctp_addr *);
int (*available) (const union sctp_addr *);
int (*skb_iif) (const struct sk_buff *sk);
__u16 net_header_len;
int sockaddr_len;
sa_family_t sa_family;
......@@ -260,6 +261,7 @@ struct sctp_pf {
const union sctp_addr *,
struct sctp_opt *);
int (*bind_verify) (struct sctp_opt *, union sctp_addr *);
int (*send_verify) (struct sctp_opt *, union sctp_addr *);
int (*supported_addrs)(const struct sctp_opt *, __u16 *);
struct sock *(*create_accept_sk) (struct sock *sk,
struct sctp_association *asoc);
......@@ -430,7 +432,7 @@ struct sctp_ssnmap {
};
struct sctp_ssnmap *sctp_ssnmap_init(struct sctp_ssnmap *, __u16, __u16);
struct sctp_ssnmap *sctp_ssnmap_new(__u16 in, __u16 out, int priority);
struct sctp_ssnmap *sctp_ssnmap_new(__u16 in, __u16 out, int gfp);
void sctp_ssnmap_free(struct sctp_ssnmap *map);
void sctp_ssnmap_clear(struct sctp_ssnmap *map);
......@@ -509,7 +511,7 @@ struct sctp_chunk {
struct sctp_sndrcvinfo sinfo;
/* Which association does this belong to? */
sctp_association_t *asoc;
struct sctp_association *asoc;
/* What endpoint received this chunk? */
sctp_endpoint_common_t *rcvr;
......@@ -541,11 +543,11 @@ struct sctp_chunk {
struct sctp_transport *transport;
};
sctp_chunk_t *sctp_make_chunk(const sctp_association_t *, __u8 type,
sctp_chunk_t *sctp_make_chunk(const struct sctp_association *, __u8 type,
__u8 flags, int size);
void sctp_free_chunk(sctp_chunk_t *);
void *sctp_addto_chunk(sctp_chunk_t *chunk, int len, const void *data);
sctp_chunk_t *sctp_chunkify(struct sk_buff *, const sctp_association_t *,
sctp_chunk_t *sctp_chunkify(struct sk_buff *, const struct sctp_association *,
struct sock *);
void sctp_init_addrs(sctp_chunk_t *, union sctp_addr *, union sctp_addr *);
const union sctp_addr *sctp_source(const sctp_chunk_t *chunk);
......@@ -560,7 +562,7 @@ struct sockaddr_storage_list {
union sctp_addr a;
};
typedef sctp_chunk_t *(sctp_packet_phandler_t)(sctp_association_t *);
typedef sctp_chunk_t *(sctp_packet_phandler_t)(struct sctp_association *);
/* This structure holds lists of chunks as we are assembling for
* transmission.
......@@ -590,13 +592,16 @@ struct sctp_packet {
/* This packet should advertise ECN capability to the network
* via the ECT bit.
*/
int ecn_capable;
char ecn_capable;
/* This packet contains a COOKIE-ECHO chunk. */
int has_cookie_echo;
char has_cookie_echo;
/* This packet containsa SACK chunk. */
char has_sack;
/* SCTP cannot fragment this packet. So let ip fragment it. */
int ipfragok;
char ipfragok;
int malloced;
};
......@@ -660,7 +665,7 @@ struct sctp_transport {
struct sctp_af *af_specific;
/* Which association do we belong to? */
sctp_association_t *asoc;
struct sctp_association *asoc;
/* RFC2960
*
......@@ -799,7 +804,8 @@ struct sctp_transport {
struct sctp_transport *sctp_transport_new(const union sctp_addr *, int);
struct sctp_transport *sctp_transport_init(struct sctp_transport *,
const union sctp_addr *, int);
void sctp_transport_set_owner(struct sctp_transport *, sctp_association_t *);
void sctp_transport_set_owner(struct sctp_transport *,
struct sctp_association *);
void sctp_transport_route(struct sctp_transport *, union sctp_addr *,
struct sctp_opt *);
void sctp_transport_pmtu(struct sctp_transport *);
......@@ -862,13 +868,16 @@ void sctp_inq_set_th_handler(struct sctp_inq *, void (*)(void *), void *);
* When free()'d, it empties itself out via output_handler().
*/
struct sctp_outq {
sctp_association_t *asoc;
struct sctp_association *asoc;
/* Data pending that has never been transmitted. */
struct sk_buff_head out;
unsigned out_qlen; /* Total length of queued data chunks. */
/* Error of send failed, may used in SCTP_SEND_FAILED event. */
unsigned error;
/* These are control chunks we want to send. */
struct sk_buff_head control;
......@@ -902,8 +911,8 @@ struct sctp_outq {
int malloced;
};
struct sctp_outq *sctp_outq_new(sctp_association_t *);
void sctp_outq_init(sctp_association_t *, struct sctp_outq *);
struct sctp_outq *sctp_outq_new(struct sctp_association *);
void sctp_outq_init(struct sctp_association *, struct sctp_outq *);
void sctp_outq_teardown(struct sctp_outq *);
void sctp_outq_free(struct sctp_outq*);
int sctp_outq_tail(struct sctp_outq *, sctp_chunk_t *chunk);
......@@ -947,20 +956,16 @@ sctp_bind_addr_t *sctp_bind_addr_new(int gfp_mask);
void sctp_bind_addr_init(sctp_bind_addr_t *, __u16 port);
void sctp_bind_addr_free(sctp_bind_addr_t *);
int sctp_bind_addr_copy(sctp_bind_addr_t *dest, const sctp_bind_addr_t *src,
sctp_scope_t scope, int priority,int flags);
sctp_scope_t scope, int gfp,int flags);
int sctp_add_bind_addr(sctp_bind_addr_t *, union sctp_addr *,
int priority);
int gfp);
int sctp_del_bind_addr(sctp_bind_addr_t *, union sctp_addr *);
int sctp_bind_addr_match(sctp_bind_addr_t *, const union sctp_addr *,
struct sctp_opt *);
union sctp_params sctp_bind_addrs_to_raw(const sctp_bind_addr_t *bp,
int *addrs_len,
int priority);
int sctp_raw_to_bind_addrs(sctp_bind_addr_t *bp,
__u8 *raw_addr_list,
int addrs_len,
unsigned short port,
int priority);
union sctp_params sctp_bind_addrs_to_raw(const struct sctp_bind_addr *bp,
int *addrs_len, int gfp);
int sctp_raw_to_bind_addrs(struct sctp_bind_addr *bp, __u8 *raw, int len,
__u16 port, int gfp);
sctp_scope_t sctp_scope(const union sctp_addr *);
int sctp_in_scope(const union sctp_addr *addr, const sctp_scope_t scope);
......@@ -1063,7 +1068,7 @@ struct sctp_endpoint {
* pointer, or table pointers dependent on how SCTP
* is implemented.
*/
/* This is really a list of sctp_association_t entries. */
/* This is really a list of struct sctp_association entries. */
struct list_head asocs;
/* Secret Key: A secret key used by this endpoint to compute
......@@ -1099,12 +1104,12 @@ static inline sctp_endpoint_t *sctp_ep(sctp_endpoint_common_t *base)
sctp_endpoint_t *sctp_endpoint_new(struct sctp_protocol *, struct sock *, int);
sctp_endpoint_t *sctp_endpoint_init(struct sctp_endpoint *,
struct sctp_protocol *,
struct sock *, int priority);
struct sock *, int gfp);
void sctp_endpoint_free(sctp_endpoint_t *);
void sctp_endpoint_put(sctp_endpoint_t *);
void sctp_endpoint_hold(sctp_endpoint_t *);
void sctp_endpoint_add_asoc(sctp_endpoint_t *, sctp_association_t *asoc);
sctp_association_t *sctp_endpoint_lookup_assoc(const sctp_endpoint_t *ep,
void sctp_endpoint_add_asoc(sctp_endpoint_t *, struct sctp_association *asoc);
struct sctp_association *sctp_endpoint_lookup_assoc(const sctp_endpoint_t *ep,
const union sctp_addr *paddr,
struct sctp_transport **);
int sctp_endpoint_is_peeled_off(sctp_endpoint_t *, const union sctp_addr *);
......@@ -1113,18 +1118,16 @@ sctp_endpoint_t *sctp_endpoint_is_match(sctp_endpoint_t *,
int sctp_has_association(const union sctp_addr *laddr,
const union sctp_addr *paddr);
int sctp_verify_init(const sctp_association_t *asoc,
sctp_cid_t cid,
sctp_init_chunk_t *peer_init,
sctp_chunk_t *chunk,
sctp_chunk_t **err_chunk);
int sctp_process_init(sctp_association_t *asoc, sctp_cid_t cid,
const union sctp_addr *peer_addr,
sctp_init_chunk_t *peer_init, int priority);
int sctp_process_param(sctp_association_t *asoc, union sctp_params param,
const union sctp_addr *peer_addr, int priority);
__u32 sctp_generate_tag(const sctp_endpoint_t *ep);
__u32 sctp_generate_tsn(const sctp_endpoint_t *ep);
int sctp_verify_init(const struct sctp_association *asoc, sctp_cid_t,
sctp_init_chunk_t *peer_init, struct sctp_chunk *chunk,
struct sctp_chunk **err_chunk);
int sctp_process_init(struct sctp_association *, sctp_cid_t cid,
const union sctp_addr *peer,
sctp_init_chunk_t *init, int gfp);
int sctp_process_param(struct sctp_association *, union sctp_params param,
const union sctp_addr *from, int gfp);
__u32 sctp_generate_tag(const sctp_endpoint_t *);
__u32 sctp_generate_tsn(const sctp_endpoint_t *);
/* RFC2960
......@@ -1153,7 +1156,7 @@ struct sctp_association {
struct list_head asocs;
/* This is a signature that lets us know that this is a
* sctp_association_t data structure. Used for mapping an
* struct sctp_association data structure. Used for mapping an
* association id to an association.
*/
__u32 eyecatcher;
......@@ -1556,44 +1559,46 @@ enum {
};
/* Recover the outter association structure. */
static inline sctp_association_t *sctp_assoc(sctp_endpoint_common_t *base)
static inline struct sctp_association *sctp_assoc(sctp_endpoint_common_t *base)
{
sctp_association_t *asoc;
struct sctp_association *asoc;
asoc = container_of(base, sctp_association_t, base);
asoc = container_of(base, struct sctp_association, base);
return asoc;
}
/* These are function signatures for manipulating associations. */
sctp_association_t *
struct sctp_association *
sctp_association_new(const sctp_endpoint_t *, const struct sock *,
sctp_scope_t scope, int priority);
sctp_association_t *
sctp_association_init(sctp_association_t *, const sctp_endpoint_t *,
sctp_scope_t scope, int gfp);
struct sctp_association *
sctp_association_init(struct sctp_association *, const sctp_endpoint_t *,
const struct sock *, sctp_scope_t scope,
int priority);
void sctp_association_free(sctp_association_t *);
void sctp_association_put(sctp_association_t *);
void sctp_association_hold(sctp_association_t *);
struct sctp_transport *sctp_assoc_choose_shutdown_transport(sctp_association_t *);
void sctp_assoc_update_retran_path(sctp_association_t *);
struct sctp_transport *sctp_assoc_lookup_paddr(const sctp_association_t *,
int gfp);
void sctp_association_free(struct sctp_association *);
void sctp_association_put(struct sctp_association *);
void sctp_association_hold(struct sctp_association *);
struct sctp_transport *sctp_assoc_choose_shutdown_transport(
struct sctp_association *);
void sctp_assoc_update_retran_path(struct sctp_association *);
struct sctp_transport *sctp_assoc_lookup_paddr(const struct sctp_association *,
const union sctp_addr *);
struct sctp_transport *sctp_assoc_add_peer(sctp_association_t *,
struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *,
const union sctp_addr *address,
const int priority);
const int gfp);
void sctp_assoc_control_transport(struct sctp_association *,
struct sctp_transport *,
sctp_transport_cmd_t, sctp_sn_error_t);
struct sctp_transport *sctp_assoc_lookup_tsn(sctp_association_t *, __u32);
struct sctp_transport *sctp_assoc_is_match(sctp_association_t *,
struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *, __u32);
struct sctp_transport *sctp_assoc_is_match(struct sctp_association *,
const union sctp_addr *,
const union sctp_addr *);
void sctp_assoc_migrate(sctp_association_t *, struct sock *);
void sctp_assoc_update(sctp_association_t *dst, sctp_association_t *src);
void sctp_assoc_migrate(struct sctp_association *, struct sock *);
void sctp_assoc_update(struct sctp_association *old,
struct sctp_association *new);
__u32 sctp_association_get_next_tsn(struct sctp_association *);
__u32 sctp_association_get_tsn_block(struct sctp_association *, int);
......@@ -1603,14 +1608,14 @@ void sctp_assoc_rwnd_increase(struct sctp_association *, int);
void sctp_assoc_rwnd_decrease(struct sctp_association *, int);
void sctp_assoc_set_primary(struct sctp_association *,
struct sctp_transport *);
int sctp_assoc_set_bind_addr_from_ep(sctp_association_t *, int);
int sctp_assoc_set_bind_addr_from_cookie(sctp_association_t *,
sctp_cookie_t *, int);
int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *, int);
int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *,
sctp_cookie_t *, int gfp);
int sctp_cmp_addr_exact(const union sctp_addr *ss1,
const union sctp_addr *ss2);
sctp_chunk_t *sctp_get_ecne_prepend(sctp_association_t *asoc);
sctp_chunk_t *sctp_get_no_prepend(sctp_association_t *asoc);
sctp_chunk_t *sctp_get_ecne_prepend(struct sctp_association *asoc);
sctp_chunk_t *sctp_get_no_prepend(struct sctp_association *asoc);
/* A convenience structure to parse out SCTP specific CMSGs. */
typedef struct sctp_cmsgs {
......
......@@ -38,7 +38,6 @@
* be incorporated into the next SCTP release.
*/
#ifndef __sctp_ulpevent_h__
#define __sctp_ulpevent_h__
......@@ -50,6 +49,7 @@ struct sctp_ulpevent {
struct sctp_association *asoc;
struct sctp_sndrcvinfo sndrcvinfo;
int msg_flags;
int iif;
};
/* Retrieve the skb this event sits inside of. */
......@@ -61,9 +61,9 @@ static inline struct sk_buff *sctp_event2skb(struct sctp_ulpevent *ev)
/* Retrieve & cast the event sitting inside the skb. */
static inline struct sctp_ulpevent *sctp_skb2event(struct sk_buff *skb)
{
return (struct sctp_ulpevent *)skb->cb;
return (struct sctp_ulpevent *)skb->cb;
}
struct sctp_ulpevent *sctp_ulpevent_new(int size, int flags, int priority);
struct sctp_ulpevent *sctp_ulpevent_init(struct sctp_ulpevent *, int flags);
void sctp_ulpevent_free(struct sctp_ulpevent *);
......
......@@ -488,7 +488,7 @@ static inline void reparent_thread(task_t *p, task_t *father, int traced)
p->self_exec_id++;
if (p->pdeath_signal)
send_sig(p->pdeath_signal, p, 0);
send_group_sig_info(p->pdeath_signal, 0, p);
/* Move the child from its dying parent to the new one. */
if (unlikely(traced)) {
......
......@@ -67,7 +67,7 @@ void it_real_fn(unsigned long __data)
struct task_struct * p = (struct task_struct *) __data;
unsigned long interval;
send_sig(SIGALRM, p, 1);
send_group_sig_info(SIGALRM, SEND_SIG_PRIV, p);
interval = p->it_real_incr;
if (interval) {
if (interval > (unsigned long) LONG_MAX)
......
......@@ -974,11 +974,6 @@ static int simplify_symbols(Elf_Shdr *sechdrs,
/* Ok if weak. */
if (ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
break;
#if defined(CONFIG_SPARC32) || defined(CONFIG_SPARC64)
/* Ok if Sparc register directive. */
if (ELF_ST_TYPE(sym[i].st_info) == STT_REGISTER)
break;
#endif
printk(KERN_WARNING "%s: Unknown symbol %s\n",
mod->name, strtab + sym[i].st_name);
......
......@@ -33,64 +33,79 @@ static kmem_cache_t *sigqueue_cachep;
atomic_t nr_queued_signals;
int max_queued_signals = 1024;
/*********************************************************
POSIX thread group signal behavior:
----------------------------------------------------------
| | userspace | kernel |
----------------------------------------------------------
| SIGHUP | load-balance | kill-all |
| SIGINT | load-balance | kill-all |
| SIGQUIT | load-balance | kill-all+core |
| SIGILL | specific | kill-all+core |
| SIGTRAP | specific | kill-all+core |
| SIGABRT/SIGIOT | specific | kill-all+core |
| SIGBUS | specific | kill-all+core |
| SIGFPE | specific | kill-all+core |
| SIGKILL | n/a | kill-all |
| SIGUSR1 | load-balance | kill-all |
| SIGSEGV | specific | kill-all+core |
| SIGUSR2 | load-balance | kill-all |
| SIGPIPE | specific | kill-all |
| SIGALRM | load-balance | kill-all |
| SIGTERM | load-balance | kill-all |
| SIGCHLD | load-balance | ignore |
| SIGCONT | load-balance | ignore |
| SIGSTOP | n/a | stop-all |
| SIGTSTP | load-balance | stop-all |
| SIGTTIN | load-balance | stop-all |
| SIGTTOU | load-balance | stop-all |
| SIGURG | load-balance | ignore |
| SIGXCPU | specific | kill-all+core |
| SIGXFSZ | specific | kill-all+core |
| SIGVTALRM | load-balance | kill-all |
| SIGPROF | specific | kill-all |
| SIGPOLL/SIGIO | load-balance | kill-all |
| SIGSYS/SIGUNUSED | specific | kill-all+core |
| SIGSTKFLT | specific | kill-all |
| SIGWINCH | load-balance | ignore |
| SIGPWR | load-balance | kill-all |
| SIGRTMIN-SIGRTMAX | load-balance | kill-all |
----------------------------------------------------------
non-POSIX signal thread group behavior:
----------------------------------------------------------
| | userspace | kernel |
----------------------------------------------------------
| SIGEMT | specific | kill-all+core |
----------------------------------------------------------
*/
/* Some systems do not have a SIGSTKFLT and the kernel never
* generates such signals anyways.
/*
* In POSIX a signal is sent either to a specific thread (Linux task)
* or to the process as a whole (Linux thread group). How the signal
* is sent determines whether it's to one thread or the whole group,
* which determines which signal mask(s) are involved in blocking it
* from being delivered until later. When the signal is delivered,
* either it's caught or ignored by a user handler or it has a default
* effect that applies to the whole thread group (POSIX process).
*
* The possible effects an unblocked signal set to SIG_DFL can have are:
* ignore - Nothing Happens
* terminate - kill the process, i.e. all threads in the group,
* similar to exit_group. The group leader (only) reports
* WIFSIGNALED status to its parent.
* coredump - write a core dump file describing all threads using
* the same mm and then kill all those threads
* stop - stop all the threads in the group, i.e. TASK_STOPPED state
*
* SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
* Other signals when not blocked and set to SIG_DFL behaves as follows.
* The job control signals also have other special effects.
*
* +--------------------+------------------+
* | POSIX signal | default action |
* +--------------------+------------------+
* | SIGHUP | terminate |
* | SIGINT | terminate |
* | SIGQUIT | coredump |
* | SIGILL | coredump |
* | SIGTRAP | coredump |
* | SIGABRT/SIGIOT | coredump |
* | SIGBUS | coredump |
* | SIGFPE | coredump |
* | SIGKILL | terminate(+) |
* | SIGUSR1 | terminate |
* | SIGSEGV | coredump |
* | SIGUSR2 | terminate |
* | SIGPIPE | terminate |
* | SIGALRM | terminate |
* | SIGTERM | terminate |
* | SIGCHLD | ignore |
* | SIGCONT | ignore(*) |
* | SIGSTOP | stop(*)(+) |
* | SIGTSTP | stop(*) |
* | SIGTTIN | stop(*) |
* | SIGTTOU | stop(*) |
* | SIGURG | ignore |
* | SIGXCPU | coredump |
* | SIGXFSZ | coredump |
* | SIGVTALRM | terminate |
* | SIGPROF | terminate |
* | SIGPOLL/SIGIO | terminate |
* | SIGSYS/SIGUNUSED | coredump |
* | SIGSTKFLT | terminate |
* | SIGWINCH | ignore |
* | SIGPWR | terminate |
* | SIGRTMIN-SIGRTMAX | terminate |
* +--------------------+------------------+
* | non-POSIX signal | default action |
* +--------------------+------------------+
* | SIGEMT | coredump |
* +--------------------+------------------+
*
* (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
* (*) Special job control effects:
* When SIGCONT is sent, it resumes the process (all threads in the group)
* from TASK_STOPPED state and also clears any pending/queued stop signals
* (any of those marked with "stop(*)"). This happens regardless of blocking,
* catching, or ignoring SIGCONT. When any stop signal is sent, it clears
* any pending/queued SIGCONT signals; this happens regardless of blocking,
* catching, or ignored the stop signal, though (except for SIGSTOP) the
* default action of stopping the process may happen later or never.
*/
#ifdef SIGSTKFLT
#define M_SIGSTKFLT M(SIGSTKFLT)
#else
#define M_SIGSTKFLT 0
#endif
#ifdef SIGEMT
#define M_SIGEMT M(SIGEMT)
......@@ -105,16 +120,6 @@ int max_queued_signals = 1024;
#endif
#define T(sig, mask) (M(sig) & (mask))
#define SIG_KERNEL_BROADCAST_MASK (\
M(SIGHUP) | M(SIGINT) | M(SIGQUIT) | M(SIGILL) | \
M(SIGTRAP) | M(SIGABRT) | M(SIGBUS) | M(SIGFPE) | \
M(SIGKILL) | M(SIGUSR1) | M(SIGSEGV) | M(SIGUSR2) | \
M(SIGPIPE) | M(SIGALRM) | M(SIGTERM) | M(SIGXCPU) | \
M(SIGXFSZ) | M(SIGVTALRM) | M(SIGPROF) | M(SIGPOLL) | \
M(SIGSYS) | M_SIGSTKFLT | M(SIGPWR) | M(SIGCONT) | \
M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) | \
M_SIGEMT )
#define SIG_KERNEL_ONLY_MASK (\
M(SIGKILL) | M(SIGSTOP) )
......@@ -599,7 +604,7 @@ static void do_notify_parent_cldstop(struct task_struct *tsk,
struct task_struct *parent);
/*
* Handle magic process-wide effects of stop/continue signals, and SIGKILL.
* Handle magic process-wide effects of stop/continue signals.
* Unlike the signal actions, these happen immediately at signal-generation
* time regardless of blocking, ignoring, or handling. This does the
* actual continuing for SIGCONT, but not the actual stopping for stop
......@@ -1134,9 +1139,8 @@ static int kill_something_info(int sig, struct siginfo *info, int pid)
*/
/*
* XXX should probably nix these interfaces and update the kernel
* to specify explicitly whether the signal is a group signal or
* specific to a thread.
* These two are the most common entry points. They send a signal
* just to the specific thread.
*/
int
send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
......@@ -1150,13 +1154,9 @@ send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
* going away or changing from under us.
*/
read_lock(&tasklist_lock);
if (T(sig, SIG_KERNEL_BROADCAST_MASK)) {
ret = group_send_sig_info(sig, info, p);
} else {
spin_lock_irq(&p->sighand->siglock);
ret = specific_send_sig_info(sig, info, p);
spin_unlock_irq(&p->sighand->siglock);
}
spin_lock_irq(&p->sighand->siglock);
ret = specific_send_sig_info(sig, info, p);
spin_unlock_irq(&p->sighand->siglock);
read_unlock(&tasklist_lock);
return ret;
}
......@@ -1167,6 +1167,20 @@ send_sig(int sig, struct task_struct *p, int priv)
return send_sig_info(sig, (void*)(long)(priv != 0), p);
}
/*
* This is the entry point for "process-wide" signals.
* They will go to an appropriate thread in the thread group.
*/
int
send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
{
int ret;
read_lock(&tasklist_lock);
ret = group_send_sig_info(sig, info, p);
read_unlock(&tasklist_lock);
return ret;
}
void
force_sig(int sig, struct task_struct *p)
{
......@@ -1642,6 +1656,7 @@ EXPORT_SYMBOL(kill_sl_info);
EXPORT_SYMBOL(notify_parent);
EXPORT_SYMBOL(send_sig);
EXPORT_SYMBOL(send_sig_info);
EXPORT_SYMBOL(send_group_sig_info);
EXPORT_SYMBOL(sigprocmask);
EXPORT_SYMBOL(block_all_signals);
EXPORT_SYMBOL(unblock_all_signals);
......
......@@ -1293,11 +1293,10 @@ void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *ar
static struct packet_type ip_packet_type =
{
__constant_htons(ETH_P_IP),
NULL, /* All devices */
ip_rcv,
(void*)1,
NULL,
.type = __constant_htons(ETH_P_IP),
.dev = NULL, /* All devices */
.func = ip_rcv,
.data = (void*)1,
};
/*
......
......@@ -8,7 +8,6 @@
#include <linux/timer.h>
#include <linux/skbuff.h>
#include <linux/netfilter_ipv4.h>
#include <linux/brlock.h>
#include <linux/vmalloc.h>
#include <net/checksum.h>
#include <net/icmp.h>
......
......@@ -55,20 +55,18 @@ DEFINE_SNMP_STAT(struct ipv6_mib, ipv6_statistics);
static struct packet_type ipv6_packet_type =
{
__constant_htons(ETH_P_IPV6),
NULL, /* All devices */
ipv6_rcv,
(void*)1,
NULL
.type = __constant_htons(ETH_P_IPV6),
.dev = NULL, /* All devices */
.func = ipv6_rcv,
.data = (void*)1,
};
/*
* addrconf module should be notifyed of a device going up
* addrconf module should be notified of a device going up
*/
static struct notifier_block ipv6_dev_notf = {
addrconf_notify,
NULL,
0
.notifier_call = addrconf_notify,
.priority = 0
};
struct ip6_ra_chain *ip6_ra_chain;
......
......@@ -26,7 +26,6 @@
#include <linux/netfilter.h>
#include <linux/netlink.h>
#include <linux/spinlock.h>
#include <linux/brlock.h>
#include <linux/sysctl.h>
#include <linux/proc_fs.h>
#include <net/sock.h>
......@@ -682,8 +681,7 @@ init_or_cleanup(int init)
cleanup:
nf_unregister_queue_handler(PF_INET6);
br_write_lock_bh(BR_NETPROTO_LOCK);
br_write_unlock_bh(BR_NETPROTO_LOCK);
synchronize_net();
ipq_flush(NF_DROP);
cleanup_sysctl:
......
......@@ -156,7 +156,7 @@ static int snmp6_seq_show(struct seq_file *seq, void *v)
int i;
for (i=0; i<sizeof(snmp6_list)/sizeof(snmp6_list[0]); i++)
seq_printf(seq, "%-32s\t%ld\n", snmp6_list[i].name,
seq_printf(seq, "%-32s\t%lu\n", snmp6_list[i].name,
fold_field(snmp6_list[i].mib, snmp6_list[i].offset));
return 0;
......
......@@ -290,14 +290,18 @@ sctp_association_t *sctp_association_init(sctp_association_t *asoc,
*/
void sctp_association_free(sctp_association_t *asoc)
{
struct sock *sk = asoc->base.sk;
struct sctp_transport *transport;
sctp_endpoint_t *ep;
struct list_head *pos, *temp;
int i;
ep = asoc->ep;
list_del(&asoc->asocs);
/* Decrement the backlog value for a TCP-style listening socket. */
if ((SCTP_SOCKET_TCP == sctp_sk(sk)->type) &&
(SCTP_SS_LISTENING == sk->state))
sk->ack_backlog--;
/* Mark as dead, so other users can know this structure is
* going away.
*/
......@@ -421,8 +425,7 @@ struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
SCTP_DEBUG_PRINTK("sctp_assoc_add_peer:association %p PMTU set to "
"%d\n", asoc, asoc->pmtu);
asoc->frag_point = asoc->pmtu;
asoc->frag_point -= SCTP_IP_OVERHEAD + sizeof(struct sctp_data_chunk);
asoc->frag_point = sctp_frag_point(asoc->pmtu);
/* The asoc->peer.port might not be meaningful yet, but
* initialize the packet structure anyway.
......@@ -642,8 +645,6 @@ __u32 sctp_association_get_tsn_block(sctp_association_t *asoc, int num)
/* Compare two addresses to see if they match. Wildcard addresses
* only match themselves.
*
* FIXME: We do not match address scopes correctly.
*/
int sctp_cmp_addr_exact(const union sctp_addr *ss1,
const union sctp_addr *ss2)
......@@ -651,38 +652,27 @@ int sctp_cmp_addr_exact(const union sctp_addr *ss1,
struct sctp_af *af;
af = sctp_get_af_specific(ss1->sa.sa_family);
if (!af)
if (unlikely(!af))
return 0;
return af->cmp_addr(ss1, ss2);
}
/* Return an ecne chunk to get prepended to a packet.
* Note: We are sly and return a shared, prealloced chunk.
* Note: We are sly and return a shared, prealloced chunk. FIXME:
* No we don't, but we could/should.
*/
sctp_chunk_t *sctp_get_ecne_prepend(sctp_association_t *asoc)
sctp_chunk_t *sctp_get_ecne_prepend(struct sctp_association *asoc)
{
sctp_chunk_t *chunk;
int need_ecne;
__u32 lowest_tsn;
struct sctp_chunk *chunk;
/* Can be called from task or bh. Both need_ecne and
* last_ecne_tsn are written during bh.
/* Send ECNE if needed.
* Not being able to allocate a chunk here is not deadly.
*/
need_ecne = asoc->need_ecne;
lowest_tsn = asoc->last_ecne_tsn;
if (need_ecne) {
chunk = sctp_make_ecne(asoc, lowest_tsn);
/* ECNE is not mandatory to the flow. Being unable to
* alloc mem is not deadly. We are just unable to help
* out the network. If we run out of memory, just return
* NULL.
*/
} else {
if (asoc->need_ecne)
chunk = sctp_make_ecne(asoc, asoc->last_ecne_tsn);
else
chunk = NULL;
}
return chunk;
}
......@@ -832,12 +822,17 @@ static void sctp_assoc_bh_rcv(sctp_association_t *asoc)
void sctp_assoc_migrate(sctp_association_t *assoc, struct sock *newsk)
{
struct sctp_opt *newsp = sctp_sk(newsk);
struct sock *oldsk = assoc->base.sk;
/* Delete the association from the old endpoint's list of
* associations.
*/
list_del(&assoc->asocs);
/* Decrement the backlog value for a TCP-style socket. */
if (SCTP_SOCKET_TCP == sctp_sk(oldsk)->type)
oldsk->ack_backlog--;
/* Release references to the old endpoint and the sock. */
sctp_endpoint_put(assoc->ep);
sock_put(assoc->base.sk);
......@@ -986,8 +981,7 @@ void sctp_assoc_sync_pmtu(sctp_association_t *asoc)
if (pmtu) {
asoc->pmtu = pmtu;
asoc->frag_point = pmtu - (SCTP_IP_OVERHEAD +
sizeof(sctp_data_chunk_t));
asoc->frag_point = sctp_frag_point(pmtu);
}
SCTP_DEBUG_PRINTK("%s: asoc:%p, pmtu:%d, frag_point:%d\n",
......@@ -1001,9 +995,9 @@ static inline int sctp_peer_needs_update(struct sctp_association *asoc)
case SCTP_STATE_ESTABLISHED:
case SCTP_STATE_SHUTDOWN_PENDING:
case SCTP_STATE_SHUTDOWN_RECEIVED:
if ((asoc->rwnd > asoc->a_rwnd) &&
if ((asoc->rwnd > asoc->a_rwnd) &&
((asoc->rwnd - asoc->a_rwnd) >=
min_t(__u32, (asoc->base.sk->rcvbuf >> 1), asoc->pmtu)))
min_t(__u32, (asoc->base.sk->rcvbuf >> 1), asoc->pmtu)))
return 1;
break;
default:
......@@ -1070,14 +1064,14 @@ void sctp_assoc_rwnd_decrease(sctp_association_t *asoc, int len)
asoc->rwnd = 0;
}
SCTP_DEBUG_PRINTK("%s: asoc %p rwnd decreased by %d to (%u, %u)\n",
__FUNCTION__, asoc, len, asoc->rwnd,
__FUNCTION__, asoc, len, asoc->rwnd,
asoc->rwnd_over);
}
/* Build the bind address list for the association based on info from the
* local endpoint and the remote peer.
*/
int sctp_assoc_set_bind_addr_from_ep(sctp_association_t *asoc, int priority)
int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc, int gfp)
{
sctp_scope_t scope;
int flags;
......@@ -1094,19 +1088,17 @@ int sctp_assoc_set_bind_addr_from_ep(sctp_association_t *asoc, int priority)
return sctp_bind_addr_copy(&asoc->base.bind_addr,
&asoc->ep->base.bind_addr,
scope, priority, flags);
scope, gfp, flags);
}
/* Build the association's bind address list from the cookie. */
int sctp_assoc_set_bind_addr_from_cookie(sctp_association_t *asoc,
sctp_cookie_t *cookie, int priority)
sctp_cookie_t *cookie, int gfp)
{
int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
int var_size3 = cookie->raw_addr_list_len;
__u8 *raw_addr_list = (__u8 *)cookie + sizeof(sctp_cookie_t) +
var_size2;
__u8 *raw = (__u8 *)cookie + sizeof(sctp_cookie_t) + var_size2;
return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw_addr_list,
var_size3, asoc->ep->base.bind_addr.port,
priority);
return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
asoc->ep->base.bind_addr.port, gfp);
}
......@@ -53,7 +53,7 @@
/* Forward declarations for internal helpers. */
static int sctp_copy_one_addr(sctp_bind_addr_t *, union sctp_addr *,
sctp_scope_t scope, int priority, int flags);
sctp_scope_t scope, int gfp, int flags);
static void sctp_bind_addr_clean(sctp_bind_addr_t *);
/* First Level Abstractions. */
......@@ -62,7 +62,7 @@ static void sctp_bind_addr_clean(sctp_bind_addr_t *);
* in 'src' which have a broader scope than 'scope'.
*/
int sctp_bind_addr_copy(sctp_bind_addr_t *dest, const sctp_bind_addr_t *src,
sctp_scope_t scope, int priority, int flags)
sctp_scope_t scope, int gfp, int flags)
{
struct sockaddr_storage_list *addr;
struct list_head *pos;
......@@ -75,7 +75,7 @@ int sctp_bind_addr_copy(sctp_bind_addr_t *dest, const sctp_bind_addr_t *src,
list_for_each(pos, &src->address_list) {
addr = list_entry(pos, struct sockaddr_storage_list, list);
error = sctp_copy_one_addr(dest, &addr->a, scope,
priority, flags);
gfp, flags);
if (error < 0)
goto out;
}
......@@ -88,11 +88,11 @@ int sctp_bind_addr_copy(sctp_bind_addr_t *dest, const sctp_bind_addr_t *src,
}
/* Create a new SCTP_bind_addr from nothing. */
sctp_bind_addr_t *sctp_bind_addr_new(int priority)
sctp_bind_addr_t *sctp_bind_addr_new(int gfp)
{
sctp_bind_addr_t *retval;
retval = t_new(sctp_bind_addr_t, priority);
retval = t_new(sctp_bind_addr_t, gfp);
if (!retval)
goto nomem;
......@@ -144,12 +144,12 @@ void sctp_bind_addr_free(sctp_bind_addr_t *bp)
/* Add an address to the bind address list in the SCTP_bind_addr structure. */
int sctp_add_bind_addr(sctp_bind_addr_t *bp, union sctp_addr *new,
int priority)
int gfp)
{
struct sockaddr_storage_list *addr;
/* Add the address to the bind address list. */
addr = t_new(struct sockaddr_storage_list, priority);
addr = t_new(struct sockaddr_storage_list, gfp);
if (!addr)
return -ENOMEM;
......@@ -197,7 +197,7 @@ int sctp_del_bind_addr(sctp_bind_addr_t *bp, union sctp_addr *del_addr)
* The second argument is the return value for the length.
*/
union sctp_params sctp_bind_addrs_to_raw(const sctp_bind_addr_t *bp,
int *addrs_len, int priority)
int *addrs_len, int gfp)
{
union sctp_params addrparms;
union sctp_params retval;
......@@ -214,7 +214,7 @@ union sctp_params sctp_bind_addrs_to_raw(const sctp_bind_addr_t *bp,
len += sizeof(sctp_addr_param_t);
}
retval.v = kmalloc(len, priority);
retval.v = kmalloc(len, gfp);
if (!retval.v)
goto end_raw;
......@@ -238,7 +238,7 @@ union sctp_params sctp_bind_addrs_to_raw(const sctp_bind_addr_t *bp,
* address parameters).
*/
int sctp_raw_to_bind_addrs(sctp_bind_addr_t *bp, __u8 *raw_addr_list,
int addrs_len, __u16 port, int priority)
int addrs_len, __u16 port, int gfp)
{
sctp_addr_param_t *rawaddr;
sctp_paramhdr_t *param;
......@@ -254,8 +254,8 @@ int sctp_raw_to_bind_addrs(sctp_bind_addr_t *bp, __u8 *raw_addr_list,
switch (param->type) {
case SCTP_PARAM_IPV4_ADDRESS:
case SCTP_PARAM_IPV6_ADDRESS:
sctp_param2sockaddr(&addr, rawaddr, port);
retval = sctp_add_bind_addr(bp, &addr, priority);
sctp_param2sockaddr(&addr, rawaddr, port, 0);
retval = sctp_add_bind_addr(bp, &addr, gfp);
if (retval) {
/* Can't finish building the list, clean up. */
sctp_bind_addr_clean(bp);
......@@ -300,14 +300,14 @@ int sctp_bind_addr_match(sctp_bind_addr_t *bp, const union sctp_addr *addr,
/* Copy out addresses from the global local address list. */
static int sctp_copy_one_addr(sctp_bind_addr_t *dest, union sctp_addr *addr,
sctp_scope_t scope, int priority, int flags)
sctp_scope_t scope, int gfp, int flags)
{
struct sctp_protocol *proto = sctp_get_protocol();
int error = 0;
if (sctp_is_any(addr)) {
error = sctp_copy_local_addr_list(proto, dest, scope,
priority, flags);
gfp, flags);
} else if (sctp_in_scope(addr, scope)) {
/* Now that the address is in scope, check to see if
* the address type is supported by local sock as
......@@ -318,7 +318,7 @@ static int sctp_copy_one_addr(sctp_bind_addr_t *dest, union sctp_addr *addr,
(((AF_INET6 == addr->sa.sa_family) &&
(flags & SCTP_ADDR6_ALLOWED) &&
(flags & SCTP_ADDR6_PEERSUPP))))
error = sctp_add_bind_addr(dest, addr, priority);
error = sctp_add_bind_addr(dest, addr, gfp);
}
return error;
......
......@@ -177,8 +177,15 @@ sctp_endpoint_t *sctp_endpoint_init(sctp_endpoint_t *ep,
/* Add an association to an endpoint. */
void sctp_endpoint_add_asoc(sctp_endpoint_t *ep, sctp_association_t *asoc)
{
struct sock *sk = ep->base.sk;
/* Now just add it to our list of asocs */
list_add_tail(&asoc->asocs, &ep->asocs);
/* Increment the backlog value for a TCP-style listening socket. */
if ((SCTP_SOCKET_TCP == sctp_sk(sk)->type) &&
(SCTP_SS_LISTENING == sk->state))
sk->ack_backlog++;
}
/* Free the endpoint structure. Delay cleanup until
......
......@@ -207,21 +207,19 @@ int sctp_rcv(struct sk_buff *skb)
*/
sctp_bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
if (sock_owned_by_user(sk))
sk_add_backlog(sk, (struct sk_buff *) chunk);
} else {
else
sctp_backlog_rcv(sk, (struct sk_buff *) chunk);
}
/* Release the sock and any reference counts we took in the
* lookup calls.
*/
sctp_bh_unlock_sock(sk);
if (asoc) {
if (asoc)
sctp_association_put(asoc);
} else {
else
sctp_endpoint_put(ep);
}
sock_put(sk);
return ret;
......@@ -268,10 +266,8 @@ int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb)
}
/* Handle icmp frag needed error. */
static inline void sctp_icmp_frag_needed(struct sock *sk,
sctp_association_t *asoc,
struct sctp_transport *transport,
__u32 pmtu)
void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc,
struct sctp_transport *t, __u32 pmtu)
{
if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
printk(KERN_WARNING "%s: Reported pmtu %d too low, "
......@@ -280,54 +276,38 @@ static inline void sctp_icmp_frag_needed(struct sock *sk,
pmtu = SCTP_DEFAULT_MINSEGMENT;
}
if (!sock_owned_by_user(sk) && transport && (transport->pmtu != pmtu)) {
transport->pmtu = pmtu;
if (!sock_owned_by_user(sk) && t && (t->pmtu != pmtu)) {
t->pmtu = pmtu;
sctp_assoc_sync_pmtu(asoc);
sctp_retransmit(&asoc->outqueue, transport,
SCTP_RETRANSMIT_PMTU_DISCOVERY );
sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD);
}
}
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the sctp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
void sctp_v4_err(struct sk_buff *skb, __u32 info)
/* Common lookup code for icmp/icmpv6 error handler. */
struct sock *sctp_err_lookup(int family, struct sk_buff *skb,
struct sctphdr *sctphdr,
struct sctp_endpoint **epp,
struct sctp_association **app,
struct sctp_transport **tpp)
{
struct iphdr *iph = (struct iphdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
int type = skb->h.icmph->type;
int code = skb->h.icmph->code;
union sctp_addr saddr, daddr;
struct inet_opt *inet;
union sctp_addr saddr;
union sctp_addr daddr;
struct sctp_af *af;
struct sock *sk = NULL;
sctp_endpoint_t *ep = NULL;
sctp_association_t *asoc = NULL;
struct sctp_transport *transport;
int err;
struct sctp_endpoint *ep = NULL;
struct sctp_association *asoc = NULL;
struct sctp_transport *transport = NULL;
if (skb->len < ((iph->ihl << 2) + 8)) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
*app = NULL; *epp = NULL; *tpp = NULL;
af = sctp_get_af_specific(family);
if (unlikely(!af)) {
return NULL;
}
saddr.v4.sin_family = AF_INET;
saddr.v4.sin_port = ntohs(sh->source);
memcpy(&saddr.v4.sin_addr.s_addr, &iph->saddr, sizeof(struct in_addr));
daddr.v4.sin_family = AF_INET;
daddr.v4.sin_port = ntohs(sh->dest);
memcpy(&daddr.v4.sin_addr.s_addr, &iph->daddr, sizeof(struct in_addr));
/* Initialize local addresses for lookups. */
af->from_skb(&saddr, skb, 1);
af->from_skb(&daddr, skb, 0);
/* Look for an association that matches the incoming ICMP error
* packet.
......@@ -340,13 +320,12 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
*/
ep = __sctp_rcv_lookup_endpoint(&daddr);
if (!ep) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
return NULL;
}
}
if (asoc) {
if (ntohl(sh->vtag) != asoc->c.peer_vtag) {
if (ntohl(sctphdr->vtag) != asoc->c.peer_vtag) {
ICMP_INC_STATS_BH(IcmpInErrors);
goto out;
}
......@@ -355,12 +334,90 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
sk = ep->base.sk;
sctp_bh_lock_sock(sk);
/* If too many ICMPs get dropped on busy
* servers this needs to be solved differently.
*/
if (sock_owned_by_user(sk))
NET_INC_STATS_BH(LockDroppedIcmps);
*epp = ep;
*app = asoc;
*tpp = transport;
return sk;
out:
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
return NULL;
}
/* Common cleanup code for icmp/icmpv6 error handler. */
void sctp_err_finish(struct sock *sk, struct sctp_endpoint *ep,
struct sctp_association *asoc)
{
sctp_bh_unlock_sock(sk);
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
}
/*
* This routine is called by the ICMP module when it gets some
* sort of error condition. If err < 0 then the socket should
* be closed and the error returned to the user. If err > 0
* it's just the icmp type << 8 | icmp code. After adjustment
* header points to the first 8 bytes of the sctp header. We need
* to find the appropriate port.
*
* The locking strategy used here is very "optimistic". When
* someone else accesses the socket the ICMP is just dropped
* and for some paths there is no check at all.
* A more general error queue to queue errors for later handling
* is probably better.
*
*/
void sctp_v4_err(struct sk_buff *skb, __u32 info)
{
struct iphdr *iph = (struct iphdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + (iph->ihl <<2));
int type = skb->h.icmph->type;
int code = skb->h.icmph->code;
struct sock *sk;
sctp_endpoint_t *ep;
sctp_association_t *asoc;
struct sctp_transport *transport;
struct inet_opt *inet;
char *saveip, *savesctp;
int err;
if (skb->len < ((iph->ihl << 2) + 8)) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
}
/* Fix up skb to look at the embedded net header. */
saveip = skb->nh.raw;
savesctp = skb->h.raw;
skb->nh.iph = iph;
skb->h.raw = (char *)sh;
sk = sctp_err_lookup(AF_INET, skb, sh, &ep, &asoc, &transport);
/* Put back, the original pointers. */
skb->nh.raw = saveip;
skb->h.raw = savesctp;
if (!sk) {
ICMP_INC_STATS_BH(IcmpInErrors);
return;
}
/* Warning: The sock lock is held. Remember to call
* sctp_err_finish!
*/
switch (type) {
case ICMP_PARAMETERPROB:
err = EPROTO;
......@@ -399,13 +456,7 @@ void sctp_v4_err(struct sk_buff *skb, __u32 info)
}
out_unlock:
sctp_bh_unlock_sock(sk);
out:
sock_put(sk);
if (asoc)
sctp_association_put(asoc);
if (ep)
sctp_endpoint_put(ep);
sctp_err_finish(sk, ep, asoc);
}
/*
......@@ -623,9 +674,9 @@ void __sctp_unhash_established(sctp_association_t *asoc)
}
/* Look up an association. */
sctp_association_t *__sctp_lookup_association(const union sctp_addr *laddr,
const union sctp_addr *paddr,
struct sctp_transport **transportp)
sctp_association_t *__sctp_lookup_association(const union sctp_addr *local,
const union sctp_addr *peer,
struct sctp_transport **pt)
{
sctp_hashbucket_t *head;
sctp_endpoint_common_t *epb;
......@@ -636,12 +687,12 @@ sctp_association_t *__sctp_lookup_association(const union sctp_addr *laddr,
/* Optimize here for direct hit, only listening connections can
* have wildcards anyways.
*/
hash = sctp_assoc_hashfn(laddr->v4.sin_port, paddr->v4.sin_port);
hash = sctp_assoc_hashfn(local->v4.sin_port, peer->v4.sin_port);
head = &sctp_proto.assoc_hashbucket[hash];
read_lock(&head->lock);
for (epb = head->chain; epb; epb = epb->next) {
asoc = sctp_assoc(epb);
transport = sctp_assoc_is_match(asoc, laddr, paddr);
transport = sctp_assoc_is_match(asoc, local, peer);
if (transport)
goto hit;
}
......@@ -651,7 +702,7 @@ sctp_association_t *__sctp_lookup_association(const union sctp_addr *laddr,
return NULL;
hit:
*transportp = transport;
*pt = transport;
sctp_association_hold(asoc);
sock_hold(epb->sk);
read_unlock(&head->lock);
......@@ -754,7 +805,7 @@ static sctp_association_t *__sctp_rcv_init_lookup(struct sk_buff *skb,
(SCTP_PARAM_IPV6_ADDRESS != params.p->type))
continue;
sctp_param2sockaddr(paddr, params.addr, ntohs(sh->source));
sctp_param2sockaddr(paddr, params.addr, ntohs(sh->source), 0);
asoc = __sctp_lookup_association(laddr, paddr, transportp);
if (asoc)
return asoc;
......@@ -782,8 +833,3 @@ sctp_association_t *__sctp_rcv_lookup(struct sk_buff *skb,
return asoc;
}
/* SCTP kernel reference Implementation
* Copyright (c) 2001 Nokia, Inc.
* Copyright (c) 2001 La Monte H.P. Yarroll
* Copyright (c) 2002 International Business Machines, Corp.
* Copyright (c) 2002-2003 International Business Machines, Corp.
*
* This file is part of the SCTP kernel reference Implementation
*
......@@ -88,17 +88,62 @@ extern struct notifier_block sctp_inetaddr_notifier;
ntohs((addr)->s6_addr16[6]), \
ntohs((addr)->s6_addr16[7])
/* FIXME: Comments. */
static inline void sctp_v6_err(struct sk_buff *skb,
struct inet6_skb_parm *opt,
int type, int code, int offset, __u32 info)
/* ICMP error handler. */
void sctp_v6_err(struct sk_buff *skb, struct inet6_skb_parm *opt,
int type, int code, int offset, __u32 info)
{
/* BUG. WRITE ME. */
struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
struct sctphdr *sh = (struct sctphdr *)(skb->data + offset);
struct sock *sk;
sctp_endpoint_t *ep;
sctp_association_t *asoc;
struct sctp_transport *transport;
struct ipv6_pinfo *np;
char *saveip, *savesctp;
int err;
/* Fix up skb to look at the embedded net header. */
saveip = skb->nh.raw;
savesctp = skb->h.raw;
skb->nh.ipv6h = iph;
skb->h.raw = (char *)sh;
sk = sctp_err_lookup(AF_INET6, skb, sh, &ep, &asoc, &transport);
/* Put back, the original pointers. */
skb->nh.raw = saveip;
skb->h.raw = savesctp;
if (!sk) {
ICMP6_INC_STATS_BH(Icmp6InErrors);
return;
}
/* Warning: The sock lock is held. Remember to call
* sctp_err_finish!
*/
switch (type) {
case ICMPV6_PKT_TOOBIG:
sctp_icmp_frag_needed(sk, asoc, transport, ntohl(info));
goto out_unlock;
default:
break;
}
np = inet6_sk(sk);
icmpv6_err_convert(type, code, &err);
if (!sock_owned_by_user(sk) && np->recverr) {
sk->err = err;
sk->error_report(sk);
} else { /* Only an error on timeout */
sk->err_soft = err;
}
out_unlock:
sctp_err_finish(sk, ep, asoc);
}
/* Based on tcp_v6_xmit() in tcp_ipv6.c. */
static inline int sctp_v6_xmit(struct sk_buff *skb,
struct sctp_transport *transport, int ipfragok)
static int sctp_v6_xmit(struct sk_buff *skb, struct sctp_transport *transport,
int ipfragok)
{
struct sock *sk = skb->sk;
struct ipv6_pinfo *np = inet6_sk(sk);
......@@ -110,15 +155,18 @@ static inline int sctp_v6_xmit(struct sk_buff *skb,
/* Fill in the dest address from the route entry passed with the skb
* and the source address from the transport.
*/
*/
fl.fl6_dst = &rt6->rt6i_dst.addr;
fl.fl6_src = &transport->saddr.v6.sin6_addr;
fl.fl6_src = &transport->saddr.v6.sin6_addr;
fl.fl6_flowlabel = np->flow_label;
IP6_ECN_flow_xmit(sk, fl.fl6_flowlabel);
fl.oif = sk->bound_dev_if;
if (ipv6_addr_type(fl.fl6_src) & IPV6_ADDR_LINKLOCAL)
fl.oif = transport->saddr.v6.sin6_scope_id;
else
fl.oif = sk->bound_dev_if;
fl.uli_u.ports.sport = inet_sk(sk)->sport;
fl.uli_u.ports.dport = inet_sk(sk)->dport;
fl.uli_u.ports.dport = transport->ipaddr.v6.sin6_port;
if (np->opt && np->opt->srcrt) {
struct rt0_hdr *rt0 = (struct rt0_hdr *) np->opt->srcrt;
......@@ -174,7 +222,7 @@ struct dst_entry *sctp_v6_get_dst(sctp_association_t *asoc,
/* Returns the number of consecutive initial bits that match in the 2 ipv6
* addresses.
*/
*/
static inline int sctp_v6_addr_match_len(union sctp_addr *s1,
union sctp_addr *s2)
{
......@@ -186,7 +234,7 @@ static inline int sctp_v6_addr_match_len(union sctp_addr *s1,
__u32 a1xora2;
a1xora2 = a1->s6_addr32[i] ^ a2->s6_addr32[i];
if ((j = fls(ntohl(a1xora2))))
return (i * 32 + 32 - j);
}
......@@ -196,7 +244,7 @@ static inline int sctp_v6_addr_match_len(union sctp_addr *s1,
/* Fills in the source address(saddr) based on the destination address(daddr)
* and asoc's bind address list.
*/
*/
void sctp_v6_get_saddr(sctp_association_t *asoc, struct dst_entry *dst,
union sctp_addr *daddr, union sctp_addr *saddr)
{
......@@ -214,7 +262,7 @@ void sctp_v6_get_saddr(sctp_association_t *asoc, struct dst_entry *dst,
__FUNCTION__, asoc, dst, NIP6(&daddr->v6.sin6_addr));
if (!asoc) {
ipv6_get_saddr(dst, &daddr->v6.sin6_addr, &saddr->v6.sin6_addr);
ipv6_get_saddr(dst, &daddr->v6.sin6_addr,&saddr->v6.sin6_addr);
SCTP_DEBUG_PRINTK("saddr from ipv6_get_saddr: "
"%04x:%04x:%04x:%04x:%04x:%04x:%04x:%04x\n",
NIP6(&saddr->v6.sin6_addr));
......@@ -279,6 +327,7 @@ static void sctp_v6_copy_addrlist(struct list_head *addrlist,
addr->a.v6.sin6_family = AF_INET6;
addr->a.v6.sin6_port = 0;
addr->a.v6.sin6_addr = ifp->addr;
addr->a.v6.sin6_scope_id = dev->ifindex;
INIT_LIST_HEAD(&addr->list);
list_add_tail(&addr->list, addrlist);
}
......@@ -299,7 +348,7 @@ static void sctp_v6_from_skb(union sctp_addr *addr,struct sk_buff *skb,
port = &addr->v6.sin6_port;
addr->v6.sin6_family = AF_INET6;
addr->v6.sin6_flowinfo = 0; /* FIXME */
addr->v6.sin6_scope_id = 0; /* FIXME */
addr->v6.sin6_scope_id = ((struct inet6_skb_parm *)skb->cb)->iif;
sh = (struct sctphdr *) skb->h.raw;
if (is_saddr) {
......@@ -336,19 +385,25 @@ static void sctp_v6_dst_saddr(union sctp_addr *addr, struct dst_entry *dst,
ipv6_addr_copy(&addr->v6.sin6_addr, &rt->rt6i_src.addr);
}
/* Compare addresses exactly. Well.. almost exactly; ignore scope_id
* for now. FIXME: v4-mapped-v6.
/* Compare addresses exactly.
* FIXME: v4-mapped-v6.
*/
static int sctp_v6_cmp_addr(const union sctp_addr *addr1,
const union sctp_addr *addr2)
{
int match;
if (addr1->sa.sa_family != addr2->sa.sa_family)
return 0;
match = !ipv6_addr_cmp((struct in6_addr *)&addr1->v6.sin6_addr,
(struct in6_addr *)&addr2->v6.sin6_addr);
if (ipv6_addr_cmp(&addr1->v6.sin6_addr, &addr2->v6.sin6_addr))
return 0;
/* If this is a linklocal address, compare the scope_id. */
if (ipv6_addr_type(&addr1->v6.sin6_addr) & IPV6_ADDR_LINKLOCAL) {
if (addr1->v6.sin6_scope_id && addr2->v6.sin6_scope_id &&
(addr1->v6.sin6_scope_id != addr2->v6.sin6_scope_id)) {
return 0;
}
}
return match;
return 1;
}
/* Initialize addr struct to INADDR_ANY. */
......@@ -382,7 +437,6 @@ static int sctp_v6_available(const union sctp_addr *addr)
return ipv6_chk_addr(in6, NULL);
}
/* This function checks if the address is a valid address to be used for
* SCTP.
*
......@@ -432,7 +486,7 @@ static sctp_scope_t sctp_v6_scope(union sctp_addr *addr)
return retval;
}
/* Create and initialize a new sk for the socket to be returned by accept(). */
/* Create and initialize a new sk for the socket to be returned by accept(). */
struct sock *sctp_v6_create_accept_sk(struct sock *sk,
struct sctp_association *asoc)
{
......@@ -469,11 +523,11 @@ struct sock *sctp_v6_create_accept_sk(struct sock *sk,
memcpy(newnp, np, sizeof(struct ipv6_pinfo));
ipv6_addr_copy(&newnp->daddr, &asoc->peer.primary_addr.v6.sin6_addr);
ipv6_addr_copy(&newnp->daddr, &asoc->peer.primary_addr.v6.sin6_addr);
newinet->sport = inet->sport;
newinet->dport = asoc->peer.port;
#ifdef INET_REFCNT_DEBUG
atomic_inc(&inet6_sock_nr);
atomic_inc(&inet_sock_nr);
......@@ -488,6 +542,13 @@ struct sock *sctp_v6_create_accept_sk(struct sock *sk,
return newsk;
}
/* Where did this skb come from? */
static int sctp_v6_skb_iif(const struct sk_buff *skb)
{
struct inet6_skb_parm *opt = (struct inet6_skb_parm *) skb->cb;
return opt->iif;
}
/* Initialize a PF_INET6 socket msg_name. */
static void sctp_inet6_msgname(char *msgname, int *addr_len)
{
......@@ -496,13 +557,13 @@ static void sctp_inet6_msgname(char *msgname, int *addr_len)
sin6 = (struct sockaddr_in6 *)msgname;
sin6->sin6_family = AF_INET6;
sin6->sin6_flowinfo = 0;
sin6->sin6_scope_id = 0;
sin6->sin6_scope_id = 0; /*FIXME */
*addr_len = sizeof(struct sockaddr_in6);
}
/* Initialize a PF_INET msgname from a ulpevent. */
static void sctp_inet6_event_msgname(struct sctp_ulpevent *event, char *msgname,
int *addrlen)
static void sctp_inet6_event_msgname(struct sctp_ulpevent *event,
char *msgname, int *addrlen)
{
struct sockaddr_in6 *sin6, *sin6from;
......@@ -528,6 +589,8 @@ static void sctp_inet6_event_msgname(struct sctp_ulpevent *event, char *msgname,
sin6from = &event->asoc->peer.primary_addr.v6;
ipv6_addr_copy(&sin6->sin6_addr, &sin6from->sin6_addr);
if (ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL)
sin6->sin6_scope_id = sin6from->sin6_scope_id;
}
}
......@@ -546,8 +609,8 @@ static void sctp_inet6_skb_msgname(struct sk_buff *skb, char *msgname,
/* FIXME: Map ipv4 address into v4-mapped-on-v6 address. */
if (__constant_htons(ETH_P_IP) == skb->protocol) {
/* FIXME: Easy, but there was no way to test this
* yet.
/* FIXME: The latest I-D added options for two
* behaviors.
*/
return;
}
......@@ -556,9 +619,8 @@ static void sctp_inet6_skb_msgname(struct sk_buff *skb, char *msgname,
ipv6_addr_copy(&sin6->sin6_addr, &skb->nh.ipv6h->saddr);
if (ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL) {
struct inet6_skb_parm *opt =
(struct inet6_skb_parm *) skb->cb;
sin6->sin6_scope_id = opt->iif;
struct sctp_ulpevent *ev = sctp_skb2event(skb);
sin6->sin6_scope_id = ev->iif;
}
}
}
......@@ -612,22 +674,67 @@ static int sctp_inet6_bind_verify(struct sctp_opt *opt, union sctp_addr *addr)
struct sctp_af *af;
/* ASSERT: address family has already been verified. */
if (addr->sa.sa_family != AF_INET6) {
if (addr->sa.sa_family != AF_INET6)
af = sctp_get_af_specific(addr->sa.sa_family);
} else
af = opt->pf->af;
else {
struct sock *sk;
int type = ipv6_addr_type(&addr->v6.sin6_addr);
sk = &container_of(opt, struct sctp6_sock, sctp)->sk;
if (type & IPV6_ADDR_LINKLOCAL) {
/* Note: Behavior similar to af_inet6.c:
* 1) Overrides previous bound_dev_if
* 2) Destructive even if bind isn't successful.
*/
if (addr->v6.sin6_scope_id)
sk->bound_dev_if = addr->v6.sin6_scope_id;
if (!sk->bound_dev_if)
return 0;
}
af = opt->pf->af;
}
return af->available(addr);
}
/* Verify that the provided sockaddr looks bindable. Common verification,
* has already been taken care of.
*/
static int sctp_inet6_send_verify(struct sctp_opt *opt, union sctp_addr *addr)
{
struct sctp_af *af = NULL;
/* ASSERT: address family has already been verified. */
if (addr->sa.sa_family != AF_INET6)
af = sctp_get_af_specific(addr->sa.sa_family);
else {
struct sock *sk;
int type = ipv6_addr_type(&addr->v6.sin6_addr);
sk = &container_of(opt, struct sctp6_sock, sctp)->sk;
if (type & IPV6_ADDR_LINKLOCAL) {
/* Note: Behavior similar to af_inet6.c:
* 1) Overrides previous bound_dev_if
* 2) Destructive even if bind isn't successful.
*/
if (addr->v6.sin6_scope_id)
sk->bound_dev_if = addr->v6.sin6_scope_id;
if (!sk->bound_dev_if)
return 0;
}
af = opt->pf->af;
}
return af != NULL;
}
/* Fill in Supported Address Type information for INIT and INIT-ACK
* chunks. Note: In the future, we may want to look at sock options
* to determine whether a PF_INET6 socket really wants to have IPV4
* addresses.
* addresses.
* Returns number of addresses supported.
*/
static int sctp_inet6_supported_addrs(const struct sctp_opt *opt,
__u16 *types)
__u16 *types)
{
types[0] = SCTP_PARAM_IPV4_ADDRESS;
types[1] = SCTP_PARAM_IPV6_ADDRESS;
......@@ -700,6 +807,7 @@ static struct sctp_af sctp_ipv6_specific = {
.inaddr_any = sctp_v6_inaddr_any,
.is_any = sctp_v6_is_any,
.available = sctp_v6_available,
.skb_iif = sctp_v6_skb_iif,
.net_header_len = sizeof(struct ipv6hdr),
.sockaddr_len = sizeof(struct sockaddr_in6),
.sa_family = AF_INET6,
......@@ -711,6 +819,7 @@ static struct sctp_pf sctp_pf_inet6_specific = {
.af_supported = sctp_inet6_af_supported,
.cmp_addr = sctp_inet6_cmp_addr,
.bind_verify = sctp_inet6_bind_verify,
.send_verify = sctp_inet6_send_verify,
.supported_addrs = sctp_inet6_supported_addrs,
.create_accept_sk = sctp_v6_create_accept_sk,
.af = &sctp_ipv6_specific,
......
......@@ -79,6 +79,7 @@ struct sctp_packet *sctp_packet_config(struct sctp_packet *packet,
packet->ecn_capable = ecn_capable;
packet->get_prepend_chunk = prepend_handler;
packet->has_cookie_echo = 0;
packet->has_sack = 0;
packet->ipfragok = 0;
/* We might need to call the prepend_handler right away. */
......@@ -100,6 +101,7 @@ struct sctp_packet *sctp_packet_init(struct sctp_packet *packet,
packet->ecn_capable = 0;
packet->get_prepend_chunk = NULL;
packet->has_cookie_echo = 0;
packet->has_sack = 0;
packet->ipfragok = 0;
packet->malloced = 0;
sctp_packet_reset(packet);
......@@ -155,6 +157,37 @@ sctp_xmit_t sctp_packet_transmit_chunk(struct sctp_packet *packet,
return retval;
}
/* Try to bundle a SACK with the packet. */
static sctp_xmit_t sctp_packet_bundle_sack(struct sctp_packet *pkt,
struct sctp_chunk *chunk)
{
sctp_xmit_t retval = SCTP_XMIT_OK;
/* If sending DATA and haven't aleady bundled a SACK, try to
* bundle one in to the packet.
*/
if (sctp_chunk_is_data(chunk) && !pkt->has_sack &&
!pkt->has_cookie_echo) {
struct sctp_association *asoc;
asoc = pkt->transport->asoc;
if (asoc->a_rwnd > asoc->rwnd) {
struct sctp_chunk *sack;
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (sack) {
struct timer_list *timer;
retval = sctp_packet_append_chunk(pkt, sack);
asoc->peer.sack_needed = 0;
timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
if (timer_pending(timer) && del_timer(timer))
sctp_association_put(asoc);
}
}
}
return retval;
}
/* Append a chunk to the offered packet reporting back any inability to do
* so.
*/
......@@ -163,10 +196,16 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet,
{
sctp_xmit_t retval = SCTP_XMIT_OK;
__u16 chunk_len = WORD_ROUND(ntohs(chunk->chunk_hdr->length));
size_t psize = packet->size;
size_t psize;
size_t pmtu;
int too_big;
retval = sctp_packet_bundle_sack(packet, chunk);
psize = packet->size;
if (retval != SCTP_XMIT_OK)
goto finish;
pmtu = ((packet->transport->asoc) ?
(packet->transport->asoc->pmtu) :
(packet->transport->pmtu));
......@@ -214,11 +253,14 @@ sctp_xmit_t sctp_packet_append_chunk(struct sctp_packet *packet,
*/
if (sctp_chunk_is_data(chunk)) {
retval = sctp_packet_append_data(packet, chunk);
/* Disallow SACK bundling after DATA. */
packet->has_sack = 1;
if (SCTP_XMIT_OK != retval)
goto finish;
} else if (SCTP_CID_COOKIE_ECHO == chunk->chunk_hdr->type) {
} else if (SCTP_CID_COOKIE_ECHO == chunk->chunk_hdr->type)
packet->has_cookie_echo = 1;
}
else if (SCTP_CID_SACK == chunk->chunk_hdr->type)
packet->has_sack = 1;
/* It is OK to send this chunk. */
__skb_queue_tail(&packet->chunks, (struct sk_buff *)chunk);
......
......@@ -138,13 +138,13 @@ void sctp_outq_init(sctp_association_t *asoc, struct sctp_outq *q)
}
/* Free the outqueue structure and any related pending chunks.
* FIXME: Add SEND_FAILED support.
*/
void sctp_outq_teardown(struct sctp_outq *q)
{
struct sctp_transport *transport;
struct list_head *lchunk, *pos, *temp;
sctp_chunk_t *chunk;
struct sctp_ulpevent *ev;
/* Throw away unacknowledged chunks. */
list_for_each(pos, &q->asoc->peer.transport_addr_list) {
......@@ -152,6 +152,14 @@ void sctp_outq_teardown(struct sctp_outq *q)
while ((lchunk = sctp_list_dequeue(&transport->transmitted))) {
chunk = list_entry(lchunk, sctp_chunk_t,
transmitted_list);
/* Generate a SEND FAILED event. */
ev = sctp_ulpevent_make_send_failed(q->asoc,
chunk, SCTP_DATA_SENT,
q->error, GFP_ATOMIC);
if (ev)
sctp_ulpq_tail_event(&q->asoc->ulpq, ev);
sctp_free_chunk(chunk);
}
}
......@@ -171,8 +179,19 @@ void sctp_outq_teardown(struct sctp_outq *q)
}
/* Throw away any leftover data chunks. */
while ((chunk = sctp_outq_dequeue_data(q)))
while ((chunk = sctp_outq_dequeue_data(q))) {
/* Generate a SEND FAILED event. */
ev = sctp_ulpevent_make_send_failed(q->asoc,
chunk, SCTP_DATA_UNSENT,
q->error, GFP_ATOMIC);
if (ev)
sctp_ulpq_tail_event(&q->asoc->ulpq, ev);
sctp_free_chunk(chunk);
}
q->error = 0;
/* Throw away any leftover control chunks. */
while ((chunk = (sctp_chunk_t *) skb_dequeue(&q->control)))
......@@ -357,7 +376,7 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
__u8 fast_retransmit = 0;
switch(reason) {
case SCTP_RETRANSMIT_T3_RTX:
case SCTP_RTXR_T3_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
/* Update the retran path if the T3-rtx timer has expired for
* the current retran path.
......@@ -365,10 +384,11 @@ void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
if (transport == transport->asoc->peer.retran_path)
sctp_assoc_update_retran_path(transport->asoc);
break;
case SCTP_RETRANSMIT_FAST_RTX:
case SCTP_RTXR_FAST_RTX:
sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
fast_retransmit = 1;
break;
case SCTP_RTXR_PMTUD:
default:
break;
}
......@@ -876,7 +896,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
start_timer = 0;
queue = &q->out;
while (NULL != (chunk = sctp_outq_dequeue_data(q))) {
while ((chunk = sctp_outq_dequeue_data(q))) {
/* RFC 2960 6.5 Every DATA chunk MUST carry a valid
* stream identifier.
*/
......@@ -891,9 +911,7 @@ int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout)
if (ev)
sctp_ulpq_tail_event(&asoc->ulpq, ev);
/* Free the chunk. This chunk is not on any
* list yet, just free it.
*/
/* Free the chunk. */
sctp_free_chunk(chunk);
continue;
}
......@@ -1572,7 +1590,7 @@ static void sctp_check_transmitted(struct sctp_outq *q,
if (transport) {
if (do_fast_retransmit)
sctp_retransmit(q, transport, SCTP_RETRANSMIT_FAST_RTX);
sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
"ssthresh: %d, flight_size: %d, pba: %d\n",
......
......@@ -170,7 +170,7 @@ static void __sctp_get_local_addr_list(struct sctp_protocol *proto)
static void sctp_get_local_addr_list(struct sctp_protocol *proto)
{
long flags __attribute__ ((unused));
unsigned long flags;
sctp_spin_lock_irqsave(&sctp_proto.local_addr_lock, flags);
__sctp_get_local_addr_list(&sctp_proto);
......@@ -193,7 +193,7 @@ static void __sctp_free_local_addr_list(struct sctp_protocol *proto)
/* Free the existing local addresses. */
static void sctp_free_local_addr_list(struct sctp_protocol *proto)
{
long flags __attribute__ ((unused));
unsigned long flags;
sctp_spin_lock_irqsave(&proto->local_addr_lock, flags);
__sctp_free_local_addr_list(proto);
......@@ -208,7 +208,7 @@ int sctp_copy_local_addr_list(struct sctp_protocol *proto,
struct sockaddr_storage_list *addr;
int error = 0;
struct list_head *pos;
long flags __attribute__ ((unused));
unsigned long flags;
sctp_spin_lock_irqsave(&proto->local_addr_lock, flags);
list_for_each(pos, &proto->local_addr_list) {
......@@ -233,7 +233,6 @@ int sctp_copy_local_addr_list(struct sctp_protocol *proto,
end_copy:
sctp_spin_unlock_irqrestore(&proto->local_addr_lock, flags);
return error;
}
......@@ -383,7 +382,7 @@ static sctp_scope_t sctp_v4_scope(union sctp_addr *addr)
* addresses. If an association is passed, trys to get a dst entry with a
* source adddress that matches an address in the bind address list.
*/
struct dst_entry *sctp_v4_get_dst(sctp_association_t *asoc,
struct dst_entry *sctp_v4_get_dst(struct sctp_association *asoc,
union sctp_addr *daddr,
union sctp_addr *saddr)
{
......@@ -480,6 +479,12 @@ void sctp_v4_get_saddr(sctp_association_t *asoc,
}
/* What interface did this skb arrive on? */
int sctp_v4_skb_iif(const struct sk_buff *skb)
{
return ((struct rtable *)skb->dst)->rt_iif;
}
/* Create and initialize a new sk for the socket returned by accept(). */
struct sock *sctp_v4_create_accept_sk(struct sock *sk,
struct sctp_association *asoc)
......@@ -538,10 +543,10 @@ struct sock *sctp_v4_create_accept_sk(struct sock *sk,
/* Event handler for inet address addition/deletion events.
* Basically, whenever there is an event, we re-build our local address list.
*/
static int sctp_inetaddr_event(struct notifier_block *this, unsigned long event,
static int sctp_inetaddr_event(struct notifier_block *this, unsigned long ev,
void *ptr)
{
long flags __attribute__ ((unused));
unsigned long flags;
sctp_spin_lock_irqsave(&sctp_proto.local_addr_lock, flags);
__sctp_free_local_addr_list(&sctp_proto);
......@@ -689,6 +694,14 @@ static int sctp_inet_bind_verify(struct sctp_opt *opt, union sctp_addr *addr)
return sctp_v4_available(addr);
}
/* Verify that sockaddr looks sendable. Common verification has already
* been taken care of.
*/
static int sctp_inet_send_verify(struct sctp_opt *opt, union sctp_addr *addr)
{
return 1;
}
/* Fill in Supported Address Type information for INIT and INIT-ACK
* chunks. Returns number of addresses supported.
*/
......@@ -721,6 +734,7 @@ static struct sctp_pf sctp_pf_inet = {
.af_supported = sctp_inet_af_supported,
.cmp_addr = sctp_inet_cmp_addr,
.bind_verify = sctp_inet_bind_verify,
.send_verify = sctp_inet_send_verify,
.supported_addrs = sctp_inet_supported_addrs,
.create_accept_sk = sctp_v4_create_accept_sk,
.af = &sctp_ipv4_specific,
......@@ -797,6 +811,7 @@ struct sctp_af sctp_ipv4_specific = {
.is_any = sctp_v4_is_any,
.available = sctp_v4_available,
.scope = sctp_v4_scope,
.skb_iif = sctp_v4_skb_iif,
.net_header_len = sizeof(struct iphdr),
.sockaddr_len = sizeof(struct sockaddr_in),
.sa_family = AF_INET,
......@@ -874,6 +889,10 @@ __init int sctp_init(void)
int i;
int status = 0;
/* SCTP_DEBUG sanity check. */
if (!sctp_sanity_check())
return -EINVAL;
/* Add SCTP to inet_protos hash table. */
if (inet_add_protocol(&sctp_protocol, IPPROTO_SCTP) < 0)
return -EAGAIN;
......
......@@ -66,6 +66,19 @@
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
/* What was the inbound interface for this chunk? */
int sctp_chunk_iif(const struct sctp_chunk *chunk)
{
struct sctp_af *af;
int iif = 0;
af = sctp_get_af_specific(ipver2af(chunk->skb->nh.iph->version));
if (af)
iif = af->skb_iif(chunk->skb);
return iif;
}
/* RFC 2960 3.3.2 Initiation (INIT) (1)
*
* Note 2: The ECN capable field is reserved for future use of
......@@ -145,7 +158,7 @@ void sctp_init_cause(sctp_chunk_t *chunk, __u16 cause_code,
*/
sctp_chunk_t *sctp_make_init(const sctp_association_t *asoc,
const sctp_bind_addr_t *bp,
int priority, int vparam_len)
int gfp, int vparam_len)
{
sctp_inithdr_t init;
union sctp_params addrs;
......@@ -165,7 +178,7 @@ sctp_chunk_t *sctp_make_init(const sctp_association_t *asoc,
addrs.v = NULL;
/* Convert the provided bind address list to raw format */
addrs = sctp_bind_addrs_to_raw(bp, &addrs_len, priority);
addrs = sctp_bind_addrs_to_raw(bp, &addrs_len, gfp);
if (!addrs.v)
goto nodata;
......@@ -225,7 +238,7 @@ sctp_chunk_t *sctp_make_init(const sctp_association_t *asoc,
sctp_chunk_t *sctp_make_init_ack(const sctp_association_t *asoc,
const sctp_chunk_t *chunk,
int priority, int unkparam_len)
int gfp, int unkparam_len)
{
sctp_inithdr_t initack;
sctp_chunk_t *retval;
......@@ -237,8 +250,7 @@ sctp_chunk_t *sctp_make_init_ack(const sctp_association_t *asoc,
retval = NULL;
addrs = sctp_bind_addrs_to_raw(&asoc->base.bind_addr, &addrs_len,
priority);
addrs = sctp_bind_addrs_to_raw(&asoc->base.bind_addr, &addrs_len, gfp);
if (!addrs.v)
goto nomem_rawaddr;
......@@ -1019,21 +1031,18 @@ sctp_chunk_t *sctp_make_chunk(const sctp_association_t *asoc,
struct sk_buff *skb;
struct sock *sk;
skb = dev_alloc_skb(WORD_ROUND(sizeof(sctp_chunkhdr_t) + paylen));
/* No need to allocate LL here, as this is only a chunk. */
skb = alloc_skb(WORD_ROUND(sizeof(sctp_chunkhdr_t) + paylen),
GFP_ATOMIC);
if (!skb)
goto nodata;
/* Make room for the chunk header. */
chunk_hdr = (sctp_chunkhdr_t *)skb_put(skb, sizeof(sctp_chunkhdr_t));
skb_pull(skb, sizeof(sctp_chunkhdr_t));
chunk_hdr->type = type;
chunk_hdr->flags = flags;
chunk_hdr->length = htons(sizeof(sctp_chunkhdr_t));
/* Move the data pointer back up to the start of the chunk. */
skb_push(skb, sizeof(sctp_chunkhdr_t));
sk = asoc ? asoc->base.sk : NULL;
retval = sctp_chunkify(skb, asoc, sk);
if (!retval) {
......@@ -1162,7 +1171,7 @@ int sctp_datachunks_from_user(sctp_association_t *asoc,
msg_len -= first_len;
whole = 1;
}
}
}
/* How many full sized? How many bytes leftover? */
whole += msg_len / max;
......@@ -1198,7 +1207,7 @@ int sctp_datachunks_from_user(sctp_association_t *asoc,
__skb_queue_tail(chunks, (struct sk_buff *)chunk);
/* The first chunk, the first chunk was likely short
/* The first chunk, the first chunk was likely short
* to allow bundling, so reset to full size.
*/
if (0 == i)
......@@ -1282,26 +1291,26 @@ void sctp_chunk_assign_tsn(sctp_chunk_t *chunk)
}
/* Create a CLOSED association to use with an incoming packet. */
sctp_association_t *sctp_make_temp_asoc(const sctp_endpoint_t *ep,
sctp_chunk_t *chunk,
int priority)
sctp_association_t *sctp_make_temp_asoc(const struct sctp_endpoint *ep,
struct sctp_chunk *chunk, int gfp)
{
sctp_association_t *asoc;
struct sk_buff *skb;
sctp_scope_t scope;
/* Create the bare association. */
scope = sctp_scope(sctp_source(chunk));
asoc = sctp_association_new(ep, ep->base.sk, scope, priority);
asoc = sctp_association_new(ep, ep->base.sk, scope, gfp);
if (!asoc)
goto nodata;
skb = chunk->skb;
/* Create an entry for the source address of the packet. */
switch (chunk->skb->nh.iph->version) {
/* FIXME: Use the af specific helpers. */
switch (skb->nh.iph->version) {
case 4:
asoc->c.peer_addr.v4.sin_family = AF_INET;
asoc->c.peer_addr.v4.sin_port = ntohs(chunk->sctp_hdr->source);
asoc->c.peer_addr.v4.sin_addr.s_addr =
chunk->skb->nh.iph->saddr;
asoc->c.peer_addr.v4.sin_addr.s_addr = skb->nh.iph->saddr;
break;
case 6:
......@@ -1309,8 +1318,9 @@ sctp_association_t *sctp_make_temp_asoc(const sctp_endpoint_t *ep,
asoc->c.peer_addr.v6.sin6_port
= ntohs(chunk->sctp_hdr->source);
asoc->c.peer_addr.v6.sin6_flowinfo = 0; /* BUG BUG BUG */
asoc->c.peer_addr.v6.sin6_addr = chunk->skb->nh.ipv6h->saddr;
asoc->c.peer_addr.v6.sin6_scope_id = 0; /* BUG BUG BUG */
asoc->c.peer_addr.v6.sin6_addr = skb->nh.ipv6h->saddr;
asoc->c.peer_addr.v6.sin6_scope_id =
((struct inet6_skb_parm *)skb->cb)->iif;
break;
default:
......@@ -1397,7 +1407,7 @@ sctp_cookie_param_t *sctp_pack_cookie(const sctp_endpoint_t *ep,
/* Unpack the cookie from COOKIE ECHO chunk, recreating the association. */
sctp_association_t *sctp_unpack_cookie(const sctp_endpoint_t *ep,
const sctp_association_t *asoc,
sctp_chunk_t *chunk, int priority,
sctp_chunk_t *chunk, int gfp,
int *error, sctp_chunk_t **err_chk_p)
{
sctp_association_t *retval = NULL;
......@@ -1408,6 +1418,7 @@ sctp_association_t *sctp_unpack_cookie(const sctp_endpoint_t *ep,
__u8 digest_buf[SCTP_SIGNATURE_SIZE];
int secret;
sctp_scope_t scope;
struct sk_buff *skb = chunk->skb;
headersize = sizeof(sctp_chunkhdr_t) + SCTP_SECRET_SIZE;
bodysize = ntohs(chunk->chunk_hdr->length) - headersize;
......@@ -1450,7 +1461,7 @@ sctp_association_t *sctp_unpack_cookie(const sctp_endpoint_t *ep,
* an association, there is no need to check cookie's expiration
* for init collision case of lost COOKIE ACK.
*/
if (!asoc && tv_lt(bear_cookie->expiration, chunk->skb->stamp)) {
if (!asoc && tv_lt(bear_cookie->expiration, skb->stamp)) {
__u16 len;
/*
* Section 3.3.10.3 Stale Cookie Error (3)
......@@ -1463,9 +1474,9 @@ sctp_association_t *sctp_unpack_cookie(const sctp_endpoint_t *ep,
len = ntohs(chunk->chunk_hdr->length);
*err_chk_p = sctp_make_op_error_space(asoc, chunk, len);
if (*err_chk_p) {
suseconds_t usecs = (chunk->skb->stamp.tv_sec -
suseconds_t usecs = (skb->stamp.tv_sec -
bear_cookie->expiration.tv_sec) * 1000000L +
chunk->skb->stamp.tv_usec -
skb->stamp.tv_usec -
bear_cookie->expiration.tv_usec;
usecs = htonl(usecs);
......@@ -1480,7 +1491,7 @@ sctp_association_t *sctp_unpack_cookie(const sctp_endpoint_t *ep,
/* Make a new base association. */
scope = sctp_scope(sctp_source(chunk));
retval = sctp_association_new(ep, ep->base.sk, scope, priority);
retval = sctp_association_new(ep, ep->base.sk, scope, gfp);
if (!retval) {
*error = -SCTP_IERROR_NOMEM;
goto fail;
......@@ -1522,13 +1533,14 @@ sctp_association_t *sctp_unpack_cookie(const sctp_endpoint_t *ep,
* 3rd Level Abstractions
********************************************************************/
/*
* Report a missing mandatory parameter.
*/
struct __sctp_missing {
__u32 num_missing;
__u16 type;
} __attribute__((packed));;
/*
* Report a missing mandatory parameter.
*/
static int sctp_process_missing_param(const sctp_association_t *asoc,
sctp_param_t paramtype,
sctp_chunk_t *chunk,
......@@ -1774,8 +1786,7 @@ int sctp_verify_init(const sctp_association_t *asoc,
*/
int sctp_process_init(sctp_association_t *asoc, sctp_cid_t cid,
const union sctp_addr *peer_addr,
sctp_init_chunk_t *peer_init,
int priority)
sctp_init_chunk_t *peer_init, int gfp)
{
union sctp_params param;
struct sctp_transport *transport;
......@@ -1793,14 +1804,14 @@ int sctp_process_init(sctp_association_t *asoc, sctp_cid_t cid,
* be a a better choice than any of the embedded addresses.
*/
if (peer_addr)
if(!sctp_assoc_add_peer(asoc, peer_addr, priority))
if(!sctp_assoc_add_peer(asoc, peer_addr, gfp))
goto nomem;
/* Process the initialization parameters. */
sctp_walk_params(param, peer_init, init_hdr.params) {
if (!sctp_process_param(asoc, param, peer_addr, priority))
if (!sctp_process_param(asoc, param, peer_addr, gfp))
goto clean_up;
}
......@@ -1842,7 +1853,7 @@ int sctp_process_init(sctp_association_t *asoc, sctp_cid_t cid,
/* Copy cookie in case we need to resend COOKIE-ECHO. */
cookie = asoc->peer.cookie;
if (cookie) {
asoc->peer.cookie = kmalloc(asoc->peer.cookie_len, priority);
asoc->peer.cookie = kmalloc(asoc->peer.cookie_len, gfp);
if (!asoc->peer.cookie)
goto clean_up;
memcpy(asoc->peer.cookie, cookie, asoc->peer.cookie_len);
......@@ -1871,8 +1882,7 @@ int sctp_process_init(sctp_association_t *asoc, sctp_cid_t cid,
/* Allocate storage for the negotiated streams. */
asoc->ssnmap = sctp_ssnmap_new(asoc->peer.i.num_outbound_streams,
asoc->c.sinit_num_ostreams,
priority);
asoc->c.sinit_num_ostreams, gfp);
if (!asoc->ssnmap)
goto nomem_ssnmap;
......@@ -1914,7 +1924,7 @@ int sctp_process_init(sctp_association_t *asoc, sctp_cid_t cid,
* structures for the addresses.
*/
int sctp_process_param(sctp_association_t *asoc, union sctp_params param,
const union sctp_addr *peer_addr, int priority)
const union sctp_addr *peer_addr, int gfp)
{
union sctp_addr addr;
int i;
......@@ -1933,10 +1943,10 @@ int sctp_process_param(sctp_association_t *asoc, union sctp_params param,
break;
/* Fall through. */
case SCTP_PARAM_IPV4_ADDRESS:
sctp_param2sockaddr(&addr, param.addr, asoc->peer.port);
sctp_param2sockaddr(&addr, param.addr, asoc->peer.port, 0);
scope = sctp_scope(peer_addr);
if (sctp_in_scope(&addr, scope))
if (!sctp_assoc_add_peer(asoc, &addr, priority))
if (!sctp_assoc_add_peer(asoc, &addr, gfp))
return 0;
break;
......@@ -2051,7 +2061,7 @@ __u32 sctp_generate_tsn(const sctp_endpoint_t *ep)
/* Convert from an SCTP IP parameter to a union sctp_addr. */
void sctp_param2sockaddr(union sctp_addr *addr, sctp_addr_param_t *param,
__u16 port)
__u16 port, int iif)
{
switch(param->v4.param_hdr.type) {
case SCTP_PARAM_IPV4_ADDRESS:
......@@ -2065,7 +2075,7 @@ void sctp_param2sockaddr(union sctp_addr *addr, sctp_addr_param_t *param,
addr->v6.sin6_port = port;
addr->v6.sin6_flowinfo = 0; /* BUG */
addr->v6.sin6_addr = param->v6.addr;
addr->v6.sin6_scope_id = 0; /* BUG */
addr->v6.sin6_scope_id = iif;
break;
default:
......
......@@ -55,1202 +55,1106 @@
#include <net/sctp/sctp.h>
#include <net/sctp/sm.h>
/* Do forward declarations of static functions. */
static void sctp_do_ecn_ce_work(sctp_association_t *,__u32 lowest_tsn);
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
__u32 lowest_tsn,
sctp_chunk_t *);
static void sctp_do_ecn_cwr_work(sctp_association_t *,__u32 lowest_tsn);
static void sctp_do_8_2_transport_strike(sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_init_failed(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *, sctp_association_t *,
sctp_event_t, sctp_subtype_t,
sctp_chunk_t *chunk);
static int sctp_cmd_process_init(sctp_cmd_seq_t *, sctp_association_t *,
sctp_chunk_t *chunk,
sctp_init_chunk_t *peer_init,
int priority);
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *, sctp_association_t *);
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *);
static void sctp_cmd_transport_on(sctp_cmd_seq_t *, sctp_association_t *,
struct sctp_transport *, sctp_chunk_t *);
static int sctp_cmd_process_sack(sctp_cmd_seq_t *, sctp_association_t *,
sctp_sackhdr_t *);
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *, sctp_association_t *,
sctp_chunk_t *);
static void sctp_cmd_new_state(sctp_cmd_seq_t *, sctp_association_t *,
sctp_state_t);
/* These three macros allow us to pull the debugging code out of the
* main flow of sctp_do_sm() to keep attention focused on the real
* functionality there.
*/
#define DEBUG_PRE \
SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \
"ep %p, %s, %s, asoc %p[%s], %s\n", \
ep, sctp_evttype_tbl[event_type], \
(*debug_fn)(subtype), asoc, \
sctp_state_tbl[state], state_fn->name)
/********************************************************************
* Helper functions
********************************************************************/
#define DEBUG_POST \
SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \
"asoc %p, status: %s\n", \
asoc, sctp_status_tbl[status])
/* A helper function for delayed processing of INET ECN CE bit. */
static void sctp_do_ecn_ce_work(sctp_association_t *asoc, __u32 lowest_tsn)
{
/* Save the TSN away for comparison when we receive CWR */
#define DEBUG_POST_SFX \
SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \
error, asoc, \
sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED])
asoc->last_ecne_tsn = lowest_tsn;
asoc->need_ecne = 1;
}
/*
* This is the master state machine processing function.
/* Helper function for delayed processing of SCTP ECNE chunk. */
/* RFC 2960 Appendix A
*
* If you want to understand all of lksctp, this is a
* good place to start.
* RFC 2481 details a specific bit for a sender to send in
* the header of its next outbound TCP segment to indicate to
* its peer that it has reduced its congestion window. This
* is termed the CWR bit. For SCTP the same indication is made
* by including the CWR chunk. This chunk contains one data
* element, i.e. the TSN number that was sent in the ECNE chunk.
* This element represents the lowest TSN number in the datagram
* that was originally marked with the CE bit.
*/
int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
int priority)
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
__u32 lowest_tsn,
sctp_chunk_t *chunk)
{
sctp_cmd_seq_t commands;
sctp_sm_table_entry_t *state_fn;
sctp_disposition_t status;
int error = 0;
typedef const char *(printfn_t)(sctp_subtype_t);
sctp_chunk_t *repl;
static printfn_t *table[] = {
NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
};
printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
/* Our previously transmitted packet ran into some congestion
* so we should take action by reducing cwnd and ssthresh
* and then ACK our peer that we we've done so by
* sending a CWR.
*/
/* Look up the state function, run it, and then process the
* side effects. These three steps are the heart of lksctp.
/* First, try to determine if we want to actually lower
* our cwnd variables. Only lower them if the ECNE looks more
* recent than the last response.
*/
state_fn = sctp_sm_lookup_event(event_type, state, subtype);
if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
struct sctp_transport *transport;
sctp_init_cmd_seq(&commands);
/* Find which transport's congestion variables
* need to be adjusted.
*/
transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
DEBUG_PRE;
status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands);
DEBUG_POST;
/* Update the congestion variables. */
if (transport)
sctp_transport_lower_cwnd(transport,
SCTP_LOWER_CWND_ECNE);
asoc->last_cwr_tsn = lowest_tsn;
}
error = sctp_side_effects(event_type, subtype, state,
ep, asoc, event_arg,
status, &commands,
priority);
DEBUG_POST_SFX;
/* Always try to quiet the other end. In case of lost CWR,
* resend last_cwr_tsn.
*/
repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
return error;
/* If we run out of memory, it will look like a lost CWR. We'll
* get back in sync eventually.
*/
return repl;
}
#undef DEBUG_PRE
#undef DEBUG_POST
/*****************************************************************
* This the master state function side effect processing function.
*****************************************************************/
int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
sctp_disposition_t status,
sctp_cmd_seq_t *commands,
int priority)
/* Helper function to do delayed processing of ECN CWR chunk. */
static void sctp_do_ecn_cwr_work(sctp_association_t *asoc,
__u32 lowest_tsn)
{
int error;
/* FIXME - Most of the dispositions left today would be categorized
* as "exceptional" dispositions. For those dispositions, it
* may not be proper to run through any of the commands at all.
* For example, the command interpreter might be run only with
* disposition SCTP_DISPOSITION_CONSUME.
/* Turn off ECNE getting auto-prepended to every outgoing
* packet
*/
if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
ep, asoc,
event_arg, status,
commands, priority)))
goto bail;
switch (status) {
case SCTP_DISPOSITION_DISCARD:
SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
asoc->need_ecne = 0;
}
case SCTP_DISPOSITION_NOMEM:
/* We ran out of memory, so we need to discard this
* packet.
*/
/* BUG--we should now recover some memory, probably by
* reneging...
*/
error = -ENOMEM;
break;
/* Generate SACK if necessary. We call this at the end of a packet. */
int sctp_gen_sack(struct sctp_association *asoc, int force,
sctp_cmd_seq_t *commands)
{
__u32 ctsn, max_tsn_seen;
struct sctp_chunk *sack;
int error = 0;
case SCTP_DISPOSITION_DELETE_TCB:
/* This should now be a command. */
break;
if (force)
asoc->peer.sack_needed = 1;
case SCTP_DISPOSITION_CONSUME:
case SCTP_DISPOSITION_ABORT:
/*
* We should no longer have much work to do here as the
* real work has been done as explicit commands above.
*/
break;
ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
case SCTP_DISPOSITION_VIOLATION:
printk(KERN_ERR "sctp protocol violation state %d "
"chunkid %d\n", state, subtype.chunk);
break;
/* From 12.2 Parameters necessary per association (i.e. the TCB):
*
* Ack State : This flag indicates if the next received packet
* : is to be responded to with a SACK. ...
* : When DATA chunks are out of order, SACK's
* : are not delayed (see Section 6).
*
* [This is actually not mentioned in Section 6, but we
* implement it here anyway. --piggy]
*/
if (max_tsn_seen != ctsn)
asoc->peer.sack_needed = 1;
case SCTP_DISPOSITION_NOT_IMPL:
printk(KERN_WARNING "sctp unimplemented feature in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
/* From 6.2 Acknowledgement on Reception of DATA Chunks:
*
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
* an acknowledgement SHOULD be generated for at least every
* second packet (not every second DATA chunk) received, and
* SHOULD be generated within 200 ms of the arrival of any
* unacknowledged DATA chunk. ...
*/
if (!asoc->peer.sack_needed) {
/* We will need a SACK for the next packet. */
asoc->peer.sack_needed = 1;
goto out;
} else {
if (asoc->a_rwnd > asoc->rwnd)
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (!sack)
goto nomem;
case SCTP_DISPOSITION_BUG:
printk(KERN_ERR "sctp bug in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
BUG();
break;
asoc->peer.sack_needed = 0;
default:
printk(KERN_ERR "sctp impossible disposition %d "
"in state %d, event_type %d, event_id %d\n",
status, state, event_type, subtype.chunk);
BUG();
break;
};
error = sctp_outq_tail(&asoc->outqueue, sack);
bail:
/* Stop the SACK timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
}
out:
return error;
nomem:
error = -ENOMEM;
return error;
}
/********************************************************************
* 2nd Level Abstractions
********************************************************************/
/* This is the side-effect interpreter. */
int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state, sctp_endpoint_t *ep,
sctp_association_t *asoc, void *event_arg,
sctp_disposition_t status, sctp_cmd_seq_t *commands,
int priority)
/* When the T3-RTX timer expires, it calls this function to create the
* relevant state machine event.
*/
void sctp_generate_t3_rtx_event(unsigned long peer)
{
int error = 0;
int force;
sctp_cmd_t *cmd;
sctp_chunk_t *new_obj;
sctp_chunk_t *chunk = NULL;
struct sctp_packet *packet;
struct list_head *pos;
struct timer_list *timer;
unsigned long timeout;
struct sctp_transport *t;
sctp_sackhdr_t sackh;
int error;
struct sctp_transport *transport = (struct sctp_transport *) peer;
sctp_association_t *asoc = transport->asoc;
if(SCTP_EVENT_T_TIMEOUT != event_type)
chunk = (sctp_chunk_t *) event_arg;
/* Check whether a task is in the sock. */
/* Note: This whole file is a huge candidate for rework.
* For example, each command could either have its own handler, so
* the loop would look like:
* while (cmds)
* cmd->handle(x, y, z)
* --jgrimm
*/
while (NULL != (cmd = sctp_next_cmd(commands))) {
switch (cmd->verb) {
case SCTP_CMD_NOP:
/* Do nothing. */
break;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
case SCTP_CMD_NEW_ASOC:
/* Register a new association. */
asoc = cmd->obj.ptr;
/* Register with the endpoint. */
sctp_endpoint_add_asoc(ep, asoc);
sctp_hash_established(asoc);
break;
/* Try again later. */
if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
}
case SCTP_CMD_UPDATE_ASSOC:
sctp_assoc_update(asoc, cmd->obj.ptr);
break;
/* Is this transport really dead and just waiting around for
* the timer to let go of the reference?
*/
if (transport->dead)
goto out_unlock;
case SCTP_CMD_PURGE_OUTQUEUE:
sctp_outq_teardown(&asoc->outqueue);
break;
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
case SCTP_CMD_DELETE_TCB:
/* Delete the current association. */
sctp_unhash_established(asoc);
sctp_association_free(asoc);
asoc = NULL;
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_CMD_NEW_STATE:
/* Enter a new state. */
sctp_cmd_new_state(commands, asoc, cmd->obj.state);
break;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
case SCTP_CMD_REPORT_TSN:
/* Record the arrival of a TSN. */
sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32);
break;
/* This is a sa interface for producing timeout events. It works
* for timeouts which use the association as their parameter.
*/
static void sctp_generate_timeout_event(sctp_association_t *asoc,
sctp_event_timeout_t timeout_type)
{
int error = 0;
case SCTP_CMD_GEN_SACK:
/* Generate a Selective ACK.
* The argument tells us whether to just count
* the packet and MAYBE generate a SACK, or
* force a SACK out.
*/
force = cmd->obj.i32;
error = sctp_gen_sack(asoc, force, commands);
break;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n",
__FUNCTION__,
timeout_type);
case SCTP_CMD_PROCESS_SACK:
/* Process an inbound SACK. */
error = sctp_cmd_process_sack(commands, asoc,
cmd->obj.ptr);
break;
/* Try again later. */
if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
sctp_association_hold(asoc);
goto out_unlock;
}
case SCTP_CMD_GEN_INIT_ACK:
/* Generate an INIT ACK chunk. */
new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
0);
if (!new_obj)
goto nomem;
/* Is this association really dead and just waiting around for
* the timer to let go of the reference?
*/
if (asoc->base.dead)
goto out_unlock;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(timeout_type),
asoc->state, asoc->ep, asoc,
(void *)timeout_type,
GFP_ATOMIC);
case SCTP_CMD_PEER_INIT:
/* Process a unified INIT from the peer.
* Note: Only used during INIT-ACK processing. If
* there is an error just return to the outter
* layer which will bail.
*/
error = sctp_cmd_process_init(commands, asoc, chunk,
cmd->obj.ptr, priority);
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_CMD_GEN_COOKIE_ECHO:
/* Generate a COOKIE ECHO chunk. */
new_obj = sctp_make_cookie_echo(asoc, chunk);
if (!new_obj) {
if (cmd->obj.ptr)
sctp_free_chunk(cmd->obj.ptr);
goto nomem;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_association_put(asoc);
}
/* If there is an ERROR chunk to be sent along with
* the COOKIE_ECHO, send it, too.
*/
if (cmd->obj.ptr)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(cmd->obj.ptr));
break;
void sctp_generate_t1_cookie_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
}
case SCTP_CMD_GEN_SHUTDOWN:
/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
* Reset error counts.
*/
asoc->overall_error_count = 0;
void sctp_generate_t1_init_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
}
/* Generate a SHUTDOWN chunk. */
new_obj = sctp_make_shutdown(asoc);
if (!new_obj)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
void sctp_generate_t2_shutdown_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
}
case SCTP_CMD_CHUNK_ULP:
/* Send a chunk to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"chunk_up:", cmd->obj.ptr,
"ulpq:", &asoc->ulpq);
sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
void sctp_generate_t5_shutdown_guard_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *)data;
sctp_generate_timeout_event(asoc,
SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
case SCTP_CMD_EVENT_ULP:
/* Send a notification to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"event_up:",cmd->obj.ptr,
"ulpq:",&asoc->ulpq);
sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr);
break;
} /* sctp_generate_t5_shutdown_guard_event() */
case SCTP_CMD_REPLY:
/* Send a chunk to our peer. */
error = sctp_outq_tail(&asoc->outqueue,
cmd->obj.ptr);
break;
void sctp_generate_autoclose_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
}
case SCTP_CMD_SEND_PKT:
/* Send a full packet to our peer. */
packet = cmd->obj.ptr;
sctp_packet_transmit(packet);
sctp_ootb_pkt_free(packet);
break;
/* Generate a heart beat event. If the sock is busy, reschedule. Make
* sure that the transport is still valid.
*/
void sctp_generate_heartbeat_event(unsigned long data)
{
int error = 0;
struct sctp_transport *transport = (struct sctp_transport *) data;
sctp_association_t *asoc = transport->asoc;
case SCTP_CMD_RETRAN:
/* Mark a transport for retransmission. */
sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
SCTP_RETRANSMIT_T3_RTX);
break;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
case SCTP_CMD_TRANSMIT:
/* Kick start transmission. */
error = sctp_outq_flush(&asoc->outqueue, 0);
break;
/* Try again later. */
if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
}
case SCTP_CMD_ECN_CE:
/* Do delayed CE processing. */
sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
break;
/* Is this structure just waiting around for us to actually
* get destroyed?
*/
if (transport->dead)
goto out_unlock;
case SCTP_CMD_ECN_ECNE:
/* Do delayed ECNE processing. */
new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
chunk);
if (new_obj)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
case SCTP_CMD_ECN_CWR:
/* Do delayed CWR processing. */
sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
break;
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
case SCTP_CMD_SETUP_T2:
sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr);
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_CMD_TIMER_START:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!timeout)
BUG();
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
timer->expires = jiffies + timeout;
sctp_association_hold(asoc);
add_timer(timer);
break;
/* Inject a SACK Timeout event into the state machine. */
void sctp_generate_sack_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
}
case SCTP_CMD_TIMER_RESTART:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!mod_timer(timer, jiffies + timeout))
sctp_association_hold(asoc);
break;
sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
NULL,
sctp_generate_t1_cookie_event,
sctp_generate_t1_init_event,
sctp_generate_t2_shutdown_event,
NULL,
sctp_generate_t5_shutdown_guard_event,
sctp_generate_heartbeat_event,
sctp_generate_sack_event,
sctp_generate_autoclose_event,
};
case SCTP_CMD_TIMER_STOP:
timer = &asoc->timers[cmd->obj.to];
if (timer_pending(timer) && del_timer(timer))
sctp_association_put(asoc);
break;
case SCTP_CMD_INIT_RESTART:
/* Do the needed accounting and updates
* associated with restarting an initialization
* timer.
*/
asoc->counters[SCTP_COUNTER_INIT_ERROR]++;
asoc->timeouts[cmd->obj.to] *= 2;
if (asoc->timeouts[cmd->obj.to] >
asoc->max_init_timeo) {
asoc->timeouts[cmd->obj.to] =
asoc->max_init_timeo;
}
/* RFC 2960 8.2 Path Failure Detection
*
* When its peer endpoint is multi-homed, an endpoint should keep a
* error counter for each of the destination transport addresses of the
* peer endpoint.
*
* Each time the T3-rtx timer expires on any address, or when a
* HEARTBEAT sent to an idle address is not acknowledged within a RTO,
* the error counter of that destination address will be incremented.
* When the value in the error counter exceeds the protocol parameter
* 'Path.Max.Retrans' of that destination address, the endpoint should
* mark the destination transport address as inactive, and a
* notification SHOULD be sent to the upper layer.
*
*/
static void sctp_do_8_2_transport_strike(sctp_association_t *asoc,
struct sctp_transport *transport)
{
/* The check for association's overall error counter exceeding the
* threshold is done in the state function.
*/
asoc->overall_error_count++;
/* If we've sent any data bundled with
* COOKIE-ECHO we need to resend.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport,
transports);
sctp_retransmit_mark(&asoc->outqueue, t, 0);
}
if (transport->active &&
(transport->error_count++ >= transport->error_threshold)) {
SCTP_DEBUG_PRINTK("transport_strike: transport "
"IP:%d.%d.%d.%d failed.\n",
NIPQUAD(transport->ipaddr.v4.sin_addr));
sctp_assoc_control_transport(asoc, transport,
SCTP_TRANSPORT_DOWN,
SCTP_FAILED_THRESHOLD);
}
sctp_add_cmd_sf(commands,
SCTP_CMD_TIMER_RESTART,
SCTP_TO(cmd->obj.to));
break;
/* E2) For the destination address for which the timer
* expires, set RTO <- RTO * 2 ("back off the timer"). The
* maximum value discussed in rule C7 above (RTO.max) may be
* used to provide an upper bound to this doubling operation.
*/
transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
}
case SCTP_CMD_INIT_FAILED:
sctp_cmd_init_failed(commands, asoc);
break;
/* Worker routine to handle INIT command failure. */
static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
unsigned error)
{
struct sctp_ulpevent *event;
case SCTP_CMD_ASSOC_FAILED:
sctp_cmd_assoc_failed(commands, asoc, event_type,
subtype, chunk);
break;
event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC,
0, 0, 0, GFP_ATOMIC);
case SCTP_CMD_COUNTER_INC:
asoc->counters[cmd->obj.counter]++;
break;
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_COUNTER_RESET:
asoc->counters[cmd->obj.counter] = 0;
break;
/* SEND_FAILED sent later when cleaning up the association. */
asoc->outqueue.error = error;
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_REPORT_DUP:
sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
cmd->obj.u32);
break;
/* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
struct sctp_association *asoc,
sctp_event_t event_type,
sctp_subtype_t subtype,
struct sctp_chunk *chunk,
unsigned error)
{
struct sctp_ulpevent *event;
case SCTP_CMD_REPORT_BAD_TAG:
SCTP_DEBUG_PRINTK("vtag mismatch!\n");
break;
/* Cancel any partial delivery in progress. */
sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
case SCTP_CMD_STRIKE:
/* Mark one strike against a transport. */
sctp_do_8_2_transport_strike(asoc, cmd->obj.transport);
break;
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
(__u16)error, 0, 0,
GFP_ATOMIC);
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_TRANSPORT_RESET:
t = cmd->obj.transport;
sctp_cmd_transport_reset(commands, asoc, t);
break;
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
case SCTP_CMD_TRANSPORT_ON:
t = cmd->obj.transport;
sctp_cmd_transport_on(commands, asoc, t, chunk);
break;
/* SEND_FAILED sent later when cleaning up the association. */
asoc->outqueue.error = error;
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_HB_TIMERS_START:
sctp_cmd_hb_timers_start(commands, asoc);
break;
/* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
* inside the cookie. In reality, this is only used for INIT-ACK processing
* since all other cases use "temporary" associations and can do all
* their work in statefuns directly.
*/
static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
struct sctp_association *asoc,
struct sctp_chunk *chunk,
sctp_init_chunk_t *peer_init, int gfp)
{
int error;
case SCTP_CMD_HB_TIMER_UPDATE:
t = cmd->obj.transport;
sctp_cmd_hb_timer_update(commands, asoc, t);
break;
/* We only process the init as a sideeffect in a single
* case. This is when we process the INIT-ACK. If we
* fail during INIT processing (due to malloc problems),
* just return the error and stop processing the stack.
*/
if (!sctp_process_init(asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init, gfp))
error = -ENOMEM;
else
error = 0;
case SCTP_CMD_HB_TIMERS_STOP:
sctp_cmd_hb_timers_stop(commands, asoc);
break;
return error;
}
case SCTP_CMD_REPORT_ERROR:
error = cmd->obj.error;
break;
/* Helper function to break out starting up of heartbeat timers. */
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
case SCTP_CMD_PROCESS_CTSN:
/* Dummy up a SACK for processing. */
sackh.cum_tsn_ack = cmd->obj.u32;
sackh.a_rwnd = 0;
sackh.num_gap_ack_blocks = 0;
sackh.num_dup_tsns = 0;
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
SCTP_SACKH(&sackh));
break;
/* Start a heartbeat timer for each transport on the association.
* hold a reference on the transport to make sure none of
* the needed data structures go away.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
case SCTP_CMD_DISCARD_PACKET:
/* We need to discard the whole packet. */
chunk->pdiscard = 1;
break;
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
}
case SCTP_CMD_RTO_PENDING:
t = cmd->obj.transport;
t->rto_pending = 1;
break;
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
case SCTP_CMD_PART_DELIVER:
sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
/* Stop all heartbeat timers. */
case SCTP_CMD_RENEGE:
sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
default:
printk(KERN_WARNING "Impossible command: %u, %p\n",
cmd->verb, cmd->obj.ptr);
break;
};
if (error)
return error;
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
if (del_timer(&t->hb_timer))
sctp_transport_put(t);
}
return error;
nomem:
error = -ENOMEM;
return error;
}
/* A helper function for delayed processing of INET ECN CE bit. */
static void sctp_do_ecn_ce_work(sctp_association_t *asoc, __u32 lowest_tsn)
/* Helper function to update the heartbeat timer. */
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
/* Save the TSN away for comparison when we receive CWR */
asoc->last_ecne_tsn = lowest_tsn;
asoc->need_ecne = 1;
/* Update the heartbeat timer. */
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
/* Helper function for delayed processing of SCTP ECNE chunk. */
/* RFC 2960 Appendix A
*
* RFC 2481 details a specific bit for a sender to send in
* the header of its next outbound TCP segment to indicate to
* its peer that it has reduced its congestion window. This
* is termed the CWR bit. For SCTP the same indication is made
* by including the CWR chunk. This chunk contains one data
* element, i.e. the TSN number that was sent in the ECNE chunk.
* This element represents the lowest TSN number in the datagram
* that was originally marked with the CE bit.
*/
static sctp_chunk_t *sctp_do_ecn_ecne_work(sctp_association_t *asoc,
__u32 lowest_tsn,
sctp_chunk_t *chunk)
/* Helper function to handle the reception of an HEARTBEAT ACK. */
static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t,
sctp_chunk_t *chunk)
{
sctp_chunk_t *repl;
/* Our previously transmitted packet ran into some congestion
* so we should take action by reducing cwnd and ssthresh
* and then ACK our peer that we we've done so by
* sending a CWR.
*/
sctp_sender_hb_info_t *hbinfo;
/* First, try to determine if we want to actually lower
* our cwnd variables. Only lower them if the ECNE looks more
* recent than the last response.
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
* HEARTBEAT should clear the error counter of the destination
* transport address to which the HEARTBEAT was sent.
* The association's overall error count is also cleared.
*/
if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) {
struct sctp_transport *transport;
/* Find which transport's congestion variables
* need to be adjusted.
*/
transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn);
/* Update the congestion variables. */
if (transport)
sctp_transport_lower_cwnd(transport,
SCTP_LOWER_CWND_ECNE);
asoc->last_cwr_tsn = lowest_tsn;
}
t->error_count = 0;
t->asoc->overall_error_count = 0;
/* Always try to quiet the other end. In case of lost CWR,
* resend last_cwr_tsn.
/* Mark the destination transport address as active if it is not so
* marked.
*/
repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk);
if (!t->active)
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
SCTP_HEARTBEAT_SUCCESS);
/* If we run out of memory, it will look like a lost CWR. We'll
* get back in sync eventually.
/* The receiver of the HEARTBEAT ACK should also perform an
* RTT measurement for that destination transport address
* using the time value carried in the HEARTBEAT ACK chunk.
*/
return repl;
hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
}
/* Helper function to do delayed processing of ECN CWR chunk. */
static void sctp_do_ecn_cwr_work(sctp_association_t *asoc,
__u32 lowest_tsn)
/* Helper function to do a transport reset at the expiry of the hearbeat
* timer.
*/
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
/* Turn off ECNE getting auto-prepended to every outgoing
* packet
*/
asoc->need_ecne = 0;
}
sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
/* This macro is to compress the text a bit... */
#define AP(v) asoc->peer.v
/* Mark one strike against a transport. */
sctp_do_8_2_transport_strike(asoc, t);
}
/* Generate SACK if necessary. We call this at the end of a packet. */
int sctp_gen_sack(sctp_association_t *asoc, int force, sctp_cmd_seq_t *commands)
/* Helper function to process the process SACK command. */
static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
sctp_sackhdr_t *sackh)
{
__u32 ctsn, max_tsn_seen;
sctp_chunk_t *sack;
int error = 0;
if (force)
asoc->peer.sack_needed = 1;
ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map);
max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map);
/* From 12.2 Parameters necessary per association (i.e. the TCB):
*
* Ack State : This flag indicates if the next received packet
* : is to be responded to with a SACK. ...
* : When DATA chunks are out of order, SACK's
* : are not delayed (see Section 6).
*
* [This is actually not mentioned in Section 6, but we
* implement it here anyway. --piggy]
*/
if (max_tsn_seen != ctsn)
asoc->peer.sack_needed = 1;
int err;
/* From 6.2 Acknowledgement on Reception of DATA Chunks:
*
* Section 4.2 of [RFC2581] SHOULD be followed. Specifically,
* an acknowledgement SHOULD be generated for at least every
* second packet (not every second DATA chunk) received, and
* SHOULD be generated within 200 ms of the arrival of any
* unacknowledged DATA chunk. ...
*/
if (!asoc->peer.sack_needed) {
/* We will need a SACK for the next packet. */
asoc->peer.sack_needed = 1;
goto out;
if (sctp_outq_sack(&asoc->outqueue, sackh)) {
/* There are no more TSNs awaiting SACK. */
err = sctp_do_sm(SCTP_EVENT_T_OTHER,
SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
asoc->state, asoc->ep, asoc, NULL,
GFP_ATOMIC);
} else {
if (asoc->a_rwnd > asoc->rwnd)
asoc->a_rwnd = asoc->rwnd;
sack = sctp_make_sack(asoc);
if (!sack)
goto nomem;
asoc->peer.sack_needed = 0;
error = sctp_outq_tail(&asoc->outqueue, sack);
/* Stop the SACK timer. */
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_SACK));
/* Windows may have opened, so we need
* to check if we have DATA to transmit
*/
err = sctp_outq_flush(&asoc->outqueue, 0);
}
out:
return error;
nomem:
error = -ENOMEM;
return error;
return err;
}
/* Handle a duplicate TSN. */
void sctp_do_TSNdup(sctp_association_t *asoc, sctp_chunk_t *chunk, long gap)
/* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
* the transport for a shutdown chunk.
*/
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_chunk_t *chunk)
{
#if 0
sctp_chunk_t *sack;
/* Caution: gap < 2 * SCTP_TSN_MAP_SIZE
* so gap can be negative.
*
* --xguo
*/
/* Count this TSN. */
if (gap < SCTP_TSN_MAP_SIZE) {
asoc->peer.tsn_map[gap]++;
} else {
asoc->peer.tsn_map_overflow[gap - SCTP_TSN_MAP_SIZE]++;
}
/* From 6.2 Acknowledgement on Reception of DATA Chunks
*
* When a packet arrives with duplicate DATA chunk(s)
* and with no new DATA chunk(s), the endpoint MUST
* immediately send a SACK with no delay. If a packet
* arrives with duplicate DATA chunk(s) bundled with
* new DATA chunks, the endpoint MAY immediately send a
* SACK. Normally receipt of duplicate DATA chunks
* will occur when the original SACK chunk was lost and
* the peer's RTO has expired. The duplicate TSN
* number(s) SHOULD be reported in the SACK as
* duplicate.
*/
asoc->counters[SctpCounterAckState] = 2;
#endif /* 0 */
} /* sctp_do_TSNdup() */
struct sctp_transport *t;
#undef AP
t = sctp_assoc_choose_shutdown_transport(asoc);
asoc->shutdown_last_sent_to = t;
asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
chunk->transport = t;
}
/* When the T3-RTX timer expires, it calls this function to create the
* relevant state machine event.
*/
void sctp_generate_t3_rtx_event(unsigned long peer)
/* Helper function to change the state of an association. */
static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_state_t state)
{
int error;
struct sctp_transport *transport = (struct sctp_transport *) peer;
sctp_association_t *asoc = transport->asoc;
/* Check whether a task is in the sock. */
struct sock *sk = asoc->base.sk;
struct sctp_opt *sp = sctp_sk(sk);
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
asoc->state = state;
asoc->state_timestamp = jiffies;
/* Try again later. */
if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
if ((SCTP_STATE_ESTABLISHED == asoc->state) ||
(SCTP_STATE_CLOSED == asoc->state)) {
/* Wake up any processes waiting in the asoc's wait queue in
* sctp_wait_for_connect() or sctp_wait_for_sndbuf().
*/
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
/* Wake up any processes waiting in the sk's sleep queue of
* a TCP-style or UDP-style peeled-off socket in
* sctp_wait_for_accept() or sctp_wait_for_packet().
* For a UDP-style socket, the waiters are woken up by the
* notifications.
*/
if (SCTP_SOCKET_UDP != sp->type)
sk->state_change(sk);
}
/* Is this transport really dead and just waiting around for
* the timer to let go of the reference?
/* Change the sk->state of a TCP-style socket that has sucessfully
* completed a connect() call.
*/
if (transport->dead)
goto out_unlock;
if ((SCTP_STATE_ESTABLISHED == asoc->state) &&
(SCTP_SOCKET_TCP == sp->type) && (SCTP_SS_CLOSED == sk->state))
sk->state = SCTP_SS_ESTABLISHED;
}
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
/* These three macros allow us to pull the debugging code out of the
* main flow of sctp_do_sm() to keep attention focused on the real
* functionality there.
*/
#define DEBUG_PRE \
SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \
"ep %p, %s, %s, asoc %p[%s], %s\n", \
ep, sctp_evttype_tbl[event_type], \
(*debug_fn)(subtype), asoc, \
sctp_state_tbl[state], state_fn->name)
if (error)
asoc->base.sk->err = -error;
#define DEBUG_POST \
SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \
"asoc %p, status: %s\n", \
asoc, sctp_status_tbl[status])
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
#define DEBUG_POST_SFX \
SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \
error, asoc, \
sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \
sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED])
/* This is a sa interface for producing timeout events. It works
* for timeouts which use the association as their parameter.
/*
* This is the master state machine processing function.
*
* If you want to understand all of lksctp, this is a
* good place to start.
*/
static void sctp_generate_timeout_event(sctp_association_t *asoc,
sctp_event_timeout_t timeout_type)
int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
int priority)
{
sctp_cmd_seq_t commands;
sctp_sm_table_entry_t *state_fn;
sctp_disposition_t status;
int error = 0;
typedef const char *(printfn_t)(sctp_subtype_t);
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n",
__FUNCTION__,
timeout_type);
/* Try again later. */
if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20)))
sctp_association_hold(asoc);
goto out_unlock;
}
static printfn_t *table[] = {
NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname,
};
printfn_t *debug_fn __attribute__ ((unused)) = table[event_type];
/* Is this association really dead and just waiting around for
* the timer to let go of the reference?
/* Look up the state function, run it, and then process the
* side effects. These three steps are the heart of lksctp.
*/
if (asoc->base.dead)
goto out_unlock;
/* Run through the state machine. */
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(timeout_type),
asoc->state, asoc->ep, asoc,
(void *)timeout_type,
GFP_ATOMIC);
state_fn = sctp_sm_lookup_event(event_type, state, subtype);
if (error)
asoc->base.sk->err = -error;
sctp_init_cmd_seq(&commands);
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_association_put(asoc);
}
DEBUG_PRE;
status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands);
DEBUG_POST;
void sctp_generate_t1_cookie_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE);
}
error = sctp_side_effects(event_type, subtype, state,
ep, asoc, event_arg,
status, &commands,
priority);
DEBUG_POST_SFX;
void sctp_generate_t1_init_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT);
return error;
}
void sctp_generate_t2_shutdown_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN);
}
#undef DEBUG_PRE
#undef DEBUG_POST
void sctp_generate_t5_shutdown_guard_event(unsigned long data)
/*****************************************************************
* This the master state function side effect processing function.
*****************************************************************/
int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state,
sctp_endpoint_t *ep,
sctp_association_t *asoc,
void *event_arg,
sctp_disposition_t status,
sctp_cmd_seq_t *commands,
int priority)
{
sctp_association_t *asoc = (sctp_association_t *)data;
sctp_generate_timeout_event(asoc,
SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD);
int error;
} /* sctp_generate_t5_shutdown_guard_event() */
/* FIXME - Most of the dispositions left today would be categorized
* as "exceptional" dispositions. For those dispositions, it
* may not be proper to run through any of the commands at all.
* For example, the command interpreter might be run only with
* disposition SCTP_DISPOSITION_CONSUME.
*/
if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state,
ep, asoc,
event_arg, status,
commands, priority)))
goto bail;
void sctp_generate_autoclose_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE);
}
switch (status) {
case SCTP_DISPOSITION_DISCARD:
SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
/* Generate a heart beat event. If the sock is busy, reschedule. Make
* sure that the transport is still valid.
*/
void sctp_generate_heartbeat_event(unsigned long data)
{
int error = 0;
struct sctp_transport *transport = (struct sctp_transport *) data;
sctp_association_t *asoc = transport->asoc;
case SCTP_DISPOSITION_NOMEM:
/* We ran out of memory, so we need to discard this
* packet.
*/
/* BUG--we should now recover some memory, probably by
* reneging...
*/
error = -ENOMEM;
break;
sctp_bh_lock_sock(asoc->base.sk);
if (sock_owned_by_user(asoc->base.sk)) {
SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __FUNCTION__);
case SCTP_DISPOSITION_DELETE_TCB:
/* This should now be a command. */
break;
/* Try again later. */
if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20)))
sctp_transport_hold(transport);
goto out_unlock;
}
case SCTP_DISPOSITION_CONSUME:
case SCTP_DISPOSITION_ABORT:
/*
* We should no longer have much work to do here as the
* real work has been done as explicit commands above.
*/
break;
/* Is this structure just waiting around for us to actually
* get destroyed?
*/
if (transport->dead)
goto out_unlock;
case SCTP_DISPOSITION_VIOLATION:
printk(KERN_ERR "sctp protocol violation state %d "
"chunkid %d\n", state, subtype.chunk);
break;
error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT,
SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT),
asoc->state,
asoc->ep, asoc,
transport, GFP_ATOMIC);
case SCTP_DISPOSITION_NOT_IMPL:
printk(KERN_WARNING "sctp unimplemented feature in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
break;
if (error)
asoc->base.sk->err = -error;
case SCTP_DISPOSITION_BUG:
printk(KERN_ERR "sctp bug in state %d, "
"event_type %d, event_id %d\n",
state, event_type, subtype.chunk);
BUG();
break;
out_unlock:
sctp_bh_unlock_sock(asoc->base.sk);
sctp_transport_put(transport);
}
default:
printk(KERN_ERR "sctp impossible disposition %d "
"in state %d, event_type %d, event_id %d\n",
status, state, event_type, subtype.chunk);
BUG();
break;
};
/* Inject a SACK Timeout event into the state machine. */
void sctp_generate_sack_event(unsigned long data)
{
sctp_association_t *asoc = (sctp_association_t *) data;
sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK);
bail:
return error;
}
sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = {
NULL,
sctp_generate_t1_cookie_event,
sctp_generate_t1_init_event,
sctp_generate_t2_shutdown_event,
NULL,
sctp_generate_t5_shutdown_guard_event,
sctp_generate_heartbeat_event,
sctp_generate_sack_event,
sctp_generate_autoclose_event,
};
/********************************************************************
* 3rd Level Abstractions
* 2nd Level Abstractions
********************************************************************/
/* RFC 2960 8.2 Path Failure Detection
*
* When its peer endpoint is multi-homed, an endpoint should keep a
* error counter for each of the destination transport addresses of the
* peer endpoint.
*
* Each time the T3-rtx timer expires on any address, or when a
* HEARTBEAT sent to an idle address is not acknowledged within a RTO,
* the error counter of that destination address will be incremented.
* When the value in the error counter exceeds the protocol parameter
* 'Path.Max.Retrans' of that destination address, the endpoint should
* mark the destination transport address as inactive, and a
* notification SHOULD be sent to the upper layer.
*
*/
static void sctp_do_8_2_transport_strike(sctp_association_t *asoc,
struct sctp_transport *transport)
/* This is the side-effect interpreter. */
int sctp_cmd_interpreter(sctp_event_t event_type, sctp_subtype_t subtype,
sctp_state_t state, sctp_endpoint_t *ep,
sctp_association_t *asoc, void *event_arg,
sctp_disposition_t status, sctp_cmd_seq_t *commands,
int priority)
{
/* The check for association's overall error counter exceeding the
* threshold is done in the state function.
*/
asoc->overall_error_count++;
int error = 0;
int force;
sctp_cmd_t *cmd;
sctp_chunk_t *new_obj;
sctp_chunk_t *chunk = NULL;
struct sctp_packet *packet;
struct list_head *pos;
struct timer_list *timer;
unsigned long timeout;
struct sctp_transport *t;
sctp_sackhdr_t sackh;
if (transport->active &&
(transport->error_count++ >= transport->error_threshold)) {
SCTP_DEBUG_PRINTK("transport_strike: transport "
"IP:%d.%d.%d.%d failed.\n",
NIPQUAD(transport->ipaddr.v4.sin_addr));
sctp_assoc_control_transport(asoc, transport,
SCTP_TRANSPORT_DOWN,
SCTP_FAILED_THRESHOLD);
}
if(SCTP_EVENT_T_TIMEOUT != event_type)
chunk = (sctp_chunk_t *) event_arg;
/* E2) For the destination address for which the timer
* expires, set RTO <- RTO * 2 ("back off the timer"). The
* maximum value discussed in rule C7 above (RTO.max) may be
* used to provide an upper bound to this doubling operation.
/* Note: This whole file is a huge candidate for rework.
* For example, each command could either have its own handler, so
* the loop would look like:
* while (cmds)
* cmd->handle(x, y, z)
* --jgrimm
*/
transport->rto = min((transport->rto * 2), transport->asoc->rto_max);
}
while (NULL != (cmd = sctp_next_cmd(commands))) {
switch (cmd->verb) {
case SCTP_CMD_NOP:
/* Do nothing. */
break;
/* Worker routine to handle INIT command failure. */
static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands,
sctp_association_t *asoc)
{
struct sctp_ulpevent *event;
case SCTP_CMD_NEW_ASOC:
/* Register a new association. */
asoc = cmd->obj.ptr;
/* Register with the endpoint. */
sctp_endpoint_add_asoc(ep, asoc);
sctp_hash_established(asoc);
break;
event = sctp_ulpevent_make_assoc_change(asoc,
0,
SCTP_CANT_STR_ASSOC,
0, 0, 0,
GFP_ATOMIC);
case SCTP_CMD_UPDATE_ASSOC:
sctp_assoc_update(asoc, cmd->obj.ptr);
break;
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_PURGE_OUTQUEUE:
sctp_outq_teardown(&asoc->outqueue);
break;
/* FIXME: We need to handle data possibly either
* sent via COOKIE-ECHO bundling or just waiting in
* the transmit queue, if the user has enabled
* SEND_FAILED notifications.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
case SCTP_CMD_DELETE_TCB:
/* Delete the current association. */
sctp_unhash_established(asoc);
sctp_association_free(asoc);
asoc = NULL;
break;
/* Worker routine to handle SCTP_CMD_ASSOC_FAILED. */
static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
sctp_event_t event_type,
sctp_subtype_t subtype,
sctp_chunk_t *chunk)
{
struct sctp_ulpevent *event;
__u16 error = 0;
case SCTP_CMD_NEW_STATE:
/* Enter a new state. */
sctp_cmd_new_state(commands, asoc, cmd->obj.state);
break;
switch(event_type) {
case SCTP_EVENT_T_PRIMITIVE:
if (SCTP_PRIMITIVE_ABORT == subtype.primitive)
error = SCTP_ERROR_USER_ABORT;
break;
case SCTP_EVENT_T_CHUNK:
if (chunk && (SCTP_CID_ABORT == chunk->chunk_hdr->type) &&
(ntohs(chunk->chunk_hdr->length) >=
(sizeof(struct sctp_chunkhdr) +
sizeof(struct sctp_errhdr)))) {
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
}
break;
default:
break;
}
case SCTP_CMD_REPORT_TSN:
/* Record the arrival of a TSN. */
sctp_tsnmap_mark(&asoc->peer.tsn_map, cmd->obj.u32);
break;
/* Cancel any partial delivery in progress. */
sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC);
case SCTP_CMD_GEN_SACK:
/* Generate a Selective ACK.
* The argument tells us whether to just count
* the packet and MAYBE generate a SACK, or
* force a SACK out.
*/
force = cmd->obj.i32;
error = sctp_gen_sack(asoc, force, commands);
break;
event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST,
error, 0, 0, GFP_ATOMIC);
if (event)
sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP,
SCTP_ULPEVENT(event));
case SCTP_CMD_PROCESS_SACK:
/* Process an inbound SACK. */
error = sctp_cmd_process_sack(commands, asoc,
cmd->obj.ptr);
break;
sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE,
SCTP_STATE(SCTP_STATE_CLOSED));
case SCTP_CMD_GEN_INIT_ACK:
/* Generate an INIT ACK chunk. */
new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC,
0);
if (!new_obj)
goto nomem;
/* FIXME: We need to handle data that could not be sent or was not
* acked, if the user has enabled SEND_FAILED notifications.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL());
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
/* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT
* inside the cookie. In reality, this is only used for INIT-ACK processing
* since all other cases use "temporary" associations and can do all
* their work in statefuns directly.
*/
static int sctp_cmd_process_init(sctp_cmd_seq_t *commands,
sctp_association_t *asoc,
sctp_chunk_t *chunk,
sctp_init_chunk_t *peer_init,
int priority)
{
int error;
case SCTP_CMD_PEER_INIT:
/* Process a unified INIT from the peer.
* Note: Only used during INIT-ACK processing. If
* there is an error just return to the outter
* layer which will bail.
*/
error = sctp_cmd_process_init(commands, asoc, chunk,
cmd->obj.ptr, priority);
break;
/* We only process the init as a sideeffect in a single
* case. This is when we process the INIT-ACK. If we
* fail during INIT processing (due to malloc problems),
* just return the error and stop processing the stack.
*/
case SCTP_CMD_GEN_COOKIE_ECHO:
/* Generate a COOKIE ECHO chunk. */
new_obj = sctp_make_cookie_echo(asoc, chunk);
if (!new_obj) {
if (cmd->obj.ptr)
sctp_free_chunk(cmd->obj.ptr);
goto nomem;
}
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
if (!sctp_process_init(asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init,
priority))
error = -ENOMEM;
else
error = 0;
/* If there is an ERROR chunk to be sent along with
* the COOKIE_ECHO, send it, too.
*/
if (cmd->obj.ptr)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(cmd->obj.ptr));
break;
case SCTP_CMD_GEN_SHUTDOWN:
/* Generate SHUTDOWN when in SHUTDOWN_SENT state.
* Reset error counts.
*/
asoc->overall_error_count = 0;
/* Generate a SHUTDOWN chunk. */
new_obj = sctp_make_shutdown(asoc);
if (!new_obj)
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
case SCTP_CMD_CHUNK_ULP:
/* Send a chunk to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"chunk_up:", cmd->obj.ptr,
"ulpq:", &asoc->ulpq);
sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
case SCTP_CMD_EVENT_ULP:
/* Send a notification to the sockets layer. */
SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n",
"event_up:",cmd->obj.ptr,
"ulpq:",&asoc->ulpq);
sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr);
break;
case SCTP_CMD_REPLY:
/* Send a chunk to our peer. */
error = sctp_outq_tail(&asoc->outqueue,
cmd->obj.ptr);
break;
case SCTP_CMD_SEND_PKT:
/* Send a full packet to our peer. */
packet = cmd->obj.ptr;
sctp_packet_transmit(packet);
sctp_ootb_pkt_free(packet);
break;
case SCTP_CMD_RETRAN:
/* Mark a transport for retransmission. */
sctp_retransmit(&asoc->outqueue, cmd->obj.transport,
SCTP_RTXR_T3_RTX);
break;
case SCTP_CMD_TRANSMIT:
/* Kick start transmission. */
error = sctp_outq_flush(&asoc->outqueue, 0);
break;
case SCTP_CMD_ECN_CE:
/* Do delayed CE processing. */
sctp_do_ecn_ce_work(asoc, cmd->obj.u32);
break;
case SCTP_CMD_ECN_ECNE:
/* Do delayed ECNE processing. */
new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32,
chunk);
if (new_obj)
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY,
SCTP_CHUNK(new_obj));
break;
case SCTP_CMD_ECN_CWR:
/* Do delayed CWR processing. */
sctp_do_ecn_cwr_work(asoc, cmd->obj.u32);
break;
case SCTP_CMD_SETUP_T2:
sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr);
break;
case SCTP_CMD_TIMER_START:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!timeout)
BUG();
return error;
}
timer->expires = jiffies + timeout;
sctp_association_hold(asoc);
add_timer(timer);
break;
/* Helper function to break out starting up of heartbeat timers. */
static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
case SCTP_CMD_TIMER_RESTART:
timer = &asoc->timers[cmd->obj.to];
timeout = asoc->timeouts[cmd->obj.to];
if (!mod_timer(timer, jiffies + timeout))
sctp_association_hold(asoc);
break;
/* Start a heartbeat timer for each transport on the association.
* hold a reference on the transport to make sure none of
* the needed data structures go away.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
case SCTP_CMD_TIMER_STOP:
timer = &asoc->timers[cmd->obj.to];
if (timer_pending(timer) && del_timer(timer))
sctp_association_put(asoc);
break;
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
}
case SCTP_CMD_INIT_RESTART:
/* Do the needed accounting and updates
* associated with restarting an initialization
* timer.
*/
asoc->counters[SCTP_COUNTER_INIT_ERROR]++;
asoc->timeouts[cmd->obj.to] *= 2;
if (asoc->timeouts[cmd->obj.to] >
asoc->max_init_timeo) {
asoc->timeouts[cmd->obj.to] =
asoc->max_init_timeo;
}
static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc)
{
struct sctp_transport *t;
struct list_head *pos;
/* If we've sent any data bundled with
* COOKIE-ECHO we need to resend.
*/
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport,
transports);
sctp_retransmit_mark(&asoc->outqueue, t, 0);
}
/* Stop all heartbeat timers. */
sctp_add_cmd_sf(commands,
SCTP_CMD_TIMER_RESTART,
SCTP_TO(cmd->obj.to));
break;
list_for_each(pos, &asoc->peer.transport_addr_list) {
t = list_entry(pos, struct sctp_transport, transports);
if (del_timer(&t->hb_timer))
sctp_transport_put(t);
}
}
case SCTP_CMD_INIT_FAILED:
sctp_cmd_init_failed(commands, asoc, cmd->obj.u32);
break;
/* Helper function to update the heartbeat timer. */
static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
/* Update the heartbeat timer. */
if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t)))
sctp_transport_hold(t);
}
case SCTP_CMD_ASSOC_FAILED:
sctp_cmd_assoc_failed(commands, asoc, event_type,
subtype, chunk, cmd->obj.u32);
break;
/* Helper function to handle the reception of an HEARTBEAT ACK. */
static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t,
sctp_chunk_t *chunk)
{
sctp_sender_hb_info_t *hbinfo;
case SCTP_CMD_COUNTER_INC:
asoc->counters[cmd->obj.counter]++;
break;
/* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the
* HEARTBEAT should clear the error counter of the destination
* transport address to which the HEARTBEAT was sent.
* The association's overall error count is also cleared.
*/
t->error_count = 0;
t->asoc->overall_error_count = 0;
case SCTP_CMD_COUNTER_RESET:
asoc->counters[cmd->obj.counter] = 0;
break;
/* Mark the destination transport address as active if it is not so
* marked.
*/
if (!t->active)
sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP,
SCTP_HEARTBEAT_SUCCESS);
case SCTP_CMD_REPORT_DUP:
sctp_tsnmap_mark_dup(&asoc->peer.tsn_map,
cmd->obj.u32);
break;
/* The receiver of the HEARTBEAT ACK should also perform an
* RTT measurement for that destination transport address
* using the time value carried in the HEARTBEAT ACK chunk.
*/
hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data;
sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at));
}
case SCTP_CMD_REPORT_BAD_TAG:
SCTP_DEBUG_PRINTK("vtag mismatch!\n");
break;
/* Helper function to do a transport reset at the expiry of the hearbeat
* timer.
*/
static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
struct sctp_transport *t)
{
sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE);
case SCTP_CMD_STRIKE:
/* Mark one strike against a transport. */
sctp_do_8_2_transport_strike(asoc, cmd->obj.transport);
break;
/* Mark one strike against a transport. */
sctp_do_8_2_transport_strike(asoc, t);
}
case SCTP_CMD_TRANSPORT_RESET:
t = cmd->obj.transport;
sctp_cmd_transport_reset(commands, asoc, t);
break;
/* Helper function to process the process SACK command. */
static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds,
sctp_association_t *asoc,
sctp_sackhdr_t *sackh)
{
int err;
case SCTP_CMD_TRANSPORT_ON:
t = cmd->obj.transport;
sctp_cmd_transport_on(commands, asoc, t, chunk);
break;
if (sctp_outq_sack(&asoc->outqueue, sackh)) {
/* There are no more TSNs awaiting SACK. */
err = sctp_do_sm(SCTP_EVENT_T_OTHER,
SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN),
asoc->state, asoc->ep, asoc, NULL,
GFP_ATOMIC);
} else {
/* Windows may have opened, so we need
* to check if we have DATA to transmit
*/
err = sctp_outq_flush(&asoc->outqueue, 0);
}
case SCTP_CMD_HB_TIMERS_START:
sctp_cmd_hb_timers_start(commands, asoc);
break;
return err;
}
case SCTP_CMD_HB_TIMER_UPDATE:
t = cmd->obj.transport;
sctp_cmd_hb_timer_update(commands, asoc, t);
break;
/* Helper function to set the timeout value for T2-SHUTDOWN timer and to set
* the transport for a shutdown chunk.
*/
static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_chunk_t *chunk)
{
struct sctp_transport *t;
case SCTP_CMD_HB_TIMERS_STOP:
sctp_cmd_hb_timers_stop(commands, asoc);
break;
t = sctp_assoc_choose_shutdown_transport(asoc);
asoc->shutdown_last_sent_to = t;
asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto;
chunk->transport = t;
}
case SCTP_CMD_REPORT_ERROR:
error = cmd->obj.error;
break;
/* Helper function to change the state of an association. */
static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, sctp_association_t *asoc,
sctp_state_t state)
{
case SCTP_CMD_PROCESS_CTSN:
/* Dummy up a SACK for processing. */
sackh.cum_tsn_ack = cmd->obj.u32;
sackh.a_rwnd = 0;
sackh.num_gap_ack_blocks = 0;
sackh.num_dup_tsns = 0;
sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK,
SCTP_SACKH(&sackh));
break;
struct sock *sk = asoc->base.sk;
struct sctp_opt *sp = sctp_sk(sk);
case SCTP_CMD_DISCARD_PACKET:
/* We need to discard the whole packet. */
chunk->pdiscard = 1;
break;
asoc->state = state;
asoc->state_timestamp = jiffies;
case SCTP_CMD_RTO_PENDING:
t = cmd->obj.transport;
t->rto_pending = 1;
break;
if ((SCTP_STATE_ESTABLISHED == asoc->state) ||
(SCTP_STATE_CLOSED == asoc->state)) {
/* Wake up any processes waiting in the asoc's wait queue in
* sctp_wait_for_connect() or sctp_wait_for_sndbuf().
*/
if (waitqueue_active(&asoc->wait))
wake_up_interruptible(&asoc->wait);
case SCTP_CMD_PART_DELIVER:
sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
/* Wake up any processes waiting in the sk's sleep queue of
* a TCP-style or UDP-style peeled-off socket in
* sctp_wait_for_accept() or sctp_wait_for_packet().
* For a UDP-style socket, the waiters are woken up by the
* notifications.
*/
if (SCTP_SOCKET_UDP != sp->type)
sk->state_change(sk);
case SCTP_CMD_RENEGE:
sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr,
GFP_ATOMIC);
break;
default:
printk(KERN_WARNING "Impossible command: %u, %p\n",
cmd->verb, cmd->obj.ptr);
break;
};
if (error)
return error;
}
/* Change the sk->state of a TCP-style socket that has sucessfully
* completed a connect() call.
*/
if ((SCTP_STATE_ESTABLISHED == asoc->state) &&
(SCTP_SOCKET_TCP == sp->type) && (SCTP_SS_CLOSED == sk->state))
sk->state = SCTP_SS_ESTABLISHED;
return error;
nomem:
error = -ENOMEM;
return error;
}
......@@ -191,14 +191,9 @@ sctp_disposition_t sctp_sf_do_5_1B_init(const sctp_endpoint_t *ep,
sctp_chunk_t *err_chunk;
struct sctp_packet *packet;
sctp_unrecognized_param_t *unk_param;
struct sock *sk;
int len;
/* If the packet is an OOTB packet which is temporarily on the
* control endpoint, respond with an ABORT.
*/
if (ep == sctp_sk((sctp_get_ctl_sock()))->ep)
return sctp_sf_ootb(ep, asoc, type, arg, commands);
/* 6.10 Bundling
* An endpoint MUST NOT bundle INIT, INIT ACK or
* SHUTDOWN COMPLETE with any other chunks.
......@@ -206,6 +201,22 @@ sctp_disposition_t sctp_sf_do_5_1B_init(const sctp_endpoint_t *ep,
if (!chunk->singleton)
return SCTP_DISPOSITION_VIOLATION;
/* If the packet is an OOTB packet which is temporarily on the
* control endpoint, respond with an ABORT.
*/
if (ep == sctp_sk((sctp_get_ctl_sock()))->ep)
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
sk = ep->base.sk;
/* If the endpoint is not listening or if the number of associations
* on the TCP-style socket exceed the max backlog, respond with an
* ABORT.
*/
if ((SCTP_SS_LISTENING != sk->state) ||
((SCTP_SOCKET_TCP == sctp_sk(sk)->type) &&
(sk->ack_backlog >= sk->max_ack_backlog)))
return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands);
/* Verify the INIT chunk before processing it. */
err_chunk = NULL;
if (!sctp_verify_init(asoc, chunk->chunk_hdr->type,
......@@ -249,8 +260,8 @@ sctp_disposition_t sctp_sf_do_5_1B_init(const sctp_endpoint_t *ep,
/* The call, sctp_process_init(), can fail on memory allocation. */
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
sctp_source(chunk),
(sctp_init_chunk_t *)chunk->chunk_hdr,
sctp_source(chunk),
(sctp_init_chunk_t *)chunk->chunk_hdr,
GFP_ATOMIC))
goto nomem_init;
......@@ -729,7 +740,8 @@ sctp_disposition_t sctp_sf_sendbeat_8_3(const sctp_endpoint_t *ep,
if (asoc->overall_error_count >= asoc->overall_error_threshold) {
/* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_U32(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SctpAborteds);
SCTP_DEC_STATS(SctpCurrEstab);
return SCTP_DISPOSITION_DELETE_TCB;
......@@ -1379,7 +1391,8 @@ static sctp_disposition_t sctp_sf_do_dupcook_a(const sctp_endpoint_t *ep,
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init, GFP_ATOMIC))
sctp_source(chunk), peer_init,
GFP_ATOMIC))
goto nomem;
/* Make sure no new addresses are being added during the
......@@ -1444,7 +1457,8 @@ static sctp_disposition_t sctp_sf_do_dupcook_b(const sctp_endpoint_t *ep,
*/
peer_init = &chunk->subh.cookie_hdr->c.peer_init[0];
if (!sctp_process_init(new_asoc, chunk->chunk_hdr->type,
sctp_source(chunk), peer_init, GFP_ATOMIC))
sctp_source(chunk), peer_init,
GFP_ATOMIC))
goto nomem;
/* Update the content of current association. */
......@@ -1772,14 +1786,16 @@ sctp_disposition_t sctp_sf_cookie_echoed_err(const sctp_endpoint_t *ep,
sctp_chunk_t *chunk = arg;
sctp_errhdr_t *err;
err = (sctp_errhdr_t *)(chunk->skb->data);
/* If we have gotten too many failures, give up. */
if (1 + asoc->counters[SCTP_COUNTER_INIT_ERROR] >
asoc->max_init_attempts) {
/* INIT_FAILED will issue an ulpevent. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_U32(err->cause));
return SCTP_DISPOSITION_DELETE_TCB;
}
err = (sctp_errhdr_t *)(chunk->skb->data);
/* Process the error here */
switch (err->cause) {
......@@ -1834,7 +1850,8 @@ sctp_disposition_t sctp_sf_do_5_2_6_stale(const sctp_endpoint_t *ep,
attempts = asoc->counters[SCTP_COUNTER_INIT_ERROR] + 1;
if (attempts >= asoc->max_init_attempts) {
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_U32(SCTP_ERROR_STALE_COOKIE));
return SCTP_DISPOSITION_DELETE_TCB;
}
......@@ -1936,12 +1953,18 @@ sctp_disposition_t sctp_sf_do_9_1_abort(const sctp_endpoint_t *ep,
sctp_cmd_seq_t *commands)
{
sctp_chunk_t *chunk = arg;
__u16 error = SCTP_ERROR_NO_ERROR;
if (!sctp_vtag_verify_either(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
if (chunk && (ntohs(chunk->chunk_hdr->length) >=
(sizeof(struct sctp_chunkhdr) +
sizeof(struct sctp_errhdr))))
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
/* ASSOC_FAILED will DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_U32(error));
SCTP_INC_STATS(SctpAborteds);
SCTP_DEC_STATS(SctpCurrEstab);
......@@ -1961,6 +1984,7 @@ sctp_disposition_t sctp_sf_cookie_wait_abort(const sctp_endpoint_t *ep,
sctp_cmd_seq_t *commands)
{
sctp_chunk_t *chunk = arg;
__u16 error = SCTP_ERROR_NO_ERROR;
if (!sctp_vtag_verify_either(chunk, asoc))
return sctp_sf_pdiscard(ep, asoc, type, arg, commands);
......@@ -1971,10 +1995,14 @@ sctp_disposition_t sctp_sf_cookie_wait_abort(const sctp_endpoint_t *ep,
sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP,
SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT));
if (chunk && (ntohs(chunk->chunk_hdr->length) >=
(sizeof(struct sctp_chunkhdr) +
sizeof(struct sctp_errhdr))))
error = ((sctp_errhdr_t *)chunk->skb->data)->cause;
/* CMD_INIT_FAILED will DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, SCTP_U32(error));
/* BUG? This does not look complete... */
return SCTP_DISPOSITION_ABORT;
}
......@@ -2381,7 +2409,8 @@ sctp_disposition_t sctp_sf_eat_data_6_2(const sctp_endpoint_t *ep,
* processing the rest of the chunks in the packet.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_U32(SCTP_ERROR_NO_DATA));
SCTP_INC_STATS(SctpAborteds);
SCTP_DEC_STATS(SctpCurrEstab);
return SCTP_DISPOSITION_CONSUME;
......@@ -2596,7 +2625,8 @@ sctp_disposition_t sctp_sf_eat_data_fast_4_4(const sctp_endpoint_t *ep,
* processing the rest of the chunks in the packet.
*/
sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_U32(SCTP_ERROR_NO_DATA));
SCTP_INC_STATS(SctpAborteds);
SCTP_DEC_STATS(SctpCurrEstab);
return SCTP_DISPOSITION_CONSUME;
......@@ -3547,7 +3577,8 @@ sctp_disposition_t sctp_sf_do_9_1_prm_abort(const sctp_endpoint_t *ep,
*/
/* Delete the established association. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_U32(SCTP_ERROR_USER_ABORT));
SCTP_INC_STATS(SctpAborteds);
SCTP_DEC_STATS(SctpCurrEstab);
......@@ -3686,7 +3717,8 @@ sctp_disposition_t sctp_sf_cookie_wait_prm_abort(const sctp_endpoint_t *ep,
*/
/* Delete the established association. */
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_U32(SCTP_ERROR_USER_ABORT));
return retval;
}
......@@ -4012,7 +4044,8 @@ sctp_disposition_t sctp_sf_do_6_3_3_rtx(const sctp_endpoint_t *ep,
if (asoc->overall_error_count >= asoc->overall_error_threshold) {
/* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_U32(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SctpAborteds);
SCTP_DEC_STATS(SctpCurrEstab);
return SCTP_DISPOSITION_DELETE_TCB;
......@@ -4147,7 +4180,8 @@ sctp_disposition_t sctp_sf_t1_timer_expire(const sctp_endpoint_t *ep,
SCTP_TO(timer));
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl));
} else {
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED,
SCTP_U32(SCTP_ERROR_NO_ERROR));
return SCTP_DISPOSITION_DELETE_TCB;
}
......@@ -4181,7 +4215,8 @@ sctp_disposition_t sctp_sf_t2_timer_expire(const sctp_endpoint_t *ep,
SCTP_DEBUG_PRINTK("Timer T2 expired.\n");
if (asoc->overall_error_count >= asoc->overall_error_threshold) {
/* Note: CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_U32(SCTP_ERROR_NO_ERROR));
SCTP_INC_STATS(SctpAborteds);
SCTP_DEC_STATS(SctpCurrEstab);
return SCTP_DISPOSITION_DELETE_TCB;
......@@ -4244,7 +4279,8 @@ sctp_disposition_t sctp_sf_t5_timer_expire(const sctp_endpoint_t *ep,
goto nomem;
sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply));
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_NULL());
sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED,
SCTP_U32(SCTP_ERROR_NO_ERROR));
return SCTP_DISPOSITION_DELETE_TCB;
nomem:
......
......@@ -244,9 +244,6 @@ SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
if (!snum)
snum = inet_sk(sk)->num;
/* Add the address to the bind address list. */
sctp_local_bh_disable();
sctp_write_lock(&ep->base.addr_lock);
......@@ -257,7 +254,6 @@ SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
addr->v4.sin_port = htons(addr->v4.sin_port);
if (!ret && !bp->port)
bp->port = snum;
sctp_write_unlock(&ep->base.addr_lock);
sctp_local_bh_enable();
......@@ -2750,6 +2746,9 @@ int sctp_inet_listen(struct socket *sock, int backlog)
err = -EINVAL;
if (sock->state != SS_UNCONNECTED)
goto out;
if (unlikely(backlog < 0))
goto out;
switch (sock->type) {
case SOCK_SEQPACKET:
err = sctp_seqpacket_listen(sk, backlog);
......@@ -3152,7 +3151,10 @@ static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
return -EINVAL;
/* Is this a valid SCTP address? */
if (!af->addr_valid((union sctp_addr *)addr))
if (!af->addr_valid(addr))
return -EINVAL;
if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
return -EINVAL;
return 0;
......
......@@ -628,6 +628,7 @@ struct sctp_ulpevent *sctp_ulpevent_make_rcvmsg(sctp_association_t *asoc,
if (!event)
goto fail_init;
event->iif = sctp_chunk_iif(chunk);
/* Note: Not clearing the entire event struct as
* this is just a fragment of the real event. However,
* we still need to do rwnd accounting.
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment